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Abstract

Introducing extrapolation bias into a standard one-sector production-based real
business cycle model with recursive preferences reconciles salient stylized facts about
business cycles (low consumption volatility and high investment volatility relative to
output) and financial markets (high equity premium, volatile stock returns, and a low
and smooth riskfree rate) with low relative risk aversion and an intertemporal elasticity
of substitution in preferences of greater than one. Furthermore, the model matches
several conditional stylized facts, such as return predictability based upon dividend
yield, Q, and investment rates. These successes derive from the interaction of capital
adjustment costs, extrapolative bias, and recursive preferences. Extrapolative bias
increases the variation in the wealth-consumption ratio; recursive preferences cause this
variation to be strongly priced; and adjustment costs decrease the covariance between
marginal utility of consumption and asset returns. We provide empirical support for
the mechanism of the model.
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1 Introduction

During the millennial high tech boom, the U.S. economy grew rapidly, and expectations

among many investors about future growth were higher than subsequent realizations. In

contrast, after the credit crisis of 2008, growth has been low and pessimistic expectations for

future growth have been prevalent. This raises the questions of whether there is a general

tendency for individuals to overextrapolate recent economic growth, and if so what effect

this has on consumption and asset pricing.

Evidence from both psychology and finance indicates that extrapolative bias is

pervasive in human judgement and decisions (see, e.g., Hirshleifer (2001), Barberis and

Thaler (2003), and Fuster, Laibson, and Mendel (2010)). In laboratory experiments,

Tversky and Kahneman (1974) provide evidence consistent with individuals following the

representativeness heuristic, wherein observations are perceived as being more indicative

(representative) of population distributions than they really are. This results in the so-

called ‘law of small numbers’, a belief updating process whereby individuals overweight small

numbers of observations. In an investment setting, this would imply that when investors see

a firm realizing high earnings growth, for example, they may classify it as a growth firm and

discount inadequately for the regression phenomenon.

Empirically, several field and experimental studies find that the trading of individual and

professional investors seems to reflect extrapolation of past performance.1 Theoretical models

and discussions have also emphasized how extrapolation can affect capital market behavior.

In the model of Barberis, Shleifer and Vishny (1998), the representativeness heuristic causes

overreaction anomalies in the stock market. Fuster, Laibson, and Mendel (2010) suggest that

extrapolation is important for understanding macroeconomic fluctuations. Indeed, Barberis

(2011) proposes that overextrapolation may explain the 2008 credit crisis.

As is well known, production-based asset pricing models face an even greater challenge

than endowment-based models in explaining consumption and asset return behavior, as such

1See, e.g., Smith, Suchanek, and Williams (1988), Benartzi (2001), Haruvy, Lahav, and Noussair (2007),
Greenwood and Nagel (2009), Choi, Laibson and Madrian (2010). In survey evidence, Case and Shiller (1988)
report higher expectations of future housing price growth in cities that have experienced past recent price
growth. Using both survey and experimental data, De Bondt (1993) finds that the forecasts of individual
investors satisfy a simple trend-following mechanism. Vissing-Jorgensen (2003) provides survey evidence
that investors who have experienced high portfolio returns in the past expect higher returns in the future.
Furthermore, Ederington and Golubeva (2010) find that mutual fund investors reallocate toward stock funds
after stock price increases, and into bond funds after bond price increases.
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models allow greater scope for endogenous consumption and dividend smoothing (see, e.g.,

Rouwenhorst (1995), Jermann (1998), Lettau and Uhlig (2000), and Boldrin, Christiano,

and Fisher (2001)).2 It has been recognized for some time that relaxing the assumption

of perfect rationality might help explain macroeconomic and financial empirical puzzles.3

Recently, Fuster, Laibson, and Mendel (2010) and Fuster, Hebert, and Laibson (2011) argue

that quasi-rational models deserve greater attention.

In this spirit, in this paper we introduce extrapolative expectations into a standard

dynamic stochastic general equilibrium (DSGE) model featuring recursive preferences to

study the implications of the model for asset prices, consumption, investment, and output.

Specifically, we assume that the true average productivity growth is unobservable, and that

the representative individual has to estimate it from historical data. The individual uses a

smoothed average of past realized technology growth to estimate future technology growth,

with greater weight on the most recent growth realization.

We show that introducing extrapolative expectations greatly improves upon traditional

rational models in matching key stylized facts about both asset prices and macroeconomic

quantities. Specifically, our model produces large and volatile excess stock market returns

and low and smooth risk-free rates, with a relative risk aversion (RRA) of four and a

preference intertemporal elasticity of substitution (IES) of two. Moreover, the model can

replicate the predictability of excess market returns by the price-dividend ratio, Tobin’s

Q, and investment rates, consistent with known evidence. Importantly, extrapolative

expectations also improves the model’s ability to match the relative volatilities of investment

growth.

The intuition for the high equity premium in our model is straightforward. First,

extrapolation of past growth trends cause excess volatility in productivity growth

expectations. This increases the volatility of investment, and since variations in investment

are driven by excessive volatility in perceived productivity, this results in excessive perceived

volatility of the consumption growth rate. Second, owing to recursive preferences, this

variation in the perceived consumption growth rate (i.e., the long-run risk) is heavily priced.

Finally, with reasonably high adjustment costs, the limited flexibility of investment tends

2Several endowment-based asset-pricing models can successfully match the first two moments of the excess
stock market return and the risk-free rate (e.g., Campbell and Cochrane (1999), Bansal and Yaron (2004),
and Barro (2006)). However, the reconciliation of asset markets with aggregate quantities has proved to be
a challenge for DSGE models.

3Early notable studies include De Long et al. (1990a, 1990b) and Barsky and De Long (1993).
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to direct the payoff from high realized TFP growth more towards dividends and consumption

rather than investment. This reduces marginal utility of consumption in the event of a

favorable TFP shock. Since the positive TFP shock is associated with a high asset return,

higher adjustment costs tend to decrease the covariance between return and marginal utility

of consumption, thereby increasing the equity risk premium. Thus, taken together, the

combination of extrapolation bias, adjustment costs, and recursive preferences can generate

a large equity premium.

All three of adjustment costs, extrapolation and recursive preferences contribute to this

outcome. Without capital adjustment costs, consumption is excessively smoothed, because

after high growth realizations, firms would heavily reinvest cash flows, reducing the payouts

and consumption or making them countercyclical; this would reduce equity risk. Without

extrapolation bias, the perceived volatility of investment and consumption growth would

be too small to explain a high equity premium. Finally, without recursive preferences, the

time-variation in perceived consumption growth is not priced, and thus the equity premium

is small.

The intuition for conditional return predictability derives from extrapolative expectations

and overreaction. By a standard argument, overreaction results in higher volatility in

the stock market and the wealth-consumption ratio, and predictability of stock returns by

valuation ratios and investment rates.

As observed by Barlevy (2004) and Lansing (2011), a rational model with capital

adjustment costs faces difficulty in generating sufficient investment volatility. Owing to

capital adjustment costs, investment growth in the rational model exhibits about the same

volatility as output growth, whereas investment growth in the data is about two times more

volatile than output growth. In our model, the excess volatility of perceived productivity

growth causes excess volatility of investment, thereby improving the fit with investment

volatility in the data.

Lustig, Van Nieuwerburgh, and Verdelhan (2008) document that both the wealth-

consumption ratio and the return on the consumption claim are volatile, a challenge for

traditional leading asset-pricing models.4 We show that extrapolation can help produce

high volatility for both the wealth consumption ratio and the return on the aggregate wealth,

4In a recent paper, Ai (2010) proposes a learning model in production economy which can account for the
dynamics of the wealth consumption ratio. However, Ai (2010) does not address the conditional moments
of the stock returns or the quantities.
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again owing to excessive variation in expectations about technological growth.

Several previous studies examine the effects of extrapolative expectations. In a partial

equilibrium model, Barsky and DeLong (1993) show that persistence in expected dividend

growth contributes to volatility in price-dividend ratios. Cecchetti, Lam, and Mark (2000),

Choi (2006) and Lansing (2006) study extrapolative expectations in an exchange economy.

They show that extrapolative bias can help explain a high equity premium and high

stock market volatility. Fuster, Laibson, and Mendel (2010) study the implications for

macroeconomic fluctuations of natural expectations (a weighted average of rational and

extrapolative expectations) in an endowment economy with constant relative risk aversion

(CRRA) preferences. Empirically, De Bondt and Thaler (1985), Poterba and Summers

(1988), Lakonishok, Shleifer, and Vishny (1994), and La Porta, Lakonishok, and Vishny

(1997) provide evidence of overreactions, which suggests that extrapolation can help explain

stylized facts about predictability of aggregate market returns and the cross-section of stock

returns.5

Our approach builds on a growing literature on long-run risk, especially as applied

to production economies. Bansal and Yaron (2004) demonstrate that in an endowment

economy with long-run risk in consumption and recursive preferences, consumption and

asset-price properties can be reconciled with moderate risk aversion and an IES greater than

one. Our paper differs in examining a production economy, so that aggregate consumption

is endogenous, and in using a much lower risk aversion coefficient (which is arguably

more realistic) in our calibration. Tallarini (2000) works with a representative agent in

a production economy with recursive preferences, but his model focuses on the case of a

fixed IES and no capital adjustment costs. He shows that even with high risk aversion,

his model has implications for macroeconomic quantities comparable to those obtained by

Kydland and Prescott (1982). The production economy of Tallarini (2000) can generate a

high Sharpe ratio with an extremely high risk aversion. His model, however, generates a

very low equity premium.

The most closely related paper to this one is Kaltenbrunner and Lochstoer (2010) (KL

(2010) hereafter), who show that long-run consumption risk can be endogenously generated

even if the technology is i.i.d.. Our model extends that of KL (2010) by introducing

extrapolation; their model is the special case of ours in which there is no extrapolative bias.

5There is still, however, debate about the role of extrapolation in the cross-section of returns. For example,
Daniel and Titman (2006) provide evidence suggesting that extrapolation of fundamentals is unlikely to be
the main force behind the observed value premium.
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Building on the evidence of shifts in expected productivity growth (e.g., Beaudry and Portier

(2006) and Edge, Laubach, and Williams (2007)), Croce (2010) studies a model featuring

long-run productivity risk directly. KL (2010) and Croce (2010) feature an IES larger than

one and can produce a high Sharpe ratio with relatively low risk aversion. However, the

volatility of equity returns is still very low, and hence this approach does not replicate the

high equity premium found in the data.

An earlier literature studies asset prices in a production economy with habit preferences,

including influential papers by Jermann (1998), Lettau and Uhlig (2000), and Boldrin,

Christiano, and Fisher (2001). Methodologically, our paper is closely related to Jermann

(1998), who finds that the combination of capital adjustment costs and habit preferences can

generate a low risk-free rate, a high equity premium, high volatility of excess returns, and

high relative investment and low consumption volatility. More recently, Campanale, Castro,

and Clementi (2010) show that a production economy with convex capital adjustment costs

and disappointment aversion can produce a high equity premium as well.

These models typically feature a very low IES, and hence imply excessively high volatility

for the risk-free rate. This tends to result in an abnormally large term premium. Our model

produces a low volatility for the risk-free rate and high volatility for the equity returns

simultaneously.6

In sum, in this paper, we show that incorporating extrapolative bias into a standard

real business cycle model substantially improves the model’s ability to match both

macroeconomic quantities and asset prices.

2 A Production-Based Model with Extrapolation

We now present a DSGE model with extrapolative expectations to examine the joint

dynamics of consumption, investment, output, and asset prices. For simplicity, we consider

a representative agent economy. In the special case where information is complete and there

is no extrapolative bias, our model is the same as the permanent shock model of KL (2010).

We thus follow their notations in setting up the model.

6There is also a large literature examining the role of Bayesian learning in asset markets (e.g., Timmerman
(1993, 1996), Veronesi (1999), Brennen and Xia (2001), and Brandt, Zeng, and Zhang (2004)).
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2.1 Household’s Preferences

We use the terms investor, individual, and household interchangeably to refer to the

representative household. Following the long-run risk literature, we assume that the

representative household’s preferences over the uncertain consumption stream Ct are

described by the Epstein-Zin-Weil recursive utility function (e.g., Epstein and Zin (1989)

and Weil (1989)),

Vt = Êt

[
(1− β)C

1−γ
θ

t + β
(
ÊtV

1−γ
t+1

) 1
θ

] θ
1−γ

, (1)

where Êt (·) is the expectation under the individual’s subjective belief conditional on

information available up to time t, the parameter 0 < β < 1 is the time discount factor,

γ ≥ 0 is the risk-aversion parameter, ψ ≥ 0 is the intertemporal elasticity of substitution

(IES) preference parameter, and

θ =
1− γ

1− 1
ψ

.

The sign of θ is determined by the values of risk aversion and IES. When the risk aversion

parameter exceeds the reciprocal of IES, the individual prefers early resolution of the

uncertainty of consumption path. Hence, these preferences allow for a preference over the

timing of the resolution of uncertainty.

The Euler equation describing the representative individual’s optimization holds under

the individual’s belief, which, owing to extrapolative bias, generically does not match the

true probability distribution. Thus, the pricing kernel is (e.g., Bansal and Yaron (2004)):

mt+1 ≡ log (Mt+1) = θ log β −
(
θ

ψ

)
gt+1 + (θ − 1) ra,t+1, (2)

where ra,t+1 is the logarithm of the gross return on an asset that delivers aggregate

consumption as its dividends each period. For any continuous return rt+1 = log (Rt+1) ,

including the one on the consumption claim,

Êt [exp (mt+1 + rt+1)] = 1. (3)

The expectation operator Êt (·) applies to the individual’s biased subjective belief; this is

the key difference from a rational expectations model.
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2.2 Productivity, Capital Accumulation, and Belief Update

There is a representative firm owned by the representative household, and the output, Yt, is

produced by a constant return-to-scale neoclassical production function:

Yt = (AtLt)
1−αKα

t , (4)

where Lt ≡ 1 is the normalized labor supply,7 At is the production-enhancing technology,

and the capital level, Kt, evolves as

Kt+1 = (1− δK)Kt + φ

(
It
Kt

)
Kt, (5)

where It is the investment in period t, δK is the rate of depreciation of the capital, and φ (·)
is a concave function that allows for convex capital adjustment costs,

φ

(
It
Kt

)
= a1 +

a2

1− 1
ξ

(
It
Kt

)1− 1
ξ

, ξ > 0. (6)

The adjustment cost is parameterized inversely by ξ. Following Boldrin, Christiano, and

Fisher (2001), the constants a1 and a2 are set such that there are no adjustment costs in the

nonstochastic steady state. The adjustment cost allows the shadow price of installed capital

to diverge from the price of an additional unit of capital, and hence it permits variation in

Tobin’s Q. The aggregate resource constraint is

Yt = Ct + It,

where Ct is the aggregate consumption. Labor is paid at its marginal product. Thus, wages,

ωt, and firm dividend payouts, Dt, satisfy ωt = (1− α)Yt, and Dt = αYt − It, respectively.

Letting the productivity growth rate be denoted by

gA,t = log

(
At
At−1

)
,

7In other words, we assume an exogenous wage process such that it is optimal for the firm to always hire
at full capacity (Lt = 1). In this case, one can show that the operating profit function of the representative
firm is linearly homogenous in capital (see KL ( 2010)).
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we assume that the dynamics of the data-generating process for the productivity growth

satisfy

gA,t+1 = µA + σAεA,t+1, (7)

where εA,t+1 is i.i.d. standard normal. We assume that σA is known to the representative

individual, but that the true growth rate in productivity µA is not observable. In practice,

it is much easier to estimate the variance than the mean (see, e.g., Merton (1980)).

The individual is subject to extrapolative bias and updates his perceived growth rate at

time t for period t+ 1, µ̂t, as

µ̂t = (1− ρ− ρ̃) µ̄+ ρµ̂t−1 + ρ̃gA,t, (8)

where ρ̃ reflects the degree of overextrapolation of the most recent growth shock, ρ reflects

the persistence of extrapolations made from past growth shocks, and µ̄ is the long-run mean

in the individual’s belief. In our calibration, we set µ̄ = µA, the true expected rate of

productivity growth. So by equation (7), the individual believes that productivity growth

follows

gA,t+1 = µ̂t + σAε̂A,t+1, (9)

where the individual perceives ε̂A,t+1 to be i.i.d. standard normal.

By equation (8), the individual takes an average of recent past productivity growth with

geometrically declining weights and projects that growth rate forward to forecast the future.

The steepness of the decline (measured inversely by ρ) can be viewed as the degree of myopia

in updating. If ρ is small and ρ̃ is large, the individual extrapolates placing a heavy weight

on recent realizations of technological growth rates. On the other hand, when ρ is close to

one, the individual places heavy weight on distant past growth rates. In a sense, when ρ is

small and ρ̃ is large, the individual is both extrapolative and myopic. Finally, in the special

case where ρ̃ = 1 − ρ, the above setting is similar to that of Barsky and DeLong (1993).

Moreover, in this case, the extrapolative learning matches the ‘constant-gain’ learning rule,

which is popular in adaptive learning literature (see Sargent (1993)).

The learning scheme in equation (8) is quite intuitive as a way of capturing

overextrapolation. A possible motivation derives from structural breaks in TFP growth.

If individuals believe that a structural break might have occurred, they put less weights

on distant past observations and more weights on recent observations. Another possible

motivation for the updating rule in equation (8) is time-varying expected TFP growth.
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Indeed, Barsky and DeLong (1993) present an example in which the true long-run growth

rate is a random walk, and the optimal estimation of the expected growth rate exactly

follows equation (8) with ρ̃ = 1 − ρ. They use this specification to study excess stock

market volatility in a partial equilibrium framework. In our general equilibrium framework,

to ensure stationarity and the finiteness of asset prices, we always fix ρ + ρ̃ = 0.9999 < 1

in our calibration.8 Therefore, in the calibrations with overextrapolation, the degree of

overextrapolation is measured inversely by a single parameter, ρ.

Lastly, in principle, based on TFP realizations investors could eventually learn to correct

their mistaken extrapolative belief as given in equation (8). However, as is standard in

behavioral models, we assume that investors are subject to psychological bias, and are not

able to completely ‘learn their way out’ of their bias. Psychological literature suggests

that such imperfect learning can be a consequence of inherent cognitive constraints, or of

overconfidence. Also, it could be argued that investors are even less rational than assumed

in our model, and in particular do not fully understand the structure of the economy in

which they participate. This is probably the case, but for reasons of parsimony we believe it

is useful, at least as a first step, to try to understand the consequences of a single deviation

from rationality before studying more complicated combinations of psychological effects.

2.3 Model Solution

Solving the model numerically is straightforward. Since the quantities in the economy are

cointegrated with the aggregate productivity and the problem is homogeneous in At, we

first scale variables by the aggregate productivity, then solve the value function with the

usual value iteration. We refer to KL (2010) for details on the numerical solution. The only

difference from the standard rational model is that, under the perception of the individual,

by (9) the dynamics of the state variable, µ̂t, are

µ̂t+1 = (1− ρ− ρ̃)µA + ρµ̂t + ρ̃gA,t+1 = (1− ρ− ρ̃)µA + (ρ+ ρ̃) µ̂t + ρ̃σAε̂A,t+1, (10)

Thus, ρ+ ρ̃ determines the persistence of the perceived technological growth rate under the

individual’s own belief. Thus, the perceived growth is quite persistent. This property is

8The results are essentially the same if we set ρ+ ρ̃ = 1, as in Barsky and DeLong (1993). If ρ+ ρ̃ = 1,
the perceived growth rate is a random walk as shown in equation (10). Under some preferences, it is possible
that the value function is infinite. To rule out this possibility, we set ρ+ ρ̃ < 1. However, for our calibration,
the value function is always finite even if ρ + ρ̃ = 1. Thus, the calibration results would be virtually the
same for ρ+ ρ̃ = 0.9999 and ρ+ ρ̃ = 1.
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not unique to our extrapolative learning scheme. In an i.i.d growth economy with Bayesian

learning on the true mean growth rate, Collin-Dufresne, Johannes, and Lochstoer (2012)

show that in the agent’s filtration, the mean expected consumption growth rate is time-

varying with a unit root.

Once the value function is solved numerically, variables of interest can be obtained. For

example, from Epstein and Zin (1989), the log wealth-consumption ratio is

wct ≡ log

(
Wt

Ct

)
= log

(
1

1− β

)
+

(
1− 1

ψ

)
log

(
Vt
Ct

)
. (11)

Following a standard argument of Cochrane (1991), the return on investment is

RI,t+1 = φ′ (It/Kt)

[
α

(
At+1

Kt+1

)1−α

+
1− δK + φ (It+1/Kt+1)

φ′ (It+1/Kt+1)
− It+1

Kt+1

]
. (12)

The log return on investment is therefore rI,t = log (RI,t). Notice that the return on

investment is the same as the return on the equity claim.9 Finally, it follows from Epstein

and Zin (1989), the risk-free rate can be calculated numerically as

rf,t = − log

Êt

β (Ct+1

Ct

)− 1
ψ

 Vt+1 (Kt+1, µ̂t+1, At+1)

Êt

(
V 1−γ
t+1 (Kt+1, µ̂t+1, At+1)

) 1
1−γ

 1
ψ
−γ

 . (13)

In calibration, we report results on levered equity market returns, rE,t. Following Boldrin,

Christiano, and Fisher (1995) and Croce (2010), we introduce constant financial leverage,

and the levered excess return is defined as rE,t+1−rf,t ≡ (rI,t+1−rf,t)(1+B/E), where B/E

is the average debt-equity ratio. We set B/E to be 2/3 since the actual debt to equity ratio

is around 2/3 (see, e.g., Benninga and Protopapadakis (1990)). We also discuss alternative

ways to introduce leverage in Section 3.5.

2.4 The Basic Idea

The ability of the model to reconcile a high equity premium and low risk-free rate with low

risk aversion comes from the way that extrapolative bias interacts with recursive preferences.

Extrapolation bias causes excessive variation in perceived productivity growth, which in

9As in KL (2010), one can show that the conditions in Restoy and Rockinger (1994) are satisfied, and
thus the investment return and the stock return are the same.

10



turn induces volatile fluctuations in investors’ expectations of consumption growth. With

recursive preferences, fluctuations in expected consumption growth are priced.

Following Epstein and Zin (1989), we rewrite the pricing kernel as

mt ≈ Êt−1(mt)−

(
γεc,t −

γ − 1
ψ

1− 1
ψ

)
εwc,t, (14)

where εc,t is the short-run shock in consumption growth, and εwc,t is the shock in the log

wealth-consumption ratio. Under log-linear approximation in the spirit of Campbell (2003)

and Bansal and Yaron (2004), the wealth-consumption ratio can be approximated by

wct ≈ A0 + A1xt, (15)

where xt is the individual’s expectation of the consumption growth rate, and the amplification

factor A1 is usually very large. Thus, long-run risk comes from shocks to the wealth-

consumption ratio, or shocks to expected future consumption growth. To generate a highly

volatile pricing kernel, which is a prerequisite for matching evidence of a high equity premium,

we need a volatile wealth-consumption ratio.

As in a standard long-run risk model,

A1 ≈
1− 1

ψ

1− ρxκ1

,

where ρx is the perceived persistence in the perceived expectation of consumption growth,

and κ1 ≈ (WC − 1)/WC ≈ 1. Here, WC is the average wealth consumption ratio. With

extrapolative expectations, ρx is extremely close to one in the perception of the individual

(see equation (10)). Thus, A1 tends to be several times larger than that in a traditional

long-run risk model. Moreover, the volatility of the perceived expected growth rate is larger

than that in a standard long-run risk model due to extrapolation. Together, equation (15)

implies that the wealth-consumption ratio is much more volatile in our extrapolation model

than in a standard long-run risk model, consistent with the evidence in Lustig et al. (2008).

Although the TFP shocks are i.i.d. in our model, consumption growth has a persistent

and predictable component in equilibrium. Thus, as in KL (2010), long-run risk is

endogenously generated as a consequence of consumption smoothing.10 However, as we

10Here, consumption smoothing refers to the fact that the agent use investment to smooth his own
consumption. If the agent invests more now, he consumes less now and more in the future. Thus, this
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will show in the calibration, extrapolative bias amplifies the effect of the long-run risk

substantially by widening the fluctuations in perceived expected productivity growth,

and hence in perceived expected consumption growth. Furthermore, as explained in the

introduction, substantial investment adjustment costs decrease the covariance between

marginal utility of consumption and asset returns, further amplifying risk. This is a key

mechanism by means of which our model produces a high equity premium and volatile equity

returns. In this sense, long-run risk is generated by investor misperceptions. In sum, the

combination of extrapolation, recursive preferences, and adjustment costs produce a large

and volatile equity premium.

3 Calibration

We now examine different versions of the model to explore the importance of the different

model assumptions for explaining stylized facts about asset pricing while replicating salient

business cycle evidence about output, consumption and investment volatility. In addition,

we also examine the conditional performance of the model such as the return predictability

by price-dividend ratio, investment, and aggregate Q. As is standard in the real business

cycle literature, the model is calibrated at a quarterly frequency. Since the model is in real

and per capita form, all calibration is done with real, per capita empirical counterparts.

3.1 Parameter Choices

Table 1 reports the parameter values we use for our two benchmark calibrations. We borrow

most of the parameter values from the real business cycle literature. Following Boldrin,

Christiano, and Fisher (2001), the capital share (α) is set to a value of 0.36, the quarterly

depreciation rate (δK) is set at 0.021, and the quarterly average log productivity growth rate

(µA) is fixed at 0.4%. This set of parameters is chosen to match the long-run growth rate of

the economy; these parameters do not substantially affect model dynamics. Finally, we fix

the volatility of the productivity growth at σA = 0.041, the same value as in KL (2010), to

match observed output volatility since 1929. As our model is an exogenous growth model,

all endogenous variables in the long run grow at the same rate as productivity.

smoothing endogenously generates a predictable component in consumption growth, which is highly priced.
However, due to the desire to invest and to take advantage of positive TFP shocks, the agent is willing to
bear the long-run risk generated by his own consumption smoothing.
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Mehra and Prescott (1985) suggest that the conventional range of risk aversion should

be less than 10. We therefore choose γ = 4 and γ = 2 for our two benchmark calibrations.

These risk aversion coefficients are lower than that employed in the existing literature. Our

ability to use a smaller level of risk aversion reflects the ability of biased expectations to

generate enough risk to replicate the empirical equity premium. By way of comparison,

Tallarini (2000), for example, using a risk aversion of 100, and obtains an equity premium

of 0.04%, much smaller than its empirical counterpart.

Following Ai (2010) and Croce (2010), we fix the IES (ψ) at 2, which is consistent with

estimates of Attanasio and Vissing-Jorgensen (2003), Bansal, Gallant, and Tauchen (2007),

Bansal, Kiku, and Yaron (2007), and Binsbergen et al. (2011). For example, the estimated

IES ranges from 1.73 to 2.09 in Binsbergen et al. (2011).11

Empirical studies do not offer precise guidance for calibrating the pure time discount

factor (β), capital adjustment costs (ξ), and extrapolative bias (ρ). Given the central role

played by these parameters for business cycles and asset returns, we examine reasonable

ranges for them to verify whether the model can match the empirical moments.

For example, the time discount parameter β is chosen to keep the level of interest rates

low. For the capital adjustment cost parameter ξ, KL (2010) choose ξ = 18 and 0.7 for two

baseline models, while Jermann (1998) and Boldrin, Christiano, and Fisher (2001) choose

ξ = 0.23. As we show below, reducing the value of ξ (i.e., raising the adjustment costs) tends

to improve the performance of our model. We choose an intermediate value of 1.5 for our

benchmark calibrations. In addition to the benchmark calibrations, a detailed sensitivity

analysis is performed to provide us with insights about the model mechanisms at work.

Since the more innovative feature of the model, overextrapolation, is reflected inversely

in the parameter ρ, we report results for different values of the extrapolation parameter with

benchmark values of ρ = 0.98 and ρ = 0.95. Bearing in mind that extrapolative learning here

is basically the same as the constant-gain learning in macro literature, a value of ρ = 0.98

is consistent with existing studies. Orphanides and Williams (2005), for example, choose

ρ = 0.98 to match the inflation forecasts from the Survey of Professional Forecasters (SPF).

Milani (2007) estimates a DSGE model on several macroeconomic time series, and find that

ρ = 0.9817 fits the data the best. More recently, using micro-level forecast data, Malmendier

11In contrast, using aggregate data, early studies, such as Hall (1988) and Campbell and Mankiw (1989),
typically found the IES to be much less than 1. However, Vissing-Jorgensen (2002) and Guvenen (2006)
point out that there is a downward bias in the IES estimation using aggregate data. Once heterogeneity –
especially limited asset market participation – is taken into account, the estimated IES is much larger.
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and Nagel (2011) also confirm that ρ ≈ 0.98 is a good approximation for aggregate-level

extrapolation parameter.

Since estimates of extrapolation bias from survey data are not very precise and the survey

data are not directly about TFP,12 we also consider a stronger extrapolation parameter

value as our second benchmark calibration. As argued before, a stronger extrapolation bias

should improve the performance of our model since it implies a larger variation in perceived

consumption growth. To explore this further, we consider the alternative value for the

extrapolation parameter of ρ = 0.95. To discipline our parameter choice, we verify that

the model implied variation of the perceived consumption growth is comparable to that in a

standard Bansal and Yaron (2004) economy. As we will show later, with ρ = 0.95 the model-

implied volatility of the perceived consumption growth rate is indeed of similar magnitude

to the volatility of expected growth in a standard long-run risk model.

Although we fix the values for µA, σA, α, and δK , we allow ρ, ψ, γ, β, and ξ to vary

across different calibrations to match the key moments in the data. As mentioned earlier,

we always fix ρ+ ρ̃ = 0.9999 except the cases in which there is no extrapolative bias (ρ = 1

and ρ̃ = 0).

3.2 Unconditional Moments

We simulate the model for 400, 000 quarters of artificial data to estimate ‘population’ values

for a variety of statistics. We also consider small sample properties of the model by simulating

400 quarters of artificial data each time and repeating the procedure 1, 000 times. The main

results are found in Table 2, which includes the summary statistics of both quantities and

asset prices from the eight different parameterizations. In general, consumption growth is

smoother than output growth, while investment growth is more volatile than output growth,

consistent with the data.

12There are survey data about GDP growth, but usually not about TFP growth. GDP growth can be
predictable in a rational DSGE model even if the TFP growth is an i.i.d. process. Thus, it is not trivial to
extract the extrapolation parameter on TFP growth from the survey data about GDP growth.
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3.2.1 The Benchmark Calibration

We consider two benchmark calibrations. The first uses ρ = 0.98, and risk aversion γ = 4.

The second uses a stronger extrapolation bias of ρ = 0.95 and lower risk aversion of γ = 2.

The output volatility and the mean growth rates of the economy are pinned down by the

technology parameters and are chosen to match the data. We therefore omit them and only

report the volatility of the variables of interest. With an adjustment cost of ξ = 1.5 and an

extrapolation parameter of ρ = 0.98, the model generates volatile investment and smooth

consumption relative to output, in a magnitude similar to those in the data. In addition,

the volatilities of both the investment rate and Tobin’s Q are comparable with that in the

data. Moreover, in the second benchmark calibration with stronger extrapolation bias, the

quantities are even closer to those in the data.

The benchmark model I matches the moments of asset prices well. With a risk aversion

coefficient of 4 and an IES of 2, the model produces a sizable equity premium of 5.42%

(continuously compounded), compared with 3.90−6.69% in the historical data. The volatility

of the excess return is 10.37%, slightly smaller than the 15.70 − 19.42% range in the data.

Since the model matches the macroeconomic quantities, this is a significant success for a

production-based model. For example, KL (2010) produce a volatility of only 0.66% for

the excess return on the (unlevered) equity claim in one of their benchmark calibrations.

Croce (2010) produces a volatility of 1.60% for a levered equity claim with a risk aversion

coefficient of 30. In addition, this volatility can be further increased if one chooses ρ = 0.95

as in our benchmark model II. Intuitively, investor overextrapolation causes a perception of

high volatility of expected consumption growth; together with recursive preference this can

result in high risk premia without high consumption volatility.

The first benchmark calibration also produces smooth interest rates, even smoother than

those in the data. This is a significant victory for the model, since standard habit models

in production economies are well known to produce an excessively volatile interest rate.

For instance, in Boldrin, Christiano, and Fisher’s (2001) two-sector calibration with habit-

formation, the volatility of interest rates is 24.60%, much higher than the typical 1% in the

data.

A usual side effect of highly volatile interest rates is an excessively large term premium

(see, e.g., Jermann (1998) and Abel (1999)). Large bond term premia are related to overly

volatile interest rates, as term premia are compensation for real interest rate risk. In our
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model, thanks to the high IES, the interest rate is very smooth despite the extrapolative

expectations, and hence the term premium is also small, consistent with the data.13 For the

benchmark model, it produces a downward-sloping real yield curve. The short-term real rate

is already low at 1.29%, while the long real rates are an additional 0.70 percentage point

lower. This pattern is consistent with the long sample of the UK data, but not consistent

with the short sample of the U.S. TIPS data (see, e.g., Piazzesi and Schneider (2006)).

At the bottom of Table 2, we report summary statistics for the perceived expected

consumption growth by the individual, and the aggregate wealth portfolio. The perceived

expected growth rate in the model is 0.79%. The ratio of the volatility of the perceived

expected growth to the volatility of realized growth rate is slightly less than 21%. The

perceived expected growth rate is not directly observable, but we can get some sense for the

magnitude of this number by comparing with existing studies. In the one channel model of

Bansal and Yaron (2004), for example, the volatility ratio of expected growth and realized

growth is 34.4% for quarterly frequency calibration. Thus, the volatility of the perceived

growth rate in our calibration does not appear too large.

Owing to the high variation in the perceived expected growth rate, our model produces

an annual volatility of the wealth-consumption ratio of about 12.42%, which is about half of

that in the data. This is a success compared to the standard long-run risk models; Ai (2010),

for example, shows that the standard long-run risk model only produces a volatility of 4.70%

(see Table I in Ai (2010)). From equation (14), this high volatility in the wealth-consumption

ratio is the main driving force underlying the high and volatile equity returns. Our model

also generates a high volatility of the return on aggregate wealth, again consistent with the

data.

Finally, when the extrapolation parameter is ρ = 0.95, the benchmark model B.II matches

the moments in the data even more closely. For example, consumption growth is smoother,

and investment growth and asset returns are more volatile.

However, in both benchmark calibrations, the mean return on the wealth portfolio is

larger than that in the data, as calculated by Lustig et al. (2008). In the model, the

consumption claim is riskier than the firm’s dividend payout claim since the payout is less

procyclical than consumption. Thus, the return on the consumption claim is too high relative

13Campbell (2003) argues that extrapolative expectations in general equilibrium tend to lead to volatile
interest rates. In our benchmark models, owing to high adjustment costs, the perceived expected consumption
growth is not very volatile. This fact, together with a high IES value, results in a smooth riskfree rate.

16



to the data. We discuss potential resolutions for this issue in section 3.5.

3.2.2 The Mechanism of the Model

To identify the key mechanism behind the empirical success of the model, below we follow

Jermann (1998) by calibrating the model at different parameter combinations. This way, we

can identify which ingredients are key to replicating different aspects of the data.

We start with a calibration (model III) with a very low capital adjustment cost and no

extrapolation (ρ = 1, ρ̃ = 0, and µ̂t = µA), and then sequentially add the adjustment cost

and extrapolation into the model. The outcome of model III is consistent with the standard

RBC model. Consumption is smooth, and investment is more volatile than output. These

patterns are consistent with the quantity data. However, the equity premium is very low

(less than 1%), as is the volatility of the stock return (less than 3%). Intuitively, owing to low

adjustment costs, the individual can easily smooth consumption by adjusting the amount of

investment. This reduces consumption risk and therefore equity risk premium.

In model IV we increase the capital adjustment cost. Not surprisingly, this greatly reduces

investment volatility. Consistent with the intuition above, this in turn increases the volatility

of consumption growth. So the model sacrifices good matching of this quantity moment, but

does have the benefit of raising the equity premium slightly, and generating greater returns

volatility.

This type of finding is well known for standard DSGE models (e.g., Jermann (1998)).

To produce a high equity premium, the adjustment cost cannot be too small; otherwise,

consumption is too smooth, and hence the equity premium is small. However, if the capital

adjustment cost is high, the investment volatility is too low compared with the data. Thus,

it is hard to match both the quantities and asset prices simultaneously. In two important

papers, Jermann (1998) and Boldrin, Christiano, and Fisher (2001) show that introducing

habit preference can help to match these stylized facts.

Compared with Model IV, the benchmark calibration I introduces a relatively small

extrapolative bias. Owing to bias in expectations, the perceived expected growth rate

of productivity varies over time, leading to greater fluctuation in (perceived) optimal

investment. For example, after a few positive productivity shocks, the individual perceives

that the future growth rate is likely to be very high. Thus, compared with the rational

17



case, the individual tends to invest more heavily to exploit this productivity. Similarly, after

negative shocks, the individual tends to underinvest relative to the rational case. Therefore,

even with a relatively high adjustment cost (ξ = 1.5), the model can produce high volatility

of investment growth. With a slight extrapolative bias in the benchmark model I, the

investment volatility relative to output increases to 1.73 from 1.30 in model IV.

With extrapolation, benchmark calibration I also generates smoother consumption than

in model IV, which is more consistent with the data. Moreover, despite the smoothness

of consumption in benchmark model I, the equity return is more volatile, and the equity

premium larger. Despite the higher return volatility, the Sharpe ratio of the market increases

(consistent with the equity premium puzzle), because the rise in the equity premium is

proportionately even larger.

These differences from model IV reflect a key mechanism in our model. Although the

volatility of realized consumption growth is smaller in benchmark calibration I, the perceived

expected consumption growth rate is more volatile. From the long-run risk literature, we

know that the variation of the perceived expected growth rate commands an especially high

price of risk. Owing to the persistence in perceived expected growth rates, news regarding

future expected growth rates results in large reactions in the price-dividend ratio and the

stock return. Since these reactions are negatively associated with the marginal rate of

substitution of the representative agent, this effect increases the equity risk premium.

Furthermore, owing to capital adjustment costs, the firm cannot easily alter its

investment. For example, after a favorable TFP realization, realized asset returns increase.

Meanwhile, the firm pays out more dividends, and hence increases the level of consumption

and reduces the marginal utility from consumption. Thus, high capital adjustment costs

decrease the covariation between asset returns and the marginal utility from consumption,

which in turn increases equity risk. Together, these effects result in a high equity risk

premium.

The reason for the higher volatility of the perceived expected consumption growth rate is

similar to the reason for higher investment volatility. After favorable productivity shocks, the

individual invests more than in the rational case and consumes less in the current period.

As a result, he perceives high future consumption growth resulting from high perceived

future productivity and the current high investment. Thus, extrapolative bias amplifies

the volatility of both investment and perceived expected consumption growth. On the

other hand, the extrapolative bias smooths actual consumption growth: with extrapolative
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expectations the representative investor has more incentive to make more investments after

good TFP shocks, and less investments after bad shocks; investments tend to absorb more

of the payoff variation resulting from TFP shocks, leading to smoother actual consumption

growth.

Model V maintains extrapolation bias, but reduces the adjustment cost by setting ξ to

15. With an extremely low capital adjustment cost, the individual can now easily adjust

his investment according to perceptions of growth opportunities, making investment very

volatile. This ease in shifting investment in response to opportunities allows the perceived

expected consumption growth to become much more volatile.14 In the face of a positive shock,

the individual consumes less and invests more, and hence perceived expected consumption

growth is high.

Despite the high volatility of the perceived expected consumption growth, and hence high

long-run risk, the equity premium is still very small in model V. Furthermore, the volatility

of the levered equity is just 1.83%, compared with the 10.37% in benchmark calibration I.

This is because with low capital adjustment costs, the firm can easily invest more in the face

of a good productivity shock, and thus the firm’s payout and consumption are less procyclical

or even countercyclical. This effect tends to increase the covariation between asset returns

and the marginal utility of consumption, and hence leads to a very low risk premium for the

equity claim.15

In summary, to generate a high equity premium, it is necessary to have sufficiently

high capital adjustment costs as well as extrapolative bias. Extrapolative bias generates

high volatility of perceived consumption growth and hence of the pricing kernel. Capital

adjustment costs prevent firms from investing so much that dividend payouts become

minimally procyclical (or even countercyclical), which would reduce the riskiness of equity.

With both model ingredients, there is a high market price of risk, and equity is perceived

as very risky, resulting in a high equity premium. We have also developed impulse response

functions (not included in the paper). Not surprisingly, the message they provide is very

similar to that of the above calibrations.

14However, the volatility of actual consumption remain relatively small, since individuals are also in part
adjusting investment to smooth consumption.

15Our findings with low adjustment costs are consistent with Carceles-Poveda and Giannitsarou (2008),
who study the effects of constant gain learning on asset prices in a production economy. With CRRA
preferences and no adjustment costs, they find that the effects on volatility and the equity premium are
quite small.
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If we reduce ρ to 0.98 and 0.95 (as in the benchmark models I and II), the perceived

productivity growth becomes more volatile, and hence the volatility of investment and

perceived expected consumption growth is also larger. Relative investment volatility

increases to 1.73 and 2.42, respectively, which is very close to that in the data. Moreover, due

to high long-run consumption risk, the equity premium is still very large despite a lower risk

aversion in benchmark model II, and equity returns are highly volatile. The risk-free rate is

also slightly more volatile owing to greater volatility of the perceived expected consumption

growth rate.

In models VI, we vary the IES from the benchmark of 2 to 3. As the IES increases,

consumption becomes smoother, and the equity premium becomes larger. This is consistent

with the findings in KL (2010): increasing IES tends to decrease the volatility of

realized consumption growth while increasing the volatility of expected consumption growth

volatility. In all of the calibrations, we keep the IES greater than 1 because of the well-known

finding from the long-run risk literature that the performance of the model will be poor if the

IES is less than 1. Finally, in model VII, the risk aversion coefficient is decreased to a value

of 2. Comparing model VII with the benchmark model I, smaller risk aversion decreases the

equity premium and the Sharpe ratio, consistent with the findings in Tallarini (2000). Also

consumption volatility is smaller when risk aversion is lower, again consistent with Tallarini

(2000).

In sum, the combination of extrapolative biases, capital adjustment costs, and recursive

preference seems to account for the empirical success of our model. However, our model

does not match the moments for the aggregate wealth portfolio and the firm’s dividend

claim simultaneously. We shall return to these drawbacks of our model in Section 3.5, and

suggest potential resolutions.

3.3 Return Predictability

In the data, excess returns are predictable by the dividend-price ratio (e.g., Campbell and

Shiller (1988) and Fama and French (1988)), aggregate Q (e.g., Kothari and Shanken (1997)

and Pontiff and Schall (1998)), and the investment rate (IK) (e.g., Cochrane (1991)). Despite

a debate over robustness (e.g., Goyal and Welch (2007)), the trend of the literature favors

such variables having power to predict returns (e.g., Ang and Bekaert (2007), Campbell and

Thompson (2008), Cochrane (2008), and Rapach, Strauss, and Zhou (2010)).
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We now show that with extrapolation bias, our model can help reproduce these empirical

patterns. To do so, we perform the standard regression of future return on the dividend-

price ratio. When the perceived technology expected growth rate, µ̂t, is high, the firm

invests more and the dividend payout is small. Thus, the dividend-price ratio is small. In

this circumstance, an econometrician would forecast a lower expected return, in anticipation

of lower productivity growth, than do extrapolative individuals. Thus, the dividend-dividend

ratio positively predicts future returns in the model.

To quantify this, we regress the 1-, 3-, and 5-year stock market excess returns onto the

lagged dividend-price ratio. Table 3 reports both regression coefficients and R2 statistics.

The results are based on 1, 000 simulations, each with 400 quarters of simulated data. Both

the median values and the 95% confidence intervals are reported.

It is well known that in the data, the coefficients are positive and the R2s increase

with time horizon. Our model replicates this feature for both coefficients and R2 statistics.

Moveover, as we increase extrapolative bias (a smaller ρ), the predictive power of the

dividend-price ratio is stronger. In addition, in untabulated analysis, we find that the return

predictability results based on a long sample with 400,000 observations remain similar to

those based on small samples. Although the return predictability in our model is comparable

to, or stronger than, that in many existing studies, the predictive power of the dividend-price

ratio for returns in the model is still not as strong as that in that data. In the data, the

5-year R2 is typically higher than 25%.

Intuitively, if extrapolative bias is strong, then after a few good shocks to productivity

growth, the individual is more overoptimistic about the future productivity growth. Hence,

the firm invests more and the dividend is especially low. This reduces the price-dividend

ratio, and makes the future return reversal especially strong since on average the future

realized productivity growth is much lower than the individual’s expectation. At the opposite

extreme, if there is no extrapolation bias, there is no return predictability. These findings are

consistent with those of Ai (2010). With rational learning in a production-based long-run

risk model, Ai (2010) finds that the price-dividend ratio predicts excess returns in the wrong

direction.

Analogously, the investment rate (IK) and Tobin’s Q should also predict future equity

returns. After a few favorable shocks to productivity growth, the individual is overoptimistic

about future productivity growth, and hence the firm tends to invest more to exploit

technology growth. Thus, IK is large, and owing to adjustment costs, Tobin’s Q is also large.
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However, on average the future realized productivity growth is lower than the individual’s

expectation. Thus, the value of the firm is expected to decline from the viewpoint of the

econometrician who analyzes the historical data.

In Table 3, we also regress excess returns on lagged investment rates and aggregate Q.

Consistent with the data, both investment rates and aggregate Q negatively predict future

returns. If we eliminate extrapolation bias by setting ρ = 1, there is no return predictability

by the investment rate or aggregate Q. On the other hand, as we increase extrapolative

bias (i.e., reduce the value of ρ), the predictive abilities of IK and Q become stronger.

The intuition is similar as before. These results highlight the key role of extrapolation in

explaining the conditional moments of returns in a production economy.

In sum, extrapolative bias not only helps match the first two unconditional moments of

the data, it also generates predictive patterns in returns as observed in the data.

3.4 Implied Consumption Dynamics

It is important to verify whether the implied consumption dynamics in the model resemble

those in the data. In the data, the predictable component in consumption growth is small.

So we next verify that the high equity premium is not due to an excessively predictable

component in consumption growth. Table 4 presents summary statistics for the consumption

growth from the simulated data.

The general pattern is that the autocorrelation of consumption growth is very small,

especially for a high value of extrapolative bias ρ. For our benchmark case I, the first-order

autocorrelation is only 4%. Even for the case of ρ = 0.95, the autocorrelation of consumption

growth is still only 20%. Thus, the model does not produce an excessively predictable

component in consumption. Again, we report both the median value and 95% confidence

intervals from 1,000 simulations, each with 400 quarters of observations. Moreover, we also

present results for different values of the extrapolative bias parameter and adjustment costs.

In general, increasing extrapolative bias tends to raise the predictable component of

consumption growth and the volatility of consumption growth. Intuitively, when the

individual is more extrapolative, his perceived technology growth rate varies more, resulting

in greater variation in consumption growth. In addition, as shown in Panels C and

D, increasing the adjustment costs tend to reduce consumption predictability since it is
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difficult to smooth consumption with high adjustment costs. In particular, consumption is

less predictable in our benchmark model I with extrapolation than in model III without

extrapolation but with smaller adjustment costs. In summary, consumption growth in our

benchmark model (Panels A and B) is not excessively predictable compared with the data.

In unreported analysis, we also study consumption dynamics by changing the IES. In

general, a high IES leads to more predictable and volatile consumption growth. If the IES

is larger, the individual can easily substitute consumption intertemporally. Hence, in the

face of a positive (negative) technology shock, the individual can invest more (less) now and

consume less (more) in the future, raising the importance of the predictable component in

the growth rate.

3.5 Limitations and Potential Resolution

We have seen that the model has many empirical successes. We now consider some limitations

of the model. In our production-based model, it is hard to simultaneously match the moments

for both the firms’ payout claim and the aggregate consumption claim. The consumption

claim is riskier than the firm’s (unlevered) dividend payout claim, since the payout is less

procyclical than consumption. In the data aggregate stock market dividends are highly

procyclical; dividend payout in the model is not as procyclical. This raises the concern

about the direct comparison of the capital claim to the aggregate stock market.

As pointed out by KL (2010), there are good reasons to not regard the payout from

the one-sector representative firm in this model as equivalent to the dividend from the

aggregate stock market. In reality, the sector of publicly traded firms is only a small

fraction of all productive capital. So it may be possible to improve the performance of

the model with respect to the aggregate wealth portfolio and the dividend payout claim

by introducing additional productive sectors. In our current setting, everything is driven

by one shock, the TFP shock, making it is hard to match aggregate consumption and

dividends simultaneously. With an additional productive sector, it would be possible to

delink consumption and dividends, and hence potentially match both the consumption and

dividend claim jointly.

Another approach is to follow previous studies by defining equity market dividends as

a levered claim to the consumption stream (among others, see Abel (1999) and Bansal

and Yaron (2004)). This way, the dividend claim is riskier than the consumption claim, and
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potentially the model can match moments for the consumption claim and the dividend claim

simultaneously.

Finally, since the aggregate wealth portfolio is unobservable, it is very hard to estimate

its mean return. Thus, it is possible that the true average excess return on aggregate wealth

is higher than the value estimated by Lustig et al. (2008). Indeed, with annual data, the

standard deviation of this estimation is about 1% per year. Hence, it is possible that the

true average excess return on the wealth portfolio is 4−5%, which would be more consistent

with our benchmark calibration.

Moreover, Bansal, Kiku, and Yaron (2012) find that past consumption predicts the price

dividend ratio too strongly in the habit model, owing to the backward-looking feature in the

surplus ratio. In some sense, owing to extrapolative bias, our model is also backward-looking.

Thus, our model can potentially have the same problem as the external habit models. For

example, if we regress the log price-dividend ratios onto past consumption growth rates, we

have an R2 of about 9% for our benchmark calibration II, whereas in the data this value is

only about 1%.

One potential approach to reducing the predictive ability of consumption is to introduce

additional shocks into the model. For example, Croce (2010) introduces both short-run

and long-run shocks in technology growth. A richer setup could potentially further improve

the performance of the model in terms of the predictability of the price-dividend ratio by

past consumption growth. However, the purpose of the current paper is to use a simple

production-based model to illustrate how extrapolation bias can help account for many

otherwise-puzzling patterns in the data.

4 Further Implications of the Model

In this section, we examine two additional implications of the model. First, owing to

extrapolation, the model implies that the perceived technological growth rate, µ̂t, will

negatively predict returns. Second, the model implies that the aggregate investment rate is

positively related to perceived technological growth.

Although the state variable is unobservable (just as is the surplus ratio in the habit-

formation model and the expected growth rate in the long-run risk model), one can construct

a proxy for our state variable from the historical data. As observable proxies for µ̂t, we use
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an exponentially weighted moving average of realized GDP growth from Saint Louis FED

and of realized TFP growth from Bureau of Labor Statistics (BLS). Since benchmark model

II matches the data better, the exponential decay parameter ρ̃ is set to be 0.95. Our results

remain similar if this value is 0.98 as in benchmark model I. The first proxy based on GDP

is indirect; the second proxy based on TFP is more directly linked to the state variable in

our model. However, the second proxy is more subject to misspecification and measurement

errors. We thus use the first proxy for our main analysis and use the second for robustness

checks.

We first consider the implication for return predictability. Table 5 shows that the proxy

for the perceived growth rate can indeed significantly negatively predicts future excess market

returns in the data. We report t-statistics calculated from Newey and West (1987) standard

errors, Hansen and Hodrick (1980) standard errors, and Hodrick (1992) standard errors.

Ang and Bekaert (2007) show that Newey-West standard errors tend to overreject the null,

whereas Hodrick’s standard errors tend to underreject the null.

We find that the predictive power of the perceived expected growth is statistically

significant. In terms of economic magnitude, a one-standard-deviation-increase in the

perceived expected growth leads to about a 3.65% decrease in subsequent annual returns.

The same pattern, although slightly weaker, remains if we use the alternative proxy for µ̂t,

the smoothed average of realized TFP growth from BLS. Finally, using Livingston Survey

data, Campbell and Diebold (2009) and Goetzmann et al. (2010) find that the forecasted

growth rate is also negatively related to future aggregate returns, lending further support for

our model. In addition, in cross-sectional analysis, Imrohoroglu and Tuzel (2011) show that

firm-level TFP is positively related to contemporaneous stock returns and negatively related

to future excess returns, consistent with our model as well. In the model, the predictive

power of the perceived growth µ̂t is very similar to that of the dividend-price ratio, IK, and

Q as shown in Table 3 since the dividend-price ratio, IK, and Q are all highly correlated

to the state variable µ̂t. Thus, comparing Tables 3 and 5, the predictive power of µ̂t in the

model is similar to that in the data.

In contrast, if we use the negative output gap (NGAP) of Cooper and Priestly (2009)

as a proxy for ‘true expected growth’ in the data-generating process,16 the opposite results

follows, as shown in the last panel of Table 5. This confirms the findings of Cooper and

Priestly (2009). This distinct predictive power of perceived expected growth and ‘true’

16The output gap measures the difference between the industrial production and its long-run deterministic
trend. Thus, the negative output gap can positively predict future output growth.
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growth highlights the key role of investor perception for asset prices.

Moreover, Table 6 shows that it is indeed true that high NGAP forecasts high future

GDP growth and productivity growth in the data. By contract, the predictive ability of µ̂t

for GDP and TFP growth is much weaker and is opposite to that of NGAP. This negative

predictive power might be due to the initial inefficient overinvestment and the subsequent

decrease in productivity after a positive shock to the perceived expected growth.

The surplus ratio in the habit-formation model could also be approximated by smoothed

average of past growth rates, a variable similar to our proxy for the perceived expected

growth rate. Thus, the habit-formation model would have exactly the same prediction as

ours. However, after favorable shocks, the individual in the habit model expects a lower

future return, whereas the individual in our model does not anticipate a lower subsequent

return.

Using survey data on investor expectations, Durell (2001) and Vissing-Jorgensen (2003)

show that in good times, when stock prices are high, investors do not expect lower returns.

If anything, the opposite holds. However, investors are supposed to perceive and accept

such lower returns in habit models owing to high risk tolerance. In contrast, our model is

consistent with this survey evidence as the individual in our model does not perceive a lower

future return after good shocks.

Although our model is for the aggregate market, La Porta (1996) focuses on analyst

expectations in the cross-section and finds that stocks with the highest growth forecasts

earn much lower subsequent returns than stocks with the lowest growth forecasts, potentially

consistent with the cross-sectional extension of our current model.

We now turn to the implication of the model for the determinants of the aggregate

investment rate.17 The model implies that the perceived expected growth rate should be

positively correlated with the aggregate investment rate. The top panel of Figure 1 plots

the proxy for our state variable and the investment rate, both calculated from the data. The

model predicts a strong comovement between this two variables, and this figure confirms

this prediction. Owing to the high autocorrelation of the series in levels, the bottom panel

in Figure 1 plots the four-quarter differences in investment rates, a measure used by Hassett

and Hubbard (1997) and Philippon (2009), and the four-quarter differences in µ̂t. It confirms

the strong comovement as well.

17It is well-known that Q does not have much power in determining the investment rate. The existing
literature typically attributes this failure to measurement errors in Q.
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Table 7 reports the results from a formal regression analysis by regressing investment rates

(in difference) onto lagged perceived expected growth rates and lagged cash flow. It is well-

known that the stock market based measure of Q performs poorly in predicting investment

rates, while the cash flow can forecast investment rates better. Our results confirm the

predictive ability of cash flow. However, the perceived expected growth is a much stronger

predictor of the investment rates. Moreover, after controlling for the perceived growth, cash

flow is no longer significant. Finally, as a comparison, the explanatory power of our proxy

is similar to the bond’s Q in Philippon (2009).

In sum, with different proxies for our state variable, we find preliminary support for the

two direct testable implications of the model.

5 Conclusion

Considerable evidence from the psychology of judgment and from investor behavior suggests

that individuals tend to overextrapolate small samples of past performance in forecasting

future performance. Standard attempts to resolve the equity premium puzzle based on habit

formation or long term risk in endowment economies have not been immediately successful

in production economies owing to endogenous consumption and dividend payout smoothing.

Existing models typically imply interest rates that are too volatile or excess stock returns

that are too smooth. By introducing extrapolation into an otherwise standard dynamic

stochastic general equilibrium model with capital adjustment costs, we reproduce the major

stylized facts about both macroeconomic quantities and capital market prices as observed in

the data. The key to this is the interaction of recursive preferences, adjustment costs, and

extrapolation bias.
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Appendix

To solve the model numerically, we follow the standard value iteration algorithm with

Chebyshev regression (e.g., Judd (1998) and KL (2010)). Since the quantities in the economy

are cointegrated with the aggregate productivity, At, we first scale quantities by the aggregate

productivity. We use hats to denote the scaled variables, and lower cases to denote log values:

ĉt = log

(
Ct
At

)
, k̂t = log

(
Kt

At

)
, ı̂t = log

(
It
At

)
, ;

ŷt = log

(
Yt
At

)
= log

(
A−αt Kα

t

)
= αk̂t, at = log (At) .

The social planner’s problem is

Vt (Kt, µ̂t, At) = max
Ct,It

Êt

[
(1− β)C

1−γ
θ

t + β
(
Êt

[
V (Kt+1, µ̂t+1, At+1)1−γ]) 1

θ

] θ
1−γ

Since the problem is homogeneous, we can re-define

Vt (Kt, µ̂t, At) ≡ V̂t

(
Kt

At
, µ̂t

)
· At.

The maximization problem can be rewritten as

V̂t

(
Kt

At
, µ̂t

)
= max

Ct,It

(1− β)

(
Ct
At

) 1−γ
θ

+ β

(
Êt

[
V̂

(
Kt+1

At+1

, µ̂t+1

)1−γ

·
[
At+1

At

]1−γ
]) 1

θ


θ

1−γ

Taking logarithm on both sides of the above equation, we have

v̂t

(
k̂t, µ̂t

)
≡ log V̂t

(
Kt

At
, µ̂t

)

=
θ

1− γ
max
Ct,It

log


(1− β)

(
Ct
At

) 1−γ
θ

+ β

(
Êt

[
V̂

(
Kt+1

At+1

, µ̂t+1

)1−γ

·
[
At+1

At

]1−γ
]) 1

θ


=

θ

1− γ
max
ĉt ,̂ıt

log

{[
(1− β) e

1−γ
θ
ĉt + β

(
Êt

[
e[v̂t+1(k̂t+1,µ̂t+1)+gA,t+1](1−γ)

]) 1
θ

]}
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Thus, the maximization problem is

v̂t

(
k̂t, µ̂t

)
=

θ

1− γ
max
ı̂t

log

{[
(1− β) e

1−γ
θ
ĉt + β

[
Êt

(
e(1−γ)·[vt+1(k̂t+1,µ̂t+1)+(µ̂t+σAε̂A,t+1)]

)] 1
θ

]}
,

(16)

where ε̂A,t+1 is standard normal under the individual’s perception. The dynamics of the state

variables are

µ̂+1 = (1− ρ− ρ̃)µA + ρµ̂t + ρ̃gA,t+1,

and

k̂t+1 = log
{

(1− δK) exp
(
k̂t

)
+ φ

(
exp

(
ı̂t − k̂t

))
exp

(
k̂t

)}
− gA,t+1

However, from the individual’s perspective,

µ̂t+1 = (1− ρ− ρ̃)µA + (ρ+ ρ̃) µ̂t + ρ̃ε̂A,t+1, (17)

and

k̂t+1 = log
(

(1− δk) exp
(
k̂t

)
+ φ

(
exp

(
ı̂t − k̂t

))
exp

(
k̂t

))
− µ̂t − σAε̂A,t+1. (18)

The last budget constraint is

ı̂t = log
(

exp
(
αk̂t

)
− exp (ĉt)

)
. (19)

To solve the maximization problem numerically, we parameterize the value function with a

5th order Chebyshev orthogonal polynomial over a 6×6 Chebyshev grid for the state variables(
k̂, µ̂
)

. We follow the value function iteration algorithm in KL (2010). In particular, assume

that the value function is Ψn

(
k̂, µ̂
)

at iteration n. For each grid point for the state variables(
k̂, µ̂
)

, we use a numerical optimizer to find the policy (̂ı∗t ) that maximizes the value function

v̂∗t

(
k̂t, µ̂t

)
=

θ

1− γ
max
ı̂t

log

{
Êt

[
(1− δ) e

1−γ
θ
ĉt + δ

[
Êt

(
e(1−γ)·[Ψn(k̂t+1,µ̂t+1)+(µ̂t+σAε̂A,t+1)]

)] 1
θ

]}
,

where Gauss-Hermite quadrature with 5 nodes is used to approximate the expectations

operator. We then regress the new value v̂∗ onto state variables k̂, and µ̂ in order to update

the coefficients of the polynomial for the value function. This way, we can obtain the new

Chebyshev polynomial Ψn+1

(
k̂, µ̂
)

at iteration n+ 1.
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After we obtain the value function and the corresponding policy function, we can compute

variables of interest. For example, the perceived consumption growth rate is

Êt

[
log

(
Ct+1

Ct

)]
= Êt log

(
Ĉt+1

Ĉt

At+1

At

)
= Êt (ĉt+1 − ĉt + µ̂t + σAε̂A,t+1) .

The risk free rate can be computed by

rf,t = − log

Êt

β (Ct+1

Ct

)− 1
ψ

 Vt+1 (Kt+1, µ̂t+1, At+1)[
Êt

(
V 1−γ
t+1 (Kt+1, µ̂t+1, At+1)

)] 1
1−γ


1
ψ
−γ



= − log

Êt

β
(
Ĉt+1

Ĉt

)− 1
ψ

 V̂t+1 (Kt+1, µ̂t+1, At+1)[
Êt

(
V̂ 1−γ
t+1 (Kt+1, µ̂t+1, At+1)

(
At+1

At

)1−γ
)] 1

1−γ


1
ψ
−γ (

At+1

At

)−γ

 .

Long-term bond prices can be calculated recursively by

Pt,t+n = ÊtMt,t+n

= Êt

[
Mt,t+1Êt+1 (Mt+1,t+n)

]
= Êt [Mt,t+1Pt+1,t+n] .

From the long-term bond price, we can easily obtain the long-term bond yield. Lastly, to

find Tobin’s Q, let

Ît
Kt

≡ φ

(
It
Kt

)
and φ̂

(
Ît, Kt

)
≡ It − φ

(
It
Kt

)
Kt = It − Ît.

Then, Tobin’s Q is

Q = 1 +
∂ φ̂

(
Ît, Kt

)
Ît

=
∂It

Ît
=
∂φ−1

(
Ît
Kt

)
Ît
Kt

=
1

φ′
(
φ−1

(
Ît
Kt

)) =
1

φ′
(
I
K

) .
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Table 1: Parameter Choices for Benchmark Calibration

This table reports the parameter choices for the benchmark calibration. The model is simulated in quarterly
frequency. These parameters are in quarterly frequency as well. The first five parameters are fixed for all of
our calibration, whereas the last five parameters vary across calibrations.

Statistics Variable B.I B.II
Fixed Parameter:

Mean technology growth (%) µA 0.4 -
Volatility of the innovation in technology growth (%) σA 4.11 -
Share of capital α 0.36 -
Depreciation (%) δK 0.21 -
Leverage B/E 2/3 -

Varying Parameter:

Extrapolation parameter ρ 0.98 0.95
Risk aversion γ 4.00 2.00
IES ψ 2.00 -
Capital adjustment cost ξ 1.50 -
Subjective discount factor β 0.991 -
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Table 2: Moments for Quantities and Prices

This table reports the results for eight calibrations. All the numbers are annualized. The mean and volatility
are reported in percentages. ∆ct denotes consumption growth; ∆yt denotes output growth; ∆it denotes
investment growth; IK denotes investment over capital; xt denotes the perceived consumption growth by
the agent in the model; rf,t denotes the risk-free rate; rE,t − rf,t denotes the levered equity excess returns;
w− c denotes the log wealth-consumption ratio; rwc denotes the return on the aggregate consumption claim.
The moments for asset prices in the data column are taken from Campbell and Cochrane (1999) and Bansal
and Yaron (2004). We report a range of the values for these moments from these two papers based on
different data samples. The moments for quantities are taken from Boldrin, Christiano, and Fisher (2001),
Kaltenbrunner and Lochstoer (2010), and Kung (2012). Again, we report a range of values for these moments
based on different data samples. The volatility of IK is taken from an old sample in Cochrane (1991) and is
calculated from an updated sample from 1947Q1-2009Q4. Volatility of the aggregate Q is taken from Pontiff
and Schall (1998). The expected term premium is taken from Jermann (1998) and Piazzesi and Schneider
(2006). The range of moments for the wealth-consumption ratio and the log returns on aggregate wealth are
taken from Lustig et al. (2008) based on both quarterly and annual data.
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Parameter Data B.I B.II III IV V VI VII

Risk Aversion (γ) NA 4.00 2.00 4.00 4.00 4.00 4.00 2.00

IES (ψ) NA 2.00 2.00 2.00 2.00 2.00 3.00 2.00

Time Discount (β) NA 0.991 0.991 0.995 0.995 0.991 0.991 0.991

Adjustment Cost (ξ) NA 1.50 1.50 10.00 1.50 15.00 1.50 1.50

Extrapolation (ρ) NA 0.98 0.95 1.00 1.00 0.98 0.98 0.98

σ(∆ct) 1.22-3.22 3.78 2.41 2.46 4.51 1.53 3.28 3.63

σ(∆it) 9.03-17.40 9.09 12.72 11.42 6.85 14.33 10.37 9.33

σ(∆ct)/σ(∆yt) 0.40-0.64 0.72 0.46 0.47 0.86 0.29 0.62 0.69

σ(∆it)/σ(∆yt) 2.39-3.32 1.73 2.42 2.17 1.30 2.72 1.97 1.78

Adj. cost/output (%) NA 0.37 0.48 0.08 0.31 0.07 0.45 0.40

σ(IK) 0.78-1.80 0.92 1.06 1.00 0.74 1.14 1.02 0.94

σ(Q) 0.23 0.12 0.14 0.02 0.10 0.02 0.13 0.12

E(rf,t) 0.86-2.92 1.29 0.87 2.20 1.89 2.25 0.83 2.41

σ(rf,t) 0.97 0.28 0.32 0.37 0.15 0.36 0.11 0.27

E(rE,t − rf,t) 3.90-6.33 5.42 5.48 0.78 1.44 0.79 6.04 2.93

σ(rE,t − rf,t) 15.7-19.42 10.37 14.46 2.14 7.85 1.83 11.78 10.64

Sharpe Ratio 0.22-0.43 0.52 0.38 0.37 0.19 0.44 0.51 0.28

E(10-year term premium) -2-1.7 -0.70 -0.92 -0.36 -0.17 -0.98 -0.31 -0.40

σ(10-year term premium) NA 0.07 0.10 0.20 0.05 0.13 0.03 0.07

σ(w − c) 22.21-34.48 12.42 19.97 4.56 3.26 13.24 16.36 17.11

σ(rwc) 9.88-12.44 9.57 15.24 4.91 6.01 7.94 10.96 11.60

E(w − c) 4.47-5.02 4.50 4.55 5.39 5.39 4.54 4.48 4.74

E(rwc) 1.72-2.16 4.79 5.06 1.25 1.56 3.66 5.37 2.77

σ(xt) NA 0.79 1.12 0.72 0.33 0.99 0.83 0.80

σ(xt)/σ(∆ct) NA 0.21 0.49 0.29 0.07 0.65 0.25 0.22

AC(xt) NA 0.87 0.79 0.83 0.88 0.82 0.87 0.87

33



Table 3: Long Horizon Stock Return Predictability by DP Ratio, IK, and Tobin’s
Q

We regress cumulative 1-, 3-, and 5-year excess stock market returns on the dividend-price ratio, investment
over capital, and Tobin’s Q. We report results on both coefficients and R2s. We simulate the model for 400
quarters and repeat the procedure 1,000 times to obtain small sample values. The median (50%) values and
the 95% confidence intervals are reported.

Panel A: Benchmark Calibration I: ρ = 0.98

DP IK Q

horizon statistics 50% 2.5% 97.5% 50% 2.5% 97.5% 50% 2.5% 97.5%
1 coef 3.01 0.90 7.58 -1.36 -3.63 -0.37 -0.05 -0.13 -0.01

R-sqr 2.11 0.40 6.01 1.95 0.29 5.90 1.98 0.30 5.90
3 coef 5.88 1.74 14.77 -2.66 -7.03 -0.71 -0.10 -0.26 -0.03

R-sqr 4.19 0.74 11.88 3.90 0.54 11.56 3.91 0.54 11.54
5 coef 8.75 2.48 22.09 -3.93 -10.48 -0.95 -0.15 -0.39 -0.04

R-sqr 6.21 1.03 18.07 5.73 0.78 17.72 5.72 0.81 17.77

Panel B: Benchmark Calibration II: ρ = 0.95

DP IK Q

horizon statistics 50% 2.5% 97.5% 50% 2.5% 97.5% 50% 2.5% 97.5%
1 coef 3.93 1.80 7.42 -2.39 -4.84 -1.08 -0.09 -0.18 -0.04

R-sqr 4.34 1.69 8.76 4.35 1.69 9.04 4.38 1.74 9.01
3 coef 7.48 3.49 14.23 -4.66 -9.33 -2.05 -0.18 -0.35 -0.08

R-sqr 8.33 3.17 16.40 8.40 3.13 17.09 8.46 3.22 17.04
5 coef 10.78 4.83 20.87 -6.56 -13.33 -2.94 -0.25 -0.51 -0.11

R-sqr 11.93 4.40 24.65 12.13 4.52 24.77 12.21 4.46 24.77

Panel C: Calibration III: ρ = 1

DP IK Q

horizon statistics 50% 2.5% 97.5% 50% 2.5% 97.5% 50% 2.5% 97.5%
1 coef 0.22 -0.23 0.99 -0.11 -0.49 0.11 -0.03 -0.12 0.03

R-sqr 0.43 0.00 3.64 0.43 0.00 3.64 0.43 0.00 3.62
3 coef 0.45 -0.43 1.90 -0.22 -0.95 0.21 -0.05 -0.24 0.05

R-sqr 0.87 0.00 7.00 0.86 0.00 7.00 0.88 0.00 7.14
5 coef 0.68 -0.68 2.99 -0.33 -1.49 0.34 -0.08 -0.36 0.08

R-sqr 1.36 0.00 11.10 1.34 0.00 11.06 1.34 0.00 11.24
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Table 4: Consumption Dynamics

We report the 1st, 4th, 8th, 12th, 16th, and 20th order autocorrelations of consumption growth for different
versions of calibration. We simulate the model for 400 quarters and repeat 1,000 times to obtain small
sample values. The median (50%) values and the 95% confidence intervals are reported. Quarterly seasonally
adjusted consumption data are obtained from Bureau of Economic Analysis, 1947Q1-2009Q4.

Panel A: Benchmark Calibration I: ρ = 0.98

horizon 50% 2.5% 97.5% Data
1 0.04 -0.06 0.15 0.26
4 0.03 -0.06 0.14 0.15
8 0.03 -0.07 0.14 -0.03
12 0.03 -0.08 0.13 0.03
16 0.02 -0.08 0.13 0.07
20 0.02 -0.08 0.13 -0.04

Panel B: Benchmark Calibration II: ρ = 0.95

horizon 50% 2.5% 97.5% Data
1 0.20 0.06 0.36 0.26
4 0.16 0.03 0.33 0.15
8 0.14 0.01 0.28 -0.03
12 0.10 -0.02 0.27 0.03
16 0.08 -0.04 0.24 0.07
20 0.06 -0.06 0.23 -0.04

Panel C: Calibration III: ρ = 1 and ξ = 10

horizon 50% 2.5% 97.5% Data
1 0.14 0.01 0.29 0.26
4 0.13 0.01 0.28 0.15
8 0.11 -0.02 0.25 -0.03
12 0.09 -0.04 0.25 0.03
16 0.07 -0.05 0.22 0.07
20 0.06 -0.06 0.21 -0.04

Panel D: Calibration IV: ρ = 1 and ξ = 1.5

horizon 50% 2.5% 97.5% Data
1 0.02 -0.08 0.12 0.26
4 0.01 -0.08 0.11 0.15
8 0.01 -0.08 0.12 -0.03
12 0.01 -0.09 0.11 0.03
16 0.01 -0.09 0.11 0.07
20 0.01 -0.08 0.11 -0.04
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Table 5: Return Predictability by Perceived Growth

This table reports the long-horizon predictive regressions of market excess returns onto the negative output
gap (NGAP) of Cooper and Priestley (2009) and µ̂ calculated from exponentially weighted moving average
of both realized GDP growth rates and TFP growth from BLS with exponential decay parameter ρ̃ = 0.95.
We report t-statistics calculated from Newey and West (1987) standard errors (t(NW)), Hansen and Hodrick
(1980) standard errors (t(HH)), and Hodrick (1992) standard errors (t(HD)). The data sample for all raw
series is 1947Q2-2009Q4. The resulting data sample for µ̂t is 1957Q1-2009Q4.

µ̂A from GDP Growth Predicts Returns
Horizon coef. t(NW) t(HH) t(HD) R2

1-quar -7.73 -2.08 -1.90 -2.25 0.02
1-year -23.08 -1.71 -1.52 -1.64 0.04
2-year -38.45 -1.91 -1.79 -1.42 0.06
3-year -67.70 -3.35 -3.03 -1.83 0.16
4-year -92.32 -4.46 -3.62 -1.98 0.26
5-year -111.68 -4.52 -4.01 -1.98 0.31

µ̂A from TFP Growth Predicts Returns
Horizon coef. t(NW) t(HH) t(HD) R2

1-quar -4.45 -1.42 -1.30 -1.47 0.01
1-year -13.84 -1.38 -1.30 -1.23 0.02
2-year -18.69 -1.26 -1.15 -0.89 0.02
3-year -31.77 -1.91 -1.63 -1.04 0.05
4-year -46.13 -2.21 -1.89 -1.15 0.08
5-year -61.07 -2.39 -1.95 -1.20 0.12

NGAP Predicts Returns
Horizon coef. t(NW) t(HH) t(HD) R2

1-quar 0.28 4.03 3.73 3.62 0.05
1-year 0.89 3.28 2.95 2.84 0.12
2-year 1.30 3.10 3.17 2.17 0.14
3-year 1.80 4.36 4.67 2.16 0.22
4-year 2.31 5.23 4.59 2.22 0.33
5-year 2.81 5.34 4.40 2.24 0.39
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Table 6: Predictability of GDP Growth and TFP Growth

This table reports the long-horizon predictive regressions of GDP growth and TFP growth onto the negative
output gap (NGAP) of Cooper and Priestley (2009) and µ̂ calculated from an exponentially weighted moving
average of realized GDP growth rates with exponential decay parameter ρ̃ = 0.95. We report t-statistics
calculated from Newey and West (1987) standard errors (t(NW)), Hansen and Hodrick (1980) standard errors
(t(HH)), and Hodrick (1992) standard errors (t(HD)). The data sample for all raw series is 1947Q2-2009Q4.
The resulting data sample for µ̂t is 1957Q1-2009Q4.

NGAP Predicts GDP Growth µ̂A from GDP Predicts GDP growth

Horizon coef. t(NW) t(HH) t(HD) R2 coef. t(NW) t(HH) t(HD) R2

1-quar 0.01 0.79 0.78 1.00 0.00 0.52 0.95 0.94 1.26 0.01
1-year 0.20 3.18 2.88 3.78 0.12 -0.61 -0.25 -0.22 -0.36 0.00
2-year 0.40 3.63 3.23 4.49 0.21 -4.18 -1.02 -0.91 -1.31 0.03
3-year 0.51 3.58 3.15 4.42 0.24 -6.77 -1.39 -1.22 -1.60 0.06
4-year 0.57 3.41 3.00 4.24 0.25 -8.80 -1.69 -1.46 -1.72 0.08
5-year 0.63 3.55 3.29 3.95 0.25 -9.17 -1.90 -1.72 -1.55 0.08

NGAP Predicts TFP Growth µ̂A from GDP Predicts TFP Growth

Horizon coef. t(NW) t(HH) t(HD) R2 coef. t(NW) t(HH) t(HD) R2

1-quar 0.03 2.80 2.76 2.81 0.03 -0.98 -2.06 -1.97 -2.37 0.03
1-year 0.14 3.98 3.60 3.73 0.19 -4.09 -2.35 -2.12 -2.37 0.09
2-year 0.18 3.24 2.90 2.86 0.18 -5.94 -2.29 -2.11 -1.90 0.10
3-year 0.20 2.44 2.13 2.25 0.14 -6.83 -2.55 -2.43 -1.59 0.09
4-year 0.19 1.82 1.59 1.81 0.11 -6.75 -2.30 -2.36 -1.29 0.07
5-year 0.20 1.66 1.43 1.58 0.10 -6.02 -2.00 -2.02 -0.97 0.05
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Table 7: Predictability of Investment Rates by Perceived Growth and Cash Flow

This table reports the predictive regressions of the investment rate, I/K, onto cash flow (corporate profits
to capital ratio) and perceived growth calculated from an exponentially weighted moving average of realized
GDP and TFP growth rates with exponential decay parameter ρ̃ = 0.95. The data sample for all raw series
is 1947Q2-2009Q4. The resulting data sample for µ̂t is 1957Q1-2009Q4. Newey and West (1987) standard
errors with lag of 4 is used to calculate the t-statistics, which is in parenthesis.

I II III IV

µ̂A from GDP 1.81 1.86
(9.65) (10.34)

µ̂A from TPF 1.48
(5.00)

Cash Flow 0.17 0.01
(6.43) (0.50)

R-sqr 0.30 0.66 0.66 0.29
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Figure 1: Evolution of I/K and the Perceived Growth Rate

The top figure plots the evolution of IK and the perceived growth rate. The bottom figure plots the evolution
of change in I/K from t − 4 to t and the change in the perceived growth rate from t − 4 to t. I/K is
nonresidential fixed investment divided by the replacement cost. The perceived growth rate is calculated as
the exponentially weighted moving average of realized GDP growth rates with exponential decay parameter
ρ̃ = 0.95. All data are from NIPA. The data sample for all raw series is 1947Q2-2009Q4. The resulting data
sample for µ̂A is 1957Q1-2009Q4.
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