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Abstract

We introduce a Combined Density Factor Model (CDFM) approach that accounts for time

varying uncertainty of several model and data features in order to provide more accurate

and complete density nowcasts. By combining predictive densities from a set of dynamic

factor models, using combination weights that are time-varying, depend on past predictive

forecasting performance and other learning mechanisms that are incorporated in a Bayesian

Sequential Monte Carlo method, we are able to weight ’soft’ and ’hard’ data uncertainty,

parameter uncertainty, model uncertainty and uncertainty in the combination of weights

in a coherent way. Using experiments with simulated data our results show that soft data

contain useful information for nowcasting even if the series is generated from the hard data.

Moreover, a carefully combination of hard and soft data, as in the proposed approach,

improves density nowcasting. For empirical analysis we use U.S. real-time data and obtain

as results that our CDFM approach yields more accurate nowcasts of GDP growth and

more accurate prediction of NBER Business cycle turning points than other combination

strategies. Interestingly, the CDFM performs particularly well, relative to other combination

strategies, when focusing on the tails and it delivers timely and accurate probabilities of high

growth and stagnation..
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1 Introduction

Economic forecast and decision making in real time are, in recent years, made under a high

degree of uncertainty. One prominent feature of this uncertainty is that many key statistics are

released with a long delay, are subsequently revised and are available at different frequencies.

Therefore, professional economists in business and government, whose job is to track the swings

in the economy and to make forecasts that inform decision-makers in real time, prefer to ex-

amine a large number of potential relevant time series. In this context factor models provide a

convenient and efficient tool to exploit information in a large panel of time series in a systematic

way by allowing for information reduction in a parsimonious manner while retaining forecasting

power. This is achieved by summarizing the information of the many data releases within a few

common factors.

Several studies have found such factor models very useful for forecasting, see e.g., Stock and

Watson (2002a,b), Forni et al. (2005) and Boivin and Ng (2005). A recent study by Giannone

et al. (2008) shows that they are particularly suitable for nowcasting. The basic principle of

nowcasting is the exploitation of the information which is published early and possibly at higher

frequencies than the target variable of interest in order to obtain an “early estimate” before the

official number becomes available, see Evans (2005) and Banbura et al. (2011). A key challenge

is dealing with the differences in data release dates that cause the available information set to

differ over points in time within the quarter. This is what Wallis (1986) coined the “ragged

edge” of data. Giannone et al. (2008) evaluate point nowcasts from a dynamic factor model

and highlight the importance of using non-synchronous data release. These authors show that

the root mean square forecasting error decreases monotonically with each release.

The recent academic literature on factor models and nowcasting has focused on developing

single models that increase forecast accuracy in terms of point nowcasts, see, among others,

Banbura and Modugno (2010) and Banbura and Rünstler (2011). As there is considerable

uncertainty regarding several features of the model specification, for example, choice of variables

to include in the large data set, choice of number of factors, choice of lag length, etc., recent

work by Clark and McCracken (2009, 2010) suggested to follow the idea of Bates and Granger

(1969) and combine forecasts from a wide range of models with different features in order to
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reduce these problems.1 Surprisingly however, few studies in the nowcasting literature focus on

combining nowcasts from different models, Kuzin et al. (2013) and Aastveit et al. (2013) being

notable exceptions. Furthermore, the research interest in forecast combination has more recently

focused on the construction of combinations of predictive densities and not point forecasts, see

e.g. Hall and Mitchell (2007) and Jore et al. (2010).2 A recent extension to density forecasting

is to allow for time varying model weights with learning and model set incompleteness, see Billio

et al. (2013).

In this paper, we introduce a Combined Density Factor Model (CDFM) approach that

accounts for time varying factor model uncertainty in order to provide more accurate nowcasts

of predictive densities. By combining predictive densities from a set of dynamic factor models,

using combination weights that are time-varying and depend on past predictive forecasting

performance and other learning mechanisms and by making use of a Bayesian Sequential Monte

Carlo method, we are able to weight “soft” and “hard” data uncertainty, parameter uncertainty,

model uncertainty and uncertainty in the combination of weights in a coherent way. We address

the aforementioned sources of uncertainty using a large unbalanced real-time macroeconomic

data set for the United States, similar to Aastveit et al. (2013).

We allow for data and model feature uncertainty by varying the data set and the number

of factors. The former is motivated by Banbura and Rünstler (2011) dividing the data into

“soft data” and “hard data”. The soft data include financial data and surveys and reflect

market expectations while the hard data include measures of certain components of GDP (e.g.

industrial production), the labor market and prices. The soft data are often timely available

(i.e. early in the quarter), while real activity data are published with a significant delay but

considered to contain a more precise signal for the measurement of GDP. We apply a factor

model to three different data sets: soft data, hard data and all data series (i.e. including both

hard and soft data) and let the number of factor vary from 1 to 4 factors. In total we consider

12 different factor models.

Our approach to combine density nowcasts from 12 factor models leads to a Combined Den-

sity Factor Model (CDFM) where the combined density is a convolution of the set of individual

model densities. The algorithm that we use is an extension of Billio et al. (2013) to the case

1The idea of combining forecasts from different models have been widely used for economic forecasting. Tim-
mermann (2006) provides an extensive survey of different combination methods.

2See also Aastveit et al. (2013) for a nowcasting application.
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of dynamic factor models with data uncertainty. A Sequential Monte Carlo method is used to

approximate the filtering and predictive densities. The procedure is computational intensive,

when the number of models to combine increases. However, by making use of recent increases

in computing power and recent advances in parallel programming technique it is feasible to

apply the non-linear time-varying weights to the 12 factor models at different points in time

during the quarter. In doing so, we apply the MATLAB package DeCo (Density Combination),

developed by Casarin et al. (2013), which provide an efficient implementation of the algorithm

in Billio et al. (2013) based on CPU and GPU parallel computing.

We first implement a simulation experiment to compare soft and hard data and analyze the

performance of the CDFM. The results illustrate that soft data contain useful information due

to being timely available and increase both point and density nowcast performance even when

the true data are generated from hard database. Furthermore, CDFM with optimal learning

based on density nowcasting provides better density nowcasts than any of the individual models.

Next, we show the usefulness of the CDFM for nowcasting GDP growth and business cycle

turning points using U.S. real-time data. We divide data into different blocks, according to

their release date within the quarter, and update the density nowcasts at three different points

in time during each month of the quarter for the evaluation period 1990Q2-2010Q3. We repeat

that our CDFM includes 12 different dynamic factor models: 4 models are based on hard data;

4 models are based on soft data; and 4 models are based on all data. In each group, we consider

1 to 4 factors, resulting in 4 specifications. Our experiment refers to a professional economist

who is interested in dealing with various forms of uncertainty in real-time, including model

specifications. We find that CDFM outperforms all individual models in terms of log score

(LS) and cumulative rank probability score (CRPS)for all blocks and results. Interestingly,

the favorable nowcasting properties from the CDFM also applies when focusing on the tails

of the predictive distribution. Moreover, the CDFM also outperform the strategy of selecting

the models with the highest realized cumulative log score as well as Bayesian model averaging

based on predictive likelihood. Finally, we show that a real-time indicator based on the Bry

and Boschan (1971) (BB) rule and nowcasts from our model are more accurate in terms of

concordance statistics than those given by the alternative methods. Probabilities of high growth

and stagnation given by the CDFM are timely and accurate.
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The structure of the paper is as follows. Section 2 introduces our CDFM approach. Section

3 describes the data. Section 4 contains results using simulated data and Section 5 provides

results of the application of the proposed method to U.S. nowcasting. Section 6 concludes. In

the Appendix, we provide additional figures.

2 Model

2.1 Combined Density Factor Model: Overview of state space model and

density convolution

There is considerable empirical evidence that Dynamic Factor Models (DFMs) provide accurate

short-term forecasts, see e.g., Giannone et al. (2008) and Banbura and Modugno (2010). These

models are particularly useful in a data rich environment, where common latent factors and

shocks are assumed to drive the co-movements between aggregate and disaggregate variables and

the real-time data flow is inherently high dimensional with data released at different frequencies.

Assume we have a monthly (m) unbalanced dataset Xtm , where the unbalancedness is due

to data being released at different points in time (ragged edge). Let Xtm = (x1,tm , . . . , xN,tm)′

be a vector of observable and stationary monthly variables which have been standardized to

have mean equal to zero and variance equal to one. A dynamic factor model is then given by

the following observation equation:

Xtm = χtm + εtm = ΛFtm + εtm (1)

where Λ is a (n× r) matrix of factor loadings, Fm =

(
f1tm , . . . , frtm

)′
is the static

common factors and εtm =

(
ε1tm , . . . , εntm

)′
is an idiosyncratic component with zero

expectation and Ψtm = E
[
εtmε

′
tm

]
as covariance matrix.

The dynamics of the common factors follows a VAR process:

Ftm = AFtm−1 +Butm (2)

where um ∼ WN (0, Is), B is a (r × s) matrix of full rank s, A is a (r × r) matrix where

all roots of det(Ir − Az) lie outside the unit circle. The idiosyncratic and VAR residuals are
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assumed to be independent:

εtm
utm

 ∼ i.i.d.N(
0

0

 ,
R 0

0 Q

) (3)

with R set to be diagonal.3

Lastly, predictions of quarterly GDP growth, ytq , are obtained by using a bridge equation.

The monthly factors Ftm are first forecasted over the remainder of the quarter using equation

(2). To obtain quarterly aggregates of the monthly factors, (Ftq = F
(3)
tm ), we use the same

approach as Giannone et al. (2008) and Aastveit et al. (2013). Prior to estimating equation

(1) and (2), we transform each monthly variable to correspond to a quarterly quantity when

observed at the end of the quarter. Quarterly differences are therefore calculated as xtq = x
(3)
tm =

(1 − L3
m)(1 + Lm + L2

m)Ztm , where Lm is the monthly lag operator and Ztm is the raw data.

Likewise quarterly growth rates are calculated as xtq = x
(3)
tm = (1− L3

m)(1 + Lm + L2
m)logZtm .

The nowcast of quarterly GDP growth (ytq), can then be expressed as a linear function of

the expected common factors:

ytq = α+ β′Ftq + ςtq (4)

While the dynamic factor model can cope with unbalanced data and provide forecasts of

quarterly GDP growth using monthly information, there is considerable uncertainty regarding

model specification, such as selecting the number of factors (r) and the information set (X).

This can potentially result in M different DFM specifications. Selection criteria and various

testing procedure have been proposed in order to address such problems, see e.g. Bai and Ng

(2006).

Instead, we propose to follow the approach by Strachan and Dijk (2013), and rely on Bayesian

combination of several model features. We extend their approach of using fixed model weights

to the situation where we combine a set of predictive densities of model and data features using

time varying weights. Then, we can report tail probabilities of such features as high, low an

even negative growth. For the sake of brevity, we define the K specifications as K different

initial conditions. The predictive density that can be derived using equations (1), (2) and (4)

3The estimates are robust to violations of this assumption, see e.g. Banbura et al. (2012)
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and using a general density function of the time varying weights. This yields (see for details

2.2) :

p(ytq+h) =

∫
p(ytq+h|ỹtq+h, wtq+h, Ftq+h,K)p(ỹtq+h|Ftq+h,K)p(wtq+h|wtq)p(Ftq+h|K)dK (5)

where p(Ftq+h|K) is the predictive densities for the factors given by equation (2) with K differ-

ent initial conditions; p(ỹtq+h|Ftq+h,K) is a set of K predictive densities for the variable ytq+h

following equation (4) with K different initial conditions; and p(ytq+h|ỹtq+h, wtq+h, Ftq+h,K)

is the combination scheme for the K different predictive densities with combination weights

distributed as p(wtq+h|wtq). The function p(ytq+h|ỹtq+h, wtq+h, Ftq+h,K) is based on a con-

volution mechanism that produces a modified predictive density for ytq+h of the K original

p(ỹtq+h|Ftq+h,K) densities.

Furthermore, we follow Billio et al. (2013), and propose a Gaussian combination, with

logistic-Gaussian weights with learning based on past predictive performances which allows for

model incompleteness, i.e., the “true” model is not a part of the model space. This is done via

the following specification:

p(ytq+h|ỹtq+h, wtq+h, Ftq+h,K) ∝ exp

{
−1

2

(
ytq+h − wtq+hỹtq+h

)′
σ−1

(
ytq+h − wtq+hỹtq+h

)}
(6)

where ỹtq+h is a matric containing the K predictive densities p(ỹtq+h|Ftq+h, k), k = 1, ...,K;

and where the weights wtq+h = (w1,tq+h, ..., wK,tq+h) are logistic transforms with K models

wk,tq+h =
exp{zk,tq+h}∑M
j=1 exp{zj,tq+h}

, k = 1, ...,K

and

p(ztq+h|ztq , ỹtq−τ :tq)∝exp

{
−1

2

(
∆ztq+h −∆etq+h

)′
Λ−1

(
∆ztq+h −∆etq+h

)}
with ∆ztq+h = ztq+h− ztq , ztq+h = (z1,tq+h, ..., zK,tq+h) and ∆etq+h = etq+h− etq where etq+h =

(e1,tq+h, ..., eK,tq+h) is a learning function based on past predictive performances, see section 2.3
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for possible scoring functions of predictive densities. We define

ek,tq+h = (1− λ)

tq∑
i=τ

λi−1LSk,i, k = 1, ..,K

where LS is defined in equation 13 below, λ is a discount factor, and (tq− τ +1) is the length of

the learning parameter. In the empirical application we set λ = 0.95 and τ = 1. The convolution

applies in equation (6), and it precisely creates the following combined density:

(ỹ ∗w)tq+h =

∫ + inf

− inf
(ỹtq+h,1(ξ)∗ . . .∗ ỹtq+h,K(ξ))∗ (wtq+h,1(d− ξ)∗ . . .∗wtq+h,K(d− ξ))dξ (7)

where ỹtq+h = (ỹtq+h,1 ∗ . . . ∗ ỹtq+h,K); wtq+h = (wtq+h,1 ∗ . . . ∗ wtq+h,K). For each value of ξ,

the convolution formula can be described as a weighted average of the function ỹtq+h(ξ) with

weight wtq+h(d − ξ). As d changes, the weighting function emphasizes different parts of the

input function. We follow Billio et al. (2013) and use different draws from the K individual

predictive densities as values for ξ.

Convolution has several important mathematical properties, see for example Damelin and

Miller (2011), that we exploit to derive equation (7):

• Property 1: (ỹ ∗ w)tq+h = (w ∗ ỹ)tq+h.

• Property 2: ỹ ∗ (w ∗ γ)tq+h = ((w ∗ ỹ) ∗ γ)tq+h.

• Property 3: ỹ ∗ (w + γ)tq+h = (ỹ ∗ w)tq+h + (ỹ ∗ γ)tq+h.

• Property 4: α(ỹ ∗ w)tq+h = α(ỹ)tq+h ∗ wtq+h, for any real or complex α.

Property 1 implies that the operation is invariant to the order of the operands (commutative

property). Property 2 implies that the order in which the operations are performed does not

matter as long as the sequence of the operands is not changed (associative property). Property

3 implies that multiplying a density by a group of added densities yields the same outcome

as multiplying each density separately and then adding them together (distributive property).

Property 4 implies that associativity holds for any scalar multiplication.

The methodology is very general and allows to convolute predictive densities provided by

various sources, e.g. from parametric Bayesian or frequentist models, nonparametric models,
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given the condition that p(ỹtq+h|Ftq+h,K) are densities. Indeed, in the applications we construct

predictive densities using frequentist bootstrapping, but combine them using Bayesian inference;

see the next section for details.

Our approach accounts for various sources of uncertainty, such as data uncertainty, param-

eter uncertainty, model uncertainty; and it estimates a time-varying weight wk,tq+h based on

past predictive density performance for each of these components. The resulting predictive

density will integrate out the aforementioned sources of uncertainty while allowing for model

incompleteness. We label this as a Combined Density Factor Model (CDFM) approach.

2.2 Algorithm and parallelization

The main steps of our algorithm are:

Step 1: Estimate K DFM models and generate draws for F̃k,tm+h, k = 1, ...,K.

Step 2: Conditional on F̃k,tm+h generate draws of ỹtq+h, k = 1, ...,K

Step 3: Combine the predictions from the K models, accounting for uncertainty on the

number of factors (r) and information set (X).

We briefly describe them.

Step 1: The following bootstrap procedure is used to construct simulated forecasts. Let

Â0 = [Â1, . . . , Âp], B̂0, û0,txm , ξ̂0,txm , Λ̂0, α̂0, β̂0, and ê0,tm+hm denote the initial point estimates.

Then, for d = 1, ..., 2000:

1. Simulate monthly F̃txm =
∑p

i=1 ÂiF̃txm−i + B̂0u
∗
txm

, where u∗txm is re-sampled from û0,txm .

2. Simulate X̃txm = Λ̂0F̃txm + ξ∗txm , where ξ∗txm is re-sampled from ξ̂0,txm .

3. Based on X̃txm , re-estimate the model to get a new set of parameter and factor estimates.

Use these to generate factor forecasts according to 2, where shock uncertainty is included

by re-sampling from û0,txm .

Step 2: Estimate equation 4 based on the monthly factor estimated in the previous step and

converted to quarterly as described in the previous section, and construct forecasts for ỹtq+h

where shock uncertainty is included by re-sampling from ê0,tm+hm .
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Step 3: Apply the sequential Monte Carlo algorithm of Billio et al. (2013). We provide some

details on the prior. The combination weights are [0,1]-valued processes and one can interpret

them a sequence of prior probabilities over the set of models. In our framework, the prior

probability on the set of models is random, as opposite to the standard model selection or BMA

frameworks, where the model prior is fixed. The likelihood, given by the combination scheme,

allows us to compute the posterior distribution on the model set. In this sense the proposed

combination scheme shares some similarities with the dilution and hierarchical model set prior

distributions for BMA, proposed in George (2010) and Ley and Steel (2009) respectively.

We repeat steps 1-3 recursively for every block in each quarter vintage. The exercise is very

time consuming and requires parallelization to be implemented. We parallelize the code in two

directions. First, step 1 and step 2 are parallelized across models, vintages and blocks. Then,

step 3 is parallelized across draws using the MATLAB toolbox DeCo described in Casarin et al.

(2013).4

2.3 Forecast evaluation

The aim of this paper is to provide an efficient methodology which deals with various sources of

uncertainty in order to improve nowcast accuracy. As most other papers focusing on nowcasting

do, we provide first some results on point forecasts. However, as these forecasts are only optimal

for a small and restricted group of loss functions, our main focus is on density forecasting. When

evaluating the predictive nowcasts, we evaluate both the full distribution as well as their tails.

For notational simplicity, we define t = tq in the remaining part of the paper.

To shed light on the predictive ability of our methodology, we consider several evaluation

statistics for point and density forecasts previously proposed in the literature. Suppose we have

k = 1, ...,K different approaches to nowcast GDP. We compare point forecasts in terms of Root

Mean Square Prediction Errors (RMSPE)

RMSPEk =

√√√√ 1

t∗

t∑
t=t

ek,t+h

where t∗ = t− t+ h, t and t denote the beginning and end of the evaluation period, and ek,t+h

4If the user was in the last vintage and block, parallelization across models in steps 1 and 2 and parallelization
across predictive draws in step 3 are required to derive predictive densities for future values
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is the h-step ahead square prediction error of model k.

The complete predictive densities are evaluated using the Kullback Leibler Information

Criterion (KLIC) based measure, utilizing the expected difference in the Logarithmic Scores of

the candidate forecast densities; see, for example, Mitchell and Hall (2005), Hall and Mitchell

(2007), Amisano and Giacomini (2007), Kascha and Ravazzolo (2010), Billio et al. (2013),

and Aastveit et al. (2013). The KLIC chooses the model that on average gives the higher

probability to events that actually occurred. Specifically, the KLIC distance between the true

density p(yt+h|y1:t) of a random variable yt+h and some candidate density p(ỹk,t+h|y1:t) obtained

from model k is defined as

KLICk,t+h =

∫
p(yt+h|y1:t) ln

p(yt+h|y1:t)
p(ỹk,t+h|y1:t)

dyt+h,

= Et[ln p(yt+h|y1:t)− ln p(ỹk,t+h|y1:t))]. (8)

where Et(·) = E(·|Ft) is the conditional expectation given information set Ft at time t. An esti-

mate can be obtained from the average of the sample information, yt+1, . . . , yt+1, on p(yt+h|y1:t)

and p(ỹk,t+h|y1:t):

KLICk =
1

t∗

t∑
t=t

[ln p(yt+h|y1:t)− ln p(ỹk,t+h|y1:t)]. (9)

Although we do not pursue the approach of finding the true density, we can still rank the

different densities, p(ỹk,t+h|y1:t), k = 1, . . . ,K by different criteria. For the comparison of two

competing models, it is sufficient to consider the Logarithmic Score (LS), which corresponds to

the latter term in the above sum,

LSk = − 1

t∗

t∑
t=t

ln p(ỹk,t+h|y1:t), (10)

for all k and to choose the model for which it is minimal, or, as we report in our tables, its

opposite is maximal.

We further evaluate density forecasts based on the continuous rank probability score (CRPS);

see, for example, Gneiting and Raftery (2007), Gneiting and Ranjan (2013), Groen et al. (2013)

and Ravazzolo and Vahey (2012). The CRPS for model k measures the average absolute distance

between the empirical cumulative distribution function (CDF) of yt+h, which is simply a step
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function in yt+h, and the empirical CDF that is associated with model k’s predictive density:

CRPSk,t+1 =
∫ (
F (z)− I[yt+h,+∞)(z)

)2
dz (11)

= Et|ỹt+h,k − yt+h| − 1
2Et|ỹt+h,k − y

′
t+h,k|, (12)

where F is the CDF from the predictive density p(ỹk,t+h|y1:t) of model k and ỹt+h,k and ỹ′t+h,k are

independent random variables with common sampling density equal to the posterior predictive

density p(ỹk,t+h|y1:t). We report the sample average CRPS:

CRPSk = − 1

t∗

t∑
t=t

CRPSk,t+h, (13)

Smaller CRPS values imply higher precisions and, as for the log score, we report the average

CRPSk for each model k in all tables.

Finally, we assess how our range of models fares when different areas of their predictive

densities are emphasized in the forecast evaluation, such as the tails. Gneiting and Ranjan

(2013) propose to integrate weighted versions of Gneiting and Raftery (2007) quantile scores

(QS), with weights chosen in iorder emphasize a certain area of the underlying forecast density.

We will use a discrete approximation to this integration, i.e.,

QS-Tk =
1

t∗

t∑
s=t

 1

99

99∑
j=1

(2αj − 1)2QS(αj , k, s+ h)

 ,

QS-Lk =
1

t∗

t∑
s=t

 1

99

99∑
j=1

(1− αj)2QS(αj , k, s+ h)

 ,

(14)

where αj = j/100 and

QS(α, k, t+ h) =
(
I{yt+h 5 F−1(α, l)} − α

) (
F−1(α, l)− yt+h

)
with F−1(α, k) is the quantile forecast h periods ahead using model k for level α ∈ (0, 1).

Integrating QS measures over α ∈ (0, 1) results in the CRPS measure in equation (11) (see

Gneiting and Ranjan (2013)). In quation (14), QS-T emphasizes the tail, and QS-L the left tail

(negative GDP growth) of the predictive density relative to the realization. As for the CRPS,

a lower QS implies a more accurate forecast.
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3 Data

We consider in total 120 monthly leading indicators to nowcast quarterly business cycle turning

points and GDP growth in the United States. Our real-time dataset is similar to the one used

in Aastveit et al. (2013).5 As in that paper, we use the last available data vintage as real-time

observations for consumer prices and survey data if the real-time data vintage is not available.

For other series, such as disaggregated measures of industrial production, real-time vintage

data exist only for parts of the evaluation period. For these variables, we use the first available

real-time vintage and truncate these series backwards recursively. Finally, for financial data, we

construct monthly averages of daily observations.

Following Banbura and Rünstler (2011) we divide the data into “soft data” and “hard data”.

The first set includes 38 surveys and financial indicators and reflects market expectations,

as opposed to the latter set that includes 82 measures of GDP components (e.g. industrial

production), the labor market and prices. The soft data are often timely available (i.e. early

in the quarter), while real activity data are published with a significant delay but this latter

category is considered to contain a more precise signal for GDP forecasting.

The full forecast evaluation period runs from 1990Q2 to 2010Q3. We use monthly real-

time data with quarterly vintages from 1990Q3 to 2010Q4, i.e., we do not take account of data

revisions in the monthly variables within a quarter.6 The starting point of the estimation period

is 1982M1. We study nowcasts at 9 different points in time during a quarter. They correspond

to the beginning, middle and end of each month in the quarter. Since GDP measures are

released approximately 20-25 days after the end of the quarter, our exercise also includes 2

backcasts, calculated at the beginning and the middle of the first month after the quarter of

interest. See Table 1 for information on the final 11 blocks. When forecasting business cycle

turning points, our benchmark is the NBER reference cycle. However, when nowcasting GDP

growth, the choice of a benchmark for the “actual” measure of GDP is less obvious (see Stark

and Croushore (2002) for a discussion of alternative benchmarks). We follow Romer and Romer

(2000) in using the second available estimate of GDP as the actual measure.

5The main source is the ALFRED (ArchivaL Federal Reserve Economic Data) database maintained by the
Federal Reserve Bank of St. Louis. In addition some series are also collected from the Federal Reserve Bank of
Philadelphia’s Real-Time Data Set for Macroeconomists, see Croushore and Stark (2001).

6The quarterly vintages reflect information available just before the first release of the GDP estimate.
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Table 1. Block information
Block Time Horizon

Nowcasting

1 Start of first month of quarter 2-step ahead
2 10th of first month of quarter (after inflation release) 2-step ahead
3 Around 20-25th of first month of quarter (after GDP relase) 1-step ahead
4 Start of second month of quarter 1-step ahead
5 10th of second month of quarter (after inflation release) 1-step ahead
6 Around 20-25th of Second month of quarter 1-step ahead
7 Start of thirds month of quarter 1-step ahead
8 10th of Third month of quarter (after inflation release) 1-step ahead
9 Around 20-25th of third month of quarter 1-step ahead

Backcasting

10 Start of fourth month of quarter 1-step ahead
11 10th of fourth month of quarter (after inflation release) 1-step ahead

The table shows time in the quarter and forecast horizon for the 11 blocks.

4 Simulation Exercise

In this section we implement a simulation exercise to understand what are the differences

between the hard and soft data.

We simulate a series yt assuming that the data generating process (DGP) follows a dynamic

factor model with 2 factors from a balanced panel of hard data. Hence, we assume that the hard

data contain all relevant information for aggregate GDP. However, in real time that data set is

not balanced and soft data are often more timely available than hard data. Several studies have

therefore found that soft data capture “sentiments” over future developments. In our simulation

exercise, we are interested in studying if the timeliness of soft data improve the forecasts when

the true DGP is generated from the hard data set. We also consider a dynamic factor model

that uses both hard and soft data, in addition to our combination approach CDFM. As in the

empirical exercise, we produce nowcasts (and backcasts) for the 11 blocks, but for the sake of

brevity we just report MSPE results for point forecasting and LS results for density forecasting

for a subset of blocks.

Table 2 reports out-of-sample results for Block 2 and Block 10. As expected, the DFM hard

is more accurate than DFM soft. However, since DFM all increase the LS score and reduce

MSPE relative to DFM hard, soft data contains additional information that is useful for im-

proving the nowcasts. This is due to the soft data being more timely than the hard data. Finally,

in our proposed CDFM approach the optimal learning is based on the LS (density forecasting).
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Table 2. Simulation exercise
Block 2 Block 10 Block 2 Block 10

LS MSPE
DFM all -1.704 -0.628 0.222 0.113
DFM hard -1.417 -0.731 0.234 0.129
DFM soft -2.542 -0.904 0.296 0.269
CDFM -0.895 -0.337 0.236 0.123

Interestingly, nowcasts from the CDFM give sizeable improvements, in terms of LS, relative to

the three individual models.

5 Empirical Application

5.1 Point and density nowcasts of GDP growth

We produce density nowcasts/backcasts for GDP growth at 11 different points in time, described

in section 3, using 12 different DFMs: 4 models extract factors from the hard data; 4 models use

the soft data; and 4 models use all the data. In each group, we consider 1 to 4 factors, resulting

in 4 different DFM specifications for each data group. Our exercise refers to a researcher who

construct nowcasts in real time accounting for various forms of uncertainty, including uncertainty

related to model specification.7 We consider three different model specification strategies:

1. SEL: A selection strategy where we recursively pick the model with the highest realized

cumulative log score at each point in time throughout the evaluation period.

2. BMA: A Bayesian model averaging approach based on predictive likelihood.

3. CDFM: Our proposed Combined Density Factor Model approach.

Table 3 reports results for the three different strategies at the 11 different points in time

(blocks) during the quarter. The table reveals three interesting results. First, the table shows

that the CDFM approach provides the best statistics for almost all of the blocks. The only

exceptions are CRPS in block 8; and MSPE in blocks 8, 9 and 10, where SEL provides marginally

lower scores. Three of these four cases refer to backsting. Second, the gains are substantial

when we evaluate density nowcasts based on log scores. Interestingly, this illustrates the gains

7Results for individual models are available upon request. CDFM outperforms all individual models in terms
of log score for all blocks.

15



Table 3. Point and density forecasting

Nowcasting

LS CRPS QS-T QS-L MSPE
Block 1

SEL -1.663 0.357 0.042 0.059 0.436
BMA -1.706 0.357 0.042 0.059 0.436

CDFM -1.008 0.340 0.039 0.055 0.370
Block 2

SEL -1.632 0.366 0.043 0.061 0.458
BMA -1.650 0.366 0.043 0.061 0.460

CDFM -0.981 0.339 0.039 0.055 0.367
Block 3

SEL -1.456 0.352 0.041 0.058 0.405
BMA -1.492 0.356 0.041 0.058 0.413

CDFM -0.941 0.333 0.038 0.053 0.350
Block 4

SEL -1.251 0.356 0.041 0.058 0.417
BMA -1.324 0.351 0.040 0.057 0.404

CDFM -0.913 0.327 0.037 0.052 0.337
Block 5

SEL -1.032 0.330 0.038 0.053 0.329
BMA -0.974 0.319 0.036 0.051 0.313

CDFM -0.844 0.310 0.035 0.048 0.303
Block 6

SEL -0.974 0.327 0.037 0.052 0.333
BMA -0.934 0.319 0.036 0.050 0.314

CDFM -0.850 0.312 0.035 0.049 0.305
Block 7

SEL -1.110 0.341 0.039 0.056 0.352
BMA -0.888 0.310 0.035 0.049 0.302

CDFM -0.811 0.303 0.034 0.047 0.291
Block 8

SEL -0.735 0.276 0.031 0.044 0.235
BMA -0.771 0.283 0.032 0.044 0.251

CDFM -0.740 0.287 0.031 0.042 0.262
Block 9

SEL -0.769 0.283 0.032 0.045 0.246
BMA -0.795 0.289 0.033 0.045 0.259

CDFM -0.741 0.287 0.032 0.045 0.262

Backcasting

Block 10
SEL -0.711 0.268 0.030 0.042 0.225

BMA -0.755 0.276 0.031 0.042 0.237
CDFM -0.693 0.276 0.030 0.042 0.242

Block 11
SEL -0.727 0.277 0.030 0.042 0.227

BMA -0.698 0.271 0.030 0.042 0.233
CDFM -0.660 0.267 0.029 0.041 0.223

The table shows average log score (LS), cumulative rank probability score (CRPS), quantile score based on tails

(QS T), quantile score based on left tail (QS L), and mean square prediction error (MSPE) for three different

prediction methods: selecting the model with highest recursive score at each point in time (SEL), standard

Bayesian model averaging based on predictive likelihood (BMA), and our dynamic factor model combination

(CDFM) for different blocks. Bold numbers indicates the most accurate model for different statistics. See Table

1 for information on different blocks.16



of using the learning function that we impose in the CDFM. As described in section 2, the

learning function is based on past log score performance. Alternatively, we could have imposed

a similar learning function based on another density loss function, such as the CRPS, or a more

restricted version, such as the MSPE. Finally, when focusing on the tails the CDFM performs

better than the alternatives for all blocks. This result holds for both tails (QS T) or when we

just focus on the left tail (QS L). This is an interesting result, since accurate forecasts during

recessions and turbulent times are very hard to obtain.

Figure 1 shows the weights associated to the 12 models for block 1. We notice the large

uncertainty on the weights, with substantial variation over time. There is not a set of clear

dominant models, but the DFMs with two factors have in general a higher probability, The

models with three factors receives less weight. Models that use all and hard data have marginally

higher weights than the models based on soft data. However, as is evident from the figure, the

models that use only the soft data do not have zero weights. Thus, by using a methodology

that carefully copes with the uncertainty in the weights attached to each model, we find that

the division of hard and soft data provides additional gains, in terms of more accurate forecasts,

than by only selecting DFMs that use either all the data or hard data. Results are similar for

other blocks and horizons, see additional figures in the appendix. However, successive blocks

assign more and more weight to models with only 1 and 2 factors.

5.2 Prediction of the business cycle phases

In the previous section we have shown that the CDFM provides accurate nowcasts when focusing

on the entire distribution of GDP growth or on tails of it. In this section we follow Billio et al.

(2012), Billio et al. (2013) and Aastveit et al. (2013) and apply an extended Bry and Boschan

(1971) (BB) rule in real time to GDP growth in order to predict classical turning points of the

US economy.

Following Harding and Pagan (2002), the BB procedure identifies a potential peak in a

quarter if the value is a local maximum. Correspondingly, we can identify a potential trough if

the value is a local minimum. Searching for maxima and minima over a window of 5 quarters

seems to produce reasonable results. After potential turning points are identified, the choice

of final turning points depends on several rules to ensure alternating peaks and troughs and

17



Figure 1. Posterior weights, block 1
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The figures plot the 90% credibility intervals of the model posterior weights and their medians (dotted lines).

The first row shows weights for DFM models based on all data and 1, 2, 3 and 4 factors, respectively. The second

row shows weights for DFM models based on hard data and 1, 2, 3 and 4 factors, respectively. The third row

shows weights for DFM models based on soft data and 1, 2, 3 and 4 factors, respectively.
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minimum duration of phases and cycles. The definitions of peaks can formally be written as:

∧t = 1{(yt−2, yt−1) < yt > (yt+1, yt+2)} (15)

and correspondingly for troughs as:

∨t = 1{(yt−2, yt−1) > yt < (yt+1, yt+2)} (16)

When forecasting peaks and troughs, the values on the right-hand side of the equations are

replaced by forecasts. Formally:

∧t = 1{(yt−2, yt−1) < yt, P rob(yt+1, yt+2) < yt) > 0.5} (17)

and

∨t = 1{(yt−2, yt−1) > yt, P rob(yt+1, yt+2) > yt) > 0.5} (18)

The business cycle can be interpreted as a state St, which takes the value 1 in expansions

and 0 in recessions. Turning points occur when the state changes. The relationship between

the business cycle and the local peaks and troughs can be written as

St = St−1(1− ∧t−1) + (1− St−1)∨t−1) (19)

If the economy is in an expansion, St−1 = 1. If no peak occurred in (t-1), then ∧t−1 = 0 and it

follows that the state St = 1. On the other hand, if there is a peak in (t-1) then ∧t−1 = 1 and

the state changes to St = 0. The state will remain at 0 until a trough is detected.

Defining a peak or a trough at time t, where t is the last value in the sample, requires a

probabilistic assessment of future values for yt+1 and yt+2 as the formulas describe. We use

density forecasts from the models in the previous section and report results using the median as

summary statistics of the predictive densities. Furthermore, we compare our ex-ante definition

of the business cycle to ex-post NBER business cycle dating and compute the concordance

statistics (CS) to provide insights about which method is more accurate. The concordance

19



statistics counts the proportion of time during which the predicted and the reference turning

point series are in the same state and it is defined for model k at time t as:

CSk =
t∑
s=t

((Sk,sSR,s)− (1− Sk,s)(1− SR,s)) (20)

where Sk,s is defined in (19) for model k at time s and SR,s refers to the cycle provided by the

ex-post NBER reference dating.

Table 4 compares the concordance statistics for the CDFM, SEL and BMA approach 9

different points in time during the quarter.8 For all the 9 blocks the CDF produce the highest

concordance statistics. However, as the table shows, it is a very challenging task to predict

recessions in real time, see also the detailed discussion in Hamilton (2011).

The full distribution of the CDFM can also be used to compute probabilities to be in specific

phases of the business cycle, and not just an indicator as in previous paragraphs. Considering

that we document that CDFM performs well in the tails, see table 3, we focus on two “tail”

probabilities: the probability of negative growth (nowcasts below 0) and the probability of

quarterly growth higher than 1% (or annual growth higher than 4%). Figures 2 and 3 shows that

the probabilities are timely and accurate, in particular for negative growth. New information

in the quarter increases predictability accuracy, resulting in more precise probabilities of high

or low growth in the later blocks.

Table 4. Concordance statistics for turning points

Blocks SEL BMA CDFM

1 0.829 0.829 0.841
2 0.829 0.829 0.854
3 0.829 0.829 0.841
4 0.829 0.829 0.841
5 0.841 0.841 0.841
6 0.841 0.841 0.841
7 0.841 0.841 0.841
8 0.829 0.829 0.854
9 0.854 0.841 0.854

The table shows the concordance statistics (CS) for three different prediction methods: selecting the model with

highest recursive score at each point in time (SEL), standard Bayesian model averaging based on predictive

likelihood (BMA), and our dynamic factor model combination (CDFM) for different blocks. Bold numbers

indicates the most accurate model. See Table 1 for information on different blocks.

8We only provide results for the nowcasts, and not the backcasts.

20



Figure 2. Probabilities of negative growth

1990Q2 2000Q2 2010Q2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1990Q2 2000Q2 2010Q2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Block 1 Block 9

The figures show the probabilities over time of negative quarterly growth given by the CDFM for the first and

ninth blocks. The red line plots the probabilities scaled by 2 (therefore covering the interval [0,2]); the bars plot

the realization.

Figure 3. Probabilities of negative growth
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The figures show the probabilities over time of quarterly growth higher than 1% (implying annual growth higher

than 4%) given by the CDFM for the first and ninth blocks. The red line plots the probabilities scaled by 2

(therefore covering the interval [0,2]); the bars plot the realization.
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6 Conclusion

In this paper, we have introduced a Combined Density Factor Model (CDFM) approach that

accounts for time varying factor model uncertainty in order to provide more accurate nowcasts

of predictive densities. By combining predictive densities from a set of dynamic factor models,

using combination weights that are time-varying and depend on past predictive forecasting

performance and other learning mechanisms and by making use of a Bayesian Sequential Monte

Carlo method, we are able to weight ’soft’ and ’hard’ data uncertainty, parameter uncertainty,

model uncertainty and uncertainty in the combination of weights in a coherent way.

We first implement a simulation experiment to compare soft and hard data and analyze the

performance of the CDFM. The results illustrate that soft data contain useful information due

to being timely available and increase both point and density nowcast performance even when

the true data are generated from the hard database. Furthermore, we show that the CDFM

with optimal learning based on density nowcasting provides better density nowcasts than any

of the individual models.

We then show the usefulness of the CDFM for nowcasting GDP growth and business cycle

turning points using U.S. real-time data. We divide data into different blocks, according to their

release date within the quarter, and update the density nowcasts at three different points in time

during each month of the quarter for the evaluation period 1990Q2-2010Q3. Our experiment

refers to a professional economist who is interested in dealing with various forms of uncertainty

in real-time, including model specifications. The CDFM we use includes 12 different dynamic

factor models: 4 models are based on hard data; 4 models are based on soft data; and 4 models

are based on all data. In each group, we consider 1 to 4 factors, resulting in 4 specifications.

Our approach to combine density nowcasts from 12 factor models leads to the CDFM where the

combined density is a convolution of the set of individual model densities. By making use of

recent increases in computing power and recent advances in parallel programming technique, it

is feasible to use a sequential Monte Carlo method to approximate the filtering and predicative

densities and apply non-linear time-varying weights to the 12 factor models at different points

in time during the quarter.

We find that the CDFM outperforms all individual models in terms of log score (LS) and

cumulative rank probability score (CRPS) for all blocks and results. Interestingly, the favorable
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nowcasting properties from the CDFM also applies when focusing on the tails of the predictive

distribution and it delivers timely and accurate probabilities of high growth and stagnation.

Moreover, the CDFM also outperform the strategy of selecting the models with the highest

realized cumulative log score as well as Bayesian model averaging based on predictive likelihood.

Finally, we show that a real-time indicator based on the Bry and Boschan (1971) (BB) rule and

nowcasts from our model are more accurate in terms of concordance statistics than those given

by the alternative methods.
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Appendix A

A1. Posterior combination weights for other blocks and horizons

Figure 4. Posterior weights, block 3
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See note in figure 1.

Figure 5. Posterior weights, block 6
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See note in figure 1.
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Figure 6. Posterior weights, block 9
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Figure 7. Posterior weights, block 11
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