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Abstract:  

Adoption of agricultural technology is often sequential, with farmers first adopting a new 

technology on part of their lands and then adjusting their use of the new technology in later years 

based on what was learned from the initial partial adoption. Our paper explains this experimental 

behavior using a dynamic adoption model with Bayesian learning in which forward-looking 

farmers take account of future impacts of their learning from both their own and their neighbors’ 

experiences with the new technology. We apply the analysis to a panel of U.S. soybean farmers 

surveyed from 2000 to 2004 to examine their adoption of the genetically modified (GM) seed 

technology. We compare the results of the forward-looking model to that of a myopic model, in 

which farmers maximize current benefits only. Results suggest that farmers in our sample are 

more likely to be forward-looking decision makers. The myopic model underestimates the value 

of early adoption for forward-looking farmers, and predicts lower adoption rates at the beginning 

of our study period. We also find evidence that farmers tend to rely more on learning from their 

own experience than on learning from their neighbors. 
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1 Introduction 

Many researchers have modeled agricultural technology adoption as a binary choice problem: 

with farmers choosing either to adopt a new technology or not to adopt the technology at all (e.g. 

Cameron, 1999; Barham et al., 2004; Useche, Barham and Foltz, 2009). This binary choice 

assumption allows researchers to use the Logit or multinomial Logit method to analyze the 

adoption process. However, in many cases farmers may more likely try new technologies 

sequentially or “stepwise.”  Farmers may choose to apply a new technology to part of their lands 

first, and then adjust adoption practices in later years after observing outcomes from the earlier 

partial adoption. For example, during the “Green Revolution” era, farmers often initially 

experimented with the  new seed varieties, fertilizer, and other new agricultural practices on 

offer, adopting  them only partially at first.  Cummings (1975) observed that “Farmers … 

experiment with recommendations, often adopting them in stages rather than as a complete 

package.” (Cummings, 1975, p. 24). Foster and Rosenzweig (1995) and Munshi (2004) both 

acknowledge the experimental behavior of India farmers on optimal input use during their 

adoption of high yield varieties (HYVs) in 1968-1970. A similar pattern is observed in adoption 

by U.S. farmers of genetically modified (GM) seeds since the mid-1990s. Farmers rarely switch 

all their land from conventionally bred seeds to GM seeds immediately. Rather, the adoption 

process is gradual, and farmers who adopt GM seeds may only achieve full or partial adoption 

even after 15 years since the inception of the GM seed technology.
1
 

What factors drive such an adoption pattern? Technology adoption is a complex and 

dynamic process, involving risk management, learning and investment adjustment (Griliches, 

                                                 
1 Note the difference between sequential adoption and partial adoption in equilibrium. Partial adoption in 

equilibrium is due to farmland heterogeneity. Part of their land may not be suitable for the new technology, thus it 

may be optimal to adopt partially. Sequential adoption refers to the process: It takes several years to reach the 

“equilibrium” level of adoption, either full or partial. 
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1957; Barham et al., 2004; Aldana et al., 2011). Facing a new technology and with limited 

information, a risk-averse farmer may perceive a high risk with the technology and, in general, 

will not adopt it to all her land immediately. The gradual adoption pattern results from the 

gradual flow of information and gradual change of farmers’ perceptions about a new technology. 

Furthermore, such a gradual adoption process is complicated if we also consider farmers’ 

forward-looking behavior.  

A farmer may adopt a new technology to part of her land even if this adoption is not 

optimal for the current time period believing that experience garnered from current adoption will 

give her valuable information on the new technology to assist her in making better future 

decisions.  Forward-looking farmers take future impacts, both negative and positive, into account 

when making current adoption decisions.    

Such impacts may be interpreted as adoption externalities. For example, if a new 

technology entails uncertainty and potential risks in crop yield or farm profitability, partial 

adoption carries a positive externality since, as farmers experiment with partial adoption today, 

they gain improved knowledge about the new technology’s profit distribution through learning. 

By internalizing such positive externalities, farmers may find it optimal to partially adopt a new 

technology, although the profit with partial adoption may be less than that with no adoption for 

the current period.  

If, however, a new technology induces deteriorating soil quality, or resistance build-up in 

weeds or insects, potentially increasing risk and uncertainty of future crop production, then 

current adoption may have future negative externalities. Forward-looking farmers may find 

partial adoption more desirable than full adoption, although in this case current profits may be 

higher with full adoption than with partial adoption. 
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In this paper, we define positive adoption externality as “adoption benefits”, and negative 

externality as “adoption costs”. If farmers fail to account for adoption benefits/costs in decision 

making, dubbed as “myopic”, then they may make sub-optimal adoption decisions, either under-

adopting in the case of positive adoption externalities, or over-adopting in the case of negative 

adoption externalities. In most cases, farmers are assumed to be forward-looking as long as they 

stay in the farming business. Myopic farmers are rare, but they might be found in those with an 

expiring land tenure contract.  

Much research has been conducted to understand technology adoption in agriculture. 

Following Griliches (1957), early agricultural technology adoption literature focuses on how 

farmer characteristics and farmland heterogeneity affect adoption decisions under a static setup. 

For example, Feder, Just and Zilberman (1985) survey the literature on agricultural technology 

adoption and suggest that farm size, risk and uncertainty, human capital, labor availability and 

credit constraints contribute to differences in adoption. Useche, Barham and Foltz (2009) employ 

a mixed multinomial Logit model to investigate the effect of heterogeneity in both farmers and 

GM corn seeds on farmers’ adoption decisions of GM technology. Their results show that 

farmers adopt different types of GM seeds according to their preferences for different traits 

embedded in the seeds. 

Recent literature recognizes the dynamic nature of the adoption process and incorporates 

the learning component into adoption models (e.g., Besley and Case, 1994; Foster and 

Rosenzweig, 1995; Baerenklau, 2005). Both Besley and Case (1994) and Foster and Rosenzweig 

(1995) model farmers’ adoption of high-yielding seed varieties with learning in India during the 

Green Revolution. Comparing models with various assumptions on learning behavior of farmers, 

Besley and Case (1994) find that the myopic model performs least well, and the cooperative 
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learning model, in which farmers learn collectively within a village, performs the best in 

predicting the technology diffusion path. Foster and Rosenzweig (1995) explicitly model 

farmers’ learning of optimal input usage and compare the effect of self-learning versus learning 

from neighbors. Both papers confirm that imperfect knowledge of the new technology inhibits 

adoption and farmers’ learning can significantly reduce uncertainty. Baerenklau (2005) builds a 

similar adoption model with a focus on risk preferences, learning and peer-group influences. He 

applies the model to a group of Wisconsin dairy farmers and finds that risk preferences and 

learning are key factors driving technology adoption, and that peer-group influence plays a less 

important role than self-learning.  

In this paper, we construct a continuous choice dynamic model in which forward-looking 

farmers learn about a new technology by applying it to part of their land. Based on their beliefs 

regarding the new technology’s risk, farmers solve a finite period dynamic programming 

problem to choose the amount of land to allocate to the new technology in each time period. 

Unlike previous literature that focuses on the learning of mean profit (e.g., Foster and 

Rosenzweig, 1995; Besley and Case, 1994), our model focuses on farmers’ perceived profit 

variance associated with the new technology. Moreover, our structural model estimation recovers 

all the model parameters by searching within the whole parameter space, which differs from the 

previous dynamic adoption literature that either relies on reduced form estimation recovering 

only part of the parameters (e.g., Foster and Rosenzweig, 1995), or conducts the parameter 

search within a limited parameter space (e.g. Besley and Case, 1994; Baerenklau, 2005). 

Our model is applied to a panel of U.S. soybean farmers from years 2000 to 2004. The 

two major types of seed technologies in the U.S. soybean seed market are conventionally bred 

seeds and GM herbicide tolerant seeds that allow farmers to apply specific herbicides without 
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crop damage. We estimate both myopic and forward-looking models, and compare predicted 

adoption patterns from both models with actual adoption behavior. We find that the mean 

squared errors (MSE) in the forward-looking model are smaller than in the myopic model, 

suggesting that farmers in our sample may behave in accordance with the forward-looking 

assumption. Applying the myopic model to the forward looking farmers generates lower 

predicted adoption rates during the early years, suggesting that early adoptions generate future 

adoption benefits, which may be captured through learning. Results also show that farmers in our 

sample learn more from their own experience than from their neighbors, consistent with current 

literature on social learning (e.g. Besley and Case, 1994; Foster and Rosenzweig, 1995; 

Baerenklau, 2005). However, we also find that when applying the “wrong” myopic model to 

forward-looking farmers, the model generates upward biased results for the noise in learning 

from neighbors. Thus, research using myopic models to examine the role of social learning may 

suffer from model misspecification, and therefore underestimate the value of social learning.  

The paper is organized as follows. Section 2 presents the model, in which we specify the 

distribution of returns from two technologies: a conventional technology and a new technology, 

and construct farmers’ Bayesian learning process accordingly. We describe the data in Section 3. 

In Section 4, we explain the estimation strategies for both the myopic model and the dynamic 

forward-looking model. Sections 5 and 6 present the estimation results and conclusion. 

2. An Adoption Model with Bayesian Learning 

Suppose farmers are faced with two technologies: an existing conventional technology (old) and 

a newly developed technology (new). Assume that profits of both technologies are random, i.e., 

both technologies are risky assets for farmers. If farmers are myopic, they will choose the 

adoption rate to maximize current net benefits only. However, if farmers are forward-looking, 
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they will make a sequence of adoption decisions to maximize total discounted net benefits over 

time. 

2.1 A Mean-Variance Framework 

Suppose the total profit  for each farmer is normally distributed, then expected utility ( )u   can 

be expressed as a function of the mean and the variance of the profit (Huang and Litzenberger, 

1988, p.61). So, for farmer i  

2( ) ( [ ], ( )),iu f E     

where [ ]E   and 2 ( )   are the mean and the variance of the total profit, respectively. Assume 

( )f   is a linear function, 

2 21
( [ ], ( )) [ ] ( ),

2
if E E         

where i  is a measure of farmer i ’s degree of risk aversion and is specified as 

1
0 ,i

iA



   

where iA  is the farm size of farmer i , and 0 , 1  are corresponding parameters
2
.  Then, write 

the expected utility of farmer i  as: 

 2 21
0

1 1
( ) [ ] ( ) [ ] ( ).         1         

2 2
i i

i

u E E
A


        

 
     

 
 

Next we specify the distributions of profits from the old and the new technology. 

2.2 Distribution of Returns 

Assume the technologies are seeds: the old technology is conventionally bred seed and the new 

technology is GM seed. The profit per unit of land is assumed to be normally distributed. For 

                                                 
2 In this specification, we allow a farmer’s risk attitude to be affected by farm size, an indicator of 

her wealth status. We test whether such a correlation is significant or not in the empirical study. 
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conventional seed, since it has been planted for many years, assume its distribution is known to 

any farmer i  at time t  as:  

2 .~ ( , )ict ict ictN    

where ict is the average profit of conventional seed for farmer i  at time t , and 2

ict  is its 

variance. For GM seed, the profit at time t  for farmer i  is assumed to be 

,igt ig igt     

where 
ig  is the average profit of GM seed for farmer i , and igt is a random term following an 

independent and identical normal distribution with mean zero and time invariant variance 2

 , 

2~ (0, ).igt N   The random term igt  may include the impact of unpredictable weather such as 

rain fall, and unobserved factors such as soil conditions and individual farmer characteristics. 

Farmers, because of imperfect knowledge of the new technology, only perceive the average 

profit of GM seed ig with uncertainty, and their beliefs follow a normal distribution

2~ ( , )ig igt igtN   , which can be updated over time based on their own experience and 

information obtained from their neighbors.  

Specifically, farmers’ learning process on the GM average profit ig  is as follows: at time 

zero, farmer i  receives exogenous information on the GM average profit as 0ig , for which 

farmer i  believes its accuracy can be measured as
2

0ig . This information may come from 

agronomists and agricultural extensionists, or from farmers’ own observations of pest/weed 

infestation in past years and possible effectiveness of new GM traits. At time1, if it is profitable 

based on this prior information, farmer i  may experiment with GM seed on part of her land, and 

then update her beliefs on both parameters to 1ig  and
2

1ig , using the information learned from 
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the field experiment. Meanwhile, farmer i  observes her neighbors’ behavior and may also 

incorporate this information to update 
1ig  and

2

1ig . At time 2, similarly, farmer i  decides 

whether or not to experiment with the new seed, how many acres she should allocate to GM 

seed, and update her beliefs to get a new set of 
2ig  and

2

2ig  accordingly. This learning process 

keeps going, and in each time period farmers acquire additional information about GM seed and, 

therefore, become more certain of the profitability of GM seed.  

Both forward-looking farmers and myopic farmers learn the GM average profit 
ig  in the 

same way as explained above; however, forward-looking farmers consider future impact in their 

current decision making, while myopic farmers do not. Since they have different attitudes 

towards the future, they may value this learning experience differently. If learning has a positive 

externality in the future, forward-looking farmers will do more experiments than myopic farmers 

in the early time period to capture future benefits from early learning experiences. Similarly, if 

learning has a negative externality, forward-looking farmers will internalize that information and 

have less learning experiments than myopic farmers in the early stage of adoption.   

In the following, we specify the detailed learning mechanism of the GM average profit 

and the distribution of the profit for conventional seed. 

Update of the Perceived GM Profit Variance  

With the uncertainty of the GM average profit, the total variance of the profit from planting GM 

seed for farmer i  at time t  is 

2 2 2 2 2 ,                                    ( )   ( )      (2)( )igt ig igt igt             

where the profit variance induced by the disturbance igt , 2

 , is assumed to be a known 

parameter for farmers; the first term 
2

igt , farmer i ’s perceived variance of the GM average profit 
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or the uncertainty associated with adopting GM seeds, is unknown for farmers but can be 

reduced by learning either from their own experiments or from the observation of their 

neighbors’ experience. Since GM is a new technology, the uncertainty is high and farmers may 

initially perceive a high variance with its profitability. This perceived variance may decrease 

over time if farmers learn about this new technology by experimenting on part of their land 

and/or by communicating with their neighbors. Figure 1 illustrates a possible path of the 

perceived variance of GM profit over time with a constant belief of the mean: at time 0, farmers’ 

perceived variance of ig  is high; With experiments over time, farmers become less and less 

uncertain about ig  and their perceived variance 
2

igt  become lower as time t increases.  

If the learning process of each farmer follows a Bayesian setup, then farmer i  updates 

her perceived profit variance of GM seed in the following way
3
  

2

1

2 2 2 2

1
,                                           (3)

1igt
it it

igt

G G

  



  






 


 

where itG  is farmer i ’s total adopted units of land of the GM seed at time t , itG  is the average 

adopted total units of land of her neighbors, 
2

 is the additional variance or noise in farmer i ’s 

learning from neighbors. 

                                                 
3 See Appendix A for the detailed derivation. 
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Figure 1: Update of the Perceived GM Profit Variance  

This formula implies that if farmer i  does not adopt any GM seed at time t , and does not 

obtain any information from her neighbors, her belief toward the variance of the GM profit stays 

the same as it was at time 1t  . If farmer i  experiments with  GM seed on part of her land at 

time t , then the more she plants the GM seeds (increase in itG ), the more she will learn about g

(decrease in
2

1igt  ). And if this farmer lives in a region with high adoption rates among her 

neighbors (increase in itG ), she will also have a better knowledge of the GM technology 

(decrease in
2

1igt  ).  

However, the information farmer i  could get from neighbors may carry additional noise 

as compared to information obtained from her own experience (

2 2

1 1
| | | |

igt igt

it itG G

  



 


 
). The noise in 

neighborhood information may come from two sources: 1) some information may get lost during 

the communication; and 2) if the average GM profit depends on farmers’ individual 
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characteristics, as argued by Manski (1993) and Munshi (2004), the information from the 

neighbors may be biased and not applicable to her own case.  

Variance of the Profit for Conventional Seed  

 The variance of profit from planting conventional seed is known for farmers. However, since 

conventional seed may be vulnerable to uncertain events such as pest infestations or weeds, we 

assume its variance depends on a random state variable tz  which follows an AR(1) process. For 

farmer i at time t , the variance of the profit from planting conventional seed, 2

ict , is 

2 2

2

1

and

,   (

( ),  

0, )

ict ict t

t t t t vz N

z

z

 

   



 
 

where t  is the white noise added to the AR(1) process in each time period. Assume 2

ict  is a 

linear function of tz  

2 2

0 1 0 1 1( ) ( ).                               (4)ict ict it t t tz z z              

Assume 1  is positive, meaning that a higher variance of the random state variable brings a 

higher variance of the profit from the conventional seed, and, therefore, a lower expected utility 

to a risk-averse farmer.  

Mean Profit 

In reality, farmers update their beliefs on both the mean and the variance of the average GM 

profit ig , using the information of the realized profits from either their own adoption or from 

their neighbors’ adoption.
4
 However, we do not have the information on the actual profits in our 

empirical study, so we assume that farmers’ beliefs on the  GM mean profit igt  is constant, i.e., 

initially farmers receive an unbiased estimator of the mean on perceived profit of GM seed, and 

                                                 
4 See Appendix A for the derivation of the updating rules for both the mean and the variance. 
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then update their beliefs on the accuracy (the variance
2

igt ) in the later time periods.
5
 

Moreover, we assume that there is heterogeneity in farm land characteristics and that a 

farmer can conceptually arrange all her lands in such a way that the suitability of the land for 

planting GM seeds is decreasing. This suitability for GM seeds may be related to soil conditions, 

land quality, infestation vulnerability, or other factors. Suppose farmer i  owns a total of iA  units 

of land plots and for each plot the mean profit of conventional seed is c , the difference between 

the unbiased belief of GM mean profit and the conventional mean profit for the thk plot, k

i , is  

( ) where 1,2, , .k k

i ig c ig i gc i

i

k
X k A

A
            

where k

ig  is farmer i ’ s belief of the GM profit from the thk plot, ig is the upper bound of the 

profit difference, which is a linear function of farmer i ’s characteristics iX , i.e., ig g icX   . 

Assume 0gc  , i.e., the mean profit difference between the GM and conventional seeds is 

decreasing in k .  

If farmers’ adoption decisions are made based on comparing mean profits only, without 

forward looking, the optimal adoption rate is then determined by the intercept ig  and the slope 

gc . Figure 2 plots scenarios where the optimal adoption rate it  (defined as it
it

i

G

A
  ) can be 

zero (line C: no adoption), one (line A: full adoption) or between zero and one (line B: partial 

adoption at 40%). 

                                                 
5 We impose this restriction to facilitate the empirical analysis for the U.S. soybean market. Our assumption may not 

be overly restrictive. As agronomists point out (Hurley, Mitchell and Rice, 2004), in general GM technology does 

not increase but insures potential yield, which implies that the benefit of adopting GM seed may be mainly  the 

reduced profit variance. 
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Figure 2: Mean Profit of GM Seed 

       Therefore, suppose farmer i  adopts a total of itG  plots of GM seed at time t , the total mean 

profit she could get is
6
 

  2

1 1

1
[ ] .

2

it it

it

G A

it c ig gc c c ig it gc it it

k k Git

k
E A

A
         

  

   
         

  
   

2.3 Adoption Process 

Assume independence of profits from different land plots. Based on previous specifications, the 

mean and variance of the total profit for farmer i at time t is 

 

2

2 2 2 2 2 2 2

                                           (
1

[ ]
2

( ) ( ) (1 ) ,                           

5

   6

)

 ( )

it c ig it gc it it

it it it igt it ict

E A

A 

     

      

 
   
 

   

 

where 
2

igt  and 2

ict are specified in Equations (3) and (4).  

The current payoff at time t  for farmer i  is 

                                                 
6 See Appendix B for a detailed derivation of both the mean and variance of the total profit. 
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 

    
 

2

2 2 2 2 2 2 2

2 2 2 2 2

1 1 0 1

1
[ ] ( )

2

1 1
( ) (1 )              (7)

2 2

, , | , , , | , , | , , ,

, | ,

it it i it

c ig it gc it it i it it igt it ict

it it igt it it ict t t it c ig gc i

it it it

u E

A A

u G G z A

u S



 

  

          

           



  

 

 
       
 



 

 

where itS  is the state variable, which includes the current belief of the GM profit variance
2

igt , 

the profit variance of conventional seeds 2

ict , and the total soybean acreage itA .  The set is the 

parameter space of the model, defined as
2 2 2

0 1{ , , , , , , , }, c gc ig i           .   

It is commonly observed that technology diffusion follows an S-curve, i.e., the new 

technology spreads at an increasing rate during the early period, then its adoption rate growth 

slows down gradually, and eventually the adoption rate remains at a constant level. This adoption 

pattern also holds for GM soybean seed in the US. After its introduction in the mid-1990s, GM 

soybean seed spread across the US rapidly.  In about 10 years, especially after 2004, the GM 

adoption rate became flat. In light of this, we model the dynamic adoption problem as a finite 

period dynamic model, i.e., farmer i  chooses a sequence of actions , 1, ,{ }il l t t T     to maximize  

total discounted expected utility from time t  to the steady state time periodT , 

{ }
max ( ).                                                  (8)T

il l t

T
T l

it t il il

l t

V E u


 






   

The steady state could be a complete switch to GM seed, or a partial adoption that farmers wish 

to maintain. With current payoff defined as in Equation (7), the Bellman Equation is  

  1 1( ) max { , | ( | )}.                     (9)
itit it it it it it it itV S u S EV S S      

 

For forward-looking farmers, the optimal adoption rates in each time period are solved by 

backward induction based on this Bellman equation. 
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3. Data 

To illustrate our method empirically, we apply the model to the adoption of GM soybean in the 

U.S. market. The soybean market is chosen for two reasons. First, as in the theoretical model, it 

comprises only two technologies, conventionally bred seeds and herbicide tolerant GM seed. 

Second, adoption of GM soybean seed in the U.S. reached an average adoption rate at 85% in 

year 2004, and adoption growth has slowed down since then, which justifies the finite period 

assumption in our model. 

The empirical analysis is based on extensive survey data collected by dmrkynetec 

(hereafter DMR). The DMR data, obtained from a stratified sample of U.S. soybean farmers 

surveyed annually, provide farm-level information on seed purchases, acreage, seed types, and 

seed prices. We identify a panel of 432 farmers surveyed from 2000 to 2004 out of a total of 

11,060 farmers in the DMR data. Note that observations from 2000 are used as a benchmark only. 

Figure 3 shows the average adoption rate of GM soybean seeds of these 432 farmers from 2000 

to 2004, and the average adoption rate of GM soybean seeds from the whole DMR data and from 

USDA NASS data during this time period.
7
 The sample average adoption rate follows a similar 

pattern as the DMR population and the USDA NASS population. It suggests that farmers in our 

sample do not differ from farmers in the population as a whole in terms of adoption behavior.  

To avoid the complication caused by farmers’ switching between soybean and other 

crops across the years, we focus on farmers with relatively constant soybean acreage over this 

time period.
8
 After screening, 348 farmers are included in our sample for analysis. Figure 4 

shows that most of these 348 farmers are located in the Midwest of U.S. 

                                                 
7
 USDA Data are collected from the official website at http://www.nass.usda.gov/, in the reports on “acreage” from 

year 2000 to 2004. 
8
 We construct a farm size variation measure by dividing the standard deviation of the farm size by its mean. We 

dropped those farmers with greater than 30% variation. We also tried screening at other levels including 10%, 20%, 

and 40%, and the final estimation results are qualitatively similar. . 
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Figure 3: Average Adoption Rates: Sample vs. Population 

 

Figure 4: The Location of Selected Farmers 

Since farm productivity differs by local agro-climatic conditions, farmers’ experience in a 

southern state may not be useful to farmers located in a northern state. Therefore, we define the 

“neighborhood” at the Crop Report District (CRD) level, and construct the CRD adoption rate 

using the DMR population data. For farm size, we use the average individual soybean acreage 
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and the average CRD soybean acreage over years for iA  and iA . We also include the latitude 

and longitude of the center of the county where the sample farms are located. Table 1 shows the 

explanatory variables and their summary statistics. Note that on average lagged adoption rates 

are lower than current adoption rates, which suggests an increasing adoption pattern.  

 

Table 1: Variable description and summary statistics  

Variable Description Mean SD Min Max 

it  Farmer i ’s adoption rate at time t  0.81 0.36 0.00 1.00 

1it   Farmer i ’s adoption rate at time 

1t   

0.73 0.40 0.00 1.00 

it  Farmer i ’s neighbors’ adoption 

rate at time t  

0.82 0.12 0.19 1.00 

1it   Farmer i ’s neighbors’ adoption 

rate at time 1t   

0.75 0.16 0.05 1.00 

iA  Farmer i ’s total soybean acreage 

(acres) 

328 354 40 3370 

iA  Farmer i ’s neighbors’ total 

soybean acreage (acres) 

100 46 41 374 

GM

itP  GM seed price paid by Farmer i  at 

time t ($/50lb bag) 

22.20 2.44 3.01 29.30 

GM

itP  GM seed price paid by Farmer i ’s 

neighbors at time t ($/50lb bag)  

21.87 1.49 15.41 27.01 

Conv

itP  Conventional seed price paid by 

Farmer i  at time t ($/50lb bag)  

11.81 4.47 0.37 26.00 

Conv

itP  Conventional seed price paid by 

Farmer i ’s neighbors at time t 

($/50lb bag)  

11.33 4.28 0.37 25.00 

Lat Latitude of the farm 40.98 2.65 30.60 47.77 

Lon Longitude of the farm 90.77 4.90 75.35 99.82 

Note: The data include 348 U.S. soybean farmers observed for five years. Only four years data are used in the 

estimation since we need the lagged value of the adoption rate. 

Source: DMR survey data and USDA NASS website. 
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The average total soybean acreage for sample farmers is notably larger than that of their 

neighbors, perhaps because large farm owners tend to respond to the survey more often than 

small farm owners. However, according to Figure 3, it may not cause much attrition bias in terms 

of adoption patterns. Summary statistics also suggests that prices of both conventional and GM 

seeds paid by sample farmers are very similar to prices paid by their neighbors. Latitude and 

longitude records suggest that our sample farmers are concentrated in the Midwest area of the 

U.S. 

4.  Estimation 

In the empirical application, we estimate both a myopic model and a forward-looking model. For 

both models, the simulated generalized method of moment (GMM) is used to search for the set 

of parameters that minimize a weighted distance between the predicted adoption path and the 

observed adoption path.  

4.1 Myopic Model 

Myopic farmers only maximize their current payoff during each time period. Thus, at time t , 

farmer i  chooses the optimal it  to maximize her current payoff itu as defined in Equation (7),  

 2 2 2 2 2 2 21 1
max ( ) (1 ) .

2 2it it c ig it gc it it i it it igt it ictu A A           
 

       
 

 

The first order condition gives 

 

2

* 2

2 2 2
( | ) ,                               (10)

ig i i ict

it igt

gc i i igt ict

A

A 

 
 





  


 

  
 

where   is the parameter space as defined before. And the second order condition is 

 2 2 2 0.gc i i igt ict
it

A     
       

Equation (10) suggests that for any set of parameters there is a one-to-one correspondence 
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between the perceived GM variance
2

igt  and the optimal adoption rate *

it . Since the actual 

adoption rate in the first period (year 2000) is known, we can obtain the perceived GM variance 

for year 2000 
2

0ig  by solving the inverse function of
* 2( | )it igt   , which is 

2

0 02 2 2

0 0 0

0

( | ) .                    (11)
ig gc i i i ic

ig i ic

i i i

A

A


   
  








 
     

We then update 
2

igt  for all the following years according to the Bayesian rule in Equation (3), 

and compute the predicted adoption rate for each farmer in all the following years according to 

Equation (10). 

4.2 Forward-looking model 

In the forward-looking model, farmers account for all future benefits when making adoption 

decisions. In order to compute the predicted adoption path, we make assumptions on the 

transition probabilities of state variables, value function of the last period and the priors of 

Bayesian beliefs. 

Assumption on Transition Probability 

Since we focus our analysis on those farmers with relatively constant soybean acreage over time, 

and data suggest that the average of their neighbors’ total soybean acreage remains stable during 

the study period, we can rewrite itA  as iA  and itA  as iA . The state variables can be reduced to 

1 1{ , , , , }it it it t i iS z A A      according to the specification of 
2

igt  and 2

ict . Following Foster and 

Rosenzweig (1995) and Besley and Case (1994), we assume Markov perfect equilibrium for each 

market, which implies that farmer i  and her neighbors simultaneously choose their optimal 

adoption rates in each time t ; therefore, the pair of { , }it it   forms a solution of the equilibrium. 

So the transition probability of the states is  
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1 1 1 1 1( | ) ( , , | , , ) ( | ).it it it it it it it it t tP S S P z z P z z            

For 1( | )t tP z z , we follow Tauchen (1986) to discretize the space of tz  to 9 equispaced points and 

compute their transition probabilities. See Appendix C for details. 

Assumption on the Last Period 

The data suggest that toward the end of the study period (year 2004), the change in the adoption 

rate diminishes (See Figure 3). Indeed, most farmers stop adjusting their adoption rate of the GM 

soybean seeds three or four years after they start their field experiment with GM seeds. Therefore, 

we assume that in the last period the dynamic learning process reaches the steady state, i.e., 

1iT iTEV EV   for 5T  . The Bellman equation for the last period is 

1max { },
iTiT iT iTEV E u EV     

and  

 1

1
max | .

1 iTiT iT iT iTEV EV u S


   


 

Based on the value of the last year, we compute the value function for all the previous years for 

each farmer according to the Bellman Equation. 

Assumption on the Prior of Bayesian Beliefs 

To update the Bayesian beliefs, we need the prior for the first period for each farmer. In the 

myopic case, we infer the prior belief of each farmer from their actual adoption rates in year 

2000. However, in the dynamic model, the relationship between the Bayesian beliefs and farmers’ 

adoption rates is no longer a one-to-one correspondence. If we treat the priors for each farmer as 

parameters as in Besley and Case (1994), it will increase the parameter space tremendously and 

the problem will become intractable. To overcome this problem, we use the beliefs of each 

farmer in year 2000 in the myopic case as reference value for the Bayesian beliefs in the 
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dynamic case. To account for this potential bias induced by the myopic assumption, we add a 

parameter b  to all the myopic beliefs in 2000 and use them as the priors for the dynamic case. 

So the Bayesian update rule for the perceived variance of the GM profit for farmer i in 2001 

follows 

2

2001

2 2 2 2

2000

1
,                                           

1ig
it it

ig

G G

b    










 


 

where 
2

2000ig  is the Bayesian belief for farmer i in 2000.

 

 

Compute the Predicted Adoption Rate 

The following algorithm is used to compute the predicted adoption rate: 

1. Discretize the state/control space: 

The state variables are 1 1{ , , }it it it itS z    , and the control variable is ,it  the adoption 

rate. We discretize all the adoption rates 1 1, ,it it it      to be 51 equal-spaced points in[0,1] . For 

the random state variable tz , as suggested by Tauchen (1986), we discretize it into 9 equal-

spaced points in an interval[ , ]z z , where 23z z    and they are the lower bound and upper 

bound of z . 

2. Simulate the random state variable tz  for each period: 

We assume tz  is at its invariant state in the first period, and simulate 9 initial points 

according to its invariant probability. Then for each initial point we simulate a sequence for the 

next four years according to its transition probability. 

3. Compute the Bayesian beliefs:  

We compute the priors as described and update the Bayesian beliefs according to the 

updating rule in Equation (3). 
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4. Compute the value and policy functions (i.e., the optimal adoption rate under each 

possible state, of the last period). 

5. Compute the value and policy functions for all previous years by backward induction 

according to the Bellman equation in (9). 

6. Trace out the adoption path for each farmer based on the policy function. 

4.3. Simulated GMM 

Simulated GMM is used to estimate both models. For the myopic model, we solve the model for 

all the simulated states tz  and then take the average value. For the forward-looking model, we 

compute the optimal adoption path for each simulated tz  and then take the average value. In 

both cases, we try to find a set of parameters that minimize a weighted distance between the 

predicted and actual adoption rates.  

Define the prediction error as *( ) ( ) s

it ite      , where * ( )it   is the predicted adoption 

rate, s

it  is the actual adoption rate, and let D  be all the data available, i.e.,

{ , , , , }it it i i iD A A X   . Following Hansen and Singleton (1982), we assume that at the true 

parameter value 0 , 

0( | , ) 0.                                                                        (12)E e D    

Then, for any function of data D , ( )T D ,  

0( ( ) ( )) 0.                                                                    (13)E T D e    

This fact is used to construct moments to estimate the parameters by generalized method of 

moments (GMM). Let k  be the dimension of the parameters, l  be the dimension of the moments, 

and l k due to identification requirement. Let ( ) ( ) ( )i ig T D e  , then the GMM objective 

function is  
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( ) · ( )· · ( ),                                                            (14)n n nJ n g W g    

where 
1

1
( ) ( ),

n

n i

i

g g
n

 


 
 

and the efficient weight matrix 

1

1

1
ˆ ˆ ,

n

n i i n n

i

W g g g g
n



 



 
  
 
 with 

ˆ ˆ ( )i ig g   obtained from a preliminary estimation of   withW I , where I  is the identity 

matrix. The asymptotic distribution of the estimates ̂  is  

 1ˆ( ) 0,( ) ,                                                   (15)n N G G      

where 1( ( ))i iE g g 

  and ( )iG E g 






. 

5. Empirical Results 

Both the myopic model and the forward-looking model are estimated. According to the 

discussion in Section 4.3, we chose the following instruments to facilitate the GMM estimation: 

a constant vector 1; last year’s GM seed adoption rate of farmer i and her neighbors’ adoption 

rate ( 1it  , 1it  ) plus the square terms, their total soybean acreage ( iA , iA ) and the square terms, 

farm characteristics iX , i.e., the longitude and latitude of each county center where farms are 

located and the square terms, plus the GM and conventional seed prices paid by sample farmers 

and their neighbors (average price at CRD level)
9
. In total, the forward-looking model has 17 

moments with 15 parameters and the myopic model has 17 moments with 14 parameters. Table 2 

introduces the parameter definitions and corresponding initial values. The discount factor   is 

set at 0.96 for the forward-looking model, following common practice in the literature (e.g. Rust, 

1987; Pakes, 1986; Crawford and Shum, 2005). Part of the initial values for the myopic model is 

chosen based on the result from reduced form estimation as in Foster and Rosenweig (1995),
10

 

                                                 
9 Although GM and Conventional seed prices are not included in our model, they are part of the factors that affect farmers’ 

adoption behavior; therefore, price information can be used to interact with the prediction error to estimate model parameters. 
10 The analytical solution of the myopic model in equation (10) is not necessarily bounded between 0 and 1 in numerical 

estimation. We first run an unbounded estimation, after getting a converged parameter estimates from a continuously updated 

GMM estimation, we then run another two-step GMM estimation using the converged parameter values as starting values. The 

converged parameter values of the myopic model are also used as starting values for the forward-looking model. 
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and we use the estimated parameters from the myopic model as the starting value for the 

forward-looking model.  

 

Table 2: Parameter definition and the initial values for the myopic model estimation 

Parameter Definition Initial Value 

value g  Constant term of GM mean profit (+) 1.00 

gc  Decreasing rate of GM mean profit with adoption  

df(+) 

0.50 

0  Constant term for Conventional variance (+) 5.00 

2

  GM profit variance (+) 1.00 

2

  Learning variance from neighbors (+) 10.00 

0  Risk averse (+) 1.00 

1  Farm size effect on risk averse (+) 0 

  Parameter of AR1 process (+) 0.20 

2

  Disturbance of AR1 process (+) 0.24 

1  Linear term for Conventional variance 1.00 

c1_lat Latitude effect on mean profit -0.19 

c2_lat2 Second order effect of latitude 0.08E-02 

c3_lon Longitude effect on mean profit 0.25 

c4_lon2 Second order effect of longitude -0.03E-02 

B Adjustment on Bayesian beliefs of GM variance  0 

 

Myopic vs. Forward-looking 

The Nelder-Mead simplex method is used to minimize the GMM objective function for 

both models. Table 3 presents the parameter estimates. The estimation results show that although 

both models share a similar structure and estimation strategy, the forward-looking model 

presents an adoption scenario with a subtle but important difference than what the myopic model 

predicts.  
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Table 3: Estimated parameters for myopic and forward-looking models by simulated 

GMM estimation 

 

 Myopic Model Forward-looking Model 

Parameter Coeff. S.E. Coeff. S.E. 

g  1.28*** 0.06 1.43*** 0.05 

gc  0.95*** 0.01 0.97*** 0.23 

0  0.97*** 0.02 0.95* 0.88 

2

  0.04*** 0.01E-1 0.07** 0.04 

2

  102.03*** 12.57 6.83* 4.60 

0  2.94*** 0.06 3.55*** 0.29 

1  -0.01 0.02 -0.06E-1 0.09 

  0.34*** 0.03E-1 0.39*** 0.13 

2

  0.44*** 0.14 0.30*** 0.04 

1  1.09*** 0.32 0.43 0.95 

c1_lat -0.17*** 0.02 -0.14* 0.10 

c2_lat2 0.03E-1*** 0.04E-2 0. 42E-2*** 0.05E-2 

c3_lon 0.35*** 0.15 0.38*** 0.13 

c4_lon2 0.01E-2 0.05E-1 -0.01E-2 0.02 

B   0.06*** 0.07E-2 

MSE 0.077 0.068 
Note: 1. Statistical significance is denoted by *** for 1% level, ** for 5% level, and * for 10% level;  

     2. To compute the standard errors we used numerical derivatives with a step-size of 5% for both model. 

 

In Table 3, the mean squared error (MSE) of the forward-looking model is smaller than 

that of the myopic model. Figure 5 shows the squared predicted errors from both the myopic 

model and the forward-looking model from 2001 to 2004. On average the squared prediction 

error from the forward-looking model is smaller than that from the myopic model in each year. 

These results suggest that the forward-looking model fits the data better and predicts better than 

the myopic model does, implying that soybean farmers in our sample are more likely to be 
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forward looking rather than myopic when they make adoption decisions. This finding is 

consistent with much other adoption literature (e.g. Besley and Case, 1994; Munshi, 2004).  

 

Figure 5: Squared Prediction Error: Myopic vs. Forward-looking 

For those individual farms that the two models differ substantially in adoption 

predictions, the forward-looking model tends to perform better than the myopic model, 

especially in the initial period. Table 4 suggests that when the prediction difference is larger than 

0.01 in squared prediction error, the forward-looking model predicts better (closer to the true 

adoption rate) for 89 farms in 2001, while the myopic model predicts better for only 17 farms. 

Indeed, our theory suggests that the myopic model underestimates the value of early adoption 

and, therefore, predicts lower adoption rates in early years. The forward-looking model continues 

to perform better than the myopic model in the following years. However, the difference in 

prediction power becomes smaller. Our theoretical analysis already suggests that the difference 

between the two models will become smaller as adoption approaches a steady state. Given the 

short time horizon in the finite-period game, forward-looking farmers differ less than myopic 
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farmer towards the end of the game, thus the decrease in prediction difference in later years is 

not surprising. Overall, the forward looking model predicts better in 204 observations and the 

myopic model predicts better in 116 observations. 

  

Table 4: Comparison of Myopic vs. Forward-looking Model
a 

 

Year Myopic Model is better forward-looking Model is better 

2001 17 89 

2002 46 51 

2003 31 36 

2004 22 28 

sum 116 204 
a 
Number of observations that either myopic model or forward-looking model predicts better when 

the difference of their squared prediction error is larger than 0.01. 
 

The parameter b serves as a proxy of the difference of the Bayesian belief towards the 

profit variance of GM seed in year 2000 between the myopic model and the forward-looking 

model. The estimated value of b is positive and significant. It suggests that the perceived profit 

risk of the GM seed in early years is higher in the forward-looking model than in the myopic 

model. With a higher perceived risk, learning becomes more valuable, and the potential future 

benefit of early adoption leads forward-looking farmers to adopt more GM soybean seed in the 

early years than that the myopic model predicts. 

Self-learning vs. Learning from Neighbors 

Based on Foster and Rosezweig (1995), we define 
2

1







  as a measure of the learning 

efficiency from a farmer’s own experience with one unit of land, and 
2 2

1
h

 


 




as a measure 

of the learning efficiency from her neighbor’s experience. Table 2 shows that the estimated 

parameter
2

 , the noise occurring in learning from neighbors, is much larger than the estimated 



29 

 

parameter
2

 , the noise in self learning. Consequently, the learning efficiency from a farmer’s 

own experience is much greater than the learning efficiency from neighbors during the adoption 

process (  =14.28 vs. h =0.14).  This result is consistent with findings in other related 

literature (e.g. Munshi, 2004; Baerenklau, 2005; Conley and Udry, 2010). 

Comparing these two models, the forward-looking model identifies a stronger 

neighborhood effect: the estimated noise 
2

  in the forward-looking model (at 6.83) is much 

smaller than that in the myopic model (at 102.03), therefore the forward looking model estimates 

a greater learning efficiency from neighbors. In this case, fitting the wrong model in empirical 

analysis inevitably leads to underestimating the neighborhood effects. This may be a potential 

explanation of the limited neighborhood effects that are found in other literature.  

Mean Profit 

The estimated negative slope coefficient gc in both models suggests that the marginal benefit 

from adopting GM seed decreases as farmers use more acreage to plant  GM seed, but the net 

benefit from adopting GM seed (
1

2
ig gc  ) is still positive even when farmers completely 

switch to GM seed. The estimated upper bound of the mean profit from adopting GM seed ( ig ) 

is higher in the forward-looking model than in the myopic model, with a slightly bigger 

decreasing rate of the marginal profit. 

The estimated parameters with respect to farm characteristics from both models (c1_lat, 

c2_lat2, c3_lon, c4_lon2) suggest that the mean profit of GM soybean seed is higher if the farm is 

located in the southern and/or eastern area, but with a slightly reversed second order effect in 

both directions. 
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Other Results 

The estimated parameter 0  is positive and significant in both models, suggesting that 

farmers in our sample are risk averse, consistent with the literature on farmers’ attitude towards 

new technologies. However, the effect of total soybean acreage on risk averseness is ambiguous: 

the estimated 1  from both models is negative but not significant. Large soybean acreage could 

indicate a farmer’s wealth status, and wealthy farmers tend to be less risk-averse as commonly 

observed in literature. On the other hand, large soybean acreage could also mean a higher 

switching cost, due to a long-term contract or fixed investment, which drives the adoption pattern 

of large farm owners to the other direction. These parameter estimates ( 0 and 1 ) suggest that 

farmers in our sample show significant risk aversion but their risk-averseness is invariant with 

their farm size.  

On the other hand, if farmers in our sample are indeed forward-looking, then fitting the 

myopic model to forward-looking farmers will generate biases in estimating the risk-averse 

coefficient. Table 3 shows that the coefficient 0 estimated by the forward-looking model is 

larger than that estimated by the myopic model. So fitting the wrong model could underestimate 

farmers’ risk averseness. Another noticeable difference between the estimation results of these 

two models is the estimated 1 , the effect of the random state variable on the profit variance of 

the conventional seed. The estimated value is insignificant in the forward-looking model but 

positive and significant in the myopic model. Therefore, fitting the myopic model to forward-

looking farmers would over-estimate the effect of the random state variable.  

6. Conclusion 

Besley and Case (1993) rightly state that a key factor in modeling technology adoption is “the 

extent to which empirical estimation is consistent with an underlying theoretical model of 



31 

 

optimization behavior”. In this paper, we construct and estimate two adoption models: myopic 

and forward-looking adoption models. We develop both the theoretic model and the empirical 

estimation method. Using a panel data set of 348 U.S. soybean farmers, we compare the result of 

the forward-looking model with the myopic model, and find that the forward-looking model fits 

our data better than the myopic model does, suggesting that farmers in our sample are more 

likely to be forward-looking. In particular, the myopic model predicts lower adoption rates in 

early years, implying that the myopic model fails to take account of the possible future benefits 

of early adoption, and therefore underestimates the value of early adoption. This finding 

highlights the importance of estimating an empirical adoption model consistent with underlying 

decision processes. It confirms that technology adoption in agriculture is likely to be a dynamic 

process and that farmers behave in a forward-looking manner (Griliches, 1957; Barham et al., 

2004; Foster and Rosezweig, 1995).  

We also find that farmers learn both from their own and their neighbors’ experiences.  

However, the neighborhood effect we find in our case is smaller than self-learning. GM 

technology in soybean seed is sensitive to individual farm characteristics; therefore, experience 

from one farmer may not apply to others and the true distribution of the return of GM soybean 

seed can only be learned by farmers’ own experiences. The myopic model, as compared to the 

forward-looking model, predicts even smaller neighborhood effects. If farmers are forward-

looking, fitting a myopic model to them could underestimate the neighborhood effect.  

Other potential biases are associated with using a myopic model on forward-looking 

economic agents. These include: underestimating economic agents’ risk averseness, 

underestimating the mean profit of the new technology, or over-estimating the random shock on 

the profit variance of the existing technologies. These potential biases may be good research 
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topics for future studies.  

Recognizing farmers’ forward-looking behavior and, therefore, estimating precisely 

farmers’ self-learning effect and neighborhood effect are not only an important progress in the 

technology adoption literature but also key to delivering advanced technologies to farmers. For 

example, it justifies the effect of demonstration projects on surrounding farmers through 

information flow from experienced neighbors. It also points out that free or low cost of access to 

new technologies encourages farmers’ adoption. A precise estimation of these effects could be 

beneficial for policy makers to implement these strategies to promote adoption of new 

technologies.  
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Appendix A: Bayesian Learning 

A1. Self-learning 

Suppose at time 0  farmer i has a prior of 
0ig  as

2

0 0( , )ig igN   . If she only tries GM seed on one 

plot in time 0 and gets a realized profit
0ig , then according to Bayesian rule, the posterior 

2

1 1( , )ig igN    is updated as 
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If she planted GM seeds on 0G  plots at time 0 and get an average profit on each plot as
0g , then  
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So the more plots this farmers tried, the more the weight of the posterior mean will goes to 0g , 

which converges to the true mean as the number of plots goes to infinity.  

A2. Learning from neighbors 

Suppose this farmer could also observe the profits of her neighbors, but with an additional noise

 , whose variance 
2

  is assumed to be known for all farmers. Suppose her neighbors grow 0H  

plots in average at time 0 and she observed an average profit as 0ih  from the neighbors, follow 
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the same logic of self-learning, we can rewrite the posterior as  
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So the information from her neighborhood will accelerate the process for the posterior mean to 

converge to the true mean.  

A3. Bayesian updating 

Note that after time 0, the posterior 
2

1 1( , )ig igN   becomes the prior for time 1, and farmers keep 

updating their beliefs. So for a typical farmer, the Bayesian updating at time t  is 
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Appendix B: Derivation of the mean and variance of the total profit 

According to the specification in Section 2, for farmer i at time t , the perceived mean profit for 

GM and conventional seed from 
thk plot are: 
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Suppose farmer i planted a total of itG  plots of GM seed at time t , the mean of the total profit 

from GM is  
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The mean of the total profit from conventional seed is  

 
1

( ).
it

it

A

ict c c it it

k G

A G  
 

  
 

The total mean profit is: 
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where the optimal adoption rate it  is defined as it
it

i

G

A
  .  

Assume independence of profits from different land plots, the total variance of the profit of GM 

and conventional seed is: 
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Appendix C: Approximation of an AR(1) process (Tauchen 1986)  

For an AR(1) process like  

2

1 ~ (0, ),t t t tz z N       

Tauchen (1986) suggests an algorithm to approximate it in the following way.  

1. First, discretize the space of z  into equal-spaced points in an interval[ , ]z z , where z z 

are the lower bound and upper bound of z . Suppose there are N points:

1 2 Nz z z z z    .
11

 

2. Suppose the length between two points is w , then the transition probability ( | )k j

ijP P z z  

can be computed as  
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3. Get the invariant probability zP  of each state. 

Given the transition probability matrix P that is computed from each ijP , we can compute the 

                                                 
11

Tauchen (1986) suggests that 9N   is adequate for most purposes.  
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invariant probability of each state zP by a contraction mapping  

0 ,z zP PP  

where
0

zP  is an initial probability vector of each state. 


