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A.1 Steady-State Solution and Log-linear System

A. Steady-State Solution

Without loss of generality, set ak = 0. We show below conditions for the existence of a symmetric

steady state across firms in which

Wk =W, Yjk = Y, Ljk = L, Zjk = Z, Pjk = P for all j, k.

Symmetry in prices across all firms implies

P c = P k = Pk = P

such that, from equations (2), (3), (11), and (14) in the main body of the paper,

Ck = ωckC,

Cjk =
1

nk
Ck,

Zjk

(
k′
)

= ωkk′Z,

Zjk

(
j′, k′

)
=

1

nk′
Zjk

(
k′
)
.

The vector Ωc ≡ [ωc1, ..., ωcK ]′ represents steady-state sectoral shares in value-added C, Ω =

{ωkk′}Kk,k′=1 is the matrix of input-output linkages across sectors, and ℵ ≡ [n1, ..., nK ]′ is the

vector of steady-state sectoral shares in gross output Y .
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It also holds that

C =

K∑
k=1

∫
ℑk

Cjkdj,

Zjk =
K∑

k′=1

∫
ℑk′

Zjk

(
j′, k′

)
dj′ = Z.

From Walras’ law in equation (21) and symmetry across firms, it follows

Y = C + Z. (A.1)

Walras’ law also implies for all j, k

Yjk = Cjk +

K∑
k′=1

∫
ℑk′

Zj′k′ (j, k) dj
′,

Y =
ωck

nk
C +

1

nk

(
K∑

k′=1

nk′ωk′k

)
Z,

so ℵ satisfies

nk = (1− ψ)ωck + ψ

K∑
k′=1

nk′ωk′k,

ℵ = (1− ψ)
[
I − ψΩ′]−1

Ωc,

for ψ ≡ Z
Y . Note by construction ℵ′ι = 1, which must hold given the total measure of firms is 1.

Steady-state labor supply from equation (8) is

Wk

P
= gkL

φ
kC

σ.

In a symmetric steady state, Lk = nkL, so this steady state exists if gk = n−φ
k such that

Wk =W for all k. Thus, steady-state labor supply is given by

W

P
= LφCσ. (A.2)

Households’ budget constraint, firms’ profits, production function, efficiency of production
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(from equation (17)) and optimal prices in steady state are, respectively,

CP =WL+Π (A.3)

Π = PY −WL− PZ (A.4)

Y = L1−δZδ (A.5)

δWL = (1− δ)PZ (A.6)

sP =
θ

θ − 1
ξW 1−δP δ (A.7)

for ξ ≡ 1
1−δ

(
δ

1−δ

)−δ
.

Equation (A.7) solves

W

P
=

(
θ − 1

θξ

) 1
1−δ

. (A.8)

This latter result together with equations (A.5), (A.6), and (A.7) solves

Π

P
=

1

θ
Y.

Plugging the previous result in equation (A.4) and using equation (A.1) yields

C =

[
1− δ

(
θ − 1

θ

)]
Y (A.9)

Z = δ

(
θ − 1

θ

)
Y,

such that ψ ≡ δ
(
θ−1
θ

)
.

This result and equation (A.7) gives

L =

[
δ

(
θ − 1

θ

)]− δ
1−δ

Y,

where Y from before together with equations (A.2), (A.9) and (A.8) solves

Y =

(
θ − 1

θξ

) 1
(1−δ)(σ+φ)

[
δ

(
θ − 1

θ

)] δφ
(1−δ)(σ+φ)

[
1− δ

(
θ − 1

θ

)]− σ
σ+φ

.
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B. Log-linear System

B.1 Aggregation

Aggregate and sectoral consumption which we interpret as real sales of final goods, given by

equations (2) and (3), are

ct =
K∑
k=1

ωckckt, (A.10)

ckt =
1

nk

∫
ℑk

cjktdj.

Aggregate and sectoral production of intermediate inputs are

zt =
K∑
k=1

nkzkt, (A.11)

zkt =
1

nk

∫
ℑk

zjktdj,

where equations (11) and (14) imply that zjk =
∑K

r=1 ωkrzjk (r) and zjk (r) =

1
nr

∫
ℑr
zjk (j

′, r) dj′.

Sectoral and aggregate prices are (equations (5), (7), and (13)),

pkt =

∫
ℑk

pjkdj for k = 1, ...,K

pct =
K∑
k=1

ωckpkt,

pkt =
K∑

k′=1

ωkk′pk′t.

Aggregation of labor is

lt =
K∑
k=1

lkt, (A.12)

lkt =

∫
ℑk

ljktdj.
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B.2 Demand

Households’ demands for goods in equations (4) and (6) for all k = 1, ...,K become

ckt − ct = η (pct − pkt) , (A.13)

cjkt − ckt = θ (pkt − pjkt) .

In turn, firm jk’s demands for goods in equation (12) and (15) for all k, r = 1, ...,K,

zjkt
(
k′
)
− zjkt = η

(
pkt − pk′t

)
, (A.14)

zjkt
(
j′, k′

)
− zjkt

(
k′
)

= θ
(
pk′t − pj′k′t

)
.

Firms’ gross output satisfies Walras’ law,

yjkt = (1− ψ) cjkt + ψ
K∑

k′=1

∫
ℑk′

zj′k′t (j, k) dj
′. (A.15)

Total gross output follows from the aggregation of equations (21),

yt = (1− ψ) ct + ψzt. (A.16)

B.3 IS and Labor Supply

The household Euler equation in equation (9) becomes

ct = Et [ct+1]− σ−1
{
it −

(
Et

[
pct+1

]
− pt

)}
.

The labor supply condition in equation (8) is

wkt − pct = φlkt + σct. (A.17)

B.4 Firms

Production function:

yjkt = akt + (1− δ) ljkt + δzjkt (A.18)
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Efficiency condition:

wkt − pkt = zjkt − ljkt (A.19)

Marginal costs:

mckt = (1− δ)wkt + δpkt − akt (A.20)

Optimal reset price:

p∗kt = (1− αkβ)mckt + αkβEt

[
p∗kt+1

]
Sectoral prices:

pkt = (1− αk) p
∗
kt + αkpkt−1

B.5 Taylor Rule:

it = ϕπ
(
pct − pct−1

)
+ ϕcct
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A.2 Solution of Key Equations in Section III

A. Solution of Equation (26)

Setting σ = 1 and φ = 0 in equation (A.17) yields

wkt = ct + pct = 0, (A.21)

where the equality follows from the assumed monetary policy rule, so equation (A.20) becomes

mckt = δpkt − akt. (A.22)

Here, sectoral prices for all k = 1, ...,K are governed by

pkt = (1− λk)mckt

= δ (1− λk) p
k
t − (1− λk) akt,

which in matrix form solves

pt = − [I− δ (I− Λ)Ω]−1 (I− Λ) at. (A.23)

pt ≡ [p1t, ..., pKt]
′ is the vector of sectoral prices, Λ is a diagonal matrix with the vector

[λ1, ..., λK ]′ on its diagonal, Ω is the matrix of input-output linkages, and at ≡ [a1t, ..., aKt]
′

is the vector of realizations of sectoral technology shocks.

The monetary policy rule implies ct = −pct , so

ct =
(
I− Λ′) [I− δ

(
I− Λ′)Ω′]−1

Ω′
cat. (A.24)

which may be written in compact form as

ct = χ′at. (A.25)
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B. Solution of Equation (38)

When inverse-Frisch elasticity φ > 0, labor supply and demand now jointly determine wages

such that

wkt = ct + pct + φldkt (A.26)

Thus, with monetary policy targeting ct + pct = 0, it no longer holds that sectoral

productivity shocks have no effect on wages. Because the labor market is sectorally segmented,

wages may differ across sectors. To see the sources of sectoral wage variation, we start from

labor demand implied by the sectoral aggregation of the production function and the efficiency

condition on the mix between labor and intermediate inputs,

ldkt = ykt − akt − δ
(
wkt − pkt

)
. (A.27)

Conditioning on sectors’ gross output ykt, this equation shows that a positive productivity

shock in sector k directly decreases demand for labor in the shocked sector by akt and indirectly

in all sectors by the effect of the productivity shock on sector-specific aggregate prices of

intermediate inputs, pkt . This latter effect is due to firms substituting labor for cheaper

intermediate inputs, the price of which the steady-state I/O linkages of sectors with sector

k determine.

To see the way that productivity shocks affect sectors’ gross output ykt, we use the log-linear

expression for Walras law

ykt =
(1− ψ)ωck

nk
ckt +

ψ

nk

K∑
k′=1

nk′ωk′kzk′t (k) , (A.28)

such that sectoral gross output depends on households’ demand as final goods and all sectors

demand as intermediate inputs. The {nk}∞k=1 are the steady-state shares of sectors in aggregate

gross output

nk = (1− ψ)ωck + ψ

K∑
k′=1

nk′ωk′k for all k = 1, ...,K. (A.29)

ψ ≡ Z/Y is the fraction of total gross output used as intermediate input in steady state.

Log-linear demands from households and sectors on goods produced in sector k are given
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by

ckt = ct − η (pkt − pct) ,

zk′t (k) = zk′t − η
(
pkt − pk

′
t

)
for k′ = 1, ...,K.

Thus, when sector k has a positive productivity shock, its demand from households and

firms increases in the extent the price of sector k decreases relative to the price of goods produced

in other sectors. This force pushes wages up in the shocked sector and down in all other sectors

as households and firms decrease demand for all sectors with no positive shock. The strength

of this effect depends on steady-state GDP shares for households’ demand and steady-state

input-output linkages.

Summing up, these effects create interdependence in the determination of wages. For φ > 0,

wages solve

wt = Θ−1 [θcct + θppt − φat] , (A.30)

where wt is the vector of sectoral wages, and the parameters are

Θ′ ≡ (1 + δφ) I− (1 + φ)ψD−1Ω′D;

θc ≡
[
I− ψD−1Ω′D

]
ι+ φ (1− ψ)D−1Ωc;

θp ≡
[
I− ψD−1Ω′D

]
ιΩ′

c − φη
[
I− (1− ψ)D−1ΩcΩ

′
c

]
+φ

[
(η − 1)ψD−1Ω′DΩ− δΩ

]
,

where I is a K×K identity matrix, D is a K×K matrix with vector [nk]
K
k=1 on its diagonal, Ωc

is a column-vector of GDP shares {ωck}Kk=1, and Ω is the matrix [ωk′k]
K
k′,k=1 with steady state

input-output linkages across sectors.

This expression collapses to wkt = ct + pct when φ = 0. In the special case when δ = 0 (i.e.,

no intermediate inputs), sectoral wages solve

wt = (1 + φ) ιct +
[
(1 + φη) ιΩ′

c − φηI
]
pt − φat. (A.31)

Although the interaction between price rigidity and sector size and I/O linkages is more

involved, as these effects jointly create an interdependence of labor demand across sectors, our

key insight from Section III remains: heterogeneity in price rigidity affects the propagation of
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idiosyncratic sectoral productivity shocks by affecting the responsiveness of sectoral prices to

these shocks together with GDP shares and input output linkages.

The general solution for χ′ when δ > 0 now becomes

χ′ = Ω′
c

[
I− δ (I− Λ)Ω− (1− δ) (I− Λ)Θ−1

(
θp − θcΩ

′
c

)]−1
(I−Λ)

[
I+(1− δ)φΘ−1

]
. (A.32)

Although now functional forms are more involved, sectoral price rigidity affects the

aggregate propagation of sectoral productivity shocks through distorting the effect of the

distribution of GDP shares and input-ouput linkages.

From a different angle, to further explore the effect of positive inverse-Frisch elasticity,

consider the special case of no input-output linkages (δ = 0), so

χ′ = Ω′
c (I− Φ) , (A.33)

where Φ is a diagonal matrix with entries

1− λk
1 + φη (1− λk)

[
1− φ (η − 1)

K∑
k′=1

ωck′ (1− λk′)

1 + φη (1− λk′)

]−1

, (A.34)

for k = 1, ...,K on its diagonal. Note Φ = Λ when φ = 0. According to equation (28), the

inverse-Frisch elasticity φ has two opposite effects on the capacity of price rigidity to generate

aggregate volatility from sectoral productivity shocks. On the one hand, if sector k has more

flexible prices, its demand responds by more to its own productivity shocks, so wages in the

shocked sector respond by more. This effect is captured by the denominator of the term outside

the brackets. On the other hand, the response of prices in the shocked sector has an effect on the

demand of other sectors. This effect is captured by the term in brackets which is common to all

sectors. Thus, in the absence of input-output linkages (δ = 0), more elastic labor supply reduces

the quantitative importance of price rigidity to generate fluctuations. However, because both

effects operate through sectoral demand, the effect of φ depends on the elasticity of substitution

across sectors, η. Quantitatively, empirical estimates suggest η is small (see Atalay (2017) and

Feenstra, Luck, Obstfeld, and Russ (2018)).
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A.3 Proofs

Most proofs below are modifications of the arguments in Gabaix (2011), Proposition 2, which

rely heavily on the Levy’s Theorem (as in Theorem 3.7.2 in Durrett (2013) on p. 138).

Theorem 5 (Levy’s Theorem) Suppose X1, ..., XK are i.i.d. with a distribution that satisfies

(i) limx→∞ Pr [X1 > x] /Pr [|X1| > x] = θ ∈ (0, 1)

(ii) Pr [|X1| > x] = x−ζL (x) with ζ < 2 and L (x) satisfies limx→∞ L (tx) /L (x) = 1.

Let SK =
∑K

k=1Xk,

aK = inf {x : Pr [|X1| > x] ≤ 1/K} and bK = KE
[
X11|X1|≤aK

]
, (A.35)

As K → ∞, (SK − bK) /aK
d−→ u, where u has a nondegenerated distribution.

A. Proof of Proposition 1

In the following proofs, we go through three cases: first, when both first and second moments

exist, second, when only the first moment exists, and third, when neither first nor second

moments exist.

Generally, when there are no intermediate inputs (δ = 0) and price rigidity is homogeneous

across sectors (λk = λ for all k),

∥χ∥2 =
1− λ

K1/2Ck

√√√√ 1

K

K∑
k=1

C2
k . (A.36)

Given the power-law distribution of Ck, the first and second moments of Ck exist when

βc > 2, so

K1/2 ∥χ∥2 −→

√
E
[
C2
k

]
E [Ck]

. (A.37)

In contrast, when βc ∈ (1, 2), only the first moment exists. In such cases, by the Levy’s

theorem,

K−2/βc

K∑
k=1

C2
k

d−→ u20, (A.38)

where u20 is a random variable following a Levy’s distribution with exponent βc/2 since

Pr
[
C2
k > x

]
= xβ0x

−βc/2.
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Thus,

K1−1/βc ∥χ∥2
d−→ u0

E [Ck]
. (A.39)

When βc = 1, the first and second moments of Ck do not exist. For the first moment, by

Levy’s theorem, (
Ck − logK

) d−→ g, (A.40)

where g is a random variable following a Levy distribution.

The second moment is equivalent to the result above and hence

(logK) ∥χ∥2
d−→ u′. (A.41)

B. Proof of Proposition 4

When δ ∈ (0, 1), λk = λ for all k, and Ωc =
1
K ι, we know

∥χ∥2 ≥ 1− λ

K

√√√√ K∑
k=1

[1 + δ′dk + δ′2qk]
2

≥ (1− λ)

√√√√1 + 2δ′ + 2δ′2

K
+
δ′2

K2

K∑
k=1

[
d2k + 2δ′dkqk + δ′2q2k

]
.

Following the same argument as in Proposition 2,

K−2/βd

K∑
k=1

d2k −→ u2d,

K−2/βq

K∑
k=1

q2k −→ u2q ,

K−1/βz

K∑
k=1

dkqk −→ u2z,

where u2d, u
2
q and u2z are random variables. Thus, if βz ≥ 2min {βd, βq},

vc ≥
u3

K1−1/min{βd,βq}
v (A.42)

where u23 is a random variable.
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A.4 Input-Output Linkages

We combine the make and use tables to construct an industry-by-industry matrix that details

how much of an industry’s inputs other industries produce. We use the make table (MAKE) to

determine the share of each commodity each industry k produces. We define the market share

(SHARE) of industry k’s production of commodities as

SHARE =MAKE ⊘ (I×MAKE) ,

where I is a matrix of ones with suitable dimensions and ⊘ represents the Hadamard division

(element by element).

We multiply the share and use tables (USE) to calculate the dollar amount industry k′

sells to industry k. We label this matrix revenue share (REV SHARE), which is a supplier

industry-by-consumer industry matrix,

REV SHARE = SHARE × USE.

We then use the revenue-share matrix to calculate the percentage of industry k inputs

purchased from industry k′, and label the resulting matrix SUPPSHARE

SUPPSHARE = [REV SHARE ⊘ (I× USE)]′ . (A.43)

The input-share matrix in this equation is an industry-by-industry matrix and therefore

consistently maps into our model.1

1Ozdagli and Weber (2016) follow a similar approach.
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