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C Online Appendix: Extensions and Com-

ments

This appendix contains material that could not be included in the stream-

lined main body of the paper: additional results, extensions, discussions, and

comments. Among the more significant results we point out Proposition 7

(the equivalence result when messages need not be types), Section C.10 (the

structure of the optimal outcome), and Section C.11 (equivalence without

differentiability).

The order throughout is according to the sections in the main body of

the paper, followed by the two additional Sections C.10 and C.11.

C.1 Introduction

(a) The importance of being able to commit. Think for instance of the advan-

tage that it confers in bargaining, in oligopolistic competition (Stackelberg

vs. Cournot), and also in cheap talk (cf. Example 3—see Remark (b) fol-

lowing it—in Appendix B.1).

(b) Interaction timeline. Interestingly, what distinguishes between “signal-

ing” and “screening” is precisely the two different timelines of interaction that

we consider: the agent moves first and the principal responds in signaling,

and the principal moves first and the agent responds in screening.

(c) Mark Twain. The quotes are from his Notebook (1894). When he writes

“truth” it means “the whole truth,” since any partial truth requires remem-

bering what was revealed and what wasn’t.

(d) Application: medical overtreatment. A third possible application con-

cerns medical overtreatment, which is one of the more serious problems in

many health systems in the developed world; see, e.g., Shannon Brownlee

(2008). One reason for overtreatment may be fear of malpractice suits; but

the more powerful reason is that doctors and hospitals are paid more when

overtreating. To overcome this problem one needs to give doctors incentives

to provide evidence; the present paper may perhaps help in this direction.
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C.2 Examples (Section I)

(a) Example 1. Formally, the dean wants to minimize (x − v)2, where x

is the salary and v is the professor’s value; the dean’s optimal response to

any evidence is thus to choose x to be the expected value of the types that

provide this evidence. The dean wants the salary to be “right” since, on the

one hand, he wants to pay as little as possible, and, on the other hand, if

he pays too little the professor may move elsewhere. The same applies when

the dean is replaced by the “market.”

In every sequential equilibrium the salary of a professor providing pos-

itive evidence must be 90 (because the positive-evidence type is the only

one who can provide such evidence), and similarly the salary of a professor

providing negative evidence must be 30. This shows that the uninformative

equilibrium—where the professor, regardless of his type, provides no evi-

dence, and the dean ignores any evidence that might be provided and sets

the salary to the average value of 60—is not a sequential equilibrium here.

Finally, we note that truth-leaning equilibria are always sequential equilibria.

(b) Example 2. It may be checked that the uninformative equilibrium satisfies

all the standard refinements in the literature; cf. Appendix C.5.

This uninformative equilibrium may be eliminated here also by taking

the posterior belief at unused messages to be the conditional prior (because

the belief at message t+ would then be 80% − 20% on t+ and t±); however,

this would not suffice in general—see Example 7 in Appendix B.5.

C.3 Payoffs and Single-Peakedness (Section III.A)

(a) Single-peakedness. When going to more general models (e.g., Hart, Kre-

mer, and Perry 2016), single-peakedness of the principal’s utilities is taken

with respect to the order on rewards that is induced by the agent’s preference.

(b) Averages of single-peaked functions. To get (SP) it does not suffice that

the functions ht for t ∈ T are all single-peaked, since averages of single-peaked

functions need not be single-peaked (this is true, however, if the functions

ht are strictly concave). For example, let ϕ(x) be a function that is strictly

2



increasing for x < −2, strictly decreasing for x > 2, has a single peak at

x = 2, and takes the values 0, 3, 4, 7, 8 at x = −2,−1, 0, 1, 2, respectively; in

between these points interpolate linearly. Take h1(x) = ϕ(x) and h2(x) =

ϕ(−x). Then h1 and h2 are single-peaked (with peaks at x = 2 and x = −2,

respectively), but (1/2)h1 + (1/2)h2, which takes the values 4, 5, 4, 5, 4 at

x = −2,−1, 0, 1, 2, respectively, has two peaks (at x = −1 and x = 1).

Smoothing out the kinks and making ϕ differentiable (by slightly changing

its values in small neighborhoods of x = −2,−1, 0, 1, 2) does not affect the

example.

(c) Non-concavity. The single-peakedness condition (SP) goes beyond con-

cavity. Take for example h1(x) = −(x3−1)2 and h2(x) = −x6; then h1 is not

concave (for instance, h1(1/2) = −49/64 < −1/2 = (1/2)h1(0)+(1/2)h1(1)),

but, for every 0 ≤ α ≤ 1, the function hα has a single peak, at 3
√

α (because

h′
α(x) = −6x2(x3 − α) vanishes only at x = 0, which is an inflection point,

and at x = 3
√

α, which is a maximum).17

(d) Strict in-betweenness. The differentiability of the functions ht is not

needed to get in-betweenness (1). Differentiability yields a stronger property,

strict in-betweenness : both inequalities in (1) are strict when the v(qi) are not

all identical. Indeed, if v(qj) < v(qk), then the derivative h′
q(x) =

∑
i λih

′
qi
(x)

is positive at x = y0 := mini v(qi) (because y0 < v(qk) and so h′
qk

(y0) >

0), and is negative at x = y1 := maxi v(qi) (because y1 > v(qj) and so

h′
qj

(y1) < 0); therefore v(q) ∈ (y0, y1). Example 12 in Appendix C.11 shows

that without differentiability these strict inequalities need not hold.

Strict in-betweenness is used (implicitly) only in the final argument in

the Proof of Proposition 1 (ii) in Appendix A: if q is the average of q′ and

q′′, and v(q′′) = v(q), then necessarily v(q′) = v(q).

17Alternatively, (SP) holds for the strictly concave ĥ1(y) = −(y − 1)2 and ĥ2(y) = −y2;
applying the strictly increasing transformation y = x3, which preserves (SP), yields the
given h1 and h2.
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C.4 Evidence and Truth Structure (Section III.B)

(a) Detectable deviations. If t were to provide a subset of his pieces of evi-

dence that did not correspond to a possible type s, it would be immediately

clear that he was withholding some evidence (think for instance of the pro-

fessor who provides to the dean only the Report of Referee #2). The only

undetectable deviations of t are to reveal all the evidence of another possible

type s that has fewer pieces of evidence than t (i.e., to pretend to be s).

However, our equivalence result would not change if we were to allow

messages that do not correspond to types; see Proposition 7 in (d) below.

(b) Partial order on types. A general approach to the truth and evidence

structure starts from a weak partial order18 “ ֌ ” on the set of types T, with

“ t ֌ s ” being interpreted as type t having (weakly) more evidence than

type s; we will say that “s is a partial truth at t” (or “s is less informative

than t”). The set of possible messages of the agent when the type is t, which

we denote by L(t), consists of all types that have less evidence than t, i.e.,

L(t) := {s ∈ T : t ֌ s}. Thus, L(t) is the set of all possible “partial truth”

revelations at t, i.e., all types s that t can pretend to be. The reflexivity and

transitivity of the partial order ֌ are immediately seen to be equivalent19

to conditions (L1) and (L2).

Some natural models for the relation ֌ are as follows.

(i) Pieces of evidence: As in Section III.B, let E be the set of possible

pieces of evidence, and identify each type t with a subset Et of E; thus,

T ⊆ 2E (where 2E denotes the set of subsets of E). Put t ֌ s if and only if

t ⊇ s; that is, t has every piece of evidence that s has. It is immediate that

֌ is a weak partial order, i.e., reflexive and transitive.

(ii) Partitions: Let Ω be a set of states of nature, and let Λ1, Λ2, ..., Λn

18A weak partial order is a binary relation that is reflexive (i.e., t ֌ t for all t) and
transitive (i.e., t ֌ s ֌ r implies t ֌ r for all r, s, t). However, it need not be complete
(i.e., there may be t, s for which neither t ֌ s nor s ֌ t holds). While for our results we
do not need to assume that ֌ is asymmetric, in most applications it is; moreover, we can
always make it asymmetric by identifying any t 6= t′ with t ֌ t′ and t′ ֌ t (and then for
any s and t, if s ∈ L(t) then t /∈ L(s)).

19Given L that satisfies (L1) and (L2), putting t ֌ s iff s ∈ L(t) yields a weak partial
order.
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be an increasing sequence of finite partitions of Ω (i.e., Λi+1 is a refinement

of Λi for every i = 1, 2, ..., n − 1). The type space T is the collection of all

blocks (also known as “kens”) of all partitions. Then t ֌ s if and only

if t ⊆ s; thus more states ω are possible at s than at t, and so s is less

informative than t. For example, take Ω = {1, 2, 3, 4} with the partitions

Λ1 = (1234), Λ2 = (12)(34), and Λ3 = (1)(2)(3)(4). There are thus seven

types: {1, 2, 3, 4}, {1, 2}, {3, 4}, {1}, {2}, {3}, {4} (the first one from Λ1, the

next two from Λ2, and the last four from Λ3). Thus type t = {1, 2, 3, 4} (who

knows nothing) is less informative than type s = {1, 2} (who knows that the

state of nature is either 1 or 2), who in turn is less informative than type

r = {2} (who knows that the state of nature is 2); the only thing type t can

say is t, whereas type s can say either s or t, and type r can say either r, s, or

t. The probability p on T is naturally generated by a probability distribution

µ on Ω together with a probability distribution λ on the set of partitions: if

t is a ken in the partition Λi then pt = λ(Λi) · µ(t).

(iii) Signals: Let Z1, Z2, ..., Zn be random variables on a probability space

Ω, where each Zi takes finitely many values. A type t corresponds to some

knowledge about the values of the Zi-s (formally, t is an event in the field

generated by the Zi-s), with the straightforward “less informative” order:

s is less informative than t if and only if t ⊆ s. For example, the type

s = [Z1 = 7, 1 ≤ Z3 ≤ 4] is less informative than the type t = [Z1 = 7, Z3 =

2, Z5 ∈ {1, 3}]. (It is easy to see that (i) and (ii) are special cases of (iii).)

(c) General state space. We indicate how a general states-of-the-world setup

reduces to our model.

Let ω ∈ Ω be the state of the world, chosen according to a probability

distribution P on Ω (formally, we are given a probability space20 (Ω,F , P)).

Each state ω ∈ Ω determines the type t = τ(ω) ∈ T and the utilities UA(x; ω)

and UP (x; ω) of the agent and the principal, respectively, for any action

(reward) x ∈ R. The principal has no information, and the agent is informed

of the type t = τ(w). Since neither player has any information beyond the

type, we can reduce everything to the set of types T ; namely, pt = P [τ(ω) = t]

20All sets and functions below are assumed measurable (and integrable when needed).
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and U i(x; t) = E [U i(x; ω)|τ(ω) = t] for i = A,P.

For a simple example, assume that the state space is Ω = [0, 1] with the

uniform distribution, UA(x; ω) = x, and UP (x; ω) = −(x − ω)2 (i.e., the

“value” in state ω is ω itself). With probability 1/2 the agent is told nothing

about the state (which we call type t0), and with probability 1/2 he is told

whether ω is in [0, 1/2] or in (1/2, 1] (types t1 and t2, respectively). Thus

T = {t0, t1, t2}, with probabilities pt = 1/2, 1/4, 1/4 and expected values

v(t) = 1/2, 1/4, 3/4, respectively. This example illustrates the setup where

the agent’s information is generated by an increasing sequence of partitions

(cf. (ii) in the note above), which is useful in many applications (such as the

voluntary disclosure setup).

(d) Additional messages. The equivalence result continues to hold if we allow

additional messages beyond the set of types T ; for instance, a message such

as “t1 or t2” with t1 /∈ L(t2) and t2 /∈ L(t1), or a strict subset of the pieces

of evidence that one has and that does not correspond to a type.

Let M ⊇ T be the set of possible messages and let L(t) ⊆ M for each

t ∈ T satisfy (L1) and (L2); the latter is now “s ∈ L(t) and m ∈ L(s) imply

m ∈ L(t),” or, equivalently, “s ∈ L(t) implies L(t) ⊇ L(s).”

Proposition 7 Assume that the set M of possible messages contains the

set of types T and that the mapping L satisfies (L1) and (L2). Then the

Equivalence Theorem holds; moreover, replacing L(t) with L′(t) := L(t) ∩ T

for every t ∈ T does not change the truth-leaning and optimal mechanism

outcome.

Proof. Consider first optimal mechanisms. The Revelation Principle still

applies (because the (IC) constraints remain the same: πt ≥ πs for all types

s, t ∈ T with s ∈ L(t); or, see Theorem 2 in Green and Laffont 1986). But

direct mechanisms use only the set of types T as messages, and so M\T is

not relevant, and being an optimal mechanism outcome for L and for L′ is

the same.

Consider next truth-leaning equilibria (note that truth-leaning makes no

requirement on ρ(m) for messages m /∈ T that are not used). We claim
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that none of the messages m /∈ T are used in a truth-leaning equilibrium

(σ, ρ), i.e., σ̄(m) = 0 for all m /∈ T. Indeed, let m /∈ T ; for every type t ∈ T

that uses m, i.e., σ(m|t) > 0, we get πt = ρ(m) > ρ(t) = v(t) (by (A),

(A0), and (P0)). Therefore ρ(m) > v(q(m)) by in-betweenness (1), which

contradicts (P). Finally, every truth-leaning equilibrium for L′ is clearly also

a truth-leaning equilibrium for L.

(e) Normal evidence. Bull and Watson (2007) consider the notion of “normal

evidence,” which allows the set of messages M to be arbitrary, and requires

that for every type t in T there be a message mt in L(t) such that for

every type s, if mt ∈ L(s) then L(s) ⊇ L(t). Assuming that one can choose

mt 6= ms for21 all t 6= s, we identify each mt with t, which leads to the case

M ⊇ T discussed in (d) above (with normality yielding (L2)). Thus, again,

the Equivalence Theorem applies here too.

C.5 Truth-Leaning Equilibria (Section III.D)

(a) Small perturbations. It is easy to check that truth-leaning would not be

affected if we were to require that all choices have positive probabilities in

Γε, namely, σ(s|t) ≥ εs|t > 0 for every s, t with s ∈ L(t), provided that εs|t

for s 6= t is much smaller than εt|t, i.e., εs|t/εt|t → 0.

(b) Alternative perturbations. Both conditions of truth-leaning can also be

obtained by perturbing only the payoff function of the agent. Given a random

variable Z > 0 whose support is the whole positive line R+, let ΓZ be the

game where the utility of the agent for reward x, type t, and message s, is x

when s 6= t, and x + Z when s = t (i.e., revealing the whole truth increases

the agent’s payoff by Z), and where the realized value of Z is known to the

agent, but not to the principal. Now take a sequence Zn with E [Zn] → 0

as n → ∞; then limit points of equilibria of ΓZn are truth-leaning equilibria

of22 Γ.

21In Bull and Watson (2007) the messages are taken from M × T, and so if mt = ms

then they are replaced by (mt, t) and (ms, s), which are different for t 6= s.
22The condition that the support of Z is all of R+ is too strong; it suffices that there is

positive probability that Z takes some value larger than, say, x1 − x0, where the interval
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(c) Refinements. Truth-leaning is consistent with all standard refinements

in the literature. Indeed, they all amount to certain conditions on the prin-

cipal’s belief (which determines the reward) after an out-of-equilibrium mes-

sage. Now the information structure of evidence games implies that in any

equilibrium the payoff of a type s is minimal among all the types t that can

send the message s (i.e., πs ≤ πt for every t with s ∈ L(t)). Therefore, if mes-

sage s is not used in equilibrium (i.e., σ̄(s) = 0), then the out-of-equilibrium

belief at s that it was type s itself that deviated is allowed by all the standard

refinements, specifically, the intuitive criterion, the D1 condition, universal

divinity, and the never-weak-best-reply criterion (Elon Kohlberg and Jean-

François Mertens 1986, Jeffrey Banks and Sobel 1987, In-Koo Cho and David

Kreps 1987). However, these refinements may not eliminate equilibria such

as the uninformative equilibrium of Example 2 in Section I (see also Example

7 in Appendix B.5); only truth-leaning does.23 The no-incentive-to-separate

(NITS) condition (Ying Chen, Kartik, and Sobel 2008), which requires the

payoff of the lowest type to be no less than its value (which is what the prin-

cipal would pay if he knew the type), is satisfied in our setup by all equilibria

(because πs ≥ mint∈T v(t) for every s; see the last sentence in Section III.A).

(d) Voluntary disclosure. In most of the voluntary disclosure literature the

equilibrium is unique; when it is not, e.g., Shin (2003), the selected equilib-

rium (“sanitizing equilibrium”) turns out to yield the same outcome as the

truth-leaning equilibrium (we will show this in Proposition 8 below). As a

consequence of our Equivalence Theorem, the resulting outcome is thus also

the optimal mechanism outcome, and so the separation that is obtained in

the voluntary disclosure literature is the optimal separation.

The setup of Shin (2003) can be summarized as follows. The principal

minimizes the quadratic loss (and so we are in the basic setup); a type is

t = (s, f) where s and f are nonnegative integers with s+f ≤ N (for a fixed

[x0, x1] contains all the peaks v(t); see the last paragraph in Section III.A.
23Interestingly, if we consider the perturbed game where the agent’s payoff is increased

by εt > 0 when type t reveals the type, but the strategy is not required to satisfy σ(t|t) > 0,
the refinements D1, universal divinity, and the never-weak-best-reply criterion (but not
the intuitive criterion) yield in the limit the (P0) condition, and thus truth-leaning (we
thank Phil Reny for this observation).
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N); the value v(s, f) of type (s, f) is decreasing in f, and the expected value

v̄(s) of the set Ts := {(s, f) : 0 ≤ f ≤ N − s} is increasing in s; finally, the

partial truth mapping is (s′, f ′) ∈ L(s, f) if and only if s′ ≤ s and f ′ ≤ f.

The “sanitizing” equilibrium which Shin (2003) has chosen to study is

given by: each type (s, f) sends the message (s, 0), and the rewards are

ρ(s, 0) = v̄(s) and ρ(s, f) = v(s,N − s) for f > 0 (thus the equilibrium

is supported by the not very reasonable belief that any out-of-equilibrium

message (s, f) with f > 0 is sent by the type with the lowest value (s,N−s)).

This is in general not a truth-leaning equilibrium (because, for instance,

v(s, 1) may well be higher than v̄(s), and then (P0) cannot hold). However,

there is always a truth-leaning equilibrium with the same outcome π∗, namely,

π∗
s,f = v̄(s) for every (s, f), defined as follows. For every s let k ≡ ks be such

that v(s, k) ≥ v̄(s) > v(s, k + 1); then each type (s, f) with f ≤ k sends the

message (s, f) (i.e., reveals the type), whereas each type v(s, f) with f ≥ k+1

sends the message (s, j) for j = 0, 1, ..., k with probability λj = p(s,j)(v(s, j)−
v̄(s))/

∑k
i=0 p(s,i)(v(s, i) − v̄(s)). The rewards are ρ(s, f) = v̄(s) for f ≤ k

and ρ(s, f) = v(s, f) for f ≥ k + 1. Thus for every s the messages used in

equilibrium are (s, f) for all f ≤ k, and they all yield the same reward v̄(s). It

is straightforward to verify that this constitutes a truth-leaning equilibrium

(for (P), use
∑k

i=0 p(s,i)(v(s, i)− v̄(s)) =
∑N−s

i=k+1 p(s,i)(v̄(s)− v(s, i)), because

v̄(s) is the mean of the v(s, f)), and the outcome is π∗. We have thus shown:

Proposition 8 In the voluntary disclosure model of Shin (2003), the “san-

itizing” equilibrium outcome is the unique truth-leaning outcome, and thus

also the unique optimal mechanism outcome.

Appendix C.10 provides an alternative proof.

C.6 Mechanisms and Optimal Mechanisms (Section III.E)

(a) Green and Laffont. Green and Laffont (1986) show that, given (L1),

condition (L2) is necessary and sufficient for the Revelation Principle to

apply to any payoff functions of the agent. We need only the sufficiency

part, which can be easily seen directly. Let ρ be a reward function; when
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the type is t the agent’s payoff is πt := maxr∈L(t) ρ(r), and the principal’s

payoff is24 ht(πt). If t can pretend to be s, i.e., s ∈ L(t), then L(t) ⊇ L(s) by

transitivity (L2), and thus πt ≥ πs, which yields the incentive-compatibility

constraints (IC). Conversely, any π ∈ R
T satisfying (IC) can be implemented

by (L1) with a direct mechanism, namely, ρ(t) = πt for every t.

(b) Truth-leaning mechanisms. Truth-leaning does not affect optimal mecha-

nisms, because a direct mechanism where the agent always reveals his type is

clearly truth-leaning (moreover, in the limit-of-perturbations approach, it is

not difficult to show that incentive-compatible mechanisms with and without

truth-leaning yield payoffs that are the same in the limit).

(c) Existence and uniqueness of optimal mechanisms. It is immediate to see

that an optimal mechanism exists, because the function H is continuous and

the rewards πt can be restricted to a compact interval X (see Section III.A).

Uniqueness of the optimal mechanism outcome is not, however, straightfor-

ward (unless the principal’s payoff functions ht, and thus H, are all strictly

concave—which we do not assume).

C.7 Proof (Section V)

(a) Our proof concludes that the (unique) optimal mechanism outcome can

be obtained by a truth-leaning equilibrium indirectly (truth-leaning equilib-

ria exist, and their outcomes coincide with the unique optimal mechanism

outcome). A direct proof is presented in our companion paper Hart, Kremer,

and Perry (2016): a (truth-leaning) equilibrium is constructed from an opti-

mal mechanism using Hart and Kohlberg’s (1974) extension of Philip Hall’s

marriage theorem (Hall 1935, Paul Halmos and Herbert Vaughn 1950).

C.8 Proof: Preliminaries (Section V.A)

(a) Full revelation when value increases with evidence. Corollary 4 implies

that in the case where evidence always has positive value—i.e., if t has more

24Therefore in our setup the payoffs are not affected by how the agent breaks ties (an
issue that arises in general mechanism setups).
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evidence than s then the value of t is at least as high as the value of s (that

is, s ∈ L(t) implies v(t) ≥ v(s))—the (unique) truth-leaning equilibrium is

fully revealing (i.e., σ(t|t) = 1 for every type t).

(b) Irrelevant messages. One may drop from L(t) every s 6= t with v(s) ≤
v(t); this affects neither the truth-leaning equilibrium outcomes (by Corollary

4) nor, by our Equivalence Theorem, the optimal mechanism outcomes; it

amounts to replacing each L(t) with its subset L′(t) := {s ∈ L(t) : v(s) >

v(t)} ∪ {t}. Note that L′ also satisfies (L1) and (L2).

We provide an alternative proof of this statement that deals directly with

mechanisms, and has the further advantage that instead of (SP), it uses

only the weaker assumption that every function ht is single-peaked (and not

necessarily differentiable).

Let (IC’) denote the incentive constraints given by L′ (i.e., πt ≥ πs for

all s, t with s ∈ L′(t)).

Proposition 9 Assume that all the functions ht are single-peaked (and not

necessarily differentiable). Then π∗ maximizes H(π) subject to the (IC’)

constraints if and only if π∗ maximizes H(π) subject to the (IC) constraints.

Proof. Since (IC’) is a subset of the (IC) constraints, it suffices to show that

if π∗ maximizes H(π) subject to (IC’) then π∗ satisfies all (IC) constraints.

Assume by way of contradiction that there are s, t such that s ∈ L(t)

but π∗
t < π∗

s; because π∗ satisfies (IC’), we must have v(s) ≤ v(t). Among

all pairs s, t as above, choose one where the difference v(t) − v(s) (which is

nonnegative) is minimal. Fix s and t. We have:

(i) All the (IC’) constraints of the form πu ≥ πt for some u are not binding

at π∗; i.e., π∗
u > π∗

t for every u with t ∈ L′(u).

Proof. If πu ≥ πt is an (IC’) constraint then t ∈ L(u) and v(t) > v(u),

and so s ∈ L(u) by transitivity. If π∗
u = π∗

t then π∗
s > π∗

t = π∗
u and so

πu ≥ πs cannot be an (IC’) constraint; thus s /∈ L′(u), and so v(s) ≤ v(u).

Hence 0 ≤ v(u) − v(s) < v(t) − v(s), which contradicts the minimality of

v(t) − v(s).

(ii) π∗
t ≥ v(t).
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Proof. If π∗
t < v(t) then π∗

t lies in the region where ht strictly increases,

and so slightly increasing π∗
t (which can be done by (i)) increases the objective

function H; this contradicts the optimality of π∗.

(iii) All the (IC’) constraints of the form πs ≥ πr for some r are not

binding at π∗; i.e., π∗
s > π∗

r for every r ∈ L′(s).

Proof. If πs ≥ πr is an (IC’) constraint then r ∈ L(s) and v(r) > v(s),

and so r ∈ L(t) by transitivity. If π∗
s = π∗

r then π∗
t < π∗

s = π∗
r and so πt ≥ πr

cannot be an (IC’) constraint; thus r /∈ L′(t), and so v(r) ≤ v(t). Hence

0 ≤ v(t)−v(r) < v(t)−v(s), which contradicts the minimality of v(t)−v(s).

(iv) π∗
s ≤ v(s).

Proof. If π∗
s > v(s) then π∗

s lies in the region where hs strictly decreases,

and so slightly decreasing π∗
s (which can be done by (iii)) increases the ob-

jective function H; this contradicts the optimality of π∗.

From (ii) and (iv) we get v(t) ≤ π∗
t < π∗

s ≤ v(s), contradicting v(s) ≤
v(t)).

C.9 From Equilibrium to Mechanism (Section V.B)

(a) Generalizing Propositions 5 and 6. The strict inequalities v(t) < v(T ) for

every t 6= s are used in the Proof of Proposition 5 to get, by in-betweenness

(1), v(R) ≥ v(T ) for any R that contains s; for their other use, to imply

that ht(x) for t 6= s is strictly decreasing for x ≥ v(T ), the weak inequalities

v(t) ≤ v(T ) suffice. We thus get the following variant of Proposition 5:

Proposition 10 Assume that there is a type s ∈ T such that s ∈ L(t) for

every t. If25

(i) v(t) ≤ v(T ) for every t 6= s; and

(ii) v(R) ≥ v(T ) for every R that contains s (i.e., s ∈ R),

then the outcome π∗ with π∗
t = v(T ) for all t ∈ T is the unique optimal

mechanism outcome.26

25Condition (i) is equivalent to “v(Q) ≤ v(T ) for every Q not containing s” (because
v(Q) ≤ maxt∈Q v(t) by in-betweenness (1)). Also, (i) and (ii) may be elegantly rewritten
as maxQ:s/∈Q v(Q) ≤ minR:s∈R v(R) (because by in-betweenness we have v(T\R) ≤ v(T ) ≤
v(R) for every R that contains s, and so v(T ) = minR:s∈R v(R)).

26When L(s) = {s} and L(t) = {t, s} for every t 6= s, conditions (i) and (ii) are also

12



This yields the following generalization of Proposition 6:

Proposition 11 Let (σ, ρ) be a Nash equilibrium that satisfies, for every

message s that is used (i.e., σ̄(s) > 0),

(i) v(t) ≤ v(q(s)) for every t 6= s that plays s (i.e., σ(s|t) > 0); and

(ii) v(q(s)|R) ≥ v(q(s)) for every R that contains s (i.e., s ∈ R).

Then the outcome π∗ of (σ, ρ) is the unique optimal mechanism outcome.

Proof. As in the Proof of Proposition 6, use the decomposition induced by

(7) and then, for each s with σ̄(s) > 0, apply Proposition 10 to Ts := {t :

σ(s|t) > 0} with prior q(s).

These results are useful in the nondifferentiable case (see Appendix C.11).

C.10 The Optimal Outcome

We provide here results on the structure of optimal mechanisms and their

outcomes, which is useful when dealing with specific applications.

A partition of T consists of disjoint sets T1, T2, ..., Tm whose union is T.

We will say that the ordered partition (T1, T2, ..., Tm) is consistent with L

(more precisely, consistent with the “having more evidence” order on types

induced by L; see Appendix C.4) if s ∈ L(t) for t ∈ Ti and s ∈ Tj implies

i ≥ j. Thus, types in T1 have the least evidence, and those in Tm, the most;

and, for any t ∈ Ti, we have L(t) ⊆ ∪j≤iTj: type t can only pretend to be a

type s in the same set or lower.

Proposition 12 Let π be an optimal mechanism outcome. Then there exists

an ordered partition (T1, T2, ..., Tm) of T that is consistent with (the order

induced by) L such that v(T1) < v(T2) < ... < v(Tm) and πt = v(Ti) for every

t ∈ Ti.

necessary for π∗ to be an optimal mechanism outcome—i.e., for “no separation” to be
optimal. Indeed, if v(t) > v(T ) for some t 6= s then put πt = v(t) > v(T ) = π∗

t , and if
v(R) < v(T ) for some R containing s then put πr = v(R) < v(T ) = π∗

r for all r ∈ R; in
each case the new π satisfies all the constraints and H(π) > H(π∗).

13



Proof. Let α1 < α2 < ... < αm be the distinct values of the coordinates of

π, and put Ti := {t ∈ T : πt = αi}. This yields a partition that is consistent

with L because s ∈ L(t) implies πt ≥ πs, and so t ∈ Ti and s ∈ Tj imply

i ≥ j. Changing the common value of πt for all t ∈ Ti to any other α′
i

close enough to αi so that all (IC) inequalities are preserved (specifically,

αi−1 ≤ α′
i ≤ αi+1) implies by the optimality of π that αi must maximize

∑
t∈Ti

ptht(x) = p(Ti)hTi
(x), and so αi = v(Ti).

Remark. To find the optimal mechanism outcome, one thus needs to check

only finitely many outcomes (each one determined by some partition of T ).

A converse to Proposition 12 is as follows.

Proposition 13 Let (T1, T2, ..., Tm) be an ordered partition of T that is con-

sistent with (the order induced by) L such that v(T1) ≤ v(T2) ≤ ... ≤ v(Tm)

and for every i = 1, 2, ...,m, the unique optimal mechanism of the problem

restricted to Ti is constant (i.e., πt = πt′ for all t, t′ ∈ Ti). Then the unique

optimal mechanism outcome is π∗ with π∗
t = v(Ti) for every t ∈ Ti and

i = 1, 2, ...,m.

Proof. Let (IC’) be the set of (IC) constraints πt ≥ πs with s, t in the same

Ti. The outcome π∗ satisfies all (IC’) constraints as equalities; moreover, it

satisfies the (IC) constraints (because s ∈ L(t) with t ∈ Ti and s ∈ Tj implies

i ≥ j and so π∗
t = v(Ti) ≥ v(Tj) = π∗

s). Therefore, once we show that π∗

is the unique maximizer of H(π) subject to (IC’), then it is also the unique

maximizer subject to (IC).

Now (IC’) allows us to consider each Ti separately, and so if π is optimal

then πt = αi for all t ∈ Ti, and so we must have αi = v(Ti) (otherwise

αi could be slightly modified so that H will increase), which implies that

π = π∗.

To use Proposition 13 one combines instances where the optimal mech-

anism outcome is unique. One such instance, where there is a type with

minimal amount of evidence, is given by Proposition 5 in Section V.B (see

also its generalization, Proposition 10 in Appendix C.9). Another instance,

where the value decreases as one has more evidence, is given below.

14



Proposition 14 If L(t) = {s : v(s) ≥ v(t)} for all t then the outcome π∗

with π∗
t = v(T ) for all t is the unique truth-leaning equilibrium outcome and

optimal mechanism outcome.

Proof. Without loss of generality assume that T = {1, 2, ..., n} and v is

monotonic: if t ≤ s then v(t) ≤ v(s). Because L(t) ⊇ {t, t + 1, ..., n} by

the assumption on L, (IC) implies that π1 ≥ π2 ≥ ... ≥ πn. Let π be an

optimal mechanism outcome. If π is constant (i.e., π1 = ... = πn), then

optimality implies that π = π∗. If π is not constant, let 1 ≤ r < n be such

that α := π1 = ... = πr > πr+1 ≥ .. ≥ πn. Because we can slightly modify the

common value α of π1, ..., πr without affecting (IC), optimality implies that

α = v({1, ..., r}), and so α ≤ v(r) by in-betweenness. Therefore for every

t ≥ r + 1 we have πt < α ≤ v(r) ≤ v(t), and so ht(πt) < ht(α) (the function

ht strictly increases before its peak v(t)), implying that

H(π) =
r∑

t=1

ptht(α) +
n∑

t=r+1

ptht(πt) <

r∑

t=1

ptht(α) +
n∑

t=r+1

ptht(α) = H(π(α))

where π(α) := (α, ..., α), contradicting the optimality of π.

As an application, combining Propositions 14 and 13 provides an alterna-

tive proof that the outcome of the sanitizing equilibrium of Shin (2003) is the

optimal mechanism outcome (cf. Appendix C.5 (c)); the ordered partition is

(T0, T1, ..., TN ) with Ts = {(s, f) : 0 ≤ f ≤ N − s}).

C.11 Equivalence without Differentiability

Assuming that the functions ht are differentiable has enabled us to work

with the simpler conditions (A0) and (P0) rather than with the limit-of-

perturbations approach. However, this was just for convenience: we will

show here that the equivalence result holds also in the nondifferentiable case.

We start with a simple example where one of the functions ht is not

differentiable and there is no equilibrium satisfying (A0) and (P0).
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Example 12 The type space is T = {1, 2} with the uniform distribution,

pt = 1/2 for t = 1, 2. The principal’s payoff functions are h1(x) = −(x − 2)2

for x ≤ 1 and h1(x) = −x2 for x ≥ 1 (and so h1 is nondifferentiable at its

single peak v(1) = 1), and h2(x) = −(x− 2)2 (and so h2 has a single peak at

v(2) = 2). Both functions are strictly concave, and so hq has a single peak:

v(q) = 1 when q1 ≥ q2 and v(q) = 2q2 when q1 ≤ q2 (and thus27 v(T ) = 1).

Type 1 has more evidence than type 2, i.e., L(1) = {1, 2} and L(2) = {2}.
Let (σ, ρ) be a Nash equilibrium that satisfies (A0) and (P0). If type 1

sends message 1 then ρ(1) = v(1) = 1 and ρ(2) = v(2) = 2 (both by (P)),

contradicting (A): message 1 is not a best reply for type 1. If type 1 sends

message 2 then ρ(1) = v(1) = 1 (by (P0)) and ρ(2) = v(T ) = 1 (by (P)),

contradicting (A0): message 1 is a best reply for type 1 but he does not use

it. Thus there is no truth-leaning equilibrium. ¤

It may be easily checked that in this example (σ, ρ) is a Nash equilibrium

if and only if σ(2|1) = 1 and ρ(2) = 1 ≥ ρ(1), and so the outcome is

π = (1, 1), the same as the optimal mechanism outcome; truth-leaning yields

that ρ(1) = v(1) = 1 (by (P0)).

In all our proofs, the differentiability of the functions ht was used in only

one place: to get (A0) in the last step of the Proof of Proposition 1 (ii)

in Appendix A. All other proofs throughout the paper use only the non-

differentiable version of single-peakedness, namely,

(SP0) Continuous Single-Peakedness. For every q ∈ ∆(T ) the principal’s

utility hq(x) is a continuous single-peaked function of the reward x.

Thus all the functions ht are continuous (rather than differentiable), and for

every q ∈ ∆(T ) there is v(q) such that the function hq(x) is strictly increasing

for x ≤ v(q) and strictly decreasing for x ≥ v(q).

Equivalence holds also under (SP0):

Proposition 15 Assume that the principal’s payoff function (ht)t∈T satis-

fies the continuous single-peakedness condition (SP0). Then there is a unique

27The strict in-betweenness of Appendix C.3 does not hold here: the peak of h1 is
strictly less than the peak of h2, and the peak of their average equals the peak of h1.
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truth-leaning equilibrium outcome, a unique optimal mechanism outcome,

and these two outcomes coincide.

Proof. We will use Proposition 11 in Appendix C.9 (which generalizes

Proposition 6 in Section V.B). We thus need to show that every truth-leaning

limit equilibrium (σ, ρ) satisfies conditions (i) and (ii) of this proposition. We

proceed as in the Proof of Proposition 1 (ii). Let εn
t →n 0+, εn

t|t → 0+, and

(σn, ρn) →n (σ, ρ) be such that (σn, ρn) is a Nash equilibrium in Γε
n

for every

n. If σ(s|t) > 0 for t 6= s, then, as in the arguments leading to (8) and (9),

v(qn(s)) = ρn(s) ≥ ρn(t)+εn
t > ρn(t) = v(t) for all large enough n. For every

R ⊆ T that contains s the posterior qn(s) is a weighted average of qn(s)|R,

the conditional of qn(s) on R, and 1t for all t /∈ R with σn(s|t) > 0, for

all of which v(qn(s)) > v(t), as we have just seen; therefore in-betweenness

(1) implies that v(qn(s)) ≤ v(qn(s)|R). Thus v(t) < v(qn(s)) ≤ v(qn(s)|R)

for all large enough n; the continuity of v together with qn(s) → q(s) and

qn(s)|R → q(s)|R (because, by (8) and s ∈ R, the limit denominators are

bounded away from zero by psσ(s|s) = ps > 0) yield conditions (i) and (ii)

in the limit, as claimed.

Remark. As shown in the Proof of Proposition 1 (ii), every truth-leaning

equilibrium (σ, ρ) satisfies (P0) and, assuming differentiability, can be mod-

ified without changing the outcome so as to satisfy also (A0). Without dif-

ferentiability the latter is no longer true (as Example 12 shows); however, we

can obtain, again without changing the outcome, a weaker version of (A0):

(10) if ρ(t) = max
r∈L(t)

ρ(r) and σ̄(t) > 0 then σ(t|t) = 1;

here the condition that t chooses t for sure when it is a best reply for t is

required only when message t is used at all). To get (10): if σ(t|t) = 0

then σ̄(t) = 0 by (8) and no change is needed; and if 0 < σ(t|t) < 1 then

put σ′(t|t) := 0 and σ′(s|t) := σ(s|t) + σ(t|t) for some s 6= t that is played

by t, i.e., σ(s|t) > 0 (because both t and s are played by t it follows that

v(t) = ρ(t) = πt = ρ(s) = v(q(s)), and so v(q′(s)) = πt by in-betweenness

(1), as q′(s) is a weighted average of q(s) and 1t).

17



References to Appendix C

(in addition to the references in the paper)

Banks, Jeffrey S. and Sobel, Joel (1987), “Equilibrium Selections in Signaling
Games,” Econometrica 55, 647–661.

Brownlee, Shannon (2007), “Overtreated: Why Too Much Medicine Is Mak-
ing Us Sicker and Poorer,” Bloomsbury.

Chen, Ying, Kartik, Navin, and Sobel, Joel (2008), “Selecting Cheap-Talk
Equilibria,” Econometrica 76, 117–136.

Cho, In-Koo and Kreps, David M. (1987), “Signaling Games and Stable
Equilibria,” Quarterly Journal of Economics 102, 179–221.

Hall, Philip (1935), “On Representatives of Subsets,” Journal of the London
Mathematical Society 10, 26–30.

Halmos, Paul R. and Vaughan, Herbert E. (1950), “The Marriage Problem,”
American Journal of Mathematics 72, 214–215.

Hart, Sergiu and Kohlberg, Elon (1974), “Equally Distributed Correspon-
dences,” Journal of Mathematical Economics 1, 167–174.

Kohlberg, Elon and Mertens, Jean-François (1986), “On the Strategic Sta-
bility of Equilibria,” Econometrica 54, 1003–1037.

18


