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A Proofs

A.1 Proposition 1

Proof of Proposition 1. (⇒) Suppose that (q, l, p, w) is a competitive equilibrium. For any country

i, let us construct Li ≡ {Ln
ji} such that

Ln
ji = ∑

k

lnk
ji for all i, j, and n.

Together with the factors market clearing condition (5), the previous expression immediately im-

plies

∑
j

Ln
ij = vn

i for all i and n.

In order to show that (L, w) is a reduced equilibrium, we therefore only need to show

Li ∈ argmaxL̃i
Ui(L̃i) (39)

∑
j,n

wn
j L̃n

ji ≤ ∑
n

wn
i vn

i for all i.

We proceed by contradiction. Suppose that there exists a country i such that condition (39) does

not hold. Since profits are zero in a competitive equilibrium with constant returns to scale, we

must have ∑j,k pk
jiq

k
ji = ∑j,n wn

j Ln
ji. The budget constraint of the representative agent in the com-

petitive equilibrium, in turn, implies ∑j,n wn
j Ln

ji = ∑n wn
i vn

i . Accordingly, if condition (39) does

not hold, there must be L′
i such that Ui(L′

i) > Ui(Li) and ∑j,n wn
j (Ln

ji)
′ ≤ ∑n wn

i vn
i . Now consider

(q′
i, l′i) such that

(q′
i, l ′i)∈ argmaxq̃i ,l̃i

ui(q̃i)

∑
k

l̃nk
ji ≤ (Ln

ji)
′ for all j and f ,

q̃k
ji ≤ f k

ji(l̃
k
ji) for all j and k.

We must have

ui(q
′
i) = Ui(L′

i) > Ui(Li) ≥ ui(qi),

where the last inequality derives from the fact that, by construction, Li is sufficient to produce qi.

Utility maximization in the competitive equilibrium therefore implies

∑
j,k

pk
ji(q

k
ji)

′
> ∑

n

wn
i vn

i .
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Combining this inequality with ∑j,n wn
j (Ln

ji)
′ ≤ ∑n wn

i vn
i , we obtain

∑
j,k

pk
ji(q

k
ji)

′
> ∑

j,n

wn
j (Ln

ji)
′.

Hence, firms could make strictly positive profits by using L′
i, to produce q′

i, which cannot be

true in a competitive equilibrium. This establishes that (L, w) is a reduced equilibrium with the

same factor prices and the same factor content of trade as the competitive equilibrium. The fact

that Ui(Li) = ui(qi) can be established in a similar manner. If there were q′
i such that ui(q

′
i) =

Ui(Li) > ui(qi), then utility maximization would imply

∑
j,k

pk
ji(q

k
ji)

′
> ∑

n

wn
i vn

i = ∑
j,n

wn
j Ln

ji,

which would in turn violate profit maximization in the competitive equilibrium.

(⇐) Suppose that (L, w) is a reduced equilibrium. For any positive of vector of output delivered

in country i, qi ≡ {qk
ji}, let Ci(w, qi) denote the minimum cost of producing qi,

Ci(w, qi) ≡ minl̃ ∑
j,k,n

wn
j l̃nk

ji (40)

qk
ji ≤ f k

ji(l̃
k
ji) for all j and k. (41)

The first step of our proof characterizes basic properties of Ci. The last two steps use these proper-

ties to construct a competitive equilibrium that replicates the factor content of trade and the utility

levels in the reduced equilibrium.

Step 1. For any country i, there exists pi ≡ {pk
ji} positive such that the two following conditions hold:(i)

Ci(w, qi) = ∑
j,k

pk
jiq

k
ji, for all qi > 0, (42)

and (ii) if li solves (40), then li solves

max
l̃

k
ji
pk

ji f k
ji(l̃

k
ji)−∑

n

wn
j l̃nk

ji for all j and k. (43)

For any i, j, and k, let us construct pk
ji such that

pk
ji = min

l̃
k
ji
{∑

n

wn
j l̃nk

ji | f k
ji(l̃

k
ji) ≥ 1}. (44)

Take lk
ji(1) that solves the previous unit cost minimization problem. Since f k

ji is homogeneous of

degree one, we must have f k
ji(q

k
jil

k
ji(1)) ≥ qk

ji. By definition of Ci, we must also have Ci(w, qi) ≤
∑j,k,n qk

jiw
n
j lnk

ji (1) = ∑j,k pk
jiq

k
ji. To show that equation (42) holds, we therefore only need to show
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that Ci(w, qi) ≥ ∑j,k pk
jiq

k
ji. We proceed by contradiction. Suppose that Ci(w, qi) < ∑j,k pk

jiq
k
ji. Then

there must be qk
ji > 0 such that

∑
n

wn
j lnk

ji < qk
ji ∑

n

wn
j lnk

ji (1),

where lk
ji is part of the solution of (40). Since f k

ji is homogeneous of degree one, lk
ji/qk

ji would then

lead to strictly lower unit cost then lk
ji(1), which cannot be. This establishes condition (i).

To establish condition (ii), we proceed again by contradiction. Suppose that there exists (lk
ji)

′

such that

pk
ji f k

ji((l
k
ji)

′)− ∑
n

wn
j (l

nk
ji )

′
> pk

ji f k
ji(l

k
ji)−∑

n

wn
j lnk

ji . (45)

Take the vector of output qi such that qk
ji = f k

ji(l
k
ji) and zero otherwise. Condition (i) applied to

that vector immediately implies

pk
ji f k

ji(l
k
ji) = ∑

n

wn
j lnk

ji .

Combining this observation with inequality (45), we get pk
ji > ∑n wn

j (l
nk
ji )

′
/ f k

ji((l
k
ij)

′), which con-

tradicts the fact that pk
ji is the minimum unit cost.

Step 2. Suppose that (qi, li) solves

maxq̃i ,l̃i
ui(q̃i) (46)

q̃k
ji ≤ f k

ji(l̃
k
ji) for all j and k,

∑
j,k,n

wn
j l̃nk

ji ≤ ∑
n

wn
i vn

i .

Then qi solves

maxq̃i
ui(q̃i) (47)

∑
j,k

pk
ji q̃

k
ji ≤ ∑

n

wn
i vn

i ,

and li solves

max
l̃

k
ji
pk

ji f k
ji(l̃

k
ji)−∑

n

wn
j l̃nk

ji for all j and k. (48)

If (qi, li) solves (46), then

qi∈ argmaxq̃i
ui(q̃i)

Ci(w, q̃i) ≤ ∑
n

wn
i vn

i .

Combining this observation with Step 1 condition (i), we obtain that qi solves (47). Likewise, if

55



(qi, l i) solves (46), then

li ∈ argminl̃ ∑
j,k,n

wn
j l̃nk

ji ,

qk
ji ≤ f k

ji(l̃
k
ji) for all j and k.

Combining this observation with Step 1 condition (ii), we obtain that l i solves (48).

Step 3. For all i, take (qi, li) that solves

maxq̃i,l̃i
ui(q̃i) (49)

q̃k
ji ≤ f k

ji(l̃
k
ji) for all j and k,

∑
k

l̃nk
ji ≤ Ln

ji for all j and n,

and set q = ∑i qi and l = ∑i l i. Then (q, l, p, w) is a competitive equilibrium with the same factor prices,

w; (ii) the same factor content of trade, Ln
ji = ∑k lnk

ji for all i, j, and n; and (iii) the same welfare levels,

Ui(Li) = ui(qi) for all i.

Since (L, w) is a reduced equilibrium, if (qi, li) solves (49), then (qi, li) solves (46). By Step

2, qi and li must therefore solve (47) and (48), respectively. Hence, the utility maximization and

profit maximization conditions (1) and (3) are satisfied. Since the constraint q̃k
ji ≤ f k

ji(l̃
k
ji) must

be binding for all j and k in any country i, the good market clearing condition (4) is satisfied as

well. The factor market clearing condition directly derives from the fact that (L, w) is a reduced

equilibrium and the constraint, ∑k l̃nk
ji ≤ Ln

ji, must be binding for all j and n in any country i. By

construction, conditions (i)-(iii) necessarily hold.

A.2 Lemma 1

Proof of Lemma 1. We proceed in two steps.

Step 1. In a Ricardian economy, if good expenditure shares satisfy the connected substitutes property, then

factor expenditure shares satisfy the connected substitutes property.

Our goal is to establish that factor demand, χi, satisfies the connected substitutes property—expressed

in terms of the effective prices of the composite factors, ωi ≡ {τjicj}—if good demand, σ i, satisfies

the connected substitutes property, with

σ i(pi) ≡ {{sk
i }|sk

i = pk
i qk

i /yi for some qi ∈ argmaxq̃{ūi(q̃)|∑
k

pk
i q̃k

i ≤ yi}}.

Note that since ūi is homothetic, σ i does not depend on income in country i.

Consider a change in effective factor prices from ωi to ω′
i and a partition of countries {M1, M2}

such that ω′
ji > ωji for all j ∈ M1 and ω′

ji = ωji for all j ∈ M2. Now take xi, x′i > 0 such that
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xi ∈ χi(ωi) and x′i ∈ χi(ω
′
i). For each exporting country j, we can decompose total expenditure

shares into the sum of expenditure shares across all sectors k,

xji = ∑
k

sk
i xk

ji,

where sk
i denotes the share of expenditure on good k in in country i at the initial prices,

{sk
i } ∈ σi({pk

i (ωi)}),
pk

i (ωi) = min
j
{ωji/αk

ji}.

For any good k, there are two possible cases. If no country j ∈ M2 has the minimum cost for good

k at the initial factor prices, ωi, then

∑
j∈M2

xk
ji = 0, (50)

pk
i (ω) < pk

i (ω
′). (51)

Let us call this set of good K1. If at least one country i ∈ M2 has the minimum cost for good k, then

∑
j∈M2

(xk
ji)

′ = 1, (52)

pk
i (ωi) = pk

i (ω
′
i). (53)

Let us call this second set of good K2. Since xi, x′i > 0, we know that both K1 and K2 are non-empty.

Now consider the total expenditure in country i on factors from countries j ∈ M2 when factor

prices are equal to ω′
i. It must satisfy

∑
j∈M2

(xji)
′ ≥ ∑

j∈M2

∑
k∈K2

(sk
i )

′(xk
ji)

′ = ∑
k∈K2

(sk
i )

′[ ∑
j∈M2

(xk
ji)

′].

Combining the previous inequality with (52), we obtain

∑
j∈M2

(xji)
′ ≥ ∑

k∈K2

(sk
i )

′.

By the Inada conditions, all goods are consumed. Thus, we can invoke the connected substitutes

property for goods in K1 and K2. Conditions (51) and (53) imply

∑
k∈K2

(sk
i )

′
> ∑

k∈K2

sk
i .
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Since ∑j∈M2
xk

ji ≤ 1, the two previous inequalities further imply

∑
j∈M2

(xji)
′
> ∑

k∈K2

sk
i [ ∑

j∈M2

xk
ji] = ∑

j∈M2

∑
k∈K2

sk
i xk

ji.

Finally, using (50) and the fact that {K1, K2} is a partition, we get

∑
j∈M2

(xji)
′
> ∑

j∈M2

∑
k∈K1

sk
i xk

ji + ∑
j∈M2

∑
k∈K2

sk
i xk

ji = ∑
j∈M2

xji.

This establishes that χi satisfies the connected substitutes property.

Step 2. If factor demand χi satisfies the connected substitutes property, then for any vector of factor expen-

diture shares, x > 0, there is at most one vector (up to a normalization) of effective factor prices, ω, such

that x ∈ χi(ω).

We proceed by contradiction. Suppose that there exist ω, ω′, and x0 > 0 such that x0 ∈ χi(ω),

x0 ∈ χi(ω
′), and ω and ω′ are not collinear. Since χi is homogeneous of degree zero in all factor

prices, we can assume without loss of generality that ωj ≥ ω′
j for all j, with at least one strict

inequality and one equality. Now let us partition all countries into two groups, M1 and M2, such

that

ω′
j > ωj if j ∈ M1, (54)

ω′
j = ωj if j ∈ M2. (55)

Since χi satisfies the connected substitutes property, conditions (54) and (55) imply that for any

x, x′ > 0 such that x ∈ χi(ω) and x′ ∈ χi(ω
′), we must have

∑
j∈M2

x′j > ∑
j∈M2

xj,

which contradicts the existence of x0 ∈ χi(ω) ∩ χi(ω
′). Lemma 1 follows from Steps 1 and 2.

A.3 Lemma 2

Proof of Lemma 2. We proceed by contradiction. Suppose that there exist two equilibrium vectors

of factor prices, c ≡ (c1, ..., cI) and c′ ≡ (c′1, ..., c′I), that are not collinear. By Proposition 1, we know

that c and c′ must be equilibrium vectors of the reduced exchange model. So they must satisfy

∑
i

Lji = f̄ j(νj), for all j, (56)

∑
i

L′
ji = f̄ j(νj), for all j, (57)
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where {Lji} and {L′
ji} are the optimal factor demands in the two equilibria,

{Lji} ∈ Li(ωi), for all i,

{L′
ji} ∈ Li(ω

′
i), for all i,

where ωi ≡ {τjicj} and ω′
i ≡ {τjic

′
j} are the associated vectors of effective factor prices.

We can follow the same strategy as in Step 2 of the proof of Lemma A.3. Without loss of

generality, let us assume that c′j ≥ cj for all j, with at least one strict inequality and one equality.

We can again partition all countries into two groups, M1 and M2, such that

c′j > cj if j ∈ M1, (58)

c′j = cj if j ∈ M2. (59)

The same argument then implies that in any country i,

∑
j∈M2

x′ji > ∑
j∈M2

xji,

where {xji} and {x′ji} are the expenditure shares associated with {Lji} and {L′
ji}, respectively. By

definition of the factor expenditure shares, the previous inequality can can be rearranged as

∑
j∈M2

c′jL
′
ji/(c

′
i f̄i(νi)) > ∑

j∈M2

cjLji/(ci f̄i(νi)).

Since c′i ≥ ci for all i, this implies

∑
j∈M2

c′jL
′
ji > ∑

j∈M2

cjLji.

Summing across all importers i, we therefore have

∑
j∈M2

c′j ∑
i

L′
ji > ∑

j∈M2

cj ∑
i

Lji.

By equations (56) and (57), this further implies

∑
j∈M2

c′j f̄ j(νj) > ∑
j∈M2

cj f̄ j(νj),

which contradicts (59).

B Estimation

In this section we discuss further details of the estimation procedure outlined in Section 6.2.
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B.1 GMM Estimator

As in Section 6.2, define the stacked matrix of instruments, Z, and the stacked vector of errors,

e(θ). The GMM estimator is

θ̂ = arg min
θ

e(θ)′ZΦZ′e(θ).

where Φ is the GMM weight. We confine attention to the consistent one-step procedure by setting

Φ = (Z′Z)−1.

B.2 Standard Errors

In our baseline specification, we allow for the possibility of autocorrelation in the error term.

Specifically, we assume that observations are independent across exporter-importer pairs, but do

not impose any restriction on the autocorrelation across periods for the same pair. Following

Cameron and Miller (2010), we have that

√
M
(

θ̂− θ
)
→ N

[
0,
(

B′ΦB
)−1 (

B′ΦΛΦB
) (

B′ΦB
)−1
]

where B ≡ E
[

Z′
ji,t∇θeji,t(θ)

]
and Λ ≡ E[(Z′

jieji)(Z
′
jieji)

′], with Zji = [Zji,t]
T
t=1 and eji ≡ [eji,t]

T
t=1

being matrices of stacked periods for exporter-importer pair (j, i).

The covariance matrix can be consistently estimated using

Âvar(θ̂) ≡
(

B̂′ΦB̂
)−1 (

B̂′ΦΛ̂ΦB̂
) (

B̂′ΦB̂
)−1

(60)

where B̂ ≡
(

Z′∇θe(θ̂)
)

, ∇θe(θ̂) ≡
[

Dθ2
e(θ̂) | − Z1

]
, and Λ̂ ≡ Γ′Γ such that Γ ≡

[
eji(θ̂)

′Zji

]
ji

.

This analysis ignored the fact that we take draws of (αs, ǫs) to compute simulated moment con-

ditions in the algorithm described below. Although this simulation step affects standard errors,

the asymptotic distribution of the estimator is the same as the number of simulated draws goes to

infinite. Thus, we compute the covariance matrix according to expression (60) which is assumed

to be an appropriate approximation for the large number of simulations (discussed below) used

in the empirical implementation.

B.3 Estimation Algorithm

In order to estimate the model, it is convenient to focus on the following log-transformation of

effective factor prices, δji,t ≡ −ǭln(µjiωji,t/µ1iω1i,t). Define χ(δi,t|θ2) as the demand system in

equation (28) expressed in terms of δi,t ≡ {δji,t}, so that

χj(δi,t|θ2) =
∫ exp(ασα ln κj + ǫσǫ δji,t)

1 + ∑
N
l=2 exp(ασα ln κl + ǫσǫ δli,t)

dF (α, ǫ) (61)
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with θ2 ≡ (σα, σǫ). As described in Section 6.2, we can write

eji,t(θ) ≡ ln χ−1
j (xi,t|θ2)− ln χ−1

j (x1,t|θ2)−Z1
ji,t ·θ1,

with θ1 = (−ǭ, {ζ ji}) and Z1
ji,t ≡ (∆ ln(zτ)ji,t − ∆ ln(zτ)j1,t, dji,t).

The simulated GMM procedure is implemented with the following steps.

Step 0. Draw S simulated pairs (αs, ln ǫs) ∼ N(0, I). We set S = 4, 000 and use the same draws for

all markets.

Step 1. Conditional on θ2, compute the vector χ−1(xi,t|θ2) ≡ {δji,t}N
j=2 that solves the following

system:

{χj(δi,t|θ2)}N
j=2 = {xji,t}N

j=2

where xji,t is the expenditure share of importer i on exports of j at year t and

χj(δi,t|θ2) =
1

S

S

∑
s=1

exp[αsσα ln κj + (ǫs)σǫδji,t]

1 + ∑
N
l=2 exp [αsσα ln κl + (ǫs)σǫδli,t]

.

Uniqueness and existence of the solution is guaranteed by the fixed point argument in Berry,

Levinsohn and Pakes (1995). To solve the system, consider the fixed point of the following func-

tion:

G (δi,t) =
[
δji,t + λ

(
ln xji,t − ln χj(δi,t|θ2)

)]N

j=2

where λ is a parameter controlling the adjustment speed. This fixed point is obtained as the limit of

the sequence: δn+1
i,t = G

(
δn

i,t

)
. Numerically, we compute the sequence until maxj

∣∣ln xji,t − ln χj(δi,t|θ2)
∣∣ <

tol, where tol is some small number that we discuss further below.

This step is implemented as follows. First, the initial guess δ0
ij,t in the initial iteration is set to

be the logit solution δ0
ji,t = ln xji,t − ln x1i,t. In subsequent iterations, we use the following rule.

If θ2 is close to the parameter vector of the previous iteration, we use the system solution in the

last iteration. Otherwise, we use the vector that solved the system for the same importer in the

previous year (if it is the first year, we use the logit solution). Second, the speed of adjustment is

initially set to λ = 3. If distance increases in iteration n, then we reduce λ by 5% and compute

δn+1
i,t again until distance decreases in the step and use the new value of λ until the solution is

found. If λ falls below a minimum (λ = .001), then we assume no solution for the system and set

the objective function to a high value. Lastly, we set tol = 10−8 and, every 20,000 iterations, we

increase tolerance by a factor of two. This guarantees that the algorithm does not waste time on

convergence for parameter values far away from the real ones, as suggested by Nevo (2000).

Step 2. Conditional on θ2, solve analytically for linear parameters directly from the minimization

problem: θ̂1(θ2) =
(

Z1′ZΦZ′Z1
)−1

Z1′ZΦZ′X, with X ≡ [ln χ−1
j (xi,t|θ2)− ln χ−1

j (x1,t|θ2)].
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Step 3. Conditional on θ2, compute the vector of structural errors using eji,t(θ2) = ln χ−1
j (xi,t|θ2)−

ln χ−1
j (x1,t|θ2)−Z1

ji,t ·θ̂1(θ2).

Step 4. Numerically minimize the objective function to obtain estimates of θ2:

θ̂2 ≡ arg min
θ2

H (θ2) ≡ e(θ2)
′ZΦZ′e(θ2).

The numerical minimization is implemented using the “trust-region-reflective" algorithm that re-

quires an analytical gradient of the objective function (described below). This algorithm is in-

tended to be more efficient in finding the local minimum within a particular attraction region.

First, we solve the minimization problem using a grid of ten initial conditions randomly drawn

from a uniform distribution in the parameter space. Second, we solve a final minimization prob-

lem using as initial condition the minimum solution obtained from the first-round minimization.

Here, we impose a stricter convergence criteria and we reduce the tolerance level of the system

solution in Step 1 to tol = 10−12.

Objective Function Gradient. The Jacobian of H(θ2) is ∇H (θ2) = 2 · De(θ2)′ZΦZ′e(θ2) where

De(θ2) =
[

∂e ji,t

∂θ21
. . .

∂e ji,t

∂θ2L

]
ijt

is the stacked matrix of Jacobian vectors of the structural error from

Step 3. By the envelope theorem, the Jacobian is Dei,t(θ2) = Dδi,t(θ2)− Dδ1,t(θ2) because θ̂1(θ2)

is obtained from the analytical minimization of the inner problem restricted to a particular level

of θ2. For each importer-year, the implicit function theorem implies that

Dδi,t(θ2) =




∂δ2i,t

∂θ21
. . .

∂δ2i,t

∂θ2L
...

. . .
...

∂δNi,t

∂θ21
. . .

∂δNi,t

∂θ2L


 = −




∂χ̄2

∂δ2i,t
. . . ∂χ̄2

∂δNi,t

...
. . .

...
∂χ̄N

∂δ2i,t
. . . ∂χ̄N

∂δNi,t




−1 


∂χ̄2

∂θ21
. . . ∂χ̄2

∂θ2L
...

. . .
...

∂χ̄N

∂θ21
. . . ∂χ̄N

∂θ2L




where
∂χj

∂δli,t
=

{
− 1

S ∑
S
s=1(ǫs)σǫ · xji,t(αs, ǫs)xli,t(αs, ǫs) if l 6= j

1
S ∑

S
s=1(ǫs)σǫ · xji,t(αs, ǫs)

(
1 − xji,t(αs, ǫs)

)
if l = j

∂χj

∂σǫ
=

1

S

S

∑
s=1

(ln ǫs)(ǫs)
σǫ · xji,t(αs, ǫs) ·

[
δji,t −

N

∑
l=2

xli,t(αs, ǫs) · δli,t

]

∂χj

∂σα
=

1

S

S

∑
s=1

αs · xji,t(αs, ǫs) ·
[

ln κi −
N

∑
l=2

xli,t(αs, ǫs) · ln κl

]
.

62



C Sample of Countries

Table A1: List of exporting countries

Abbreviation Exporter

log(p.c. GDP)
[USA=0]

AUS Australia -0.246
AUT Austria -0.249
BLX Belgium-Luxembourg -0.261
BRA Brazil -1.666
BGR Bulgaria -1.603
CAN Canada -0.211
CHN China -2.536
CZE Czech Republic -0.733
DNK Denmark -0.303
BAL Estonia-Latvia -1.475
FIN Finland -0.522
FRA France -0.398
DEU Germany -0.290
GRC Greece -0.760
HUN Hungary -1.121
IND India -3.214
IDN Indonesia -2.284
IRL Ireland -0.574
ITA Italy -0.332
JPN Japan -0.183
LTU Lithuania -1.526
MEX Mexico -1.263
NLD Netherlands -0.352
POL Poland -1.428
PRT Portugal -0.830
KOR Republic of Korea -0.823
RoW Rest of the World -2.286
ROU Romania -1.816
RUS Russia -0.954
SVK Slovak Republic -1.102
SVN Slovenia -0.728
ESP Spain -0.644
SWE Sweden -0.367
TWN Taiwan -0.584
TUR Turkey -1.305
GBR United Kingdom -0.436
USA United States 0.000
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D Counterfactual Analysis

D.1 Preliminaries

In the counterfactual analysis of Section 7, we use the complete trade matrix for the 37 exporters

listed in Table A1. In order to reconcile theory and data, we incorporate trade imbalances as

follows. For each country, we define ρj,t as the difference between aggregate gross expenditure

and aggregate gross production. We proceed under the assumption that trade imbalances remain

constant at their observed level in terms of the factor price of the reference country. Here, the

reference country is the United States (j = 1) such that its factor price is normalized to one, ŵ1 = 1.

In particular, the market clearing condition in (15) becomes

N

∑
i=1

x̂ji,txji,t ((ŵiv̂i)yi,t + ρi,t) = (ŵjv̂j)yj,t, for j = 2, ..., N (62)

where

x̂ji,txji,t =
1

S

S

∑
s=1

exp[αsσα ln κj + (ǫs)σǫ

(
χ−1

j (xi,t|θ2)− ǭ ln(ŵjτ̂ji)
)
]

1 + ∑
N
l=2 exp

[
αsσα ln κl + (ǫs)σǫ

(
χ−1

l (xi,t|θ2)− ǭ ln(ŵlτ̂li)
)] . (63)

Notice that, by construction, ∑
N
i=1 ρi,t = 0. Thus, the solution of the system of N − 1 equations

above implies that the market clearing condition for the reference country is automatically satis-

fied.

D.2 Algorithm

To compute the vector ŵ = {ŵj}N
j=2 that solves system (62), we use the same algorithm as in

Alvarez and Lucas (2007).

Step 0. Initial guess: ŵk = [1, ..., 1] if k = 0.

Step 1. Conditional on ŵk, compute x̂ji,txji,t according to (63).

Step 2. Compute the excess labor demand as

Fj

(
ŵk
)
≡ 1

yj,t

[
−(ŵjv̂j)yj,t +

N

∑
i=1

x̂ji,txji,t ((ŵiv̂i)yi,t + ρi,t)

]

where we divide by yj,t to scale excess demand by country size.

Step 3. If maxj |Fj

(
ŵk
)
| < tol, then stop the algorithm. (In practice we set tol = 10−8 here.)
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Otherwise, return to Step 1 with new factor prices computed as

ŵk+1
j = ŵk

j + µFj

(
ŵk
)

where µ is a positive constant. Intuitively, this updating rule increases the price of those factors

with a positive excess demand.

D.3 Welfare

By Proposition 3, we can compute welfare changes in any country i by solving for e(·, U′
i ). To do

so, we guess that for all ω ≡ {ωl},

e(ω, U′
i) = (y′i)

exp(
∫

1
−(ǭǫσǫ )

ln[∑N
l=1(κl)

σαα(ωl)
−(ǭǫσǫ)]dF (α, ǫ))

exp(
∫

1
−(ǭǫσǫ )

ln[∑N
l=1(κl)σαα((ωli,t)′)−(ǭǫσǫ )]dF (α, ǫ))

. (64)

We then check that our guess satisfies (17) and (18) if χ satisfies (28). By equations (19) and (64),

welfare changes must therefore satisfy

∆Wi =
(y′i)/ exp(

∫
1

−(ǭǫσǫ )
ln[∑N

l=1(κl)
σαα((ωli,t)

′)−(ǭǫσǫ )]dF (α, ǫ))

yi/ exp(
∫

1
−(ǭǫσǫ ) ln[∑N

l=1(κl)σαα(χ−1
l (xi,t))−(ǭǫσǫ )]dF (α, ǫ))

− 1.

Using the fact that (yi)
′/yi = ŵi and (ωli,t)

′ = ŵl τ̂liχ
−1
l (xi,t), this finally leads to

∆Wi = (ŵi)
exp(

∫
1

−(ǭǫσǫ )
ln[∑N

l=1(κl)
σαα(χ−1

l (xi,t))
−(ǭǫσǫ )]dF (α, ǫ))

exp(
∫

1
−(ǭǫσǫ ) ln[∑N

l=1(κl)σαα(ŵl τ̂liχ
−1
l (xi,t))−(ǭǫσǫ )]dF (α, ǫ))

− 1,

with {ŵl} obtained from the algorithm in Section D.2.

D.4 Confidence Intervals

The confidence intervals for the counterfactual analysis are computed with the following boot-

strap procedure. First, draw parameter values from the asymptotic distribution of the GMM es-

timator: θ(b) ∼ N
(

θ̂, ÂVar(θ̂)
)

. Second, compute χ−1(xi,t|θ2(b)) using the algorithm described

in Step 1 of Section B.3. Third, compute the counterfactual exercise with θ(b) and χ−1(xi,t|θ2(b))

using the algorithm described in Section D.2. Lastly, repeat these three steps for b = 1, ..., 200.

The bootstrap confidence interval corresponds to [EV(.025), EV(.975)] where EV(α) denotes the α-th

quantile value of the equivalent variation obtained across the set of 200 parameter draws.
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D.5 Additional Results

Table A2: Welfare gains from Chinese integration since 1995: all countries, 2007

CES (standard gravity) Mixed CES

Exporter Welfare Gains 95% Confidence Interval Welfare Gains 95% Confidence Interval

Australia 0.144 (0.109, 0.243) 0.225 (0.136, 0.598)
Austria 0.058 (0.043, 0.100) 0.102 (0.055, 0.296)
Belgium-Luxembourg 0.056 (0.042, 0.097) 0.108 (0.044, 0.312)
Brazil 0.071 (0.054, 0.121) 0.058 (0.049, 0.191)
Bulgaria 0.061 (0.045, 0.106) -0.005 (-0.077, 0.078)
Canada 0.053 (0.039, 0.092) 0.098 (0.044, 0.301)
China 1.039 (0.788, 1.740) 1.544 (1.006, 4.284)
Czech Republic 0.151 (0.112, 0.262) 0.209 (0.140, 0.570)
Denmark 0.014 (0.010, 0.026) 0.034 (-0.009, 0.137)
Estonia-Latvia 0.081 (0.061, 0.140) 0.043 (0.033, 0.190)
Finland 0.100 (0.075, 0.171) 0.154 (0.092, 0.437)
France 0.030 (0.023, 0.052) 0.057 (0.029, 0.214)
Germany 0.122 (0.092, 0.208) 0.201 (0.117, 0.519)
Greece 0.004 (0.003, 0.006) 0.018 (-0.003, 0.114)
Hungary 0.214 (0.161, 0.370) 0.208 (0.169, 0.555)
India 0.126 (0.094, 0.218) 0.022 (-0.141, 0.185)
Indonesia 0.026 (0.019, 0.047) -0.061 (-0.415, 0.016)
Ireland 0.135 (0.101, 0.234) 0.150 (0.116, 0.379)
Italy 0.008 (0.006, 0.015) 0.035 (0.002, 0.161)
Japan 0.095 (0.072, 0.162) 0.186 (0.093, 0.599)
Lithuania 0.065 (0.049, 0.110) 0.022 (-0.003, 0.114)
Mexico 0.121 (0.090, 0.211) 0.099 (0.082, 0.360)
Netherlands 0.043 (0.032, 0.076) 0.068 (0.019, 0.157)
Poland 0.086 (0.064, 0.151) 0.040 (0.030, 0.210)
Portugal 0.050 (0.038, 0.081) 0.055 (0.043, 0.141)
Republic of Korea 0.298 (0.226, 0.500) 0.399 (0.273, 0.951)
Rest of the World 0.293 (0.221, 0.493) 0.105 (-0.160, 0.384)
Romania -0.005 (-0.009, -0.004) -0.077 (-0.367, -0.013)
Russia 0.105 (0.079, 0.180) 0.103 (0.085, 0.221)
Slovak Republic 0.116 (0.087, 0.200) 0.120 (0.093, 0.343)
Slovenia 0.012 (0.008, 0.022) 0.020 (0.007, 0.078)
Spain 0.075 (0.056, 0.127) 0.112 (0.071, 0.331)
Sweden 0.076 (0.057, 0.130) 0.113 (0.072, 0.315)
Taiwan 0.695 (0.531, 1.140) 0.946 (0.651, 2.146)
Turkey 0.024 (0.018, 0.043) 0.019 (0.015, 0.086)
United Kingdom 0.014 (0.010, 0.024) 0.022 (0.002, 0.094)
United States 0.034 (0.025, 0.062) 0.071 (0.035, 0.237)

Notes: Estimates of welfare changes (computed as the minus of the equivalent variation) from replacing
China’s trade costs to all other countries in 2007 at their 1995 levels. “CES (standard gravity)” and “Mixed
CES” report these welfare changes obtained using the factor demand system in Panels A and C, respectively,
of Table 2. 95% confidence intervals computed using the bootstrap procedure documented in Appendix D.
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