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Contingent-Claim-Based Expected Stock Returns

Abstract

We develop and test a parsimonious contingent claims model for cross-sectional

returns of stock portfolios formed on market leverage, book-to-market equity, asset

growth rate, and equity size. Since stocks are residual claims on firms’ assets that

generate operating cash flows, stock returns are cash flow rates scaled by the sen-

sitivities of stocks to cash flows. Our model performs well because the stock-cash

flow sensitivities contain economic information. Value stocks, high-leverage stocks

and low-asset-growth stocks are more sensitive to cash flows than growth stocks, low-

leverage stocks and high-asset-growth stocks, particularly in recessions when default

probabilities are high.

Keywords: Stock-cash flow sensitivity, structural estimation, implied-state GMM, financial

leverage, default probability, asset pricing anomalies

JEL Classification: G12, G13, G33
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1 Introduction

Equity is a residual claim contingent on a firm’s assets that generate operating cash

flows. Using this fundamental insight, we build a parsimonious contingent claims

model for cross-sectional stock returns under a no-arbitrage condition. In the model,

stock returns are cash flow rates scaled by the sensitivities of stocks to cash flows. We

test the model via a variant of implied state generalized method of moments. Our

model outperforms the capital asset pricing model (CAPM) and the Fama–French

three-factor model in explaining stock returns of portfolios formed on market leverage,

book-to-market equity, asset growth rate, and equity size.1 The better performance of

our model can be attributed to our innovative structural estimation of the stock-cash

flow sensitivities that capture cross-sectional variation in financial leverage as well as

variation in default probabilities over the business cycle.

Inspired by Schaefer and Strebulaev (2008), who successfully use a simple struc-

tural model to explain bond returns, we develop and test a simple contingent claims

model for cross-sectional stock returns. It has only one state variable and two policy

parameters related to dividend payout and default policies that determine the stock-

cash flow sensitivities. The only state variable is observable cash flows. Our choice of

one observable state variable follows Cochrane (1996), who essentially uses observable

investment returns as the main state variable. Similarly, we infer the underlying mar-

ket movement from firms’ operating cash flows instead of looking for unobservable

market returns. We also explicitly model the dividend payout and default policies that

affect the amount of cash flows accruing to stock holders and therefore the stock-cash

flow sensitivities.

1While the market leverage premium, value premium and size premium are long well-known,
Cooper, Gulen, and Schill (2008) recently find that firms with low asset growth rates outperform
their counterparts with high growth rates by 8% per year for value-weighted portfolios and 20% per
year for equal-weighted portfolios.
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We adapt implied-state generalized method of moments (IS-GMM) proposed by

Pan (2002) to test the model for four sets of equal-weighted portfolios. All the

portfolios considered are related to default risk. The first set is portfolios formed

on market leverage, which are are natural choices because equity is a residual claim

on operating cash flows after contractual debt payments. Fama and French (1992)

show the positive relation between market leverage and stock returns. Ferguson and

Shockley (2003) link the leverage with financial distress and show their implications

for cross-sectional stock returns. We take book-to-market and asset growth portfolios

as our next two sets of testing portfolios. Gomes and Schmid (2010) show that value

firms have accumulated more debt and book assets during their expansions and exhibit

lower growth rates than growth firms do. Avramov, Chordia, Jostova, and Philipov

(2013) empirically document that value premium and asset growth premium associate

with financial distress risk. The last set is size portfolios. Griffin and Lemmon (2002)

and Vassalou and Xing (2004) document that size premium is more significant in

firms with high default risk.

Our model performs well in explaining the cross-sectional returns for all the sets

of portfolios. For the financial leverage portfolios, the pricing error of the high-minus-

low (H–L) portfolio is 0.65% per year, substantially lower than 12.39% in the CAPM

and 3.19% in the Fama–French model. The mean absolute error (m.a.e.) across the

five portfolios is 0.87% per year, compared with 7.03% in the CAPM and 3.72% in

the Fama–French model. For the book-to-market portfolios, the pricing error of the

H–L portfolio in our model is 1.95% per year, lower than 15.00% in the CAPM and

7.38% in the Fama–French model. For the asset growth portfolios, the m.a.e. in

our model is 1.60% per year, which is considerably lower than 7.28% in the CAPM

and 4.26% in the Fama–French model. For the size portfolios, the pricing error of

the small-minus-big (S–B) portfolio in our model is −0.08% per year, which is much
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lower than 8.03% in the CAPM and 2.81% in the Fama–French model.

We then explore the economic mechanism behind the model’s good fit. Our model

results in the closed-form solution for the time-varying stock-cash flow sensitivity. We

therefore first estimate the two policy parameters and back out the latent risk-neutral

rate and volatility and then use them to calculate the time based on a closed-form

solution from our parsimonious model. Our analysis demonstrates that the spread in

the stock-cash flow sensitivities is able to explain a large portion of cross-sectional

variation in stock returns for the market leverage, book-to-market and asset growth

portfolios, while the spread in the cash flow rates plays an important role for the size

portfolios. We also find that stocks are more sensitive to the changing cash flows in

bad times when default probabilities are high. More important, the counter-cyclical

spread in stock-cash flow sensitivity is a manifestation of the cross-sectional difference

in default probabilities over the business cycle.

Our work is related to several strands of the literature. First, structural models

of capital structure have received a lot of attention recently (See e.g., Goldstein, Ju,

and Leland (2001), Strebulaev (2007), Chen (2009), Morellec, Nikolov, and Schurhoff

(2008), Hennessy and Whited (2005), and Hennessy and Whited (2007)). Our model

is based on Fan and Sundaresan (2000) and Davydenko and Strebulaev (2007) that

study the impact of renegotiation between equity and debt holders on capital structure

choice and bond pricing. We extend their models to examine cross-sectional stock

returns. The second strand is the emerging literature using dynamic models to study

cross-sectional stock returns (See e.g., Berk, Green, and Naik (1999), Gomes, Kogan,

and Zhang (2003), Gomes and Schmid (2010), Bhamra, Kuehn, and Strebulaev (2010)

and Kogan and Papanikolaou (2010)). While they use calibration to evaluate their

model performance, we use IS-GMM that incorporates all the information from data

without generating artificial data sets.
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The third strand of the literature quantifies the performance of the dynamic mod-

els. Because of the complexity of the dynamic models, most research either employs

reduced-form regressions to test model predictions or uses calibration and simulated

method of moments (SMM) to evaluate the structural model performance.2 Cochrane

(1996) and Liu, Whited, and Zhang (2009) develop neoclassical investment models

and use generalized method of moments to study the model implications for stock

returns. Compared with the discrete-time investment models, our continuous-time

model of default risk faces the well-known difficulty in estimating the latent vari-

ables. The IS-GMM procedure we adapt overcomes this difficulty and provides a new

perspective for the continuous-time contingent claims models.

The remainder of this paper proceeds as follows. Section 2 presents the parsi-

monious contingent claim model. Section 3 explains the empirical specifications and

procedures. Section 4 describes the data and the empirical measures. Section 5

adapts IS-GMM to estimate the model and examines the time series of stock-cash

flow sensitivity and default probability. Section 6 concludes the paper.

2 A Contingent Claims Model of Stock Returns

We start by developing a standard contingent claims model and then discuss how to

take the model to the data.

2Recent works that use linear regressions include Garlappi and Yan (2011) and Favara, Schroth,
and Valta (2011). Carlson, Fisher, and Giammarino (2004) and Hennessy and Whited (2005) use
SMM to simulate a firm’s dynamic paths, generate artificial data sets and match certain selected
moments.
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2.1 Model

Consider an economy with a large number of firms, indexed by subscript i. Assets

that generate cash flows are traded continuously in arbitrage-free markets. Under

a physical probability measure, the observable operating rate of cash flows rXit for a

firm, i, is governed by

rXit ≡
dXit

Xit

= µ̂idt+ σidŴt, (1)

where Xit is cash flows, µ̂i is an expected growth rate of the cash flows, σi is an

instantaneous volatility parameter, and Ŵit is a standard Brownian motion. The

counterpart of µ̂i under the risk-neutral probability measure is µi = µ̂i−λi, where λi

is the risk premium.

At time 0, the firm i chooses its optimal capital structure by issuing a perpetual

bond of Bi with a coupon payment of Ci. The cash flows are taxed at an effective rate

of τeff . At any date t, the firm first uses the operating cash flows to pay coupon and

taxes, and then distributes a fraction θ of its net income, (Xit − Ci)(1 − τeff ), back

to its equity holders, where θ ≤ 1 is the dividend–net income ratio. The remainder of

the net income is used for capital investments, cash retention, etc. The final payoff

that accrues to equity holders is thus the dividend, Dit = θ(Xit − Ci)(1− τeff ).

The firm has an option to default, which leads to either immediate liquidation or

debt renegotiation. Upon liquidation debt holders take over the remaining assets and

liquidate them at a fractional cost of α. Renegotiation incurs a constant fraction κ < α

of the assets. Because liquidation is more costly than renegotiation, debt holders are

willing to renegotiate with equity holders. Renegotiation surplus α − κ > 0 is then

shared between equity and debt holders. Equity holders are able to extract a fraction

η of the surplus, with η ≤ 1 denoting their bargaining power.

Equity holders determine an optimal bankruptcy threshold XiB to maximize the
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equity value Sit(Xit) that leads to the following conditions:

Sit(XiB) = η(α− κ)
XiB

r − µi

, (2)

∂Sit

∂Xit

∣∣∣
Xit=XiB

= η(α− κ)
1

r − µi

, (3)

where r is the risk-free rate. Equation (2) is the value-matching condition, which

states the equity holders’ payoff in renegotiation. Equation (3) is the standard

smooth-pasting condition that enables equity holders to choose the optimal XiB to

exercise their bankruptcy option.3

The next proposition derives instantaneous stock returns rMit implied by this con-

tingent claims model.

Proposition 1 For Xit ≥ XiB, the instantaneous stock return rMit of a firm, i, at

time t is

rMit = rdt+ ǫit(r
X
it − µidt), (4)

where ǫit is the sensitivity of stock to cash flows

ǫit =
Xit∂Sit

Sit∂Xit

=1 +
Ci/r

Sit

θ(1− τeff )
︸ ︷︷ ︸
Financial leverage (+)

−
(1− ωi)

Sit

[
Ci

r
θ +

XiB

r − µi

(η(α− κ)− θ)

]
(1− τeff )πit

︸ ︷︷ ︸
Option to go bankrupt (+)

,

(5)

where πit ≡ ( Xit

XiB

)ωi is the risk-neutral default probability and Sit is the equity value

Sit =

[(
Xit

r − µi

−
Ci

r

)
θ + (

Ci

r
θ +

XiB

r − µi

(η(α− κ)− θ))πit

]
(1− τeff ). (6)

3See Harrison (1985) and Leland (1994).
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The optimal bankruptcy threshold XiB and ωi < 0 are given in Appendix A.

Proof: See Appendix A.

Equation (4) states that the model-predicted stock return rMit is the risk-free rate

rdt plus an excess cash flow rate, rXit − µidt, scaled by the stock-cash flow sensitivity

ǫit. The expected excess cash flow rate is the risk premium of cash flow rates, i.e.,

E(rXit − µidt) = λidt.

The stock-cash flow sensitivity ǫit in equation (5) plays an important role in char-

acterizing the no-arbitrage relation between the expected stock return rMit and the

cash flow rate rXit . It consists of three components: The first one is the cash flow

sensitivity, which is normalized to one. The second component is the well-known fi-

nancial leverage effect, because Ci/r is equivalent to the value of a perpetual risk-free

bond. The dividend–net income ratio, θ, amplifies this financial leverage effect. Intu-

itively, equity holders leverage up their positions by issuing more debt. The greater

fraction θ equity holders can claim from their leveraged position, the more sensitive

their claims are to the fluctuating cash flows. To illustrate the impact of θ on the

stock-cash flow sensitivity, we calibrate this model under standard parameter values.

Panel A of Figure 1 shows that, consistent with this intuition, the stock-cash flow

sensitivity significantly increases with the dividend–net income ratio.

The option to go bankrupt gives rise to the last component of equation (5). The

strategic default policy, XiB, is affected by equity holders’ bargaining power η at

bankruptcy. The higher η, the more asset value equity holders can extract through

debt renegotiation. Therefore, their claim becomes less sensitive to the decline in cash

flows at bankruptcy and has less exposure to downside risk.4 Consistent with this

4Equity holders with greater bargaining power are willing to file for bankruptcy earlier than their
counterparts with relatively lower power. Garlappi and Yan (2011) show that the bargaining power
helps us understand the hump-shaped relationship between default probability and cross-sectional
stock returns. Favara et al. (2011) provide international evidence regarding the negative impact of
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reasoning, the stock-cash flow sensitivity declines monotonically with the bargaining

power, as shown in Panel B of Figure 1.

It is worth noting that the stock-cash flow sensitivity does not necessarily decrease

with the risk-neutral probability of default, πit ≡ (Xit/XiB)
ωi . Their relationship de-

pends on the relative effect of financial leverage and the option to default. Consider

two opposite cases, one when the firm is very healthy and another when firm is

distressed. In the first case, Xit must be very large and a decrease in its value only

slightly increases the likelihood of default. However, at the same time, it increases the

financial leverage component by decreasing its denominator Sit. Because the small

increase in πit is negligible for the healthy firms, the increase in financial leverage

dominates and therefore boosts the stock-cash flow sensitivity. Therefore, the higher

default probability appears to be positively associated with the stock-cash flow sen-

sitivity for the healthy firms. In distress, Xit is close to the default boundary. The

put option to go bankrupt becomes more valuable to the distressed firms when πit

increases. As a result, stock values become less sensitive to the variation in cash flows

for constant leverage. Hence, the negative effect of the option of default dominates

the positive effect of leverage, resulting in a negative association between πit and ǫit

among the distressed firms. Consistent with this intuition, Garlappi and Yan (2011)

find the inverted U-shaped relationship between πit and ǫit.

2.2 Taking the Model to the Data

To take the model to the data, we need to estimate the risk premium of cash flow rates

λidt. It can be modeled in the standard asset pricing frameworks. In the CAPM,

λidt = βX
i E(rmt − rdt), (7)

bargaining power on equity risk.
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where βX
i is the market beta of cash flows Xit and rmt is the market return. Garlappi

and Yan (2011), and Favara et al. (2011) assume the same βX
i across all the stocks

and label ǫit the stock market beta. We do not estimate βX
i both because the market

return rmt is unobservable (Roll, 1977) and because different estimation windows and

data frequencies could result in lower estimation power. Rather, we directly use the

observable operating cash flows as our state variable and assume that they capture

the market movement. This approach is similar to Cochrane (1996), who infers real

macroeconomic shocks from firms’ investment returns.

Recently, in a structural equilibrium model, Bhamra et al. (2010) embed the

contingent-claims-based capital structure model into the consumption-based asset

pricing framework and derive the following result for the risk premium

λidt = E(rXit − µidt) = γρiσiσcdt, (8)

where γ is the relative risk aversion of an Epstein-Zin-Weil agent, ρi is the correlation

coefficient between cash flows Xit and aggregate consumption, and σc is the volatility

of aggregate consumption growth rate. However, we face the same difficulties in

observing the true consumption changes and estimating ρi.

3 Empirical Specification and Design

We test the equality between the observed stock returns, rSit+1, and the predicted

returns from our contingent claim model, rMit+1 ≡ Et[r
M
it+1], at the portfolio level as

follows:

E[rSit+1 − Et[r
M
it+1]] = 0, (9)
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where E[.] is an unconditional mean operator and Et[.] is a conditional one for a time

series. We adapt implied state generalized method of moments (IS-GMM) to test the

model.

Assume that the model holds for each time t. To construct the predicted return

rMit+1 in equation (4), we obtain the values of the firm- and time- specific variables

from the data, such as Xit, Sit and Cit, and take constant values of the market-wide

variables from recent studies, including r, α, κ and τeff . We assume that the observed

coupon payment Ci at time t is the optimal and add subscript t for it.5

The latent parameters, µi and σi, and, the two policy parameters, θ and η, are

to be estimated. We first discuss the procedure of how to back out the risk-neutral

rate µi and the cash flow volatility σi in Section 3.1 and then present our adapted

IS-GMM procedure on how to estimate θ and η in Section 3.2.

3.1 Latent Risk-Neutral Cash Flow Rate and Volatility

The latent parameters of cash flows, µi and σi, are not observable. Using the observ-

able stock price and stock return volatility, we adapt the IS-GMM procedure proposed

by Pan (2002) to back out µi and σi.
6 In her IS-GMM procedure, the latent stock

return volatility is the second time-varying state variable in the European stock op-

tion model. In contrast, both the latent risk-neutral rate and volatility of cash flows

are constant in our American option framework. The constant parameters enable us

to obtain the closed-form solution for the optimal default threshold for the American

option of going into bankruptcy. Our procedure is also in the spirit of the commonly

5Note that Cit is not an additional state variable, because given Xit the coupon is an outcome
of the optimization problem for equity holders. The derivation of the optimal coupon can be found
in Leland (1994) and Goldstein et al. (2001).

6The consistency and asymptotic normality of the IS-GMM estimators can be found in the
Appendix of Pan (2002). Alternative choices is maximum likelihood method (MLM) proposed by
Duan (1994) for European stock options.
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used KMV method of credit risk (Crosbie and Bohn, 2003).7

To back out the expected µit+1 ≡ Et[µit+1] and σit+1 ≡ Et[σit+1] for operating cash

flows, we need the historical stock price Sit and stock volatility σS
it up to time t. We

use the past one-year daily returns of stock portfolios to estimate σS
it.

Before finding the true values of θ and η, we initialize a pair of trial values for them

in each IS-GMM iteration loop, which we will elaborate in the next section. Com-

bining the trivial values with the information set Θit = (Xit, Sit, Cit, σ
S
it, r, α, κ, τeff )

up to time t, we solve the following system of two equations for the two unknowns,

µit+1(θ, η,Θit) and σit+1(θ, η,Θit):

σS
it = Et[σit+1ǫit+1] ≡ σit+1ǫit+1; (10)

Sit =

[(
Xit

r − µit+1

−
Cit

r

)
θ +

(
Cit

r
θ +

XiB

r − µit+1

(η(α− κ)− θ)

)(
Xit

XiB

)ωit+1
]
(1− τeff ),

(11)

where the expected stock-cash flow sensitivity is

ǫit+1 = 1+
Cit/r

Sit

θ(1−τeff )+
(ωit+1 − 1)

Sit

[
Cit

r
θ +

XiB

r − µit+1

(η(α− κ)− θ)

]
(1−τeff )

(
Xit

XiB

)ωit+1

,

(12)

and ωit+1 is the negative root of the following equation:

1

2
(σX

it+1)
2ωit+1(ωit+1 − 1) + µit+1ωit+1 − r = 0. (13)

Equation (10) is implied by Ito’s lemma. Equation (11) derives the equity value Sit,

defined in equation (6), given the information set Θit.

7See e.g., Vassalou and Xing (2004), Bharath and Shumway (2008) and Davydenko and Strebulaev
(2007).
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3.2 IS-GMM Framework

Given the implied µit+1 and σit+1 for each period t, the discrete-time version of the

predict return from equation (4) is

rMit+1 = r∆t+ ǫit+1

(
∆Xit+1

Xit

− µit+1∆t

)
. (14)

We test the model at the annual frequency (∆t = 1). From equation (14), the

conditional expectation of the instantaneous contingent-claim-based return is

Et[r
M
it+1] = r + Et

[
ǫit+1

(
∆Xit+1

Xit

− µit+1

)]
. (15)

In addition to potential specification errors, this discretization might suffer from

measurement errors (Lo, 1986). However, we can still test the weak condition of

equations (9) as in Cochrane (1991) and Liu et al. (2009).

Denote b ≡ [θ, η]′. The pricing error for each portfolio i at time t is

eMit (b,Θit) ≡ eMit (b,Θit, µit+1(b,Θit), σit+1(b,Θit)) = rSit+1 − Et[r
M
it+1] (16)

and the expected pricing error for each portfolio, i, is

eMi = E[eMit (b,Θit)]

= E[rSit+1 − Et[r
M
it+1]]

= E[rSit+1 − (r + ǫit+1(r
X
it+1 − µit+1))].

(17)

The sample moments of pricing errors are gT = [eM1 ...eMn ]′, where n is the number

of testing portfolios. If the model is correctly specified and empirical measures are

accurate, gT converges to zero for an infinite sample size. Both measurement and
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specification errors contribute to the expected pricing errors. Under the weak condi-

tion of equation (9), the objective of the IS-GMM procedure is to choose a parameter

vector, b, to minimize a weighted sum of squared errors (Pan, 2002):

JT = g′

TWgT , (18)

s.t. 0 < θ ≤ 1, (19)

0 < η ≤ 1, (20)

where W is a positive-definite symmetric weighting matrix. Until the optimal pa-

rameter vector b ≡ [θ, η]′ is found, both µit+1 and σit+1 are recalculated for each trial

set of b in the IS-GMM optimization loops. Following Cochrane (1991), we choose an

identity matrix W = I in one-stage IS-GMM. By weighting the pricing errors from

individual portfolios equally, the identity weighting matrix preserves the economic

structure of the testing assets (Cochrane, 1996).8

In summary, we back out µit+1 and σit+1 and estimate the optimal values of θ and

η using the following IS-GMM procedure:

1. A trial set of b0 ≡ [θ, η]′ is initialized.

2. Given the initial values of b0 and information set of Θit, the expected µit+1 and

σit+1 are solved from the system of equations (10) and (11) for each portfolio-

year observation.

3. Given b0 and Θit as well as the implied µit+1(b0,Θit) and σit+1(b0,Θit), ǫit+1

and rMit+1 are calculated based on equations (12) and (14) respectively.

4. The pricing error eMi for each portfolio is obtained from (17) and the objective

value JT in equation (18) across all the portfolios is calculated.

8A robustness check using two-stage IS-GMM is provided in the Internet Appendix.
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5. Repeat from Step 1 until the optimal vector b ≡ [θ, η]′ is found that minimizes

JT .

4 Data

We use daily and monthly stock returns from the Center for Research in Security

Prices (CRSP) as well as the Compustat annual industrial files from 1963 to 2010.

We exclude firms from the financial (SIC 6000 – 6999) and utility (SIC 4900 – 4999)

sectors and include all the common stocks listed on the NYSE, AMEX, and NASDAQ

with CRSP codes 10 or 11. For the Compustat data, we restrict the sample to firm-

year observations with non-missing values for operating income, debt, and total assets

and with positive total assets and debt. The Fama–French factors are obtained from

Kenneth French’s website.

4.1 Variable Measurement and Parameter Values

We follow Fama and French (1995) and Liu et al. (2009) and aggregate firm-specific

characteristics to portfolio-level characteristics. The most important state variable in

this study is the operating cash flows Xit. Following Glover (2011), we use operating

income after depreciation (Compustat item OIADP) to proxy for the operating cash

flows. The operating income observations are trimmed at the upper and lower one-

percentiles to eliminate outliers and eradicate errors. Sit is the equity value (price per

share times the number of shares outstanding) and coupon Cit is the total interest

expenses (item XINT). Xit, Sit and Cit in year t are aggregated for all the firms in

portfolio i formed in June of year t. rXt+1 is the percentage change of the aggregate

operating cash flows from year t to year t + 1. For the market-wide variables, the

effective tax rate τeff is set to 20%, the expected liquidation cost α = 0.30, the
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renegotiation cost κ = 0, and the after-tax annual risk-free rate r = 3.6%.9

4.2 Testing Portfolios

We employ four sets of testing portfolios: five market leverage portfolios, five book-to-

market portfolios, five asset growth portfolios and five size portfolios. We choose five

portfolios for each asset pricing anomaly to ensure that the simultaneous equations

(10) and (11) are solvable for all portfolio-year observations. All the portfolios are

equal-weighted.

We take standard procedures to calculate ranking variables and form stock port-

folios (Fama and French, 1992, 1993). The first ranking variable is market leverage

measured as a ratio of total debt over the sum of total debt and the market value of

equity. It is calculated as book debt for the fiscal year ending in calendar year t− 1

divided by the sum of book debt and market equity (ME) at the end of December of

year t−1. Book debt is the sum of short term debt (Computstat item DLC) and long

term debt (item DLTT). ME is price per share (CRSP item PRC) times the number

of shares outstanding (item SHROUT).

Book-to-market equity ratio is the second variable of interest for the BE/ME

portfolios. It is the ratio of book equity (BE) of the fiscal year ending in calendar

year t−1 over the ME at the end of December of year t−1. The BE is the book value

of equity (Computstat item CEQ), plus balance sheet deferred taxes (item TXDB)

and investment tax credit (ITCB, if available), minus the book value of preferred

9Andrade and Kaplan (1998) consider 31 distressed firms and find the costs of financial distress
between 10% and 20% of firm value. Korteweg (2010) finds the bankruptcy costs amount to 15 to
30%. Davydenko, Strebulaev, and Zhao (2012) find that the cost of default is 21.7% of the market
value of assets. Different from the above papers, Glover (2011) argue that the bankruptcy costs
estimated from defaulted firms are potentially downward biased because those firms are likely have
smaller costs of bankruptcy and endogenously choose high level of debt, resulting in high likelihood
of default. He uses SMM to estimate a structural model and shows that the average firms are
expected to lose 45% of firm value at bankruptcy. We use the bankruptcy cost of 45% for robustness
check and report the results in the Internet Appendix.
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stock. Depending on availability, we use redemption (item PSTKRV), liquidation

(item RSTKL), or par value (item PSTK) in that order to estimate the book value

of preferred stock. Observations with negative BE/ME are excluded.

The third variable considered is the asset growth rate for the asset growth port-

folios. Following Cooper et al. (2008), the asset growth rate is calculated as the

percentage change in total assets (Compustat item AT). The growth rate for year

t− 1 is the percentage change from fiscal year ending in calendar year t− 2 to fiscal

year ending in calendar year t− 1.

The last ranking variable is market equity (ME) for the size portfolios. The ME

is obtained at the end of each December of calendar year t − 1. The firms with a

stock price lower than $5 are excluded at the portfolio formation.

We follow Fama and French (1992) and construct stock portfolios with NYSE

breakpoints for every set of portfolios. Based on the ranking variables calculated

at the end of year t − 1, we first sort firms into quintiles and form equal-weighted

portfolios at the end of each June of year t. Then, we rebalance them each June.

Raw returns of equal-weighted portfolios are computed from the beginning of July of

year t to the end of June of year t+ 1.

4.3 Timing Alignment

To match the observed stock returns rSit+1 with the returns rMit+1 predicted from our

model, we follow Liu et al. (2009) and align the inputs with the observed stock returns

in Figure 2. The only difference is that we need to incorporate the KMV procedure.

To calculate the model-predicted returns, rMit+1, we need to obtain the operating

cash flow rate rXit+1 and estimate the expected stock-cash flow sensitivity ǫit+1 . First,

to calculate rXit+1, we use the operating income Xit reported at the end of year t
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and year t + 1 because operating incomes are realized over the course of a year.

Therefore, rXit+1 largely matches with rSit+1 as in Liu et al. (2009). It is worth noting

that rXit+1 is not the ranking variable so that we do not need to lag it. Instead, we

test the instantaneous and contemporaneous no-arbitrage relationship between cash

flows and stocks. Second, to estimate ǫit+1, we use the KMV procedure to obtain the

expected µit+1 ≡ Et[µit+1] and σit+1 ≡ Et[σit+1]. The stock price Sit for calculating

the equity value is at the end of June of year t and the stock return volatility σS
it is

the annualized standard deviation of the daily returns of stock portfolios from the

beginning of July of year t − 1 to the end of June of year t. All the accounting

variables used for the KMV procedure, including Xit and Cit, are at the end of year

t.

In the Fama–French portfolio approach, the set of firms in a given portfolio formed

in year t is fixed from July of year t to June of year t + 1 for each portfolio. The

stock composition changes only at the end of June of year t + 1 when the portfolios

are rebalanced. Hence, we keep the same set of firms in the portfolio in the formation

year t until the rebalancing year t+ 1.

5 Empirical Results

We start with verifying pricing errors in traditional models and presenting summary

statistics for our model inputs. Then, we adapt IS-GMM to perform a structural

estimation and perform comparative statics analysis to identify crucial factors. Lastly,

we attempt to understand the economic driving forces behind the stock-cash flow

sensitivity.
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5.1 Pricing Errors from Traditional Models

We first confirm the well-known pricing errors in our data sample. Table 1 reports the

averages of annualized monthly returns in percent for equal-weighted quintile port-

folios and for the high-minus-low (H–L) and small-minus-big (S–B) hedge portfolios.

The pricing errors, such as eC from the CAPM and eFF from the Fama–French model,

are estimated by regressing the time series of portfolio returns on the market factor

and on the Fama–French three factors.

Market leverage portfolio: Panel A shows that stocks with high market leverage

earn 13.03% per year more than do stocks with low leverage. The pricing error of the

H–L portfolio from the CAPM is 12.39% (t = 4.22). This error decreases to 3.19%

(t = 1.53) and becomes statistically insignificant for the Fama–French model. This

significant drop is consistent with the conclusion of Fama and French (1992) that the

book-to-market factor is capable to explain the cross-sectional returns of the market

leverage portfolios. Additionally, the mean absolute errors (m.a.e.) is 7.03% per year

for the CAPM and decreases to 3.72% for the Fama–French model.

BE/ME portfolios : The average returns in Panel B monotonically increase with

the book-to-market ratio from 13.02% to 27.18% per year. After controlling for the

market factor, the H–L portfolio earns 15.00% (t = 5.91) per year and the m.a.e. is

6.90%. The performance of the Fama–French model improves because the error of

the H–L portfolio decreases to 7.38% (t = 3.78) and the m.a.e. declines to 3.93%.

Asset growth portfolios : As shown in Panel C, high-growth firms earn 11.70% lower

stock returns per year than low-growth firms.10 This finding can not be explained by

the standard CAPM and the Fama–French model. The errors of the H–L portfolio

from the CAPM and the Fama–French model are −11.33% (t = −5.83) and −9.81%

10The difference is smaller than the difference of 20% per year documented by Cooper et al. (2008)
because our sample requires positive debt and has other restrictions.
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(t = −4.42), respectively. The m.a.e.’s for asset growth portfolios are the greatest

among all the four sets of testing portfolios. The m.a.e. is 7.28% from the CAPM

and 4.26% from the Fama–French model.

Size portfolios : Panel D confirms the size effect. Small firms earn 9.50% greater

returns per year than big firms, even if we exclude small firms with a price lower than

$5 at the portfolio formation. The decrease in average returns with the equity size

remains the same after controlling the market factor and Fama–French three factors.

The errors of the small-minus-big (S–B) portfolio from the CAPM and the Fama–

French model are 8.03% (t = 2.70) and 2.81% (t = 2.01), respectively. The m.a.e. is

4.11% for the CAPM and is 2.28% for the Fama–French model.

Overall, we demonstrate that the well-documented pricing errors from the tradi-

tional models are largely the same in our data sample as in the literature.

5.2 Summary Statistics of Model Inputs and Portfolio Char-

acteristics

Table 2 summaries main inputs and portfolio characteristics for the four sets of quintile

portfolios. It reports the time series averages of earnings–price ratios Xit/Sit and

interest coverage ratios Xit/Cit. The latter measures financial health of the firms and

provides preliminary information about the financial leverage effect in the stock-cash

flow sensitivity, as shown in the second component of equation (5).

Market leverage portfolios : Unlike the monotonically increasing stock returns

across the market leverage portfolios, both the times series average of cash flow rates

rXit+1 and their correlations with the stock returns rSit+1 are slightly U-shaped. More

interestingly, the correlations between them are relatively weak. Additionally, while

Xit/Sit increases from 0.09 to 0.23, Xit/Cit dramatically declines from 21.50 to 2.16,
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implying that high-leverage firms have difficulties covering their interest expenses.

The stock volatility σS
it is slightly U-shaped.

BE/ME portfolios : Similar to the market leverage portfolios, both rXit+1 and σS
it

are slightly U-shaped. The magnitude of the increase in Xit/Sit across the book-

to-market portfolios is comparable to that across the market leverage portfolios as

well. Xit/Cit for the BE/ME portfolios declines from 10.20 to 3.46 and the decrease

is considerably smaller than that in the market leverage portfolios.

Asset growth portfolios : The decrease in earnings-price ratio across the asset

growth portfolios is the opposite to the increases in the book-to-market portfolios,

because low-growth firms are more likely to be value firms with larger equity-in-place.

The spread in the interest coverage ratios between the low-growth firms and the high-

growth firms is only 1.87, the smallest difference among the four sets of portfolios.

Size portfolios : The decline in rXit+1 is the most significant among all the four sets

of portfolios. It decreases significantly from 15.65% to 8.31% per year with equity size

and the difference is 7.34% per year, comparable to that in the cross-sectional stock

returns of size portfolios. Moreover, the monotonic decline in σS
it is the most evident

among the four sets of portfolios as well. While Xit/Sit slightly decreases, Xit/Cit

increases significantly with equity size. This contrast implies that small firms face

greater interest payment pressures and are more likely to become distressed. This

observation is consistent with Vassalou and Xing (2004).

Taken together, the average cash flow rates change with the ranking variables in

the same direction as the average stock returns do for all the four sets of portfolios.

Except for the size portfolios, the magnitude of the changes in the average cash flow

rates is considerably smaller than that in the average stock returns, and the stock

volatility is slightly U-shaped. Moreover, the spread in the interest coverage ratios is

the greatest for the market leverage portfolios but is the smallest for the asset growth
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portfolios.

5.3 Model Estimation

We estimate two parameters, dividend–net income ratio θ and shareholder bargaining

power η within the IS-GMM framework. Table 3 reports the parameter estimates

and χ2 statistics for model fitness when matching the predicted returns with the

observed returns as in equation (9). The estimates of θ are 0.56, 0.52 and 0.67 for

the market leverage, book-to-market equity and asset growth portfolios, respectively.

Their respective t-statistics indicate that the estimates are statistically significant at

a 95% confidence level. The three sets of portfolios are internally consistent. Firms

with high book-to-market equity have accumulated more debt and therefore have

more leverage, and those firms also have exercised their growth options and exhibit

lower growth rates. Therefore, the payout policies implied from these three sets of

portfolios are very similar. In contrast, the estimate of θ for the size portfolios is only

0.24 and is statistically insignificant. The estimates of η across all the four sets of

portfolios are about 0.5. This estimate is close to the one chosen by Morellec et al.

(2008) and the value of 0.6 assumed in Favara et al. (2011).

The χ2 statistic, which tests whether all the model errors are jointly zero, gives

an overall evaluation of the model performance. For the four sets of portfolios, the

degrees of freedom (d.f.) are three because the number of the moments (or portfolios)

is five and the number of parameters is two. The p-values of the χ2 tests indicate

that the model can not be rejected for all the four sets of testing portfolios. Because

the no-arbitrage condition is the only one we impose to derive the expected stock

returns, the reasonable performance of our model indicates that the no-arbitrage

relation between stocks and cash flows holds for our testing portfolios.
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Overall, the model performs well for all the sets of testing portfolios with a modest

performance for the asset growth portfolios. However, the t-statistics of the two esti-

mates and the p-values are relatively low. The relatively weak statistical significance

could be attributed to our small data sample because each testing set has only five

portfolios in annual frequency. Additionally, it is well-known that the consistent one-

stage IS-GMM estimation gives relatively weaker statistical performance, compared

with the efficient two-stage IS-GMM estimation as shown in the Appendix.

5.4 Pricing Errors from Structural Model

Given the estimates of θ and η, we construct the contingent-claims-based returns

rMit+1 as in equation (14) and calculate the expected pricing error eMi as in equation

(16) for each individual portfolio. Table 4 reports the pricing errors from our model

and compares the errors with those from the traditional models. We evaluate the

traditional models with standard ordinary least square (OLS) regression. We can

compare the models because OLS is essentially the same as one-stage GMM with an

identity weighting matrix in our structural estimation.

Market leverage portfolios : The first row shows that the pricing errors vary from

−1.29% to 1.31% per year. Additionally, the pricing error of the H–L portfolio is

0.65% (t = 0.59) and is not statistically significant. This error is smaller than 12.39%

from the CAPM and 3.19% from the Fama–French model in Table 1. Figure 3 visually

illustrates the model fitness and pricing errors. We plot the average predicted returns

against their realized returns for the contingent claim model, the CAPM and the

Fama–French model. If a model fits the data perfectly, all the predicted returns should

lie on the 45-degree line. As shown in the scatter plot in Panel A, the predicted average

returns from the contingent claim model reside on the 45-degree line. In contrast, the
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predicted returns from the CAPM in Panel B are almost flat. Although the predicted

returns from the Fama–French model in Panel C show some improvement, none of

the predicted returns lie on the 45-degree line.

BE/ME portfolios : From the third row of Table 4, the H–L portfolio has a pricing

error of 1.92% per year, which is smaller than 15.00% in the CAPM and 7.38% per

year in the Fama–French model. This error is mostly due to the large deviation

of −1.67% from the growth portfolio. The small error of 0.25% in value portfolio

implies that our model is able to capture the default risk associated with value firms.

The mean absolute error (m.a.e) is 0.76% per year, much lower than 6.90% from

the CAPM and 3.93% from the Fama–French model. Figure 4 provides a visual

confirmation. As shown in Panel A, the largest deviation from the 45-degree line is

the growth portfolio. The predicted returns from the CAPM are almost horizontal in

Panel B and those from the Fama–French model in Panel C are quite similar.

Asset growth portfolios : The difference in the pricing errors between the high- and

low- growth portfolios is −4.25% per year, which however is much less than −11.33%

from the CAPM and −9.81% from the Fama–French model in Table 1. Panel A of

Figure 5 shows that the average predicted returns generally align with the realized

returns. The predicted returns for the low- and high- growth portfolios are slightly

out of line. In sharp contrast, the predicted returns from the CAPM and the Fama–

French model are almost flat.

Size portfolios : The pricing errors range from −1.44% to 1.14%. The error of the

S–B portfolio is −0.08% per year. It is evident that, in Panel A of Figure 6, the

predicted returns are aligned very well with the realized stock returns, even for the

portfolio of small stocks. The performance of the CAPM remains poor, as shown

by the horizontal line of its predicted returns. Although the Fama–French model

performs much better than the CAPM, it still fails to capture the big outlier from
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the small portfolio.

In summary, our model does a good job for all the sets of portfolios and out-

performs the CAPM and the Fama–French model. The model performs best for the

market leverage portfolios and the book-market equity portfolios, and predicts the

expected returns of value firms and small firms well. Although the model performs

the modest for the asset growth portfolios, it gives a much better fit than the CAPM

and the Fama–French model.

5.5 Pricing Errors from Comparative Statics Analysis

Given the reasonably good performance of our model, we follow Liu et al. (2009) and

perform a comparative statics analysis to identify the most important factor in our

model. The procedure is as follows. We first set an input to its cross-sectional average

for each year. We then use the parameter estimates to recalculate the expected stock

return according to equations (4) and (5), while keeping all other inputs unchanged.

A large increase in the expected pricing errors or m.a.e. implies that this certain

input is important in explaining the cross-sectional stock returns.

Aside from the state variable Xit, the main inputs of our model are rXit+1,σ
S
it, Cit

and Sit. For rXit+1, we set it to its cross-sectional average r̃Xit+1 each year. Then, we

use its average and the parameter estimates from Table 3 to recalculate rMit+1, while

keeping all the other model inputs the same.

We repeat the same procedure for σS
it, Cit and Sit. However, after changing their

values to their cross-sectional averages, we need to use the new inputs and the pa-

rameter estimates to recalculate µit+1 and σit+1 before we construct ǫit+1 and rMit+1.

For Cit and Sit, rather than fixing them to their cross-sectional averages, we set

Sit = Xit/(X̃it/Sit) and Cit = Xit/(X̃it/Cit), where X̃it/Sit and X̃it/Cit are the cross-
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sectional averages of earnings–price and interest coverage ratios, respectively.

Lastly, to evaluate the importance of ǫit+1, we use its cross-sectional average di-

rectly from the benchmark estimation without recalculating µit+1 and σit+1. Because

both ǫit+1 and rXit+1 do not need to invoke the recalculations of µit+1 and σit+1, this

exercise provides a direct comparison between the contributions of ǫit+1 and rXit+1 to

the cross-sectional variation of predicted stock returns. Table 5 reports the results,

which will be compared with those for the benchmark model in Table 4.

Market leverage portfolios : It is evident that the stock-cash flow sensitivity is the

most important determinant and the earnings–price ratio the second in Panel A. By

removing the cross-sectional variation of ǫit+1, the pricing error of the H–L portfolio

jumps to 10.13% per year from 0.65% per year in the benchmark model. The m.a.e.

increases from 0.87% to 3.42%. The effects from the cash flow rates, interest coverage

ratios, and stock volatility are much smaller.

BE/ME portfolios : Similar to the market leverage portfolios, the stock-cash flow

sensitivity dominates the other model inputs. The lack of cross-sectional variation in

ǫit+1’s increases the m.a.e. to 2.97% from 0.76% in the benchmark model. The lowest

impact is observed when the cross-sectional average of stock volatility is an input.

Asset growth portfolios : Consistent with the modest performance of our model

for the asset growth portfolios shown in Table 3, the effects of eliminating the cross-

sectional variations of model inputs are relatively small. The pricing error of the H–L

portfolio in absolute value increases from 4.25% in the benchmark model to 8.80%

after fixing the cross-sectional variation in rXit+1. This increment is greater than the

one resulting from the elimination of the cross sectional variation in ǫit+1. Although

the pricing error of the H–L portfolio suggests that rXit+1 is slightly more important

than ǫit+1, the m.a.e. that evaluates the overall performance across all the quintile

portfolios suggests the opposite inference. After fixing ǫit+1 to its cross-sectional
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average, the m.a.e. increases from 1.60% in the benchmark model to 3.05%, greater

than 2.28% due to fixing rXit+1 to its cross-sectional average.

Size portfolios : The cash flow rate plays a crucial role in fitting the size portfolios

into the model and the stock-cash flow sensitivity the second. By fixing rXit+1 to its

cross-sectional average each year, the pricing error of the S–B portfolio surges to 8.17%

per year from −0.08% in the benchmark estimation and the m.a.e. increases from

1.01% to 2.02%. Compared with its role in the other three portfolios, ǫit+1 becomes

much less important for the size portfolios. Fixing ǫit+1 to its cross-sectional average

each year, the pricing error increases slightly to 1.29%, which is trivial, compared

with 8.17% resulting from the lack of cross-sectional variation in rXit+1. Hence, the

increased pricing error caused by the stock-cash flow sensitivity for the size portfolios

is much smaller than it is for the other portfolios. The difference occurs because

the decreasing slope in the cash flow rates rXit is very close to that in the stock

returns rsit across the size portfolios as in Tables 1 and 2. Therefore, the stock-cash

flow sensitivity becomes less critical in matching the observed stock returns with the

predicted returns.11

Simply put, while the cross-sectional variation in the stock-cash flow sensitivity

is the most important determinant for alleviating the pricing errors for the market

leverage, book-to-market and asset growth portfolios, the cash flow rate is the one

for the size portfolios. Moreover, the cross-sectional variation of the historical stock

volatility has the least impact on the expected pricing errors among all the inputs

we consider. This implies that including stochastic volatility as the second state does

not necessarily improve the model performance.

11This result is consistent with the statistically insignificant estimates of θ and η for the size
portfolios in Table 3. Because these two policy parameters affect the stock returns only via the
stock-cash flow sensitivity ǫit, they become less important when rX

it+1 is the key for stock returns of
the size portfolios.
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5.6 Understanding the Stock-Cash Flow Sensitivities

Given the importance of the stock-cash flow sensitivity, we proceed to investigate its

economic information content. Figures 7 and 8 plot the time series of the risk-neutral

probability of default and the stock-cash flow sensitivity, respectively. We use NBER

recession years to classify the cycles.12

Panel A of Figure 7 shows that high-leverage firms have greater default prob-

abilities than low-leverage firms, particularly in recessions. Book-to-market equity

portfolios exhibit the same pattern as those of leverage portfolios but with a smaller

magnitude in Panel B. This likely similarity arises because value firms accumulate

debt during their investment expansions.

However, as shown in Panel C, the difference in default probabilities between low-

and high-growth firms is much smaller compared with that in Panels A and B. The

difference is more evident before 1980 and then diminishes afterward. The default

probabilities are almost identical across all quintile portfolios during the booms of

1980s. Similar observations apply to the size portfolios in Panel D. Small firms have

greater default probability than big firms and the difference in the default probabilities

is more apparent before 1982.

The stock-cash flow sensitivity ǫit is partially determined by the risk-neutral de-

fault probability. Figure 8 plots the times series of the stock-cash flow sensitivity over

the business cycles. High-leverage firms are considerably more sensitive to cash flows

than low-leverage firms, particularly in NBER recession years. The spread in the

sensitivities between the high- and low-leverage portfolios is about 0.81 during the

early 1980s and 1990s recessions. Panel B shows that the stock-cash flow sensitivities

of book-to-market portfolios largely mimic those of leverage portfolios in Panel A but

12Additionally we provide the cross-sectional statistics for stock-cash flow sensitivities and default
probabilities in Section A of the Internet Appendix.
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with a slightly smaller magnitude.13.

Similar to the observations for the difference in default probabilities, the spread

in the stock-cash flow sensitivities between the high- and low-growth firms is not as

significant as that in the leverage and book-to-market portfolios. As shown in Panel

C, low-growth firms are more sensitive to the business cycles. Panel D shows that

the spread in stock-cash flow sensitivity between the small and big portfolios is the

smallest among the four sets of portfolios. The averaged spread in the sample period

is 0.07 and the greatest spread is 0.14 during the 1974 recession, much smaller than

those for the leverage portfolios.

Overall, stocks are more sensitive to their underlying operating cash flows during

business recessions when default probabilities are high than they are during expan-

sions when default probabilities are low. The large spread in the counter-cyclical

stock-cash flow sensitivities helps explain the high-leverage premium, the value pre-

mium and the asset growth premium.

6 Conclusion

We develop a contingent claims model for cross-sectional stock returns. The exoge-

nous state variable is operating cash flows and the two policy parameters are related

to dividend payout and strategic default policies. We adapt IS-GMM to test the

model for equal-weighted stock portfolios formed on market leverage, book-to-market

equity ratio, asset growth rate and market capitalization. Our model outperforms

the CAPM and the Fama–French three-factor model in explaining the cross-sectional

variation in stock returns. The reasonable performance of our model validates the

13Studies that estimate the stock-cash flow sensitivity or cash flow beta in a reduced-form find
that value stocks have greater cash flow betas than growth stocks do. See e.g., Campbell and Shiller
(1988), Campbell and Vuolteenaho (2004), Bansal, Dittmar, and Lundblad (2005), Hansen, Heaton,
and Li (2008) and Santos and Veronesi (2010)
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no-arbitrage relationship between stocks and their underlying cash flows for all the

four sets of portfolios.

The success of our model can be attributed to its ability to capture the sensitivities

of stocks to their underlying operating cash flows. The stock-cash flow sensitivity is

affected by dividend payout policy and shareholder bargaining power. Our structural

estimations show that, while the estimates of these two policies are economically

sensible, the dividend policy is statistically more significant than the shareholder

bargaining power in determining stock returns.

We make a further attempt to understand the economic driving forces behind

the model. We find that default probabilities and the stock-cash flow sensitivities of

value stocks, high-leverage stocks and low-asset-growth stocks are greater than those

of growth stocks, low-leverage stocks and high-asset-growth stocks, particularly in

recessions. It is the large spread in the stock-cash flow sensitivities that helps explain

the cross-sectional spreads in stock returns for the market leverage, book-to-market

and asset growth portfolios, except for the size portfolios that rely on the spread in

the cash flow rates.

Our work demonstrates that our simple contingent claims model successfully ex-

plains the cross-sectional variation in stock returns for the four sets of stock portfolios

related to default risk. However, our model has difficulties matching stock returns

and the U-shaped stock return volatility jointly in unreported results. Explaining

these and other anomalies should be a fruitful avenue for future research.
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Figure 1: Stock-Cash Flow Sensitivity

This figure plots the stock-cash flow sensitivity ǫi against dividend–net income ratio
θ (in Panel A) and shareholder bargaining power η (in Panel B). Parameters are r =
3.6%, τeff = 15%, µi = 0, σi = 0.25, α = 0.30, and κ = 0. Xi is normalized to one.
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X
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σS
it

ǫit+1

Sit, Xit, Cit Xit+1

Figure 2: Timing Alignment

This figure shows the timing alignment between model inputs and observed stock
returns. rXit+1 is the rate of operating cash flows and rSit+1 is the return of a stock
portfolio from July of year t to June of year t+1. Sit is the equity value at the end of
June of year t, Xit is the operating cash flows and Cit is the interest expenses at the
end of year t. Stock volatility σS

it is the annualized standard deviation of the daily
returns of stock portfolios from the beginning of July of year t− 1 to the end of June
of year t. ǫit+1 is the expected stock-cash flow sensitivity given the information up to
the end of June of each year t.
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Figure 3: Market Leverage Portfolios: Average Predicted Stock Returns

Versus Average Realized Returns

This figure plots the time series averages of predicted returns from the contingent
claims model, the CAPM and the Fama–French model against the average realized
returns. In the contingent claims model, the predicted returns are calculated based
on equation (14) using the parameter estimates from Table 3 as well as the implied
values of µit+1 and σit+1 from equations (10) and (11). High leverage denotes the high
leverage quintile and low leverage denotes the low leverage quintile.
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Figure 4: Book-to-Market Portfolios: Average Predicted Stock Returns

Versus Average Realized Returns

This figure plots the time series averages of predicted returns from the contingent
claims model, the CAPM and the Fama–French model against the average realized
returns. In the contingent claims model, the predicted returns are calculated based
on equation (14) using the parameter estimates from Table 3 as well as the implied
values of µit+1 and σit+1 from equations (10) and (11). Value denotes the high BE/ME
quintile and growth denotes the low BE/ME quintile.
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Figure 5: Asset Growth Portfolios: Average Predicted Stock Returns Ver-

sus Average Realized Returns

This figure plots the time series averages of predicted returns from the contingent
claims model, the CAPM and the Fama–French model against the average realized
returns. In the contingent claims model, the predicted returns are calculated based
on equation (14) using the parameter estimates from Table 3 as well as the implied
values of µit+1 and σit+1 from equations (10) and (11). High growth denotes the high
asset-growth quintile and low growth denotes the low asset-growth quintile.
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Figure 6: Size Portfolios: Average Predicted Stock Returns Versus Average

Realized Returns

Each panel of this figure plots the time series averages of predicted returns from the
contingent claims model, the CAPM and the Fama–French model against the average
realized returns. In the contingent claims model, the predicted returns are calculated
based on equation (14) using the parameter estimates from Table 3 as well as the
implied values of µit+1 and σit+1 from equations (10) and (11). Small denotes the low
market capitalization quintile and big denotes the high market capitalization quintile.
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Figure 7: Time Series of Risk-Neutral Default Probability

Each panel of this figure plots time series of risk-neutral default probability, π ≡

(Xit/XiB)
ωi , against years. The shaded areas are for NBER recession years. The

thick, solid lines are for the cross-sectional averages of default probabilities across all
the quintile portfolios. The line with dots (–.) is for the first quintile portfolio, the
line with circles (-o) for the third quintile portfolio and the line with stars (-*) for
the fifth quintile portfolio.
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Figure 8: Time series of Stock-Cash Flow Sensitivity

Each panel of this figure plots time series of stock-cash flow sensitivity, ǫit, against
years. The shaded areas are for NBER recession years. The stock-cash flow sensitivity
is calculated based on equation (12) using the parameter estimates from Table 3 as
well as the implied values of µit+1 and σt+1 from Table A1. The thick, solid lines
are for the cross-sectional averages of the stock-cash flow sensitivity across all the
quintile portfolios. The line with dots (–.) is for the first quintile portfolio, the line
with circles (-o) for the third quintile portfolio and the line with stars (-*) for the
fifth quintile portfolio.
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Table 1: Pricing Errors of Testing Portfolio Returns from Traditional Mod-

els

This table reports the annualized average stock return, rsit+1, the pricing error from
the CAPM regression, eCi , and the error from the Fama-French (FF) three-factor re-
gression, eFF

i for each quintile portfolio over the period of 1965 to 2010. rsit+1, e
C
i , and

eFF
i are reported in percent. The H–L portfolio is long in the high portfolio and short
in the low portfolio. The t-statistics for the pricing errors are reported in brackets.
m.a.e. is the mean absolute error in annual percent for each set of testing portfolios.

Panel A. Market Leverage Portfolios

Low 2 3 4 High H–L m.a.e.

rSit+1 13.63 15.78 17.58 20.28 26.66 13.03
eCi 1.75 4.32 6.40 8.56 14.13 12.39 7.03
(t) (0.79) (2.34) (3.22) (3.65) (4.40) (4.22)
eFF
i 3.22 2.60 3.03 3.32 6.41 3.19 3.72
(t) (2.03) (1.95) (2.50) (2.22) (3.49) (1.53)

Panel B. BE/ME Portfolios

rSit+1 13.02 15.13 17.78 19.99 27.18 14.16
eCi 0.63 3.61 6.20 8.43 15.63 15.00 6.90
(t) (0.28) (1.96) (2.95) (3.69) (5.41) (5.91)
eFF
i 1.92 1.72 2.97 3.72 9.30 7.38 3.93
(t) (1.30) (1.39) (2.21) (2.65) (5.06) (3.79)

Panel C. Asset Growth Portfolios

rSit+1 25.83 20.21 17.40 17.16 14.12 −11.70
eCi 13.50 9.00 6.23 5.49 2.17 −11.33 7.28
(t) (4.79) (4.22) (3.44) (2.88) (1.01) (−5.83)
eFF
i 10.06 4.53 3.31 3.14 0.25 −9.81 4.26
(t) (5.10) (3.29) (2.43) (2.39) (0.18) (−4.42)

Panel D . Size Portfolios

Small 2 3 4 Big S–B m.a.e.

rSit+1 21.65 16.05 15.16 14.58 12.15 9.50
eCi 9.50 4.07 3.77 3.22 1.47 8.03 4.41
(t) (3.17) (1.86) (2.02) (2.02) (1.56) (2.70)
eFF
i 4.90 1.14 1.28 2.00 2.09 2.81 2.28
(t) (3.10) (0.78) (0.95) (1.33) (1.90) (2.01)

45



Table 2: Summary Statistics of Portfolio Characteristics

This table presents summary statistics for the characteristics of portfolios formed on
market leverage, book-to-market equity, asset growth rate and market capitalization.
rXit+1 is the time series average of cash flow rates in annual percent from time t to
time t + 1 after portfolios are formed at time t, corr(rXit+1, r

S
it+1) is the time series

correlation coefficient between rXit+1 and rSit+1, and σS
it is the time series average of

annualized daily volatility of stock portfolio in percent calculated from one-year daily
stock returns before the portfolio formation. Xit/Sit is the time series average of
earnings–price ratios and Xit/Cit is the time series average of interest coverage ratios.

Panel A. Market Leverage Portfolios

Low 2 3 4 High H–L

rXit+1 10.51 8.63 9.68 9.49 12.55 2.05
corr(rXit+1,r

S
it+1) 0.21 0.10 0.08 0.10 0.21 0.00

Xit/Sit 0.09 0.12 0.15 0.17 0.23 0.14

Xit/Cit 21.50 9.10 5.70 3.76 2.16 −19.34

σS
it 26.67 24.53 24.55 25.15 27.97 1.30

Panel B. BE/ME Portfolios

rXit+1 10.06 8.60 8.99 11.31 13.71 3.64
corr(rXit+1,r

S
it+1) 0.15 −0.02 0.03 0.19 0.20 0.04

Xit/Sit 0.09 0.13 0.15 0.17 0.20 0.11

Xit/Cit 10.20 6.49 5.18 4.29 3.46 −6.74

σS
it 28.53 25.67 25.00 24.97 26.65 −1.89

Panel C. Asset Growth Portfolios

rXit+1 12.94 11.56 8.15 8.58 9.85 −3.10
corr(rXit+1,r

S
it+1) 0.20 0.14 0.01 0.11 0.03 −0.16

Xit/Sit 0.14 0.14 0.13 0.12 0.11 −0.03

Xit/Cit 3.99 5.36 6.73 7.40 5.86 1.87

σS
it 27.73 23.55 22.96 24.10 27.93 0.20

Panel D . Size Portfolios

Small 2 3 4 Big S–B

rXit+1 15.65 13.25 12.17 10.60 8.31 7.34
corr(rXit+1,r

S
it+1) 0.07 0.21 0.19 0.12 0.06 0.01

Xit/Sit 0.16 0.16 0.15 0.14 0.12 0.04

Xit/Cit 3.52 3.97 4.62 5.14 6.98 −3.46

σS
it 26.93 27.22 25.56 24.19 22.08 4.85
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Table 3: Parameter Estimates and Model Fitness

This table reports the parameter estimates from one-stage IS-GMM with an identity
weighting matrix. The first moment conditions E[rsit+1 − rMit+1] = 0 is tested for all
the quintile portfolios, in which E[.] is the sample mean of the series in brackets. θ
is the dividend–net income ratio and η is the shareholder bargaining power. Their
associated t-statistics are reported in brackets. The χ2-statistics are reported with
the associated degrees of freedom (d.f.) and p-values.

Leverage BE/ME Asset Growth Size

θ 0.56 0.52 0.67 0.24
(2.11) (2.03) (2.44) (1.12)

η 0.51 0.51 0.49 0.53
(1.34) (0.61) (0.20) (0.50)

χ2 2.20 2.83 5.87 4.35
d.f. 3.00 3.00 3.00 3.00
p-value 0.53 0.42 0.12 0.23
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Table 4: Expected Pricing Errors from Fitted Models

This table presents the pricing errors in percent for each quintile portfolio from one-
stage IS-GMM with an identity weighting matrix. The expected return errors are
defined as eMi = E[rsit+1 − rMit+1], in which E[.] is the sample mean of the series in
brackets. The H (B) denotes the highest (biggest) quintile portfolio and the L (S)
denotes the lowest (smallest) quintile portfolio. The H–L (S–B) portfolio is long in the
high (small) portfolio and short in the low (big) portfolio. The heteroscedasticity-and-
autocorrelation-consistent t-statistics for the model errors are reported in brackets.
m.a.e. is the mean absolute error for each set of testing portfolios.

Low 2 3 4 High H–L m.a.e.

Market Leverage −1.29 0.92 −0.18 1.31 −0.64 0.65 0.87
(−1.08) (1.08) (−0.19) (1.06) (−4.49) (0.59)

BE/ME −1.67 0.02 1.29 −0.58 0.25 1.92 0.76
(−1.39) (0.03) (1.14) (−0.56) (1.14) (1.76)

Asset Growth 1.30 −1.22 1.25 1.30 −2.95 −4.25 1.60
(3.94) (−1.22) (1.22) (1.41) (−1.80) (−2.71)

Small 2 3 4 Big S–B m.a.e.

Size 1.06 −1.44 −0.97 0.43 1.14 −0.08 1.01
(1.79) (−1.40) (−1.29) (0.84) (1.35) (−0.19)
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Table 5: Expected Pricing Errors from Comparative Statics Analysis

This table reports the pricing errors from a comparative statics analysis. For rXit+1,
σS
it and ǫit+1 we set them to their cross-sectional averages each year for each quintile

portfolio. For Cit and Sit, instead of fixing them to their cross-sectional averages, we

set Sit = Xit/(X̃it/Sit) and Cit = Xit/(X̃it/Cit) and use the parameters reported in

Table 3 to recalculate µit+1 and σit+1, where X̃it/Sit and X̃it/Cit are the cross-sectional
earnings–price ratio and interest coverage ratio respectively. Then, we reconstruct the
theoretical return rMit , while keeping all the other parameters unchanged. We report
the expected return errors, defined as eri = E[rsit+1 − rMit+1], and the mean absolute
errors (m.a.e.) for each quintile portfolio and for the high-minus-low (H–L) and
small-minus-big (S–B) hedging portfolios. The H–L (S–B) portfolio is long in the
high (small) portfolio and short in the low (big) portfolio.

Panel A. Market Leverage Portfolios

Low 2 3 4 High H–L m.a.e.

r̃Xit+1 −0.94 −0.87 −0.75 0.21 3.52 4.46 1.26

Xit/X̃it/Sit −4.42 −0.54 −0.45 2.28 2.72 7.15 2.08

Xit/X̃it/Cit −1.70 0.90 0.23 2.01 2.10 3.80 1.39

σ̃S
it −1.29 0.94 −0.14 1.26 −0.95 0.33 0.92

ǫ̃it+1 −3.49 1.07 1.41 4.49 6.64 10.13 3.42

Panel B. BE/ME Portfolios

r̃Xit+1 −2.16 −2.24 −0.86 0.53 5.49 7.65 2.25

Xit/X̃it/Sit −4.30 −0.72 1.38 0.18 2.75 7.05 1.87

Xit/X̃it/Cit −2.03 −0.08 1.45 0.00 2.80 4.83 1.27

σ̃S
it −1.67 0.04 1.30 −0.55 −0.00 1.67 0.71

ǫ̃it+1 −3.30 0.63 2.99 1.93 6.01 9.31 2.97

Panel C. Asset Growth Portfolios

r̃Xit+1 5.27 0.59 −1.35 −0.66 −3.53 −8.80 2.28

Xit/X̃it/Sit 2.26 −0.59 1.26 0.64 −3.96 −6.23 1.74

Xit/X̃it/Cit 2.80 −0.96 1.14 1.11 −3.07 −5.87 1.82

σ̃S
it 1.04 −1.18 1.29 1.33 −2.94 −3.98 1.56

ǫ̃it+1 5.61 1.69 3.37 2.69 −1.87 −7.49 3.05

Panel D. Size Portfolios

Small 2 3 4 Big S–B m.a.e.

r̃Xit+1 5.33 −0.09 −0.75 −1.11 −2.84 8.17 2.02

Xit/X̃it/Sit 1.39 −1.21 −0.89 0.36 0.55 0.84 0.88

Xit/X̃it/Cit 1.45 −1.28 −0.95 0.38 1.04 0.40 1.02

σ̃S
it 1.04 −1.49 −0.98 0.45 1.16 −0.12 1.02

ǫ̃it+1 0.72 −2.13 −1.91 −0.72 −0.57 1.29 1.21
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Appendix

A Proof of Proposition 1

Define a new Brownian motion

Wit = Ŵit +

∫ t

0

θi(s)ds, (A1)

where θi = λi/σi is the price of risk. Girsanov’s theorem states that, under a risk-

neutral measure, the operating income Xit is governed by

dXit

Xit

= µidt+ σidWit. (A2)

For the rest of the proof, we drop the subscripts i and t for ease of notation in the

appendix.

Ito’s lemma implies that the equity value S satisfies

dS

S
=

1

S

(
∂S

∂t
+ µ̂x

∂S

∂X
+

σ

2
X2 ∂

2S

∂X2

)
dt+

1

S
Xσ

∂S

∂X
. (A3)

The standard non-arbitrage argument gives us the following partial differential

equation (PDE)

∂S

∂t
+ µX

∂S

∂X
+

σ2

2
X2 ∂

2S

∂X2
− rS +D = 0. (A4)

Plugging the above equation back to equation (A3), we obtain

dS

S
=

1

S

[
(µ̂− µ)X

∂S

∂X
+ rS −D

]
dt+

1

S
Xσ

∂S

∂X
dW. (A5)
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Simple algebraic manipulation yields

dS +Ddt

S
− rdt =

1

S

[
(µ̂− µ)X

∂S

∂X

]
dt+

1

S
Xσ

∂S

∂X
dW, (A6)

and

dS +Ddt

S
− rdt =

X

S

∂S

∂X
(µ̂dt+ σdW − µdt). (A7)

Hence, the relation between the stock return and the cash flow rate is established

as follows:

dS +Ddt

S
− rdt =

X

S

∂S

∂X

(
∂X

X
− µdt

)
= ǫ

(
∂X

X
− µdt

)
. (A8)

Adding back the subscripts of i and t, we have our equation (4) proofed.

Next, we provide the derivation of equity value S(X) and its sensitivity to cash

flows X. The general solution for equity value S(X) to equation (A4) is

S(X) =

(
X

r − µ
−

c

r

)
θ(1− τeff ) + g1X

ω + g2X
ω′

(A9)

where ω < 0 and ω′ > 1 are the roots of the following quadratic equation:

1

2
σ2ω(ω − 1) + µω − r = 0. (A10)

The standard no-bubble condition, limX→∞ S(X)/X < ∞, implies g2 = 0. The

value matching condition in equation (2) gives

g1 =

[(
1

XB

)ω (
c

r
θ +

XB

r − µ
(η(α− κ)− θ

)]
(1− τeff ). (A11)
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Hence, before bankruptcy X > XB, equity value is

S =

[(
X

r − µ
−

c

r

)
θ +

(
c

r
θ +

XB

r − µ
(η(α− κ)− θ)

)(
X

XB

)ω]
(1− τeff ). (A12)

The smooth pasting condition in equation (3) gives the optimal bankruptcy thresh-

old

XB =
θω(C/r)

(ω − 1)

r − µ

θ − η(α− κ)
. (A13)

It is easy to show that XB decreases with θ. The more dividend equity holders receive,

the greater incentive they have to keep the firm alive. Hence, they delay bankruptcy

if the dividend–net income ratio is high. Moreover, XB increases with η. Intuitively,

if equity holders have greater bargaining power, they are willing to file for bankruptcy

earlier because they are able to extract more rents from debt holders through debt

renegotiation.

The sensitivity of stocks to operating cash flows X is

ǫ =
X∂S

S∂X

=
1

S

[
θX

µ
(1− τeff ) + g1ωX

ω

]

=
1

S

[
S +

c

r
θ(1− τeff )− g1X

ω + g1ωX
ω
]

=1 +
c/r

S
θ(1− τeff ) +

(ω − 1)

S
g1X

ω

=1 +
c/r

S
θ(1− τeff )−

(1− ω)

S

[
c

r
θ +

XB

r − µ
(η(α− κ)− θ)

]
(1− τeff )

(
X

XB

)ω

.

(A14)

Adding back the subscripts of i and t, we have have the time-varying stock-cash

flow sensitivity ǫit as in equation (5) for each firm i.
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B IS-GMM Procedure

Let D = ∂gT/∂b and S a consistent estimate of the variance-covariance matrix of

the sample error gT . We use a standard Bartlett kernel with a window length of five

to estimate S.

The estimate of b, denoted b̃, is asymptotically normal-distributed.

b̃ ∼ N(b,
1

T
(D′WD)−1D′WSWD(D′WD)−1) (A1)

If W = S−1, the GMM estimator is optimal or efficient in the sense that the variance

is as small as possible.

To make statistical inferences for the pricing errors of individual portfolios or

groups of pricing errors, we construct the variance-covariance matrix for the pricing

errors gT

var(gT ) =
1

T
[I−D(D′WD)−1D′W]S[I−D(D′WD)−1D′W]′. (A2)

To test whether all the pricing errors are jointly zero, we perform the χ2 test as

follows:

g′

Tvar(gT )
+gT ∼ χ2(d.f. = #ofmoments−#ofparameters). (A3)

where the superscript + denotes pesudo-inversion.
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Internet Appendix to

Contingent-Claim-Based Expected Stock Returns

A Cross-Sectional Properties of Default Probabil-

ities and Stock-Cash Flow Sensitivities

Given the optimal estimates of θ and η, we obtain the implied risk-neutral rate µit+1

and cash flow volatility σit+1 by solving equations (10) and (11) for each portfolio-

year observation. Then, we calculate the risk-neutral default probability πit+1 and

the stock-cash flow sensitivity ǫit+1 according to equation (12).

It is worth noting again that ǫit+1 from our method is a structural estimate instead

of a reduced-form estimate from rolling regressions in other studies. Moreover, µit+1

does not contain information on the riskiness of the underlying operating cash flows

and that it is negatively correlated with the stocks returns according to equation (4).

Table A1 reports the distribution of the estimates.

Market leverage portfolios : Three observations from Panel A are worth noting.

First, the means and medians of µit+1 are all small and negative. The median de-

creases from 0.10% to −1.02% per year along with the increasing rank of the debt

ratios. The small and negative average risk-neutral rates are generally consistent with

the results obtained by Glover (2011). Second, the fact that σit+1 monotonically de-

clines with leverage confirms our conventional wisdom that firms with low operating

risk have better access to debt markets and therefore have greater financial leverage.

However, the decreasing cash flow volatility differs from the U-shaped stock volatility

in Table 1. This difference implies that the stock volatility is not necessarily a good

proxy for the underlying cash flow volatility. Third, firms with more debt have higher
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default probability and stock-cash flow sensitivity, as shown in the increasing means

and medians of πit+1 and ǫit+1 along the financial leverage.

BE/ME portfolios : Both the estimated mean and median of µit+1 decrease with

the book-to-market ratio. The means are lower than the medians. The patterns

and magnitudes of σit+1, ǫit+1 and πit+1 for the BE/ME portfolios are very similar

to those for the market leverage portfolios. These similarities are a manifestation

of the portfolio characteristics in Table 1. Because investment and debt financing

are positively correlated, firms with relatively more book assets and fewer growth

opportunities have higher financial leverages (Gomes and Schmid, 2010), which in

turn result in high default probability and stock-cash flow sensitivity.

Asset growth portfolios : The differences in µit+1, σit+1, πit+1 and ǫit+1 between

the low- and high-asset-growth portfolios are relatively small. The implied cash flow

volatility increases with the asset growth rate because high-asset-growth firms are

more likely to engage in risky projects and have more volatile cash flows. The stock-

cash flow sensitivity and default probability in low-growth firms are higher than that

in high-growth firms.

Size portfolios : Unlike the negative rates in the other three sets of portfolios, the

medians of µit+1 in Panel D range from 1.43% to 1.62% per year. Small firms have

more volatile cash flows than big firms. However, the median of σit+1’s decreases from

20.77% to 17.55% per year, sharing the same decreasing pattern with that of σS
it’s but

with a much smaller magnitude. Consequently, due to the small differences in µit+1

and σit+1, the spread in the median of ǫit+1 between the small and big portfolios is

only 0.07, the smallest difference among all the sets of testing portfolios. Moreover,

smaller firms face much greater likelihood of default, consistent with our conventional

wisdom.

The main results from this section can be summarized as follows. First, compared
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with the physical cash flow rate rXit+1, all the expected risk-neutral rates, µit+1, are

fairly small, implying that the risk premiums are relatively large for all the 20 in-

dividual portfolios. Except for the size portfolios, the average risk-neutral rates are

negative in the other three sets of portfolios. Second, the implied cash flow volatility,

σit+1, declines sharply with the ranking variable across the market leverage and book-

to-market portfolios, but the observed stock volatility σS
it is slightly U-shaped. Third,

both the average stock-cash flow sensitivities and the average stock returns increase

or decrease in the same direction with the ranking variables across all the four sets

of portfolios. The average sensitivity values are all greater than one. Fourth, while

the spread in πit+1 between the high (small) and low (big) quintile portfolios is the

largest in leverage portfolios, it is the smallest in asset growth firms. Last, and most

important, the spread in ǫit+1 is sizable in the market leverage portfolios and BE/ME

portfolios but is relatively small in the asset growth and size portfolios. Through a

comparative statics analysis in Section 5.5, we further show that the cross-sectional

spread in the sensitivities is the key to understanding the value, size, leverage and

asset growth premiums.

B Two-Stage IS-GMM

As Cochrane (1996) points out, while two-stage efficient IS-GMM pays more attention

to statistical efficiency, one-stage consistent IS-GMM focuses on economic structure.

The estimates from efficient IS-GMM could be misleading if the estimated covariance

matrix of the sample moment is poorly measured. Table A2 reports the parameter

estimates from a two-stage IS-GMM estimation using an inverse variance-covariance

weighting matrix. The estimates are very close to those from the one-stage IS-GMM

estimation. The t-statistics become greater because two-stage IS-GMM is more effi-
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cient in terms of the smaller variance. Particularly, the t-statistic of η increases to

2.20 for the market leverage portfolios, which however, have the modest performance.

Table A3 presents the pricing errors. The model performs well for all the four sets of

testing portfolios. The results are very similar to those generated from the one-stage

IS-GMM estimation.

C Different Liquidation Cost

The expected default cost is set to α = 0.45 according to the estimate by Glover

(2011). He argues that the previous estimates are underestimated due to a sample

selection bias.14

Table A4 reports the parameter estimates. The estimates are very close to those

from those from one-stage IS-GMM. Table A5 shows that the performance of the

model is comparable to that of the benchmark model for all the four sets of testing

portfolios.

14Additionally, following Morellec et al. (2008), we calculate the default costs for all the firms as
follows:

α = 1 – Tangibility/Total Assets,

where Tangibility = cash (Compustat item CHE) + 0.715*Receivables (item RECT) + 0.547*In-
ventory (item INVT) + 0.535*Capital (item PPENT). The average value of α is 0.49 in our sample,
close to their value of 0.51. Other studies that use the same formula to determine liquidation costs
include Almeida and Philippon (2007) and Hahn and Lee (2008).
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Table A1: Cross Section of Cash Flow Rate, Volatility, Default Probability

and Stock-Cash Flow Sensitivity

This table reports the mean, median (Med.) and standard deviation (SD) for the ex-
pected cash flow rate µit+1 and volatility σit+1 in annual percent, given the estimates
of θ and η from Table 3. The expected risk-neutral default probability πit+1 is calcu-
lated as (Xit/XiB)

ωi and the expected stock-cash flow sensitivity ǫit+1 is calculated
according to equation (5). The H (B) denotes the highest (biggest) quintile portfolio
and the L (S) the lowest (smallest) quintile portfolio.

Panel A. Market Leverage Portfolios

µit+1 σit+1 πit+1 ǫit+1

Mean Med. SD Mean Med. SD Mean Med. SD Mean Med. SD

L −0.38 0.10 1.49 25.40 23.50 9.12 0.13 0.08 0.11 1.05 1.04 0.03
2 −1.32 −0.92 1.54 21.33 20.11 7.66 0.20 0.16 0.14 1.15 1.15 0.05
3 −1.73 −1.06 1.76 19.56 18.07 8.04 0.26 0.21 0.16 1.26 1.26 0.09
4 −1.84 −0.97 1.92 18.16 16.19 9.33 0.32 0.31 0.18 1.41 1.39 0.13
H −1.68 −1.02 1.98 16.74 13.40 9.87 0.46 0.46 0.20 1.71 1.69 0.20

Panel B. BE/ME Portfolios

Mean Med. SD Mean Med. SD Mean Med. SD Mean Med. SD

L −0.09 0.33 1.21 25.96 24.07 8.51 0.18 0.14 0.13 1.10 1.10 0.04
2 −1.16 −0.50 1.69 21.57 19.81 7.82 0.23 0.19 0.15 1.19 1.19 0.06
3 −1.46 −0.77 1.75 19.78 17.97 8.53 0.27 0.26 0.16 1.28 1.29 0.10
4 −1.52 −0.88 1.85 18.60 16.18 9.05 0.30 0.29 0.17 1.37 1.37 0.14
H −1.70 −0.97 2.08 17.70 14.79 9.84 0.39 0.36 0.18 1.53 1.54 0.20

Panel C. Asset Growth Portfolios

Mean Med. SD Mean Med. SD Mean Med. SD Mean Med. SD

L −1.89 −1.20 2.09 20.01 17.44 9.37 0.33 0.32 0.17 1.42 1.39 0.18
2 −2.13 −1.35 1.81 18.06 15.78 8.77 0.27 0.25 0.15 1.33 1.31 0.12
3 −2.06 −1.42 1.65 18.38 16.50 7.59 0.24 0.20 0.15 1.26 1.25 0.10
4 −1.76 −0.97 1.77 20.05 18.49 7.77 0.22 0.17 0.15 1.21 1.20 0.09
H −1.34 −0.92 1.62 22.73 21.28 9.09 0.27 0.25 0.15 1.25 1.22 0.12

Panel D . Size Portfolios

Mean Med. SD Mean Med. SD Mean Med. SD Mean Med. SD

S 0.90 1.43 1.31 22.85 20.77 8.48 0.32 0.29 0.20 1.16 1.16 0.04
2 0.92 1.41 1.14 23.53 22.30 8.57 0.30 0.27 0.18 1.15 1.15 0.04
3 0.99 1.38 0.96 22.36 21.52 8.25 0.26 0.22 0.17 1.13 1.12 0.04
4 1.06 1.37 0.85 21.37 19.43 8.18 0.22 0.19 0.16 1.12 1.12 0.04
B 1.39 1.62 0.74 20.16 17.55 7.65 0.14 0.13 0.13 1.09 1.08 0.04
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Table A2: Parameter Estimates and Model Fitness from Two-Stage IS-

GMM

This table reports the parameter estimates from two-stage IS-GMM with an inverse
variance-covariance weighting matrix. The first moment condition E[rsit+1−rMit+1] = 0
is tested across all quintile portfolios, in which E[.] is the sample mean of the series
in brackets. θ is the dividend–net income ratio and η is the shareholder bargaining
power. Their associated t-statistics are reported in brackets. The χ2-statistics are
reported with the associated degrees of freedom (d.f.) and p-values.

Leverage BE/ME Asset Growth Size

θ 0.73 0.58 0.72 0.24
(2.96) (2.90) (3.10) (1.37)

η 0.68 0.59 0.82 0.50
(2.20) (0.87) (0.74) (0.73)

χ2 2.22 2.83 5.86 4.35
d.f. 3.00 3.00 3.00 3.00
p-value 0.53 0.42 0.12 0.23
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Table A3: Expected Pricing Errors from Fitted Models from Two-Stage

IS-GMM

The table presents the pricing errors for each quintile portfolio from two-stage IS-
GMM estimation with an inverse variance-covariance weighting matrix. The expected
return errors are defined eMi = E[rsit+1 − rMit+1], in which E[.] is the sample mean of
the series in brackets. The H (B) denotes the highest (biggest) quintile portfolio and
the L (S) denotes the lowest (smallest) quintile portfolio. The H–L (S–B) portfo-
lio is long in the high (small) portfolio and short in the low (big) portfolio. The
heteroscedasticity-and-autocorrelation-consistent t-statistics for the model errors are
reported in brackets. m.a.e. is the mean absolute error for each set of testing portfo-
lios.

Low 2 3 4 High H–L m.a.e.

Market Leverage −2.62 −0.88 −2.35 −1.02 −3.04 −0.42 1.98
(−1.49) (−1.13) (−0.97) (−0.56) (−1.01) (−0.19)

BE/ME −2.22 −0.72 0.45 −1.52 −0.83 1.39 1.15
(−1.00) (−0.39) (0.17) (−0.77) (−0.26) (0.90)

Asset Growth 1.12 −1.64 0.77 0.83 −3.39 −4.51 1.55
(0.85) (−1.55) (0.57) (0.73) (−1.26) (−1.46)

Small 2 3 4 Big S–B m.a.e.

Size 0.91 −1.54 −1.06 0.38 1.12 −0.21 1.00
(0.77) (−0.98) (−2.06) (0.71) (0.62) (−0.08)
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Table A4: Parameter Estimates and Model Fitness Given a Different Liq-

uidation Cost

This table reports the parameter estimates from one-stage IS-GMM when liquidation
cost is set to α = 0.45. The first moment condition E[rsit+1−rMit+1] = 0 is tested across
all quintile portfolios, in which E[.] is the sample mean of the series in brackets. θ
is the dividend–net income ratio and η is the shareholder bargaining power. Their
associated t-statistics are reported in brackets. The χ2-statistics are reported with
the associated degrees of freedom (d.f.) and p-values.

Leverage BE/ME Asset Growth Size

θ 0.61 0.50 0.68 0.23
(2.25) (1.97) (2.49) (1.11)

η 0.49 0.26 0.49 0.30
(2.44) (0.37) (0.41) (0.30)

χ2 2.24 2.83 5.87 4.34
d.f. 3.00 3.00 3.00 3.00
p-value 0.53 0.42 0.12 0.23

Table A5: Expected Pricing Errors from Fitted Models Given a Different

Liquidation Cost

The table presents the pricing errors for each quintile portfolio from one-stage IS-
GMM when liquidation cost is set to α = 0.45. The expected return errors are
defined eMi = E[rsit+1−rMit+1], in which E[.] is the sample mean of the series in brackets.
The H (B) denotes the highest (biggest) quintile portfolio and the L (S) denotes the
lowest (smallest) quintile portfolio. The H–L (S–B) portfolio is long in the high
(small) portfolio and short in the low (big) portfolio. The heteroscedasticity-and-
autocorrelation-consistent t-statistics for the model errors are reported in brackets.
m.a.e. is the mean absolute error for each set of testing portfolios.

Low 2 3 4 High H–L m.a.e.

Market Leverage −1.68 0.42 −0.73 0.85 0.14 1.82 0.76
(−1.42) (0.49) (−0.76) (0.69) (0.91) (1.70)

BE/ME −1.56 0.16 1.43 −0.49 0.04 1.60 0.74
(−1.30) (0.19) (1.27) (−0.47) (0.19) (1.47)

Asset Growth 1.46 −1.26 1.14 1.18 −3.06 −4.52 1.62
(4.53) (−1.26) (1.12) (1.28) (−1.85) (−2.85)

Small 2 3 4 Big S–B m.a.e.

Size 0.98 −1.43 −0.96 0.50 1.23 −0.25 1.02
(1.66) (−1.39) (−1.25) (0.95) (1.40) (−0.54)
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