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Abstract

Individuals must often choose among discrete actions with imperfect information

about their payoffs. Before choosing, they have an opportunity to study the payoffs,

but doing so is costly. This creates new choices such as the number of and types of

questions to ask. We model these situations using the rational inattention approach

to information frictions. We find that the decision maker’s optimal strategy results

in choosing probabilistically in line with a generalized multinomial logit model, which

depends both on the actions’ true payoffs as well as on prior beliefs.
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1 Introduction

Economists and psychologists have long known that scarce attention plays an important

role in decision making (Simon, 1959; Kahneman, 1973). In this paper we study the dis-

crete choice behavior of an agent who must allocate his limited attention to the available

information about the choice situation.

It is not uncommon for one to be faced with a choice among discrete actions with im-

perfect information about the payoffs of each. Before making a choice, one may have an

opportunity to study the actions and their payoffs, however, in most cases it is too costly

to investigate to the point where the payoffs are known with certainty. As a result, some

uncertainty about the payoffs remains when one chooses among the actions even if complete

information were available in principle. Because of this uncertainty, the action that is ulti-

mately chosen may not be the one that provides the highest payoff to the decision maker.

Moreover, the noise in the decision process may lead identical individuals to make different

choices. In this manner, imperfect information naturally leads choices to contain errors and

be probabilistic as opposed to deterministic.

In this context, the decision maker faces choices of how much to study the environment

and what to investigate when doing so. That is, the decision maker must choose how to

allocate his attention. For example, a firm might choose how long to spend interviewing

candidates for a job and choose what to ask them during the interview. After completing

the interview, the firm faces a discrete choice among the candidates.

We explore the optimal “information processing” behavior of a decision maker for whom

acquiring information is costly and characterize the resulting choice behavior in this discrete

choice context. As choices are probabilistic, our characterization involves describing the

probability with which the decision maker selects a particular action in a particular choice

problem. Specifically, we model the cost of acquiring and processing information using

the rational inattention framework introduced by Sims (1998, 2003) which uses information

theory to measure the amount of information the decision maker processes.

The major appeal of the rational inattention approach to information frictions is that
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it does not impose any particular assumptions on what agents learn or how they go about

learning it. Instead, the rational inattention approach derives the information structure from

the utility-maximizing behavior of the agents for whom information is costly to acquire. As

a result, rationally inattentive agents process information that they find useful and ignore

information that is not worth the effort of acquiring and processing.

Our main finding is that the decision maker’s optimal information processing strategy

results in probabilistic choices that follow a logit model that reflects both the actions’ true

payoffs as well as the decision maker’s prior beliefs. In a choice among N actions with any

form of prior beliefs, our modified logit formula takes the form

e(vi+αi)/λ∑N
j=1 e

(vj+αj)/λ
, (1)

where vi is the payoff of action i and λ is a parameter that scales the cost of information.

The decision maker’s prior knowledge and information processing strategy are incorporated

into the choice probabilities through the weights, αi, attached to each action. These action

weights shift the choice probabilities towards those actions that appeared to be good can-

didates a priori and they are completely independent of the actual payoffs of the actions.

They do, however, depend on the cost of information, λ. As the cost of information rises,

the action weights are revised so that the decision maker’s choice becomes less sensitive to

the actual payoffs of the actions and more sensitive to his prior beliefs.

When the a priori beliefs do not influence the choice, our work provides a new foundation

for the multinomial logit model. We show that whenever the actions are exchangeable in

the decision maker’s prior, αi is constant across i so equation (1) simplifies to the standard

multinomial logit formula. Cases where the actions are homogenous a priori arise naturally

whenever the decision maker lacks specific knowledge that allows him to distinguish between

the actions before entering the choice situation.

The multinomial logit model is perhaps the most commonly used model of discrete choice

and it has two canonical foundations.1 According to the random utility derivation, the

1The logit model was first proposed for binary choices by Bradley and Terry (1952) and the multinomial
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decision maker evaluates the payoffs of the actions with some noise. If the noise in the

evaluation is additively separable and independently distributed according to the extreme

value distribution, then the multinomial logit model emerges.2 To date, there is not a clear

economic or psychological justification of why these disturbances should be extreme value

distributed.

The multinomial logit model has a second canonical foundation, namely, Luce’s (1959)

derivation from the independence of irrelevant alternatives (IIA) axiom, which states that

ratios of choice probabilities are independent of the choice set. In Section 4 we show that the

modified logit formula in equation (1) can also be derived from two axioms that are related

to the IIA axiom, but modified in a way that reflects the role of prior beliefs in the rational

inattention model.

We believe our findings are important for two reasons. First, while the logit model is

sometimes used in situations in which information frictions are thought to be an important

part of the choice environment, there has not previously been a fully-specified model of

those information frictions that justifies the use of the multinomial logit. We fill that gap

and demonstrate that the fully-specified model is not subject to some of the criticisms of the

logit model. Second, most existing work with rational inattention has focussed on situations

where the decision maker chooses from a continuous set of actions. In this context, the

model remains tractable if one assumes the agent is acquiring information about a normally-

distributed quantity and the objective function is quadratic, as under these assumptions the

decision maker chooses normally distributed signals. Beyond this situation, however, the

continuous-choice rational inattention model must be solved numerically and even numerical

solutions can be difficult to obtain. In contrast, we show here that the discrete-choice version

of the rational inattention model is extremely tractable. Our results allow the rational

inattention framework to be easily applied by building on a large body applied theoretical

logit was introduced by Luce (1959). Anderson et al. (1992), McFadden (2001), and Train (2009) present
surveys of discrete choice theory and the multinomial logit model.

2Luce and Suppes (1965, p. 338) attribute this result to Holman and Marley (unpublished). See McFadden
(1974) and Yellott (1977) for the proof that a random utility model generates the logit model only if the
noise terms are extreme value distributed.
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work that exploits the tractability of the multinomial logit.3

The rationally inattentive agent’s choices are context dependent where context is defined

by prior beliefs that represent the immediately apparent characteristics of the actions. As the

decision maker’s prior changes, his choice behavior changes both due to standard Bayesian

updating and through endogenous changes in his information processing strategy. Changes

in the information processing strategy can lead to results that are appealingly intuitive and

to results that seem surprising. We show:

• The rationally inattentive agent ignores duplicate actions, which are known a priori

to yield the same payoff.

• Adding an action to the choice set can increase the likelihood that an existing action

is selected—an outcome that cannot occur in any random utility model.

• Action i is more likely to be selected if the decision maker’s beliefs about it improve

in the sense of first-order-stochastic dominance. As we demonstrate, this monotonicity

does not always hold under Bayesian updating with an exogenous information struc-

ture.

That the rationally inattentive agent ignores duplicate actions stands in contrast to the

standard logit model. Debreu (1960) criticized IIA and the logit model for having counter-

intuitive implications for the treatment of duplicate actions. The standard model treats

each action as distinct and only allows them to be differentiated in one dimension (e.g. their

payoffs) and as a result there is no sense of similarity between actions. Adding a duplicate of

one action will therefore increase the probability that the action (or its duplicate) is selected.

3The multinomial logit model is commonly used in the industrial organization and international trade
literatures as a model of consumer demand, in political economy models of voting, and in experimental
economics to capture an element of bounded rationality in subject behavior. See Anderson et al. (1992) for
a survey of its use in industrial organization. The logit demand structure was introduced to international
trade by Goldberg (1995) and Verboven (1996). The logit model was incorporated into probabilistic voting
models by Lindbeck and Weibull (1987). Work following McKelvey and Palfrey (1995) uses logit response
functions to capture randomness in the responses of experimental subjects playing a game. Matějka and
McKay (2012) is an example of how the results of this paper can be integrated with existing results based on
the multinomial logit model to study the optimal price-setting behavior of firms facing rationally inattentive
consumers.
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In our setting, however, we can introduce the concept of similarity through prior knowledge

that they have the same payoff even if this common payoff is unknown. We show that when

a duplicate action is added to the choice set, the rationally inattentive agent will choose to

ignore it. Therefore the model does not display the counter-intuitive behavior that Debreu

(1960) criticized.

The paper is organized as follows: In the remainder of this section we review related work.

Section 2 presents the choice setting and discusses the assumptions underlying the rational

inattention approach to information frictions. Section 3 studies the decision maker’s optimal

strategy. Section 4 presents a characterization result that connects the optimal behavior

of the rationally inattentive agent to versions of Luce’s IIA axiom. Section 5 demonstrates

how the decision maker’s prior knowledge influences his choice behavior. Finally, Section 6

concludes.

Related Literature Our work relates to the literature on rational inattention. Most ex-

isting work with rational inattention has focussed on situations where the decision maker

chooses from a continuous choice set. Rational inattention has mostly been applied in

macroeconomic contexts such as consumption-savings problems (Sims, 2006; Maćkowiak and

Wiederholt, 2010) and price setting (Mackowiak and Wiederholt, 2009; Matějka, 2010a).4 A

few papers, however, consider applications with binary choice problems. Woodford (2009)

was the first to do so in a study of a binary choice of whether to adjust a price, while

Yang (2011) investigates a global game setting with the choice of whether to invest or not.

Moreover, Matějka and Sims (2010) and Matějka (2010a) provide a connection between the

continuous and discrete problems by showing that rationally inattentive agents can voluntar-

ily constrain themselves to a discrete choice set even when the initial set of available actions

is continuous. We extend the existing literature by establishing a connection between ratio-

nal inattention and the multinomial logit model and characterize the implications of rational

4Other applications are Luo (2008); Luo and Young (2009); Tutino (2009); Van Nieuwerburgh and Veld-
kamp (2010); Mondria (2010); Matějka (2010b); Paciello and Wiederholt (2011); Stevens (2011).
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inattention for discrete choice behavior.5

Weibull et al. (2007) study a discrete choice model with imperfect information in which

the decision maker receives signals centered on the true payoffs of the actions and is able

to control the precision, but not the shape of the signal. The authors show that when

the signals are i.i.d. extreme-value distributed the best policy is to select the action with

the highest signal. It then follows from the usual random utility derivation that the choice

probabilities follow the logit model.6 Our assumptions differ in three ways: first, our decision

maker is not restricted to a particular distribution for signals and has complete freedom in

selecting the nature of information he receives. Second, we allow the actions to differ in the

decision maker’s prior beliefs leading to the incorporation of prior knowledge into the choice

probabilities. Third, our information processing cost has different qualitative properties that,

for instance, imply higher payoffs never lead to lower expected utility, which is not the case

in Weibull et al. In their setup, better payoffs can make some states more difficult to infer

and can lower the expected utility the decision maker achieves.

Closely related to our work is that of Caplin and Dean (2013a) who provide an alternative

method for characterizing solutions in a related environment. Masatlioglu et al. (2012) and

Manzini and Mariotti (2013) model imperfect attention using a consideration set approach.

Under this approach, choices occur in two stages: first, some of the available actions are

selected into a consideration set and then the utility maximizing action is chosen from the

consideration set. Under this approach, the decision maker may overlook some of the avail-

able actions while in our setting the decision maker is aware of all actions, but may not be

aware of their exact characteristics.

The rational inattention approach to information frictions uses information theoretic

concepts to measure the amount of information processed by the decision maker and there is

a mathematical connection between the entropy function, which is at the heart of information

theory, and the multinomial logit. This connection has appeared in the context of statistical

5In an independent paper that is as of yet unfinished, Woodford (2008) notices the connection to the logit
model in the context of a binary choice problem, but does not explore the connection in further detail.

6Natenzon (2010) studies a related model with correlated Gaussian signals.
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estimation (Anas, 1983) and in the context of an agent stabilizing a trembling hand (Stahl,

1990; Mattsson and Weibull, 2002). The mathematical connection between entropy and

the logit or Maxwell-Boltzmann distribution was shown by Jaynes (1957) who reinterpreted

statistical mechanics in physics using information theory.7 What is new in our work is that

we are considering the decision problem of an agent who must acquire information about

the payoffs of the available actions. The context of information-constrained choice allows us

to investigate how prior beliefs affect the choice probabilities and what conditions on them

are needed for the standard logit model to arise. The decision-making interpretation and

the presence of prior beliefs result in somewhat different optimization problems from those

in physics and engineering applications.

2 The model

We first present the formal model and then discuss its interpretation in Section 2.2.

2.1 Framework

The decision maker chooses an action from the set A = {1, · · · , N}. The state of nature is

a vector v ∈ RN where vi is the payoff of action i ∈ A. The decision maker has imperfect

information about the state of nature and so is unsure of the payoff that results from each

action. The decision maker observes a signal on the state and then chooses an action as a

Bayesian expected utility maximizer. Before receiving the signal, the decision maker is able

to choose an information processing strategy that determines the joint distribution of the

signal and the state. Processing information is costly and more informative strategies are

more costly.

7Another derivation of the logit distribution is due to Shannon (1959) who derived the multinomial logit
formula in an engineering application that is the dual to our problem in the a priori homogeneous case.
Shannon’s question is how quickly a message can be communicated through a limited-capacity channel, such
as a telegraph wire, without distorting the message beyond a certain degree on average. We thank Michael
Woodford for pointing us to this connection to Shannon’s work and an anonymous referee for pointing us to
that of Jaynes.
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The decision problem has two stages. In the first stage, the decision maker selects an

information strategy to refine his belief about the state. The second stage is a standard

choice under uncertainty with the beliefs generated in the first stage.

In the second stage, the decision maker has a belief B ∈ ∆(RN), where ∆(RN) is the

set of all probability distributions on RN . Given this belief, the decision maker chooses the

action with the highest expected payoff

V (B) ≡ max
i∈A

EB[vi], (2)

where V : ∆(RN) → R. Let a : ∆(RN) → A be the action strategy that satisfies a(B) =

arg maxi∈A EB[vi].
8

In the first stage of the decision problem, the decision maker selects an information

strategy. The decision maker is endowed with some prior belief G ∈ ∆(RN) about the state

and can receive signals s ∈ RN on the state to update his beliefs. The information strategy is

a joint distribution F (s,v) ∈ ∆(R2N) of signals and states such that the marginal distribution

over states equals the decision maker’s prior G, which ensures that the decision maker’s

posterior beliefs are consistent with his prior. Given this restriction, the decision maker is

only free to select the conditional distribution F (s|v). The other conditional distribution,

F (v|s), is the posterior belief after receiving signal s.9

In the first stage, the decision maker maximizes the ex ante expected payoff from the

second stage less the cost of information, ĉ(F ), which reflects the cost of generating signals

of different degrees of precision. The decision maker solves

max
F∈∆(R2N )

∫
v

∫
s

V (F (·|s))F (ds|v)G(dv)− ĉ(F ), (3)

such that

∫
s

F (ds,v) = G(v) ∀v ∈ RN , (4)

8If there are multiple maximizers we let a(B) denote an arbitrary element of arg maxi∈A EB [vi].
9A signal about the state is normally modeled as a variable with a distribution that varies with the state.

A family of such conditional distributions along with the prior over the state implies a joint distribution of
the signal and the state. It is more convenient to work directly with this joint distribution, F (s,v) ∈ ∆(R2N ),
as the information strategy.
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where V is determined by (2).

We assume the entropy-based cost function used in the rational inattention literature

ĉ(F ) ≡ λ
(
H(G)− Es[H(F (·|s))]

)
, (5)

where the parameter λ ≥ 0 is the unit cost of information and H(B) denotes the uncertainty

of belief B as measured by its entropy. Our model allows for either a continuous or discrete

distribution of states. For the discrete case, entropy is

H(B) = −
∑
k

Pk log(Pk),

where Pk is the probability of state k.10 Entropy is a measure of uncertainty that measures the

average unlikeliness of events. For a discrete distribution withM equally-probable events, the

entropy is log(M). When M increases, each event becomes less likely and entropy increases.

Similarly, the entropy of a Gaussian distribution is an increasing function of its variance.

ĉ(F ) is therefore proportional to the expected difference between the prior uncertainty about

the state and the posterior uncertainty after observing the signal. This difference is referred

to as the mutual information between the state and the signal. We discuss the motivation

for this cost function in Section 2.2.

A choice problem is summarized by the prior beliefs about the state, G, and the cost

of information processing, λ. In the first stage, the decision maker selects the information

strategy F knowing the expected payoffs, V , and action strategy, a, that will prevail in the

second stage.

Definition 1. (Model: state - signal - action). Let G(v) be the decision maker’s

prior and let λ be the unit cost of information. The discrete choice strategy of the rationally

inattentive decision maker is the pair (F, a) of the information and action strategies such

that a is given by the maximization in (2) and F solves (3).

We now show that the state-contingent choice behavior of the rationally inattentive

10For a distribution that has a pdf f entropy is −
∫
v
f(v) log f(v)dv.
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decision maker can be found as the solution to a simpler maximization problem that does

not make reference to signals or posterior beliefs.

The combination of an information strategy and an action strategy together induce a

joint distribution between the selected action and the state. For any strategy (F, a), let

Si ≡ {s ∈ RN : a(F (v|s)) = i} be the set of signals that lead to the action i. Let Pi(v) be

the induced probability of selecting i conditional on state v, which is given by:

Pi(v) ≡
∫
s∈Si

F (ds|v). (6)

Let P denote the collection {Pi(v)}Ni=1 and let

P0
i ≡

∫
v

Pi(v)G(dv) (7)

be the unconditional probability of selecting action i.

An important property of rationally inattentive behavior is that under an optimal strat-

egy each action is selected in at most one posterior. Receiving distinct signals that lead to

the same action is inefficient as information is acquired but not acted upon. This behavior

follows from the convexity of the entropy-based cost function.11

Lemma 1. If (F, a) is an optimal strategy, then ∀i ∈ A such that P0
i > 0, there exists

a posterior Bi ∈ ∆(RN) such that conditional on taking action i, the probability that the

posterior belief is Bi equals 1. That is, F (v|s) = Bi for all s ∈ Si up to a set of measure

zero under F . Moreover, the expected payoff in (3) and the cost of information (5) can be

calculated from P as:

∫
v

∫
s
V (F (·|s))F (ds|v)G(dv) =

∑N
i=1

∫
v
viPi(v)G(dv), (8)

ĉ(F ) = c(P , G) ≡ λ
(
−
∑N

i=1P0
i logP0

i +
∫
v

(∑N
i=1Pi(v) logPi(v)

)
G(dv)

)
. (9)

Proof. See Appendix A.

11Convexity is a natural property of the cost function. For instance, it is implied by any cost function for
which an information structure that is more informative in the sense of Blackwell (1953) is more costly.
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As each action is associated with a particular signal, the cost of information can be

calculated as the mutual information between states and actions as shown in equation (9).

We can now write the model in terms of state-contingent choice probabilities alone.

Corollary 1. (Model: state - action). The collection of conditional probabilities P =

{Pi(v)}Ni=1 is induced by a solution to the problem in Definition 1 if and only if it solves the

following optimization problem.

max
P={Pi(v)}Ni=1

N∑
i=1

∫
v

viPi(v)G(dv)− c(P , G), (10)

subject to

∀i : Pi(v) ≥ 0 ∀v ∈ RN , (11)

N∑
i=1

Pi(v) = 1 ∀v ∈ RN , (12)

and where c(P , G) is defined by (9).

Proof. See Appendix A.

In what follows we study solutions to the problem in Corollary 1 knowing that a solution

to the problem in Definition 1 can be constructed from it.12

2.2 Interpretation

In our model, the decision maker is rationally inattentive meaning he chooses: i) how much

attention to pay, i.e. how much information to process; ii) what to pay attention to, i.e. what

information to process; and iii) what action to select given the new information. The benefit

of processing information is that it allows the decision maker to more accurately select actions

12To construct such a solution, let {si}Ni=1 be N distinct points in RN , i.e. signals; let F (si,v) be the
product of Pi(v) and G(v); and let a(F (v|si)) ≡ i. Note that the solution to Definition 1 is not unique as
the supports of the signals, {si}Ni=1, can be selected arbitrarily, but the induced P is given by the solution
to Corollary 1. If the solution to the problem in Corollary 1 is unique, then any solution to Definition 1 will
induce the same joint distribution of states and actions, P.
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state 1 state 2 state 3 state 4
action 1: red bus 0 1 0 1
action 2: blue bus 0 0 1 1
action 3: train R R R R
G(v) 1

4
(1 + ρ) 1

4
(1− ρ) 1

4
(1− ρ) 1

4
(1 + ρ)

Table 1: Payoff matrix, each column lists v for that state.

with high payoffs and the details of the choice problem determine the optimal information

strategy.

To fix ideas, let us consider a simple example in which the decision maker must choose

between taking a red bus, a blue bus, or a train. The decision maker knows how long the

journey takes by train and this results in a payoff of R for sure. He is less familiar with

the buses and does not know whether they are fast or slow. Suppose a fast bus results in

the payoff of 1 and a slow bus yields 0. The decision maker’s prior is that either bus is

fast with probability 1/2 and their speeds have a correlation of ρ. The decision maker can

acquire more information about the buses by checking the schedule, asking others for their

experiences, and so on. The choice problem is summarized in Table 1.

Depending on the parameters ρ and R, the decision maker will choose to process more or

less information in total and will choose to receive signals that are more or less informative

about particular states of nature. For example if R ≥ 1, the decision maker need not process

any information and can simply select the train. If ρ = −1 and R = 1/2, the decision maker

knows that the train is always inferior to one of the buses and will devote his attention to

determining which bus is faster. If ρ = 1, the decision maker knows the buses yield the same

payoff and so he can ignore one of them. We discuss this example in more detail in Section

5.

The decision maker’s information strategy can generate any distribution of signals con-

ditional on each state. For instance one candidate strategy in the example above is a signal

that takes two values and perfectly distinguishes states 1 and 3 from states 2 and 4. Such a

signal would inform the decision maker of the payoff of the red bus, but not that of the blue

bus. This (sub-optimal) strategy requires a one bit reduction of entropy when ρ = 0. An-
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other one-bit strategy could distinguish between all four states, but only imperfectly meaning

there is noise in the signal. Which strategy is optimal depends on the payoffs of the actions

in each of the states and the distribution of noise in the optimal strategy will be related to

the costs of the mistakes the noise leads to.

At the heart of the model is a formulation of the cost of asking questions, querying a

database or otherwise obtaining and processing information. The decision maker is com-

pletely free in choosing what questions to ask. If the decision maker so chooses he can learn

very precise details about some aspect of the environment and completely ignore other as-

pects. The only consideration is that any reduction in uncertainty is costly. In the terms of

the model, the choice of the conditional distribution F (s|v) is unconstrained.

Our results depend crucially on the cost function we use, but this cost function arises

naturally in a particular context as we now explain. Suppose the decision maker acquires

information by asking a series of yes-or-no questions and suppose there is a cost per question

he asks. The more questions the decision maker asks, the tighter his posterior beliefs can

be. The entropy-based cost function is proportional to the expected number of questions

needed to implement the information strategy.13 Alternatively, it is possible to motivate

entropy as a value of information based on willingness to pay for an information structure

as in Cabrales et al. (2013) or as a limit on what can be communicated between players of

a game as in Gossner et al. (2006).

While it is important that information processing is measured with the expected entropy

reduction, it is not crucial that the total cost is proportional to this quantity. What is

important for the behavior of choice probabilities across states is only the marginal cost

of a unit of information at the optimum. If we were to allow for a more general cost of

information, the results in Section 3 would only change by replacing λ with the marginal

cost of information, but otherwise would remain unchanged. A similar argument applies to

the specification used in Sims (2003), where the decision maker faces a fixed information

capacity or in other words a cost function that jumps from zero to infinity at a particular

level of information processing. In that case, λ would be replaced by the shadow cost of

13See the coding theorem of information theory (Shannon, 1948; Cover and Thomas, 2006).
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information. These different formulations are not equivalent when we consider changes of

behavior across different choice problems as in Section 5 where the decision maker might

change the amount of information he processes. The formulation we use, in contrast to

the fixed information capacity formulation, implies that the decision maker can choose the

amount of information to process and, for instance, pay more attention when the stakes are

high.

3 Solving the model

3.1 Solving for choice probabilities

We begin our analysis of the model with a general analytical expression for the probability

that the decision maker chooses a particular action conditional on the state of nature.

Theorem 1. If λ > 0, then the optimal strategy has conditional choice probabilities that

satisfy:

Pi(v) =
P0
i e

vi/λ∑N
j=1P0

j e
vj/λ

almost surely. (13)

If λ = 0, then the decision maker selects the action(s) with the highest payoff with probability

one.

Proof. See Appendix B.

(13) holds almost surely as opposed to point-wise because the decision maker’s objective

is unaffected by deviations in his strategy on a measure-zero set of states. We can understand

several properties of the decision maker’s behavior from equation (13). The unconditional

probabilities, P0
i , are by definition independent of the state. They are the marginal proba-

bilities of selecting each action before the agent starts processing any information and they

only depend on the prior knowledge G(v) and the cost of information λ.

When the unconditional probabilities are uniform, P0
i = 1/N for all i, (13) becomes the

usual multinomial logit formula. As we discuss in Section 3.2, this happens when G is invari-

ant to permutations of its arguments. In other cases, the conditional choice probabilities are
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not driven just by v, as in the logit case, but also by the unconditional probabilities of select-

ing each action, {P0
i }Ni=1. These unconditional probabilities are monotonic transformations

of the action weights that we referred to in the introduction with exp(αi/λ) = P0
i . Using this

transformation, equation (13) can be rewritten as equation (1) and the choice probabilities

can be interpreted as a multinomial logit in which the payoff of action i is shifted by the term

αi. When an action seems very attractive a priori, then it has a relatively high probability

of being selected even if its true payoff is low. As the cost of information, λ, rises, the less

the decision maker finds out about the state of nature and the more he decides based on

prior knowledge of the actions. In what follows, we find it more convenient to work directly

with the unconditional probabilities, P0
i , rather than the transformed version, αi.

The parameter λ converts bits of information to utils. Therefore, if one scales the payoffs

of all of the actions by a constant c, while keeping the information cost, λ, fixed, the problem

is equivalent to the one with the original payoffs and the information cost scaled by 1/c. By

scaling up the payoffs, one is scaling up the differences between them and therefore raising

the stakes for the decision maker. The decision maker chooses to process more information

because more is at stake and thus is more likely to select the action that provides the highest

payoff. The decision maker behaves just as he would if the cost of information had fallen.

Equation (13) does not give a fully explicit expression for the choice probabilities because

it depends on the P0
i terms, which are themselves part of the decision maker’s strategy al-

though they are independent of the state. We can substitute equation (13) into the objective

function to arrive at the following formulation of the optimization problem that we will use

to solve for the unconditional choice probabilities.

Lemma 2. Alternative formulation: The collection of conditional probabilities P =

{Pi(v)}Ni=1 solves (10)-(12) in Corollary 1 if and only if the probabilities are given by (13)

with the unconditional probabilities, {P0
i }

N
i=1, that solve:

max
{P0

i }Ni=1

∫
v

λ log

(
N∑
i=1

P0
i e

vi/λ

)
G(dv). (14)
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subject to

∀i : P0
i ≥ 0, (15)∑

i

P0
i = 1. (16)

Proof. See Appendix B.

This novel formulation is useful for two reasons. First, it allows for clearer insights into

the properties of choice probabilities than the original problem and we use it extensively

in the proofs in Section 5. Second, it greatly reduces the complexity of the optimization

problem and allows for more efficient computations. Rational inattention problems with

continuous choice variables can also be formulated this way.14 The first-order conditions of

this problem give us

Corollary 2. Normalization condition: For all i such that P0
i > 0, the solution satisfies

∫
v

evi/λ∑N
j=1P0

j e
vj/λ

G(dv) = 1. (17)

Proof. See online Appendix C.

We call this the normalization condition because if one multiplies both sides of equation

(17) by P0
i , the result ensures that the conditional choice probabilities in equation (13)

integrate to the unconditional choice probability as in (7). The analysis in the next subsection

and in Section 5 is based on finding solutions to equations (13) and (17).

Online Appendix C establishes that a solution to the maximization problem in Corollary

1 exists, however, the solution may not be unique. Cases with multiple solutions require a

special structure for the uncertainty in which the payoffs co-move across states in a very rigid

way. For instance, when the payoffs of two actions are equal in all states of the worlds, then

the decision maker can relocate the choice probabilities between the two actions arbitrarily

14For a general problem under rational inattention, such as in Sims (2006), the alternative formulation
takes the same form with vi replaced by U(X,Y ), with the sum over i replaced by an integral over Y and v
replaced by X, where X is the unknown and Y the action.
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and realize the same expected payoff. Perhaps an illustrative interpretation of non-unique

solutions is that when there are multiple solutions there always exists at least one action that

can be eliminated from the choice set without reducing the expected utility that the decision

maker can achieve. These eliminations can be repeated until the solution is unique. Online

Appendix C provides the exact conditions that are necessary and sufficient for uniqueness.

Theorem 1 provides a solution for the choice probabilities given a set of unconditional

choice probabilities, {P0
i }Ni=1. There is no general closed-form solution for the unconditional

probabilities, but in some particular cases we can establish several properties of the solution.

First, in Section 3.2 we show that when the decision maker does not have information to

distinguish between the actions a priori then P0
i = 1/N for all i. Second, if one action is

dominated by another in all states of the world, then it will never be selected.15 Third, for

the extreme case λ = 0 the prior is irrelevant and the decision maker selects the highest-

payoff action in all states of the world. Conversely, if λ = ∞, the actual realization of the

state is irrelevant and the decision maker selects the action with the highest expected payoff

according to the prior. The decision maker may also behave in this way for a finite λ if he

chooses not to process any information. In addition to these properties, Section 5 estab-

lishes some comparative static properties that describe how the unconditional probabilities

change as prior beliefs change. Finally, Lemma 2 offers a convenient means of computing

the unconditional probabilities in an application.

3.2 Multinomial logit

We now present conditions under which the behavior of the rationally inattentive agent

follows the multinomial logit model. This connection to the logit model holds across different

realizations of the state.

Let us assume that all the actions are exchangeable in the prior G, i.e. the prior is

invariant to all permutations of the entries of v. We call such actions a priori homogeneous.

15This is evident from the optimization problem in Lemma 2 where it is clear that if vi > vj for all states
of the world then the objective function is always increased by reducing P0

j and relocating that probability

to P0
i .
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The actions will be a priori homogeneous whenever the decision maker does not distinguish

between them before he starts processing information, which is a plausible benchmark case.

Problem 1. The decision maker chooses i ∈ {1, · · · , N}, where the actions are a priori

homogeneous and take different payoffs with positive probability.

Proposition 1. Logit: In Problem 1, the probability of choosing action i as a function of

the state v is

Pi(v) =
evi/λ∑N
j=1 e

vj/λ
. (18)

Proof. See Appendix B.

This is the multinomial logit formula written in terms of exponentials as it is most often

used in practice. We show that the a priori homogeneity of the actions implies that the

unconditional probabilities are uniform so that (13) then takes the form of the logit as

the only thing that distinguishes actions is their actual payoffs. The assumption on the

possibility of different payoffs is needed for uniqueness.

Let us emphasize that Pi(v) does not depend on the prior G in this case. As long as

the actions are a priori homogeneous, the resulting choice probabilities take the form of

(18). This feature is particularly useful as it makes applications of the rational inattention

framework very simple in this case. This result follows from the endogenous information

structure in the model. The optimal choice of information fixes the nature of the optimal

posteriors and the decision maker selects what information to acquire so as to arrive at

posteriors of that form. In contrast, with an exogenous information structure, changes in

the prior lead directly to changes in the posterior, with corresponding effects on the choice

probabilities.

4 Characterization and IIA

Suppose an analyst has data on choice probabilities as a function of the state of the world.

How can she judge whether they are consistent with the modified multinomial logit formula
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state 1 state 2 state 3
action 1 mug pen nothing
action 2 mug pen pen
action 3 nothing t-shirt t-shirt

Table 2: State-contingent consequences.

in equation (13) without knowing the payoffs of the actions or the decision maker’s prior

beliefs? A specific example helps fix ideas: suppose the decision maker has a choice among

three actions, the consequences of which depend on the state of nature, and the consequences

take the form of a particular good that the decision maker receives as listed in Table 2. If

the decision maker chooses action 1 in state 1 he receives a mug and so on. Suppose the

analyst observes the consequences of the actions and the choice probabilities of the actions

across these different states of the world.16

In the rational inattention model, the implication of Theorem 1 is that while the decision

maker processes information about the unknown state, the choice probabilities are as if the

decision maker knows the state, attaches weights {P0
i }Ni=1 to the actions, and then chooses

among the actions probabilistically according to equation (13). In this section we establish

that two conditions on choice probabilities are necessary and sufficient for the existence of

weights {P0
i }Ni=1 and payoffs for each consequence such that the choice probabilities can be

represented through equation (13). This alternative derivation of equation (13) is closely

related to the Luce (1959) derivation of the standard multinomial logit model from the IIA

axiom, which is an alternative derivation to the random utility derivation.

Let us first introduce the standard IIA axiom. Let X be a set of consequences. The IIA

axiom states that for any two sets A ⊆ X and B ⊆ X that both contain elements x and y,

and if Pr(y chosen from A) > 0, then

Pr(x chosen from A)

Pr(y chosen from A)
=

Pr(x chosen from B)

Pr(y chosen from B)
. (19)

16This type of data on state-contingent choice probabilities can be collected in a laboratory setting as
Caplin and Dean (2013b) have done.
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Luce (1959) showed that if the choice probabilities satisfy this axiom17 then there is a function

v : X → R such that the choice probabilities can be expressed through the multinomial logit

formula

Pr(x chosen from A) =
ev(x)∑
y∈A e

v(y)
.

Luce viewed IIA as a natural benchmark for choice behavior. Following Luce’s work, Debreu

(1960) criticized IIA for generating counter-intuitive implications. We show in the next

section that this criticism does not apply to the rational inattention model.

Our axioms differ from IIA by allowing for the possibility that the probability of selecting

a consequence can depend on the action that leads to the consequence. This is motivated

by the rational inattention model where the decision maker selects actions depending on the

realized state, but also on based on his prior knowledge, and thus prior beliefs affect choice

probabilities in addition to the consequences of the actions.

Let x ∈ XN be a vector of consequences where the i’th entry, xi, is the consequence that

the decision maker receives if he selects action i. In the spirit of Section 2, we will call x the

state. Slightly abusing notation, let Pi(x) be the probability of selecting action i in state

x. Suppose we observe choice probabilities from state x and from another state y such that

actions i and j yield the same consequences in the two states: xi = yi and xj = yj. Just

like IIA, Axiom 1 states that the ratio of choice probabilities for actions i and j is constant

across these states.

Axiom 1. Independence from irrelevant alternatives (consequences): if Pj(x) > 0, then

Pi(x)

Pj(x)
=
Pi(y)

Pj(y)
∀x,y, i, j s.t. xi = yi and xj = yj. (20)

However, Axiom 1 is weaker than the standard IIA axiom (19), since it requires the

equality between the ratio of probabilities only when the two consequences in the two states

follow from the same pair of actions. In the example in Table 2, Axiom 1 requires that

P2(state 2)
P3(state 2)

= P2(state 3)
P3(state 3)

, the ratio of probabilities of actions 2 and 3 does not change if only the

17Luce considered an axiom that is equivalent to IIA as we have presented it.
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consequence from action 1 changes. The standard IIA axiom would imply more restrictions.

For example, P1(state 2)
P3(state 2)

would equal the ratios above as well.

Our second axiom is a restriction on how choice probabilities vary across actions inde-

pendently of the associated consequences. If two actions yield the same consequence, i.e.

xi = xj, then the ratio Pi(x)/Pj(x) is independent of the particular consequence xi and

independent of the consequences of other actions k /∈ {i, j}.

Axiom 2. Independence from irrelevant alternatives (actions): if Pj(x) > 0, then

Pi(x)

Pj(x)
=
Pi(y)

Pj(y)
∀x,y, i, j s.t. xi = xj and yi = yj. (21)

In the example, Axiom 2 requires that P1(state 1)
P2(state 1)

= P1(state 2)
P2(state 2)

, the ratio of probabilities of

two actions does not change if they both lead to the same consequence in each state (state

1: mug, state 2: pen). This ratio is independent of what the consequence is (i.e. mug

or pen) and is independent of the consequence of action 3. In Axiom 2 the ratio of choice

probabilities might differ from unity even though both actions lead to the same consequence.

We will now show that there is a weight for each action and a payoff for each of the

consequences such that the choice probabilities can be written as in equation (13) if and

only if the choice probabilities satisfy Axioms 1 and 2. We first establish the following:

Lemma 3. If Axioms 1 and 2 hold for a choice among N ≥ 3 actions, then each action is

either never selected for any x or it is selected with positive probability for all x.

Proof. See online Appendix D.

We will refer to actions that are always selected with some probability as “positive ac-

tions.” The main result of this section is:

Proposition 2. Let there exist at least three positive actions. Then the choice probabilities

satisfy Axioms 1 and 2 if and only if there exist non-negative constants {P0
i }Ni=1 such that∑N

i=1P0
i = 1 and also a function v : X → R such that for any i and any x ∈ XN , the
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probability of selecting action i, is

Pi(x) =
P0
i e

v(xi)∑
j P0

j e
v(xj)

. (22)

Proof. See online Appendix D.

To relate equation (22) to equation (13) we set vi = λv(xi). The ratio in equation (21)

is then equal to P0
i /P0

j from the rational inattention model and the ratio in equation (20) is

equal to P0
i e

vi/λ/[P0
j e

vj/λ].

5 The role of prior beliefs

In this section, we present comparative static results that demonstrate how the choice prob-

abilities that solve the decision problem in Definition 1 depend on the decision maker’s prior

beliefs about the payoffs. Mathematically, we show how changes in the prior distribution

G(v) affect the unconditional probabilities or in other words the action weights.

We begin with general results concerning two main types of modifications to the prior:

changes in the level of payoffs and changes in the co-movement of payoffs across states.

First, we show that anytime an action is improved in the prior then the decision maker is

more likely to select it. We then show that if two actions become more similar, defined

as having payoffs that co-move more strongly across states, then the probability that the

decision maker selects either of these actions falls. We connect this notion of similarity to

Debreu’s criticisms of the IIA property of the multinomial logit model and show that the

rationally inattentive agent’s behavior is not subject to the same criticisms. Finally, we

demonstrate that the behavior of the rationally inattentive agent fails regularity as adding

an additional action to the choice set can increase the probability that an existing action is

selected. An implication of this failure of regularity is that the rationally inattentive agent

cannot generally be viewed as maximizing a random utility function.
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5.1 Monotonicity

The following proposition states that a change in the prior that makes one action more

attractive ceteris paribus leads the decision maker to select that action with a higher uncon-

ditional probability and therefore a higher probability in all states of the world. Such a result

does not generally hold under Bayesian updating if the information structure is exogenously

given.18 In this way, rational inattention places more structure on choice behavior than does

incompleteness of information alone.

Proposition 3. Assume λ > 0 and let {P0
i }

N
i=1 be the unique solution to the agent’s maxi-

mization problem with prior G(v). If Ĝ(v̂) is generated from G(v) by transforming v to v̂

such that v̂i = vi for all i > 1, v̂1 ≥ v1 for all v and v̂1 > v1 on a set of positive measure, then

P̂0
1 ≥ P0

1 , where
{
P̂0
i

}N
i=1

is the solution to the problem with prior Ĝ. The last inequality

holds strictly if P0
1 ∈ (0, 1).

Proof. See online Appendix E.

That the monotonicity is strict only when P0
1 ∈ (0, 1) is intuitive. When P0

1 = 1, there is

no scope for increasing it further. When P0
1 = 0, action 1 might be so unattractive to start

with that the improvement does not lead the decision maker to select it with any probability.

18 Here is a counterexample in which improving prior beliefs about one action leads it to be selected less
often under Bayesian updating with an exogenous information structure. Imagine that there are two states
of the world that each occur with probability 1/2. There are two available actions with the following payoffs
in the two states of the world

state 1 state 2
v1 −2 4
v2 0 x.

Suppose the information structure is that the decision maker receives a signal y = v2 + ε where the noise ε
is distributed uniformly on (−1, 1). When x = −2, the signal perfectly distinguishes between the states of
the world and so the decision maker selects action 1 in state 2 and action 2 in state 1. When action 2 is
improved so that x = 0, the signal contains no information about the state of the world. In this case, the
decision maker always selects action 1 as it has the larger expected payoff. So improving action 2 leads it to
be selected less often.
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5.2 Similarity and independence from irrelevant alternatives

While the previous proposition considers the effect of improving one action, suppose we leave

the marginal distributions of the payoffs of each action unchanged, but change the prior to

increase the degree to which the payoffs of two actions co-move. What happens to the

choice probabilities in this case? To motivate this investigation, consider Debreu’s famous

criticism of IIA, equation (19), which is now known as the red-bus blue-bus problem. The

well known example goes: The decision maker is pairwise indifferent between choosing a bus

or a train, and selects each with probability 1/2. If a second bus of a different color is added

to the choice set and the decision maker is indifferent to the color of the bus, then IIA—and

therefore the multinomial logit—implies probabilities for the train and the two buses of 1/3,

1/3, 1/3. Debreu argued that this is counter-intuitive. This is counter-intuitive because the

two buses are the same consequence and adding the second bus only provides the decision

maker with another way of arriving at the same consequence and payoff as an existing action.

It would be more intuitive if adding the second bus did not affect the probability of choosing

the train, for example resulting in choice probabilities of 1/2, 1/4, 1/4.

We will say that two actions are duplicates if the prior asserts that the payoffs of the two

actions are equal to one another in all states of the world: it is clear to the decision maker

a priori that it is irrelevant which of the two actions he selects. We will now show that

the rationally inattentive agent does not display the counter-intuitive behavior that Debreu

criticized and then expand these ideas to cases in which the actions can be thought to be

“similar” i.e. have payoffs that are correlated across states of the world, but are not exact

duplicates.

5.2.1 Duplicates

We study a generalized version of Debreu’s bus problem to analyze how the rationally inatten-

tive agent treats duplicate actions. Duplicates carry the same payoff although this common

payoff may be unknown.

Definition 2. Actions i and j are duplicates if and only if the probability that vi 6= vj is

25



zero.

Problem 2. The decision maker chooses i ∈ {1, · · · , N + 1}, where the actions N and N+1

are duplicates.

The following proposition states that duplicate actions are treated as a single action. We

compare the choice probabilities in two choice problems, where the second one is constructed

from the first by duplicating one action. In the first problem, the decision maker’s prior is

G(v), where v ∈ RN . In the second problem, the decision maker’s prior is Ĝ(u), where

u ∈ RN+1. Ĝ is generated from G by duplicating action N . This means that actions N and

N + 1 satisfy Definition 2, and G(v) is the marginal of Ĝ(u) with respect to uN+1.

Proposition 4. If {P0
i }Ni=1 and {Pi(v)}Ni=1 are unconditional and conditional choice prob-

abilities that are a solution to the choice problem with prior G, then {P̂i(u)}N+1
i=1 solve the

corresponding problem with the added duplicate of action N if and only if they satisfy the

following:

P̂i(u) = Pi(v), ∀i < N (23)

P̂N(u) + P̂N+1(u) = PN(v), (24)

where v ∈ RN and u ∈ RN+1, and vk = uk for all k ≤ N . The analogous equalities hold for

the unconditional probabilities.

Proof. See online Appendix E.

The implication of this proposition is that the decision maker treats duplicate actions

as though they were a single action. The behavior of the rationally inattentive agent does

not always satisfy IIA and as a result is not subject to Debreu’s critique. As we showed in

Section 4, a version of IIA holds for a fixed prior, but not when the prior changes.

5.2.2 Similar actions

The case of exact duplicates is somewhat extreme as the decision maker knows a priori that

the payoffs of the two actions are exactly equal. Here we consider actions with payoffs that

26



are correlated, but not identical. We show that the probability that the decision maker

selects either of two actions (among three or more) decreases as those two actions become

more similar. By “more similar” we mean that we consider an alternative choice situation in

which we increase the probability that the two actions have the same payoff by shifting the

prior probability from states of the world in which their payoffs differ to states of the world

where their payoffs are the same. We have the following proposition.

Proposition 5. Assume λ > 0 and let {P0
i }

N
i=1 be the unique solution to the agent’s maxi-

mization problem with prior G(v). Let the prior G(·) be such that the there exist two states

of positive probabilities P1 and P2 with (v1, v2) = (H,L) in state 1, and (v1, v2) = (L,H) in

state 2, and let the payoff of any other action be equal in both states.

If Ĝ(v̂) is generated from G(·) by relocating probability mass Π ≤ min(P1, P2) from state

1 to state 3, where (v1, v2) = (L,L), and relocating probability mass Π from state 2 to state

4, where (v1, v2) = (H,H), then P̂0
1 + P̂0

2 < P0
1 + P0

2 , where
{
P̂0
i

}N
i=1

is the solution to the

problem with prior Ĝ.

Proof. See online Appendix E.

Intuitively, a higher degree of co-movement in the manner described in the proposition

means that the event (v1 = H) ∪ (v2 = H) has lower probability and this is the event in

which the decision maker is most interested in selecting action 1 or 2. In the next section,

we present an example of this type of effect in which increasing the correlation between the

payoffs of two actions decreases their cumulative probability.

5.3 Examples

We bring our analysis to a close with two examples. First, we demonstrate the effect of

similarity among actions. We then show that adding an additional action can increase the

probability that an existing action is selected.
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Figure 1: Unconditional probability of selecting a bus for various values of λ and ρ. The
probability is the same for both the red and blue buses.

5.3.1 Co-movement

We now return to the example from Section 2.2 where the decision maker chooses between a

red bus, a blue bus and a train. We set the payoff of the train, R, to 1/2 so all three actions

have the same a priori expected payoff. Nevertheless, for some values of ρ the decision

maker will ignore one of the actions completely. This example demonstrates that when the

allocation of attention is endogenous, the decision maker can choose to investigate different

actions in different levels of detail.

Problem 3. The decision maker chooses from the set {red bus, blue bus, train} with payoffs

given in Table 1.

In online Appendix F we describe how to solve the problem analytically. Figure 1 il-

lustrates the behavior of the model for various values of ρ and λ. The figure shows the

unconditional probability that the decision maker selects a bus of a given color (the prob-

ability is the same for both buses). As the correlation between the payoffs of the buses

decreases, the probability that a bus carries the largest payoff among the three actions in-

creases and the unconditional probability of choosing either bus increases, too. If the buses’

payoffs are perfectly correlated, then the sum of their probabilities is 0.5, they are effectively

treated as one action, i.e. they become duplicates in the limit. On the other hand, if ρ = −1,

then the unconditional probability of either bus is 0.5 and thus the train is never selected.
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For λ > 0 and ρ ∈ (−1, 1), the probability that a bus is selected is larger than it is in

the perfect information case (λ = 0). With a larger cost of information, the decision maker

economizes on information by paying more attention to choosing among the buses and less

to assessing their payoffs relative to the train.

The choice probabilities strongly reflect the endogeneity of the information structure in

this case. As the correlation decreases, the decision maker knows that the best action is more

likely to be one of the buses. As a result, the decision maker focusses more of his attention

on choosing between the buses and eventually ignores the train completely. Notice that this

can happen even when there is some chance that the train actually yields a higher payoff.

5.3.2 Failure of regularity

Random utility models, such as the standard multinomial logit model, have the feature

that adding an additional action to the choice set will not increase the probability that an

existing action is selected (Luce and Suppes, 1965, p. 342). However, the following example

demonstrates that the behavior of the rationally inattentive agent does not always satisfy

this regularity condition.

Problem 4. Suppose there are three actions and two states of nature. The actions have the

following payoffs in the two states:

state 1 state 2

action 1 0 1

action 2 1/2 1/2

action 3 Y −Y

prior prob. g(1) g(2) = 1− g(1)

First, consider a variant of this choice problem in which only actions 1 and 2 are available.

In online Appendix F we show that there exists g(1) ∈ (0, 1) large enough that the decision

maker will not process information and will select action 2 with probability one in all states of

nature so P0
1 = 0. Now add action 3 to the choice set. For a large enough value of Y and the

given g(1) ∈ (0, 1), the decision maker will find it worthwhile to process information about
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the state in order to determine whether action 3 should be selected. Given that the decision

maker will now have information about the state, if state 2 is realized, the decision maker

might as well select action 1. From an a priori perspective, there is a positive probability

of selecting action 1 so P0
1 > 0. The choice probabilities conditional on the realization of

the state are given by equation (13), which implies that the probability of selecting action

1 is zero if P0
1 = 0 and positive if P0

1 > 0 and all actions have finite payoffs. So we have the

following.

Proposition 6. For λ > 0, there exist g(1) ∈ (0, 1) and Y > 0 such that adding action 3 to

the choice set in Problem 4 increases the probability that action 1 is selected in all states of

nature.

Proof. See online Appendix F.

Corollary 3. The behavior of a rationally inattentive agent cannot always be described by a

random utility model.

Obviously there are cases, such as the standard logit case, when the rationally inattentive

agent’s behavior can be described by a random utility model.

6 Conclusion

This paper builds on the literature that treats scarce attention as an important factor in

choice behavior. Rational inattention is an appealing model of attention allocation because

it does not depend on assumptions about how the decision maker allocates his attention to

the available information except in the form of a well-founded cost function that measures

the decision maker’s information processing effort. While appealing, the rational inattention

model in its original continuous-action form is considered by some to be intractable. In this

paper, however, we have shown that the discrete choice behavior of a rationally inattentive

agent has a simple analytical structure providing a new foundation for the multinomial logit

model. The standard logit model emerges in cases where the actions are homogeneous a
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priori. More generally, choices depend on the context formed by prior beliefs. While the

decision maker’s prior can be a complicated infinite-dimensional object, its effect on choice

probabilities is captured by a simple vector of action weights. The resulting tractability

allows us to establish results on monotonicity, co-movement, and uniqueness, which are

general and fundamental properties of rationally inattentive behavior. The discrete choice

framework presented here facilitates the application of rational inattention to new questions.
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A Proofs for Section 2.1

Proof of Lemma 1. By contradiction. Let us assume that there exists an action i such that

P0
i > 0 for which there are distinct posteriors realized with a positive probability. Formally,

let Si be the set of signals s that lead to action i and suppose there exist S1
i , S

2
i ⊆ Si such

that
∫
v

∫
s∈Sk

i
F (dv, ds) > 0 k = 1, 2 and ∀s1 ∈ S1

i ,∀s2 ∈ S2
i : F (v|s1) 6= F (v|s2). We

can construct another feasible strategy that generates the same expected payoff at a lower

information processing cost than F . The new strategy, F̄ ∈ ∆(RN), is generated from the

original strategy be relocating the probability mass from S1
i ∪ S2

i to a single signal, call it

ŝ ∈ S1
i ∪S2

i . We only alter the conditional distribution F (s|v) and do not change the marginal

over v, which implies the constraint (4) is still satisfied. Intuitively, we are scrambling the

signal so that the decision maker does not observe events in S1
i ∪ S2

i separately, but just

observes that one of them has occurred.

By assumption, action i is optimal conditional on observing s ∈ S1
i and also for s ∈ S2

i .

By the law of iterated expectations it follows that it is optimal to select action i conditional

on observing ŝ or equivalently s ∈ S1
i ∪ S2

i :

E [vi|ŝ] = E
[
E
[
vi|s ∈ Ski

]
|ŝ
]
≥ E

[
E
[
vj|s ∈ Ski

]
|ŝ
]

= E [vj|ŝ] ∀j ∈ A.

Therefore the new action strategy satisfies ā(F̄ (·|ŝ)) = i. For any other signal s 6= ŝ, the

conditional distribution F̄ (·|s) remains equal to F (·|s) and so ā(F̄ (·|s)) = a(F (·|s)) for all

s 6= ŝ.

The constructed strategy (F̄ , ā) generates the same expected payoff as the original strat-

egy. The expected payoff can be written as

∫
v

∫
s/∈S1

i ∪S2
i

V (F (·|s))F (ds|v)G(dv) +

∫
v

∫
s∈S1

i ∪S2
i

V (F (·|s))F (ds|v)G(dv).

The first term is unaffected by the change of strategy as neither conditional distribution

F (v|s) nor F (s|v) is altered on this set of signals. Under both strategies, the second term can

be expressed as the product of Pr(s ∈ S1
i ∪S2

i ) and the expected payoff of action i conditional
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on s ∈ S1
i ∪ S2

i , which follows from the law of iterated expectations as V (F (·|s)) = E[vi|s]

on this set. Neither the probability of the set nor the conditional expectation given the set

is affected by the change of strategy.

As entropy is a strictly concave function of the distribution, the cost ĉ(F̄ ) is lower than

ĉ(F ),19 and thus (F, a) cannot be a solution since (F̄ , ā) generates the same expected payoff

at a lower information cost. This proves that posteriors leading to the same action cannot

differ with positive probability.

To show (8), we use the implication from above that F (v|s) is constant for all s ∈ Si and

the fact that V (F (·|s)) is a function of s:

∫
v

∫
s

V (F (·|s))F (ds|v)G(dv) =
N∑
i=1

V (F (·|Si))
∫
s∈Si

∫
v

F (ds|v)G(dv)

=
N∑
i=1

V (F (·|Si))P0
i =

N∑
i=1

∫
v

viF (dv|Si)P0
i =

N∑
i=1

∫
v

viPi(v)G(dv),

where the final step uses the relationship Pr(X|Y ) Pr(Y ) = Pr(Y |X) Pr(X).

The cost of information expressed in (5) is λ times the mutual information between s

and v. As there is a single posterior leading to each action under the optimal strategy, the

joint distribution of the signal and the state is the same as that of the action and the state.

Therefore, the cost also equals λ times the mutual information between i and v. Finally, (9)

is implied by the symmetry of mutual information, i.e. for any random variables X and Y ,

H(X)−EY [H(X|Y )] = H[Y ]−EX [H[Y |X]]. The cost is thus expressed as the unconditional

entropy of i less the expected entropy of i conditional on v.

Proof of Corollary 1. We begin by showing the solution to Definition 1 solves (10) with

a proof by contradiction. Let (F, a) be the optimal strategy, let it attain an expected utility

(expected payoff net of information costs) of U1, and let P be the collection induced by it

via (6), which does not solve (10). The expected utility from P in (10) also equals U1, see

19For the concavity of entropy, see Cover and Thomas (2006).
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(8) and (9) in Lemma 1.

Since P does not solve (10), but is satisfies the constraints (11)-(12), there must exist

an admissible P ′ that provides an expected utility U2 > U1. Moreover, there must also exist

a strategy (F ′, a′) generated from P ′ that provides expected utility U2, too. For instance,

(F ′, a′) can be generated in the following way. Let {si}Ni=1 be N distinct points, i.e. signals,

in RN , let F ′(si,v) be the product of Pi(v) and G(v) and let a′(F (v|si)) ≡ i. This strategy

clearly satisfies the consistency with G in (4), and it generates utility U2 > U1 so the strategy

(F, a) cannot be optimal.

We now show the solution to (10) solves Definition 1 also by contradiction. Let us assume

that P solves (10) and generates utility U3, but it is not induced by any optimal strategy.

This means that if F is generated from P the same way as F ′ from P ′ above, then there

exists another admissible strategy F̂ that generates a higher utility U4 > U3. However, this

in turn means that P̂ that is induced by F̂ also generates expected utility U4. This is a

contradiction, since P then cannot be a solution to (10).

B Proof for Section 3

Proof of Theorem 1. The case of λ = 0 is trivial. When λ > 0, then the Lagrangian of

the problem formulated in Corollary 1 is:

L(P) =
N∑
i=1

∫
v

viPi(v)G(dv)− λ

(
−

N∑
i=1

P0
i logP0

i +
N∑
i=1

∫
v

Pi(v) logPi(v)G(dv)

)

+

∫
v

ξi(v)Pi(v)G(dv)−
∫
v

µ(v)

(
N∑
i=1

Pi(v)− 1

)
G(dv),

where ξi(v) ≥ 0 are Lagrange multipliers on (11) and µ(v) are the multipliers on (12).

If P0
i > 0, then the first order condition with respect to Pi(v) is:

vi + ξi(v)− µ(v) + λ
(

logP0
i + 1− logPi(v)− 1

)
= 0. (25)
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This implies that if P0
i > 0 and vi > −∞, then Pi(v) > 0 almost surely. To see this,

suppose to the contrary that Pi(v) = 0 on a set of positive measure with respect to G. Since

ξi(v) ≥ 0 and since we also assume that P0
i > 0, and thus logP0

i > −∞, it would have to be

µ(v) going to infinity that would balance logPi(v) = −∞ to make the first order condition

hold. However, if µ(v) = ∞ on a set of positive measure, then for all such v in order for

(25) to hold then for all j either Pj(v) = 0 or ξj(v) =∞. But ξj(v) > 0 only if Pj(v) = 0,

when (11) is binding. Therefore, if there exists i such that Pi(v) = 0, then Pj(v) = 0 for

all j. This is not possible, since then
∑N

j=1Pj(v) = 0, which must sum up to 1 and hence a

contradiction.

Therefore, whenever P0
i is positive, then the conditional probability Pi(v) is also positive

as long as the realized payoff vi is not minus infinity. As (11) does not bind, we have ξi(v) = 0

and the first order condition can be rearranged to

Pi(v) = P0
i e

(vi−µ(v))/λ. (26)

Plugging (26) into (12), we find:

eµ(v)/λ =
∑
i

P 0
i e

vi/λ,

which we again use in (26) to arrive at equation (13). Finally, notice that the theorem holds

even for P0
i = 0, as otherwise equation (7) could not hold.

Proof of Lemma 2. Substitute equation (13) into the objective function to obtain

N∑
i=1

∫
v

viPi(v)G(dv) + λ

{
N∑
i=1

P0
i logP0

i −
∫
v

[
N∑
i=1

Pi(v) log

(
P0
i e

vi/λ∑N
j=1P0

j e
vj/λ

)]
G(dv)

}

and rearrange to obtain the new objective function.

Proof of Proposition 1. The solution to the decision maker’s problem is unique due to

point (2) of Corollary S1, which can be found in online Appendix C.

The decision maker forms a strategy such that P0
i = 1/N for all i. If there were a solution
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with non-uniform P0
i , then any permutation of the set would necessarily be a solution too,

but the solution is unique. Using P0
i = 1/N in equation (13), we arrive at the result.
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