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Abstract

Regression discontinuity models, where the probability of treatment jumps discretely when a

running variable crosses a threshold, are commonly used to nonparametrically identify and esti-

mate a local average treatment effect. We show that the derivative of this treatment effect with

respect to the running variable is nonparametrically identified and easily estimated. Then, given

a local policy invariance assumption, we show that this derivative equals the change in the treat-

ment effect that would result from a marginal change in the threshold, which we call the marginal

threshold treatment effect (MTTE). We apply this result to Manacorda (2012), who estimates a

treatment effect of grade retention on school outcomes. Our MTTE identifies how this treatment

effect would change if the threshold for retention was raised or lowered, even though no such

change in threshold is actually observed.
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Keywords: regression discontinuity, sharp design, fuzzy design, treatment effects, pro-
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1 Introduction

Consider a standard regression discontinuity (RD) model, where T is a treatment indicator, X is a

so-called running or forcing variable, c is the threshold for X at which the probability of treatment

changes discretely, and Y is some observed outcome that may be affected both by treatment and
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smoothly by X . The goal in these models is to estimate the effect of treatment T on the outcome

Y , and the main result in this literature is that under weak conditions this treatment effect can be

nonparametrically identified and estimated at the point where X = c.

It is often useful to know how treatment effects would change if the threshold c were changed

(examples are given below). But in most applications, we do not observe a change in threshold, and

so cannot directly estimate the impact of a threshold change. This paper shows what can be nonpara-

metrically identified about the impacts of a threshold change, when no such change is observed.

Let τ (C) denote the (local) average treatment effect that would be identified by standard RD

methods if the threshold equaled C , and let τ ′ (C) = ∂τ (C) /∂C . The true threshold is c, so the

treatment effect that can be estimated is τ (c). We define the Marginal Threshold Treatment Effect

(MTTE) at c to be τ ′ (c). The MTTE, if it were known, could be used to evaluate the impact of a

small discrete change in c, exactly the way that, e.g., price elasticites are used to approximate the

effects of small discrete changes in prices such as those arising from a small change in a sales tax or

a value added tax. For example, the sign of the MTTE tells whether the effectiveness of treatment

would be increased or decreased if the threshold for treatment were lowered. If we wanted to know

what the treatment effect would be at a new threshold cnew that is close to c, given τ (c) and τ ′ (c), we

could approximate this τ (cnew) using the mean value expansion τ (cnew) ≈ τ (c)+ (cnew − c) τ ′ (c).

We also provide conditions under which τ (cnew) can be exactly rather than approximately identified

nonparametrically.

In discussing RD methods Hahn, Todd, and van der Klaauw (2001) note that, "A limitation of

the approach is that it only identifies treatment effects locally at the point at which the probability

of receiving treatment changes discontinuously... It would be of interest, for example, if the policy

change being considered is a small change in the program rules, such as lowering or raising the

threshold for program entry, in which case we would want to know the effect of treatment for the

subpopulation affected by the change." Our MTTE addresses this issue, by showing how the effect

of treatment changes given a marginal change in the threshold. Our results may also be taken as

an example of a marginal policy analysis of the sort advocated by Heckman (2010) and Carneiro,
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Heckman, and Vytlacil (2010).

To illustrate the usefulness of the MTTE τ ′ (c), consider a few examples. Jacob and Lefgren

(2004) consider the impact of attending summer school on later academic performance. In their

application, the treatment T is summer school attendance, X is the test score on an exam, c is the

threshold failing score below which one is required to attend summer school, and the outcome Y is a

later test score. The MTTE in this case can be used to evaluate the effectiveness of summer school for

students at the new lower (higher) cutoff if the cutoff score for determining summer school attendance

is marginally lowered (raised).

A similar example is the original Thistlethwaite and Campbell (1960) RD paper, where T is receipt

of a National Merit Award, X is the test score on the National Merit Award qualifying exam, c is the

exam grade required to qualify for the award, and Y is receipt of other college scholarships (and

other academic outcomes). In this application the treatment effect is the increase in the probability

of receiving college scholarships resulting from winning the National Merit Award, and our paper’s

goal would be to evaluate what the probability of obtaining college scholarships would be for the new

marginal winners if the National Merit Award were given at a lower or higher exam grade level.

Another example is Chay and Greenstone (2005), who examine impacts of the US Clean Air Act

Amendments (CAAA) of 1970. The CAAA requires that a county be designated “nonattainment” sta-

tus if its pollution concentrations exceed a federally determined ceiling. The CAAA imposes stringent

pollution abatement regulations on “nonattainment” counties. Here T indicates nonattainment status

so the treatment consists of stringent pollution regulations, X is the pollution concentration measure,

c is the pollution ceiling, and Y is the subsequent pollution reduction or a side effect like housing

value increases. In this sharp RD design, our MTTE would be used to address questions such as how

the effectiveness of the regulations in reducing pollution would change, or how housing prices would

be affected at the new pollution ceiling, if the pollution ceiling were marginally lowered.

A final example (which we empirically implement) is Manacorda (2012), who estimates the treat-

ment effect of grade retention on school outcomes in Uruguay. This is a fuzzy design RD in which the

running variable X is a student’s course failure rate in junior high school, treatment is retention (that
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is, repeating a grade in junior high school), and the outcome Y is the additional grades of schooling

attained in the next five years. In this fuzzy design, compliers are defined as students that would be

required to repeat a grade if and only if their measured X exceeds the threshold c = 3. Like Mana-

corda, we obtain a treatment effect τ (c) of more than−3/4, meaning that among compliers, repeating

a grade results in at least three fourths of a year reduction in educational attainment in the next five

years on average. However, our new result is that we find an MTTE τ ′ (c) of about one fourth. The fact

that the MTTE is positive means that if the standards for promotion were made stricter by reducing

the course failure cutoff (reducing c), then the compliers who are retained in this new regime would be

more adversely affected than the compliers at the original threshold. For example if the course failure

cutoff rate was reduced from c = 3 to cnew = 2, then using τ (cnew) ≈ τ (c) + (cnew − c) τ ′ (c) the

treatment effect at the new cutoff would be minus a full year of schooling or more on average.

Thresholds are often set by policy, and knowing the direction and magnitude of changes in effects

resulting from a change in threshold can be important in practice. Many policy debates center pre-

cisely on these types of questions, e.g., what would be the effects on take-up or on various health and

welfare measures if the qualifying standards for a certain welfare program were to change? Or, in the

previously described applications, what are the impacts of changing the pollution regulation ceiling?

Or the effects of changing grading thresholds for various educational interventions?

Let Y (1) and Y (0) denote the potential outcomes as in Rubin (1974), meaning the outcome when

one is treated or not treated, so the observed outcome Y = Y (1) T + Y (0) (1− T ). To simplify

the discussion here, consider sharp designs first, where T = I (X > c), meaning that T = 1 if

X > c, otherwise T = 0. Define the function D (X) = E [Y (1)− Y (0) | X ] holding c fixed, and

define its derivative D′ (X) = ∂D (X) /∂X . By definition, D (X) is the average treatment effect of an

individual having running variable equal to X . These definitions of the functions D (X) and D′ (X)

make the assumption, which is standard in RD analyses, that the threshold c is a fixed constant. But

our interest is in analyzing the effects of changing the threshold.

To consider the possibility of changing the threshold, we let C denote a possible threshold value.

The distributions of Y (1) and Y (0) can depend on both X and C . For example, a person’s outcome
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if treated, given by Y (1), can depend both on what the threshold is for treatment, and on the value

of that person’s running variable. For example, in the case of national merit awards, the threshold

C would affect the total the number of students who get such awards, which could in turn affect the

difference in probability of getting a scholarship, and hence the treatment effect, of giving an award

to an individual with running variable equal to X .

In contrast to the function D, the function τ (C) is defined as equaling what the RD treatment

effect would be if the threshold were equal to C . At the actual, realized value of the threshold c we

have τ (c) = D (c), but τ and D are in general different functions.1

We first show that with minimal regularity conditions, D′ (c) (the derivative of D (X) evaluated

at the point X = c) is nonparametrically identified and can be easily estimated. Call D′ (c) the

Treatment Effect Derivative, or TED. The function D′ (c) has some interesting uses by itself, e.g.,

Abdulkadiroglu, Angrist, and Pathik (2011) apply our TED estimator in a context where the treatment

is exam school attendance and the outcome is scores on standardized achievement tests. The TED can

also be used to test if treatment effects are locally constant, since a necessary condition for locally

constant treatment effects is that D′ (c) = 0.

However, what we mainly use the TED for is to show is that if (and only if) a local policy in-

variance assumption holds, then the TED D′ (c) will also equal the MTTE τ ′ (c), so in that case the

MTTE is nonparametrically identified and easily esimated.

Abbring and Heckman (2007) define policy invariance as an "assumption that an agent’s outcome

only depends on the treatment assigned to the agent and not separately on the mechanism used to

assign treatments. This excludes (strategic) interactions between agents and equilibrium effects of the

policy." Example applications of policy invariance assumptions and marginal policy analyses include

1Formally, we can define the function S (X,C) = E (Y (1)− Y (0) | X,C), which is the expected difference in treated

vs untreated outcomes of a hypothetical individual having a running variable equal to X , living in an environment in

which everybody (else) is treated if and only if their running variable exceeds C . The functions D and τ are defined by

D (X) = S (X, c) and τ (C) = S (C,C). The standard sharp design RD treatment effect is then D (c) = τ (c), which is

identified by D (c) = limx↓c E (Y | X = x,C = c)− limx↑c E (Y | X = x,C = c). See the Appendix for details, where

we further generalize these definitions to handle fuzzy designs by conditioning on compliers.

5



Heckman (2010) and Carneiro, Heckman, and Vytlacil (2010). What we require to make τ ′ (c) =

D′ (c) is a limited version of policy invariance that only applies to infinitesimal changes in the assign-

ment mechanism (specifically, changes in the threshold c) and which we therefore refer to as, "local

policy invariance. We show that this local policy invariance, which we discuss in detail in the next

section, is a necessary and sufficient condition to make D′ (c) = τ ′ (c). Note that this equality only

needs to hold at the true threshold c, so in general we can have τ ′ (C) 6= D′ (C) for C 6= c."

The above discussion focused on the sharp design case, but we show later that the above definitions

and results can all be generalized to identify the treatment effect and MTTE in fuzzy designs as well.

In many RD applications the function E (Y | X = x) is parameterized, e.g., it is assumed to be a

polynomial in chapter 6 of Angrist and Pischke (2008). When this expectation is parameterized, the

function D (x) can be directly estimated for all values of x . For example, in a linear sharp design

model where Y = a+ Xb+Tβ+ XT γ +e and E (e | X = x) = 0, we would have D (x) = β+ xγ ,

so D′ (x) = γ , and so the TED (and, given local policy invariance, the MTTE) would be identified.

But is this identification due to the assumed functional form, or can the TED be nonparametrically

identified?

In parametric models D (x) is identified both at x = c and for values x 6= c, permitting identi-

fication of D′ (c), only because the functional form allows us to evaluate counterfactual objects like

E (Y | T = 1, X = x < c), even though in the data with a sharp design we could never see any ob-

servations having both T = 1 and x < c. One might more generally think that nothing regarding

changes in c can be identified nonparametrically, because we only observe treatment at x = c itself.

However, what we show is that, analogous to the way D (c) in sharp designs is nonparametrically

identified by differencing the left and right limits of E (Y | X = x) as x → c, one can similarly

nonparametrically identify D′ (c) by differencing the left and right derivatives of E (Y | X = x) as

x → c. We also show that the TED can be identified and easily estimated in fuzzy designs as well

(though with a somewhat more complicated formula). In the fuzzy design case we will also still be

able to provide a local policy invariance assumption that makes the TED equal the MTTE.

A few other papers exist that appeal to derivative conditions in RD analyses. Card, Lee, Pei,
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and Weber (2012) analyze a regression kink design model, where the treatment is a continuous but

kinked function of the running variable, so the kink, which is a change in the derivative, identifies

the treatment effect. Dong (2012) uses changes in the derivative or slope of the treatment probability

function at the threshold to identify standard fuzzy RD design treatment effects in applications where

there is a kink instead of, or in addition to, a discontinuity at the threshold. Perhaps the closest result

to ours is a few paragraphs in a survey article by Dinardo and Lee (2011), in which they informally

propose using a Taylor expansion at the threshold to identify an average treatment effect on the treated

(ATT) parameter. In contrast, we use a similar expansion to estimate a different object, that is, we

consider the impact of changing the threshold, and we provide formal results for both fuzzy and sharp

designs.

In the next section we show nonparametric identification of the TED in sharp RD designs, and

describe in detail the local policy invariance condition required to make the MTTE equal the TED.

Later sections consider identification when changes in the threshold are larger than marginal and

identification in fuzzy designs. We then discuss estimation based on these identification results, and

provide empirical estimates based on Manacorda’s (2012) study of grade retention effects on school

outcomes in Uruguay. This is followed by conclusions, and an Appendix containing proofs.

2 Sharp Design TED and MTTE

We present our results for sharp design RD models first, and later consider the extension to fuzzy

designs. For simplicity we give assumptions and results without consideration of covariates other

than the running variable X . We later discuss how additional covariates Z could be included in the

regressions.

ASSUMPTION A1: For each unit (individual) i we observe Yi , Ti , X i where Ti is a binary treat-

ment indicator, X i is a running variable, and Yi = Yi (1) Ti + Yi (0) (1− Ti ) for potential outcomes

Yi (1) and Yi (0).

For ease of notation we will drop the i subscript when refering to the random variables Y (1),
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Y (0), Y , T , and X .

ASSUMPTION A2 (sharp design): T = I (X > c) for some known constant threshold c. The

support of X includes a neighborhood of c. For t = 0 and t = 1, E (Y (t) | X = x) is continuously

differentiable in x in a neighborhood of x = c.

Define g (x) = E (Y | X = x). The main identification result in the literature for sharp design

RD is that the value of the treatment effect τ (c) is identified by2

τ (c) = lim
x↓c

g (x)− lim
x↑c

g (x) . (1)

based on

E (Y (0) | X = c) = lim
x↑c

E (Y (0) | X = x) = lim
x↑c

E (Y (0) | X = x, T = 0) = lim
x↑c

E (Y | X = x)

(2)

and similarly for Y (1) using the limit x ↓ c.

Assumptions A1 and A2 are identical to those used in the literature to prove equation (1) via

equation (2) arguments, except that A2 assumes not just continuity, but differentiability. However,

virtually all empirical implementations of RD models satisfy this stronger smoothness assumption. In

particular, parametric models generally assume polynomials or other differentiable functions, while

most nonparametric estimators, including local linear regressions, assume (for establishing asymptotic

theory) at least continuous differentiability of E (Y (1) | X = x) for x ≥ c and of E (Y (0) | X = x)

for x ≤ c.3 We do not know of any application of RD methods where the usual continuity assumptions

hold but differentiability does not.

2See Hahn, Todd, and van der Klaauw (2001), or for recent surveys see Lee and Lemieux (2010), Imbens and

Wooldridge (2009) and Imbens and Lemieux (2008).

3Local linear or higher order local polynomial regressions are used to estimate RD models to mitigate boundary bias

issues as discussed by, e.g., Porter (2003). The asymptotic theory for local linear or local polynomial estimation (see

Fan and Gijbels 1996) requires not just continuity but continuous differentiability. Generally twice differentiability or

more smoothness is assumed. This differentiability is not required for consistent estimation of RD models, but is always

assumed in practice to reduce bias and thereby increase estimation precision. Similarly, still greater smoothness would be

useful for bias mitigation in derivative estimation, but is not required for consistency of MTTE estimation.
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Recall from the introduction that D (x) = E (Y (1)− Y (0) | X = x) is the average treatment

effect across individuals having running variable equal to x and D′ (x) = ∂D (x) /∂x . For example,

in the summer school application D (x) is the expected effect of attending summer school for an

average individual having test score x . Sharp design RD identifies D (c), the value of the function

D (x) just at the point x = c. We now similarly show nonparametric identification of the TED D′ (c).

As discussed earlier, the function D (x) depends on the distributions of Y (1) and Y (0), which

can in turn depend on the threshold c. The definitions of D (x) and D′ (x) hold c fixed (see the

Appendix for more details and more precise definitions). It will be convenient later to use the notation

h+ (x) = limε↓0 h (x + ε) and h− (x) = limε↑0 h (x + ε) for any function h. In this notation we have

D (c) = g+ (c)− g− (c) . (3)

To show identification of the TED we require one-sided derivatives. The right and left derivatives of

a function h (x) at the point x , which we denote as h′+ (x) and h′− (x) respectively, are defined by

h′+ (x) = lim
ε↓0

h (x + ε)− h+ (x)

ε
and h′− (x) = lim

ε↑0

h (x + ε)− h− (x)

ε

A property of right and left derivatives is that if a function h (x) is differentiable at a point x , then

h′+ (x) = h′− (x) = ∂h (x) /∂x = h′ (x).

THEOREM 1: If Assumptions A1 and A2 hold then the treatment effect D (c) = τ (c) is identified

by equation (3) and the function D′ (x) evaluated at the point x = c (the TED) is identified by

D′ (c) = g′+ (c)− g′− (c) . (4)

Proofs are in the appendix. Estimation based on the identification in Theorem 1 will be discussed

in more detail later, but for now note that local polynomial regressions can be used to estimate the

function g (x) and its derivatives separately on either side of the threshold. Evaluting these regression

derivatives in the limits as x → c provides consistent estimates of g′+ (c) and g′− (c), and hence con-

sistent estimates of D′ (c). In short, D′ (c) equals the difference between the left and right derivatives

of g (x) around x = c, just as the local treatment effect D (c) equals the difference between the left

and right limits of g (x) around x = c.
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The TED D′ (c) provides a measure of the impact of a marginal change in the running variable x

on the treatment effect, at x = c, holding c fixed. This estimate can be used for a variety of purposes

as discussed in the introduction, but we will now focus on its application to the MTTE.

Now consider policy invariance. Roughly speaking, we say that "local policy invariance" holds if

an infinitesimal change in the true threshold c would not change the function D (x) at points x in an

arbitrarily small neighborhood of x = c. 4 It is important to note that local policy invariance does not

imply, and is not implied by, locally constant treatment effects. In fact, local policy invariance places

no restriction at all on the shape of the function D (x). It only restricts how this function could change

if the threshold changed marginally.

To further explain local policy invariance, consider first the examples of RD discussed in the in-

troduction where treatment is attending summer school or winning a National Merit Award. Consider

a group of compliers who have test scores x that equal a value cnew that is infinitesimally larger or

smaller than c. Policy invariance means that the average treatment effect for this group would not

change if the threshold test score used for determining treatment were changed infinitesimally from

c to cnew. In the summer school example, this local policy invariance might not hold if a marginal

change in the qualifying score affects the curriculum or quality of instruction in summer school, or

if the resulting small compositional change in the population of students attending summer school

affects learning through peer effects. In the National Merit Award example, local policy invariance

might be violated if the increase in the number of award winners resulting from an infinitesimal low-

ering of the qualifying score c resulted in increased competition for outside scholarships, or in a

lowering in the perceived prestige of an award.

In the pollution application, a stronger than necessary condition for local policy invariance to hold

is if the impact of the pollution regulation associated with non-attainment status depends only on a

county’s pollution level x , but not on the actual pollution ceiling for assigning the non-attainment

4More precisely, consider the function S (X,C) = E (Y (1)− Y (0) | X,C) discussed in footnote 1. For sharp design

RD, Local policy invariance says that ∂S (X,C) /∂C equals zero when X = C = c. See the Appendix for more formal

details.
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status, which is likely to be the case.

As these examples show, local policy invariance is essentially a ceteris paribus assumption of

the type commonly employed in partial equilibrium analyses. It can also be interpreted as an external

validity assumption, since it assumes that a function we can identify does not change when one feature

of the environment (specifically, the value of c) changes infinitesimally. Analogous ceteris paribus

or external validity assumptions are required to apply almost any reduced form program evaluation

calculation to a change in context or environment.

COROLLARY 1: Let Assumptions A1 and A2 hold. Then the MTTE τ ′ (c) is nonparametrically

identified by τ ′ (c) = D′ (c) if and only if local policy invariance holds.

Without futher assumptions (which we discuss in the next section), the functions τ (C) and τ ′ (C)

are only identified nonparametrically at the observed true threshold level C = c, and not at other

values of C . However, given the MTTE τ ′ (c), we can use the mean value theorem to obtain an ap-

proximate estimate of the effect of a small discrete change in the threshold. For example, an estimate

of what the treatment effect τ (cnew) would be if the threshold were changed a small amount from c

to cnew is

τ (cnew) ≈ τ (c)+ (cnew − c) τ ′ (c) . (5)

3 Extensions to Nonmarginal Changes

Equation (5) gives an estimate of the treatment effect τ (cnew) when cnew is a marginal change in c.

Here we discuss what can be done to consider larger changes in c. One possibility is to refine equation

(5) using higher order derivatives.

Theorem 1 can be immediately extended to identify and estimate higher order derivatives. Let

D′′ (x) = ∂2 D (x) /∂2x . If we replace the continuous differentiability in Assumption A2 with twice

continuous differentiability for x in a neighborhood of c, then by taking second order instead of

first order derivatives in the proof of Theorem 1 we obtain D′′ (c) = g′′+ (c) − g′′− (c). Given local

policy invariance for second order derivatives (see the Appendix for details), we would have τ ′′ (c) =
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D′′ (c) is identified. If sufficient data are available to precisely estimate second derivatives in the

neighborhood of x = c, then these could be used to further refine estimates of the effects of small

discrete changes in c. For cnew close to c, a second order Taylor expansion gives

τ (cnew) ≈ τ (c)+ (cnew − c) τ ′ (c)+
(cnew − c)2

2
τ ′′ (c) . (6)

In the same way, if E (Y (t) | X = x) for t = 0 and t = 1 are analytic functions, then derivatives

Dk (x) = ∂κD (x) /∂κx at x = c for all integers κ exist and can be correspondingly identified. Given

a strong form of local policy invariance, the following corollary shows that, in theory at least, τ (cnew)

can be exactly rather than approximately identified, making use of an infinite order Taylor expansion.

COROLLARY 2: Let Assumptions A1 and A2 hold. Assume that E (Y (t) | X = x) for t = 0

and t = 1 are analytic functions and that strong local policy invariance holds. Then for any threshold

cnew the local average treatment effect τ (cnew) is identified and is given by the Taylor expansion

τ (cnew) = τ (c)+
∞∑

k=1

(cnew − c)k

k
Dk (c) . (7)

The proof Corollary 2, and a formal definition of strong local policy invariance, is provided in

the Appendix. Given Corollary 2 one might construct a consistent estimator of τ (cnew) based on the

method of sieves, using a K’th order Taylor expansion to estimate τ (cnew) via equation (7), with each

Dk (c) for k = 0, ..., K estimated by K order polynomial regressions, and letting K → ∞ as the

sample size goes to infinity.

Another way to obtain a consistent estimator of τ (cnew) would be to assume a functional form

for the treatment effect. For example, if we assume the function τ (c) is linear, then equation (5) will

hold exactly rather than approximately and could then be applied to any size change to cnew from c.

Similarly, if τ (c) is quadratic then equation (6) becomes exact. These assumptions would still be less

restrictive than the requirement that one have a complete, correctly specified parametric model for Y .
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4 Fuzzy Design TED and MTTE

We now extend our previous results to fuzzy designs. Let T continue to indicate whether an individual

is treated, but now let T ∗ = I (X > c), so T would be the same as T ∗ for all individuals if the design

were sharp. Define f (x) = E (T | X = x), so f (x) is the conditional probability of being treated,

conditional upon X = x . The counterfactuals Y (0) and Y (1) are defined in terms of T , not T ∗, so

we still have Y = Y (1) T + Y (0) (1− T ). Analogous to Y (0) and Y (1) in the sharp design, define

the potential treatment status variables T (0) and T (1), where T (t∗) is what an individual’s treatment

status would be if T ∗ = t∗, so T = T (1) T ∗ + T (0) (1− T ∗). Compliers can then be defined as

individuals i having Ti (0) < Ti (1), while defiers have Ti (0) > Ti (1) (always takers and never takers

have Ti (0) = Ti (1) equal to one or zero, respectively).

Analogous to D (x) in sharp designs, define

D f (x) = E [Y (1)− Y (0) | X = x, T (0) < T (1)] (8)

(see the Appendix for details). The only difference between the functions D f (x) and D (x) is that

the definition of D f (x) conditions explicitly on compliers, T (0) < T (1). Both D f (x) and D (x)

implicitly condition on the true threshold equaling c.

ASSUMPTION B2 (Fuzzy design): The support of X includes a neighborhood of a known thresh-

old constant c. T (0) ≤ T (1). The functions E (Y (t) | X = x) and E (T (t∗) | X = x) are continu-

ously differentiable in x in a neighborhood of x = c.

The monotonicity assumption T (0) ≤ T (1) in Assumption B2 rules out defiers. Based on As-

sumptions A1 and B2, D f (x) equals the treatment effect that is identified by fuzzy design RD, using

the formula

D f (c) =
g+ (c)− g− (c)

f+ (c)− f− (c)
(9)

Assumptions A1 and B2 are equivalent to standard assumptions used in Fuzzy RD design iden-

tification to obtain equation (9) (see, e.g., Hahn, Todd, and van der Klaauw (2001) or Imbens and
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Lemieux (2008)) except that the functions in B2 are assumed to be differentiable instead of just con-

tinuous. As noted in discussing the sharp design, the estimators that are always used in practice to

estimate RD models implicitly or explicitly assume this differentiability. Given the differentiability

in Assumption B2, define D′f (x) = ∂D f (x) /∂x . The TED for compliers is then defined by D′f (c).

The following Theorem shows identification of the TED D′f (c). As in sharp designs, a necessary

condition for local constant treatment effects is D′f (c) = 0, so estimation of the TED can be used for

testing that condition.

THEOREM 2: If Assumptions A1 and B2 hold then the treatment effect D f (c) = τ f (c) is

identified by equation (9) and the TED D′f (c) is identified by

D′f (c) =
g′+ (c)− g′− (c)−

[
f ′+ (c)− f ′− (c)

]
D f (c)

f+ (c)− f− (c)
(10)

Let p (c) denote the fraction of the population that are compliers when the threshold equals c. The

proof of Theorem 2 shows that p (c) = f+ (c)− f− (c), the denominator of equation (10). Applying

the mean value theorem as before shows that we can approximate the proportion of the population

who would be compliers at a new threshold cnew by

p (cnew) ≈ p (c)+ (cnew − c) p′ (c) . (11)

The proof of Theorem 2 also shows that p′ (c) = f ′+ (c)− f ′− (c), so Equation (10) can be written

as the sum of two terms,
[
g′+ (c)− g′− (c)

]
/p (c) and p′ (c) D f (c) /p (c). The first of these terms

is what the TED would equal if the probability of compliance p (c) was held fixed, while the second

term, which is proportional to p′ (c), accounts for the effect on the TED of changes in the probability

of compliance that can occur when c marginally changes.

Define τ f (C) the same as τ (C) but just for compliers, i.e., conditioning on the additional argu-

ment that T (0) < T (1), in exactly the same way that D f (x) is defined relative to D (x) (see the

Appendix for details). It follows that at the observed threshold c we will have τ f (c) = D f (c). Let

τ ′f (C) = ∂τ f (C) /∂C .
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The fuzzy MTTE is defined to be τ ′f (c). To identify the fuzzy MTTE, we again need a policy

invariance assumption. Extending the sharp design definition, we say that local policy invariance

holds in the fuzzy design if an infinitesimal change in c does not change the function D f (x) at points

x in an arbitrarily small neighborhood of x = c (see the Appendix for details). This definition shows

that local policy invariance only restricts how outcomes of compliers might change if the threshold c

changes. Local policy invariance allows the composition of complier status to change when c changes.

As in the sharp design case, local policy invariance does not place any restriction on how the treatment

effect depends on the running variable.

COROLLARY 3: If Assumptions A1 and B2 hold and local policy invariance holds, then the

fuzzy MTTE τ ′f (c) is nonparametrically identified by τ ′f (c) = D′f (c).

Corollary 1 shows that if policy invariance holds, then analogous to the sharp design case, an

estimate of the TED D′f (c) is also an estimate of the MTTE τ ′f (c). By the mean value theorem, the

fuzzy design analog to equation (5),

τ f (cnew) ≈ τ f (c)+ (cnew − c) τ ′f (c) (12)

can be used as before to approximate the effect of treatment on compliers if the threshold is changed

a small amount from c to cnew. Recall that p (c) = f+ (c) − f− (c) is the fraction of the population

that are compliers when the threshold equals c. Even though the set of compliers can change in

unknown ways when the threshold changes, we can approximate both p (cnew), the fraction of the

population who would be compliers at the new threshold cnew, and the treatment effect τ f (cnew) on

those compliers, using equations (11) and (12).

Fuzzy design analogs to Corollary 2 can also be immediately constructed, allowing exact rather

than approximate identification of τ f (cnew) and p (cnew) if the conditional expectation functions in

Assumption B2 are analytic. As in the sharp design case exact estimation of these objects would

require increasing the order of derivatives one estimates as the sample size grows.
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5 Estimation

Here we describe estimators for the TED and hence for the MTTE. The estimators we provide here

are not themselves new, being equivalent to estimators for treatment effects like those summarized

in surveys such as Imbens and Wooldridge (2009) and Lee and Lemieux (2010). We therefore do

not provide associated limiting distribution theory, since it corresponds to the standard theory of

estimation of local polynomial estimators, albeit at boundary points. See, e.g., Fan and Gijbels (1996)

and Porter (2003). What is new here is not the estimators themselves, but rather their application to

estimation of the TED.

First consider local linear estimation of sharp design RD models with a uniform kernel. This is

equivalent to selecting observations i such that −ε ≤ X i − c ≤ ε for a chosen bandwidth ε, and then

using just those observations to estimate the model

Yi = α + (X i − c) δ + T ∗i β + (X i − c) T ∗i γ + ei (13)

by ordinary least squares, where T ∗i = I (X i > c). Let α̂, δ̂, β̂, and γ̂ , be these ordinary least

squares estimates of the coefficients α, β, δ, and γ . The line (α + β) + (δ + γ ) (X − c) is a linear

approximation to E (Y | X, c ≤ X ≤ c + ε), so by the standard theory of local linear estimation, in

the limit as ε→ 0 (at an appropriate rate) this approximation becomes equal to the tangent line to the

function g (x) as x ↓ c, making plim
(̂
α + β̂

)
= g+ (c) and plim

(̂
δ + γ̂

)
= g′+ (c). Similarly, the

line α+ δ (X − c) is a linear approximation to E (Y | X, c − ε ≤ X < c), making plim (̂α) = g− (c)

and plim
(̂
δ
)
= g′− (c).

It follows immediately that

plim
(
β̂
)
= g+ (c)− g− (c) and plim (γ̂ ) = g′+ (c)− g′− (c) (14)

and therefore, by Theorem 1, τ̂ (c) = D̂ (c) = β̂ is a consistent estimator of the sharp design treatment

effect and D̂′ (c) = γ̂ is a consistent estimator of the sharp design TED. Given local policy invariance,

by Corollary 1 τ̂ ′ (c) = γ̂ is a consistent estimator of the sharp design MTTE.

This local linear estimator of τ̂ (c) is standard in the literature and commonly used. What we are
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adding here is just the observation that these same local linear estimators also provide estimates of

derivatives, which is what we need to recover the TED and hence the MTTE.

Porter (2003) suggests using local linear regressions rather than ordinary kernel (locally con-

stant) estimators because inclusion of the linear terms (X i − c) and (X i − c) T ∗i reduces small sample

boundary bias in α̂ and β̂. For the same reason, to reduce bias in δ̂ and γ̂ , it could be advantageous

to use local quadratic rather than local linear estimation, which with a uniform kernel corresponds to

ordinary least squares estimation of the model

Yi = α + (X i − c) δ + (X i − c)2 ζ + T ∗i β + (X i − c) T ∗i γ + (X i − c)2 T ∗i ξ + ẽi (15)

Equation (14) only depends on consistency of local (quadratic) polynomial estimation, and so will

continue to hold if equation (15) is used instead of equation (13).

For fuzzy designs, we can still use equation (13) or (15), but in addition, we can use local linear

or local quadratic estimation on the same observations i such that −ε ≤ X i − c ≤ ε to estimate

Ti = αT + (X i − c) δT + T ∗i βT + (X i − c) T ∗i γ T + eT i (16)

or

Ti = αT + (X i − c) δT + (X i − c)2 ζ T + T ∗i βT + (X i − c) T ∗i γ T + (X i − c)2 T ∗i ξ T + ẽT i (17)

by ordinary least squares, yielding estimated coefficients including β̂T and γ̂ T . By the exact same

derivations as above, we obtain consistent estimators

plim
(
β̂T

)
= p (c) = f+ (c)− f− (c) and plim

(
γ̂ T

)
= p′ (c) = f ′+ (c)− f ′− (c) (18)

Then by Theorem 2 we have consistent estimators of the fuzzy design treatment effect and TED given

by

D̂ f (c) = τ̂ f (c) = β̂/β̂T and D̂′f (c) =
(
γ̂ − γ̂ T D̂ f (c)

)
/β̂T (19)

and, given policy invariance, the estimated fuzzy design MTTE is τ̂ ′f (c) = D̂′f (c). Note that the ratio

of ordinary least squares estimates β̂/β̂T is numerically equivalent to linear instrumental variables
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estimation of β in equation (13) using T ∗ as an instrument for T , which is how fuzzy design estimation

is often implemented. See, e.g., Hahn, Todd, and van der Klaauw (2001).

In empirical practice, it is common to add other covariates Zi as additional controls in these re-

gressions. Adding or omitting these additional terms can be helpful for estimation precision, but does

not affect the consistency of the above described estimators. All of our results extend immediately to

the inclusion of covariates.5

6 The Cost of Grade Retention

Here we follow Manacorda (2012) in estimating the impact of retaining underperforming students (i.e,

making them repeat a grade school) in Uruguay. The running variable X is the number of subjects

that students are observed to fail in junior high school (grades 7 to 9) in 1996 and 1997. Students who

have more than three accumulated subject failures by the beginning of the following school year are

required to repeat a grade, so treatment T equals one if a student fails a grade and hence is required

to repeat that grade, and zero otherwise. Students are followed until 2001. The outcome Y is defined

as the additional grades attended by 2001 for students who were retained, and by 2000 for students

who were not (the difference in years is to make up for the year lost due to grade repetition by the

retained students). Not all students who have X > c are retained, because students who fail a subject

may retake the exam and pass before the following school year starts. Also, students with fewer than

three failed subjects can still be retained if they have more than 25 missed school days, Still, the

administrative rule results in a significant discontinuity. The retention rate changes by close to 60%

when the observed failed subjects X exceeds c = 3, so this is a fuzzy design RD.

5A conditional on covariates MTTE could be obtained by including covariates interacted with T ∗ in the estimating

regressions, and an unconditional MTTE would then be obtained by averaging the conditional MTTE over covariate

values. Conditioning on covariates could help in making local policy invariance hold. For example, in applications where

treatment is summer school, if the only source of potential violation of local policy invariance is that a change in threshold

could change summer school class sizes, then including class sizes as an additional covariate could suffice to satisfy a

conditional local policy invariance restriction.
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Figure 1: Grade failure by number of failed subjects in junior high school, Uruguay, 1996-1997

We use the full sample from Manacorda (2012). Details of the data can be found therein. The

data contains 99,729 observations on 73,621 individual students. In this data roughly one in four

students fail a grade in 1996 or 1997 and are therefore retained in those years, so the number of

students affected by the treatment is large. While passers on average attended around 2.4 additional

grades, failers only attended about extra 0.6 years of school. Manacorda reports estimated treatment

effects ranging from minus three fourths to more than minus one, which means that among compliers,

retention on average causes them to drop out of school at least 3/4 of a year earlier within the next

5 years, so grade retention is associated with large negative outcomes in terms of years of schooling

later. It is therefore of substantive policy interest to know what the treatment effect would be at the

marginally higher or lower threshold. For example, would the treatment effect be positive or negative

(and larger or smaller) if the threshold were raised or lowered slightly? This is exactly what the sign

and magnitude of the MTTE tell us.

Figures 1 and 2 show the rates of grade failure or grade retention and additional grades attended

in five years for the students in the sample, corresponding to the functions f and g respectively. Both

appear close to quadratic with obvious discontinuities after c = 3. In figures 1 and 2 we also illustrate

the impact of changing the threshold c from three to four, analogous to what the MTTE estimates in
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Figure 2: Additional grades attained by 2001 (2000 for nonfailers) by number of failed subjects in

junior high school, Uruguay, 1996-1997

this case. Similarly one could easily envision the impact of changing the threshold from three to two

instead, by extrapolating the upper curve in Figure 1 and the lower curve in Figure 2, which we do

not depict in these figures.

Based on figures 1 and 2, we estimate treatment effects using the quadratic specification of equa-

tions (15) and (17). Manacorda reports estimates with second, third and fourth order polynomials.

Higher order polynomials do not make much difference, consistent with the figures looking close

to quadratic. In Table 1, column 1 gives the results of estimating these quadratic equations without

controlling for additional covariates, which corresponds to the specification in Table 2 column 1 in

Manacorda. We obtain the same treatment effect estimate as Manacorda. Columns 2 and 3 in Table

1 give estimates of the same equations after adding controls Z . In column 2 the controls are school,

year, and grade fixed effects, and column 3 includes these fixed effects along with additional dum-

mies for age, missed school days, subject scores, and grade-age distortions (see Manacorda for details

regarding these controls).

The first panel of numbers in Table 1 are the estimates β̂T and γ̂ T , which are the coefficients of

T ∗i and (X i − 3) T ∗i in equation (17), where T ∗i = I (X i > 3). The second panel of numbers are the
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estimates β̂ and γ̂ , which are the coefficients of T ∗i and (X i − 3) T ∗i in equation (15). The third panel

of numbers gives the estimated treatment effect and treatment effect derivative D̂ f (c) and D̂′f (c)

obtained by equation (19).

TABLE 1 Estimated Treatment Effects and Derivatives of Grade Retention on Additional Grades Attended

(1) (2) (3)

Dependent Variable: Grade Retention T

I(X>3) 0.562 0.574 0.562

(0.011)*** (0.010)*** (0.009)***

I(X>3)·(X−3) 0.091 0.084 0.076

(0.033)*** (0.005)*** (0.006)***

Dependent Variable: Additional Grades Attained Y

I(X>3) -0.565 -0.472 -0.380

(0.021)*** (0.031)*** (0.031)***

I(X>3)·(X−3) 0.034 0.039 0.111

(0.007)*** (0.020)*** (0.023)***

Treatment Effect -1.005 -0.822 -0.676

(0.054)*** (0.051)*** (0.052)***

Treatment Effect Derivative 0.223 0.188 0.289

(0.043)*** (0.039)*** (0.045)***

Note: Based on data from Manacorda (2012); both the reduced out-

come and the treatment equations are quadratic regressions, fully in-

teracted with the dummy indicating crossing the threshold, 1(X>3);

(1)no controls; (2)controls for school, year and grade fixed effects;

(3) controls for school, year and grade fixed effects and additional

dummies for age, missed school days, subject scores, and grade-age

distortion. Bootstrap standard errors are in parentheses. * significant

at the 10% level, ** significant at the 5% level, *** significant at the

1% level.

Table 1 shows treatment effect estimates in the range -.68 to -1.01. This means that among com-

pliers who fail more than three subjects, repeating a grade on average lead them to drop out of school

around 2/3 of a year to a full year earlier within the next 5 years, which again confirms Manacorda’s

finding that the retention treatment has a substantial negative impact on the outcome of grades of

schooling attained.

The TED estimates in Table 1 are in the range of .19 to .29, with an average of .23. This value

differs substantially and significantly from zero, so we can strongly reject the hypothesis of locally

constant treatment effects.
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In order to interpret the estimated TED as MTTE, we need the policy invariance assumption to

hold. Policy invariance in this case requires that students at the new threshold would not change their

later schooling decision if there were a marginal change in the threshold, so their dropout decision

(conditional on being retained or not) would not depend on the change in threshold, though it can

depend on how many subjects they fail. Local policy invariance might be violated if, for example, a

marginal change in the cutoff c leads to a change in the number or the composition of students in each

grade that in turn impacts the later decisions of students to drop out, either by affecting the quality of

instruction or through peer effects.

Assume that local policy invariance is satisfied, so the TED equals the MTTE. The fact that we

find the MTTE is positive and large means that if the threshold c were lowered, so more students

were retained, then the effects of this treatment would on average be substantially worse. Specifically

knowing that the sign of the MTTE is positive tells policy makers that raising the standard required to

pass a grade will cause new compliers to drop out even earlier on average.

As discussed after equation (10), by equation (19) we can decompose the estimated MTTE into the

sum of the terms γ̂ /β̂T and−
(
γ̂ T /β̂T

)
τ̂ f (c). The first term estimates the MTTE or treatment effect

change due to a change in the mean outcome difference for compliers, while holding the compliance

rate constant, while the second term accounts for the change in the treatment effect due to a change

in the compliance rate when c marginally changes. Our empirical estimates suggest that both terms

contribute substantially to the final MTTE. So our estimated negative impact of raising standards is

due both to a change in the behavior of compliers and a change in the compliance rate that would

result from the change in threshold.

We can use equations (11) and (12) to evaluate the impacts of a specific marginal change in c. For

convenience we will average results across the three specifications in Table 1, but note that similar

results are obtained regardless of which specification is used.

First we consider changing the threshold from c = 3 to cnew = 2, corresponding to a raising of

standards, so that students are required to repeat a grade if they fail more than two subjects instead

of the existing standard of three subjects. Consider compliance rates first. By equation (18), the
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estimated probability of compliance p (c) is given by βT , which in the first row of Table 1 is very pre-

cisely estimated at 0.57 (averaging across the three specifications). The derivative p′ (c) is estimated

in the second row of Table 1 as around 0.08 which using equations (11) indicates that compliance rate

at the new margin of cnew = 2 drops to 0.49 from 0.57 at the original c = 3 margin.

The estimated local average treatment effect at the observed c = 3 threshold is −0.83 (again

averaging across the columns of Table 1) and the estimated MTTE is 0.23. This MTTE says that, on

average, the new compliers at c = 2 would drop out of school a fourth of a year earlier than the old

compliers if the standard for passing a grade were made more difficult.

By a similar analysis, if the threshold were moved from c = 3 to cnew = 4, the compliance rate

would inrease from 0.57 to 0.65, and here the MTTE equal to 0.23 implies that the new compliers at

cnew = 4 would be less negatively affected. In particular, they would drop out of school a quarter of

a year later compared with those compliers at the orginal threshold c = 3.

7 Conclusions

We have shown nonparametric identification of the treatment effect derivative (TED), which we show

equals the marginal threshold treatment effect (MTTE) given a local policy invariance assumption. We

also provide simple nonparametric estimators for these objects in both sharp and fuzzy RD designs,

and discuss the use of these estimates for policy analysis.

Without the local policy invariance assumption, the MTTE will generally not be identified. Local

policy invariance is a weak version of a specific external validity assumption for applying program

evaluation results when the environment changes. In any particular application, one may assess from

the institutional setting whether this assumption is likely to hold.

We apply our results to a model of the impacts of junior high school grade retention on the number

of additional years (up to five) that students stay in school. In this empirical application, there is a

discontinuity in the retention rate of students who fail more than three subjects. We use our estimate

of the MTTE to see how the effect of the retention treatment on average additional years of schooling
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would change if, hypothetically, the threshold were lowered. We find that retaining students who fail

more than two subjects instead of three would substantially worsen the treatment effect, making the

compliers at this new threshold drop out of school an average of .23 years earlier than the compliers

at the old threshold.

8 Appendix: Proofs

Define the functions Gct (X), s (X,C), r (X,C) and d (X,C) by

Gct (x) = E (Y (t) | X,C = c) , s (X,C) = E (Y (1)− Y (0) | X,C, T (0) < T (1))

r (X,C) = ∂s (X,C) /∂C , d (X,C) = ∂s (X,C) /∂X

The same definitions for s, r , and d can be applied in both sharp and fuzzy designs, since sharp designs

are just the special case in which T (0) < T (1) always holds. By these definitions, s (X,C) is the

expected difference in treated vs untreated outcomes of a hypothetical individual who is a complier

and so has T (0) < T (1), has a running variable equal to X , and is in an environment in which all

other compliers are treated if and only if their running variable exceeds C .

For the special case of sharp designs, the function s reduces to equaling the function S in footnote

1, making the functions D (X) and D′ (X) equal s (X, c) and d (X, c) respectively, and τ (C) =

s (C,C). More generally, the functions D f (X), D′f (X) and τ f (C) defined in the section on fuzzy

designs equal s (X, c), d (X, c), and s (C,C), respectively.

In this notation the formal definition of local policy invariance is the following:

Definition: Local policy invariance holds if and only if r (c, c) = 0.

Local policy invariance therefore says that, when holding the first argument of s (x, c) fixed at

x = c, infinitesimal changes in the second element of s (x, c) have no effect on the value that s (x, c)

takes on. Local policy invariance refers only to impacts of changing the second argument of s in the

neighborhood of c. In contrast, local constant treatment effects would mean that small changes in the

first argument of s had no effect on the value of s.
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In the text we followed the standard RD convention in defining the observable function g (x) =

E (Y | X = x). But, even conditioning on a given level of x , outcomes could change if the threshold

were changed, and to account for this we can define gc (x) = E (Y | X = x,C = c). The function

gc (x) is observable only for the threshold level c that generated the data. Then gc (x) as a function of

x has one sided limits gc− (x) and gc+ (x) that by continuity are equal to each other except at x = c,

and similarly has one sided derivatives g′c− (x) and g′c+ (x).

In this notation

τ (c) = gc+ (c)− gc− (c) . (20)

based on

Gc0 (x) = E (Y (0) | X = c,C = c) = lim
x↑c

E (Y (0) | X = x,C = c)

= lim
x↑c

E (Y (0) | X = x, T = 0,C = c) = lim
x↑c

E (Y | X = c,C = c) (21)

and similarly for Gc1 (x) = limx↓c E (Y | X = c,C = c). As this example shows, the reference to

E (Y (t) | X = x) in Assumption A2 refers more precisely to the function Gct (x).

We can now restate Theorem 1 as saying that if Assumptions A1 an A2 hold then s (c, c) and

d (c, c) are identified by s (c, c) = gc+ (c)− gc− (c) and

d (c, c) = g′c+ (c)− g′c− (c) . (22)

PROOF of Theorem 1: Equation (20) or equivalently s (c, c) = gc+ (c) − gc− (c), is the stan-

dard sharp design identification result which was derived as above. To obtain equation (22), by the

definition of a sharp design we first have s (x, c) = Gc1 (x) − Gc0 (x). By assumption, Gct (x) is

differentiable at x = c, so d (c, c) = G ′
c1 (c) − G ′

c0 (c). By equation (21), Gc0 (c) = g− (c), and

differentiability of Gc0 (c) means that G ′
c0 (c) equals its own one sided derivative G ′

c0− (c), giving

G ′c0 (c) = G ′c0− (c) = lim
ε↑0

Gc0 (c + ε)− Gc0− (c)

ε
= lim

ε↑0

E (Y (0) | X = c + ε,C = c)− gc− (c)

ε

= lim
ε↑0

E (Y (0) | X = c + ε, T = 0,C = c)− g− (c)

ε
= lim

ε↑0

E (Y | X = c + ε,C = c)− gc− (c)

ε

= lim
ε↑0

gc (c + ε)− gc− (c)

ε
= g′c− (c)
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An analogous derivation sending ε ↓ 0 gives G ′
c1 (c) = g′c+ (c), so equation (22) holds.

PROOF of Corollary 1: By definition in the sharp design τ ′ (c) = ∂s (c, c) /∂c = d (c, c)+

r (c, c), and hence equals d (c, c) if and only if the local policy invariance condition r (c, c) = 0

holds.

Analogous to the local policy invariance definition that ∂s (X,C) /∂C equals zero when X =

C = c, define local policy invariance for second order derivatives to be that both ∂s (X,C) /∂C and

∂2s (X,C) /∂C2 equal zero when X = C = c. It then follows immediately that if this condition

holds then τ ′′ (c) = D′′ (c) in addition to Theorem 1 and Corollary 1, which can then be used to apply

equation (6).

PROOF of Corollary 2: Define strong policy invariance to be the assumption that s (c,C) =

s (c, c) for all C in a neighborhood of c. The assumptions of Corollary 2 imply that s (X,C) is

analytic, and by strong policy invariance, ∂ks (c,C) /∂Ck equals zero when C = c for all integers

k. This then makes τ k (c) = Dk (c) and equation (7) then holds by a Taylor expansion of τ (cnew),

replacing each τ k (c) term with Dk (c).

PROOF of Theorem 2: Define π c (x) = Pr (T (0) < T (1) | X = x,C = c). Beginning with the

definition of Gct (x),

Gc1 (x)− Gc0 (x) = E (Y (1)− Y (0) | X = x,C = c)

= E (Y (1)− Y (0) | X = x,C = c, T (0) < T (1))Pr (T (0) < T (1) | X = x,C = c)

+E (Y (1)− Y (0) | X = x,C = c, T (0) = T (1))Pr (T (0) = T (1) | X = x,C = c)

+E (Y (1)− Y (0) | X = x,C = c, T (0) > T (1))Pr (T (0) > T (1) | X = x,C = c)

= E (Y (1)− Y (0) | X = x,C = c, T (0) < T (1))Pr (T (0) < T (1) | X = x,C = c)

= s (x, c) π c (x)

where the penultimate equality above holds because T (0) = T (1) makes Y (1) = Y (0) and by the

no defiers assumption T (1) ≥ T (0). Therefore s (x, c) = [Gc1 (x)− Gc0 (x)] /π c (x). Take the
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derivative of this expression with respect to x , and evaluate the result at x = c to get

d̃ (c) = d (c, c) =
G ′

c1 (c)− G ′
c0 (c)

π c (c)
− s (c, c)

π ′c (c)

π c (c)
(23)

By Theorem 1, s (c, c) = g+ (c) − g− (c) and G ′
c1 (c) − G ′

c0 (c) = g′+ (c) − g′− (c). Next note

that π c (x) = E (T (1)− T (0) | X = x,C = c) because the probability that T (0) < T (1) is the

probability that T (1) = 1 and T (0) = 0, which equals the expected value of T (1) − T (0), again

exploiting the no defiers assumption. Applying Theorem 1 replacing Y with T gives π c (c) = p (c) =

f+ (c) − f− (c) and π ′c (c) = p′ (c) = f ′+ (c) − f ′− (c). Substituting these expressions in equation

(23) proves equation (10).

PROOF of Corollary 3: By definition in the fuzzy design τ ′f (c) = ∂s (c, c) /∂c = d (c, c) +

r (c, c), and hence equals d (c, c) if and only if local policy invariance r (c, c) = 0 holds.
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