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Abstract

We propose to bring together two conceptually complementary ideas. (1) selfcon�rm-
ing equilibrium (SCE): at rest points of learning dynamics in a game played recurrently,
agents best respond to con�rmed beliefs, i.e., beliefs consistent with the evidence they
accumulated. (2) Ambiguity aversion: agents, other things being equal, prefer to bet on
events with known rather than unknown probabilities and, more generally, distinguish
objective from subjective uncertainty, a behavioral trait captured by their ambiguity
attitudes.
Using as a workhorse the �smooth ambiguity� model of Klibano¤, Marinacci and

Mukerji (2005), we provide a de�nition of Smooth SCE which generalizes the tradi-
tional concept of Fudenberg and Levine (1993a,b), here called Bayesian SCE, and admits
Waldean (maxmin) SCE as a limit case. We show that the set of equilibria expands as
ambiguity aversion increases. The intuition is simple: by playing the same strategy in
a stable state an agent learns the implied objective probabilities of payo¤s, but alterna-
tive strategies yield payo¤s with unknown probabilities; keeping beliefs �xed, increased
aversion to ambiguity makes such strategies less appealing. In sum, by combining the
SCE and ambiguity aversion ideas a kind of �status quo bias�emerges: in the long run,
the uncertainty related to tested strategies disappears, but the uncertainty implied by
the untested ones does not. We rely on this core intuition to show that di¤erent notions
of equilibrium are nested in a simple way, from �ner to coarser: Nash, Bayesian SCE,
Smooth SCE and Waldean SCE. We also prove some equivalence results under special
assumptions about the information structure.
Keywords: Selfcon�rming equilibrium, conjectural equilibrium, model uncertainty,

smooth ambiguity.
JEL classification: C72, D80.
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1 Introduction

Uncertainty about variables a¤ecting the consequences of choices is inherent to situations
of strategic interaction. This is quite obvious when such situations have been faced only
a few times. In this paper, we argue that uncertainty is pervasive also in games played
recurrently where agents have had the opportunity to collect a large set of observations and
the system has settled into a steady state. Such a situation is captured by the selfcon�rming
equilibrium concept (also called conjectural equilibrium). In a selfcon�rming equilibrium
(henceforth, SCE) agents best respond to con�rmed probabilistic beliefs, where �con�rmed�
means that their beliefs are consistent with the evidence they can collect, given the strategies
they adopt. Of course this evidence depends on how everybody else plays.

The SCE concept can be framed within di¤erent scenarios. A simple scenario is just
a repeated game with a �xed set of players. In this context, the constituent game, which
is being repeated, may have sequential moves and monitoring may be imperfect. To avoid
repeated game e¤ects, it is assumed that players do not value their future payo¤s, but
simply best respond to their updated beliefs about the current period strategies of the
opponents. Here instead we refer to a scenario that is more appropriate for the ideas we
want to explore: there is a large society of individuals who play recurrently a given game �,
possibly a sequential game with chance moves: for each player/role i in � (male or female,
buyer or seller, etc.) there is a large population of agents who play in role i. Agents are
drawn at random and matched to play �. Then, they are separated and re-matched to
play � with (almost certainly) di¤erent co-players, and so on. After each play of a game in
which he was involved, an agent obtains some evidence on how the game was played. The
accumulated evidence is the data set used by the agent to update his beliefs. Note, there is
an intrinsic limitation to the evidence that an agent can obtain: at most he can observe the
path (terminal node) realized in the game he just played, but often he can observe even less,
e.g., only his monetary payo¤s. However, what each agent is really interested about is the
statistical distribution of strategies in the populations corresponding to opponents�roles, as
such distributions determine (via random matching) the objective probabilities of di¤erent
strategy pro�les of the opponents with whom he is matched. Typically, this distribution is
not uniquely identi�ed by long-run frequencies of observations. This de�nes the fundamental
inference problem faced by an agent, and explains why uncertainty is pervasive also in steady
states. Similar considerations hold for chance moves, when their probabilities are unknown.

The key di¤erence between SCE and Nash equilibrium is that, in a SCE, agents may
have incorrect beliefs because many possible underlying distributions are consistent with the
empirical frequencies they observe. The following example clari�es this point (see Fudenberg
and Levine 1993a, Fudenberg and Kreps 1995).
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Figure 1. A �horse�game.

In the �horse� game of Figure 1, player 0 is an indi¤erent player2 and the dashed line
represents his information set. Assuming that agents can observe ex post the terminal
node, or their realized payo¤, there is an SCE with the following features: (1) all agents
of population 1 play A believing that R is very likely and that all agents in 2 play a, (2)
and all agents of population 2 play a believing that L is very likely and that all agents in
1 play A. The resulting outcome is always (A; a). Of course, someone must be wrong, but
all beliefs are consistent with the evidence, i.e., they are con�rmed. On the other hand, in
a Nash equilibrium beliefs about player 0 must be correct, hence they must agree: if R is
(believed) more likely, 1 and 2 play (A; d); if L is (believed) more likely, 1 chooses D. There
is no Nash equilibrium with outcome (A; a).

According to the traditional SCE concept, agents are Bayesian subjective expected utility
(SEU) maximizers. Nevertheless, when a set of underlying distributions is consistent with
their information, agents face a condition of model uncertainty, or ambiguity, rather than
risk; in such a condition SEU maximization amounts to ambiguity neutrality. Many models
of choice capturing more general attitudes toward model uncertainty have been studied in
decision theory (see Gilboa and Marinacci, 2011). The decision theoretic work which is
more germane to our approach distinguishes between objective and subjective uncertainty.
Given a set S of states, there is a set � � �(S) of possible probabilistic �models.�3 Each
� 2 � speci�es the objective probabilities of states and, for each action a of the decision
maker (DM), a von Neumann-Morgenstern expected utility evaluation U(a; �); the DM is
uncertain about the true model � (see Cerreia-Vioglio et al, 2011b). In our framework, a is
the action, or strategy, of an agent playing in role i, � is a distribution of strategies in the
population of opponents (or a pro�le of such distributions in n-person games), and � is the set
of distributions consistent with the database of the agent. Roughly, an agent who dislikes
the uncertainty about the expected utility value implied by uncertainty about the model
prefers, other things being equal, a strategy a inducing a small range of expected utilities
fU(a; �) : � 2 �g to a strategy b inducing a large range of expected utilities fU(b; �) : � 2 �g.

2The only reason to have an indi¤erent player is to simplify the picture, as the payo¤s of this player
are immaterial for the example. Player 0 may also be interpreted as Chance, assuming that the objective
probabilities of L and R are unknown.

3 In this context, we call �objective probabilities� the possible probability models (distributions) over a
state space S. These are not to be confused with the objective probabilities stemming from an Anscombe
and Aumann setting. For a discussion, see Cerreia-Vioglio et al (2011b).
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We interchangeably refer to such feature of preferences with the expression �aversion to model
uncertainty�or the shorter �ambiguity aversion.�For example, an extreme form of ambiguity
aversion is the Waldean maxmin criterion: maxamin�2� U(a; �).4 In this paper we span a
large set of ambiguity attitudes using the �smooth ambiguity�model of Klibano¤, Marinacci
and Mukerji (2005, henceforth KMM). This latter criterion admits the Waldean criterion as
a limit case and the Bayesian SEU criterion as a special case. In a SCE, agents in each role
best respond to their database choosing actions with the highest value, and their database
is the one that obtains under the true data generating process corresponding to the actual
strategy distributions. The following example shows how this notion of SCE di¤ers from the
traditional, or Bayesian, SCE.

1 + "
O � 1 �!
.

1n2 h2 t2

H2 4 0

T 2 0 4

1n2 h1 t1

H1 2 1

T 1 1 2

(0 < " < 0:5)

Figure 2. Matching Pennies with increasing stakes

In the zero-sum game5 of Figure 2, the �rst player chooses between an outside option
O and two Matching-Pennies subgames, say MP 1 and MP 2. Subgame MP 2 has �higher
stakes�than MP 1: it has a higher (mixed) maxmin value (2 > 1:5), but a lower minimum
payo¤ (0 < 1). In this game there is only one Bayesian SCE outcome,6 which must be
the unique Nash outcome: MP 2 is reached with probability 1 and half of the agents in each
population play Head. But we argue informally that moderate aversion to uncertainty makes
the low-stakes subgame MP 1 reachable, and high aversion to uncertainty makes the outside
option O also possible.7 Speci�cally, let �pk denote the subjective probability assigned by a
ambiguity neutral agent in role 1 to hk, with k = 1; 2. Going to the low-stake subgameMP 1

has subjective value maxf�p1 + 1; 2� �p1)g � 1:5 and going to the high-stakes subgame MP 2
has subjective value maxf4�p2; 4(1 � �p2)g � 2. Thus, O is never an ambiguity neutral best
reply and cannot be played by a positive fraction of agents in a Bayesian SCE. Furthermore,
also the low-stakes subgame MP 1 cannot be played in a Bayesian SCE. For suppose by
way of contradiction that a positive fraction of agents in population 1 played MP 1. In the
long run, each one of these agents, and all agents in population 2, would learn the relative
frequencies of Head and Tail. Since in a SCE agents best respond to con�rmed beliefs, the
relative frequencies of Head and Tail should be the same in equilibrium, i.e., the agents in
population 1 playing MP 1 would learn that its objective expected utility is 1:5 < 2 and
would deviate to MP 2 to maximize their SEU. On the other hand, for agents who are (at
least) moderately averse to model uncertainty and keep playing MP 1, having learned the

4See Cerreia-Vioglio et al (2011a) on the relations of this criterion with the seminal maxmin model of
Gilboa and Schmeidler (1989).

5The zero-sum feature simpli�es the example, but it is inessential for the main point we are making here.
6We call �outcome�a distribution on terminal nodes.
7See Section 5 for a rigorous analysis.
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risks involved with the low-stakes subgame confers to reduced-form8 strategies H1 and T 1 a
kind of �status quo advantage�: the objective expected utility of the untried strategies H2

and T 2 is unknown and therefore they are penalized. Thus, the low-stakes subgameMP 1 can
be played by a positive fraction of agents if they are su¢ ciently averse to model uncertainty.
Finally, also the outside option O can be played by a positive fraction of agents in a SCE if
they are extremely averse to model uncertainty, as represented by the maxmin criterion. If an
agent keeps playing O, he cannot learn anything about the opponents�strategy distribution,
hence he deems possible every distribution, or model, �2. Therefore, the minimum expected
utility of H1 (resp. T 1) is 1 and the minimum expected utility of H2 (resp. T 2) is zero,
justifying O as a maxmin best reply.9

The example shows that, by combining the SCE and ambiguity aversion ideas, a kind
of �status quo bias� emerges: in the long run, uncertainty about the expected utility of
tested strategies disappears, but uncertainty about the expected utility of the untested ones
does not. Therefore, ambiguity averse agents have weaker incentives to deviate than ambi-
guity neutral agents. More generally, higher ambiguity aversion implies a weaker incentive
to deviate from an equilibrium strategy. This explains the main result of the paper: the
set of SCEs expands as ambiguity aversion increases. We make this precise by adopting
the �smooth ambiguity�model of KMM, which conveniently separates the endogenous sub-
jective beliefs about the true strategy distribution from the exogenous ambiguity attitudes,
so that the latter can be partially ordered by an intuitive �more ambiguity averse than�
relation. With this, we provide a de�nition of �Smooth SCE�whereby agents �smooth best
respond�to beliefs about strategy distributions consistent with their long-run frequencies of
observations. The traditional SCE concept is obtained when agents are ambiguity neutral,
while a Waldean (maxmin) SCE concept obtains as a limit case when agents are in�nitely
ambiguity averse. By our comparative statics result, these equilibrium concepts are intu-
itively nested from �ner to coarser: each Bayesian SCE is also a Smooth SCE, which in turn
is also Waldean SCE.

The rest of the paper is structured as follows. In Section 2 we start describing the
main idea within recurrent decision problems where the state of nature has an unknown
distribution. In Section 3 we analyze games and provide de�nitions of SCE with non-neutral
attitudes toward uncertainty. In Section 4, the core of the paper, we carry out some key
comparative statics exercises and analyze the relationships between equilibrium concepts.
Section 5 illustrates our concepts and results with a detailed analysis of a generalized version
of the game of Figure 2. Section 6 explores the consequences of allowing commitment to
objective randomization devices, showing that this considerably reduces the status quo bias
due to ambiguity aversion. Section 7 concludes the paper with a detailed discussion of some
important theoretical issues and of the most related literature. In the main text we provide
informal intuitions for our results. All proofs are collected in the Appendix.

8Hk (resp. T k) corresponds to the class of realization-equivalent strategies that choose subgame MP k

and then select Hk (resp. T k).
9Note that we are excluding the possibility of mixing through randomization, an issue addressed in Section

6.
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2 Recurrent decisions

We �rst introduce our concepts in the context of a recurrent decision problem where the
outcome of the decision maker�s (henceforth, DM) strategy depends on the state (or strategy)
of Nature.

2.1 Mathematics

Given any measurable space (X;X ), we denote by �(X) the collection of all probability
measures � : X ! [0; 1]. When X is �nite, say with cardinality n, we assume that X = 2X
and we identify �(X) with the simplex of Rn.

We endow �(X) with the smallest �-algebra that makes the real valued and bounded
functions on �(X), of the form � 7! � (E), measurable for all E 2 X . When X is �nite this
�-algebra coincides with the relative Borel �-algebra that �(X) inherits as the simplex of
Rn. Finally, we also endow any measurable subset � of �(X) with the relative �-algebra
inherited from �(X), and we denote by �(�) the collection of all probability measures
de�ned on such �-algebra. Among them, �x denotes the Dirac measure concentrated on
x 2 X.10

Given (X;X ) and (Y;Y), a pair of measurable spaces, we endow the Cartesian product
X � Y with the product �-algebra X �Y. We denote by �(X)
�(Y ) the collection of all
product probability measures. Moreover, each measurable function ' : X ! Y induces the
pushforward map '̂ : �(X)! �(Y ) de�ned by

'̂(�) = � � '�1 8� 2 �(X):

In other words, we have that '̂(�)(E) = �('�1(E)) for all E 2 Y.

2.2 The decision problem

We assume there is a large population of DMs.11 In each period, each of them faces the same
decision problem which consists of a �nite state space SN , a �nite strategy space SDM , and a
�nite outcome space Z. This may be a dynamic decision problem representable by a decision
tree with moves by the DM and moves by Nature. In this case Si, with i 2 fDM;Ng, is the
set of pure strategies of i. In this paper we do not address dynamic consistency issues: we
assume that the DM commits to a particular strategy that is automatically implemented in
the decision problem. Hence SDM is the set of actions which DMs can choose from and, to
ease notation, we write A in place of SDM and 
 in place of SN .

An outcome function
� : A� 
! Z

maps actions and states to �outcomes.�The set of outcomes Z should be interpreted as the
set of terminal nodes of the decision tree.12 Such terminal nodes give rise to consequences
10That is, �x (A) = 1 if x 2 A and �x (A) = 1 if x 62 A.
11The existence of many DMs plays an important role only in our game-theoretic analysis. Nevertheless,

in order to be consistent, we mention it also in this section even though we mainly focus on a speci�c DM.
12Thus, this is the same as the �outcome function� in Chapter 6 of Osborne and Rubinstein (1994),

generalized to games with imperfect information.
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c 2 C according to a function13

 : Z ! C.

Ex post, DMs receive a message m 2M according to a feedback function

f : Z !M:

The function f maps outcomes to messages. A DM that gets message m knows that the
realized outcome belongs to the set f�1(m) � Z.

Together the outcome and the feedback functions determine the message function

F : A� 
!M

given by F = f � �, that is, F (a; !) = f (� (a; !)) for all action/state pro�les (a; !) 2 A�
.
Let Fa : 
 ! M be the section at strategy a of F de�ned by Fa (!) = F (a; !) for all
! 2 
. When each Fa is one-to-one, under each action di¤erent states of Nature generate
di¤erent messages. Thus, ex post DMs learn the true state upon receiving the message. This,
however, can happen when two conditions are satis�ed: (i) each section �a is one-to-one, i.e.,
in the decision tree Nature has no move following a move by the DM, and (ii) the feedback
function f is one-to-one, i.e., there is perfect feedback. Note that under perfect feedback it is
without loss of generality to set M = Z and f = IdZ , the identity function on Z.

Elements � of �(
) are interpreted as the vectors of �objective�probabilities that each
state ! obtains, that is, as possible probabilistic models for states. If the decision problem is
viewed as a game with Nature, then � is a mixed strategy of Nature. Thus, the true model
can be seen as Nature�s actual mixed play.

Elements � of �(A) can be seen as mixed actions implemented by a random device,14 or
�in our preferred interpretation �as statistical distributions of actions in the population of
DMs. In both cases, � (a) is the �objective�probability that the DM (or a DM chosen at
random) selects a.

A distribution on A � 
, in particular a product distribution � � �, delivers a random
message. Speci�cally, each message function F : A � 
 ! M induces a mixed message
function F̂ : � (A)
�(
)! �(M), where

F̂ (�� �) (m) = (�� �)
�
F�1 (m)

�
(1)

is the probability that a DM observes an ex post message m given the product measure
� � � of a mixed action � and a model �. We will mostly take the point of view of a DM
who chooses a pure action a, but we will also consider the case of randomization, hence our
general notation. We denote by � a generic mixed message in �(M).

13We could simplify the notation identifying terminal nodes and consequences, but we feel that introducing
the consequence function improves conceptual clarity.
14Random devices (e.g., roulette wheels and dice) feature probabilities that can be computed according to

Laplace�s classical notion.
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2.3 Decision criteria

The stage decision problem features two sources of uncertainty: state uncertainty within
each model and model uncertainty across di¤erent models.

As to state uncertainty, given a model � the DMs evaluate actions a through their
expected utility

U (a; �) =
X
!2


u (� (a; !))� (!) (2)

where u = v � 
 : Z ! R and v : C ! R is a von Neumann-Morgenstern (henceforth, vNM)
utility function that captures the attitudes toward risk of the DM.15 Our main results rely
on the assumption that payo¤s are observable: the payo¤ function u is f -measurable, that
is, in a �nite setting, f (z) = f (z0) implies u (z) = u(z0) for all z; z0 2 Z. This is a natural
assumption in many applications, e.g., when c 2 C is DM�s consumption.

As to model uncertainty, let U (a; �) : � (
) ! R be the a¢ ne function that, given an
action a, associates to each model � its expected utility (2). Suppose that, based on his
information, the DM knows that the true model � belongs to a compact subset � � �(
).
In other words, he is able to posit a set � of possible models, a standard assumption in
classical statistics. The payo¤ scope of model uncertainty for the DM that chooses action a
is thus described by the expected utility pro�le fU(a; �) : � 2 �g.

The simplest criterion to deal with both state and model uncertainty is the Waldean
criterion, which ranks actions according to

V (a;�) = min
�2�

U (a; �) : (3)

This criterion, due to Wald (1950), does not assume any knowledge on models other than
what is necessary to posit �. In particular, no prior probability appears. In contrast, the
classical Bayesian criterion16 ranks actions according to

V (a; p;�) =

Z
�
U (a; �) dp (�) (4)

where p 2 �(�) is a prior probability on the possible models, a subjective probability that
quanti�es the DM�s personal information on models. Set

�p (�) =
Z
�
� (�) dp (�) :

The reduced probability �p 2 �(
) is the predictive probability on states induced by the prior
p. Using the predictive probability, we can writeZ

�
U (a; �) dp (�) =

X
!2


u (� (a; !)) �p (!) = U (a; �p) :

The predictive form U (a; �p) is a �reduced form�of (4). Note that �p is a subjective probability,
so that U (a; �p) is a subjective expected utility criterion a la Savage (1954), while U (a; �)
was a vNM one.
15For example, if 
 : Z ! [r; �r] � R speci�es monetary payo¤s and u is concave, then the DM is risk averse.
16See Cerreia-Vioglio et al (2011b) for a derivation of this model and a discussion of its relations with

Savage (1954). The adjective �classical�here and for the smooth model below is due to the classical statistics
assumption of a � of possible models.
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DMs may well be ambiguity averse, that is, they may dislike having a range of possible
vNM expected utilities fU(a; �) : � 2 �g that is not a singleton because of model uncertainty.
For this reason the classical smooth ambiguity criterion of KMM ranks actions according to

V (a; p;�;�) = ��1
�Z

�
� (U (a; �)) dp (�)

�
(5)

where p 2 �(�) is a prior probability on � and � : ImU ! R is a strictly increasing con-
tinuous function that describes ambiguity attitudes.17 In particular, a concave � captures
ambiguity aversion, while a linear � corresponds to ambiguity neutrality. The smooth cri-
terion thus relaxes the assumption that agents linearly combine attitudes toward state and
toward model uncertainty, which are allowed to di¤er.

The Waldean and classical Bayesian criteria can be viewed as, respectively, a limit case
and a special case of the classical smooth criterion. For, under ambiguity neutrality the
smooth model reduces to the Bayesian one (4), while under extreme ambiguity aversion
� that is, when ambiguity aversion �goes to in�nity� � the smooth model reduces to the
limit to the Wald criterion (3) provided that Supp(p) = �. We refer the reader to KMM
for details. Note that the Bayesian criterion can be written as V (a; p;�; IdR) as a special
smooth criterion; to ease notation in what follows we will keep writing V (a; p;�).

We will also consider the possibility that a DM can delegate his choice to a random
device, thus implementing a mixed strategy � 2 �(A). All the formulas above can be
adapted, replacing a with � and U(a; �) with the vNM expected utility

U(�; �) =
X
a2A

�(a)U(a; �).

2.4 Recurrent decisions and status quo

The decision problem is faced recurrently by a large population of DMs. In each period each
agent faces the stage decision problem.18 In most of the paper we assume that DMs select
pure actions a. Mixed actions � are interpreted as population action distributions, that is,
�(a) is the fraction of DMs who choose a. In a classical approach à la Laplace, this fraction
is the �objective�probability that a DM chooses a. Formally, action distributions and mixed
actions are identical, in the spirit of the Nash mass action interpretation (see, e.g., Weibull,
1996). In Section 6 we will also consider the case where a DM can play a mixed strategy �,
therefore our general formulas encompass this case too.

To abstract away from learning issues, we interpret a mixed action also as the empiri-
cal frequency of (pure) actions actually chosen by DMs, that is, �(a) is also the long run
frequency with which a is chosen by the DMs who have been drawn for the stage decision

17With a slight abuse of notation, here ImU is the smallest interval that contains
[
a2A

U (a; �), i.e., its convex

hull.
18 It is enough that each agent faces the decision problem in�nitely many times so that he accumulates a

large database of personal observations.
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problem. In a frequentist approach a la von Mises, this frequency is the �objective�proba-
bility that a DM drawn at random chooses a.19 The probabilities that � features thus have a
dual, classical and frequentist, interpretation as both population distributions and empirical
frequencies. Such duality relies, heuristically, on a �long run� that is long and stationary
enough for asymptotic ergodic-type results to hold.

A similar dual interpretation applies to �, where � (!) is both the classical probability
with which Nature (regarded as a random device) selects state ! at each stage and the
empirical frequency of such state.

In view of all this, mixed messages � of �(M) can be interpreted as long run frequency
distributions of messages received by DMs, so that � (m) is the empirical frequency of message
m. In particular, the pushforward map F̂ : � (A)
�(
)! �(M) associates to each pro�le
(�; �) the message distribution (1), which, as argued before, is the probability that a DM
observes messagem given an action distribution � and a model �. Because of the dual nature
of � and �, such probability is both the �objective� probability that each stage generates
message m and the empirical frequency with which DMs receive such message.

We consider agents that either are restricted to pure actions, or �if they can randomize
�at least remember which pure action was selected every time they played. In both cases we
have to look at the section F̂a : � (
)! �(M) de�ned by F̂a (�) = F̂ (�a��). Indeed, even
if an agent plays a mixed action �, for each a 2 Supp� he can look at the conditional long-run
statistics of observations when a was selected and use this information to make inferences
about the distribution on 
. The inverse correspondences F̂�1a (a 2 Supp�) partition �(
)
in classes

F̂�1a

�
�ja

�
=
n
� 2 �(
) : F̂ (�a � �) = �ja

o
of models that are observationally equivalent given that a is selected and the frequency

distribution of messages �ja is �observed�in the long run. In other words, F̂
�1
a

�
�ja

�
is the

collection of all models that may have generated � given a.

Consider �rst the case of an agent who chooses a pure action a. The inverse correspon-
dence F̂�1a is compact valued. It is a function if and only if F̂a is one-to-one; in this case
the decision problem is identi�ed under a. Di¤erent models generate di¤erent message dis-
tributions which thus uniquely pin down models. This is the counterpart in our setup of
the classic notion of identi�ability (see, e.g., Rothenberg, 1971). Accordingly, we only have
partial identi�cation given a when F̂a is not one-to-one. In the extreme case when F̂a is
constant �that is, all models generate the same message distribution �the decision problem
is completely unidenti�ed.

When an agent plays a mixed action � 2 �(A), he can learn from each conditional
frequency distribution �ja (a 2 Supp�) and infer that the underlying distribution �� 2 �(
)
must have generated each �ja. With this, for each �� 2 �(
) we obtain the collection
19This frequentist interpretation actually requires that the stage decisions be independent (an �ergodic�in-

terpretation of probabilities as time averages hold, however, more generally; see Lith, 2001, and the references
therein).
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of models that are observationally equivalent given � and the message distributions �ja =

F̂ (�a � ��) (a 2 Supp�) that � generates along with model ��:20

�̂(�; ��) =
\

a2Supp�
F̂�1a (F̂ (�a � ��)) =

n
� 2 �(
) : 8a 2 Supp�; F̂ (�a � �) = F̂ (�a � ��)

o
:

(6)
We can thus regard �̂(�; �) as the identi�cation correspondence determined by �. It is

easily seen to be convex and compact valued, as well as nonempty since � 2 �̂(�; �). We
are mostly interested in the case when agents choose pure actions a 2 A. The identi�cation
correspondence �̂(a; �) is a function if and only if F̂a is one-to-one. In this case, �̂(a; �) is the
identity function, with �̂(a; �) = � for all � 2 �(
), and so message distributions identify
the true model.

Given a mixed strategy �, its identi�cation correspondence partitions �(
) in sets
�̂(�; �) of observationally equivalent models. Next we show that, under the observable pay-
o¤ assumption, such models share the same expected utility, that is, the function U (�; �) :
� (
)! R is measurable with respect to the partition determined by �̂(�; �).

Lemma 1 Under observable payo¤s, given any �� 2 �(
) and any � 2 �(A), it holds

U (�; �) = U (�; ��) 8� 2 �̂(�; ��):

The lemma captures formally the status quo bias mentioned in the Introduction. For,
suppose that the agent keeps playing, for example, a pure action a and that �� is the
true model. Then, the message distribution F̂a(��), with the associated set �̂(a; ��), is the
relevant evidence for his stage decision. Since payo¤s are observable, F̂a (��) determines the
frequencies of the values U(a; !), with ! 2 
. By de�nition, these frequencies are the same
for every model in �̂(a; ��). Thus, the function U (a; �) must be constant on �̂(a; ��), that
is, the agent does not perceive any model uncertainty in his evaluation of the �status quo�
action a. In contrast, model uncertainty may a¤ect the evaluation of any alternative action
a0 since the function U (a0; �) might well be non-constant on �̂(a; ��). This kind of status
quo bias plays a key role in Theorem 6: the paper main result.21

Identi�cation correspondences with larger images exhibit a higher degree of partial iden-
ti�cation. We now show that, ultimately, such degree depends on the underlying feedback
functions. To this end, given any two feedback functions f and �f , say that f is coarser than
�f if it is �f -measurable, that is, �f (z) = �f (z0) implies f (z) = f (z0) for all z; z0 2 Z.
For example, if f = u (DM only observes his payo¤s) and �f = IdZ (DM observes the

outcome, or terminal node of the decision tree), then f is trivially coarser than �f . DMs with
coarser feedback functions have worse information on outcomes. Clearly, constant feedbacks
are the coarsest ones, while perfect feedbacks are the least coarse.

20Battigalli et al. (2012) show that if information feedback f satis�es ex post perfect recall, then �̂(�; ��) =
f� : F̂ (� � �) = F̂ (� � ��)g. Intuitively, ex post perfect recall implies that the information about others
given by ex post message m is equivalent to the information about others given by m and si.
21Note that a can be viewed as a familiar alternative for the agent; accordingly, the bias can be interpreted

as a �familiarity e¤ect�, a notion sometimes evoked in applications of model uncertainty (e.g., to home bias
phenomena in asset allocations).
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Lemma 2 If f is coarser than �f , then, for all � 2 �(A),

b�� (�; ��) � �̂ (�; ��) 8�� 2 �(
) .

Coarser feedback functions thus determine, for each action, coarser identi�cation corre-
spondences: worse information translates into a higher degree of partial identi�cation.

2.5 Selfcon�rming decisions

We begin with the general notion of selfcon�rming decision for the smooth classical criterion
(5). We focus on the case where DMs can only choose pure actions. Given an action
distribution � in the population of DMs, a key issue for this notion is whether DMs have
access to some kind of public database (e.g., provided by the media), or obtain only the
observations generated when they choose their action a when they are drawn (individual
database). If � is the true model, �̂(�; �) is the set of models consistent with the message
distribution in the public database, while �̂(a; �) is the set of models consistent with the
individual database of a DM playing a. Though we will focus on individual databases, a
similar analysis can be carried out for public ones (see also the discussion in Section 7.3).

That said, here is our general notion of selfcon�rming decision with individual databases.
The goal is to describe distributions of actions/strategies that are stationary because each
DM�s beliefs are con�rmed.

De�nition 3 Suppose �� is the true model. An action distribution �� is a smooth selfcon-
�rming decision (SCD) if, for each a� 2 supp��, there is a belief pa� 2 �(�̂ (a�; ��)) such
that

V
�
a�; pa� ; �̂ (a

�; ��) ;�
�
� V

�
a; pa� ; �̂ (a

�; ��) ;�
�

8a 2 A (7)

The �con�rmed rationality�condition (7) can be written as

a� 2 argmax
a2A

Z
�̂(a�;��)

� (U (a; �)) dpa�(�)

and ensures that a� is a best reply that takes into account the available evidence. Speci�cally,
each action a� chosen by a positive fraction ��(a�) of DMs must be a best response within
A to the statistical distribution of messages F̂ (a� � ��) 2 �(M) generated by selecting a�
when the true model is ��. Since the available evidence depends on the chosen action a�,
also the belief �justifying�a� as a best response may depend on a�. Since A is �nite, for any
given pa� the maximization problem has a solution.22

Extreme ambiguity attitudes determine two notions of selfcon�rming decision. Speci�-
cally, an action distribution �� is a:

22Note, since we are considering the case of individual databases and �� is exogenously given, the equilibrium
conditions only restrict the support of ��. But in the game theoretic extension to follow, �� will be the
�endogenous�distribution of strategies of a co-player who is also maximizing given con�rmed beliefs and the
equilibrium conditions will restrict also the probabilities of strategies in the support of ��.
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(i) Waldean SCD if, for each a� 2 supp��,

a� 2 argmax
a2A

min
�2�̂(a�;��)

U (a; �) ;

(ii) Bayesian SCD if, for each a� 2 supp��, there is a prior pa� 2 �(�̂(a�; ��)) such that

a� 2 argmax
a2A

Z
�̂(a�;��)

U (a; �) dpa� (�) :

Note that when the decision problem is identi�ed under all actions �that is, �̂ (a; �) =
f�g for all a 2 A and all � 2 �(
) �con�rmed rationality require consistency with the true
model and the smooth criterion reduces to a vNM expected utility with respect to the true
model. The con�rmed rationality condition (7) becomes a� 2 argmaxa2A U (a; ��).

2.6 An urn example

It may be useful to review the concepts introduced so far within a decision theoretic setting by
means of an urn example. It illustrates, inter alia, a novel source of Ellsberg-type phenomena.

Consider an urn that contains 90 balls: 30 are red (R), 30 are blue (B), and 30 are yellow
(Y ). In every period each DM in the population and is asked to bet 1 euro on the color of
the ball that will be drawn from the urn in that period. The DMs just know that R, B, and
Y are the only possible colors. After each draw the each DM is told the result of his bet,
that is, whether or not he won 1 euro.

Here the state space is 
 = fR;B; Y g, the action space is A = f1R; 1B; 1Y g, the set of
terminal nodes of the decision tree is Z = A � 
, hence � = IdZ , and the message space is
M = f0; 1g. Since � = IdZ , f = F : A� 
! f0; 1g; in particular:

F (1R; R) = F (1B; B) = F (1Y ; Y ) = 1

and

F (1R; B) = F (1R; Y ) = F (1B; R) = F (1B; Y ) = F (1Y ; R) = F (1Y ; B) = 0:

Suppose a DM keeps betting on red, that is, his action is 1R. As a result, he imperfectly
observes the draws: he can only observe whether the color is red (message 1: he won) or
not (message 0: he lost). Such DM�s action prevents him from obtaining evidence on the
frequency of B and Y : given his betting he only gets either message 0 or 1. In particular,

F̂1R (�) (1) = � (R) ; F̂1R (�) (0) = 1� �(R) 8� 2 �(
) .

Since the true model �� 2 �(R;B; Y ) is such that

�� (R) = �� (B) = �� (Y ) =
1

3
,

the evidence allowed by 1R partially identi�es the model as an urn where one third of the
balls is red:

�̂ (1R; �
�) =

n
� 2 �(fR;B; Y g) : F̂1R (�) = F̂1R (��)

o
=

�
� 2 �(fR;B; Y g) : � (R) = 1

3

�
:
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Note how an imperfect feedback function may determine an Ellsberg-type phenomenon.
Feedback functions thus provide, through their properties, a new source of this classical
phenomenon.

Turning to selfcon�rming decisions, set u (0) = 0 and u (1) = 1, so that payo¤s are
observable and U (1!; �) = � (!) for each ! 2 fR;B; Y g. Since

min
�2�̂(1R;��)

U (1R; �) =
1

3
and min

�2�̂(1R;��)
U (1B; �) = min

�2�̂(1R;��)
U (1Y ; �) = 0

action 1R, i.e., betting on red, is a strict Waldean SCD. A similar conclusion can be reached
for smooth selfcon�rming decisions under enough ambiguity aversion.

In a Bayesian setting, each belief p 2 �
�
�̂(1R; �

�)
�
induces a predictive �p 2 �̂(1R; ��)

so that

U (1!; �p) = �p (!) =

Z
�̂(1R;��)

�(!)dp (�) ; �p (R) =
1

3
.

Therefore 1R is supported as a Bayesian selfcon�rming decision (though not strict, i.e., the
argmax is non-singleton) in the �knife edge� case �p (B) = �p (Y ), which implies �p (B) =
�p (Y ) = �p (R) = 1=3.

By the symmetry of the example, a similar analysis holds for actions 1B and 1Y . Thus,
every action distribution � is a Waldean, Smooth and Bayesian SCD, but no � is a �strict�
Bayesian SCD.

3 Recurrent games

In this section we extend the previous analysis to general games, our main object of interest.

3.1 Games with feedback and ambiguity

We consider �nite extensive-form games with perfect recall and no chance moves played
recurrently between agents drawn at random from large populations. Since we need not be
explicit about all the details of the extensive form, we specify our notation only for some
primitive and derived objects. The rules of the game directly or indirectly determine the
following elements:

� populations, or player roles i 2 I,

� complete paths, or terminal histories z 2 Z,

� pure strategies si 2 Si for each i 2 I,23

� a path, or outcome function � : S ! Z specifying the terminal history �(s) determined
by each strategy pro�le s = (si)i2I 2 S = �i2ISi,

� a (onto) consequence function 
 : Z ! C specifying the material consequences c 2 C
of each terminal history z 2 Z,

23Of course, Si is determined by the game tree and the information structure for i.
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� a feedback function fi : Z !M for each i 2 I specifying the message received ex post
by an agent playing in role i as a function of the terminal history z.

It may be useful to think of the above elements as what can be implemented in a lab-
oratory experiment. In particular, the designer speci�es the rules. Such rules include the
ex post information feedback f = (fi)i2I , which typically does not appear in the standard
mathematical de�nition of game, and a function 
 = (
i)i2I : Z ! C � RI that gives
the monetary payo¤ distributions induced by sequences of actions. On the other hand, the
designer cannot control subjects�preferences, notably absent from the above list.

But, as analysts, we need to specify preferences over objective and subjective lotteries of
consequences. We assume for simplicity that populations are homogeneous, that is, all agents
in the same population i 2 I have the same preferences (the extension to heterogeneous
populations is straightforward but notationally cumbersome):

� vi : C ! R is a vNM utility function capturing i�s attitudes toward risk,24

� �i : [minc2C vi(c);maxc2C vi(c)]! R is a strictly increasing weighting function captur-
ing i�s attitudes toward ambiguity as in KMM.

Like the feedback functions f , the weighting functions � = (�i)i2I do not appear in the
standard theory, as they are implicitly assumed to be linear. The standard de�nition of
game is a structure25

� = (I; :::; 
; (vi)i2I),

where the dots �...�refer to the details of the game tree and information structure. We keep
the parameters speci�ed by � �xed throughout our analysis, while we look at the e¤ects of
changing f or, more importantly, �.

A game with feedback is a pair (�; f). We say that such a game features observable payo¤s
when each payo¤ function ui = vi�
 : Z ! R is fi-measurable, that is, fi (z) = fi (z0) implies
ui (z) = ui (z

0) for all z; z0 2 Z. An important special case is perfect feedback, where each i
directly observes the path, that is, M = Z and fi = IdZ for each i.26 To anticipate, some
notions of selfcon�rming equilibrium, including the standard one which assumes ambiguity
neutral agents, refer to a game with feedback. But our main equilibrium concept refers to a
game with feedback and ambiguity attitudes, that is, a triple (�; f; �).

As a matter of interpretation, we have to ascribe some knowledge of (�; f; �) to the
agents. In order to make sense of the following analysis, we informally assume that each agent
in population i knows the extensive form, the feedback function fi, the random matching
structure, and � of course � the vNM utility function vi and weighting function �i. No
additional knowledge, mutual knowledge or common knowledge of (�; f; �) is required except

24For example, if 
 = (
i) : Z ! C � RI and i is sel�sh, ui(z) = vi(
i(z)), where vi is concave if i is risk
averse.
25Often the consequence function does not appear explicitly. We introduce it here for conceptual clarity.
26Perfect feedback was assumed by Fudenberg and Levine (1993a) and Fudenberg and Kreps (1995). It is

also reasonable to assume that fi re�ects perfect recall, that is, if the sequence of information sets and actions
of i determined by path z0 is di¤erent from the sequence determined by path z00, then fi(z0) 6= fi(z00). This,
however, does not play an explicit role in our analysis because we assume that an agent takes into account
the strategy he is playing when he considers the possible strategy distributions of the opponents consistent
with the evidence he observes.
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in our discussion of rationalizable selfcon�rming equilibrium in Section 7.2. The assumption
of no chance moves is made for simplicity, without substantial loss of generality. Chance can
be modeled in this framework as a player with a constant utility function, assuming that
agents have no knowledge of the objective probabilities of chance moves. The analysis can
be easily adapted to incorporate complete or partial knowledge of such probabilities.

The (strategic-form) message function Fi : S !M is given by Fi = fi � �. In turn, each
message function Fi : S ! M induces a message distribution function F̂i : 
j2I�(Sj) !
�(M), where F̂i(�i���i) (m) is the probability that i observes messagem given the strategy
distribution �i of his role and the strategy distribution ��i of his opponents�roles.

If i plays the pure strategy si and observes the long-run frequency distribution of messages
� 2 �(M), then i can compute the set of (product) strategy distributions of the opponents
that may have generated � given si:n

��i 2 
j 6=i�(Sj) : F̂i (si � ��i) = �
o
:

If ���i = �j 6=i��j is the true strategy distribution of his opponents�roles, the long-run fre-
quency distribution of messages observed by i is the one induced by the objective distribution
si � ���i, that is, � = F̂i

�
si � ���i

�
. The set of possible distributions from i�s perspective is

thus
�̂�i(si; �

�
�i) =

n
��i 2 
j 6=i�(Sj) : F̂i (si � ��i) = F̂i

�
si � ���i

�o
,

the game theoretic version of (6). The identi�cation correspondence �̂�i(si; �) is nonempty
and compact valued; it is convex valued in two-person games.

We obtain the decision problem analyzed in Section 2 as a special case when I = fDM;Ng
and uN is constant. In particular, the decision criteria previously introduced are easily
extended to this game theoretic setting. Here (2) becomes

Ui (si; ��i) =
X

s�i2S�i

ui(�(si; s�i))��i(s�i),

with ui = vi � 
, so that the smooth criterion (5) becomes

Vi (si; pi;��i;�i) = �
�1
i

 Z
��i

�i (U (si; ��i)) dpi(��i)

!

where pi 2 �(��i) is a belief of i on his opponents�possible strategy distributions. The
Waldean and Bayesian criteria are, respectively,

Vi (si;��i) = min
��i2��i

Ui (si; ��i) and Vi (si; pi;��i) =

Z
��i

Ui (si; ��i) dpi (��i) .

To ease notation we will sometimes write Vi (si; pi;�i) and Vi (si; pi) for the smooth and
Bayesian criteria, omitting the set ��i.
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3.2 Selfcon�rming equilibrium

Next we give a general de�nition of selfcon�rming equilibrium for the smooth criterion that
restricts agents to choose pure strategies, so that �mixed�strategies arise only as distribu-
tions of pure strategies within populations of agents.27

De�nition 4 A pro�le of strategy distributions �� = (��i )i2I is a smooth selfcon�rming
equilibrium (SSCE) of a game with feedback and ambiguity attitudes (�; f; �) if, for each
i 2 I and each s�i 2 supp��i , there is a prior ps�i 2 �(�̂�i(s

�
i ; �

�
�i)) such that

Vi

�
s�i ; ps�i ; �̂�i(s

�
i ; �

�
�i);�i

�
� Vi

�
si; ps�i ; �̂�i(s

�
i ; �

�
�i);�i

�
(8)

for each si 2 Si.

This �con�rmed rationality� condition extends condition (7) to general games and can
be written as

s�i 2 arg max
si2Si

Z
�̂�i(s�i ;�

�
�i)
�i (Ui (si; ��i)) dps�i (��i):

It requires that every pure strategy s�i that a positive fraction �
�
i (s

�
i ) of agents keeps playing

must be a best response within Si to the �evidence,� that is, the statistical distribution of
messages F̂i(s�i ; �

�
�i) 2 �(M) generated by playing s�i against the strategy distribution ���i.

A pro�le �� = (��i )i2I is a:

(i) Waldean selfcon�rming equilibrium (WSCE) if, for each i 2 I and each s�i 2 supp��i ,

s�i 2 arg max
si2Si

min
��i2�̂�i(s�i ;���i)

Ui (si; ��i) ; (9)

(ii) Bayesian selfcon�rming equilibrium (BSCE) if, for each i 2 I and each s�i 2 supp��i ,
there is a prior ps�i 2 �(�̂�i(s

�
i ; �

�
�i)) such that

s�i 2 arg max
si2Si

Z
�̂�i(s�i ;�

�
�i)
Ui (si; ��i) dps�i (��i) ; (10)

(iii) symmetric selfcon�rming equilibrium (symSCE) if �� is a pure strategy pro�le, that
is, all agents in the same role play the same pure strategy.

This de�nition of Bayesian SCE subsumes the de�nition of conjectural equilibrium due
to Battigalli (1987) (see also Battigalli and Guaitoli, 1988, 1997) and the de�nition of SCE of
Fudenberg and Levine (1993a) as special cases. Battigalli (1987) allows for general feedback
functions fi, but he considers only symmetric equilibria and assumes independent beliefs.28

Fudenberg and Levine (1993a) assume perfect feedback, that is, fi is the identity for each i.

27At the interpretive level, we are not assuming that agents are prevented from using randomization devices:
it may be the case that agents in population i have a set Ŝi � Si of �truly pure�strategies and that Si includes
a �nite set of choices that are realization equivalent to randomizations over Ŝi. Of course the de�nition of Fi
has to be adapted accordingly, as Fi(si; s�i) is a random message when si is a randomization device.
28Battigalli (1987) also allows for randomization. Equilibria where agents choose randomized strategies are

discussed in the next section.
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Like these earlier notions of SCE, our more general notion is motivated by a partial
identi�cation problem: the mapping from strategy distributions to the distributions of ob-
servations available to an agent is not one to one. In fact, if for each agent i identi�cation is
full �i.e., �̂�i(si; ��i) = f��ig for all si and all ��i �condition (8) is easily seen to reduce to
the standard Nash equilibrium condition Ui

�
s�i ; �

�
�i
�
� Ui

�
si; �

�
�i
�
. In other words, if none

of the agents features a partial identi�cation problem, we are back to the Nash equilibrium
notion (in its mass action interpretation).

Finally, note that ambiguity aversion may give rise to dynamic inconsistency issues: as
the play unfolds, an agent may have incentives to deviate from an ex ante optimal strategy.
As we mentioned, we avoid this problem by assuming that i just commits to a strategy that is
then automatically implemented. As well known, when agents are assumed to be ambiguity
averse it is important whether randomization is explicitly allowed or not; in the latter case
mixed strategies �i only arise as pure strategy distributions in the population of agents who
play in role i. We will see that the de�nition of SCE where agents cannot randomize is not
a special case of the de�nition of SCE where agents can choose any randomization they like.
In Sections 6 and 7 we will say more on this.

4 Comparative statics and relationships

4.1 Main result

Looking at games with feedback and ambiguity attitudes, we can carry out a comparative
statics analysis in information and ambiguity. From this we also derive some results about
relationships between equilibrium concepts. To this end, we say that:

(i) a feedback pro�le f is coarser than �f if, for each i, fi is coarser than �fi;

(ii) an ambiguity pro�le � is more ambiguity averse than �� if, for each i, �i is more
ambiguity averse than ��i.

29

A coarser feedback characterizes agents with less private ex post information, while higher
ambiguity aversion characterizes agents with a higher dislike for model uncertainty. Clearly,
any feedback pro�le is coarser than the perfect feedback pro�le f = (IdZ ; :::; IdZ), while
any ambiguity averse pro�le � is more ambiguity averse than the ambiguity neutral pro�le
� = (IdR; :::; IdR).

Accordingly, we say that:

(i) game (�; f; �) has coarser feedback than
�
�; �f; �

�
if f is coarser than �f ;

(ii) game (�; f; �) is more ambiguity averse than
�
�; f; ��

�
if � is more ambiguity averse

than ��.

29That is, there is a concave and strictly increasing function 'i : Im�i ! R such that ��i = 'i ��i. On this
comparative notion see KMM.
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Note that the comparison of ambiguity attitudes does not require that the pro�les them-
selves be ambiguity averse. It only matters that one pro�le be comparatively more ambiguity
averse than the other (something that can happen even if both are ambiguity loving).

We can now turn to the comparative static analysis. We begin by studying how equilibria
are a¤ected by changes in information feedback.30

Proposition 5 Suppose (�; f; �) has coarser feedback than
�
�; �f; �

�
. Then, the SSCEs of�

�; �f; �
�
are also SSCEs of (�; f; �), while the BSCE and WSCEs of

�
�; �f

�
are also, respec-

tively, BSCE and WSCEs of (�; f).

Worse feedback enlarges the set of opponents�strategy distributions consistent with any
distribution of messages (Lemma 2) and hence enlarges the set of SCEs of each type. A
similar monotonicity holds for higher ambiguity aversion. It is the paper main result, which
relies on the status quo bias of Lemma 1.

Theorem 6 Suppose (�; f; �) is more ambiguity averse than
�
�; f; ��

�
. If payo¤s are observ-

able, then the SSCEs of
�
�; f; ��

�
are also SSCEs of (�; f; �). Similarly, the SSCEs of any

game (�; f; �) are also WSCEs.

We provided intuition for this result in the Introduction. Now we can be more precise:
let �� be a SSCE of (�; f; ��), the less ambiguity averse game, and pick any strategy played
by a positive fraction of agents, s�i 2Supp��i ; then, there is a justifying con�rmed belief ps�i 2
�(�̂�i(s�i ; �

�
�i)) such that s

�
i is a best reply to ps�i given

��i, i.e., Vi(s
�
i ; ps�i ;

��i) � Vi(si; ps�i ; ��i)
for each si. Each agent playing the �status-quo�strategy s�i learns the long-run frequencies
of its (observable) payo¤s; therefore, the value of s�i for this agent is the objective expected
utility, U(s�i ; �

�
�i), independently of his ambiguity attitudes (Lemma 1). But the value of

an untested strategy si 6= s�i typically depends on ambiguity attitudes and, keeping beliefs
�xed, it is higher when ambiguity aversion is lower, that is, Vi(si; ps�i ;

��i) � Vi(si; ps�i ;�i).
Therefore Vi(s�i ; ps�i ;�i) = U(s

�
i ; �

�
�i) � Vi(si; ps�i ;�i) for all si. This means that it is possible

to support �� as a SSCE of the more ambiguity averse game (�; f; �) using the same pro�le
of beliefs supporting �� as a SSCE of (�; f; ��).

In sum, the set of SSCEs increases as either ex post private information becomes coarser
or ambiguity aversion increases (or both). In particular, if we �x a game with feedback
(�; f), Theorem 6 implies that under observable payo¤s:

(i) the set of BSCEs of (�; f) is contained in the set of SSCEs of every (�; f; �) with
ambiguity averse players;

(ii) the set of SSCEs of every (�; f; �) is contained in the set of WSCEs of (�; f).

In other words, under observable payo¤s and ambiguity aversion, it holds

BSCE � SSCE �WSCE: (11)

30Similar results on information feedbacks are part of the folkore on SCE (see, e.g., Fudenberg and Kamada,
2011). We do not provide such proposition because of its originality, but rather because it sharpens the reader�s
understanding of the framework and concepts.
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The degree of ambiguity aversion determines the size of the set of selfcon�rming equilibria,
with the sets of Bayesian and Waldean selfcon�rming equilibria being, respectively, the
smallest and largest one.

It is well known that every Nash equilibrium �� is also a Bayesian SCE. The same re-
lationship holds more generally for Nash and smooth selfcon�rming equilibrium (recall that
BSCE is the special case of SSCE neutral attitudes toward model uncertainty). Intuitively,
a Nash equilibrium is a SSCE with correct (hence con�rmed) beliefs about strategy distribu-
tions; since correct beliefs cannot exhibit any model uncertainty, they satisfy the equilibrium
conditions independently of ambiguity attitudes.

Lemma 7 If a pro�le of distributions �� is a Nash equilibrium of �, then it is a SSCE of
any game with feedback and ambiguity attitudes (�; f; �).

Since the set NE of Nash equilibria is nonempty, we automatically obtain existence
of SSCE for any f and �. In particular, we can enrich (11), which holds under payo¤
observability, as follows:

; 6= NE � BSCE � SSCE �WSCE:

This shows, under observable payo¤s, that every game with feedback (�; f) has some WSCE
and that every Nash equilibrium is not only a SSCE, but also a WSCE.

4.2 Payo¤ observability

The observability of payo¤played a key role in establishing the inclusions (11). The following
example shows that, indeed, such inclusions need not hold when payo¤s are not observable.

Example 8 Consider the zero-sum game of Figure 2 of the Introduction, but now suppose
that player 1 cannot observe his payo¤ ex post (he only remembers his actions). For example,
the utility values in Figure 2 could be a negative a¢ ne transformation of the consumption
of player 2, re�ecting a psychological preference of player 1 for decreasing the consumption
of player 2 (not observed by 1) even if the consumption of 1 is independent of the actions
taken in this game. Then, even if 1 plays one of the Matching Pennies subgames for a
long time, he gets no feedback: under this violation of the observable payo¤ assumption
�̂2 (s1; �2) = �(S2) for all (s1; �2). Since u1(O) = 1 + " is larger than the pure maxmin
payo¤ of each subgame, the outside option O is the only WSCE choice of player 1 at the
root. If �1 is su¢ ciently concave, O is also a SSCE choice. But, as already explained, O
cannot be an ambiguity neutral best reply. Next we show that all the strategies of 1 that
do not choose O are both ambiguity neutral and smooth best replies to some beliefs. Let
k:X1:X2 denote the strategy of 1 that selects subgame MP k, with k = 1; 2, and action
X1 2 fH1; T 1g (resp. X2 2 fH2; T 2g) in subgame MP 1 (resp. MP 2). Similarly, x1:x2
denotes the strategy of 2 that selects action x1 2 fh1; t1g (resp. x2 2 fh2; t2g) in subgame
MP 1 (resp. MP 2). Then 1:H1:X2 (resp. 1:T 1:X2) is an ambiguity neutral best reply
to pH

1

1 = � 1
2
h1:h2+ 1

2
h1:t2 (resp. p

T 1
1 = � 1

2
t1:h2+ 1

2
t1:t2) for each X

2 2 fH2; T 2g. Of course,
each strategy of the form 2:X1:X2 is an ambiguity neutral best reply to the Nash prior belief
pNE1 = � 1

4
h1:h2+ 1

4
h1:t2+ 1

4
t1:h2+ 1

4
t1:t2. Since these beliefs are Dirac measures, ambiguity aversion
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does not a¤ect the corresponding smooth value of strategies. Hence, they justify the same
strategies also as smooth best responses. Also note that, with beliefs of the form pX

1

1 shown
above (X1 2 fH1; T 1g), player 1 is indi¤erent between the two subgames, as both have
subjective value 2. Indeed, an ambiguity neutral agent cannot strictly prefer MP 1 to MP 2;
but there are non-degenerate priors that make the move toMP 1 a strict smooth best response.
Since player 1 only remembers his actions, his beliefs are always trivially con�rmed. Hence
all these strategies have positive measure in some BSCE and SSCE. WE conclude that

BSCE \WSCE = ; and SSCE *WSCE

and so the inclusions (11) here do not hold. N

The observability of payo¤ is actually immaterial in two-person games. In fact, for them
one can show directly, without assumptions about the feedback functions, that a BSCE is
also a SSCE: the proof relies on the convexity of �̂�i(s�i ; �

�
�i) when jIj = 2 that allows to

go from a justifying belief pi 2 �(�̂�i(s�i ; ���i)) to its predictive �pi 2 �̂�i(s�i ; ���i) to a new
justifying belief ��pi 2 �(�̂�i(s�i ; ���i)) inducing no subjective uncertainty.31 This argument
does not work with n-person games when n � 3.

Example 9 Consider the three-person, simultaneous-move game in Figure 3, where player
1 chooses the row, player 2 the column and player 3 the matrix. Assume that player 3 has
trivial feedback: he only remembers his action, hence �̂�3(s3; ��3) = �(S1) 
 �(S2). In
contrast, players 1 and 2 have perfect feedback.

` L R

T 1; 1; 2 0; 0; 0

B 0; 0; 0 1; 1; 0

r L R

T 1; 1; 1 0; 0; 1

B 0; 0; 1 1; 1; 1

Figure 3 A three-person simultaneous game

In equilibrium ��1(T ) = �
�
2(L) 2 f0; 1; 1=2g. Suppose that player 3 is certain that players 1

and 2 achieve perfect coordination, but he feels completely ignorant as to how. By symmetry,
his belief is thus

p3 =
1

2
�T � �L +

1

2
�B � �R.

If he is ambiguity neutral (linear �3), then both ` and r are best replies. But, if he is strictly
uncertainty averse (strictly concave �3), then only r is a best reply. The predictive probability

1

2
(T;L) +

1

2
(B;R)

is a correlated distribution in �(S�3), hence it does not belong to �̂�3(`; ���3), and

� 1
2
(T;L)+ 1

2
(B;R) =2 �(�̂�3(l; �

�
�3)).

Note, however, that we can support ` as a SSCE choice using di¤erent beliefs: this is not an
example where some BSCE is not a SSCE. N
31Given the previous example, one might conclude that there is a lack of upper-hemicontinuity of the

equilibrium correspondence as the concavity of some �i goes to in�nite. Such inference would be unjusti�ed:
the Waldean criterion is a limit of the smooth ambiguity criterion when pi has full support in the set of
possible models. But pi may have a smaller support. In particular, it may be a Dirac measure, making
ambiguity aversion irrelevant, as in the argument above.
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4.3 Converses and equivalences

Next we consider assumptions about information implying the equivalence between the dif-
ferent SCE concepts (or at least their symmetric version) and also the equivalence with Nash
equilibrium.

We start with a simple, but instructive result that requires a preliminary de�nition. We
say that (�; f) has own-strategy independent feedback if what each player observes ex post
about the strategies of other players is independent of his own strategy. Formally, let

F�i(si) = fC�i � S�i : 9m 2 Fsi(S�i); C�i = F�1si (m)g

denote the partition of S�i induced by Fsithat is, for each i 2 I, F�1si (�) is independent of
si (recall that Fsi(�) = fi(�(si; �)) : S�i ! M). Then, (�; f) has own-strategy independent
feedback if, for each i 2 I and si; ti 2 Si, F�i(si) = F�i(ti).32 This is a restrictive assumption
that is violated by all of our examples.33 The next result illustrates its strength.

Proposition 10 In every game with observable payo¤s and own-strategy independent feed-
back, every type of SCE is equivalent to Nash equilibrium:

NE = BSCE = SSCE =WSCE:

The intuition for this result is quite simple: the strategic-form payo¤ function Ui(si; �) :
S�i ! R is constant on each cell F�1si (m) of the partition of S�i induced by Fsi : S�i !M
(observability of payo¤s), but this partition is independent of si (own-strategy independence
of feedback). This means that, in the long run, an agent does not only learn the objective
probabilities of the payo¤s associated to his �status quo� strategy, but also the objective
probabilities of the payo¤s associated to every other strategy. Hence model uncertainty is
irrelevant and he learns to play the best response to the true strategy distributions of the
other players/roles even if he does not exactly learn these distributions.34

Assuming perfect information and perfect feedback, we can prove another partial converse
to the above inclusions (11) and hence another equivalence result.

Proposition 11 In games with perfect information and perfect feedback, every symmetric
WSCE is also a symmetric SSCE and BSCE where each player�s strategy is justi�ed by a
con�rmed deterministic belief.

Since perfect feedback implies observable payo¤s, Theorem 6 and Proposition 11 imply
that under perfect information and perfect feedback35

symBSCE = symSSCE = symWSCE:

32This property is called �non manipulability of information�in Battigalli et al. (1992) and Azrieli (2009b),
and �own-strategy independence�by Fudenberg and Kamada (2011).
33One can show that a game (�; f) with perfect feedback has also own-strategy independent feedback if

and only if � can be reduced to a realization-equivalent simultaneous game �0 by interchanging simultaneous
moves and coalescing sequential moves by the same player.
34Similar results are part of the folklore on SCE. See, for example, Battigalli (1999) and Fudenberg and

Kamada (2011).
35The pre�x sym denotes symmetric selfcon�rming equilibria.
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Note that the result about symSSCE holds with either two players or n ambiguity averse
players, as in both cases symBSCE � symSSCE � symWSCE.

Games with perfect information necessarily feature observable deviators36 and every pre-
dictive belief �pi 2 �(S�i) is realization-equivalent to an uncorrelated belief �qi 2 
j 6=i�(Sj).
In games with observable deviators and perfect feedback, every symmetric BSCE supported
by uncorrelated beliefs has the same outcome as some mixed Nash equilibrium with a de-
terministic path and viceversa. Therefore, in games with perfect information and perfect
feedback the set of terminal histories induced (with probability one) by some mixed Nash
equilibrium coincides with the set �(symWSCE) of terminal histories induced by a symmet-
ric WSCE. To summarize, let detNE denote the set of Nash equilibria with a deterministic
path; then it makes sense to write �(detNE) for the set of these paths, and the following
holds:

Proposition 12 In games with perfect information and perfect feedback

�(detNE) = �(symBSCE) = �(symWSCE);

if, in addition, there are either two players or n ambiguity averse players, then

�(detNE) = �(symBSCE) = �(symSSCE) = � (symWSCE) :

5 A zero-sum example

In this section we analyze the SCEs of a zero-sum example parametrized by the number of
strategies. The game is related to the Matching Pennies example of the Introduction. We
show how the SSCE set gradually expands from the BSCE set to the WSCE set as the degree
of ambiguity aversion increases.

To help intuition, we �rst consider a generalization of the game of Figure 2: player 1
chooses between an outside option O and n Matching-Pennies subgames against player 2.
Subgames with a higher index k have �higher stakes,� that is, a higher (mixed) maxmin
value, but a lower minimum payo¤ (see Figure 4). The game of Figure 2 obtains for n = 2.

n� 1 + " O � 1
. ::: # k :::&

(0 < " < 1=2)

1n2 hk tk

Hk n+ 2(k � 1) n� k
T k n� k n+ 2(k � 1)
Figure 4. Fragment of zero-sum game

In this game, player 1 has (n + 1) � 2n strategies and player 2 has 2n strategies. To
simplify the notation, we instead analyze an equivalent extensive-form game �n obtained
by two transformations. First, player 2 is replaced by a team of opponents 2:1; :::; 2:n,

36For every path z and every information set h reached with a unilateral deviation from z, the player
moving at h can identify the deviator. See Fudenberg and Levine (1993a).
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one for each subgame k, each one with the same payo¤ function u2:k = �u1. Second,
the sequence of moves (k;Hk) of player 1 (go to subgame k then choose Head) � which
is common to 2n�1 realization-equivalent strategies � is coalesced into the single strategy
Hk. Similarly (k; T k) becomes T k. The new strategy set of player 1 has 2n + 1 strategies:
S1 = fO;H1; T 1; :::;Hn; Tng. If player 1 chooses Hk or T k, player 2:k moves at information
set fHk; T kg (i.e., without knowing which of the two actions was chosen by player 1) and
chooses between hk and tk; hence S2:k = fhk; tkg. See Figure 4bis.

Figure 4bis. The case n = 2.

We assume perfect feedback,37 therefore the game with feedback is (�n; f) with fi = IdZ
for each i = 1; :::; n.

Although there are no proper subgames in �n, we slightly abuse language and informally
refer to �subgame k�when player 1 chooses Hk or T k, giving the move to opponent 2:k.
The game �n and the previously described game have isomorphic sets of terminal nodes
(with cardinality 4n+ 1) and the same reduced normal form (once players 2:1; :::; 2:n of the
second game are coalesced into a unique player 2). By standard arguments, these two games
have equivalent sets of Nash equilibria, equivalent BSCE and WSCE sets for every f , and
equivalent SSCE sets for every (f; �).38

37We could equivalently assume observable payo¤s.
38Each pro�le � = (�1; (�2:k)

n
i=1) of the new n-person game can be mapped to an equivalent pro�le

(��1; ��2) of the old two-person game and viceversa while preserving the equilibrium properties. Speci�cally,
(�2:k)

n
k=1 is also a behavioral strategy of player 2 in the two-person game, which corresponds to a realization-

equivalent strategy distribution ��2 for player 2. Similarly, any such distribution ��2 can be mapped to
a realization-equivalent pro�le (�2:k)nk=1. As for �1, for each s1 in the new game, the probability mass
�1(s1) can be distributed arbitrarily among the pure strategies of the old two-person game that select the
corresponding sequence of moves (that is, either (O), or (k;Hk) or (k; T k)), thus obtaining a realization-
equivalent distribution ��1. In the opposite direction, every ��1 of the old game yields a unique realization-
equivalent �1 in the new game, where �1(s1) is the ��1-probability of the set of (realization-equivalent)
strategies that select the same sequence of moves as s1.
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That said, consider the extensive-form game �n (Figure 4bis illustrates the special case
�2). It is easily seen that, for every pro�le of strategy distributions ��2 = (�

�
2:k)

n
k=1, it holds

39

�̂2(O; �
�
2) = 
nk=1�(S2:k); (12)

and
�̂2(H

k; ��2) = �̂2(T
k; ��2) = f�2 : �2:k = ��2:kg: (13)

As a result, next we provide necessary SCE conditions that partially characterize the
equilibrium strategy distribution for player/role 1 and fully characterize the equilibrium
strategy distributions for the opponents.

Lemma 13 For every (Bayesian, Smooth, Waldean) SCE �� and every k = 1; :::; n,

��1(H
k) + ��1(T

k) > 0) ��1(H
k)

��1(H
k) + ��1(T

k)
=
1

2
= ��2:k(h

k). (14)

Furthermore, for every �� and ���, if �� is a (Bayesian, Smooth, Waldean) SCE, and
Supp��1 = Supp��

�
1, then also ��

� is a (Bayesian, Smooth, Waldean) SCE.

Note that these necessary conditions do not restrict at all the set of strategies that can be
played in equilibrium: for every s1 2 fO;H1; T 1; :::;Hn; Tng there is some distribution pro�le
�� such that ��1(s1) > 0 and (14) holds. The formal proof of the lemma is straightforward
and left to the reader. Informally, if subgame k is played with positive probability, then each
agent playing this subgame learns the relative frequencies of Head and Tail in the opponent�s
population, and the best response conditions imply that an SCE reaching subgame k with
positive probability must induce a Nash equilibrium in this Matching-Pennies subgame.
Thus, the ��2-value to an agent in population 1 of playing the �status quo�strategy H

k or
T k (with ��1(H

k) + ��1(T
k) > 0) is the mixed maxmin value of subgame k, n � 1 + k=2.

With this, the value of deviating to another �untested�strategy depends on the exogenous
attitudes toward model uncertainty, and on the second-order belief p1 2 �(�̂2(Hk; ��2)),
which is only restricted by ��2:k (eqs. (12) and (13)). As for the agents in roles 2:1; :::; 2:n,
their attitudes toward uncertainty are irrelevant, because, if they play at all, they learn all
that matters to them, that is, the relative frequencies of Hk and T k.

Suppose that a positive fraction of agents in population 1 play Hk or T k, with k < n.
By Lemma 13, in an SCE the value that they assign to their strategy is its vNM expected
utility given that opponent 2:k mixes �fty-�fty, that is, n � 1 + k=2. But, if they are
ambiguity neutral, the subjective value of deviating to subgame n is at least the maxmin
value n� 1 + n=2 > n� 1 + k=2. Furthermore, the outside option O is never an ambiguity
neutral best reply.40 This explains the following:

Proposition 14 The BSCE set of (�n; IdZ ; :::; IdZ) coincides with the set of Nash equilibria.
Speci�cally,

BSCE = NE =

�
�� 2 � : ��1(Hn) = ��1(T

n) = ��n(h
n) =

1

2

�
:

39For ease of notation, in this section we denote �̂�1 by �̂2.
40 Indeed, O is strictly dominated by every mixed strategy 1

2
Hk + 1

2
T k.
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Next we analyze the SSCEs assuming that agents are ambiguity averse in the KMM sense.
The following preliminary result, which has some independent interest, speci�es the beliefs
about opponents�strategy distributions that minimize the subjective value of deviating from
a given strategy s1 to any subgame j.

Lemma 15 Let �1 be concave. For all j = 1; :::; n, p1; q1 2 �(
nk=1�(S2:k)), if

mrg�(S2:j)q1 =
1

2
�hj +

1

2
�tj ,

then
maxfV1(Hj ; p1;�1); V1(T

j ; p1;�1)g � V1(Hj ; q1;�1) = V1(T
j ; q1;�1).

Intuitively, an ambiguity averse agent dislikes deviating to subgame j the most when his
subjective prior assigns positive weight only to the highest and lowest among the possible
objective expected utility values, i.e., when its marginal on �(Sj) has the form x�hj + (1�
x)�tj . By symmetry of the 2�2 payo¤matrix of subgame k, he would pick within fHk; T kg
the strategy corresponding to the highest subjective weight (Hk if x > 1=2). Hence the
subjective value of deviating to subgame j is minimized when the two Dirac measures �hj
and �rj have the same weight x = 1=2.

To analyze how the SSCE set changes with the degree of ambiguity aversion of player 1,
we consider the one-parameter family of negative exponential weighting functions

��1 (U) = �e��U ;

where � > 0 is the coe¢ cient of ambiguity aversion (see KMM p. 1865). Let SSCE(�)
denote the set of SSCEs of (�n; IdZ ; :::; IdZ ; ��1 ; �2; :::�n). To characterize the equilibrium
correspondence � 7! SSCE(�), we use the following transformation of ��1 (U):

M(�; x; y) = (��1 )
�1
�
1

2
��1 (x) +

1

2
��1 (y)

�
.

By Lemma 15, this is the minimum value of deviating to a subgame characterized by payo¤s
x; y 2 fn + 2(k � 1); n � kg (k 2 f1; :::; ng). The following result states that this value
is decreasing in the coe¢ cient of ambiguity aversion �, it converges to the mixed maxmin
value as �! 0 (approximating the ambiguity neutral case), and it converges to the minimum
payo¤ as �! +1.

Lemma 16 For all x 6= y, M(�;x; y) is strictly decreasing, continuous, and satis�es

lim
�!0

M (�;x; y) =
1

2
x+

1

2
y and lim

�!+1
M (�;x; y) = min fx; yg . (15)

By Lemma 13, to analyze the SSCE(�) correspondence we only have to determine the
strategies s1 that can be played by a positive fraction of agents in equilibrium, or �conversely
� the strategies s1 that must have measure zero. Let us start from very small values of
�, i.e., approximately ambiguity neutral agents. By Lemmas 15 and 16, the subjective
value of deviating to the highest-stakes subgame n is approximately bounded below by
n� 1 + n=2 > u1(O). Therefore, the outside option O cannot be a best reply. Furthermore,
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suppose by way of contradiction that Hk or T k (k < n) are played by a positive fraction
of agents. By Lemma 13, the value of playing subgame k is the vNM expected utility
n� 1+ k=2 < n� 1+n=2. Hence all agents playing this game would deviate to the highest-
stakes subgame n. Thus, for � small SSCE(�) = BSCE. By Lemma 16, as � increases, the
minimum value of deviating to subgame n decreases, converging to zero for �! +1. More
generally, the minimum value M(�; n� j; n+ 2(j � 1)) of deviating to subgame j converges
to n� j for �! +1. Since n� j < u1(O) < n� 1 + k=2, this means that, as � increases,
it becomes easier to support an arbitrary strategy s1 as an SSCE strategy. Therefore there
must be thresholds 0 < �1 < ::: < �n such that only the higher-stakes subgames k + 1; :::n
can be played by a positive fraction of agents in equilibrium if � < �n�k, and every strategy
(including the outside option O) can be played by a positive fraction of agents for some
� � �n�k. In particular, for � su¢ ciently large, SSCE(�) coincides with the set of Waldean
SCEs, which is just the set

�� = f�� 2 � : eq. (14) holdsg

of distribution pro�les satisfying the necessary conditions of Lemma 13.41 To summarize,
by the properties of function M(�; x; y) stated in Lemma 16, we can de�ne strictly positive
thresholds �1 < �2 < ::: < �n so that the following indi¤erence conditions hold

max
j2fk+1;:::;ng

M(�n�k; n� j; n+ 2(j � 1)) = n� 1 +
k

2
, k = 1; :::; n� 1; (16)

max
j2fk+1;:::;ng

M(�n; n� j; n+ 2(j � 1)) = n� 1 + "; (17)

and SSCE(�) expands as � increases, making subgame k playable in equilibrium as soon as
� reaches �n�k, expanding to WSCE and making the outside option O playable as soon as
� reaches �n. Formally:

Proposition 17 Let �1 < ::: < �n be the strictly positive thresholds de�ned by (16) and
(17). For every � and k = 1; :::n� 1,

� < �n�k =) SSCE(�) =
n
�� 2 �� : ��1(fO;L1; T 1; :::;Hk; T kg) = 0

o
and

� < �n =) SSCE(�) = f�� 2 �� : ��1(O) = 0g :

Furthermore S
���n�k

SSCE(�) = �� =WSCE,

and SSCE(�) = BSCE = NE if � < �1, while SSCE(�) =WSCE if � � �n.
41This characterization holds for every parametrized family of distributions that satis�es, at every expected

utility value �U , properties analogous to those of Lemma 16, with � replaced by the coe¢ cient of ambiguity
aversion ��001 ( �U)=�0( �U).
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6 Randomization

In this section we allow agents to commit to arbitrary objective randomization devices.
Credible randomizations require a richer commitment technology than assumed so far. This
can be seen by focussing on static games. In such games, playing a pure strategy simply
means that an action is irreversibly chosen. But there is a commitment issue in playing
mixed strategies. Suppose that a particular mixed strategy �i is optimal. If this is true for
an ambiguity neutral agent, then also each pure strategy in the support of �i is optimal,
therefore �i can be implemented by mapping each strategy in Supp�i to the realization of an
appropriate roulette spin and then choosing the pure strategy associated to the realization.
On the other hand, an ambiguity averse agent who �nds �i optimal, need not �nd the pure
strategies in Supp�i optimal (within the simplex �(Si)). Therefore, unlike an ambiguity
neutral agent, an ambiguity averse one has to be able to irreversibly delegate his choice to
the random device. Despite these reservations, we still �nd the extension to mixed strategies
worth exploring.

When each agent in population i plays a mixed strategy, a mixed strategy distribution
& i 2 �(�(Si)) obtains. To simplify the analysis, we consider only the case in which the
ensuing distributions & i on mixed strategies have �nite support.42 For each role i, agents in
population i are �endogenously�partitioned into ki �epistemic types,�and &`i is the fraction
of agents in population i of type ` = 1; :::; ki. In every period, agents are drawn at random
and matched to play the given game. Each type ` of agent in population i keeps playing
some (possibly degenerate) mixed strategy �`i . This generates a mixture distribution �

�
i =Pki

`=1 &
`
i�
`
i on pure strategies in population i. Agents of type ` in population i accumulate

evidence (a message in every period) that in the long run is summarized by the long-run
frequencies ��;`i 2 �(M), which depend on �`i and ���i: �

`;�
i = F̂i(�

`
i � ���i). Hence the set

of possible models for agents of type ` is �̂�i(�`i ; �
�
�i) = f��i : F̂i(�`i ���i) = F̂i(�`i ����i)g.

In the following de�nitions, we give stability conditions for a pro�le of strategy distributions
(��i )i2I interpreted as mixtures. We use superscript � to denote the equilibrium concepts
obtained when randomization is allowed.

De�nition 18 A pro�le of strategy distributions (��i )i2I is a smooth selfcon�rming equi-
librium with randomization (SSCE�) of (�; f; �) if, for each i, there are a positive integer
ki 2 N, a vector of weights (&1i ; :::&

ki
i ) 2 R

ki
++ with

Pki
`=1 &

`
i = 1 and a vector of mixed strategies

(�1i ; :::; �
ki
i ) 2 [�(Si)]ki, such that

1. (aggregation) ��i =
Pki
`=1 &

`
i�
`
i ,

2. ( con�rmed rationality) for each ` = 1; :::; ki there is a belief p`i 2 �(�̂�i(�`i ; ���i)) with

�`i 2 arg max
�i2�(Si)

Z
�̂�i(�`i ;�

�
�i)
�i(Ui(�i; ��i))dp

`
i(��i)

A pro�le (��i )i2I satisfying condition 1 above is a Waldean selfcon�rming equilibrium
(WSCE�) of (�; f) if, for each i and `

�`i 2 arg max
�i2�(Si)

min
��i2�̂�i(�`i ;���i)

Ui(�i; ��i);

42We conjecture that, for generic payo¤s, this is enough to characterize aggregate equilibrium distributions
of pure strategies.
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and it is a Bayesian selfcon�rming equilibrium with randomization (BSCE�) of (�; f) if it is
a SSCE� of the game (�; f; �) with ambiguity neutral players, where each �i is the identity.
A Smooth (Waldean, Bayesian) equilibrium pro�le is symmetric if ki = 1 for each i 2 I.

Since for ambiguity neutral agents the value of an optimal mixed strategy is the same
as the value of any pure strategy in its support, the BSCE concept gives rise to the same
strategy distributions as the BSCE� concept:

BSCE = BSCE�:

Indeed, BSCE is a special case of BSCE� where agents do not randomize, and each BSCE�

is equivalent to a BSCE where agents of type ` in population i are further divided into
�subtypes�playing the pure strategies in the support of �`i .

A symmetric BSCE� is such that every pure strategy s�i played with positive probability
in equilibrium can be justi�ed by the same con�rmed belief pi. Thus, the symmetric BSCE�

concept is equivalent to the SCE with unitary beliefs of Fudenberg and Levine (1993a)
generalized to arbitrary feedback.

The comparative statics results and relationships of Section 4 extend seamlessly to equi-
libria with randomization (the same arguments apply almost verbatim with pure strategies
replaced by mixed strategies):

� the coarser the feedback, the larger the set of equilibria of each kind;

� under observable payo¤s, the set of SSCE�s becomes larger as ambiguity aversion
increases;

� under observable payo¤s and ambiguity aversion,

BSCE� � SSCE� �WSCE�;

furthermore, the �rst inclusion holds in every two-person game with any feedback and
ambiguity attitudes;

� in games with observable payo¤s and own-strategy independent feedback the three
kinds of SCE with randomization coincide with Nash equilibrium;

� in games with perfect information and perfect feedback every symmetric WSCE� is
also a symmetric SSCE� and BSCER where each player�s mixed strategy is justi�ed
by a con�rmed deterministic belief (hence, mixed strategies can only randomize o¤ the
equilibrium path).

That said, allowing for randomization considerably reduces the scope for di¤erences be-
tween the BSCE, SSCE and WSCE concepts. Indeed, they coincide in every two-person
game with observable payo¤s and ambiguity aversion.

Proposition 19 In two-person games, every WSCE� is also a SSCE� and BSCE�. Hence,
in two-person games with observable payo¤s the three kinds of SCE with randomization co-
incide; since BSCE = BSCE� it holds

BSCE = BSCE� = SSCE� =WSCE�:
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Intuitively, the wedge between BSCE, SSCE and WSCE is driven by the fact that the
uncertainty implied by partial identi�cation of the opponent�s strategy distribution a¤ects
di¤erently the �status quo�strategy played by an agent in equilibrium, which has a known
objective expected utility, and the alternative untested strategies, whose objective expected
utility is unknown. But the possibility to randomize reduces the extent to which model
uncertainty translates into uncertainty about the objective expected utility of the best devi-
ation. In particular, when strategies are evaluated according to the Waldean criterion, it is
easy to see that the incentive to deviate from a strategy s�i is stronger when randomization
is allowed:

max
si2Si

min
��i2�̂�i(s�i ;���i)

Ui(si; ��i) � max
�i2�(Si)

min
��i2�̂�i(s�i ;���i)

Ui(�i; ��i).

This point is illustrated by the zero-sum game discussed in the Introduction and carefully
analyzed in Section 5.

Example 20 Consider again the game of Figure 2 of the Introduction, assuming perfect
feedback (or observable payo¤s). Propositions 14 and 19 imply that WSCE� = NE. It is
not hard to verify this directly (for simplicity, we refer to the strategies of the reduced normal
form: O, H1, T 1, H2 and T 2; see Section 5). Mixed strategy 1

2H
2 + 1

2T
2 yields, for every

�2 2 �(S2),

U1

�
1

2
H2 +

1

2
T 2; �2

�
= 2 = max

�12�(S1)
min

�22�(S2)
U1(�1; �2) > 1 + " = u1(O):

Therefore the outside option O cannot be a Waldean best reply within the set of mixed
strategies, and ��1(O) = 0 for every �� 2 WSCE�. Furthermore, if a positive fraction
of agents played the low-stakes subgame MP 1 in an equilibrium ��, then they would learn
that ��2(h

1) = 1=2 and U1(H1; ��2) = U1(T
1; ��2) = 1:5, and would deviate to

1
2H

2 + 1
2T

2. In
sum, for every �� 2 WSCE�, ��1(H2) = ��1(T

2) = ��2(h
2) = 1=2, which implies that �� is a

Nash equilibrium. N

The two-person assumption in Proposition 19 is used to obtain the convexity of �̂�i(�`i ; �
�
�i),

which is crucial in the proof. But we are not aware of counterexamples with more than two
players.

Next we turn to the relationship between selfcon�rming equilibria with randomization
and Nash equilibrium. We know that NE � BSCE = BSCE� in all games, BSCE� �
SSCE� � WSCE� in two-person games with observable payo¤s, and analogous relations
hold for symmetric equilibria (in particular, every Nash equilibrium is also a symmetric
BSCE�). Of course, these results hold under perfect feedback, which implies observable
payo¤. Battigalli (1987) proved that, in two-person games with perfect feedback, every
symmetric BSCE� (a selfcon�rming equilibrium with unitary beliefs) is realization-equivalent
to a mixed Nash equilibrium. With this, Proposition 19 yields the following equivalence result
(consistently with our notation, we let �̂(�) denote the random path induced by the product
measure � = �i2I�i):

Proposition 21 In two-person games with perfect feedback, every symmetric WSCE� is
realization-equivalent to some mixed Nash equilibrium; therefore

�̂(symWSCE�) = �̂(symSSCE�) = �̂(symBSCE�) = �̂(NE):
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The two-person condition is tight. For instance, consider the �horse� game with three
players and imperfect information depicted in Figure 1. Path (A; a) (for any feedback struc-
ture) is supported by (Waldean, Bayesian, Smooth) symmetric selfcon�rming equilibria with
randomization, but it is not a pure or mixed Nash equilibrium path.43

7 Discussion and related literature

Let us take stock of what we did. We analyzed a notion of SCE with agents who have non-
neutral attitudes toward uncertainty on the true data generating process they are facing.
We argued that this uncertainty comes from a partial identi�cation problem: the mapping
from strategy distributions to the distributions of observations available to an agent is not
one to one. This is discussed and illustrated in the context of decision problems (Section 2)
before we move to the game theoretic analysis. We used as our workhorse the KMM smooth-
ambiguity model, which separates endogenous beliefs from exogenous ambiguity attitudes.
This makes our setup particularly well suited to connect with the previous literature on
SCE and to analyze how the set of equilibria changes with the degree of ambiguity aversion.
According to our main result, Theorem 6, the set of SSCE expands when agents become
more ambiguity averse (assuming observability of payo¤s). The reason is that agents learn
the expected utility values of the strategies played in equilibrium, but not of the strategies
they can deviate to, which are thus penalized by ambiguity aversion. This allows us to derive
intuitive relationships between di¤erent versions of SCE and show that Nash equilibrium is
a re�nement of all of them, which guarantees existence. Equivalence results are provided
under speci�c assumptions on the information structure. In the core sections of the paper
(Sections 3.1 and 4) we assume that agents play the strategic form of a dynamic game and
can only choose pure strategies. Mixed strategies are considered in Section 6 where we put
forward notions of equilibrium with randomization: on the one hand, our main results carry
over to these equilibrium concepts; on the other hand, we obtain equivalence results under
much weaker conditions.

We developed our theoretical insights in the framework of population games played re-
currently, but similar intuitions apply to di¤erent strategic contexts, such as dynamic games
with a Markov structure. Our insights are likely to have consequences for more applied work.
For example, the SCE and ambiguity aversion ideas have been applied in macroeconomics to
analyze, respectively, learning in policy making (see Sargent, 1999, and the references in Cho
and Sargent, 2008) and robust control (Sargent and Hansen, 2008). Our analysis suggests
that these two approaches can be fruitfully merged. Fershtman and Pakes (2011) put for-
ward a concept of �experienced based equilibrium�akin to SCE to provide a framework for
the theoretical and empirical analysis of dynamic oligopolies. They argue that equilibrium
conditions are, in principle, testable when agents beliefs are determined (if only partially)
by empirical frequencies, as in their equilibrium concept and SCE. Their model features ob-
servable payo¤s (�rms observe pro�ts), therefore a version of our main result should apply:
ambiguity aversion expands the set of equilibria.

43The same holds for symmetric Bayesian selfcon�rming equilibria supported by beliefs that satisfy in-
dependence across opponents. This can happen because the �horse� does not feature observable deviators.
On the other hand, in all games with perfect feedback and observable deviators, every such equilibrium is
realization equivalent to some Nash equilibrium. This can be shown directly. Kamada (2010) proves it as a
corollary of another result.
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We now discuss the following points: (1) We avoided dynamic consistency issues assuming
that agents play the strategic form of the game. How should we de�ne our equilibrium
concepts without this commitment assumption? How are our results going to be a¤ected?
(2) We clari�ed that our notions of SCE make sense under minimal assumptions about
agents�knowledge of the game. But under common knowledge of the game, stronger notions
of equilibrium should arguably be considered. (3) Like Fudenberg and Levine (1993a,b),
we assume that each agent has only access to his �personal database� of experiences in
the games he played. How is the SSCE concept a¤ected if agents have access to a �public
database�? (4) Fudenberg and Levine (1993b) give a steady state learning foundation to
the SCE concept, is it possible to do the same for SSCE? We close with a discussion of the
related literature.

7.1 Dynamic consistency

When agents really play an extensive-form game, not its strategic form, they cannot com-
mit to any strategy. A strategy for an agent is just a plan that allows him to evaluate
the likely consequences of taking actions at any information set. The plan is credible and
can be implemented only if it prescribes, at each possible information set, an action that
has the highest value, given the agent�s belief and planned continuation. Plans with this
unimprovability property can be obtained by means of a backward induction procedure on
the subjective decision tree implied by the agent�s beliefs. Such a procedure may have to
break ties. How ties are broken is immaterial for an ambiguity neutral agent, but matters
for a non-neutral one. Consider two information sets of player i, viz. �hi and hi, so that �hi
immediately precedes hi in the tree of information sets of i, and let �i(�hi; hi) be the action at
�hi that leads to hi.44 If ties at hi are broken so as to maximize the value of action �i(�hi; hi)
(and further ties are broken to maximize the value of �i(ĥi; �hi), where ĥi is the immediate
predecessor of �hi, and so on), the resulting strategy satis�es consistent planning. We can
make this precise in the context of the smooth-ambiguity model, and thus provide notions
of SSCE assuming unimprovability, or consistent planning. For brevity, we write SSCE� to
refer to such smooth selfcon�rming equilibria with dynamic consistency. What di¤erence
does dynamic consistency make?

It is well known that the strategies that an ambiguity averse agent would commit to,
if he could, need not be unimprovable.45 Therefore, SSCE� is not equivalent to SSCE.
Furthermore, it is not obvious whether our main comparative statics result is valid with this
de�nition. We can o¤er examples and intuitions based on our preliminary analysis of this
issue.

44Perfect recall implies that function �i(�; �) is well de�ned, and that the collection of information sets of i
(plus the singleton containing the root of the game, and with the obvious precedence relation derived from
precedence between nodes) is a tree.
45Siniscalchi (2011) reports examples and provides an in-depth analysis of dynamic consistency under

ambiguity aversion.
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Example 22 The game �w given by

1
in�! 0

c ( 1
2
)

�!
# out # s (12)
1:7 2

1nf2; 3g L; l R; l L; r R; r

T 4 0 0 0

M 0 0 0 4

B w w w w

Figure 6. Game �w

is a three-person, common interest game with a chance move.46 The objective 1
2 :

1
2 probabil-

ities of this move are known. Parameter w > 1 is the �Waldean value�of the subgame with
root (in; c). Assume that the agent in role 1 has the following correlated belief:

p1 = � 1
2
c+ 1

2
d �

�
1

2
�L � �l +

1

2
�R � �r

�
:

Intuitively, he thinks that all the agents playing in roles 2 and 3 �attended the same school�
and hence are doing the same thing, but he does not know what. Suppose his ambiguity
attitudes are represented by �1(�) =

p
�. On the one hand, actions T and M, once the

matrix game is reached, have value
�
1
2

p
4 + 1

2

p
0
�2
= 1. On the other hand, from the per-

spective of the agent at the root of �w, the value of committing to strategy in:T (or in:M)
is
�
1
2

p
3 + 1

2

p
1
�2
= 1 +

p
3
2 > 1:7,47 and strategy in:B has value 1

22 +
1
2w = 1 + w

2 . If
1 < w < 1:4, the unique dynamically consistent strategy is out:B, which is also an SSCE�

supported by belief p1, for any f , �2, and �3. But, under perfect feedback, there is no SSCE
(with commitment) supported by such beliefs: the set of best responses to p1 is fin:T; in:Mg,
but playing in reveals the true strategy distributions of agents playing in roles 2 and 3 (out
is supported as an SSCE with commitment under di¤erent beliefs). N

The following example shows that a naive extension of our main result, Theorem 6, to
SSCE� does not hold. Speci�cally, there are games (�; f; �) and (�; f; ��), with the former
more ambiguity averse than the latter, and a pro�le of strategy distributions �� that is a
SSCE� of (�; f; ��) but not a SSCE� of (�; f; �).

Example 23 The game � given by

1
in�!

# out
2

1nf2; 3g L;` R;` L; r R; r

T 4 0 0 0

M 0 0 0 4

B 2 2 2 2

Figure 7. Game �

is a three-person, common interest game. It can be checked that out:T is an SSCE� strategy if
player 1 is ambiguity neutral. There is exactly one belief supporting out:T as an unimprovable
strategy for an ambiguity neutral agent:

p�1 =
1

2
(�L � �`) +

1

2
(�R � �r):

46Numbers at terminal nodes, including the boxes in the matrix subgame, give the common payo¤; chance
is labeled 0.
47Here is where the numbers under

p
� come from: 3 = U1(in:T; �0 � �L � �l), 1 = U1(in:T; �0 � �r � �r),

with �0 = 1
2
c + 1

2
s.
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To see this, �rst note that out:T is unimprovable under any belief p1 if and only if �p1(L;`) =
1
2 = �p1(R; r); indeed, if maxf�p1(L;`); �p1(R; r)g > 1

2 , then the best response at the root is in, if
maxf�p1(L;`); �p1(R; r)g � 1

2 and minf�p1(L;`); �p1(R; r)g <
1
2 , then the unique best reply in the

subgame is B. Next observe that player 1 is certain that the objective distribution of strategy
pairs of f2; 3g is a product measure, i.e., p1 2 �(�(S2)
�(S3)), implying that p�1 is the
unique belief with the predictive 1

2 :
1
2 on (L;`) : (R; r). Now, consider � and

�� with ��1 = IdR,
�1 strictly concave and �j = ��j for j = 2; 3. Strategy out:T is not unimprovable for (p

�
1; �1)

because the value of T is ��11
�
1
2�1(4) +

1
2�1(0)

�
< 2 (by the strict concavity of �1). More

generally, for every p1 such that �p1(L; l) � 1
2 , the �1-value of T is strictly less than 2 (let

� = �2(L), � = �3(l), then the value of T is

��11

 Z
[0;1]2

�1(4��)p1(d�� d�)
!
<

Z
[0;1]2

4��p1(d�� d�) = 4�p1(L;`)

by the strict concavity of �1, whenever p1 is not a Dirac measure; if �p1(L;`) � 1
2 then the value

of T is less than 2). Therefore, out:T is a SSCE� strategy of (�; f; ��), with �� = (IdR; �2; �3),
but not of the more ambiguity averse game (�; f; �). Letting �2 = �3 = IdR, this also shows
that a BSCE� need not be a SSCE�.

Although out:T is not a SSCE� strategy in the more ambiguity averse game (�; f; �),
the realization-equivalent strategy out:B is. We conjecture that the following version of the
comparative statics result holds: if �� is a SSCE� of (�; f; ��) and (�; f; �) is more ambiguity
averse than (�; f; ��), then there is a SSCE� of (�; f; �) realization-equivalent to ��. N

There is another problem related to dynamic consistency: as in Fudenberg and Levine
(1993a), the notion of best reply used in this paper allows for suboptimal behavior at unex-
pected information sets. For example, suppose that, in the game of Figure 1, it is strictly
dominant for player 0 (whose payo¤s are not speci�ed) to choose action R if his information
set is reached. A re�ned dynamically consistent notion of SCE should require that the strat-
egy (or plan) of 0 is R even if his information set is not reached in equilibrium. To deal with
this problem we can represent players�beliefs as conditional probability systems: an agent
in role i has an initial belief pi, for each information set hi he would hold a corresponding
conditional belief pi(�jhi) over the strategy distributions of the opponents, and these beliefs
are related to each other via Bayes rule whenever possible (see, for example, Battigalli and
Siniscalchi, 1999). With this, we can give stronger versions of unimprovability and consistent
planning to obtain a re�ned notion of SSCE�. It can be shown that this re�nement does
not change the set of equilibrium outcomes. The reason is simple: agents are not assumed
to know the preferences of others and may have incorrect beliefs about the choices of others
at o¤-equilibrium-path information sets. The re�nement has bite when mutual or common
knowledge of the game is assumed, as discussed in the following subsection.

7.2 Rationalizable selfcon�rming equilibrium

In a selfcon�rming equilibrium agents are rational and their beliefs are con�rmed. If the
game48 is common knowledge, it is interesting to explore the implications of assuming, on top
of this, that there is common certainty (probability-one belief) of rationality and con�rmation

48Or, at least, a part of the game such as (�; f).
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of beliefs. Interestingly, the set of rationalizable SCE s thus obtained may be a strict subset
of the set of SCEs consistent with common certainty of rationality, which in turn may be a
strict subset of the set of SCEs.49 The separation between ambiguity attitudes and beliefs
in the smooth-ambiguity model allows a relatively straightforward extension of this idea to
obtain a notion of rationalizable SSCE. Of course, to take dynamic consistency issues into
account, this notion of rationalizable SSCE should rely on a de�nition of sequential best
response based on re�ned unimprovability, or consistent planning. For example, if in the
game of Figure 1 action R of player 0 is strictly dominant (conditional on his information
set being reached), then the only re�ned rationalizable SSCE� is (A; d;R).

7.3 Selfcon�rming equilibrium with a public database

The SSCE concept de�ned in this paper, like Fudenberg and Levine�s SCE, rests on the as-
sumption that agents have only access to their personal experiences. How does this a¤ect our
results? The answer is quite straightforward if, like Fudenberg and Levine, we assume perfect
feedback. In this case, the �public database� induced a by pro�le of strategy distributions
� is �̂(�) 2 �(Z). The key observation is that the �personal database�of an agent playing
si 2 supp�i is subsumed by the �public database�: personal experiences allow to learn the
conditional frequencies of opponents�actions at the opponents�information sets visited with
positive frequency under (si; ��i), a sub-collection of the collection of opponents�informa-
tion sets visited with positive frequency under (�i; ��i). Therefore �� is a public SSCE if for
each i and s�i 2 supp��i there is some pi 2 �̂�i(��) = f��i : 9�i 2 �(Si); �̂(�i; ��i) = �̂(��)g
such that s�i is a smooth best response to pi. (It can be shown that this is equivalent to a
de�nition of SSCE with unitary beliefs whereby the justifying belief pi must be the same for
all strategies in supp��i .) Our results can be adapted to this de�nition of public SSCE. If
perfect feedback does not hold, the analysis is more complex. First, it is not obvious what a
�public database�is supposed to be. Second, for some de�nitions of �public database,�the
personal database need not be subsumed by the public one. Di¤erent de�nitions of SSCE
look plausible and it is not clear to us which of our main results can be adapted to such
de�nitions.

7.4 Learning and steady states

Fudenberg and Levine (1993,b) provide a learning foundation of selfcon�rming equilibrium
within an overlapping generation model with stationary aggregate distributions. The sta-
tionarity assumption is a clever trick that allows to use consistency and convergence results
in Bayesian statistics about sampling from a ��xed urn�of unknown distribution. It would
be important to extend such results to the smooth-ambiguity model and SSCE, and to use
results on updating of sets of priors to obtain an analogous learning foundation for the WSCE
concept proposed here. Our conjecture is that, with observable payo¤s, ambiguity averse
agents stop experimenting sooner than ambiguity neutral agents. The intuition is as follows:
as an ambiguity averse agent comes close to learning the probabilities of payo¤s associated
to strategies played many times, the strategies tried only a few times and hence involving
higher uncertainty become relatively less appealing (see Anderson, 2012). Fudenberg and
Levine (2006) obtain a re�nement of SCE based on the idea of steady-state learning with

49See the references on rationalizable SCE in the literature review (subsection 7.5).
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extremely patient and long-lived agents and illustrate it with an application. Similar ideas
are worth exploring in the current framework.

7.5 Related literature

Several papers analyze notions of equilibrium in games where agents have non-neutral atti-
tudes toward uncertainty (e.g., Dow and Werlang 1994, Klibano¤, 1996, Lo 1996, Eichberger
and Kelsey 2000, Marinacci 2000, and more recently Bade, 2011, and Riedel and Sass, 2011
and the references therein). These papers adopt the Nash equilibrium idea that players best
respond to beliefs that are, in some sense, correct. We di¤er from this literature, because we
only require beliefs to be con�rmed, allowing them to be incorrect. The reason is that we
point to a speci�c rationale for equilibrium, i.e., that it represents a rest point of a learning
process, and we take its consequences into account. Another important di¤erence with sev-
eral papers in this literature is that we model beliefs as measures over strategy distributions
rather than pure strategies. This follows from our population game scenario which implies
the mass action interpretation of mixed strategies.

To the best of our knowledge, the papers most related to our idea of combining SCE with
non-neutral attitudes toward uncertainty are Lehrer (2012) and Lehrer and Teper (2009).
In these papers a decision maker (DM) is endowed with a �partially speci�ed probability�
(PSP), that is, a list of random variables de�ned on a probability space. The DM knows
only the expected values of the random variables, hence he is uncertain about the true
underlying probability measure within the set of all measures that give rise to such values.
Lehrer (2012) axiomatizes a decision criterion equivalent to the maximization of the minimal
expected utility with respect to the set of probability measures consistent with the PSP.
Then he de�nes a notion of equilibrium with partially speci�ed probabilities for a game
played in strategic form. Under his strong assumptions on information feedback, Lehrer�s
equilibrium is similar the one we obtain in the �Waldean� case.50 Tho see this, note that
in our approach, for each i and si, we have a PSP: the probability space is (S�i; ��i), the
random variables are the indicator functions of the di¤erent messages (ex post observations),
and their expectations are the objective probabilities of the messages.51 Lehrer and Teper
(2009) explicitly relate their work to the SCE literature, but the decision criterion they
axiomatize for a given PSP, a kind of dual of Bewley�s (2002) Knightian criterion featuring
intransitivity, is quite di¤erent from those considered here.

We are not going to thoroughly review the vast literature on uncertainty and ambiguity
aversion, which is covered by a comprehensive recent survey (Gilboa and Marinacci, 2011).
We only mention that in the paper we rely on the decision theoretic framework of Cerreia-
Vioglio, Maccheroni, Marinacci, and Montrucchio (2011b) that makes formally explicit the
DM�s uncertainty about the true probabilistic model, or data generating process.

50Lehrer assumes that each player obtains separate feedback about each opponent�s strategy and this
feedback is independent of the strategy he plays. In subsection 4, we show that when this independence
assumption is coupled with the natural assumption of observability of payo¤s, every type of SCE is equivalent
to Nash equilibrium (Proposition 10). Lehrer�s approach can perhaps be generalized by removing the implicit
asusmption of own-strategy independence of feedback. However, we think this assumption is essential to
prove existence of equilibrium by the standard techniques hinted at by Lehrer (who omits the proof).
51That is, the random varibles are the functions 1fs0�i:Fsi (s0�i))=mg(s�i) (m 2 Fsi(S�i) � M), and their

expectations are the frequencies F̂i(si � ��i)(m). Clearly, �̂�i(si; ��i) is the set of distributions consistent
with such PSP on (S�i; ��i).
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We brie�y review the literature on SCE and related ideas, which is not covered by any
comprehensive survey.52 Hahn (1973) intuitively, but quite clearly articulates the idea that
an economic system is in equilibrium when agents�strategies are best replies to beliefs con-
�rmed by the evidence generated by the actual strategy pro�le. Later, Hahn called such
states �conjectural equilibria,�but he did not provide the game-theoretic formalization that
is necessary to express his original idea properly (see Hahn 1977, 1978). Battigalli (1987)
provided a precise game theoretic de�nition of such equilibria, explicitly, but only intuitively
motivating it as a characterization of rest points of learning dynamics in recurrent games.53

Similarly to our paper, information partitions of the set of terminal nodes (complete paths)
are introduced among the primitives of the framework, and it is noted that strategies in
non-trivial extensive-form games cannot be perfectly observable ex post, even under the as-
sumption of perfect feedback, i.e., of perfect ex post observability of the path. The simple
reason is that contingent choices at o¤-path information sets cannot be observed. Hence,
the opponents�mixed strategies consistent with observed frequencies are only partially iden-
ti�ed, leaving players in a state of uncertainty. This makes �conjectural equilibrium� a
coarser concept than Nash equilibrium, although a path-equivalence result is established for
two-person games. Battigalli (1987) studied conjectural equilibria satisfying two properties:
(i) unitary beliefs: all the pure strategies in the support of a player�s mixed strategy are best
replies to the same beliefs about others, and (ii) such beliefs satisfy stochastic independence.
Although worth exploring, such properties are not warranted by a rigorous learning analy-
sis, which was �rst provided in independent work by Fudenberg, Kreps and Levine (see in
particular Fudenberg and Kreps 1995, and Fudenberg and Levine, 1993a,b). While explor-
ing the learning foundations for the Nash equilibrium concept, these authors realized that
non-Nash states �called �selfcon�rming equilibria��can be stationary and also asymptot-
ically stable under learning. Roughly, what they call �selfcon�rming equilibria�correspond
to Battigalli�s conjectural equilibria under the perfect feedback assumption, once the unitary
belief and independence assumptions are dropped. Since then, �selfcon�rming equilibrium�
has been used for models with perfect feedback, and �conjectural equilibrium� for models
where feedback may be imperfect.54 But this is like using di¤erent names for equilibria of
games with di¤erent rules, as old oligopoly theory used to do with the Nash equilibria of
di¤erent models. We think a uni�ed terminology is called for, and hence we adopted the
more self-explanatory �selfcon�rming equilibrium.�

Kalai and Lehrer (1993a,b, 1995) analyzed a similarly motivated notion of equilibrium,
called �subjective equilibrium,�in the context of repeated games, where patient players have
to take into account the impact of their current actions on the opponents�future behavior.
They showed that when players best respond to beliefs about their opponents� repeated-
game strategies and if beliefs and strategies are such that players cannot be �surprised,�
then continuation-strategies and beliefs converge to a subjective equilibrium, which turns
out to be realization-equivalent to a Nash equilibrium under perfect monitoring.

52For partial surveys, see Battigalli et al (1992) and chapter 6 of Fudenberg and Levine (1998). Cho and
Sargent (2008) brie�y survey the macroeconomic applications of the selfcon�rming equilibrium idea.
53The �rst work in English on this notion of equilibrium is Battigalli and Guaitoli (1988), eventually

published in 1997.
54An exception to this terminology is Fudenberg and Kamada (2011): they consider a generalization of

Battigalli�s conjectural equilibrium that allows for correlated beliefs and call it �partition con�rmed equilib-
rium.�
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The set of SCE is even larger than the set of Nash equilibria, but it can be re�ned in
conceptually meaningful ways. Eyster and Rabin (2005), Jehiel (2005), Esponda (2008) and
Azrieli (2009a) proposed equilibrium notions that can be interpreted as re�nements of SCE
based on the assumption that agents have simple, or naive, subjective models of the behavior
of others. As mentioned in Section 7.4, Fudenberg and Levine (2006) analyze a re�nement
of SCE (for a simple class of perfect information games) based on steady-state learning with
extremely patient and long-lived agents. Battigalli (1987) re�ned the set of SCE by looking
at those that, intuitively, satisfy a form of common belief in extensive-form rationality (see
also Battigalli and Guaitoli, 1988, 1997). More interestingly, and independently, Rubinstein
and Wolinsky (1994) analyzed rationalizable SCE, i.e., states where (1) players are rational,
(2) their beliefs are con�rmed (but possibly incorrect), and there is common belief of (1) and
(2).55 Similar ideas have been explored in the context of extensive-form games by Battigalli
(1999), Dekel et al (1999), Fudenberg and Kamada (2011), and in the context of incomplete-
information games by Battigalli and Siniscalchi (2003), Esponda (2011) and Letina (2011).
Building on Battigalli and Siniscalchi (2002), Battigalli and Siniscalchi (2003) provide a
re�ned, forward-induction version of the rationalizable SCE concept.56

8 Appendix

8.1 Proofs for Section 2

We start with a preliminary observation.

Remark 24 For each � 2 �(A), and �� 2 �(
),

�̂(�; ��) � f� 2 �(
) : F̂ (�� �) = F̂ (�� ��)g.

Proof The inclusion follows from the following equation F̂ (���) =
P
a �(a)F̂ (�a��).57

�

Proof of Lemma 1 Since payo¤s are observable, there exists a function �u : Im f ! R such
that u = �u � f . For each � 2 �(
) it holds

U (�; �) =
X
a2A

X
!2


(�u � f) (� (a; !))� (!)�(a)

=
X
a2A

X
!2


(�u � Fa) (!)� (!)�(a) =
X
m2M

�u (m) F̂� (�) (m) :

This implies U (�; �) = U (�; ��) if F̂� (�) = F̂� (��). By Remark 24, the latter condition is
implied by � 2 �̂ (�; ��). �
55See Section 7.2. In static games, this re�nes Battigalli�s (1987) equilibria, who only rest on the assumptions

of rationality, con�rmed beliefs, and common belief in rationality (but not in con�rmed beliefs).
56Esponda and Letina provide rigorous, epistemic and algorithmic characterizations rationalizable selfcon-

�rming equilibrium. Battigalli (1999) and Battigalli and Siniscalchi (2003) also provide algorithmic charac-
terizations, but they refer to the extensive-form epistemic analysis of Battigalli and Siniscalchi (1999, 2002)
for a rigorous epistemic characterization.
57 It can be shown by example that the inclusion may be strict.
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Proof of Lemma 2 Since f is coarser that �f , there is a function ' : Im �f ! M such that
f = ' � �f . Hence, F = ' � �F . Fix �� 2 �(
) and � 2 b�� (�; ��) (partially identi�ed set with
�ner feedback), so that b�F a (�) = b�F a (��) for each a 2 Supp�. We show that � 2 �̂ (�; ��)
(partially identi�ed set with coarser feedback). We have

� 2 �̂ (�; ��)() F̂a (�) = F̂a (�
�) 8a 2 Supp�

() � (Fa = m) = �
� (Fa = m) 8a 2 Supp�; 8m 2M

() �
�
' � �Fa = m

�
= ��

�
' � �Fa = m

�
8a 2 Supp�; 8m 2M

() �
�
�F� 2 '�1 (m)

�
= ��

�
�Fa 2 '�1 (m)

�
8a 2 Supp�; 8m 2M

() b�F a (�) �'�1 (m)� = b�F a (��) �'�1 (m)� 8a 2 Supp�; 8m 2M

Since we assumed b�F a (�) = b�F a (��) for each a 2 Supp�, we conclude that � 2 �̂ (�; ��). �
8.2 Proofs for Section 4

Proof of Proposition 5 Let �� be a SSCE for the less coarse game
�
�; �f; �

�
. By Lemma

2, b���i(s�i ; ���i) � �̂�i(s�i ; ���i) for each i and s�i 2 supp��i , which easily implies that �� be a
SSCE for the coarser game (�; f; �). A similar argument holds for WSCE. �

Proof of Theorem 6 By de�nition, there exists a pro�le ('i)i2I of strictly increasing and
concave functions such that �i = 'i � ��i for each i. Let �� be a SSCE of

�
�; f; ��

�
. Fix i 2 I,

and pick s�i 2 supp��i , ps�i 2 �(�̂�i(s
�
i ; �

�
�i)) such that s

�
i 2 argmaxsi2Si Vi(si; ps�i ; ��i). We

want to show that s�i 2 argmaxsi2Si Vi(si; ps�i ;�i), which implies the �rst claim. Since payo¤s
are observable, by Lemma 1 Ui(s�i ; ��i) = Ui(s

�
i ; �

�
�i) for each ��i 2 �̂�i(s�i ; ���i). Thus

Vi(s
�
i ; ps�i ;�i) = Ui(s

�
i ; �

�
�i) = Vi(s

�
i ; ps�i ;

��i). (18)

Next observe that, for any si 2 Si,

Vi(si; ps�i ;
��i) = ��

�1
i

 Z
�̂�i(s�i ;�

�
�i)

��i(Ui(si; ��i))dps�i (��i)

!

= (��
�1
i � '�1i ) � 'i

 Z
�̂�i(s�i ;�

�
�i)

��i(Ui(si; ��i))dps�i (��i)

!

� (��
�1
i � '�1i )

 Z
�̂�i(s�i ;�

�
�i)
('i � ��i)(Ui(si; ��i))dps�i (��i)

!

= ��1i

 Z
�̂�i(s�i ;�

�
�i)
�i(Ui(si; ��i))dps�i (��i)

!
= Vi(si; ps�i ;�i)

where we used Jensen�s inequality and �i = 'i � ��i. Hence,

Vi(si; ps�i ;�i) � Vi(si; ps�i ; ��i) � Vi(s
�
i ; ps�i ;

��i) = Vi(s
�
i ; ps�i ;�i)

for each si 2 Si, which shows that s�i 2 argmaxsi2Si Vi(si; ps�i ;�i).
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We now prove that SSCEs are WSCEs. Let �� be a SSCE of a game (�; f; �). Fix i 2 I,
and pick s�i 2 supp��i , ps�i 2 �(�̂�i(s

�
i ; �

�
�i)) such that s

�
i 2 argmaxsi2Si Vi(si; ps�i ;�i). We

show that s�i 2 argmaxsi2Si Vi(si; �̂�i(s�i ; ���i)) where

Vi(si; �̂�i(s
�
i ; �

�
�i)) = min

��i2�̂�i(s�i ;���i)
U (si; ��i)

Since payo¤s are observable, by (18) it holds

Vi(s
�
i ; �̂�i(s

�
i ; �

�
�i)) = Ui(s

�
i ; �

�
�i) = Vi(s

�
i ; ps�i ;�i) � Vi(si; ps�i ;�i) (19)

for each si 2 Si. Next observe that for, each �0�i 2 �̂�i(s�i ; ���i) and each si 2 Si,

Ui(si; �
0
�i) � min

��i2�̂�i(s�i ;���i)
U (si; ��i)

=) �i
�
Ui(si; �

0
�i)
�
� �i

 
min

��i2�̂�i(s�i ;���i)
U (si; ��i)

!
:

This implies that, for each �0�i 2 �̂�i(s�i ; ���i) and each si 2 Si,Z
�̂�i(s�i ;�

�
�i)
�i
�
Ui(si; �

0
�i)
�
dps�i (�

0
�i) �

Z
�̂�i(s�i ;�

�
�i)
�i

 
min

��i2�̂�i(s�i ;���i)
U (si; ��i)

!
dps�i (�

0
�i)

which in turn implies

Vi(si; ps�i ;�i) = ��1i

 Z
�̂�i(s�i ;�

�
�i)
�i
�
Ui(si; �

0
�i)
�
dps�i (�

0
�i)

!

� ��1i

 Z
�̂�i(s�i ;�

�
�i)
�i

 
min

��i2�̂�i(s�i ;���i)
U (si; ��i)

!
dps�i (�

0
�i)

!
= Vi(si; �̂�i(s

�
i ; �

�
�i)):

This latter inequality paired with (19) delivers that

Vi(s
�
i ; �̂�i(s

�
i ; �

�
�i)) � Vi(si; �̂�i(s�i ; ���i)) 8si 2 Si

proving the statement. �

Proof of Lemma 7 Pick any i and pure strategy s�i 2 supp��i . Then Ui
�
s�i ; �

�
�i
�
�

Ui
�
si; �

�
�i
�
for each si 2 Si. Given any feedback function f it holds ���i 2 �̂�i(s�i ; ���i).

Hence, ����i 2 �
�
�̂�i(s�i ; �

�
�i)
�
. Since Vi

�
si; ����i ; �i

�
= Ui (si; �

�
i ) for every weighting

function �i and si 2 Si, it follows that �� is a SSCE of (�; f; �). �

Proof of Proposition 10 Given the previous results, we only have to show that every
WSCE is a Nash equilibrium. Fix a WSCE ��, any player i and any s�i 2 supp��i . Then,
for each si

Vi(s
�
i ; �̂�i(s

�
i ; �

�
�i)) � Vi(si; �̂�i(s�i ; ���i)).
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By Lemma 1, observability of payo¤s implies Ui(si; ��i) = Ui(si; �
�
�i) for all si and ��i 2

�̂�i(si; ���i). Own-strategy independence of feedback implies that, for every si, F�i(si) =
F�i(s�i ), hence

�̂�i(si; �
�
�i) =

�
��i : 8C�i 2 F�i(si); ��i (C�i) = ���i (C�i)

	
=

�
��i : 8C�i 2 F�i(s�i ); ��i (C�i) = ���i (C�i)

	
= �̂�i(s

�
i ; �

�
�i).

From the above equalities and inequalities we obtain, for each si,

Ui(s
�
i ; �

�
�i) = Vi(s

�
i ; �̂�i(s

�
i ; �

�
�i)) � Vi(si; �̂�i(s�i ; ���i)) = Vi(si; �̂�i(si; ���i)) = Ui(si; ��i ):

This shows that �� is a Nash equilibrium. �

Proof of Proposition 11 As in Chapter 6 of Osborne and Rubinstein (1994), nodes of the
game tree are histories (sequences of action pro�les) h, with � denoting the strict precedence
�pre�x of� relation, Hi is the set of histories where i moves, H�i is the complement of Hi
within the set of non-terminal histories, the action selected by strategy si at h 2 Hi is
denoted by si(h), where si(h) belongs to A(h), the set of feasible actions for i at h 2 Hi.

To ease notation, for every pure strategy pro�le s, we write �̂�i(si; �s�i) = �̂�i(s).
We show that, if s� is a symmetric WSCE, then for each i there is pure strategy pro�le
�s�i 2 �̂�i(s�) such that s�i 2 argmaxsi2Si Ui(si; �s�i); this implies the claim. Let s� = (s�i )i2I
be a symmetric WSCE. By perfect information, the pseudo-player (coalition) �i has perfect
recall. By Theorem 4 in Kuhn (1953), each ��i is realization-equivalent to a behavioral
strategy (pro�le) ��i 2 �h2H�i�(A(h)), which �again by Kuhn�s theorem �is realization-
equivalent to a correlated strategy q�i 2 �(S�i). Similarly, for each q�i 2 �(S�i) there
is a realization-equivalent ��i 2 
j 6=i�(Sj). Given perfect feedback, for each i, �̂�i(s�) is
therefore �realization-equivalent�to the convex hull of set of pure strategy pro�les

Ŝ�i(s
�) := fs�i 2 S�i : 8h 2 H�i; h � �(s�)) s�i(h) = s

�
�i(h)g:

That is, for each ��i 2 �̂�i(s�) there is a realization equivalent predictive belief q�i 2
�(Ŝ�i(s�)) and viceversa. �̂�i(s�) is the set of strategies of coalition �i in a modi�ed zero-
sum game between i and �i where �i has only one feasible action, s��i(h), at each h 2 H�i
preceding �(s�), and the payo¤ function of i is the restriction of ui on the smaller set of
terminal histories thus obtained. Like the original game, this auxiliary zero-sum game has
perfect information, hence it has a saddle point in pure strategies. Taking into account that
s� is a WSCE, the realization-equivalence of �̂�i(s�) and �(Ŝ�i(s�)) yields58

s�i 2 arg max
si2Si

min
��i2�̂�i(s�)

Ui(si; ��i) = arg max
si2Si

min
q�i2�(Ŝ�i(s�))

Ui(si; s�i)

= arg max
si2Si

min
s�i2Ŝ�i(s�)

Ui(si; s�i).

Any strategy pro�le
�s�i 2 arg min

s�i2Ŝ�i(s�)
Ui(s

�
i ; s�i)

is a con�rmed degenerate belief justifying s�i . �
58 It does not matter how a strategy si is speci�ed at histories outside the modi�ed game.
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Proof of Proposition 12 We �rst show that �(detNE) = �(symBSCE), then we use
Proposition 11 the rest.

Let s� = (s�i )i2I be a BSCE supported by belief pro�le (p�i )i2I . Consider the set of
opponents of any player i as a unique pseudo-player �i. By the same argument as in
the proof of Proposition 11, perfect information implies that �i has perfect recall and
therefore the predictive belief �p�i 2 �(S�i) is realization-equivalent to an uncorrelated pre-
dictive belief (a pro�le of mixed strategies) �q�i 2 
j 6=i�(Sj). Thus, s� is a symmetric
BSCE supported by uncorrelated beliefs. Furthermore, perfect information implies ob-
servable deviators. Kamada (2010) proved a (a stronger version of) the following state-
ment: in games with observable deviators and perfect feedback every symmetric BSCE
supported by uncorrelated beliefs induces the same path as some mixed Nash equilibrium.
Therefore �(symBSCE) � �(detNE). Now �x a Nash equilibrium �� with a determin-
istic path, and take a representation of �� with behavioral strategies, say ��. By as-
sumption �� is pure on the equilibrium path. Modify �� o¤ the path so as to obtain
a pure strategy pro�le s�. Like ��i , also s

�
i is a best reply to product measure �

�
�i, be-

cause the o¤-the-path actions of i do not a¤ect his expected utility. Furthermore, s�

and �� induce the same path; therefore, for each i, �̂�i(s�i ; �
�
�i) = �̂�i(s�i ; s

�
�i). It fol-

lows that s� is a symmetric BSCE supported by belief pro�le (���i)i2I . This establishes
that �(detNE) � �(symBSCE). Hence �(detNE) = �(symBSCE). Then Proposi-
tion 11 implies that �(detNE) = �(symBSCE) = �(symWSCE). Perfect feedback im-
plies observable payo¤s. Therefore, if there are either 2 players or n ambiguity averse
players BSCE � SSCE � WSCE, which by the previous result implies �(detNE) =
�(symBSCE) = �(symSSCE) = �(symWSCE). �

8.3 Proofs for Section 5

Proof of Proposition 14. For any prior p1, the ambiguity neutral subjective value of
playing any Matching Pennies subgame k is

maxfV1(Hk; p1); V1(T
k; p1)g

= maxf[�pk1(hk)(n+ 2(k � 1)) + (1� �pk1(hk))(n� k); [�pk1(hk))(n� k) + (1� �pk1(hk))(n+ 2(k � 1))g

� n� 1 + k
2
> n� 1 + " = u1(O),

where n � 1 + k=2 is the mixed maxmin value of subgame k, �pk1 = mrgS2:k �p1 and �p1 is the
predictive belief. Therefore O cannot be played by a positive fraction of agents in a BSCE
because it cannot be a best response to any predictive belief �p1. Furthermore, no strategy
Hk or T k with k < n can have positive measure in a BSCE. Indeed, by (14), if sk1 2 fHk; T kg
has positive probability in an equilibrium ��, then for every belief p1 2 �(�̂�1(sk1; ��2)), the
value of sk1 is

V1(s
k
1; p1) = U1

�
sk1; �

�
�f1;2:kg �

�
1

2
hk +

1

2
tk
��

= n� 1 + k
2
,

while the ambiguity neutral value of deviating to subgame n is

maxfV1(Hn; p1); V1(T
n; p1)g � n� 1 +

n

2
:
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Therefore, eq. (14) implies ��1(H
n) = ��1(T

n) = ��n(h
n) = 1

2 in each BSCE �
�. It is routine

to verify that every such �� is also a Nash equilibrium. Therefore BSCE = NE. �

The proof of Lemma 15 is based on the following lemma, where I is the unit interval
[0; 1] endowed with the Borel �-algebra.

Lemma 25 Let ' : I ! R be increasing and concave. For each Borel probability measure
p on I

max

�Z
I
' (x) dp (x) ;

Z
I
' (1� x) dp (x)

�
� 1
2
' (1) +

1

2
' (0) : (20)

Proof. Let
� : I ! I

x 7! 1� x :

Then Z
I
' (1� x) dp (x) =

Z
I
' (� (x)) dp (x) =

Z
I
' (y) dp� (y)

where p� = p � ��1. In particular, for ' = idI it follows that 1 �
R
I xdp (x) =

R
I ydp� (y).

Thus (20) becomes

max

�Z
I
' (x) dp (x) ;

Z
I
' (x) dp� (x)

�
� 1
2
' (1) +

1

2
' (0)

and either
R
I xdp (x) � 1=2 or

R
I ydp� (y) � 1=2. Next we show that for each Borel probability

measure q on I such that
R
I xdq (x) � 1=2Z

I
' (x) dq (x) � 1

2
' (1) +

1

2
' (0) : (21)

Denote by F (x) = q ([0; x]) and by G (x) =
�
1
2�0 +

1
2�1
�
([0; x]) : In particular, F and G are

increasing, right continuous, and such that F (1) = G (1) = 1, moreover G (x) = 1=2 for all
x 2 [0; 1). Moreover, there exists �x 2 (0; 1) such that F (�x) � 1=2. By contradiction, assume
F (x) > 1=2 for all x 2 (0; 1), then

1

2
�
Z
I
xdq (x) =

Z 1

0
(1� F (x)) dx < 1

2
:

if F (0) = q (f0g) > 1=2, thenZ
I
xdq (x) � 0q (0) +

Z
(0;1]

xdq (x) � 0q (0) +
Z
(0;1]

1dq (x) � 0q (f0g) + (1� q (f0g)) < 1

2

contradicting
R
I xdq (x) � 1=2. Let x

� = inf fx 2 I : F (x) > 1=2g, then 0 < �x � x� � 1.
Therefore F (1) = G (1) = 1 and for each y 2 (x�; 1), F (y) � F (x�) � 1=2 � G (y).

For each y 2 [0; x�), F (y) � 1=2 � G (y). Finally, by the classic Karlin-Noviko¤ result F
second-order stochastically dominates G, that is (21) holds for all increasing and concave '.
�
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Proof of Lemma 15 Let x = �2:k(h
k). Clearly U1(Hk; �2) depends only on x and we

can write U1(Hk; x), and similarly for T k. Let ' (x) = �1(U1(H
k; x)). By symmetry of the

payo¤matrix, ' (1� x) = �1(U1(T k; x)). Note that ' is strictly increasing and concave. Let
p 2 �(I) be the marginal belief about x = �2:k(hk) derived from p1. Recall that q1 is a prior
such that mrg�(S2:j)q1 =

1
2�hj +

1
2�tj . With this,

maxfV1(Hj ; p1;�1); V1(T
j ; p1;�1)g = max

�
��11

�Z
I
' (x) dp (x)

�
; ��11

�Z
I
' (1� x) dp (x)

��
= ��11

�
max

�Z
I
' (x) dp (x) ;

Z
I
' (1� x) dp (x)

��
and

V1(H
j ; q1;�1) = V1(T

j ; q1;�1) = �
�1
1

�
1

2
' (1) +

1

2
' (0)

�
:

Hence, the thesis is implied by Lemma 25. �

Proof of Lemma 16 By de�nition of ��1 and M

M (�;x; y) = � 1
�
log

�
1

2
e��x +

1

2
e��y

�
:

The result follows from known properties of the negative exponential. �

Proof of Proposition 17 By Lemma 13, SSCE(�) is determined by the set of pure
strategies of player 1 that can be played by a positive fraction of agents in equilibrium. Fix
�� 2 �� , i.e., a distribution pro�le that satis�es the necessary SCE conditions, and a strategy
s1; ��1(s1) > 0 is possible in equilibrium if and only if there no incentives to deviate to any
subgame j. We rely on Lemma 15 to specify a belief ps11 2 �(�̂2(s1; ��2)) that minimizes the
incentive to deviate. Thus, s1 can be played in equilibrium if and only if it is a best reply to
ps11 . Speci�cally,

pO1 = �nj=1
�
1

2
�hj +

1

2
�tj

�
2 �(�̂2(O; ��2)) = �

�

nj=1�(Sj:k)

�
;

for each k = 1; :::; n� 1 and sk1 2 fHk; T kg,

pk1 = � 1
2
hk+ 1

2
tk �

�
�j 6=k

�
1

2
�hj +

1

2
�tj

��
2 �(�̂2(sk1; ��2)) = �

��
�2 : �2;k =

1

2
hk +

1

2
tk
��

.

Given such beliefs, the value of deviating from s1 to subgame j is M(�; n� j; n+ 2(j � 1).
Therefore, O is a best reply to pO1 , and can have positive measure in equilibrium, if and only
if

n� 1 + " � max
j2f1;:::;ng

M(�; n� j; n+ 2(j � 1)). (22)

By Lemma 16 there is a unique threshold �n > 0 that satis�es (22) as an equality so that
(22) holds if and only if � � �n. Similarly, sk1 2 fHk; Lkg (k = 1; :::; n� 1) is a best reply to
pk1, and can have positive measure in equilibrium, if and only if

n� 1 + k
2
� max
j2f1;:::;ng

M(�; n� j; n+ 2(j � 1)), (23)
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where

max
j2f1;:::;ng

M(�; n� j; n+ 2(j � 1)) = max
j2fk+1;:::;ng

M(�; n� j; n+ 2(j � 1))

because, for all � and j � k

M(�; n� j; n+ 2(j � 1)) � n� 1 + j

2
< n� 1 + k

2
.

By Lemma 16 there is a unique threshold �n�k > 0 that satis�es (23) as an equality so
that (23) holds if and only if � � �n�k. Since M(�; x; y) is strictly decreasing if x 6= y, the
thresholds are strictly ordered: �1 < �2 < ::: < �n. It follows that, for each k = 1; :::; n� 1,
��(fO;H1; T 1; :::;Hk; T kg) = 0 for every �� 2 SSCE(�) if and only if � < �n�k, and every
strategy has positive measure in some SSCE if � is large enough (in particular if � � �n).
Since the equilibrium set in this case is ��, which is de�ned by necessary SCE conditions,
this must also be the WSCE set. If � < �1, then ��(fO;H1; T 1; :::;Hn�1; Tn�1g) = 0 for
each �� 2 SSCE(�); by Proposition 14, SSCE(�) = BSCE = NE in this case. �

8.4 Proofs for Section 6

Proof of Proposition 19 Fix a WSCE� ��. For each i 2 I and ` 2 f1; :::; kig, �̂�i(�`i ; ���i)
is nonempty and compact; since �i is a single player, it is also convex. Choose

��`�i 2 arg min
��i2�̂�i(�`i ;���i)

Ui(�
`
i ; ��i).

By de�nition of WSCE�

�`i 2 arg max
�i2�(Si)

min
��i2�̂�i(�`i ;���i)

Ui(�i; ��i):

Hence, the maxmin theorem implies

�`i 2 arg max
�i2�(Si)

Ui(�i; ��
`
�i).

Thus, ��`�i is a con�rmed degenerate belief justifying �
`
i . This shows that �� is also a

BSCE� and a SSCE� (ambiguity attitudes do not matter if p`i is a Dirac measure). Thus,
WSCE� � BSCE�; SSCE�. In every two-person game BSCE� � SSCE�. Assuming ob-
servable payo¤s, BSCE� �WSCE�. Therefore BSCE� = SSCE� =WSCE�. �
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