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Online Appendix

Proof of Lemma 2. Consider an allocation g(x) that satisfies (IC) and (F). We
construct a monotonic g̃(x) that preserves constraints (IC) and (F), but increases
the principal’s payoff.

We have assumed that F has almost everywhere positive density, so F−1 exists.
Define

S(t) =
∣∣{y : g(F−1(y)) ≤ t}

∣∣, t ∈ R+.

Note that S is weakly increasing and satisfies S(t) ∈ [0, 1] for all t. Define

g̃(x) = S−1(F (x))

for all x where S−1(F (x)) exists, and extend g̃ to [a, b] by right continuity. Observe
that g̃ satisfies (F) by construction. In addition,

sup
x∈[a,b]

g(x) = sup
y∈[0,1]

g(F−1(y)) = S−1(1) = sup
y∈[0,1]

g̃(F−1(y)) = sup
x∈[a,b]

g̃(x),

thus g̃ satisfies (IC). Finally, we show that g̃ yields a weakly greater payoff to the
principal. By construction,∫ z

a
g̃(x)dF (x) ≤

∫ z

a
g(x)dF (x) for all z ∈ [a, b],

and it holds with equality for z = b. Hence, using integration by parts, the
expression∫ b

a
x(g̃(x)−g(x))dF (x) = b

∫ b

a
(g̃(x)−g(x))dF (x)−

∫ b

a

(∫ z

a
(g̃(x)− g(x))dF (x)

)
dz

is nonnegative.

Proof of Corollary 3. Let Q =
∫ z∗

a qdF (x) +
∫ b
z∗ dF (x) be the ex-ante prob-

ability to be short-listed, and let A and B be the expected probabilities to be
chosen conditional on being shortlisted and conditional on not being short-listed,
respectively:

A =
n∑

k=1

1

k

(
n− 1

k − 1

)
Qk−1(1−Q)n−k and B =

1

n
(1−Q)n−1.

The associated reduced-form rule is as follows. An agent’s probability gi(x) to
be chosen conditional on xi ≥ z∗ and xi < z∗ is given by A and qA + (1 − q)B,
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respectively. Hence,

(B1) g(x) ≡
∑

i
gi(x) =

{
n(qA + (1− q)B), x < z∗,

nA, x ≥ z∗.

We now prove that g is identical to g∗ whenever q satisfies (15). We have

Q =

∫ z∗

a
qdF (x) +

∫ b

z∗
dF (x) =

∫ z∗

a

(
1− c

s

)
dF (x) +

∫ b

z∗
dF (x)(B2)

=

(∫ z∗

a

(
1− c

s
− 1− s

s

)
dF (x) +

∫ b

z∗

(
1

s
− 1− s

s

)
dF (x)

)

=
1

s

(∫ z∗

a
(1− c)dF (x) +

∫ b

z∗
dF (x)

)
− 1− s

s

=
1/r∗

s
− 1− s

s
=

1− r∗ + r∗s

r∗s
,

where we used (9). Hence, 1−Q = r∗−1
r∗s . Next,

A =

n∑
k=1

1

k

(n− 1)!

(k − 1)!(n− k)!
Qk−1(1−Q)n−k =

1

nQ

n∑
k=1

n!

k!(n− k)!
Qk(1−Q)n−k

=
1

nQ
(1− (1−Q)n) .

Substituting (B2) into the above yields

A =
r∗s

n(1− r∗ + r∗s)

(
1− (r∗ − 1)n

(r∗s)n

)
.

By (16), after some algebraic transformations,

A =
r∗s

n(1− r∗ + r∗s)

(
1− (r∗ − 1)n

(r∗s)n

)
=

r∗

n
.

Also, using (B2) and (16) we obtain

B =
1

n
(1−Q)n−1 =

1

n

(r∗ − 1)n−1

(r∗s)n−1
=

(1− s)r∗

n
.

Substitute A and B into (B1):

n(qA + (1− q)B) =
(s− c)nA + cnB

s
=

(s− c)r∗ + c(1− s)r∗

s
= (1− c)r∗
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and nA = r∗. Hence, g(x) = g∗(x) for all x ∈ X.

It remains to show that, whenever n ≥ n̄, this shortlisting procedure is feasible
and well defined, i.e., h ≥ s and the solution of (16) exists and is unique.

Let n ≥ n̄. Observe that F (z∗) < 1, as evident from (8) and the assumption
that c > 0. Using the definition of r∗, we can rewrite (14) as

r∗ ≤ 1− Fn(z∗)

1− F (z∗)
= 1 + F (z∗) + F 2(z∗) + . . . + Fn−1(z∗) < n.

In addition, 1/r∗ = (1− c)F (z∗) + 1− F (z∗) < 1. Consequently, 1
n < 1

r∗ < 1.

Observe that (1− s)sn−1 unimodal on [0, 1] with zero at the endpoints and the
maximum at s = n−1

n . Moreover, it is strictly decreasing on [n−1
n , 1]. Since the

right-hand side of (16) is strictly between zero and the maximum, there exists a
unique solution of (16) on [n−1

n , 1].

Now we prove that c ≤ s. It is immediate if c ≤ n−1
n (since s ∈ [n−1

n , 1]).

Assume now that c > n−1
/ n. Because n ≥ n̄, condition (14) must hold, which can

be written as
Fn−1(z∗) ≤ (1− c)r∗.

Thus, the right-hand side of (16) satisfies:

1

r∗

(
1− 1

r∗

)n−1

=

(
cF (z∗)

)n−1

r∗
≤ (1− c)cn−1.

That is, n ≥ n̄ and (16) entail

(1− s)sn−1 =
1

r∗

(
1− 1

r∗

)n−1

≤ (1− c)cn−1.

As (1 − s)sn−1 is decreasing on [n−1
n , 1] and we have assumed c > (n − 1)/n, it

follows that c ≤ s.

Proof of Proposition 3. We have already established that the solution g must
satisfy (21) for some r ∈ R = [1,min{n, 1/(1− c)}]. It remains to show that the
optimal r is the unique solution of (22).

Let us first derive how xr and xr change w.r.t. r. From (19) we have

(1− F (xr))dr − rf(xr)dxr = −nFn−1(xr)f(xr)dxr.

Hence,
dxr
dr

=
1− F (xr)

(r − nFn−1(xr))f(xr)
,
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and thus

(B3) xr(nF
n−1(xr)− r)f(xr)

dxr
dr

= −xr(1− F (xr)).

Next, if xr = 0, then
dxr
dr = 0. Suppose that xr > 0. By (20) it satisfies

(1− c)rF (xr) + 1− Fn(xr) = 1. Hence,

(1− c)F (xr)dr + (1− c)rf(xr)dxr − nFn−1(xr)f(xr)dxr = 0.

Hence,

dxr
dr

=

{
F (xr)

(nFn−1(xr)−(1−c)r)f(xr)
, if xr > 0,

0, if xr = 0.

Thus we obtain

(B4) xr((1− c)r − nFn−1(xr))f(xr)
dxr
dr

= −xrF (xr).

Finally, with g = gr, the principal’s objective function is

W (r) =

∫ xr

a
x(1− c)rdF (x) +

∫ xr

xr

xnFn−1(x)dF (x) +

∫ b

xr

xrdF (x).

Taking the derivative w.r.t. r and using (B3) and (B4) we obtain

dW (r)

dr
=

∫ xr

a
x(1− c)dF (x) +

∫ b

xr

xdF (x) + xr((1− c)r − nFn−1(xr))f(xr)
dxr
dr

+ xr(nF
n−1(xr)− r)f(xr)

dxr
dr

=

∫ xr

a
x(1− c)dF (x) +

∫ b

xr

xdF (x)− xrF (xr)− xr(1− F (xr))

=

∫ xr

a
(x− xr)(1− c)dF (x) +

∫ b

xr

(x− xr)dF (x).

The equation dW (r)
dr = 0 is exactly (22). To show that it has a unique solution,

observe that
dxr
dr ≥ 0 and

dxr
dr > 0 (since gr(xr) = nFn−1(xr) ≥ (1 − c)r and

gr(xr) = nFn−1(xr) ≤ r by (IC)). Consequently, dW (r)
dr is strictly decreasing in

r. Moreover, for r sufficiently close to 0, we have both xr and xr close to a, in
which case W (r) > 0, and similarly, for r = 1/(1 − c), we have xr = xr = b, in
which case W (r) < 0.

Proof of Propositions 5a, 5b, 5c. The points of interest are the optimal
principal’s payoff z∗ and the structure of the optimal allocation mechanism.
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First, let us deal with the optimal principal’s payoff z∗.
5a: Increasing c affects only the incentive constraint (IC) by making it looser.

Optimization on a larger set yields a weakly higher optimal payoff.
5b: Increasing n affects only the feasibility constraint (F) by making it looser.

Optimization on a larger set yields a weakly higher optimal payoff. When n ≥ n̄,
the feasibility constraint is not binding and hence has no effect on the optimal
payoff.

5c: Let F̃ (x) ≤ F (x) for all x. This affects the feasibility constraint (F) by
making it looser for all x. Optimization on a larger set yields a weakly higher
optimal payoff.

Next, we deal with the structure of the optimal allocation mechanism: threshold
x̄ of the high pooling interval and threshold x of the low pooling interval for the
case of n < n̄. The interval [x, x] is the separating interval. There are three cases
to consider.
Case 1: n ≥ n̄. By Proposition 2, the optimal allocation has to satisfy the

equation

(1− c)

∫ z∗

a
(z∗ − x)dF (x) =

∫ b

z∗
(x− z∗)dF (x).

Integrating by parts, we obtain

(B5) (1− c)

∫ z∗

a
F (x)dx =

∫ b

z∗
(1− F (x))dx.

In this case, the threshold of the high pooling interval and the principal’s payoff
are the same, x̄ = z∗. The separating interval is empty.

5a: From (B5) it is immediate that dz∗

dc > 0. That is, the size of the high
pooling interval is decreasing in c.

5b: Equation (B5) is independent of n, so a change in n has no effect (so long
as n ≥ n̄).

5c: Let F̃ (x) ≤ F (x) for all x. From (B5) it is immediate that replacing F with
F̃ yields a greater solution z∗. That is, the high pooling interval shrinks.
Case 2: n < n̄ and x = 0. By Proposition 3, the optimal allocation has to

satisfy equation (22) where we use x = 0:∫ 0

a
(−x)(1− c)dF (x) =

∫ b

x
(x− x)dF (x).

Integrating by parts, we obtain

(B6) (1− c)

∫ 0

a
F (x)dx =

∫ b

x
(1− F (x))dx.

Note that (19) is satisfied, as it has a free variable r that does not appear in (B6).
Assuming that variations of the parameters are marginal and x remains equal
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to zero, the value of interest is the threshold x of the high pooling interval. The
change in the length of the separating interval t = x−x is the same as the change
in x.

5a: From (B6) it is immediate that dx
dc > 0. That is, the high pooling interval

is decreasing and the separating interval is increasing in c.
5b: Equation (B6) is independent of n. Hence, a change in n has no effect, so

long as x = 0.
5c: Let F̃ (x) ≤ F (x) for all x. From (B6) it is immediate that replacing F by

F̃ yields a greater solution x. That is, the high pooling interval shrinks and the
separating interval expands.
Case 3: n < n̄ and x > 0. By Proposition 3, the optimal allocation is described

by thee variables, x, x, and r, that must satisfy (19), (20), and (22). Combining
(19) and (20) to eliminate r, we obtain

(B7) (1− c)
1− Fn(x̄)

1− F (x̄)
= Fn−1(x).

Also, integrating (22) by parts, we obtain

(B8) (1− c)

∫ x

a
F (x)dx =

∫ b

x̄
(1− F (x))dx.

Thus, the structure of the optimal allocation is characterized by x̄ and x that
satisfy (B7) and (B8).

Let us now evaluate dx̄
dn , dx

dn , dx̄
dc , and d(x̄−x)

dc . After taking the full differential of
(B7) and (B8) w.r.t. x̄, x, c, and n, we obtain

0 = Lx̄dx̄− Lxdx− Lcdc + Lndn,

0 = Mx̄dx̄ + Mxdx−Mcdc,
(B9)

where

Lx̄ = (1− c)
d

dx̄
(1 + F (x̄) + F 2(x̄) + ... + Fn−1(x̄)) > 0,

Lx =
d

dx
Fn−1(x) > 0,

Lc = 1 + F (x̄) + F 2(x̄) + ... + Fn−1(x̄) > 0,

Ln = −
(

(1− c)
Fn(x̄)

1− F (x̄)
lnF (x̄) + Fn−1(x) lnF (x)

)
> 0,

Mx̄ = 1− F (x̄) > 0,

Mx = (1− c)F (x) > 0,

Mc =

∫ x

a
F (x)dx > 0,
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where we used c > 0, x > a and x̄ < b (i.e., the best payoff is better than random
allocation) and that f(x) is everywhere positive.

To evaluate dx̄
dn and dx

dn , we set dc = 0 and solve the system of equations (B9),

dx̄

dn
= −

LnMx

Lx̄Mx + LxMx̄
< 0,

dx

dn
=

LnMx̄

Lx̄Mx + LxMx̄
> 0,

and hence d(x̄−x)
dn < 0.

To evaluate dx̄
dc and dx

dc , we set dn = 0 and solve the system of equations (B9),

dx̄

dc
=

LxMc + LcMx

Lx̄Mx + LxMx̄
> 0,

dx

dc
=

Lx̄Mc − LcMx̄

Lx̄Mx + LxMx̄
.

To prove d(x̄−x)
dc > 0, it is sufficient to check that Lx−Lx̄

(1−c)Lc
> 0. By (B7) we have

Lc = 1 + F (x̄) + F 2(x̄) + ... + Fn−1(x̄) =
1

1− c
Fn−1(x).

Thus,

Lx− Lx̄

(1− c)Lc
=

d
dx̄F

n−1(x)

Fn−1(x)
−

d
dx̄(1 + F (x̄) + F 2(x̄) + ... + Fn−1(x̄))

1 + F (x̄) + F 2(x̄) + ... + Fn−1(x̄)

=
(n− 1)f(x)

F (x)
− (1 + 2F (x̄) + ... + (n− 1)Fn−2(x̄))f(x̄)

1 + F (x̄) + F 2(x̄) + ... + Fn−1(x̄)

> (n− 1)

(
f(x)

F (x)
− f(x̄)

F (x̄)

)
≥ 0,

where we use

(1 + 2x + 3x2... + (n− 1)xn−2)

1 + x + x2 + ... + xn−1
<

n− 1

x
, x ∈ (0, 1),

and the hazard rate condition, F (x)/f(x) is increasing.

Lastly, we cannot conclude anything from (B7)-(B8) about how the thresholds
change if F is f.o.s.d. improved.

To summarize:

5a: The high pooling interval decreases and, under the hazard rate condition,
the separating interval increases in c;

5b: The high pooling interval increases and the separating interval decreases in
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n.
5c: The result is ambiguous. If F̃ (x) ≤ F (x) for all x, we are unable to make

any conclusions about how thresholds x̄ and x change if F is replaced by F̃ .


