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C Additional Existence and Uniqueness Results
Proof of Lemmas A.2 and A.1. {Λi}i is an equilibrium if and only if {Λi}i = F ({Λi}i).
By direct calculation, defining Xi = (Λi + αiVN(i))

−1, we get {Λi}i = F ({Λi}i) if, and only
if, {Xi}i = G({Xi}i). That F and G are monotone increasing follows because matrix inversion
Y → Y −1 is monotone decreasing (e.g., Horn and Johnson (2013)), and projection onto N(i)

Y → YN(i) is monotone increasing in the positive semidefinite order.

Proof of Proposition 6. Pick an arbitrary starting tuple {X0
i }i such that {X0

i }i ≤ G({X0
i }i). By

direct calculation, the corresponding price impacts Λ0
i = (X0

i )−1−αiVN(i) satisfy {Λ0
i }i ≥ F ({Λ0

i }i).
Since map F is continuous and monotone with respect to the defined partial order, recursively
applying F to inequality {Λ0

i }i ≥ F ({Λ0
i }i), we can see that Fn({Λ0

i }i) is monotone decreasing and
hence converges to a fixed point of F . For the price impact tuple satisfying {Λ0

i }i ≤ F ({Λ0
i }i), the

sequence Fn({Λ0
i }i) is monotone increasing. Therefore, to prove convergence to a fixed point, we

need to show that it is bounded from above. To this end, pick α > 0 sufficiently large so that {Λ̃i}i
defined by

Λ̃i = αdiag((I(n)− 2)−1)n∈N(i) (42)

satisfies {Λ0
i }i ≤ {Λ̃i}i, where I(n) is the number of agents in exchange n. An analogous argument

implies F ({Λ̃i}i) ≤ {Λ̃i}i. Let Ω = {{Λj}j ∈ SM : Λj ≤ Λ̃j , ∀j}. Then, for any {Λj}j ∈ Ω,

F ({Λj}j) ≤ F ({Λ̃j}j) ≤ {Λ̃i}i (43)

and hence F maps Ω into itself. Therefore, the sequence Fn({Λ0
i }i) is monotone increasing, bounded

from above by {Λ̃i}i, and hence converges to a fixed point of F .

Equilibrium uniqueness is equivalent to the uniqueness of the fixed point of map F . It therefore
suffices to show that F is a contraction on a suitably defined normed space. We can identify the
strategy of an agent in the game (i.e., his demand schedule) with its slope (αiVN(i) + Λi)

−1 and
find conditions on the demand slopes for this to be the case.

Lemma C.1 For any i, suppose that 0 ≤ {Bi}i ≤ {Ai}i are such that any equilibrium tuple {Λi}i
satisfies {Bi}i ≤ {(αiV̄N(i) +Λ̄i)

−1}i ≤ {Ai}i. Suppose that for any {Xi}i, {Bi}i ≤ {Xi}i ≤ {Ai} i,

(Mj − 1)X2
j +

∑
i 6=j

MiX
2
i <

(Mj − 1)Xj +
∑
i 6=j

MiXi

2

, j = 1, · · · , I . (44)
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Then, map F is a contraction on the set {Bi}i ≤ {Xi}i ≤ {Ai}i, and hence there exists a unique
equilibrium.

Note that when Xi are positive numbers (or commuting matrices, in which case they can be
simultaneously diagonalized), a direct calculation implies that condition (44) holds. However, absent
commutativity, this is generally not true. The usefulness of Lemma C.1 depends on a good choice
of bounds {Bi}i and {Ai}i. The next result provides a simple and easily verifiable condition that
guarantees the applicability of Lemma C.1, based on the choice {Bi}i = {(Λ̄0

i,max + αiV̄N(i))
−1}i

and {Ai}i = {(Λ̄0
i,min + αiV̄N(i))

−1}i.37

Corollary 3 Suppose that

min
n

I(n)− 2

λ∗∗(n)
≥ max

n

I(n)− 2

(I(n)− 1)λ∗∗(n)
. (45)

Then, equilibrium is unique.

Intuitively, the left-hand side of (45) measures how competitive an exchange is, whereas the
right-hand side reflects the dispersion of payoff riskiness across exchanges. If this dispersion is high,
there is a lot of ‘room’ for non-commutativity and uniqueness can only be guaranteed when strategic
effects are small; that is, when I(n) is sufficiently large.

To proceed further, we first establish auxiliary results.

Lemma C.2 If there is only one asset and one exchange, then equilibrium is unique.

Proof. The proof follows by Lemma C.1. Indeed, in this case, the conditions of Lemma C.1 hold,
and therefore map F is a contraction and has a unique fixed point.

Lemma C.3 Let {Ai}i ∈ SI be a tuple of diagonal matrices. Consider a map FA : SI → SI
defined via

FA,i({Λj}j) =

∑
j 6=i

(αjĀj + Λ̄j)
−1

−1
N(i)

.

This map has a unique fixed point in the class of diagonal matrices.

Proof. Since F is a contraction on the set of diagonal matrices, Lemma C.1 gives the proof.

Lemma C.4 Let {Ai}i ∈ SI be a tuple of diagonal matrices. Then, map FA from Lemma C.3 has
a unique fixed point.

37 As an example, consider the case when all pairs of assets are equally correlated with correlation ρ, all
agents have the same risk aversion α, and maxi |N(i)| ≤ N̂ . Then, max(eig(C(VN(i)))) ≤ max{1 + ρ(N̂ −
1), 1− ρ}, min(eig(C(VN(i)))) ≥ min{1 + ρ(N̂ − 1), 1− ρ}, and (45) imposes upper and lower bounds on the
correlation ρ. For example, in the symmetric case when I(n) = Î is independent of n and ρ > 0, we obtain
the simple condition ρ < Î−2

Î+N̂−2 . For Corollary 3, one could also pick {Bi}i = {(Λ̄ki,max + αiV̄N(i))
−1}i

and {Ai}i = {(Λ̄ki,min + αiV̄N(i))
−1}i for any k ≥ 1.
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Proof. Let {ΛAi }i be an arbitrary fixed point of FA, and let {Λ∗∗i }i be a diagonal fixed point,
which is unique by Lemma C.3. Pick β1 ∈ R+ so that β1 satisfies β1IdN(i) ≤ ΛAi for all i and
β1 ≤ mini min(eig(Ai)). Similarly, pick β2 ∈ R+ so that β2 satisfies β2IdN(i) ≥ ΛAi for all i and
β2 ≥ maxi max(eig(Ai)). Define {Bk}i ≡ {βkIdN(i)}i, k = 1, 2 , and let FBk , k = 1, 2 be the
corresponding maps. Then define {ΛBki }i = βk {diag((I(n)− 2)−1)N(i)}i. We have

{ΛBki }i = FBk({ΛBki }i).

Iterating the inequality
{ΛB1

i }i = FB1({ΛB1
i }i) ≤ FA({ΛB1

i }i),

we obtain that FnA({ΛB1
i }i) converges to a diagonal fixed point of FA, and hence by Lemma C.3

converges to {Λ∗∗i }i. A similar argument implies that FnA({ΛB2
i }i) also converges to {Λ∗∗i }i.

Now by the definition of βk, k = 1, 2, we also have

FB1({Λi}i) ≤ FA({Λi}i) ≤ FB2({Λi}i)

for any {Λi}i ∈ SI . Therefore, by the monotonicity of map FA,

FnA({ΛB1
i }i) ≤ FnA({ΛAi }i) ≤ FnA({ΛB2

i }i) .

Taking n→∞ and using the fact that FnA({ΛAi }i) = {ΛAi }i, we get {Λ∗∗i }i ≤ {ΛAi }i ≤ {Λ∗∗i }i , and
the claim follows.

In the sequel, we use the following convenient notation:
Notation. For any x, y ∈ RN , we write yTx = 〈x, y〉. Given a triplet X,A,B of symmetric matrices
of the same dimension, we use notation X ∈ [B,A] when B ≤ X ≤ A.

Proof of Corollary 3. For simplicity, we work directly with the correlation matrix and assume
that V = C(V). By the proof of Theorem 1 (iv), any equilibrium {Λi}i satisfies

Λ0
i,min ≤ Λi,min ≤ Λi ≤ Λi,max ≤ Λ0

i,max, i ∈ I.

Therefore,

diag

(
I(n)− 2

(I(n)− 1)λ∗∗(n)

)
N(i)

≤ (Λi + αiVN(i))
−1 ≤ diag

(
I(n)− 2

(I(n)− 1)λ∗∗(n)

)
N(i)

, i ∈ I ,

and the claim follows from Lemma E.5.

D Additional Comparative Statics and Welfare
Proof of Lemma B.1. Suppose that there are N traders such that

Λ̃−1
i + (αiṼi + Λ̃i)

−1 = B̃−1, i = 1, · · · , N.
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Pick an arbitrary Λ̂1 ≤ Λ1 and define B̂ via Λ̂−1
1 + (α1Ṽ1 + Λ̂1)−1 = B̂−1. Then, define Λ̂i via

Λ̂−1
i + (αiṼi + Λ̂i)

−1 = B̂−1, i = 2, · · · , N.

This defines Λ̂i uniquely: Λ̂i = Ṽ
1/2
i f(Ṽ

1/2
i B̂Ṽ

1/2
i )Ṽ

1/2
i and (Λ̂i+Ṽi)

−1 = Ṽ
−1/2
i g(Ṽ

1/2
i B̂Ṽ

1/2
i )Ṽ

−1/2
i .

Then, define A ≡ ∑i(Λ̂i + Ṽi)
−1 . It therefore suffices to show that there exist M ≥ 1 and ṼN+1

and the corresponding price impact Λ̂N+1 such that

Λ̂−1
N+1 + (αN+1ṼN+1 + Λ̂N+1)−1 = B̂−1 and A+ (M3 − 1)(αN+1ṼN+1 + Λ̂N+1)−1 = Λ̂−1

N+1.

This gives the required matrix Ṽ3 = (M−1
3 (B̂ −A))−1 − (M−1

3 (A+ (M3 − 1)B̂−1))−1.
The following result gives the analytic characterization of equilibrium in Proposition 1.

Lemma D.1 (Functional Calculus for Symmetric Matrices) For any continuous function f(x)

and any symmetric matrix A, we can define f(A) as follows. By the eigen-decomposition theo-
rem, there exists an orthogonal matrix U and a diagonal matrix D such that A = UTDU , where
D = diag(di) and di are the eigenvalues of A. Then,

f(A) = UTdiag(f(di))U.

In general, matrix U is not unique. The uniqueness holds only if the eigenvalues of A are
all distinct. However, even if U is not unique, f(A) is uniquely determined, and so it is well-
defined. The following lemma explicitly links price impact Λi with the aggregate liquidity measure
B =

∑
j(αjV̄N(j) + Λ̄j)

−1. Let f1(a) = (2− a+
√
a2 + 4)/2 and f(a) = f1(a)/a.

Lemma D.2 Let Yi = (B−1)N(i). Then

Λ = Y
1/2
i f1(Y

−1/2
i αiVN(i)Y

−1/2
i )Y

1/2
i .

If VN(i) is invertible, then

Λi = αiV
1/2
N(i)f(αiV

1/2
N(i)Y

−1
i V

1/2
N(i))V

1/2
N(i). (46)

Proof of Lemma D.2. The assertion is a direct consequence of Lemma E.6.

Proof of Corollary 2. The expressions follow by direct calculation from market clearing,∑I
j=1

(
αjV̄N(j) + Λ̄j(B)

)−1
(d− p− αj V̄N(j)q

0
j ) = 0.

Next, we consider how the extent to which a trader is connected with the market and his more
or less central position in the market, measured by participation in different exchanges, influence his
equilibrium price impact relative to other traders in a given exchange. The equilibrium price impacts
of different market participants are linked through the aggregate liquidity measure B. Namely, let

Φ(Λi, αiVN(i)) ≡ (Λ−1
i + (αiVN(i) + Λi)

−1)−1 (47)

48



be the harmonic mean of two matrices Λi and Λi+αiVN(i). Then, by Theorem 1, Φ(Λi, αiVN(i)) =

(B−1)N(i), for any class i. In particular, the price impacts of two classes i and j that are connected
(i.e., N(i) ∩N(j) 6= ∅) are related as follows(

Φ(Λi, αiVN(i))
)
N(i)∩N(j)

=
(
Φ(Λj , αjVN(j))

)
N(i)∩N(j)

= (B−1)N(i)∩N(j). (48)

Suppose that N(i) ⊃ N(j); for instance, class i is better connected than class j. A concavity
property of the harmonic mean (47) implies the following relationship among the price impacts in
the exchanges in which both classes i and j participate, (Λi)N(j) and Λj .

Lemma D.3 Suppose that class i has greater market participation than class j, N(i) ⊃ N(j).
Then

Φ
(
(Λi)N(j), αiVN(j)

)
≥ Φ

(
Λj , αjVN(j)

)
. (49)

Proof of Lemma D.3. By (48), (Φ
(
Λi, αiVN(i)

)
)N(j) = Φ

(
Λj , αjVN(j)

)
. By Theorem 5 in

Anderson (1971),
(Φ
(
Λi, αiVN(i)

)
)N(j) ≤ Φ

(
(Λi)N(j), αiVN(j)

)
,

and the claim follows.

Function Φ(Λ, αV) is monotone increasing in Λ, and therefore, for the case of scalar Λj , in-
equality (49) immediately yields the last item of Theorem 2.

Nevertheless, with many assets, one cannot extrapolate this result by using (49) to conclude
that (Λi)N(j) ≥ Λj . The non-commutativity is, again, the key. Let A1 ≡ Φ

(
(Λi)N(j) , αiVN(j)

)
and

A2 ≡ Φ
(
Λj , αjVN(j)

)
. Then (using Lemma D.2 ),

(Λi)N(j) = αiV
1/2
N(j)f(αiV

1/2
N(j)A

−1
1 V

1/2
N(j))V

1/2
N(j) , Λj = αjV

1/2
N(j)f(αjV

1/2
N(j)A

−1
2 V

1/2
N(j))V

1/2
N(j) ,

where

f(a) =
2− a+

√
a2 + 4

2a
(50)

is monotone decreasing in a. Inequality A1 ≥ A2 (Proposition D.3) implies
X1 ≡ V

1/2
N(j)A

−1
1 V

1/2
N(j) ≤ V

1/2
N(j)A

−1
2 V

1/2
N(j) ≡ X2. However, given two non-commuting symmetric

matrices X1 and X2 and a monotone decreasing function f(x), inequality X1 ≤ X2 does not
generally imply f(X1) ≥ f(X2). A function f that satisfies f(X1) ≥ f(X2) for any X1 ≤ X2 is
called matrix monotone. In particular, to conclude that (Λi)N(j) ≥ Λj , function f in (50) must be
matrix-monotone, which is not the case.38

38 In fact, f is not matrix monotone on any interval. This noteworthy property does not have any
scalar analogues. This implies that with sufficiently many assets, for any A ≥ 0 there exists B, B ≤ A,
such that B is sufficiently close to A and the monotonicity fails (by the Löwner’s Theorem). A function
f(z) is matrix monotone on some (even an arbitrarily small) interval if and only if it can be approximated
by convex combinations of simple hyperbolic functions α

z+β , α ∈ R+, β ∈ R. For the general theory of
monotone matrix functions, see Löwner (1934) and Donoghue (1974).
Note that non-commutativity is essential here. If A and B commute, they can be diagonalized in the same

basis and, clearly, the implication A ≥ B ⇒ f(A) ≤ f(B) holds for diagonal matrices.
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One can still compare price impacts through an eigenvalue order instead of the (weaker) positive
semidefinite order, using that with positive semidefinite matrices, there is a min-max interpretation
of eigenvalues. For the eigenvalues of a symmetric m × m matrix A ordered to be decreasing,
eig(A) = {µ1(A) ≥ · · · ≥ µm(A)}, we write eig(A) ≥ eig(B) if µi(A) ≥ µi(B) for all i = 1, · · · ,m.

Lemma D.4 (Relative Price Impact: Many Assets) Suppose that class i has greater market
participation than class j, N(i) ⊃ N(j). Then, if αi ≤ αj , equilibrium price impact of class i in
exchanges N(j) is larger than that of class j in the following sense:

eig
(
α−1
i V

−1/2
N(j) (Λi)N(j)V

−1/2
N(j)

)
≥ eig

(
α−1
j V

−1/2
N(j) ΛjV

−1/2
N(j)

)
.

If the matrices V
−1/2
N(j) (Λi)N(j)V

−1/2
N(j) and V

−1/2
N(j) ΛjV

−1/2
N(j) commute, then the stronger inequality (2)

holds.

Proof of Lemma D.4. Let W1 = α−1
i V

−1/2
N(j) (Λi)N(j)V

−1/2
N(j) and W2 = α−1

j V
−1/2
N(j) ΛjV

−1/2
N(j) . Then,

Wk = f(αiV
1/2
N(j)A

−1
k V

1/2
N(j)), k = 1, 2. Since eigenvalues are increasing in the positive semidefinite

order, Proposition D.3 implies that

eig(αiV
1/2
N(j)A

−1
1 V

1/2
N(j)) ≤ eig(αjV

1/2
N(j)A

−1
2 V

1/2
N(j)) .

Therefore, eig(W1) = f(eig(αiV
1/2
N(j)A

−1
1 V

1/2
N(j))) ≥ f(eig(αjV

1/2
N(j)A

−1
2 V

1/2
N(j))) = eig(W2) . If W1

and W2 commute, diagonalizing them in the same basis implies that eigenvalue order and the
positive semidefinite order are equivalent.

To prove part (2) of Proposition 5, we first characterize a class of markets. For each i, write

VN(i) =

(
Vi,i Vi,−i

V−i,−i V−i,−i

)
,

the block decomposition of V in RN(i) = RN(i)\N(j) ⊕ RN(i)∩N(j). For any i 6= j, Vi\j ≡ Vi,i −
Vi,−i(V−i,−i)

−1Vi,−i ∈ R(N(i)\N(j))×(N(i)\N(j)) is the conditional covariance for the residual risks in
N(i) \N(j), which cannot be hedged in the liquid exchange N(j).

Proposition 7 (Price Impact and Residual Riskiness) Let Ij be a set of agents with risk
aversion αj and let N(j) be the set of exchanges in which they participate. Assume Ij ≥ 2. Then,
in the limit as αj/Ij → 0, equilibrium price impacts in exchanges N(j) become zero, Λj → 0,
whereas equilibrium price impacts in exchanges N(i) \N(j), Λi\j ≡ Λi,N(i)\N(j), solve the system

Λi\j =

∑
k 6∈Ij

(αkV̄k\j + Λ̄k\j)
−1

−1
N(i)\N(j)

, i ∈ I.

Furthermore, the demand slope of agent i in exchanges N(i) coincides with (αiV̄i\j + Λ̄i\j)
−1 and

(VQ)N(j) = 0.
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Proof of Proposition 7. Suppose that Mi ≥ 2. Since, by assumption, there are at least three
agents participating in each exchange, an ε > 0 exists such that

Λi =

Λ̄i)
−1 +

∑
j 6=i

(αjV̄N(j) + Λ̄j)
−1

−1
N(i)

≤
((
εId + (Mi − 1)(αi‖V‖Id + Λ̄i)

−1
)−1
)
N(i)

=
(
εId + (Mi − 1)(αi‖V‖Id + Λi)

−1
)−1

.

Let ` ≥ 0 be the largest eigenvalue of Λi. Then, we get ` ≤
(
εId + (Mi − 1)(αj‖V‖Id + `)−1

)−1.
By direct calculation, this inequality implies that `→ 0 as αj → 0 or Mj →∞.

Pick any trader i 6= j. Then,

(Λi)N(j)∩N(i) ≤ (
(
Mj(αj‖V‖+ Λ̄j)

−1 + εId
)−1

)N(j)∩N(i) = (
(
Mj(αj‖V‖+ Λj)

−1 + εId
)−1

)N(j)∩N(i).

Since (αj‖V‖+ Λi)
−1 diverges to ∞, we get the required result.

Finally, the last claim follows because limαj→0 Λi = (Λ̄i\j)N(i), and hence, using the Frobenius
formula (Lemma E.1), ((V N(i)+Λi)

−1)N(j)∩N(i)→ (Λi\j+S(V N(i), N(i) \N(j)))−1.
To prove the result about the limit allocation, we need to study the asymptotic behavior in

greater detail. This is done in the following proposition.

Proposition 8 Let Mj > 2. Then, for sufficiently small α = αj , an equilibrium price impact tuple
{Λi(α)}i exists that satisfies Λj(α) ≈ α

Mj−2VN(j), and for all i 6= j, to the first order in α,

Λi(α) ≈
(

αVN(j)
Mj−1

(Mj−2)Mj
−α Mj−1

(Mj−2)Mj
VN(j)W12(i)W22(i)−1

−α Mj−1
(Mj−2)Mj

W22(i)−1W12(i)TVN(j) Λi\j + αΛ
(1)
i\j

)
N(i)

,

where

W (i) =

(
W11(i) W12(i)

W T
12(i) W22(i)

)
≡
∑
k 6=i,j

(αkV̄N(k) + Λ̄k(0))−1.

The first order equilibrium response {Λ(1)
i\j}j 6=i is the unique solution to the system

Λ
(1)
i\j =

W22(i)−1

∑
k 6=i,j

ZkΛ
(1)
k\jZk +W12(i)TV11

Mj − 1

(Mj − 2)Mj
W12(i)

W22(i)−1


N(i)\N(i)

,

where Zi ≡ (αiV̄N(i) + Λ̄i(0))−1, i 6= j.

Proof. The fixed point equation is

Λi(α) =
(
((αV̄N(j) + Λ̄j)

−1 +W (i, α))−1
)
N(i)
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and the claim follows by direct calculation from the Frobenius formula (Lemma E.1). Furthermore,

B−1 ≈
(

αjVN(j)
Mj−1

(Mj−2)Mj
−αj Mj−1

(Mj−2)Mj
VN(j)W12W

−1
22

−αj Mj−1
(Mj−2)Mj

W−1
22 W T

12VN(j) W2\1 + αjW
(1)
2\1

)
,

where

W =

(
W11 W12

W T
12 W22

)
≡
∑
k 6=j

Mk(αkV̄N(k) + Λ̄k(0))−1.

Thus, the trade of an agent j is approximately given by

(αjVN(j) + Λj)
−1QN(j) −

Mj − 2

Mj − 1
q0
j = α−1

j

Mj − 2

Mj − 1
V−1
N(j)QN(j) −

Mj − 2

Mj − 1
q0
j .

We have39

α−1
j

Mj − 2

Mj − 1
V−1
N(j)QN(j) ≈M−1

j

(
X

(0)
N(j) −W12W

−1
22 X

(0)
N\N(j)

)
,

where
X(0) =

∑
j 6=i

(
αjV̄N(j) + Λ̄j(0)

)−1
αjV̄N(j)Q

0
j +

Mi − 2

Mi − 1
Q0
i .

In contrast, agents i 6= j trade (αiVN(i) + Λ̄i(0))−1
(
QN(i)\N(j) − αiVN(i)q

0
i

)
, since QN(j) = 0.

We will now restrict our analysis to markets from Proposition 7. For simplicity, we will assume
that there is a single illiquid exchange in which all agents participate, so that n = N(i) \ N(j)

is the same for all agents. By Proposition 7, the problem reduces to studying the price impact
Λ̃i = Λi\j of agent i in the (illiquid) exchange n. Let ΠK(n) be the orthogonal projection onto the
subspace of assets traded in exchange n and let Q̃ ≡ (VQ)K(n) and q̃0

i ≡ (q0
i )K(n). With Ṽi = Vi\j

defined as in Proposition 7, Υ̃i ≡ (αiṼi)
−1Υ̃i(Ṽi, Λ̃i)(αiṼi)

−1, ∆̃i ≡ (αiṼi)
−1∆̃i(Ṽi, Λ̃i)(αiṼi)

−1,
and Λ̃−1

i + (Λ̃i + αiṼi)
−1 = B̃ for all i, which implies a global upper bound on the price impact of

all agents,
Λ̃i < 2B̃−1. (51)

Lemma D.5 In the markets from Proposition 7, Υ̃j = 1
2

(
B̃Λ̃jB̃ − B̃

)
and 2∆̃j = 3Λ̃jB̃Λ̃j −

Λ̃jB̃Λ̃jB̃Λ̃j .

Proof of Lemma D.5. For brevity, let Υ = Υj\i, V = αjṼj , Λ = Λ̃j , B = B̃. Then,

(αjVN(j))
−1Υ(αjVN(j))

−1 =
1

2
(V+Λ)−1+

1

2
(V+Λ)−1Λ(V+Λ)−1 =

1

2
(B−Λ−1)+

1

2
(B−Λ−1)Λ(B−Λ−1)

and the claim follows. For ∆, we have

(αjVN(j))
−1∆(αjVN(j))

−1 = Λ(Λ + V)−1V(Λ + V)−1Λ =

Λ(Λ + V)−1Λ− Λ(Λ + V)−1Λ(Λ + V)−1Λ = Λ(B − Λ−1)Λ− Λ(B − Λ−1)Λ(B − Λ−1)Λ

39 α−1j
Mj−2
Mj−1V−1N(j)αjVN(j)

Mj−1
(Mj−2)Mj

X
(0)
N(j)−α−1j

Mj−2
Mj−1V−1N(j)αj

Mj−1
(Mj−2)Mj

VN(j)W12W
−1
22 X

(0)
N\N(j) approx-

imates the left hand side and equals the right hand side.
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and the claim follows by direct calculation.

The following lemma shows that within the general framework of Proposition 7 we can directly
study welfare with the “reduced” matrices of price impact and surplus from trade.

Lemma D.6 Let

Υ̃i ≡ (αiṼj+Λ̃j)
−1

(
1

2
αiṼj + Λ̃j

)
(αiṼj+Λ̃j)

−1 and ∆̃j ≡
1

2
Λ̃(αiṼj+Λ̃j)

−1αiṼj(αiṼj+Λ̃j)
−1Λ̃j .

Then, the utility Uj of agent from class j with initial holdings q0
k with

(
q0
k

)
N\K(n)

= 0 (i.e., no
initial holdings in exchanges N \K(n)) is given by

Uj(Λj ; q
0
k) = 〈Υ̃jQ̃, Q̃〉 − 2〈αjṼjΥ̃jQ̃, q̃

0
k〉 − 〈∆̃j q̃

0
k, q̃

0
k〉. (52)

Proof. Let Vj ≡ VN(j). Then,

Υj =
1

2
(αiVj + Λj)

−1 +
1

2
(αjVj + Λj)

−1Λj(αjVj + Λj)
−1,

and hence 〈ΥiQN(i),QN(i)〉 = 〈Υ̃jQ̃, Q̃〉, because Qκ(n) = 0 and price impact in exchanges other
than κ(n) also vanishes. Furthermore, a direct calculation implies that

αiViΥi =
1

2
(Id− Λi(αVi + Λi)

−1) +
1

2
(Id− Λi(αVi + Λi)

−1)Λi(αVi + Λi)
−1,

and hence 〈αiViΥiQN(i), q
0
k〉 = 〈αjṼjΥ̃jQ̃, q̃

0
k〉.

Proposition 9 (Commutativity, Connectedness and Price impact) If B̃1/2Ṽj1B̃
1/2 and B̃1/2Ṽj2B̃

1/2

commute and Ṽj1 ≤ Ṽj2 , then Λ̃j1 ≥ Λ̃j2 . However, for any B̃ and Ṽj1 that do not commute and
satisfy B̃ > 2Ṽ−1

j1
, there exists Vj2 ≥ Vj1 such that Λ̃j1 6≥ Λ̃j2 .

Proof of Proposition 9. For simplicity, we normalize all risk aversions to 1. Let j1 = 1, j2 = 2.
We first show that for any Ṽ1, Ṽ2 and B̃ there exists a market in which they are realized. To prove
this, consider a market with three classes and let us show that we can pick Ṽ3 accordingly. First,
equation Λ̃−1

i + (Ṽi + Λ̃i)
−1 = B̃ implies (by Lemma D.2) that

Λ̃i = Ṽ
1/2
i f(Ṽ

1/2
i B̃Ṽ

1/2
i )Ṽ

1/2
i

and
(Λ̃i + Ṽi)

−1 = Ṽ
−1/2
i g(Ṽ

1/2
i B̃Ṽ

1/2
i )Ṽ

−1/2
i .

Denote A ≡ (Ṽ1 + Λ̃1)−1 + (Ṽ2 + Λ̃2)−1. Then, Λ̃3 satisfies

Λ̃3 = (A+ (M3 − 1)(Ṽ3 + Λ̃3)−1)−1 = (B̃ − (Ṽ3 + Λ̃3)−1)−1
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and therefore to complete the proof it suffices to show that there exist positive definite matrices
Λ̃3, Ṽ3 satisfying

Λ̃−1
3 − (M3 − 1)(Ṽ3 + Λ̃3)−1 = A, Λ̃−1

3 + (Ṽ3 + Λ̃3)−1 = B̃.

Solving this system, we get

(Ṽ3 + Λ̃3)−1 = M−1
3 (B̃ −A), Λ̃−1

3 = M−1
3 (A+ (M3 − 1)B̃−1) .

Since A+ (M3 − 1)B̃−1 > B̃−1 −A whenever M3 > 1, the matrix

Ṽ3 = (M−1
3 (B̃ −A))−1 − (M−1

3 (A+ (M3 − 1)B̃−1))−1

is positive definite. Finally, B̃ > 2Ṽ−1
1 > Ṽ−1

1 + Ṽ−1
2 > A, completing the proof of existence.

Lemma D.7 None of the functions f, f1, g is matrix monotone.

Proof. By the Löwner Theorem (Donoghue (1974)), it suffices to show that none of these functions
can be analytically continued to the whole upper half-plane. This follows directly from the fact that
2i is a branching point for all these functions.

By Lemma, f1 = 2−a+
√
a2+4

2 is not matrix monotone on any interval, and consequently, for any
positive definite matrix X1 of sufficiently high dimension, there exists a matrix X2 ≥ X1 such that
f1(X2) 6≤ f1(X1) . Let X1 = B̃−1/2Ṽ1B̃

−1/2. Then, define Ṽ2 ≡ B̃1/2X2B̃
1/2 .

Now, by Lemma D.2,

Λ1 = B̃1/2f1(X1)B̃1/2 6≥ B̃1/2f1(X2)B̃1/2 = Λ2,

and the proof of Proposition 9 is complete.

The proof of Proposition 3 shows that the eigenvalues of the map EM play a crucial role in
determining the welfare properties of decentralized markets. We complete this Appendix with a
discussion of the structure of these eigenvalues and their link to price impact. For simplicity, we
assume that there is only one asset traded on all exchanges.40

Corollary 4 (One Asset: Equilibrium Allocations) Consider a decentralized exchange for a
single asset (Example 1 (ii)). Suppose that Λi is nonsingular.41 Letting (1 − γMi ) ≡ 1

1+αiσ2tr(Λ−1
i )

,
the allocation of trader i is given by

qi + q0
i = (1− γMi ) (1T Λ̄−1

i Q∗ + q0
i ) . (53)

40 The case of multiple assets is similar, but the notation is more cumbersome.
41 This is without loss of generality and is always the case if the market structure is a tree. See Malamud

and Rostek (2016).
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The scalar γMi is the decentralized-market counterpart of the degree of diversification by trader
i. The overall liquidity tr(Λ−1

i ) of a trader who participates in multiple exchanges for a homogenous
asset determines the fraction of the initial endowment he retains. In one-asset markets, equilibrium
price impacts of all traders are diagonal without loss (see Malamud and Rostek (2016)), allowing
us to use the trace. �

In a noncompetitive market (either centralized or decentralized), the map EDM still keeps the
efficient allocation unchanged, EDM (α−1

i )i = (α−1
i )i (Corollary 2). However, in addition to this

eigenvalue of one, it has other eigenvalues that are non-zero. The magnitude of these eigenvalues
shows precisely how efficient the map EDM is in terms of eliminating the inefficient parts of the initial
allocation.42 Recall that γi ≡ 1 − 1

1+αiσ2tr(Λ−1
i )

(see Corollary 4) is the degree of diversification by

trader i in the decentralized market. In order to characterize the eigenvectors e of EM, we substitute
the eigenvalue condition EMe = νe into (53) and arrive at the following result.

Proposition 10 Suppose that there is one asset and that (1−γi) 6= δj for all i 6= j, and the market
hypergraph is connected.43 Then, the map EM has I different eigenvalues νi, i = 1, · · · , I satisfying

0 < (1− γ1) < ν1 < (1− γ2) < · · · < νI−1 < (1− γI) < νI = 1 . (54)

The eigenvector for the eigenvalue νI = 1 is the efficient allocation eI = (α−1
i )i, while for an

eigenvalue ν = νi, i ≤ I − 1 the corresponding eigenvector is given by e(ν) = (qj(ν))j , where

qj(ν) = − δj
δj − ν

1̄T Λ̄−1
j Q∗(ν) , (55)

Q∗(ν) is the corresponding aggregate risk, and the eigenvalues νi, i = 1, · · · , I − 1 are determined
by the zero aggregate endowment condition 1T e(ν) = 0 for all i ≤ I − 1.

The zero aggregate endowment condition is straightforward: By market clearing, we always
have 1TEMe = 1T e and hence, if e(ν) is an eigenvector with ν 6= 0, we must have ν1T e = 1T e

implying that either ν = 1 (and then e is the efficient allocation) or 1T e = 0. By the zero aggregate
endowment condition, the efficient (competitive) trade would have ECMe = 0. But price impacts do
not allow the agents to diversify away their endowment risk. An eigenvector e(ν) corresponds to
initial endowments for which exactly the fraction 1− ν of initial endowment is be diversified away.

The eigenvectors and eigenvalues of the map E can be used to derive the decomposition of the
action of EM. Indeed, let V be the matrix of eigenvectors of E so that EM = VDV −1. For any vector
Q0 = (q0

i ) define Q0
j ≡ (V −1Q0)j to be the coordinates of Q0 in the basis of eigenvectors of EM.

Then, Q0 =
∑

iQ0
i ei and

EMQ0 =
∑
i

νiQ0
i . (56)

42 Sannikov and Skrzypacz (2015) use a similar decomposition in a slightly different setting and show
that these eigenvalues determine how quickly the initial allocation converges to the efficient one over time.

43 That is, for any two exchanges, there is a trading path connecting them. The general case is analogous,
but the notation is more complicated.
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If the eigenvalues νi, i < I, are sufficiently small, the map EM essentially eliminates the inefficiency
of the allocation and pushes it all the way to the efficient one. Otherwise, it only “contracts” the
inefficiencies along the directions of the corresponding eigenvectors, and the degree of contraction is
given by νi ∈ (0, 1). The smaller νi is, the more efficient the market structure is in diversifying away
the initial endowment risk. In particular, if the initial endowments are given by the eigenvector
e1 corresponding to the minimal eigenvalue ν1, then the given market structure is highly efficient
in diversifying initial endowment risk. In general, if a vector of initial endowments is a linear
combination of e1, · · · , eL, then, on average, a fraction µ ∈ [1 − νL, 1 − ν1] of initial risk can be
diversified away.

By Proposition 10, the degree of diversification 1− νi is locked between the individual traders’
degrees of diversification γi, γi+1. By Theorem 2, (1 − γi) are always monotone increasing as the
market becomes more decentralized. Hence, if a given vector e of endowments is an eigenvector
of both EM, EM′ and M′ is more decentralized than M, we expect that the diversification gains
lower in the more decentralized market. However, a key property of decentralized markets is that
the eigenvectors are different across different market structures: An endowment vector with a high
degree of diversification in marketM may have a low degree of diversification inM′. For example, eM1
may be close to eM′I−1 in which case eM1 will be almost diversifiable in M and almost non-diversifiable
in M′.

Welfare Calculation in Example 2 For α3 → ∞, class 3 agents do not trade, and hence x1 =

xSplit1 , x2 = xSplit2 . When α3 < ∞, then x3 > 0, and hence x1 + x2 = −x3 < 0 = xSplit1 + xSplit2 .

That is, when α3 is sufficiently large, then x1 + x2 < 0, implying that x1 decreases faster than x2

increases as α3 decreases. It follows that 0 > xSplit1 > x1 for large α3; class 1 agents buy more
despite the larger price impact.

Given xSplit3 = 0, the split market dominates the centralized market in total welfare (3) if and
only if the agents’ utility losses from risk exposure satisfy

α1(xSplit1 )2 + α2(xSplit2 )2 < α1x
2
1 + α2x

2
2 + α3x

2
3 .

Suppose, for simplicity, that α2 = α3. Since |xSplit1 | < |x1|, it suffices to verify that the total welfare
loss of classes 2 and 3 is lower in the split market, that is, that (xSplit2 )2 + 02 < x2

2 + x2
3. We have

x3 + x2 = −x1 > −xSplit1 = xSplit2 = xSplit3 + xSplit2 . Using x2
3 + x2

2 = 0.5(x2 + x3)2 + 0.5(x3 − x2)2,

the inequality x2 +x3 > xSplit2 combined with sufficiently large |x3−x2| gives the desired inequality.

Example 6 (Intermediated Market Can (Further) Increase Welfare) Consider the
market from Example 4, in which agent 1d participates in both exchanges and equilibrium allocation
is given by (20). Example 2 demonstrated that total welfare in the split market with allocation
(xSplit1 , xSplit2 , xSplit3 ) is higher than in the centralized market. We wish to understand whether the
intermediated market can increase welfare even more, and if so, why this may be the case; that is,
under what conditions we may have

α2M(x2
2 + x2

3) + α1((M − 1)x2
1 + x2

1d) < α2M((xSplit3 )2 + (xSplit2 )2) + α1M(xSplit1 )2 , (57)
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where we assume α1 < α2 = α3 (two classes) for simplicity, as in Example 2.
The common participating trader lowers price impact in exchange 1 (Theorem 2), while also

changing the aggregate risk in the exchanges. In particular, intermediation does not fully eliminate
the inefficient trade of class 3. However, as we show next, the efficiency improvements over the
centralized market due to heterogeneity in aggregate risk across exchanges are affected only slightly
by (the single endowment of) the intermediary. When class 1 is large enough, the welfare benefits
due to lower price impact dominate and total welfare increases.

Equilibrium aggregate risk satisfies Q∗1 > qSplit,1, given the lower price impact in exchange 1

and recalling that qSplit,1 is the aggregate risk portfolio in exchange 1 of the split market.44 In turn,
Q∗2 < 0, since the endowment of 1d is negative and the endowment of class 3 agents is zero.

The price impact of intermediary 1d is higher than that of other agents of class 1 in exchange
1 (this is, in fact, a general result for intermediaries; Theorem 2 (3)). If, as in Example 2, α3

is sufficiently high, class 3 agents trade little with 1d and his trade in exchange 1 is insufficient
to maintain the amount of trade he does in the split market: 0 > x1 > x1d. Since price impact
(Theorem 2) and price (Q∗1 > qSplit1 ) are lower in exchange 1, class 1 agents buy more of the asset:
0 > x1 > xSplit1 > x1d. IfM is not too small, the welfare gain of non-intermediating agents dominates
the utility loss of the intermediary,

α1((M − 1)x2
1 + x2

1d) < α1M(xSplit1 )2 .

The utility change of class 2 is ambiguous. Their aggregate risk in exchange 1, Q∗1, is higher,
and the lower price discourages selling. At the same time, their price impact is lower than in the
split market (by Theorem 2), since the intermediated market is less decentralized than the split
market. When α2 is sufficiently high, the contribution of the aggregate risk, (Λ2 +α2)−1Q∗1, is small
and the effect of lower price impact dominates, efficiently lowering (the natural sellers’) allocation
x2 = (Λ2 + α2)−1Q∗1 + (1 − Γ2)q relative to the split market. Since risk aversion α3 = α2 is
sufficiently large, the inefficient trade and allocation of class 3 is small, and altogether we have
α2M(x2

2 + x2
3) < α2M((xSplit2 )2 + (xSplit3 )2). �

In Example 6, welfare improves even with a common participating trader who takes the same
(buying) position in both exchanges, while the intermediary’s utility decreases.

E Useful Linear-Algebraic Results
Lemma E.1 (Frobenius Formula) By direct calculation,(

A B

BT D

)−1

=

(
(A−BD−1BT )−1 −A−1B(D −BTA−1B)−1

−(D −BTA−1B)−1BTA−1 (D −BTA−1B)−1

)
.

Lemma E.2 For a positive definite matrix A, A−1 ≥ Ā−1
N(i).

44 Heuristically, 1d trades only a fraction µ the endowment in exchange 1, and the total endowment in
exchange 1 is not −Mq +Mq = 0 but −µq − (M − 1)q +Mq = (1− µ)q > 0.
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Proof of Lemma E.2. Let B = A−1, x ∈ RN(i) and y ∈ Y N\N(i). Then

min
y∈RN\N(i)

〈B(x, y), (x, y)〉 = 〈(B11 −B12B
−1
22 B21)x, x〉. (58)

By the Frobenius formula (Lemma E.1), B11 −B12B
−1
22 B21 = ((B−1)11)−1 = A−1

11 . Therefore,

〈A−1(x, y), (x, y)〉 = 〈B(x, y), (x, y)〉 ≥ 〈A−1
11 x, x〉 = 〈Ā−1

11 (x, y), (x, y)〉

for any (x, y) ∈ RN , and the claim follows since A11 = AN(i).

Proof of Lemma C.1. Let us calculate the derivative of map F . That is, consider an infinitesimal
change {Λi}i → {Λi + εYi}i. Then, a direct calculation based on the identity, used twice,

(U + εV )−1 ≈ U−1 − εU−1V U−1

implies that the Frechet derivative of F , ∂Fj
∂({Λi}i)({Yi}i), is given by

∑
i 6=j

Xi

−1∑
i 6=j

XiYiXi

∑
i 6=j

Xi

−1
N(j)

.

Introduce a norm of the set of I-tuples of positive semidefinite matrices via ‖|{Yi}i‖| = maxi ‖Yi‖N(i),
where ‖ · ‖N(i) is the standard norm on matrices in RN(i) defined by

‖Y ‖ = max
x∈RN ,x 6=0

‖Y x‖
‖x‖ .

For simplicity, in the sequel we omit the index N(i) for the norms. For a symmetric matrix,
‖Y ‖ = max |eig(Y )|, and therefore, Yi ∈ [−‖Yi‖IdN(i) , ‖Yi‖IdN(i)] . Suppose now that condition
(44) holds. Then, ∥∥∥∥∥∥

∑
i 6=j

Xi

−1∑
i 6=j

X2
i

∑
i 6=j

Xi

−1∥∥∥∥∥∥ ≤ 1,

and hence,

∂Fj
∂{Λi}i

({Yi}i) ≤

∑
i 6=j

Xi

−1∑
i 6=j

Xi‖|{Yi}i‖|IdN(i)Xi


N(j)

≤ ‖|{Yi}i‖|IdN(j).

The same argument implies
∂Fj
∂{Λi}i

({Yi}i) > −‖|{Yi}i‖|IdN(j);

that is, ∥∥∥∥| ∂Fj∂{Λ}i
({Yi}i)

∥∥∥∥ | < ‖|{Yi}i‖| .
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Hence, map F is a contraction on this set and cannot have more that one fixed point.

Lemma E.3 If X ∈ [B,A] and Xq = z then 〈q, z〉 ≥max {〈Bq, q〉, 〈A−1z, z〉}.

Proof. Since X ≥ B, we have 〈Bq, q〉 ≤ 〈Xq, q〉 = 〈q, z〉 and the first claim follows. To prove the
second claim, pick an ε > 0. Then, X ≤ A implies (X + εId)−1 ≥ (A+ εId)−1, and therefore,

XA−1X ≤ X(X + εId)−1X.

Since x2(x + ε)−1x ≤ x for any x ≥ 0, functional calculus implies X(X + εId)−1X ≤ X. Taking
the limit as ε ↓ 0, we get XA−1X ≤ X and the following completes the proof

〈A−1z, z〉 = 〈A−1Xq,Xq〉 = 〈XA−1Xq, q〉 ≤ 〈Xq, q〉 = 〈z, q〉.

Lemma E.4 Consider function Ψj(z1, · · · , zI) ≡
∑

i ‖zi‖2 − ‖
∑

i 6=j zi‖2 and let

µ(q) = max{Ψj(z1, · · · , zI) : zi ∈ RN(i) , 〈q, zi〉 ≥ max{〈B̄iq, q〉, 〈A−1
i zi, zi〉}, i ∈ I}.

If maxq∈RN µ(q) < 0, then the conditions of Lemma C.1 are satisfied.

Proof. The claim follows directly from Lemma E.3 if we define X̄iq = zi.

Lemma E.5 Let ai = ‖Ai‖ and a = maxi∈I ai. Suppose that aId ≤∑i B̄i . Then, the hypothesis
of Lemma E.4 is satisfied.

Proof. Pick a tuple zi ∈ RN(i) , i ∈ I, satisfying 〈q, zi〉 ≥ max{〈B̄iq, q〉, 〈A−1
i zi, zi〉}, i ∈ I. Then,

a−1
i ‖zi‖2 ≤ 〈A−1

i zi, zi〉 ≤ 〈q, zi〉, i ∈ I.

Normalize q so that ‖q‖ = 1. Then, we can decompose zi = 〈q, zi〉q + z⊥i with z⊥i ∈ RN , 〈z⊥i , q〉 =

0. Let βi ≡ 〈q, zi〉. Then,

‖
∑
i 6=j

zi‖2 =

(∑
i

βi

)2

+ ‖
∑
i

z⊥i ‖2 ≥
(∑

i

βi

)2

,

and therefore,

Ψj(z1, · · · , zI) ≡
∑
i

‖zi‖2 − ‖
∑
i 6=j

zi‖2 ≤
∑
i

aiβi − ‖
∑
i 6=j

zi‖2 ≤
∑
i

aiβi −
(∑

i

βi

)2

≤
(∑

i

βi

)(
a−

∑
i

βi

)

and the claim follows because by assumption,
∑

i βi≥
∑

i 〈q, zi〉 ≥
∑

i 〈q, B̄iq〉 ≥ a.
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Lemma E.6 Let Y,Z be nonnegative definite, with Y positive definite. The unique positive definite
symmetric matrix Λ solving

Λ = (Y −1 − (Z + Λ)−1)−1

is given by
Λ = Y 1/2f1(Y −1/2ZY −1/2)Y 1/2,

where f1(a) = (2− a+
√
a2 + 4)/2. If Z is invertible, then we can also write

Λ = Z1/2f(Z1/2Y −1Z1/2)Z1/2

with f(a) = f1(a)/a. Furthermore,

(Z + Λ)−1 = Z−1/2g(Z1/2Y −1Z1/2)Z−1/2

with g(a) = (f(a) + 1)−1 = 2a/(2 + a+
√
a2 + 4).

Proof. Multiplying by (Y −1 − (Z + Λ)−1) from the right gives

Λ(Y −1 − (Z + Λ)−1) = Id.

Multiplying by Λ−1 from the left gives

Y −1 = Λ−1 + (Z + Λ)−1. (59)

Multiplying from the left and right by Y 1/2 (we do this to preserve symmetry), we have

Id = L−1 + (Y −1/2ZY −1/2 + L)−1,

where L = (Y −1/2ΛY −1/2). Let A = Y −1/2ZY −1/2. Let us first show that A and L commute.
Indeed, multiplying (A+ L) from the left and right gives

(A+ L)L−1 + Id = (A+ L) = L−1(A+ L) + Id.

Subtracting Id from both sides and multiplying by L from the left and right gives

LA+ L2 = L(A+ L) = (A+ L)L = AL+ L2

and the claim follows. Thus, A and L commute, and therefore, there exists an orthonormal basis
in which both A and L are diagonal in this basis. For an orthogonal matrix U , both UAUT and
ULUT are diagonal and

Id = U IdUT = UL−1UT + U(A+ L)−1UT = (ULUT )−1 + (UAUT + ULUT )−1.

Since all matrices on both sides are diagonal, each diagonal element has the same form with the
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unique positive solution f(a) of

1 =
1

x
+

1

a+ x
.

Therefore, we obtain

L = UT f(UAUT )U = f(A) = f(Y −1/2ZY −1/2).

Similarly, assume that Z is positive definite. Then, there exists a positive-definite invertible matrix
Z1/2. Multiplying (59) by Z1/2 from the left and right, we get

K = B−1 + (Id +B)−1,

where K = Z1/2Y −1Z1/2 and B = Z−1/2ΛZ−1/2. Multiplying (Id +B) from the left and right,

K +BK = (Id +B)K = B−1 + 2Id = K(Id +B) = K +KB,

which implies that K and B commute. By an argument analogous to the above, with the unique
positive solution f1(a) to

a =
1

x
+

1

1 + x
,

we get that B = f1(K).

Lemma E.7 Let H ⊂ RN be a subspace, let B a symmetric positive definite matrix on H and let
A be a positive definite matrix on RN . Then, A ≥ B̄ if and only if (A−1)H ≤ B−1.

Proof. We have

A− B̄ =

(
A11 A12

AT12 A22 −B

)
,

and hence by (58), A − B̄ ≥ 0 if and only if A22 − AT12A
−1
11 A12 − B ≥ 0. By Lemma E.1, this is

equivalent to (A−1)22 ≤ B−1.

Lemma E.8 There exists a matrix B ≤ A such that Bq = z if, and only if, 〈A−1z, z〉 ≤ 〈q, z〉.

Proof. We normalize z so that ‖z‖ = 1. Suppose first that B ≤ A satisfies Bq = z. Then,
〈q, z〉 = 〈B−1z, z〉 ≥ 〈A−1z, z〉 . Suppose that 〈A−1z, z〉 ≤ 〈q, z〉 and define B = (〈q, z〉)−1〈·, z〉z.
Let H be the span of vector z. By Lemma E.7, it suffices to check that (A−1)H ≤ B−1. Since
(A−1)H = 〈A−1z, z〉 and B−1 acts as (〈q, z〉) on this subspace, the claim follows.
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