
Impatience vs. Incentives∗

Marcus M. Opp† John Y. Zhu ‡

September 30, 2014

Abstract

This paper studies the long-run dynamics of contracts in repeated principal-
agent relationships with an impatient agent. Despite the absence of exogenous
uncertainty, Pareto-optimal dynamic contracts generically oscillate between favor-
ing the principal and favoring the agent.
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1 Introduction

We study optimal contracting in a repeated principal-agent framework where the agent
is more impatient than the principal. Differential discounting creates gains from trade
across time and tends to push optimal contracts toward favoring the more patient princi-
pal in the long-run. This impatience force conflicts with the incentives force that tends to
push optimal contracts toward favoring the agent in the long-run. We show that Pareto-
optimal contracts generically resolve this impatience vs. incentives conflict by oscillating
between favoring the principal and favoring the agent over time.

In our model, a contract stipulates for each period a transfer to the agent and an
action. Our model admits a broad interpretation of “action.” It can be effort by the agent
or investment by the principal or a collaborative venture by both. Each action generates
a surplus, a portion of which is transferred to the agent according to the contract. If the
agent deviates from the contract, he receives a deviation payoff that is a function of the
action that was supposed to be taken, but loses a fraction of the stipulated transfer. A
contract is incentive-compatible if the agent never wants to deviate and the principal’s
interim participation constraint is always satisfied.

In this setting, we first prove the existence of a unique stationary Pareto-optimal con-
tract - the steady state. We then show that all non-stationary Pareto-optimal contracts
oscillate around this focal steady state. These contracts may feature oscillating transfers
with constant action or co-moving oscillating transfers and actions. Oscillation can be
damped, converging to the steady state, or persist in the long run. In the latter case,
the amplitude of oscillation can grow over time causing even arbitrarily low participation
constraints to bind in the long run, distorting contract dynamics.

There are two features of the model that drive the oscillation phenomenon: First,
the agent is more impatient than the principal. Second, the agent loses a fraction of
the stipulated transfer when he deviates. The first feature ensures that Pareto-optimal
contracts have binding IC constraints. Binding IC constraints plus the second feature
imply that any above steady state transfer to the agent must be followed by a below
steady state transfer, and any below steady state transfer must be followed by an above
steady state one. Oscillation emerges.1

Our setting is broadly applicable, in the spirit of Ray (2002), and nests environments
studied in many influential papers, such as Thomas and Worrall (1988), Thomas and
Worrall (1994), and Albuquerque and Hopenhayn (2004). Yet, we show by adding even
an infinitesimal amount of relative impatience on the agent side, virtually all Pareto-
optimal contracts oscillate around a focal Pareto-optimal steady state. This contrasts
with the standard result under equal discounting (e.g., Becker and Stigler (1974), Harris
and Holmstrom (1982), and Ray (2002)), when payments can always be backloaded
without affecting payoffs, and any Pareto-optimal payoff can be sustained by a contract
that favors the agent in the long-run.

The rest of the paper is organized as follows: Section 2 describes our general model
and its applicability to various agency problems, and provides a basic intuition for the

1Thus, cycles require neither exogenous shocks/uncertainty (see Aguiar, Amador, and Gopinath
(2009)) nor self-fulfilling changes in beliefs as in Zhu, Wright, and He (2013), Gu, Mattesini, Monnet,
and Wright (2013) and Rocheteau and Wright (2013).
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oscillation principle. Section 3 presents all formal results.

2 Model

The model is an infinitely-repeated principal agent relationship with perfect information
and transferable utility. It consists of four ingredients: discount factors δP ≥ δA for
the principal and agent, respectively, a deviation parameter θ ∈ [0, 1], a mapping (π, d)
from an abstract action set A to R2 with compact image, and a principal outside option
OP . Each action a produces surplus π(a). Let uA denote the portion transferred to the
agent. A contract is a sequence of transfers and actions {(ũA,t, ãt)}∞t=0. There exist public
randomization devices, so each ũA,t and ãt can be random. For every agent promised
value UA, the Principal’s Problem is the following maximization:

max
{(ũA,t,ãt)}∞t=0

E0

[
∞∑
t=0

δtP (π(ãt)− ũA,t)
]

s.t.

ũA,t + δAUA,t+1 ≥ D(ũA,t, ãt) := (1− θ)ũA,t + d(ãt) ∀t ∀ realizations of (ãt, ũA,t) (1)

UP,t ≥ OP ∀t (2)

UA,0 ≥ UA (3)

where UA,t := Et
[∑∞

s=t δ
s−t
A ũA,s

]
and UP,t := Et

[∑∞
s=t δ

s−t
P (π(ãs)− ũA,s)

]
denote the

date t continuation payoffs of the agent and principal.
(1) is the agent’s incentive-compatibility constraint which requires, for every random

realization, that the agent’s date t continuation payoff ũA,t + δAUt+1 be weakly larger
than the total payoff from his best possible deviation D(ũA,t, ãt). Following Ray (2002),
one can think of D as the result of a maximization over a potentially large set of available
deviations: θ is the fraction of the current-period transfer lost under deviation and d(a)
is the residual deviation payoff which depends on a and includes all subsequent agent
payoffs derived from an outside option or under a punishment equilibrium within the
game.

(2) is the principal’s interim participation constraint.2 From now on all contracts are
assumed to satisfy (1) and (2). Our goal is to show that when δP > δA, the following is
generically true:

Theorem 1. There exists a unique steady state - a Pareto-optimal contract with a con-
stant continuation payoff process {(UA,t, UP,t)}∞t=0. The steady state action as does not
maximize static surplus π (a):

as = arg max
a∈A

π (a)− δP − δA
θ (δP − δA) + δA

d (a) . (4)

2Alternatively, one can impose an agent interim participation constraint, or both principal and agent
interim participation constraints. The results do not change. Further discussion is provided at the end
of the main text, see Remark 2.
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If θ = 0 or 1, every non-steady state Pareto-optimal contract has a continuation payoff
process that converges monotonically to the steady state. If θ ∈ (0, 1), every non-steady
state Pareto-optimal contract has a continuation payoff process that oscillates around the

steady state. This oscillation persists in the long run if and only if θ ∈
[

δA
1+δA

, δA
δP+δA

]
.

Informally, “generically true” means true when corner conditions don’t get in the
way. For example, an action solving (4) generically does not maximize surplus but there
are clearly exceptions for certain discrete or sufficiently kinked π and d. On the other
hand, if one only wants to prove that there are Pareto-optimal payoffs that can only be
supported by oscillating contracts, then no further assumptions need to be made except
for OP being sufficiently low.

Our flexible model can speak to a wide spectrum of agency problems:3

Example 1. A government (A) allows a multinational firm (P ) to invest I in the country.
Investment generates output Y (I) for the multinational and taxes τ . The government can
expropriate output up to Y (I), but forfeits tax income forever.

Example 2. An entrepreneur (A) seeks a lender (P ) to help finance a product. There are
a number of different ways to develop the product. Each option oi requires some outlay Ioi
from the lender and generates some return Yoi for the entrepreneur. The lender receives
a loan repayment R. The entrepreneur can keep Yoi and strategically default on R, in
which case the lender can take the entrepreneur to court. With probability 1−θ the lender
prevails and recoups R. Otherwise he receives nothing.

Example 3. An owner (P ) has access to a set of projects and can choose to collaborate
with a worker (A) to implement a subset of them. Each subset {pi} requires effort cost
c{pi} from the worker, C{pi} from the owner, and produces

∑
{pi} epi for the owner. In

return, the worker receives an up-front wage w. The worker can shirk and keep the wage,
in which case the worker is fired but captures unemployment benefits valued at δAOA.

A uA π D θ d

Ex. 1 I τ Y (I)− I Y (I) 1 Y (I)
Ex. 2 oi Yoi −R Yoi − Ioi Yoi − (1− θ)R θ θYoi
Ex. 3 {pi} w − c{pi}

∑
{pi} epi − c{pi} − C{pi} w 0 c{pi} + δAOA

Table 1: Mapping the examples to the model. Notice the action can be taken by the principal (Ex. 1),
the agent (Ex. 2), or both (Ex. 3); it can be pecuniary or non-pecuniary, a single object or a set.

The three examples demonstrate how our model can encode various timing and pay
conventions. In Example 1, the firm pays taxes after observing whether the government
has expropriated or not. So the government does not receive any tax revenue in the

3Example 1 is drawn from Thomas and Worrall (1994) and Opp (2012); Example 2 is a modified
version of Albuquerque and Hopenhayn (2004) or Clementi and Hopenhayn (2006); Example 3 is inspired
by Ray (2002) and Thomas and Worrall (1988).
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period it expropriates: θ = 1 and D = d. If expropriation occurs, the strongest punish-
ment equilibrium involves the firm withdrawing from the country and so the government
receives no future tax revenue either. Therefore, if the government does expropriate its
best strategy is to steal the entire firm output: D = Y (I). A contract {uA,t, It}∞t=0 is
incentive compatible if and only if UA,t ≥ Y (It) for all t. In Example 2, the lender has
recourse after a default and (1− θ) represents the probability of contractual enforcement.
Alternatively, it could be that the borrower puts up collateral before any action, and θ
represents the collateral requirement as in Kiyotaki and Moore (1997).4 In Example 3,
the wage to the worker is pre-paid and so θ = 0 captures the fact that even if the worker
shirks, he keeps the wage that has already been paid to him. Of course, if the worker can
only abscond with a fraction of the wage due to some inefficiencies, such as the banker
in Calomiris and Kahn (1991), then θ can represent the portion of the wage lost during
deviation.

Examples 2 and 3 also highlight an important aspect of the model’s flexibility. In
many applications it is more natural to think of the agent’s utility uA as a sum m+h(a)
where h(a) is the component intrinsic to the action a stipulated by the contract and m is
the monetary transfer stipulated by the contract. This is in contrast to the model setup
where the entire uA is thought of as the transfer.

The difference is important because when uA = m+ h(a), one should:

1. Apply the θ parameter only to the m component of uA instead of to the entire uA.

2. Think of D as D(m, a) = (1− θ)m+ d̂(a) instead of D(uA, a) = (1− θ)uA + d(a).

However, Example 2 shows how the model can easily accommodate this mismatch.
Simply decompose d̂(a) into (1− θ)h(a) + (d̂(a)− (1− θ)h(a)), define d(a) := d̂(a)− (1−
θ)h(a), and now D(m, a) can be written in the correct form D(uA, a).5

Remark 1. Any transferable utility model where agent utility has the more common
form uA(m, a) := m+h(a) and D(m, a) = (1−θ)m+ d̂(a) is quasilinear in the monetary
transfer with θ ∈ [0, 1] can be mapped into the model.

The Oscillation Principle

The basic intuition for oscillation around the steady state relies on two features of the
model: inefficient deviation (θ > 0) and relative impatience of the agent (δA < δP ).
In particular, a non-trivial action set is actually not necessary for oscillation to emerge.
Thus, to highlight the basic mechanics of oscillation, we will for now consider the simplest
version of the model where the action set is a singleton {as}.6 Let usA be the steady state
utility transfer and let U s

A := usA/(1−δA) be the agent’s steady state continuation payoff.

4The settings of Geanakoplos (2009) and Brunnermeier and Pedersen (2009) show how the collater-
alization parameter θ can emerge endogenously.

5The quantity d(a) := d̂(a) − (1 − θ)h(a) lacks the economic significance of d̂(a), but that is of no
concern since the model does not require d to satisfy anything beyond having a compact image. d has
compact image so long as d̂ and h have compact image.

6Think of a binary effort/shirking decision where the shirking option is never relevant.
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To highlight the significance of assuming inefficient deviation, rewrite the IC con-
straint uA,t + δAUA,t+1 ≥ (1− θ)uA,t + d(as) as follows:

θuA,t + δAUA,t+1 ≥ d(as) (5)

Notice θ > 0 means that transfers today relax the IC constraint today.
Relative impatience of the agent implies that IC constraints should always bind. Oth-

erwise, moving some of tomorrow’s transfer to today would lead to a Pareto-improvement
and IC constraints would still be respected. In particular, the IC constraint of the steady
state must bind:

θusA + δAU
s
A = d(as) (6)

Now, to see why oscillation emerges, first consider an agent payoff UA > U s
A. To deliver

UA, the principal can for example provide the agent with an above steady state initial
transfer followed by the steady state continuation payoff. But (6) plus the assumption
θ > 0 implies that the IC constraint would be slack. Thus, the principal can do better by
further frontloading utility until the IC constraint binds. In the end, the agent receives an
above steady state transfer today uA > usA followed by a below steady state continuation
payoff tomorrow U+

A < U s
A.

Next, consider the opposite case UA < U s
A. Mirroring the previous case, the principal

could try a below average initial transfer followed by the steady state continuation payoff.
But now (6) plus the assumption θ > 0 implies that the IC constraint is violated. Thus,
the initial transfer must be further diminished and the continuation payoff must be
increased. In the end, the agent receives a below steady state transfer today uA < usA
followed by an above steady state continuation payoff tomorrow U+

A > U s
A.

We have now shown that if today’s payoff is above the steady state then tomorrow’s
should be below and if today’s is below then tomorrow’s should be above. Oscillation
around the steady state results.

Notice how inefficient deviation and relative impatience of the agent interact to gen-
erate oscillation. Relative impatience makes binding IC constraints uniquely optimal.
Then inefficient deviation ensures that binding IC constraints plus above (below) steady
state payoffs imply below (above) steady state continuation payoffs.

If either feature is missing, the argument for oscillation falls apart. If deviation is
efficient (θ = 0), then to deliver an above (below) steady state payoff with binding IC,
the principal can simply provide an above (below) steady state initial transfer followed
by the steady state continuation payoff. As a result, all contracts converge monotonically
to the steady state. If the principal and agent are equally patient, then Pareto-optimal
contracts no longer need to be maximally frontloaded and IC constraints no longer need
to bind. Starting with an oscillating contract, one can always further backload payments
in a payoff neutral way until the contract continuation payoff process no longer oscillates
and instead, converges monotonically to a steady state.

In this primer on oscillation, we have neglected to discuss how participation con-
straints can distort oscillation and ultimately, the optimal action sequence if the model
possesses a nontrivial action set. Participation constraints matter because the higher the
θ, the greater the amplitude of oscillation. We will show that when θ > δA/(1 + δA)
oscillations become explosive if we were to show no regard for participation constraints.
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This means that any participation constraint, no matter how low, would eventually be
violated. Optimally adjusting the explosive oscillation so as to respect participation con-
straints leads to nontrivial distortions of the action sequence and the oscillation dynamic
itself. We now explore this as part of the formal analysis of the Principal’s Problem.

3 Analysis

We start our formal analysis with a preliminary lemma that reveals the role of public
randomization and implies that we can restrict our large, abstract action set to a small
set of efficient actions .

Lemma 1. Fix a model (θ, δA, δP ,A, d, π). Any alternate model (θ, δA, δP , Â, d̂, π̂) where
Im(Â) = Conv(Im(A)) generates the same Pareto-frontier with the same Pareto-optimal
continuation payoff processes.

Certainly the alternate model Â can achieve any payoff the original model can achieve.
To prove the converse, suppose there was a contract in the alternate model that called
for action ât, transfer ûA,t and continuation payoff ÛA,t+1. First, for any action â ∈ Â,
there exists a random action ã ∈ A satisfying Eπ(ã) = π(â) and Ed(ã) = d(â). Note,
however, the IC constraint (1) must now be satisfied for any random realization d(ã),
and not just for the average realization d(â). This can be achieved by only fine-tuning

transfers ũA,t = ûA,t + d(ãt)−d(ât)
θ

and leaving the continuation payoff fixed at ÛA,t+1.
By construction, payoffs are unaffected since EũA,t = ûA,t, and the continuation payoff
process is identical. This proves Lemma 1.

When a model’s Im(A) is convex, public randomization provides no benefits. In
particular, all Pareto-optimal payoffs can be delivered by contracts with deterministic
actions, transfers, and continuation payoff processes. And since Lemma 1 implies that
it is without loss of generality to focus on models where Im(A) is convex, we have now
proved:

Corollary 1. Any Pareto-optimal payoff of any model can be delivered by a contract with
a deterministic continuation payoff process.

In particular, this is true even if we are in a model where any such contract must
involve random actions and transfers. This implication is important for the interpretation
of our results as it allows us to highlight that oscillation of continuation payoffs is not an
artifact of randomization.

Our analysis can be further simplified by noting that any Pareto-optimal contract
must only use efficient actions. An action a is efficient if for any other action a′, π(a′) <
π(a) or d(a′) > d(a) or (π(a′), d(a′)) = (π(a), d(a)). Let Â∗ be the set of efficient actions,
then it is without loss of generality to focus on models with action space of the form
Â∗. Figure 1 shows a representative Im(A), its convex hull Im(Â), and the efficient
frontier Im(Â∗). By construction, Im(Â∗) is a concave, strictly increasing function over
[dmin, dmax]; π is an implicit function of d; the action space can be identified with the
interval [dmin, dmax]; and Im(Â∗) is just the graph of π(d). From now one, for the sake
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d(a)

π
(a
)

dmin d(as) dmax

π(as)

πmax

a ∈ A
a ∈ Â
a ∈ Â∗

Figure 1: The graph plots the images of the original action set A, Â, and the set of efficient actions
Â∗. The latter set defines π as a function of d. The red line has the Pareto-optimal steady state slope

δP−δA
θ(δP−δA)+δA

(see Lemma 3) and identifies the steady state action.

of simplicity, we will refer to actions as d, surpluses as π(d), and we will, without loss of
generality, disallow public randomization.

The set of contract payoffs is compact. Any continuation contract of a Pareto-optimal
contract must be Pareto-optimal. Thus, when dealing with Pareto-optimal contracts, we
may write (UA,t, V (UA,t)) for (UA,t, UP,t). From now on, we will refer to the Pareto frontier
as V and Pareto-optimal contracts as V -contracts.

Lemma 2. V (UA) is a concave, strictly decreasing function over its domain
[
Umin
A , Umax

A

]
and satisfies V (Umax

A ) = OP .

Proof. Concavity follows from concavity of π(d). Suppose V (Umax
A ) > OP . Take the

V -contract that delivers Umax
A and increase the initial transfer by V (Umax

A ) − OP . This
contract still satisfies (1) and (2) and delivers > Umax

A payoff to the agent. Contradiction.

Assumption 1. OP is sufficiently low.7

Paired with the lemma below, this assumption highlights the fact that even though
the surplus maximizing action dmax is sustainable, dynamic trading gains may cause the
principal and agent to prefer a steady state with a lower static surplus.

7A sufficient upper bound is OP ≤
(
π(dmax)− 1−δA

θ(1−δA)+δA
dmax

)
/(1 − δP ). The right hand side is

the principal’s payoff under the unique stationary contract that sustains the surplus maximizing action
with the smallest possible stationary transfer to the agent.
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Lemma 3. A stationary contract {(uA,t = usA, dt = ds)}∞t=0 is a V -contract if and only if

ds ∈ arg max
d∈A

π (d)− δP − δA
θ (δP − δA) + δA

d. (7)

usA =
ds

θ + δA
1−δA

. (8)

In particular, ds is generically smaller than dmax.

Lemma 3 characterizes the steady state of V -contracts. The reason ds is generically
smaller than dmax is due to an important tradeoff between dynamic trading gains and
static surplus: When the agent is more impatient, shifting the steady state payoff al-
location in favor of the principal allows for larger initial transfers to the agent. This
frontloading realizes potential gains from trading across time. The tradeoff is that shift-
ing the steady state in favor of the principal tightens IC constraints. Since IC constraints
were already binding to begin with, a concomitant decrease in the steady state action
ds, which loosens IC constraints, is required. This leads to a smaller static surplus.8 The
optimal degree of the tradeoff is parameterized by the coefficient δP−δA

θ(δP−δA)+δA
in (7), which

is proportional to the relative impatience of the agent. When the agent is as patient as
the principal, δA = δP and ds simply maximizes surplus. As δA decreases, the relative
value of dynamic trading gains increases and the steady state action and surplus decrease
relative to the static optimum.

Proof. The IC constraint requires δAu
s
A/(1 − δA) ≥ −θusA + ds or equivalently us ≥

ds/(θ + δA/(1 − δA)). If (8) did not hold, then the IC constraint would be slack each
date. One can then easily achieve a Pareto-improvement by increasing uA,0 slightly and
decreasing uA,1 slightly. Contradiction. This proves (8). To prove (7), fix a generic
V -contract {(uA,t, dt)}∞t=0 and consider two perturbations. First, for a small real ε, let
uA,0 → ûA,0 := uA,0 + ε and starting at date 1, enact the V -contract with agent payoff

ÛA,1 := UA,1 − θε/δA. This perturbation is incentive-compatible. The agent’s payoff is
UA,0 + (1 − θ)ε. By definition, the principal’s payoff must be weakly smaller than his
payoff under the V -contract with the same agent payoff as the perturbation contract:

π(d0)− uA,0 − ε+ δPV

(
UA,1 −

θε

δA

)
≤ V (UA,0 + (1− θ)ε)

Letting ε be infinitesimally positive and negative, we derive the two fundamental differ-
ential conditions linking the payoff UA and continuation payoff U+

A of any V -contract:

(1− θ)V +(UA) ≥ −1 +
δP
δA
· θ · V −(U+

A ) (9)

(1− θ)V −(UA) ≥ −1 +
δP
δA
· θ · V +(U+

A ) (10)

8See Acemoglu, Golosov, and Tsyvinski (2008), Aguiar, Amador, and Gopinath (2009), and Opp
(2012) for examples on investment distortions with heterogeneous discounting. We contribute relative to
these papers by highlighting the efficiency of such distortions and being able to characterize the solution
for arbitrary action sets.
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(9) and (10) provide a useful necessary condition for when a Pareto-optimal payoff
(UA, V (UA)) can be achieved by a stationary contract:

−V −(UA) ≤ δA
θδP + (1− θ)δA

≤ −V +(UA) (11)

In the second perturbation, for a small real ε, let d0 → d̂0 := d0+ε and let uA,0 → ûA,0 :=
uA,0 + ε/θ. Using arguments similar to before, we can establish:

1− θπ−(d0) ≤ −V −(UA) ≤ −V +(UA) ≤ 1− θπ+(d0) (12)

(11) and (12) together imply that if (us, ds) is a steady state then

π+(ds) ≤
δP − δA

θδP + (1− θ)δA
≤ π−(ds) (13)

This proves the only if direction of (7). If π(d) is strictly convex then we’re done.
Otherwise, there may be multiple solutions to (7). Let {(us, ds)}∞t=0 and {(ûs, d̂s)}∞t=0 be
two steady states satisfying (7) and (8). Then the slope between the two steady states
is δA/(θδP + (1 − θ)δA). (11) now implies that both are V -contracts. To complete the
proof, it suffices to show that any stationary contract {(uA,t = usA, dt = ds)}∞t=0 satisfying
(7) and (8) must satisfy the principal’s interim participation constraint (2). This is true
by Assumption 1.

Lemma 3 establishes the first part of Theorem 1. It implies that the steady state is
unique if there is a unique maximizer of (7), which is true outside of the knife-edge case
when π(d) has an entire edge with slope exactly equal to (δP − δA)/(θδP + (1 − θ)δA).
In the latter half of the analysis, we will make an assumption that eliminates the knife-
edge case. So from now on we will refer to a unique steady state. While Lemma 3 itself
characterizes the steady state, the proof of Lemma 3 contains all the technical ingredients
needed to show when and how non-steady state V -contracts oscillate around the steady
state. This will establish the second half of Theorem 1.

We begin the analysis by first supposing that the only available action is the steady
state action ds. This is exactly the premise of our earlier primer on oscillation in Section
2. In that analysis, we argued that since IC constraints must bind, the continuation
payoff U+

A (UA) of an above (below) steady state payoff UA must be weakly below (above)
the steady state, resulting in oscillation. The precise relation between the two values is:

U+
A (UA)− U s

A = −(1 + r) (UA − U s
A) (14)

where U s
A is the steady state agent payoff and r := (θ 1+δA

δA
− 1)/(1 − θ) is the growth

rate of oscillation for the continuation payoff process. Per-period transfers uA oscillate
around the steady state value usA analogously.

Definition 1. For the rest of the paper, we will call these contracts described in the
primer the benchmark contracts. The benchmark contracts keep the action fixed at ds and
set transfers to maximally exploit dynamic trading gains by keeping the IC constraint
binding at all times.
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We now show that when θ ≤ δA
1+δA

and the growth rate r is nonpositive, V -contracts

are essentially the benchmark contracts. But when θ > δA
1+δA

and the growth rate r is
positive, the benchmark contracts violate participation constraints and we explain how
the true V -contracts become distorted. In particular, the action sequence also oscillates
(around ds).

Case θ ∈ [0, δA
1+δA

] Let UA be any payoff ∈ I := [(U+
A )−1(Umax

A ), Umax
A ]. Because the

growth rate r is nonpositive, the benchmark contract delivering payoff (UA, UP ) does not
violate participation constraints and is therefore feasible. The resulting payoff frontier is
linear and goes through the steady state payoff point:

UP − U s
P

UA − U s
A

= − δA
θδP + (1− θ)δA

∀ UA ∈ I (15)

Since V is weakly concave, a linear frontier is unimprovable and therefore each benchmark
contract is a V -contract: V (UA) = UP for UA ∈ I.

In the special case θ = 0, the growth rate is -1 and U+
A (UA) = U s

A for all UA. Thus,
I is the entire domain (−∞, Umax

A ] and every V -contract is a benchmark contract: To
deliver UA, the V -contract always calls for the steady state action ds. The agent receives
an initial transfer uA = usA + UA − U s

A and then receives the steady state transfer usA
forever.

If θ > 0, then it is possible that Umin
A < (U+

A )−1(Umax
A ). For a UA ∈ [Umin

A , (U+
A )−1(Umax

A )],
the benchmark contract would violate the participation constraint of the principal in the
next period. Since the agent continuation payoff is capped by Umax

A , the date 0 action
must be distorted downward to d < ds, just enough to maintain incentive compatibility.
From the next period onwards, transfers resume oscillating according to (14). Thus,
when r ≤ 0, participation constraints induce only mild distortions of V -contracts: by
date 1 at the latest, a V -contract becomes a benchmark contract.

When θ ∈ (0, δA
1+δA

), r < 0 and the oscillations dampen. Every V -contract converges

to the steady state. When θ = δA
1+δA

, r = 0 and the oscillations persist in the long-run.

This establishes Theorem 1 up through θ = δA
1+δA

. Next we consider:

Case θ > δA
1+δA

To see how things change, let us start at the agent’s maximum payoff
UA,0 = Umax

A . Suppose the principal still tries to use the benchmark contract. Since
oscillation is growing, the principal realizes that this contract will violate his own par-
ticipation constraint the day after tomorrow. Thus, the agent’s date 2 payoff must be
adjusted downwards. But this violates the IC constraint at date 1. To restore incentive-
compatibility at date 1, the principal can either decrease the action d1 < ds or increase
the agent’s date 1 continuation payoff, so that

UA,1 = U+
A (Umax

A ) > U s
A −

1

1 + r
(Umax

A − U s
A)

Intuitively, it is optimal to do a little bit of both. But now the date 0 IC constraint is slack
and so the principal can increase the date 0 action d0 > ds and reap the extra surplus.
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We have now shown d0 < ds < d1. The degree to which actions are distorted depends
on the degree to which participation constraints negatively impact the principal’s payoff.
Formally, the relationship is captured by (12) which relates the action to the slope of V .
To ease the exposition and give contracts the ability to fine-tune action distortions, we
assume the following differentiability condition:

Assumption 2. π (d) is a strictly concave, continuously differentiable function tracing
out slopes π′ (d) ∈

[
0, 1

θ

]
.

Assumption 2 simplifies the exposition substantially by ensuring differentiability of
the value function with V ′ (UA) ranging from 0 down to −1. Also, the cumbersome
directional derivative inequalities in the proof of Lemma 3 become simple derivative
equations. In particular, (12) simplifies to

π′ (d) =
1 + V ′(UA)

θ

Since V is concave, (12) implies that action d and surplus π(d) are weakly increasing in
UA, formalizing the intuition that distortions from the benchmark are optimally stronger
the further the distance from the steady state (with V ′(U s

A) = − δA
θδP+(1−θ)δA

). Combined

with (10) and (9), (12) also reveals how an action distortion today is optimally balanced
against an opposing distortion tomorrow:9

δP
[
π′(d+)− π′(ds)

]
= − 1

1 + r
[π′(d)− π′(ds)] (16)

The impact of tomorrow’s distortion is naturally discounted by the principal’s time-
preference while the impact of today’s distortion is discounted by the growth rate. Intu-
itively, the higher the growth rate r of oscillation the more severe the distortions imposed
by participation constraints in the future. As a result, the optimal action adjusts more
today.

As long as d < dmax, the associated optimal transfer sequence can be obtained from
the action sequence and binding IC. The resulting implications of the action adjustments
are separately analyzed in two subcases.

When θ ∈
(

δA
1+δA

, δA
δA+δP

)
, action adjustments today are still relatively small compared

to tomorrow’s adjustments. As a result, transfers and action distortions explosively
oscillate according to (16). The participation constraint of the principal will be reached
in a finite number of periods. From then on, d and uA perpetually oscillate between two
distinct points, exhibiting long-run fluctuations.

When θ > δA
δA+δP

, so that δP >
1

1+r
, today’s adjustment become so strong compared

to tomorrow that action distortions and transfers damped oscillate and hence converge
to the steady state. The economic environment exhibits no long run fluctuations. In
the limit, as θ → 1 (r →∞), the damped oscillation of V -contracts becomes trivial and
there is monotonic convergence to the steady state. This establishes the second half of
Theorem 1.

9This first-order condition holds if the participation constraint does not bind in the subsequent period.
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A Final Remark With the proof of Theorem 1 completed, we have now shown that the
impatience versus incentives conflict causes V -contracts to oscillate around the steady
state. The one requirement is that neither the agent nor the principal’s participation
constraint binds at the steady state - otherwise, the steady state would be at a corner
of V and there would be no room to oscillate. We made sure that this requirement was
satisfied in the analysis by assuming that there was no agent participation constraint
and that the principal’s participation constraint was sufficiently low (Assumption 1). In
general, the analysis goes through if both participation constraints are present but don’t
bind at the steady state. But what if one of them binds? In this case, it is easy to
show that when the agent’s (principal’s) participation constraint binds, all V -contracts
monotonically converge to the steady state which is at the left (right) corner of V .

Fix a model where the steady state is not at a corner of V , and consider an alternate
version that shifts the d function up or down by a constant: d̂(a) := d(a)+x where x ∈ R.
As x increases, the deviation payoffs increase and one can interpret the incentive force as
getting stronger. Similarly, as x decreases, the incentive force is getting weaker. Lemma
3 implies that a non-corner steady state shifts proportionally with x, which means there
exists a bound x > 0 (x < 0) such that for all x ≥ x (x ≤ x), the principal’s (agent’s)
participation constraint will bind at the steady state. Combining this observation with
the monotone convergence result of the previous paragraph, we now have a complete
picture of the impatience versus incentives conflict:

Remark 2. When the impatience force dominates the incentives force (x ≤ x), the steady
state is the leftmost V -contract and all other V -contracts are frontloaded, monotonically
converging leftwards to the steady state. When the incentives force dominates the impa-
tience force (x ≥ x), the steady state is the rightmost V -contract and all other V -contracts
are backloaded, monotonically converging rightwards to the steady state. When neither
force dominates (x < x < x), the impatience vs incentives conflict is nontrivial, and
oscillation around the steady state is a generic feature of V -contracts.

Remark 2 helps put into context the opposing predictions of Ray (2002) and Lehrer
and Pauzner (1999). As Ray (2002) points out, when “the agent is more impatient than
the principal... the Lehrer-Pauzner findings and the results of [Ray (2002)] tug in different
directions. It may be worth exploring if one of the two factors always dominates.” Our
results not only show what happens when one factor dominates but also reveal that
oftentimes neither factor dominates and oscillation is the natural outcome.
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Figure A.1: The graph plots the respective Pareto frontier (left panel) as well as an optimal sequence
of transfers/actions (right panel) for the three relevant parameter regions of θ (see Theorem 1). The
computation is based on Example 3. The action only represents the effort of the worker, e ∈ [0, 1],
which generates surplus π(e) = 2e− e2. We vary the fraction of the wage, θ, that the worker loses upon
shirking.
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