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I study a dynamic relationship in which a principal delegates ex-
perimentation to an agent. Experimentation is modeled as a one-
armed bandit that yields successes following a Poisson process. Its
unknown intensity is high or low. The agent has private informa-
tion, his type being his prior belief that the intensity is high. The
agent values successes more than the principal, so prefers more ex-
perimentation. I reduce the analysis to a finite-dimensional prob-
lem. The optimal mechanism is a cutoff rule in the belief space.
The cutoff gives pessimistic types total freedom but curtails opti-
mistic types’ behavior. Surprisingly, this delegation rule is time-
consistent.
JEL: D82, D83, D86.
Keywords: principal-agent, delegation, experimentation, one-
armed bandit, incomplete information, no monetary transfers.

Innovation carries great uncertainty. Firms frequently start R&D projects with
little knowledge of eventual success. As experimentation goes on but no success
occurs, firms grow pessimistic and taper resource input or even discontinue the
project altogether.
This paper studies the optimal mechanism by which a principal (she) delegates

experimentation to an agent (he), as is the case of a firm delegating an R&D project
to its employee. The literature on experimentation in a principal-agent setting fo-
cuses on transferable utilities.1 Instead, I focus on delegation (Holmström (1977,
1984)) for three reasons. First, from a practical point of view, it is obvious that
an overwhelming number of economic activities (conventional and innovative) are
organized by delegation: managers delegate tasks to subordinates by authority,
rather than transfer-based trading contracts. Second, it is often cheaper to re-
strict the agent’s actions than to devise a possibly complex compensation scheme.
This is consistent with the transaction-cost economics which discusses the relative
efficiency of authority-based organization (“hierarchies”) and contract-based orga-
nization (“market”) (Coase (1937); Williamson (1975)). Third, there are cases in
which transfers are prohibited outright to prevent corruption, such as constituents
delegating reforms to politicians. The current literature on delegation focuses on
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static problems which preclude learning. In this paper, I consider the problem of
dynamic delegation. As new information arrives over time, the flexibility granted
to the agent can be adjusted accordingly.
The R&D project consumes the principal’s resources and the agent’s time. Both

wish to discontinue it if they become pessimistic enough. However, the agent’s
relative return from the project’s successes frequently exceeds the principal’s (high
cost of principal’s resources; principal’s moderate benefit from one project out of
her many responsibilities; agent’s career advancement as an extra benefit); hence
the agent prefers to keep the project alive for a longer time.
Promising projects warrant longer experimentation. Building on his expertise,

the agent often has private knowledge on the prospect of the project at the outset.
If the principal wishes to take advantage of his information, she has to give the
agent some flexibility over resource allocation. But misaligned preferences curtail
the flexibility that the principal is willing to grant. Therefore the principal faces a
trade-off between using the agent’s information and containing his bias.
The purpose of this paper is to solve for the optimal delegation rule. It addresses

the following questions: In the absence of transfers, what instruments does the
principal use to extract the agent’s private information? Is there delay in information
acquisition? How much of the resource allocation decision should be delegated to the
agent? Will some projects be over-experimented and others under-experimented?
Is the optimal delegation rule time-consistent?
To answer these questions, I model experimentation as a continuous-time bandit

problem. See for instance Presman (1990), Keller, Rady and Cripps (2005), and
Keller and Rady (2010). There is one unit of a perfectly divisible resource per unit
of time and the agent continually splits the resource between a safe task and a
risky one. In any given time interval, the safe task generates a known flow payoff
proportional to the resource allocated to it.2 The risky task’s payoff depends on an
unknown binary state. In the benchmark setting, if the state is good the risky task
yields successes at random times. The arrival rate is proportional to the resource
allocated to it. If the state is bad, the risky task yields no successes. I assume that
the agent values the safe task’s flow payoffs and the risky task’s successes differently
than the principal. Both prefer to allocate the resource to the risky task in the
good state and to the safe task in the bad one. However, the agent values successes
relatively more than the principal, so he prefers to experiment longer if faced with
prolonged absence of success.3 At the outset, the agent has private information: his
type is his prior belief that the state is good. After experimentation begins, the
agent’s actions and the arrivals of successes are publicly observed.
The principal delegates the decision on how the agent should allocate the resource

over time. This decision is made at the outset. Since the agent has private infor-
mation before experimentation, the principal offers a set of policies from which the
agent chooses his preferred one. A policy specifies how the agent should allocate

2The flow payoff generated by the safe task can be regarded as the opportunity cost saved or the payoff
from conducting conventional tasks.

3This assumption is later relaxed and the case in which the bias goes in the other direction is also studied.
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the resource in all future contingencies.

Note that the space of all policies is very large. Possible policies include: allocating
all resource to the risky task until a fixed time and then switching to the safe task
only if no success has realized; gradually reducing the resource input to the risky
task if no success occurs and allocating all resource to it after the first success;
allocating all resource to the risky task until the first success and then allocating a
fixed fraction to the risky task; always allocating a fixed fraction of the unit resource
to the risky task; etc.

A key observation is that any policy, in terms of payoffs, can be summarized by a
pair of numbers, corresponding to the total expected discounted resource allocated to
the risky task conditional on the state being good and the total expected discounted

resource allocated to the risky task conditional on the state being bad. As far as
payoffs are concerned, this constitutes a simple, finite-dimensional summary statistic
for any given policy. The range of these summary statistics as we vary policies
is what I call the feasible set—a subset of the plane. Determining the feasible
set is a nontrivial problem in general, but it involves no incentive constraints and
therefore reduces to a standard optimization problem which I solve. This reduces
the delegation problem to a static one. Given that the resulting problem is static,
I use Lagrangian optimization methods (similar to those used by Amador, Werning
and Angeletos (2006)) to solve it and determine the optimal delegation rule.

Under a mild regularity condition, the optimal delegation rule takes a very simple
form. It is a cutoff rule with a properly calibrated prior belief that the state is good.
This belief is then updated as if the agent had no private information. In other
words, this belief drifts down when no success is observed and jumps to one upon
the first success. It is updated in the way the principal would if she were carrying
out the experiment herself (starting at the calibrated prior belief). The agent freely
decides whether to experiment or not as long as the updated belief remains above
the cutoff. However, if this belief ever reaches the cutoff, the agent is asked to stop
experimenting. This rule turns out not to bind for types with low enough priors,
who voluntarily stop experimenting conditional on no success, but does constrain
those with high enough priors, who are required to stop when the cutoff is reached.

Given this updating rule, the belief jumps to one upon the first success. Hence, in
the benchmark setting the cutoff rule can be implemented by imposing a deadline
for experimentation, under which the agent allocates all resource to the risky task
after the first success, but is not allowed to experiment past the deadline. Those
types with low enough priors stop experimenting before the deadline conditional on
no success whereas a positive measure of types with high enough priors stop at the
deadline. In equilibrium, there is no delay in information acquisition as the risky
task is operated exclusively until either the first success reveals that the state is
good or the agent stops.

Among the set of high enough types who are forced to stop when the cutoff (or the
deadline) is reached, the highest subset under-experiment even from the principal’s
point of view. Every other type over-experiments. A prediction of my model is the
most promising projects are always terminated too early while less promising ones
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are stopped too late due to agency.

An important property of the cutoff rule is time consistency: After any history the
principal would not revise the cutoff rule even if she were given a chance to do so.
In particular, after the agent experiments for some time, yet no success has realized,
the principal still finds it optimal to keep the cutoff (or the deadline) at the level
set at the beginning. Hence, surprisingly, implementing the cutoff rule requires no
commitment on the principal’s side.

I then show that both the optimality of the cutoff rule and its time-consistency
generalize to situations in which the risky task generates successes in the bad state
as well. When successes are inconclusive, the belief is updated differently than in the
benchmark setting. It jumps up upon successes and then drifts down. Consequently,
the cutoff rule cannot be implemented by imposing a deadline. Instead, it can be
implemented as a sliding deadline. The principal initially extends some time to the
agent to operate the risky task. Then, whenever a success realizes, more time is
granted. The agent is free to switch to the safe task before he uses up the time
granted by the principal. After a long stretch of time without success, the agent is
required to switch to the safe task.4

I further extend the analysis to the case in which the agent gains less from the
experimentation than the principal and therefore tends to under-experiment. This
happens when an innovative task yields positive externalities, or when it is important
to the firm but does not widen the agent’s influence. When the agent’s bias is small
enough, the optimum can be implemented by imposing a lockup period which is
extended upon successes. Instead of placing a cap on the length of experimentation
as in the previous case, the principal enacts a floor. The agent has no flexibility
but to experiment before the lockup period ends, yet has full flexibility afterwards.
Time-consistency is no longer preserved, as whenever the agent stops experimenting
voluntarily, he reveals that the principal’s optimal experimentation length has yet
to be reached. The principal is tempted to order the agent to experiment further.
Therefore to implement the sliding lockup period, commitment from the principal
is required.

My results have two important implications for the practical design of delegation
rules (I assume a larger agent’s return in this illustration). First, a (sliding) deadline
should be in place as a safeguard against abuse of the principal’s resources. The
continuation of the project is permitted only upon demonstrated successes. Second,
the agent should have the flexibility over resource allocation before the (sliding)
deadline is reached. In particular, the agent should be free to terminate the project
whenever he finds appropriate. Besides in-house innovation, these results apply to
various resource allocation problems with experimentation, such as companies bud-
geting marketing resources for product introduction and funding agencies awarding
grants to scholarly research.5

4In the Web Appendix, I show that the optimality of the cutoff rule and its time-consistent property
generalizes to Lévy bandits (Cohen and Solan (2013)).

5Suppose that experimentation has a flow cost. The agent is cash-constrained and his action is con-
tractible. Delegating experimentation means funding his research project.

4



My paper contributes to the literature on delegation. This literature addresses the
incentive problems in organizations which arise due to hidden information and mis-
aligned preferences. Holmström (1977, 1984) provides conditions for the existence
of an optimal solution to the delegation problem. He also characterizes optimal
delegation sets in a series of examples, under the restriction, for the most part,
that only interval delegation sets are allowed. Alonso and Matouschek (2008) and
Amador and Bagwell (2013) characterize the optimal delegation set in general envi-
ronments under some conditions and provide conditions under which simple interval
delegation is optimal. None of these papers consider dynamic delegation. What dis-
tinguishes my model from static delegation problems is that additional information
arises over time. The principal ought to use it both to reduce the agent’s informa-
tional rents and to adjust his behavior. My paper complements the current literature
and facilitates the understanding of how to optimally delegate experimentation.

Second, my paper is related to the literature on experimentation in a principal-
agent setting.6 Since most papers address different issues than I do, here I only men-
tion the most related ones. Gomes, Gottlieb and Maestri (2013) study a multiple-
period model in which the agent has private information about both the project
quality and his cost of effort. The agent’s actions are observable. Unlike in my set-
ting, the agent has no benefit from the project and outcome-contingent transfers are
allowed. They identify necessary and sufficient conditions under which the principal
only pays rents for the agent’s information about his cost, but not for the agent’s in-
formation about the project quality. Garfagnini (2011) studies a dynamic delegation
model without hidden information at the beginning. The principal cannot commit
to future actions and transfers are infeasible. Agency conflicts arise because the
agent prefers to work on the project regardless of the state. He delays information
acquisition to prevent the principal from growing pessimistic. In my model, there
is pre-contractual hidden information; transfers are infeasible and the principal is
able to commit to long-term contract terms; the agent has direct benefit from ex-
perimentation and shares the same preferences as the principal conditional on the
state. Agency conflicts arise as the agent is inclined to exaggerate the prospects for
success and prolong the experimentation.

The paper is organized as follows. The model is presented in Section I. Section
II considers a single player’s decision problem. In Section III, I illustrate how to
reduce the delegation problem to a static one. The main results are presented in
Section IV. I extend the analysis to more general stochastic processes in Section V
and discuss other extensions of the model. Section VI concludes.

6Bergemann and Hege (1998, 2005) study the financing of a new venture in which the principal funds
the experiment and the agent makes contract offers. Dynamic agency problem arises as the agent can invest
or divert the funds. Hörner and Samuelson (2013) consider a similar model in which the agent’s effort
requires funding and is unobservable. The principal makes short-term contract offers specifying profit-
sharing arrangement. Halac, Kartik and Liu (2013) study long-term contract for experimentation with
adverse selection about the agent’s ability and moral hazard about his effort choice.
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I. The model

Players, tasks and states

Time t ∈ [0,∞) is continuous. There are two risk-neutral players i ∈ {α, ρ}, an
agent (he) and a principal (she), and two tasks, a safe task S and a risky one R. The
principal is endowed with one unit of perfectly divisible resource per unit of time.
She delegates resource allocation to the agent, who continually splits the resource
between the two tasks. The safe task yields a known deterministic flow payoff that
is proportional to the fraction of the resource allocated to it. The risky task’s payoff
depends on an unknown binary state, ω ∈ {0, 1}.
In particular, if the fraction πt ∈ [0, 1] of the resource is allocated to R over an

interval [t, t+ dt), and consequently 1− πt to S, player i receives (1− πt)sidt from
S, where si > 0 for both players. The risky task generates a success at some point
in the interval with probability πtλ

1dt if ω = 1 and πtλ
0dt if ω = 0. Each success

is worth hi to player i. Therefore, the overall expected payoff increment to player i
conditional on ω is [(1− πt)si + πtλ

ωhi]dt. All this data is common knowledge.7

In the benchmark setting, I assume that λ1 > λ0 = 0. Hence, R yields no
success in state 0. In Subsection V.A, I extend the analysis to the setting in which
λ1 > λ0 > 0.

Conflicts of interests

I allow different payoffs to players, i.e., I do not require that sα = sρ or hα = hρ.
The restriction imposed on payoff parameters is the following:

ASSUMPTION 1: Parameters are such that λ1hi > si > λ0hi for i ∈ {α, ρ}, and

λ1hα − sα
sα − λ0hα

>
λ1hρ − sρ
sρ − λ0hρ

.

Assumption 1 has two implications. First, there is agreement on how to allocate
the resource if the state is known. Both players prefer to allocate the resource to R
in state 1 and the resource to S in state 0. Second, the agent values successes over
flow payoffs relatively more than the principal does. Let

ηi =
λ1hi − si
si − λ0hi

denote player i’s net gain from R’s successes over S’s flow payoffs. The ratio ηα/ηρ,
being strictly greater than one, measures how misaligned players’ interests are and
is referred to as the agent’s bias. (The case in which the bias goes in the other
direction is discussed in Subsection V.B.)

7It is not necessary that S generates deterministic flow payoffs. What matters to players is that the
expected payoff rates of S are known and equal si, and that S’s flow payoffs are uncorrelated with the state.
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Private information

Players do not observe the state. At time 0, the agent has private information
about the probability that the state is 1. For ease of exposition, I express the agent’s
prior belief that the state is 1 in terms of the implied odds ratio of state 1 to state
0, denoted θ and referred to as the agent’s type. The agent’s type is drawn from a
compact interval Θ ≡ [θ, θ] ⊂ R+ according to some continuous density function f .
Let F denote the cumulative distribution function.

By the definition of the odds ratio, the agent of type θ assigns probability p(θ) =
θ/(1 + θ) to the event that the state is 1 at time 0. The principal knows only the
type distribution. Hence, her prior belief that the state is 1 is given by

E[p(θ)] =

∫

Θ

θ

1 + θ
dF (θ).

Actions and successes are publicly observable. The only information asymmetry
comes from the agent’s private information about the state at time 0. Hence, a
resource allocation policy, which I introduce next, conditions on both the agent’s
past actions and arrivals of successes.

Policies and posterior beliefs

A (pure) resource allocation policy is a non-anticipative stochastic process π =
{πt}t≥0. Here, πt ∈ [0, 1] is interpreted as the fraction of the unit resource allocated
to R at time t, which may depend only on the history of events up to t. A policy π
can be described as follows. At time 0, a choice is made of a deterministic function
π(t | 0), measurable with respect to t, 0 ≤ t < ∞, which takes values in [0, 1] and
corresponds to the fraction of the resource allocated to R up to the moment of the
first success. If at the random time τ1 a success occurs, then depending on the value
of τ1, a new function π(t | τ1, 1) is chosen, etc. The space of all policies, including
randomized ones, is denoted Π. (See Footnote 9.)

Let Nt denote the number of successes observed up to time t. Both players
discount payoffs at rate r > 0. Player i’s payoff given an arbitrary policy π ∈ Π and
an arbitrary prior belief p ∈ [0, 1] consists of the expected discounted payoffs from
R’s successes and the expected discounted flow payoffs from S

Ui(π, p) ≡ E

[∫ ∞

0
re−rt [hidNt + (1− πt) sidt]

∣

∣

∣
π, p

]

.

Here, the expectation is taken over the state ω and the stochastic processes π and
Nt. By the Law of Iterated Expectations, I can rewrite player i’s payoff as the
discounted sum of the expected payoff increments

Ui(π, p) = E

[∫ ∞

0
re−rt [(1− πt)si + πtλ

ωhi] dt
∣

∣

∣
π, p

]

.
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Given prior p, policy π and trajectory Ns on the time interval 0 ≤ s ≤ t, I consider
the posterior probability pt that the state is 1. The function pt may be assumed
to be right-continuous with left-hand limits. Because R yields no success in state
0, before the first success of the process Nt, the process pt satisfies a differential
equation

(1) ṗt = −πtλ1pt(1− pt).

At the first success, pt jumps to one.8

Delegation

I consider the situation in which transfers are not allowed and the principal is able
to commit to dynamic policies. At time 0, the principal chooses a set of policies
from which the agent chooses his preferred one. Since there is hidden information at
time 0, by the revelation principle, the principal’s problem is reduced to solving for
a map π : Θ → Π to maximize her expected payoff subject to the agent’ incentive
compatibility constraint (IC constraint, hereafter). Formally, I solve

sup

∫

Θ
Uρ(π(θ), p(θ))dF (θ),

subject to Uα(π(θ), p(θ)) ≥ Uα(π(θ
′), p(θ)) ∀θ, θ′ ∈ Θ,

over measurable π : Θ → Π.9

II. The single-player benchmark

In this section, I present player i’s preferred policy as a single player. This is a
standard problem. The policy preferred by player i is Markov with respect to the
posterior belief pt. It is characterized by a cutoff belief p∗i such that πt = 1 if pt ≥ p∗i
and πt = 0 otherwise. By standard results (see Keller, Rady and Cripps (2005)
Proposition 3.1, for instance), the cutoff belief is

(2) p∗i =
si

λ1hi +
(λ1hi−si)λ1

r

=
r

r + (λ1 + r)ηi
.

8In general, subscripts indicate either time or player. Superscripts refer to state. Parentheses contain
type or policy.

9Here, I define randomized policies and stochastic mechanisms following Aumann (1964). Let B[0,1]

(resp. Bk) denote the σ-algebra of Borel sets of [0, 1] (resp. R
k
+) and λ the Lebesgue measure on [0, 1],

where k is a positive integer. I denote the set of measurable functions from (Rk
+,Bk) to ([0, 1],B[0,1]) by

Fk and endow this set with the σ-algebra generated by sets of the form {f : f(s) ∈ A} with s ∈ R
k
+ and

A ∈ B[0,1]. The σ-algebra is denoted χk. Let Π∗ denote the space of pure policies. I impose on Π∗ the

product σ-algebra generated by (Fk, χk), ∀k ∈ N+. Following Aumann (1964), I define randomized policies
as measurable functions π̂ : [0, 1] → Π∗. According to π̂, a value ǫ ∈ [0, 1] is drawn uniformly from [0, 1]
and then the pure policy π̂(ǫ) is implemented. Analogously, I define stochastic mechanisms as measurable
functions π̂ : [0, 1]×Θ → Π∗. A value ǫ ∈ [0, 1] is drawn uniformly from [0, 1], along with the agent’s report
θ, determines which element of Π is chosen. For ease of exposition, my descriptions assume pure policies
and deterministic mechanisms. My results do not.
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Note that the cutoff belief p∗i decreases in ηi. Therefore, the agent’s cutoff belief p∗α
is lower than the principal’s p∗ρ, as he values R’s successes over S’s flow payoffs more
than the principal does.
Given the law of motion of belief (1) and the cutoff belief (2), player i’s preferred

policy given prior p(θ) can be identified with a fixed stopping time τi(θ): if the
first success occurs before the stopping time, use R forever after the first success;
otherwise, use R until the stopping time and then switch to S. Player i’s preferred
stopping time for a given θ is stated as follows:

CLAIM 1: Player i’s stopping time given odds ratio θ ∈ Θ is

τi(θ) =

{

1
λ1

log (r+λ1)θηi
r if

(r+λ1)θηi
r ≥ 1,

0 if
(r+λ1)θηi

r < 1.

Figure 1 illustrates the two players’ cutoff beliefs and their preferred stopping
times associated with two possible odds ratios θ′, θ′′ (with θ′ < θ′′). The prior
beliefs are thus p(θ′), p(θ′′) (with p(θ′) < p(θ′′)). The x-axis variable is time and
the y-axis variable is the posterior belief. On the y-axis are the two players’ cutoff
beliefs p∗ρ and p∗α. The solid and dashed lines depict how posterior beliefs evolve
when R is used exclusively and no success realizes.
The figure on the left-hand side shows that for a given odds ratio the agent prefers

to experiment longer than the principal does because his cutoff is lower than the
principal’s. The figure on the right-hand side shows that for a given player i, the
stopping time increases in the odds ratio, i.e., τi(θ

′) < τi(θ
′′). Therefore, both

players prefer to experiment longer given a higher odds ratio. Figure 1 makes clear
what agency problem the principal faces. The principal’s stopping time τρ(θ) is an
increasing function of θ. The agent prefers to stop later than the principal for a
given θ and thus has incentives to misreport his type. More specifically, lower types
(those types with a lower θ) have incentives to mimic high types to prolong the
experimentation.

State prob. p

time t

p(θ′)

p∗ρ
p∗α

τρ(θ′) τα(θ′)

1

0

State prob. p

time t

p(θ′′)

p(θ′)

p∗ρ
p∗α

τρ(θ′′)τρ(θ′) τα(θ′′)τα(θ′)

1

0

Figure 1. Thresholds and stopping times

Note: Parameters are ηα = 3/2, ηρ = 3/4, r/λ1 = 1, θ′ = 3/2, θ′′ = 4.
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Given that a single player’s preferred policy is always characterized by a stop-
ping time, one might expect that the solution to the delegation problem is a set
of stopping times. This is the case if there is no private information or no bias.
For example, if the distribution F is degenerate, information is symmetric. The
optimal delegation set is the principal’s preferred stopping time given her prior. If
ηα/ηρ equals one, the two players’ preferences are perfectly aligned. The principal,
knowing that for any prior the agent’s preferred stopping time coincides with hers,
offers the set of her preferred stopping times {τρ(θ) : θ ∈ Θ} for the agent to choose
from.
However, if the agent has private information and is also biased, it is unclear

how the principal should restrict his actions. Particularly, it is unclear whether the
principal would still offer a set of stopping times.10 For this reason, I am led to
consider the space of all policies.

III. A finite-dimensional characterization of the policy space

The space of all policies is large. In the first half of this section, I associate to each
policy—a (possibly complicated) stochastic process—a pair of numbers, called total

expected discounted resource pair, and show that this pair is a sufficient statistic for
this policy in terms of both players’ payoffs. Then, I solve for the set of feasible
total expected discounted resource pairs, which is a subset of R2 and can be treated
as the space of all policies.
This transformation allows me to reduce the dynamic delegation problem to a

static one. In the second half of this section, I characterize players’ preferences over
the feasible pairs and reformulate the delegation problem.

A. A policy as a pair of numbers

For a fixed policy π, I define w1(π) and w0(π) as follows:

(3) w1(π) ≡ E

[∫ ∞

0
re−rtπtdt

∣

∣

∣
π, 1

]

and w0(π) ≡ E

[∫ ∞

0
re−rtπtdt

∣

∣

∣
π, 0

]

.

The term w1(π) is the expected discounted sum of the resource allocated to R under
π in state 1. I refer to w1(π) as the total expected discounted resource (expected
resource, hereafter) allocated to R under π in state 1.11 Similarly, the term w0(π)
is the expected resource allocated to R under π in state 0. Both w1(π) and w0(π)
are in [0, 1] because π takes values in [0, 1]. Therefore, (w1,w0) defines a mapping
from the policy space Π to [0, 1]2.
A policy’s resource pair is important because all payoffs from implementing this

policy can be written in terms of its resource pair. Conditional on the state, the

10There exist examples in which restricting attention to stopping-time policies is sub-optimal. See the
Web Appendix.

11For a fixed policy π, the expected resource spent on R in state 1 is proportional to the expected
discounted number of successes, i.e., w1(π) = E

[∫∞

0 re−rtdNt | π, 1
]

/λ1.
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payoff rate of R is known, so the payoff from implementing this policy only depends
on how the resource is allocated between R and S. For instance, conditional on state
1, (λ1hi, si) is the payoff rate of R and S; (w1(π), 1−w1(π)) is the resource allocated
to R and S in expectation. Their product is the payoff conditional on state 1.12

Multiplying the payoffs conditional on the state by the initial state distribution gives
the payoff of this policy. I summarize the analysis above in the following lemma.

LEMMA 1 (A policy as a pair of numbers):
For a given policy π ∈ Π and a given prior p ∈ [0, 1], player i’s payoff can be written

as

(4) Ui(π, p) = p
(

λ1hi − si
)

w1(π) + (1− p)
(

λ0hi − si
)

w0(π) + si.

PROOF:
Player i’s payoff given policy π ∈ Π and prior p ∈ [0, 1] is

Ui(π, p) =E

[∫ ∞

0
re−rt [(1− πt)si + πtλ

ωhi] dt
∣

∣

∣ π, p

]

=pE

[∫ ∞

0
re−rt

[

si + πt
(

λ1hi − si
)]

dt
∣

∣

∣ π, 1

]

+ (1− p)E

[∫ ∞

0
re−rt

[

si + πt
(

λ0hi − si
)]

dt
∣

∣

∣
π, 0

]

=p
(

λ1hi − si
)

E

[∫ ∞

0
re−rtπtdt

∣

∣

∣
π, 1

]

+ (1− p)
(

λ0hi − si
)

E

[∫ ∞

0
re−rtπtdt

∣

∣

∣
π, 0

]

+ si

=p
(

λ1hi − si
)

w1(π) + (1− p)
(

λ0hi − si
)

w0(π) + si.

�

Lemma 1 shows that (w1(π),w0(π)) is a sufficient statistic for policy π for the
payoffs. Instead of working with a generic policy π, it is without loss of generality
to focus on (w1(π),w0(π)).

B. Feasible set

Let Γ denote the image of the mapping (w1,w0) : Π → [0, 1]2. I call Γ the feasible
set since it contains all possible (w1, w0) pairs that can be achieved by some policy
π. The following lemma shows that the feasible set is the convex hull of the image
of Markov policies under (w1,w0).

LEMMA 2 (Feasible set):

12Recall that, conditional on the state and over any interval, S generates a flow payoff proportional to
the resource allocated to it and R yields a success with probability proportional to the resource allocated to
it.
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The feasible set is the convex hull of
{

(w1(π),w0(π)) : π ∈ ΠM
}

, where ΠM is the

set of Markov policies with respect to the posterior belief of state 1.

PROOF:

The feasible set is convex given that the policy space Π is convexified. (Recall
that Π includes all randomized policies. See Footnote 9.) Therefore, I only need to
characterize its extreme points. A bundle ŵ is an extreme point of Γ if and only
if there exists (p1, p2) ∈ R2, ‖(p1, p2)‖ = 1 such that ŵ ∈ argmaxw∈Γ(p1, p2) · w.
Therefore, the feasible set can be found by taking the convex hull of the following
set

(5)

{

ŵ ∈ [0, 1]2
∣

∣

∣ ∃(p1, p2) ∈ R2, ‖(p1, p2)‖ = 1, ŵ ∈ argmax
w∈Γ

(p1, p2) · w
}

.

Comparing the objective (p1, p2)·w with (4), I can rewrite (p1, p2)·w as the expected
payoff of a single player i whose prior belief of state 1 is |p1|/(|p1|+ |p2|) and whose
payoff parameters are si = 0, λ1hi = sgn(p1), λ

0hi = sgn(p2). (Here, sgn(·) is the
sign function.) It follows that the argument of the maximum, argmaxw∈Γ(p1, p2) ·w,
coincides with player i’s optimal policy. This transforms the problem to a standard
optimization problem. Markov policies are sufficient. �

Here, I calculate the image of (w1,w0) for two classes of policies, which turn out to
be important for characterizing Γ. The first class consists of stopping-time policies:
allocate all resource to R until a fixed time; if at least one success occurs by then,
allocate all resource to R forever; otherwise, switch to S forever. As mentioned
before, a single player’s optimal policy if he wants to maximize his payoff is always
a stopping-time policy. The image of all stopping-time policies under (w1,w0) is
denoted Γst. It is easy to verify that

Γst =
{

(

w1, w0
)

∣

∣

∣ w0 = 1−
(

1− w1
)

r

r+λ1 , w1 ∈ [0, 1]
}

.

The second class consists of slack-after-success policies: allocate all resource to R
until the first success occurs; then allocate a fixed fraction to R. If the state is 0, all
resource is directed to R because no success ever occurs. Therefore, w0 equals one
for all slack-after-success policies. Meanwhile, w1 varies as I vary the fraction of the
resource directed to R after the first success. If no resource is directed to R after
the first success, w1 is the lowest. Note that this policy is the optimal one when
a single player wants to minimize his payoff. The image of all slack-after-success
policies under (w1,w0) is denoted Γsl. It is easy to verify that

Γsl =

{

(

w1, w0
)

∣

∣

∣
w0 = 1, w1 ∈

[

r

r + λ1
, 1

]}

.

The following lemma shows that the convex hull of these two classes is the feasi-
ble set, because they correspond to a single player’s optimal policy if he wants to
maximize or minimize his payoff.

12



LEMMA 3 (Conclusive news—feasible set):
The feasible set is co{Γst ∪ Γsl}, the convex hull of the image of stopping-time and

slack-after-success policies.

PROOF:
Based on the proof of Lemma 2, I want to show that the maximum in (5) is

achieved by either a stopping-time or slack-after-success policy. If p1 ≥ 0, p2 ≥ 0
(resp. p1 ≤ 0, p2 ≤ 0), maxw∈Γ(p1, p2) · w is achieved by the policy which directs
all resources to R (resp. S). If p1 > 0, p2 < 0, maxw∈Γ(p1, p2) · w is achieved
by a lower-cutoff Markov policy under which R is used exclusively if the posterior
belief is above the cutoff and S is used below. This Markov policy is effectively a
stopping time policy. If p1 < 0, p2 > 0, according to Keller and Rady (forthcoming),
maxw∈Γ(p1, p2) · w is achieved by a upper-cutoff Markov policy under which R is
used exclusively if the posterior belief is below the cutoff and S is used if above.
This is either a policy allocating all resource to R until the first success and then
switching to S, or a policy allocating all resource to S. �

Figure 2 depicts the image of all stopping-time policies and slack-after-success
policies when r/λ1 equals 1. The shaded area is co{Γst ∪ Γsl}. The (w1, w0) pairs
on the southeast boundary correspond to stopping-time policies. Those pairs on the
north boundary correspond to slack-after-success policies.

w
0(π)

w
1(π)0 1

1

Feasible set: Γ

Slack-after-success policies

sto
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e
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D
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ay

p
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ie
s

A: allocate all resource to S

B: switch to S at some τ ∈ (0,∞)
if no success occurs

C: allocate all resource to R

D: allocate all resource to R
until 1st success; then allocate
some fraction φ ∈ (0, 1) to R

E: allocate all resource to R
until 1st success;
then switch to S

bA

bB

b Cb
D

bE

Figure 2. Feasible set and example policies (r/λ1 = 1)

According to Lemma 3, the image of any policy π under (w1,w0) is in co{Γst∪Γsl}.
Also, for any (w1, w0) ∈ co{Γst ∪ Γsl}, I can identify a policy π (not necessarily a
unique one) such that (w1, w0) = (w1(π),w0(π)). From now on, when I refer to
a pair (w1, w0) ∈ Γ, I have in mind a policy such that w1 is the expected resource

allocated to R under this policy in state 1 and w0 is that in state 0. A (w1, w0) ∈ Γ
pair is also called a bundle.
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The feasible set Γ is bounded from above by the union of Γsl and {(w1, w0) |
ǫ(r/(r+λ1), 1)+ (1− ǫ)(0, 0), ǫ ∈ [0, 1]}. The latter set can be achieved by delaying
the policy corresponding to point E (see Figure 2) for some fixed amount of time. I
call this class of policies delay policies. From now on, I also refer to the union of Γsl

and {(w1, w0) | ǫ(r/(r+ λ1), 1) + (1− ǫ)(0, 0), ǫ ∈ [0, 1]} as the northwest boundary
of Γ. The fact that the northwest boundary is piecewise linear is peculiar to the
benchmark setting due to its degenerate feature that R yields no success in state 0.
In Subsection V.A and the Web Appendix, I characterize the feasible sets of more
general stochastic processes.

The shape of the feasible set only depends on the ratio r/λ1. Figure 3 shows
that the feasible set expands as r/λ1 decreases. Intuitively, if future payoffs are
discounted to a lesser extent, a player has more time to learn about the state. As
a result, he is more capable of directing resources to R in one state while avoiding
wasting resources on R in the other state.

w
0(π)

w
1(π)0 1

1

r/λ1 = 2

r/λ1 = 1

r/λ1 = 1/2

The feasible set expands as r/λ1 decreases.

Figure 3. Feasible sets as r/λ1 varies

For future reference, I also write the feasible set as Γ = {(w1, w0) | βse(w1) ≤ w0 ≤
βnw(w1), w1 ∈ [0, 1]} where βse, βnw are functions from [0, 1] to [0, 1], characterizing
the southeast and northwest boundaries of the feasible set,

βse
(

w1
)

≡ 1−
(

1− w1
)

r

r+λ1 ,

βnw
(

w1
)

≡







(

r + λ1
)

w1 if w1 ∈
[

0, 1
r+λ1

]

,

1 if w1 ∈
(

1
r+λ1

, 1r

]

.
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C. Preferences over feasible pairs

If a player knew the state, he would allocate all resources to R in state 1 and all
resources to S in state 0. However, this allocation cannot be achieved if the state
is unknown. If a player wants to direct more resources to R in state 1, he has to
allocate more resources to R before the arrival of the first success. Inevitably, more
resources will be wasted on R if the state is actually 0.

A player’s attitude toward the trade-off between spending more resources on R in
state 1 and wasting fewer resources on R in state 0 depends on how likely the state
is 1 and how much he gains from R’s successes over S’s flow payoffs. According to
Lemma 1, player i’s payoff given policy π and odds ratio θ is

Ui(π, p(θ)) =

(

θ

1 + θ
ηiw

1(π)− 1

1 + θ
w0(π)

)

(

si − λ0hi
)

+ si.

Recall that p(θ) = θ/(1 + θ) is the prior that the state is 1 given θ. Player i’s
preferences over (w1, w0) are characterized by upward-sloping indifference curves,
with slope θηi. For a given player, the indifference curves are steeper, the higher
the odds ratios. For a given odds ratio, the agent’s indifference curves are steeper
than the Principal’s (see Figure 4). Player i’s preferred bundle given θ, denoted
(w1

i (θ), w
0
i (θ)), is the point at which his indifference curve is tangent to the southeast

boundary of Γ. It is easy to verify that (w1
i (θ), w

0
i (θ)) corresponds to a stopping-time

policy with τi(θ) being the stopping time.

w
0(π)

w
1(π)0 1

1

Feasible set: Γ

bP

bA

Slope=θηρ

Principal’s indifference
curve given θ

Slope=θηα

Agent’s indifference
curve given θ

A: (w1
α(θ), w

0
α(θ))

P: (w1
ρ(θ), w

0
ρ(θ))

Figure 4. Indifference curves and preferred bundles

Note: Parameters are ηα = 3/2, ηρ = 3/4, r/λ1 = 1, θ =
√
10/3.
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D. Delegation problem reformulated

Based on Lemma 1 and 3, I reformulate the delegation problem. Given that each
policy can be represented by a bundle in Γ, the principal simply offers a direct
mechanism (w1, w0) : Θ → Γ, called a contract, such that

max
w1,w0

∫

Θ

(

θ

1 + θ
ηρw

1(θ)− 1

1 + θ
w0(θ)

)

dF (θ),(6)

subject to θηαw
1(θ)− w0(θ) ≥ θηαw

1(θ′)− w0(θ′), ∀θ, θ′ ∈ Θ.(7)

The IC constraint (7) ensures that the agent reports his type truthfully. The data
relevant to this problem include: (i) two payoff parameters ηα, ηρ; (ii) the feasible
set parametrized by r and λ1; and (iii) the type distribution F . The solution to this
problem, called the optimal contract, is denoted (w1∗(θ), w0∗(θ)).13

IV. Main results

To solve for the optimal contract, I start with a further simplification. Given a
direct mechanism (w1(θ), w0(θ)), let Uα(θ) denote the payoff that the agent of type
θ gets by maximizing over his report, i.e., Uα(θ) = maxθ′∈Θ[θηαw1(θ′)−w0(θ′)]. As
the optimal mechanism is truthful, Uα(θ) equals θηαw

1(θ)−w0(θ) and the envelope
condition implies that U ′

α(θ) = ηαw
1(θ). The principal’s payoff for a fixed θ is

θ

1 + θ
ηρw

1(θ)− 1

1 + θ
w0(θ) =

Uα(θ)

1 + θ
+

(ηρ − ηα)θw
1(θ)

1 + θ
.

The first term on the right-hand side corresponds to the “shared preference” between
the two players because they both prefer higher w1 value for a higher θ. The second
term captures the “preference divergence” as the principal is less willing to spend
resources on R in state 0 for a given increase in w1 than the agent.
By integrating the envelope condition, one obtains the standard integral condition

(8) θηαw
1(θ)− w0(θ) = ηα

∫ θ

θ
w1(θ̃)dθ̃ + θηαw

1(θ)− w0(θ).

Incentive compatibility of (w1, w0) also requires w1 to be a nondecreasing function
of θ: higher types (those types with a higher θ) are more willing to spend resources
on R in state 0 for a given increase in w1 than low types. Thus, condition (8) and
the monotonicity of w1 are necessary for incentive compatibility. As is standard,
these two conditions are also sufficient.
The principal’s problem is thus to maximize the expected payoff (6) subject to

the feasibility constraint w0(θ) ∈ [βse(w1(θ)), βnw(w1(θ))], the IC constraint (8),
and monotonicity constraint w1(θ′) ≥ w1(θ) for θ′ > θ. Note that this problem is

13Since both players’ payoffs are linear in (w1, w0), the optimal mechanism is deterministic.
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convex because the expected payoff (6) is linear in (w1(θ), w0(θ)) and the constraint
set is convex.
Substituting the IC constraint (8) into (6) and the feasibility constraint, and

integrating by parts allows me to eliminate w0(θ) from the problem except for its
value at θ. I denote w0(θ) by w0. Consequently, the principal’s problem reduces to
finding a function w1 : Θ → [0, 1] and a scalar w0 that solves

(OBJ) max
w1,w0∈Φ

(

ηα

∫ θ

θ
w1(θ)G(θ)dθ + θηαw

1(θ)− w0

)

,

subject to

βse(w1(θ)) ≤ θηαw
1(θ)− ηα

∫ θ

θ
w1(θ̃)dθ̃ − θηαw

1(θ) + w0, ∀θ ∈ Θ,(9)

βnw(w1(θ)) ≥ θηαw
1(θ)− ηα

∫ θ

θ
w1(θ̃)dθ̃ − θηαw

1(θ) + w0, ∀θ ∈ Θ,(10)

where

Φ ≡
{

w1, w0 | w1 : Θ → [0, 1], w1 nondecreasing;w0 ∈ [0, 1]
}

,

G(θ) =

(

1− H(θ)

H(θ)

)

+

(

ηρ
ηα

− 1

)

θh(θ)

H(θ)
, where h(θ) =

f(θ)

1 + θ
,H(θ) =

∫ θ

θ
h(θ̃)dθ̃.

Here, G(θ) consists of two terms. The first term is positive as it corresponds to the
“shared preference” between the two players toward higher w1 value for a higher θ.
The second term is negative as it captures the impact of the incentive problem on the
principal’s expected payoff due to the agent’s bias toward longer experimentation.
I denote this problem by P. The set Φ is convex and includes the monotonicity

constraint. Any contract (w1, w0) ∈ Φ uniquely determines an incentive compatible
direct mechanism based on (8). A contract is admissible if (w1, w0) ∈ Φ and the
feasibility constraint, (9) and (10), is satisfied.

A. A robust result: pooling at the top

With a continuum of types, I first show that types above some threshold are
offered the same (w1, w0) bundle. Intuitively, types at the very top prefer to exper-
iment more than what the principal would like for any prior. Therefore, the cost of
separating those types exceeds the benefit. This can be seen from the fact that the
first term—the “shared preference” term—of G(θ) reduces to 0 as θ approaches θ.
As a result, the principal finds it optimal to pool those types at the very top.
Let θp be the lowest value in Θ such that

(11)

∫ θ

θ̂
G(θ)dθ ≤ 0, for any θ̂ ≥ θp.
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My next result shows that types with θ ≥ θp are pooled.

PROPOSITION 1 (Pooling at the top):
An optimal contract (w1∗, w0∗) satisfies w1∗(θ) = w1∗(θp) for θ ≥ θp. It is optimal

for (9) or (10) to hold with equality at θp.

PROOF:

The contribution to (OBJ) from types with θ > θp is ηα
∫ θ
θp
w1(θ)G(θ)dθ. Substi-

tuting w1(θ) =
∫ θ
θp
dw1 + w1(θp) and integrating by parts, I obtain

(12) ηαw
1(θp)

∫ θ

θp

G(θ)dθ + ηα

∫ θ

θp

∫ θ

θ
G(θ̃)dθ̃dw1(θ).

The first term only depends on w1(θp). The second term depends on dw1(θ) for
all θ ∈ [θp, θ]. According to the definition of θp, the integrand of the second term,
∫ θ
θ G(θ̃)dθ̃, is weakly negative for all θ ∈ [θp, θ]. Therefore, it is optimal to set

dw1(θ) = 0 for all θ ∈ [θp, θ]. If θp = θ, all types are pooled. The principal offers her
preferred uninformed bundle, which is on the southeast boundary of Γ. If θp > θ,

the first term of (12) is zero as well because
∫ θ
θp
G(θ)dθ = 0. Adjusting w1(θp) does

not affect the objective function, so w1(θp) can be increased until either (9) or (10)
binds. �

The slope of the principal’s indifference curves is bounded from above by θηρ,
which is the slope if she believes that the agent’s type is θ. The slope of the agent’s
indifference curves is steeper than θηρ if his type is above θηρ/ηα. The following
corollary states that types above θηρ/ηα are offered the same bundle.

COROLLARY 1: The threshold of the top pooling segment, θp, is below θηρ/ηα.

PROOF:

SubstitutingG(θ) =
(

∫ θ
θ h(θ̃)dθ̃ +

(

ηρ
ηα

− 1
)

θh(θ)
)

/H(θ) and integrating by parts

yields
∫ θ

θ̂
G(θ)dθ =

1

H(θ)

∫ θ

θ̂

(

ηρ
ηα
θ − θ̂

)

h(θ)dθ.

For any θ̂ ∈ [θηρ/ηα, θ], the integrand (θηρ/ηα − θ̂)h(θ) is weakly negative for any
θ ∈ Θ. Therefore, θp ≤ θηρ/ηα. If θp > θ, θp is strictly below θηρ/ηα. Otherwise,
h(θ) must equal 0 for θ ∈ [θηρ/ηα, θ]. A contradiction.14 �

Note that for a given type distribution, the value of θp depends only on the ratio
ηρ/ηα but not on the magnitudes of ηρ, ηα. If ηρ/ηα = 1, both parties’ preferences
are perfectly aligned. The function G is positive for any θ, and thus the principal
optimally sets θp to be θ. As ηρ/ηα decreases, the agent’s bias grows. The principal

14If θp > θ, I obtain that
∫ θ
θp

(ηρθ − ηαθp)h(θ)dθ = 0.
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enlarges the top pooling segment by lowering θp. When ηρ/ηα is sufficiently close
to zero, the principal optimally sets θp to be θ in which case all types are pooled.

COROLLARY 2: For a fixed type distribution, θp increases in ηρ/ηα. Moreover,

θp = θ if ηρ/ηα = 1, and there exists z∗ ∈ [0, 1) such that θp = θ if ηρ/ηα ≤ z∗.

PROOF:
Let G(θ, z) be the value of G(θ) if ηρ/ηα equals z ∈ [0, 1]. Let θp(z) be the lowest

value in Θ such that
∫ θ
θ̂ G(θ, z)dθ ≤ 0 for any θ̂ ≥ θp(z). Because G(θ, z) increases in

z for a fixed θ, θp(z) also increases in z. If z = 1, G(θ, 1) = (H(θ)−H(θ))/H(θ). Sup-

pose θp(1) < θ. I have
∫ θ
θp(1)

G(θ, 1)dθ =
∫ θ
θp(1)

(θ− θp(1))h(θ)d/H(θ)θ ≤ 0. This im-

plies that h(θ) = 0 for all θ ∈ [θp(1), θ]. A contradiction. Therefore, θp(1) = θ. For

any θ̂ ∈ Θ and z ∈ [0, 1], I have
∫ θ
θ̂ G(θ, z)dθ =

(

z
∫ θ
θ̂ θh(θ)dθ − θ̂

∫ θ
θ̂ h(θ)dθ

)

/H(θ).

Let z∗ be minθ̂∈Θ

(

θ̂
∫ θ
θ̂ h(θ)dθ

)

/
(

∫ θ
θ̂ θh(θ)dθ

)

. If z ≤ z∗,
∫ θ
θ̂ G(θ, z)dθ ≤ 0 for any

θ̂ ∈ Θ and thus θp(z) = θ. �

If θp = θ, all types are pooled. The optimal contract consists of the principal’s
preferred uninformed bundle. From now on, I focus on the more interesting case in
which θp > θ.

B. Imposing a cutoff

To make progress, I assume for the rest of this section and Subsection V.A that the
type distribution satisfies the following condition. In the Web Appendix, I examine
how results change when this condition fails.

ASSUMPTION 2: For all θ ≤ θp, 1−G(θ) is nondecreasing.

When the density function f is differentiable, Assumption 2 is equivalent to the
following condition:

ηα
ηα − ηρ

≥ −
(

θ
f ′(θ)
f(θ)

+
1

1 + θ

)

, ∀θ ≤ θp.

This condition is satisfied for all density functions that are nondecreasing and holds
for the exponential distribution, the log-normal, the Pareto and the Gamma distri-
bution for a subset of their parameters. Also, it is satisfied for any density f with
θf ′/f bounded from below when ηα/ηρ is sufficiently close to 1.
My next result (Proposition 2) shows that under Assumption 2 the optimal con-

tract takes a very simple form. To describe it formally, I introduce the following:

DEFINITION 1: The cutoff rule is the contract (w1, w0) such that

(w1(θ), w0(θ)) =

{

(w1
α(θ), w

0
α(θ)) if θ ≤ θp,

(w1
α(θp), w

0
α(θp)) if θ > θp.
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Under the cutoff rule, types below θp are offered their preferred bundles (w1
α(θ), w

0
α(θ))

whereas types above θp are pooled at (w1
α(θp), w

0
α(θp)). I denote the cutoff rule by

(w1
θp
, w0

θp
). Figure 5 shows the delegation set corresponding to the cutoff rule. With

a slight abuse of notation, I identify a bundle on the southeast boundary of Γ with
the slope of the tangent line at that point. As θ varies, the principal’s preferred
bundle ranges from θηρ to θηρ and the agent’s ranges from θηα to θηα. The dele-
gation set is the interval between θηα and θpηα. According to Corollary 1, θpηα is
smaller than θηρ. Therefore, the upper bound of the delegation set is lower than
θηρ, the principal’s preferred bundle given the highest type θ.

w
0(π)

w
1(π)0 1

1

Feasible set: Γ

b
θηα

b
θηα

b
θηρ

b
θηρb
θpηα

Delegation set

Agent’s preferred
bundles

Principal’s preferred
bundles

Figure 5. Delegation set under cutoff rule

Note: Parameters are ηα = 1, ηρ = 3/5, r/λ1 = 1, θ = 1, θ = 5 with θ being uniformly distributed. The
pooling threshold is θp ≈ 1.99.

The next proposition shows that (w1
θp
, w0

θp
) is the optimal contract if Assumption

2 holds. Intuitively, Assumption 2 requires that the type distribution cannot be too
skewed toward low types. If some low types were very probable, the principal could
tailor her menu to exploit this concentration of low types, deviating from the cutoff
rule. Assumption 2 ensures that the type distribution is sufficiently smooth, so
that the principal has no particular interest to screen certain low types. When this
condition holds, the principal finds it optimal to fill in the “holes” in the delegate
set. Therefore, the interval delegation set is optimal.15

PROPOSITION 2 (Sufficiency):
The cutoff rule (w1

θp
, w0

θp
) is optimal.

15The discussion so far also suggests that Assumption 2 is necessary for a cutoff rule to be optimal. In
the Web Appendix, I show that no xp-cutoff contract is optimal for any xp ∈ Θ if Assumption 2 does not
hold. The xp-cutoff contract is defined as (w1(θ), w0(θ)) = (w1

α(θ), w
0
α(θ)) for θ < xp and (w1(θ), w0(θ)) =

(w1
α(xp), w

0
α(xp)) for θ ≥ xp.
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To prove Proposition 2, I utilize Lagrangian optimization methods (similar to
those used by Amador, Werning and Angeletos (2006)). It suffices to show that
(w1

θp
, w0

θp
) maximizes some Lagrangian functional. Then I establish the sufficient

first-order conditions and prove that they are satisfied at the conjectured contract
and Lagrange multipliers. The detailed proof is relegated to Appendix. In what
follows, I first illustrate how to implement the cutoff rule and then prove that it is
time-consistent.

C. Properties of the cutoff rule

Implementation

Under the cutoff rule, the agent need not report his type at time 0. Instead, the
optimal outcome for the principal can be implemented indirectly by calibrating a
constructed belief that the state is 1. It starts with the prior belief p(θp) and then is
updated as if the agent had no private information about the state. More specifically,
if no success occurs this belief is downgraded according to the differential equation
ṗt = −λ1pt(1− pt). Upon the first success this belief jumps to one.

The principal imposes a cutoff at p∗α. As long as the constructed belief stays above
the cutoff, the agent can decide whether to continue experimenting or not. As soon
as it drops to the cutoff, the agent is not allowed to operate R any more. This rule
does not bind for those types below θp, who switch to S voluntarily conditional on
no success, but does constrain those types above θp, who are forced to stop by the
principal.

Figure 6 illustrates how the constructed belief evolves over time. The solid arrow
shows that the belief is downgraded when R is used and no success has realized.
The dashed arrow shows that the belief jumps to one at the first success. The gray
area shows that those types below θp stop voluntarily as their posterior beliefs drop
to the agent’s cutoff p∗α. As illustrated by the black dot, a mass of higher types are
required to stop when the cutoff is reached.

There are many other ways to implement the cutoff rule. For example, the con-
structed belief may start with the prior belief p(θpηα/ηρ) and the principal imposes
a cutoff at p∗ρ. What matters is that the prior belief and the cutoff are chosen col-
lectively to ensure that exactly those types below θp are given the freedom to decide
whether to experiment or not.

Time consistency

Given that the agent need not report his type at time 0 and that the principal
commits to the cutoff rule before experimentation, a natural question to follow is
whether the cutoff rule is time-consistent. Does the principal find it optimal to fulfill
the contract that she commits to at time 0 after any history? Put differently, were
the principal given a chance to offer a new contract at any time, would she benefit
from doing so? As my next result shows, the cutoff rule is indeed time-consistent.
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Type θ stops. Types with θ ≥ θp stop.

b

Belief drifts down.

Belief jumps to 1
at 1st success.

Lower types stop
voluntarily.

b Principal forces
all to stop.

Constructed belief pt

time t

p(θp)

Cutoff: p∗α

1

0

Figure 6. Implementing the cutoff rule

PROPOSITION 3 (Time consistency):
The cutoff rule is time-consistent.

To show time-consistency, I need to consider three classes of histories on the equi-
librium path: (i) the first success occurs before the cutoff is reached; (ii) the agent
stops experimenting before the cutoff is reached; (iii) no success has occurred and
the agent has not stopped. Clearly, the principal has no incentives to alter the
contract after the first two classes of histories. Upon the arrival of the first success,
it is optimal to let the agent use R exclusively thereafter. Also, if the agent stops
experimenting before the cutoff is reached, his type is revealed. From the principal’s
point of view, the agent already over-experiments. Hence, she has no incentives to
ask the agent to use R any more.

It remains to show that the principal finds the cutoff set at time 0 to be optimal if
the agent has not stopped and there is no success. To gain some intuition, it is useful
to note that the cutoff rule separates the type space into two segments: low types
that are not constrained by the cutoff and high types that are constrained. The
cutoff rule does not distort those low types’ behaviors at all as they implement their
preferred policies. Hence, by setting a cutoff the principal gets no benefit from those
low types who are not constrained by the cutoff. Given that the cutoff has no effect
on low types’ behaviors, the principal chooses the cutoff by looking at only those
high types that will be constrained by the cutoff. The cutoff θp is chosen such that
conditional on the agent’s type being above θp, the principal finds it optimal to stop
experimenting when the cutoff becomes binding. This explains why commitment is
not required even if the principal learns more about the agent’s type as time passes
by.

Here, I sketch how to prove time consistency. First, I calculate the principal’s
updated belief about the type distribution given no success and that the agent has
not stopped. By continuing experimenting, the agent signals that his type is above
some level. Hence, the updated type distribution is a truncated one. Since the agent
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has also updated his belief about the state, I then rewrite the type distribution in
terms of the agent’s updated odds ratio. Next I show that given the new type
distribution the optimal contract is to continue the cutoff rule set at time 0. The
detailed proof is relegated to Appendix.

Over- and under-experimentation

The result of Proposition 2 can also be represented by a delegation rule mapping
types into stopping times as only stopping-time policies are assigned in equilibrium.
Figure 7 depicts such a rule. The x-axis variable is θ, ranging from θ to θ. The dotted
line represents the agent’s preferred stopping time and the dashed line represents the
principal’s. The delegation rule consists of (i) segment [θ, θp] where the stopping time
equals the agent’s preferred stopping time and (ii) segment [θp, θ] where the stopping
time is independent of the agent’s report (i.e., pooling segment). To implement, the
principal simply imposes a deadline at τα(θp).
Those types with θ ≥ θp all stop at τα(θp), which is the agent’s preferred stopping

time given type θp. Since the principal’s stopping time given type θpηα/ηρ equals
the agent’s stopping time given θp, the delegation rule intersects the principal’s
stopping time at type θpηα/ηρ. From the principal’s point of view, those types with
θ < θpηα/ηρ experiment too long while those types with θ > θpηα/ηρ stop too early.

Stopping time τ

type θ

τα(θp)

Principal’s preferred
stopping time

Agent’s preferred
stopping time

Delegation rule

θp θp
ηα
ηρ

Over-experimentation Under-experimentation

θ θ

Figure 7. Equilibrium stopping times

Note: Parameters are ηα = 6/5, ηρ = 1, r/λ1 = 1, θ = 1, θ = 5 with θ being uniformly distributed.

V. Discussions

A. More general stochastic processes

In the benchmark setting, I assume that the risky task never generates any suc-
cesses in state 0 so the first success reveals that the state is 1. Here, I examine
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the case in which 0 < λ0 < λ1. The risky task generates successes in state 0 as
well so players never fully learn the state. This happens, for instance, when a bad
project generates successes but at a lower intensity. Successes are indicative of a
good project but are not conclusive proof. The methodology can be readily ex-
tended to incorporate this setting. I first show how to reduce the policy space to a
two-dimensional feasible set. Then I prove the optimality of the cutoff rule and its
time-consistent property. In the Web Appendix, I extend the analysis to the general
class of Lévy bandits (Cohen and Solan (2013)).
For the rest of this subsection, unless otherwise specified I use the same notation as

in the benchmark setting. Recall that (w1(π),w0(π)) denotes the expected resource

allocated to R under π conditional on state 1 and state 0, and Γ the image of the
mapping (w1,w0) : Π → [0, 1]2. The following lemma characterizes the feasible set
Γ.

LEMMA 4 (Inconclusive news—feasible set):
There exist two functions βse, βnw : [0, 1] → [0, 1] such that Γ = {(w1, w0) | βse(w1) ≤
w0 ≤ βnw(w1), w1 ∈ [0, 1]}. The southeast boundary is given by βse(w1) = 1− (1−
w1)a

∗/(1+a∗), for some constant a∗ > 0. The northwest boundary βnw is concave,

nondecreasing, once continuously differentiable, having end points (0, 0) and (1, 1).

PROOF:
Based on the proof of Lemma 2, I want to show that the maximum in (5) is

achieved by either a lower-cutoff or upper-cutoff policy. If p1 ≥ 0, p2 ≥ 0 (resp.
p1 ≤ 0, p2 ≤ 0), maxw∈Γ(p1, p2) · w is achieved by the policy which directs all
resources to R (resp. S). If p1 > 0, p2 < 0, according to Keller and Rady (2010),
maxw∈Γ(p1, p2) · w is achieved by a lower-cutoff Markov policy which directs all
resource to R if the posterior belief is above the cutoff and to S if below. The cutoff
belief, denoted p∗, is given by p∗i /(1−p∗i ) = a∗/(1+a∗) where a∗ is the positive root
of equation r + λ0 − a∗(λ1 − λ0) = λ0(λ0/λ1)a

∗
. Let K(p) ≡ maxw∈Γ(p1, p2) · w.

If |p1|/(|p1| + |p2|) ≤ p∗, K(p) equals zero. If |p1|/(|p1| + |p2|) > p∗, I obtain

K(p) = −p2
(

−p2a∗
p1(1+a∗)

)a∗

/(a∗ + 1) + p1 + p2. It is easy to verify that the functional

form of the southeast boundary is

βse(w1) = 1− (1− w1)
a∗

a∗+1 , w1 ∈ [0, 1].

If p1 < 0, p2 > 0, according to Keller and Rady (forthcoming), maxw∈Γ(p1, p2) · w
is achieved by a upper-cutoff Markov policy under which R is used exclusively if
the posterior belief is below the cutoff and S is used if above. Let p∗∗ denote
this cutoff belief. The function K(p) is continuous, convex, and non-increasing in
|p1|/(|p1|+ |p2|). Except for a kink at p∗∗, K(p) is once continuously differentiable.
Hence, the northwest boundary of Γ is concave, nondecreasing, once continuously
differentiable, with the end points being (0, 0) and (1, 1). �

Figure 8 depicts the feasible set when r = 1/5, λ1 = 2/5, λ0 = (2 −
√
2)/5.

Unlike the benchmark setting, the northwest boundary is characterized by a once
continuously differentiable function. My next result shows that the cutoff rule as
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defined in Definition 1 is optimal under Assumption 2. This is the case because the
proof of Proposition 2, which only relies on the properties of the southeast boundary
of the feasible set, applies directly to the current setting.

w
0(π)

w
1(π)0 1

1

Feasible set: Γ

b
θηα

b
θηα

b
θηρ

b
θηρb
θpηα

Delegation set

Agent’s preferred
bundles

Principal’s preferred
bundles

Figure 8. Delegation set under cutoff rule: inconclusive news case

PROPOSITION 4 (Inconclusive news—sufficiency):
The cutoff rule is optimal when 0 < λ0 < λ1.

PROOF:
According to Lemma 4, the southeast boundary of the feasible set is given by

βse(w1) = 1− (1−w1)a
∗/(1+a∗), for some constant a∗ > 0. The proof of Proposition

2 applies directly here. �

The implementation of the cutoff rule, similar to that of the benchmark setting, is
achieved by calibrating a constructed belief which starts with the prior belief p(θp).
This belief is updated as follows: (i) if no success occurs, the belief drifts down
according to the differential equation ṗt = −(λ1 − λ0)pt(1− pt); and (ii) if a success
occurs at time t, the belief jumps from pt− to

pt =
λ1pt−

λ1pt− + λ0(1− pt−)
.

The principal imposes a cutoff at p∗α. The agent can choose to experiment or not
if this belief stays above the cutoff and are required to stop when it drops to the
cutoff. The gray areas in Figure 9 show that lower types stop voluntarily as their
posterior beliefs reach p∗α. The black dot shows that those types with θ > θp are
required to stop.
Figure 9 also highlights the difference between the benchmark setting, where the

belief jumps to one after the first success, and the inconclusive news setting, where
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the belief jumps up upon successes and then drifts down. Consequently, when
successes are inconclusive, the optimum can no longer be implemented by imposing
a fixed deadline. Instead, it takes the form of a sliding deadline. The principal
initially extends some time to the agent. Whenever a success realizes, more time is
granted. The agent is allowed to give up his time voluntarily. That is, the agent can
choose to switch to S before he uses up the time granted by the principal. After a
long stretch of time without success, the principal requires the agent to switch to S.

Type θ stops. Types with θ ≥ θp stop.

b

Belief drifts down.

Belief jumps
at successes.
Lower types stop
voluntarily.

b Principal forces
all to stop.

Constructed belief pt

time t

p(θp)

Cutoff: p∗α

1

0

Figure 9. Implementing the cutoff rule: inconclusive news

The cutoff rule is time consistent when successes are inconclusive. The intuition
is the same as in the benchmark setting: since the cutoff creates no distortion on
low types’ behaviors, the principal chooses the cutoff optimally conditional on the
agent being unconstrained by the cutoff. The proof is slightly different than the
benchmark setting as successes never fully reveal the state. I need to show that the
principal finds it optimal not to adjust the cutoff upon successes. The detailed proof
is relegated to Appendix.

PROPOSITION 5 (Inconclusive news—time consistency):
The cutoff rule is time-consistent when 0 < λ0 < λ1.

B. Biased toward the safe task: a lockup period

In this subsection, I consider the situations in which the agent is biased toward the
safe task, i.e., ηα < ηρ. This happens, for example, when a division (agent) conducts
an experiment which yields positive externalities to other divisions. Hence, the agent
does not internalize the total benefit that the experiment brings to the organization
(principal). Another possibility is that the agent does not perceive the risky task
to generate significant career opportunities compared with alternative activities. In
both cases, the agent has a preference to stop experimenting earlier.
To illustrate the main intuition, I assume that the lowest type agent prefers a

positive length of experimentation, i.e., τα(θ) > 0. Using the same methods as in
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the main model, I first show that types below some threshold are pooled. Intuitively,
types at the bottom prefer to experiment less than what the principal prefers to do
for any prior. The cost of separating those types exceeds the benefit. Then, I
show that under certain condition the optimal outcome for the principal can be
implemented by starting with a properly calibrated prior belief that the state is 1.
This belief is then updated as if the agent had no private information. As long as
this belief remains above a cutoff belief, the agent is required to operate R. As soon
as it drops to the cutoff, the principal keeps her hands off the project and lets the
agent decide whether to experiment or not.

In contrast to the main model, the agent has no flexibility until the cutoff belief is
reached. I call this mechanism the reversed cutoff rule. Those types with low enough
priors stop experimenting as soon as the cutoff is reached. Those with higher priors
are not constrained and thus implement their preferred policies. If successes are
conclusive, the principal simply sets up a lockup period during which the agent
uses R regardless of the outcome. After the lockup period ends, the agent is free
to experiment or not. If successes are inconclusive, the principal initially sets up
a lockup length. Each time a success occurs, the lockup length is extended. The
agent has no freedom until the lockup period ends.

Notably, the reserved cutoff rule is not time-consistent. Whenever those high
types voluntarily stop experimenting, they perfectly reveal their types. The princi-
pal learns that these high types under-experiment compared with her optimal exper-
imentation policy, tempted to command the agent to experiment further. Therefore,
there is tension on the principal’s ability to commit.

Given a direct mechanism (w1(θ), w0(θ)), let Uα(θ) denote the payoff that the
agent of type θ gets by maximizing over his report. As the optimal mechanism is
truthful, Uα(θ) equals θηαw

1(θ) − w0(θ) and the envelope condition implies that
U ′
α(θ) = ηαw

1(θ). By integrating the envelope condition, one obtains the standard
integral condition

θηαw
1(θ)− w0(θ) = θηαw

1(θ)− w0 −
∫ θ

θ
ηαw

1(θ̃)dθ̃,

where w0 stands for w0(θ). Substituting w0(θ) and simplifying, I reduce the problem
to finding a function w1 : Θ → [0, 1] and a scalar w0 that solves

(OBJ-S) max
w1,w0∈Φs

(

θηαw
1(θ)− w0 − ηα

∫ θ

θ
w1(θ)Gs(θ)dθ

)

,
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subject to

βse(w1(θ)) ≤ θηαw
1(θ) +

∫ θ

θ
ηαw

1(θ̃)dθ̃ − θηαw
1(θ) + w0, ∀θ ∈ Θ,(13)

βnw(w1(θ)) ≥ θηαw
1(θ) +

∫ θ

θ
ηαw

1(θ̃)dθ̃ − θηαw
1(θ) + w0, ∀θ ∈ Θ,(14)

where

Φs ≡
{

w1, w0 | w1 : Θ → [0, 1], w1 nondecreasing;w0 ∈ [0, 1]
}

,

Gs(θ) =
H(θ)

H(θ)
+

(

1− ηρ
ηα

)

θh(θ)

H(θ)
, where h(θ) =

f(θ)

1 + θ
,H(θ) =

∫ θ

θ
h(θ̃)dθ̃.

I denote this problem by Ps. Let θsp be the highest value in Θ such that

(15)

∫ θ̂

θ
Gs(θ)dθ ≤ 0, for any θ̂ ≤ θsp.

My next result shows that types with θ ≤ θsp are pooled.

PROPOSITION 6 (Pooling on bottom):
An optimal contract (w1∗, w0∗) satisfies w1∗(θ) = w1∗(θsp) for θ ≤ θsp. It is optimal

for (13) or (14) to hold with equality at θsp.

PROOF:

The contribution to (OBJ-S) from types with θ < θsp is −ηα
∫ θsp
θ w1(θ)Gs(θ)dθ.

Substituting w1(θ) = w1(θsp)−
∫ θsp
θ dw1 and integrating by parts, I obtain

(16)

−ηα
∫ θsp

θ
w1(θ)Gs(θ)dθ = −ηαw1(θsp)

∫ θsp

θ
Gs(θ)dθ + ηα

∫ θsp

θ

∫ θ

θ
Gs(θ̃)dθ̃dw1(θ).

The first term only depends on w1(θsp). The second term depends on dw1(θ) for
all θ ∈ [θ, θsp]. According to the definition of θsp, the integrand of the second term,
∫ θ
θ G

s(θ̃)dθ̃, is weakly negative for all θ ∈ [θ, θsp]. Therefore, it is optimal to set

dw1(θ) = 0 for all θ ∈ [θ, θsp]. If θ
s
p = θ, all types are pooled. The principal offers her

preferred uninformed bundle, which is on the southeast boundary of Γ. If θsp < θ,

the first term of (16) is zero as well because
∫ θsp
θ Gs(θ)dθ = 0. Adjusting w1(θsp)

does not affect the objective function, so w1(θsp) can be decreased until either (13)
or (14) binds. �

For the rest of this subsection, I focus on the more interesting case in which θsp < θ.
I first define the reversed cutoff rule.
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DEFINITION 2: The reversed cutoff rule is the contract (w1, w0) such that

(w1(θ), w0(θ)) =

{

(w1
α(θ

s
p), w

0
α(θ

s
p)) if θ ≤ θsp,

(w1
α(θ), w

0
α(θ)) if θ > θsp.

I denote this rule by (w1
θsp
, w0

θsp
). My next result gives a sufficient condition under

which the reserved cutoff rule is optimal.

PROPOSITION 7 (Sufficiency-reversed cutoff rule):
The reversed cutoff rule (w1

θsp
, w0

θsp
) is optimal if Gs(θ) is nondecreasing when θ ≥ θsp.

If f(θ) is differentiable, Gs(θ) being nondecreasing for θ ≥ θsp is equivalent to re-
quiring that

θf ′(θ)
f(θ)

≤ ηα
ηρ − ηα

− 1

1 + θ
, ∀θ ∈ [θsp, θ].

It is satisfied for any density f with θf ′/f bounded from above when ηρ/ηα is
sufficiently close to 1, or equivalently when two players’ preferences are sufficiently
aligned. The proof is relegated to Appendix.

C. Optimal contract with transfers

In this subsection, I examine the optimal contract when the principal can make
transfers to the agent. From both theoretical and empirical point of view, it is
important to know how the results change when transfers are allowed. I assume that
the principal has full commitment power, that is, she can write a contract specifying
both an experimentation policy π and a transfer scheme c at the outset of the game.
I also assume that the agent is protected by limited liability so only non-negative
transfers from the principal to the agent are allowed. An experimentation policy π
is defined in the same way as before. A transfer scheme c offered by the principal is a
non-negative, non-decreasing process {ct}t≥0, which may depend only on the history
of events up to t, where ct denotes the cumulative transfers the principal has made to
the agent up to time t (inclusive).16 Let Π∗ denote the set of all possible policy and
transfer scheme pairs. Under perfect commitment, the revelation principle applies.
A direct mechanism specifies for each type an experimentation policy and transfer
scheme pair. Again, it is difficult to solve for the optimal contract directly as the
contract space Π∗ is very large.
A methodological contribution of this paper is to represent a stochastic policy by a

summary statistic, to characterize the range of all summary statistics and to reduce
the dynamic contract problem to a static one. This method is not restricted to the
delegation model but can be generalized to the case with transfers. Each policy
and transfer pair, in terms of payoffs, can be represented by a summary statistic of
four numbers. The first two numbers are the expected resource directed to the risky

16Formally, the number of successes achieved up to time t (inclusive) defines the point process {Nt}t≥0.
Let F := {Ft}t≥0 denote the filtration generated by the process π andNt. The process {ct}t≥0 is F-adapted.
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task conditional on state 1 and that conditional on state 0. The last two numbers
are the total discounted expected transfer made to the agent conditional on state 1
and that conditional on state 0, summarizing the transfer payments that the agent
expects to receive conditional on the state. Given that both players are risk-neutral,
their payoffs can be written as a function of these four numbers. The range of these
summary statistics as we vary across all possible policy and transfer scheme pairs
can be treated as the feasible set when transfers are allowed. This feasible set is a
subset of R4

+ and can be considered as the new contract space. This reduces the
dynamic contracting problem to a static one. Given that the problem is now static,
I utilize the optimal control methods (similar to those used by Krishna and Morgan
(2008)) to solve for the optimal contract. The detailed analysis can be found in the
Web Appendix. Here, I briefly introduce the results, focusing on when and how the
transfers are made. (I assume a larger agent’s return in this illustration.)
Under certain regularity conditions, when the bias ηα/ηρ is relatively small the

optimal contract consists of three segments, i.e., [θ, θ∗], [θ∗, θp] and [θp, θ]. When the
agent’s type is below θ∗, the experimentation policy is between that optimal for the
principal and that optimal for the agent. So, compared with the delegation problem,
the low types stop earlier when transfers are allowed. In fact, the lowest type’s
experimentation policy is the socially optimal one and he receives the highest level
of transfer payment. As the type increases, the experimentation policy shifts toward
the agent’s preferred one, with a corresponding decrease in the transfer payments.
When θ ∈ [θ∗, θp], the experimentation policy that is preferred by the agent is offered
and no transfers are made. It is as if the agent is free to choose any experimentation
policy. For types above θp, the agent always chooses the bundle preferred by type
θp. Effectively, there is pooling over [θp, θ]. To sum up, the principal makes transfers
to the low types, lets intermediate types do whatever they like, and pools the high
types. When the bias is small, the only difference when transfers are allowed is that
the low types are “bribed” to stop experimentation earlier than in the delegation
model. When the bias ηα/ηρ is large, the optimal contract consists of only two

segments which are denoted [θ, θ̃p] and [θ̃p, θ]. When θ ∈ [θ, θ̃p], the equilibrium
policy is between the principal’s preferred policy and the agent’s preferred one. The
contract bundle shifts toward the agent’s preferred one as the type increases with a
corresponding decrease in the transfers. When θ ∈ [θ̃p, θ], all types are pooled. The
pooling bundle specifies a lower level of experimentation than what the principal
prefers given the pooling segment [θ̃p, θ]. There is no segment in which the agent
implements his preferred bundle.

VI. Concluding remarks

This paper discusses how organizations can optimally manage innovative activi-
ties, particularly how much control right over resource allocation shall be left to the
agent over time with the presence of misaligned preferences and hidden information.
From this aspect, this paper contributes to the discussion of how to optimally al-
locate formal authority and real authority within organizations (Aghion and Tirole
(1997)).
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The optimal delegation rule requires the agent to achieve a success before the next
deadline to keep the project alive. It is simple, time-consistent and already imple-
mented in organizations such as Google. Google encourages its employees to come
up with new ideas and build a prototype. If the initial result is satisfactory, Google
makes it an official project, funds it and sets the next pair of goal and deadline.
The goal must be met before the deadline to secure future funding. Successful prod-
ucts including Gmail, Google Earth and Google Maps survived all the deadlines.
Needless to say, many more did not. For example, the once highly publicized and
well-funded Google Wave was canceled in August 2010 as it failed to achieve the
goal set by Google executives before then.
Besides in-house innovation, my results also apply to the government sector,

which often experiments reforms in public policy. The constituents delegate reforms
to politicians. Legislatures delegate policy-making to their standing committees.
Throughout the process transfers are prohibited to prevent corruption. It has been
concluded that every reform has consequences that cannot be fully known until it
has been implemented (Strulovici (2010)). The constituents as well as the govern-
ment learn the effects of a reform that gradually unfold. If a reform is thought to
be a failure, it can be legislatively repealed, executively overturned or allowed to
automatically expire with a sunset provision. Politicians hope to prolong the policy
experimentation as they gain the most popularity from successful reforms that they
initiated. My sliding deadline rule suggests that if politicians are better informed
on policies, every reform should carry a sunset provision. They should be renewed
only upon demonstrated successes.

REFERENCES

Aghion, Philippe, and Jean Tirole. 1997. “Formal and Real Authority in Or-
ganizations.” Journal of Political Economy, 105(1): 1–29.

Alonso, Ricardo, and Niko Matouschek. 2008. “Optimal Delegation.” Review

of Economic Studies, 75(1): 259–293.

Amador, Manuel, and Kyle Bagwell. 2013. “The Theory of Optimal Delegation
with an Application to Tariff Caps.” Econometrica, 81(4): 1541–1599.

Amador, Manuel, Iván Werning, and George-Marios Angeletos. 2006.
“Commitment vs. Flexibility.” Econometrica, 74(2): 365–396.

Ambrus, Attila, and Georgy Egorov. 2013. “Comment on “Commitment vs.
Flexibility”.” Econometrica, 81(5): 2113–2124.

Aumann, Robert J. 1964. “Mixed and Behavior Strategies in Extensive Games.”
In Advances in Game Theory. 627–650. Princeton, NJ:Princeton University Press.

Bergemann, Dirk, and Ulrich Hege. 1998. “Venture Capital Financing, Moral
Hazard, and Learning.” Journal of Banking and Finance, 22(6): 703–735.

31



Bergemann, Dirk, and Ulrich Hege. 2005. “The Financing of Innovation:
Learning and Stopping.” RAND Journal of Economics, 36(4): 719–752.

Bolton, Patrick, and Christopher Harris. 1999. “Strategic Experimentation.”
Econometrica, 67(2): 349–374.

Coase, Ronald H. 1937. “The Nature of the Firm.” Economica, 4: 386–405.

Cohen, Asaf, and Eilon Solan. 2013. “Bandit Problems with Lévy Processes.”
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Appendix

PROOF OF PROPOSITION 2:
I extend βse to the real line in the following way: for some ŵ1 in (w1

α(θ), 1).
17

β̂(w1) =











(βse)′(0)w1 if w1 ∈ (−∞, 0),

βse(w1) if w1 ∈ [0, ŵ1],

βse(ŵ1) + (βse)′(ŵ1)(w1 − ŵ1) if w1 ∈ (ŵ1,∞).

The function β̂ is continuously differentiable, convex and lower than βse on [0, 1]. I

then define a problem P̂ which differs from P in two aspects: (i) the constraint (10)
is dropped; (ii) the constraint (9) is replaced with the following:

(A1) θηαw
1(θ)− ηα

∫ θ

θ
w1(θ̃)dθ̃ − θηαw

1(θ) + w0 − β̂(w1(θ)) ≥ 0, ∀θ ∈ Θ.

If (w1, w0) satisfies (9) and (10), it also satisfies (A1). Therefore, P̂ is a relaxation

of P. If the solution to P̂ is admissible, it is also the solution to P.
Define the Lagrangian functional associated with P̂ as

L̂(w1, w0 | Λ) = θηαw
1(θ)− w0 + ηα

∫ θ

θ
w1(θ)G(θ)dθ

+

∫ θ

θ

(

θηαw
1(θ)− ηα

∫ θ

θ
w1(θ̃)dθ̃ − θηαw

1(θ) + w0 − β̂(w1(θ))

)

dΛ,

where Λ is the Lagrange multiplier associated with (A1). Fixing a nondecreasing Λ,

the Lagrangian is a concave functional on Φ because all terms in L̂(w1, w0 | Λ) are
linear in (w1, w0) except

∫ θ
θ −β̂(w1(θ))dΛ which is concave in w1. Without loss of

generality I set Λ(θ) = 1. Integrating the Lagrangian by parts yields

L̂(w1, w0 | Λ) =
(

θηαw
1(θ)− w0

)

Λ(θ) +

∫ θ

θ

(

θηαw
1(θ)− β̂(w1(θ))

)

dΛ(A2)

+ ηα

∫ θ

θ
w1(θ) [Λ(θ)− (1−G(θ))] dθ.

17Such a ŵ1 exists because θ is finite and hence w1
α(θ) is bounded away from 1.
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The following lemma provides a sufficient condition for (w̃1, w̃0) ∈ Φ to solve P̂.

LEMMA 5 (Lagrangian—sufficiency):

A contract (w̃1, w̃0) ∈ Φ solves P̂ if (A1) holds with equality and there exists a

nondecreasing Λ̃ such that L̂(w̃1, w̃0|Λ̃) ≥ L̂(w1, w0|Λ̃), ∀(w1, w0) ∈ Φ.

PROOF:
I first introduce the problem studied in Section 8.4 of Luenberger, 1996, p. 220:

maxx∈X Q(x) subject to x ∈ Ω and J(x) ∈ P , where Ω is a subset of the vector
space X, Q : Ω → R and J : Ω → Z; where Z is a normed vector space, and P is a
nonempty positive cone in Z. To apply Theorem 1 in Luenberger, 1996, p. 220, set

X = {w1, w0 | w1 : Θ → R and w0 ∈ R}, Ω = Φ,(A3)

Z = {z | z : Θ → R with sup
θ∈Θ

|z(θ)| <∞}, with the norm‖z‖ = sup
θ∈Θ

|z(θ)|,

P = {z | z ∈ Z and z(θ) ≥ 0, ∀θ ∈ Θ}.

I let the objective in (OBJ) be Q and the left-hand side of (A1) be J . This result
holds because the hypotheses of Theorem 1 in Luenberger, 1996, p. 220 are met. �
To apply Lemma 5 and show that (w̃1, w̃0) maximizes L̂(w1, w0|Λ̃) for some Λ̃, I
modify Lemma 1 in Luenberger, 1996, p. 227 which concerns the maximization of a
concave functional in a convex cone. Note that Φ is not a convex cone, so Lemma
1 in Luenberger, 1996, p. 227 does not apply directly in the current setting.

LEMMA 6 (First-order conditions):
Let L be a concave functional on Ω, a convex subset of a vector space X. Take

x̃ ∈ Ω. Suppose that the Gâteaux differentials ∂L(x̃;x) and ∂L(x̃;x − x̃) exist for

any x ∈ Ω and that ∂L(x̃;x − x̃) = L(x̃;x) − L(x̃; x̃).18 A sufficient condition that

x̃ ∈ Ω maximizes L over Ω is that ∂L(x̃;x) ≤ 0, ∀x ∈ Ω and ∂L(x̃; x̃) = 0.

PROOF:
For x ∈ Ω and 0 < ǫ < 1, the concavity of L implies that

L(x̃+ ǫ(x− x̃)) ≥ L(x̃) + ǫ (L(x)− L(x̃))

=⇒ L(x)− L(x̃) ≤ 1

ǫ
(L(x̃+ ǫ(x− x̃))− L(x̃)) .

As ǫ→ 0+, the right-hand side of this equation tends toward ∂L(x̃;x−x̃). Therefore,
I obtain

L(x)− L(x̃) ≤ ∂L(x̃;x− x̃) = ∂L(x̃;x)− ∂L(x̃; x̃).

Given that ∂L(x̃; x̃) = 0 and ∂L(x̃;x) ≤ 0 for all x ∈ Ω, the sign of ∂L(x̃;x− x̃) is
negative. Therefore, L(x) ≤ L(x̃) for all x ∈ Ω. �

18Let X be a vector space, Y a normed space and D ⊂ X. Given a transformation T : D → Y , if for
x̃ ∈ D and x ∈ X the limit limǫ→0 (T (x̃+ ǫx)− T (x̃)) /ǫ exists, then it is called the Gâteaux differential
at x̃ with direction x and is denoted ∂T (x̃;x). If the limit exists for each x ∈ X, T is said to be Gâteaux
differentiable at x̃.
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Next, I prove Proposition 2 based on Lemma 5 and Lemma 6. To apply Lemma
6, let X and Ω be the same as in (A3). Fixing a nondecreasing Λ, the Lagrangian
(A2) is a concave functional on Φ. By applying Lemma A.1 in Amador, Wern-

ing and Angeletos (2006), it is easy to verify that ∂L̂(w1
θp
, w0

θp
;w1, w0 | Λ) and

∂L̂(w1
θp
, w0

θp
; (w1, w0) − (w1

θp
, w0

θp
) | Λ) exist for any (w1, w0) ∈ Φ.19 The linearity

condition is also satisfied

∂L̂(w1
θp , w

0
θp ; (w

1, w0)− (w1
θp , w

0
θp) | Λ)

=∂L̂(w1
θp , w

0
θp ;w

1, w0 | Λ)− ∂L̂(w1
θp , w

0
θp ;w

1
θp , w

0
θp | Λ).

So the hypotheses of Lemma 6 are met. The Gâteaux differential at (w1
θp
, w0

θp
) is

∂L̂(w1
θp , w

0
θp ;w

1, w0 | Λ) =
(

θηαw
1(θ)− w0

)

Λ(θ) + ηα

∫ θ

θp

(θ − θp)w
1(θ)dΛ

+ ηα

∫ θ

θ
w1(θ) [Λ(θ)− (1−G(θ))] dθ, ∀(w1, w0) ∈ Φ.(A4)

Next, I construct a nondecreasing multiplier Λ̃ in a similar manner as in Proposition
3 in Amador, Werning and Angeletos (2006), such that the first-order conditions

∂L̂(w1
θp
, w0

θp
;w1, w0 | Λ̃) ≤ 0 and ∂L̂(w1

θp
, w0

θp
;w1

θp
, w0

θp
| Λ̃) = 0 are satisfied for

any (w1, w0) ∈ Φ. Let Λ̃(θ) = 0, Λ̃(θ) = 1 − G(θ) for θ ∈ (θ, θp], and Λ̃(θ) = 1
for θ ∈ (θp, θ]. The jump at θ is upward since 1 − G(θ) is nonnegative. The jump

at θp is G(θp), which is nonnegative based on the definition of θp. Therefore, Λ̃ is

nondecreasing. Substituting Λ̃ into (A4) yields

∂L̂(w1
θp , w

0
θp ;w

1, w0 | Λ̃) = ηα

∫ θ

θp

w1(θ)G(θ)dθ = ηα

∫ θ

θp

(

∫ θ

θ
G(θ̃)dθ̃

)

dw1(θ),

where the last equality follows by integrating by parts, which can be done given the
monotonicity of w1 and by the definition of θp. This Gâteaux differential is zero at
(w1

θp
, w0

θp
) and, by the definition of θp, it is nonpositive for all w1 nondecreasing. It

follows that the first-order conditions are satisfied for all (w1, w0) ∈ Φ. By Lemma

6, (w1
θp
, w0

θp
) maximizes L̂(w1, w0 | Λ̃) over Φ. By Lemma 5, (w1

θp
, w0

θp
) solves P̂.

Because (w1
θp
, w0

θp
) is admissible, it solves P. �

PROOF OF PROPOSITION 3:
Let θ∗α = p∗α/(1− p∗α) be the odds ratio at which the agent is indifferent between

continuing and stopping. After operating R for δ > 0 without success, the agent
of type θ updates his odds ratio to θe−λ

1δ, referred to as his type at time δ. Let
θδ = max{θ, θ∗αeλ

1δ}. After a period of δ with no success, only those types above θδ

19The observations made by Ambrus and Egorov (2013) do not apply to the results of Amador, Werning
and Angeletos (2006) that my proof relies on.
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remain. The principal’s updated belief about the agent’s type distribution, in terms
of his type at time 0, is given by

f0δ (θ) =











[

1−p(θ)
(

1−e−λ1δ
)]

f(θ)
∫ θ
θδ
[1−p(θ)(1−e−λ1δ)]f(θ)dθ

if θ ∈ [θδ, θ],

0 otherwise.

Here, 1− p(θ)(1− e−λ
1δ) is the probability that no success occurs from time 0 to δ

conditional on the agent’s type being θ at time 0. The principal’s belief about the
agent’s type distribution, in terms of his type at time δ, is given by

fδ(θ) =

{

f0δ (θe
λ1δ)eλ

1δ if θ ∈ [θδe
−λ1δ, θe−λ

1δ],

0 otherwise.

I prove that continuing the cutoff rule is optimal by showing two things. First, given
fδ at time δ, the threshold of the pooling segment is θpe

−λ1δ. Second, if Assumption

2 holds for θ ≤ θp under f , it holds for θ ≤ θpe
−λ1δ under fδ. Given fδ over

θ ∈ [θδe
−λ1δ, θe−λ

1δ], I define hδ, Hδ, Gδ as follows:

hδ(θ) =
fδ(θ)

1 + θ
, and Hδ(θ) =

∫ θ

θδe
−λ1δ

hδ(θ̃)dθ̃,

Gδ(θ) =
Hδ(θe

−λ1δ)−Hδ(θ)

Hδ(θe−λ
1δ)

+

(

ηρ
ηα

− 1

)

θ
hδ(θ)

Hδ(θe−λ
1δ)
.

Substituting fδ(θ) = f0δ (θe
λ1δ)eλ

1δ into hδ(θ) and simplifying, I obtain

hδ(θ) =
f(θeλ

1δ)eλ
1δ

C(1 + θeλ1δ)
, where C =

∫ θ

θδ

[

1− p(θ)
(

1− e−λ
1δ
)]

f(θ)dθ.

By simplifying and making a change of variables z = eλ
1δθ, I obtain the following

∫ θe−λ1δ

θpe−λ1δ

(

ηρθ − ηαθpe
−λ1δ

) fδ(θ)

1 + θ
dθ =

1

Ceλ1δ

∫ θ

θp

(ηρz − ηαθp)
f(z)

1 + z
dz.

Therefore, if the threshold of the pooling segment given f is θp, then the threshold

of the pooling segment at time δ is θpe
−λ1δ. The condition required by Assumption

2 is that 1 − Gδ(θ) is nondecreasing for θ ≤ θpe
−λ1δ. The term 1 − Gδ(θ) can be

written in terms of f(θ) by making a change of variables z = eλ
1δθ

1−Gδ(θ) =
1

C

[

∫ z

θδ

f(z̃)

1 + z̃
dz̃ +

(

ηρ
ηα

− 1

)

z
f(z)

1 + z

]

,
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If Assumption 2 holds for all θ ≤ θp given f , it holds for all θ ≤ θpe
−λ1δ given fδ.�

PROOF OF PROPOSITION 5:

Suppose that a success occurs at time t. Before the success, the type distribution
is denoted ft−. Without loss of generality, suppose that the support is [θ, θ]. Let
Q(θ, dt) be the probability that a success occurs in an infinitesimal interval [t, t+dt)

given type θ: Q(θ, dt) = p(θ)(1− e−λ1dt)+ (1− p(θ))(1− e−λ0dt). Given a success at
time t, the principal’s updated belief about the agent’s type distribution, in terms
of his type at time t−, is

f∗t (θ) = lim
dt→0

ft−(θ)Q(θ, dt)
∫ θ
θ ft−(θ)Q(θ, dt)dθ

=
ft−(θ)

[

p(θ)λ1 + (1− p(θ))λ0
]

∫ θ
θ ft−(θ) [p(θ)λ

1 + (1− p(θ))λ0] dθ
.

After the success, the agent of type θ updates his odds ratio to θλ1/λ0. Therefore,
the principal’s belief about the agent’s type distribution, in terms of his type at time
t, is

ft(θ) =

{

f∗t
(

θλ0/λ1
)

λ0/λ1 if θ ∈
[

θλ1/λ0, θλ1/λ0
]

,

0 otherwise.

Following the same argument as in Subsection A, I can show that (i) if the threshold
of the pooling segment given ft− is θp, the threshold of the pooling segment given ft
is θpλ

1/λ0; (ii) if Assumption 2 holds for θ ≤ θp given ft−, it holds for θ ≤ θpλ
1/λ0

given ft. �

PROOF OF PROPOSITION 7:

I define a problem P̂s which differs from Ps in two aspects: (i) the constraint (14)
is dropped; and (ii) the constraint (13) is replaced with the following:

θηαw
1(θ) +

∫ θ

θ
ηαw

1(θ̃)dθ̃ − θηαw
1(θ) + w0 − β̂(w1(θ)) ≥ 0, ∀θ ∈ Θ.

Define the Lagrangian functional associated with P̂s as

L̂s(w1, w0 | Λ) = θηαw
1(θ)− w0 − ηα

∫ θ

θ
w1(θ)Gs(θ)dθ

+

∫ θ

θ

(

θηαw
1(θ) +

∫ θ

θ
ηαw

1(θ̃)dθ̃ − θηαw
1(θ) + w0 − β̂(w1(θ))

)

dΛ.

Based on Lemma 5 and 6, it suffices to construct a nondecreasing Λ such that
the first-order conditions ∂L̂s(w1

θsp
, w0

θsp
;w1, w0 | Λ) ≤ 0 and ∂L̂s(w1

θsp
, w0

θsp
;w1

θsp
, w0

θsp
|

Λ) = 0 are satisfied for any (w1, w0) ∈ Φs. Let Λ(θ) = 0 for θ ∈ [θ, θsp), Λ(θ) = Gs(θ)

for θ ∈ [θsp, θ), and Λ(θ) = 1. The jump at θsp is nonnegative according to the

definition of θsp. The jump at θ is nonnegative because Gs(θ) ≤ 1 for all θ. If Gs(θ)

is nondecreasing for θ ∈ [θp, θ], Λ(θ) is nondecreasing. �
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Appendix: For Online Publication

B1. A special case: two types

In this section, I study the delegation problem with binary types, high type θh or
low type θl. Let q(θ) denote the probability that the agent’s type is θ. Formally, I
solve for (w1, w0) : {θl, θh} → Γ such that

max
w1,w0

∑

θ∈{θl,θh}
q(θ)

(

θ

1 + θ
ηρw

1(θ)− 1

1 + θ
w0(θ)

)

,

subject to θlηαw
1(θl)− w0(θl) ≥ θlηαw

1(θh)− w0(θh),

θhηαw
1(θh)− w0(θh) ≥ θhηαw

1(θl)− w0(θl).

For ease of exposition, I refer to the contract for the low (high) type agent as the
low (high) type contract and the principal who believes to face the low (high) type
agent as the low (high) type principal. Let (w1∗(θl), w0∗(θl)) and (w1∗(θh), w0∗(θh))
denote the equilibrium bundles. The optimum is characterized as follows.

PROPOSITION 8 (Two types):
Suppose that (r + λ1)θlηρ/r > 1. There exists a b′ ∈ (1, θh/θl) such that

1.1 If ηα/ηρ ∈ [1, b′], the principal’s preferred bundles are implementable.

1.2 If ηα/ηρ ∈ (b′, θh/θl), separating is optimal. The low type contract is a

stopping-time policy, the stopping time between τρ(θl) and τα(θl). The low

type’s IC constraint binds and the high type’s does not.

1.3 If ηα/ηρ ≥ θh/θl, pooling is optimal.

In all cases, the optimum can be attained using bundles on the boundary of Γ.

Without loss of generality, the presumption (r + λ1)θlηρ/r > 1 ensures that both
the low type principal’s preferred stopping time τρ(θl) and the high type principal’s
preferred stopping time τρ(θh) are strictly positive. The degenerate cases of τρ(θh) >
τρ(θl) = 0 and τρ(θh) = τρ(θl) = 0 yield similar results to Proposition 8 and thus
are omitted.
Proposition 8 describes the optimal contract as the bias level varies. According

to result (1.1), if the bias is low enough, the principal simply offers her preferred
policies given θl and θh. This is incentive compatible because even though the low
type agent prefers longer experimentation than the low type principal, at a low
bias level he still prefers the low type principal’s preferred bundle instead of the
high type principal’s. Consequently the principal pays no informational rents. This
result does not hold with a continuum of types. The principal’s preferred bundles
are two points on the southeast boundary of Γ with binary types, but they become
an interval on the southeast boundary with a continuum of types in which case lower
types are strictly better off mimicking higher types.
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The result (1.2) corresponds to medium bias level. As the bias has increased,
offering the principal’s preferred policies is no longer incentive compatible. Instead,
both the low type contract and the high type one deviate from the principal’s pre-
ferred policies. The low type contract is always a stopping-time policy while the high
type contract takes one of three possible forms: stopping-time, slack-after-success
or delay policies.20 One of the latter two forms is assigned as the high type contract
if the agent’s type is likely to be low and his bias is relatively large. All three forms
are meant to impose a significant cost—excessive experimentation, constrained ex-
ploitation of success, or delay in experimentation—on the high type contract so as
to deter the low type agent from misreporting. However the principal can more than
offset the cost by effectively shortening the low type agent’s experimentation. In the
end, the low type agent over-experiments slightly and the high type contract devi-
ates from the principal’s preferred policy (w1

ρ(θh), w
0
ρ(θh)) as well. One interesting

observation is that the optimal contract can take a form other than a stopping-time
policy.

If the bias is even higher, as shown by result (1.3), pooling is preferable. The con-
dition ηα/ηρ ≥ θh/θl has an intuitive interpretation that the low type agent prefers
to experiment longer than even the high type principal. The screening instruments
utilized in result (1.2) impair the high type principal’s payoff more than the low
type agent’s. As a result, the principal is better off offering her uninformed pre-
ferred bundle. Notably, for fixed types the prior probabilities of the types do not
affect the pooling decision. Only the bias level does.

I make two observations. First, the principal chooses to take advantage of the
agent’s private information unless the agent’s bias is too large. This result also ap-
plies to the continuous type case. Second, the optimal contract can be tailored to the
likelihood of the two types. For example, if the type is likely to be low, the principal
designs the low type contract close to her low type bundle and purposefully makes
the high type contract less attractive to the low type agent. Similarly, if the type
is likely to be high, the principal starts with a high type contract close to her high
type bundle without concerning about the low type’s over-experimentation. This
“type targeting”, however, becomes irrelevant when the principal faces a continuum
of types and has no incentives to target certain types.

PROOF OF PROPOSITION 8:

Let αl (resp. αh) denote the low (resp. high) type agent and ρl (resp. ρh) the
low (resp. high) type principal. Suppose that θlηρ > r/(λ1 + r). Both ρl’s and ρh’s
preferred bundles lie in the interior of Γst. Given that θh > θl and ηα > ηρ, the
slopes of players’ indifference curves are ranked as follows

θhηα > max{θhηρ, θlηα} ≥ min{θhηρ, θlηα} > θlηρ.

20Here, I give an example in which the high type contract is a slack-after-success policy. Parameters are
ηα = 6, ηρ = 1, θl = 3/2, θh = 19, r = λ1 = 1. The agent’s type is low with probability 2/3. The optimum
is (w1∗(θh), w

0∗(θh)) ≈ (0.98, 1) and (w1∗(θl), w
0∗(θl)) ≈ (0.96, 0.79).
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Let ICL and ICH denote αl’s and αh’s IC constraints. Let Iαl
denote αl’s indifference

curves. If αl prefers (w
1
ρ(θl), w

0
ρ(θl)) to (w1

ρ(θh), w
0
ρ(θh)), the optimum is

{(w1
ρ(θl), w

0
ρ(θl)), (w

1
ρ(θh), w

0
ρ(θh))}.

This is true when the slope of the line connecting (w1
ρ(θl), w

0
ρ(θl)) and (w1

ρ(θh), w
0
ρ(θh))

is greater than θlηα. This condition is satisfied when ηα/ηρ is bounded from above
by

b′ ≡
θh(λ

1 + r)
(

θh
r

λ1 − θl
r

λ1

)

r

(

θh
r+λ1

λ1 − θl
r+λ1

λ1

) .

If this condition does not hold, at least one IC constraint binds. I explain how to
find the optimal bundles.

1) ICL binds. Suppose not. It must be the case that ICH binds and that the
principal offers two distinct bundles (w1(θl), w

0(θl)) < (w1(θh), w
0(θh)) which

lie on the same indifference curve of αh. Given that θhηα > max{θhηρ, θlηρ},
both ρh and ρl strictly prefer (w1(θl), w

0(θl)) to (w1(θh), w
0(θh)). The prin-

cipal is strictly better off by offering a pooling bundle (w1(θl), w
0(θl)). A

contradiction. Hence, ICL binds.

2) If θhηρ < θlηα, the optimum is pooling. Suppose not. Suppose that the prin-
cipal offers two distinct bundles (w1(θl), w

0(θl)) < (w1(θh), w
0(θh)) which are

on the same indifference curve of αl. Given that θlηρ < θhηρ < θlηα, αl’s in-
difference curves are steeper than ρh’s and ρl’s. Both ρh and ρl strictly prefer
(w1(θl), w

0(θl)) to (w
1(θh), w

0(θh)). The principal is strictly better off by offer-
ing a pooling bundle (w1(θl), w

0(θl)). A contradiction. If θhηρ = θlηα, ρh has
the same indifference curves as αl. If {(w1(θl), w

0(θl)), (w
1(θh), w

0(θh))} is op-
timal,it is optimal for the principal to offer a pooling contract (w1(θl), w

0(θl)).

3) If θhηρ > θlηα, the optimum are on the boundary of Γ. Suppose not. Sup-
pose that (w1(θl), w

0(θl)) or (w1(θh), w
0(θh)) is in the interior. The indif-

ference curve of αl going through (w1(θl), w
0(θl)) intersects the boundary at

(w̃1(θl), w̃
0(θl)) and (w̃1(θh), w̃

0(θh)) such that w̃1(θl) < w̃1(θh). Given that
θhηρ > θlηα > θlηρ, ρh prefers (w̃1(θh), w̃

0(θh)) to (w1(θh), w
0(θh)) and ρl

prefers (w̃1(θl), w̃
0(θl)) to (w1(θl), w

0(θl)). The principal is strictly better off
by offering (w̃1(θl), w̃

0(θl)) and (w̃1(θh), w̃
0(θh)). Therefore, the optimal bun-

dles are on the boundary. The problem is reduced to locate the low type
agent’s indifference curve on which (w1∗(θl), w0∗(θl)) and (w1∗(θh), w0∗(θh))
lie. This indifference curve must be between the indifference curves of αl
which go through (w1

ρ(θl), w
0
ρ(θl)) and (w1

ρ(θh), w
0
ρ(θh)).

�
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B2. Discussion and Necessity of Assumption 2

In this subsection, I first discuss the economic content of Assumption 2. To do so, I
consider a delegation problem in which only bundles on Γst, the southeast boundary
of Γ, are considered. This restriction reduces the action space to a one-dimensional
line segment and allows me to compare Assumption 2 with the condition identified
in Alonso and Matouschek (2008). Then I show that no cut-off rule is optimal if
Assumption 2 fails.

Recall that Γst is characterized by the function βse(w1) = 1−(1−w1)r/(r+λ
1), ∀w1 ∈

[0, 1]. The function βse is twice continuously differentiable. The derivative (βse)′(w1)
strictly increases in w1 and approaches infinity as w1 approaches 1. I identify an
element (w1, βse(w1)) ∈ Γst with the derivative (βse)′(w1) at that point. The set
of possible derivatives is denoted Y = [(βse)′(0),∞]. Since there is a one-to-one
mapping between Γst and Y , I let Y be the action space and refer to y ∈ Y as an
action. The principal simply assigns a non-empty subset of Y as the delegation set.
Let n(y) = ((βse)′)−1(y) be the inverse of the mapping from w1 to the derivative
(βse)′(w1).

Player i’s preferred action given θ is yi(θ) = ηiθ. Player i’s payoff given type θ
and action y is denoted

Vi(θ, y) = ηi
θ

1 + θ
n(y)− 1

1 + θ
βse(n(y)).

I first solve the principal’s preferred action if she believes that the agent’s type is

below θ. The principal chooses y ∈ Y to maximize
∫ θ
θ Vρ(θ̃, y)f(θ̃)dθ̃. The maximum

is achieved by choosing action

ηρ

∫ θ
θ θ̃h(θ̃)dθ̃

H(θ)
.

Following Alonso and Matouschek (2008), I define the backward bias for a given
type θ as

T (θ) ≡ H(θ)

H(θ)



ηαθ − ηρ

∫ θ
θ θ̃h(θ̃)dθ̃

H(θ)



 .

Here, T (θ) measures the difference between the agent’s preferred action given θ and
the principal’s preferred action if she believes that the type is below θ. It is easy to

verify that T (θ) = ηα
∫ θ
θ (1−G(θ̃))dθ̃.

Assumption 2 is equivalent to requiring that the backward bias is convex when
θ ≤ θp. This is the condition that Alonso and Matouschek (2008) find for the interval
delegation set to be optimal in their setting. Intuitively, when this condition holds,
the principal finds it optimal to fill in the “holes” in the delegate set. I shall empha-
size that this is not a proof of the optimality of the cutoff rule, because considering
only bundles on the southeast boundary might be restrictive. For example, I have

41



shown that with two types the optimal contract involves bundles which are not on
the southeast boundary for certain parameter values. With a continuum of types,
there exist examples such that the principal is strictly better off by offering policies
other than stopping-time policies. By using Lagrangian methods, I prove that the
cutoff rule is indeed optimal under Assumption 2. In my setting, the principal’s
preferred bundle is not more sensitive than the agent’s to the agent’s private infor-
mation and Assumption 2 ensures that the type distribution is sufficiently smooth
so the principal has no particular interest to screen some types. Hence, the interval
delegation set is optimal.

The discussion so far suggests that Assumption 2 is also necessary for the cutoff
rule to be optimal. In the rest of this subsection, I show that no xp-cutoff contract
is optimal for any xp ∈ Θ if Assumption 2 does not hold. The xp-cutoff con-
tract is defined as (w1(θ), w0(θ)) = (w1

α(θ), w
0
α(θ)) for θ < xp and (w1(θ), w0(θ)) =

(w1
α(xp), w

0
α(xp)) for θ ≥ xp. The xp-cutoff contract is denoted (w1

xp , w
0
xp).

Define the Lagrangian functional associated with P as

L(w1, w0 | Λse,Λnw) = θηαw
1(θ)− w0(θ) + ηα

∫ θ

θ
w1(θ)G(θ)dθ(B1)

+

∫ θ

θ

(

θηαw
1(θ)− ηα

∫ θ

θ
w1(θ̃)dθ̃ − θηαw

1(θ) + w0 − βse(w1(θ))

)

dΛse

+

∫ θ

θ

[

βnw(w1(θ))−
(

θηαw
1(θ)− ηα

∫ θ

θ
w1(θ̃)dθ̃ − θηαw

1(θ) + w0

)]

dΛnw,

where the function Λse,Λnw are the Lagrange multiplier associated with constraints
(9) and (10). I first show that if (w1

xp , w
0
xp) is optimal for some xp, there must exist

some Lagrange multipliers Λ̃se, Λ̃nw such that L(w1, w0 | Λ̃se, Λ̃nw) is maximized at
(w1

xp , w
0
xp). Since any xp-cutoff contract is continuous, I can restrict attention to the

set of continuous contracts

Φ̂ ≡
{

w1, w0 | w1 : Θ → [0, 1], w1 nondecreasing and continuous;w0 ∈ [0, 1]
}

.

LEMMA 7 (Lagrangian—necessity):
If (w1

xp , w
0
xp) solves P, there exist nondecreasing functions Λ̃se, Λ̃nw : Θ → R such

that

L(w1
xp , w

0
xp | Λ̃se, Λ̃nw) ≥ L(w1, w0 | Λ̃se, Λ̃nw), ∀(w1, w0) ∈ Φ̂.
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Furthermore, it is the case that

0 =

∫ θ

θ

(

θηαw
1
xp(θ)− ηα

∫ θ

θ
w1
xp(θ̃)dθ̃ − θηαw

1
xp(θ) + w0

xp − βse(w1
xp(θ))

)

dΛ̃se

(B2)

+

∫ θ

θ

[

βnw(w1
xp(θ))−

(

θηαw
1
xp(θ)− ηα

∫ θ

θ
w1
xp(θ̃)dθ̃ − θηαw

1
xp(θ) + w0

xp

)]

dΛ̃nw.

PROOF:
I first introduce the problem studied in section 8.4 of Luenberger, 1996, p. 217:

maxx∈X Q(x) subject to x ∈ Ω and J(x) ∈ P , where Ω is a convex subset of the
vector space X, Q : Ω → R and J : Ω → Z are both concave; where Z is a normed
vector space, and P is a nonempty positive cone in Z. To apply Theorem 1 in
Luenberger, 1996, p. 217, set

X = {w1, w0 | w ∈ R and w1 : Θ → R},
Ω = Φ̂,

Z = {z | z : Θ → R2 with sup
θ∈Θ

‖z(θ)‖ <∞},

with the norm‖z‖ = sup
θ∈Θ

‖z(θ)‖,

P = {z | z ∈ Z and z(θ) ≥ (0, 0), ∀θ ∈ Θ}.

I let the objective function in (OBJ) be Q and the left-hand side of (9) and (10) be
defined as J . It is easy to verify that both Q and J are concave. This result holds
because the hypotheses of Theorem 1 in Luenberger, 1996, p. 217 are met. �

My next result shows that no xp-cutoff contract is optimal if Assumption 2 fails.

PROPOSITION 9:
If Assumption 2 does not hold, then no xp-cutoff contract is optimal for any xp ∈ Θ.

PROOF:
The proof proceeds by contradiction. Suppose that (w1

xp , w
0
xp) is optimal for some

xp ∈ Θ. According to Lemma 7, there exist nondecreasing Λ̃se, Λ̃nw such that the

Lagrangian (B1) is maximized at (w1
xp , w

0
xp) and (B2) holds. This implies that Λ̃nw

is constant so the integral related to Λ̃nw can be dropped. Without loss of generality
I set Λ̃se(θ) = 1. Integrating the Lagrangian by parts yields

L(w1, w0 | Λ̃se) =
(

θηαw
1(θ)− w0

)

Λ̃se(θ) +

∫ θ

θ

(

θηαw
1(θ)− βse(w1(θ))

)

dΛ̃se

+ ηα

∫ θ

θ
w1(θ)

[

Λ̃se(θ)− (1−G(θ))
]

dθ.
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Then, I establish the necessary first-order conditions for L(w1, w0 | Λ̃se) to be max-
imized at xp-cutoff rule and show that they cannot be satisfied if Assumption 2
fails.

Let a, b ∈ Θ be such that a < b < θp and 1 −G(a) > 1−G(b) (so Assumption 2
does not hold). It is easy to verify that the Gâteaux differential ∂L(w1

xp , w
0
xp ;w

1, w0 |
Λ̃se) exists for any (w1, w0) ∈ Φ̂. I want to show that a necessary condition that

(w1
xp , w

0
xp) maximizes L(w1, w0 | Λ̃se) over Φ̂ is that

∂L(w1
xp , w

0
xp ;w

1, w0 | Λ̃se) ≤ 0, ∀(w1, w0) ∈ Φ̂,(B3)

∂L(w1
xp , w

0
xp ;w

1
xp , w

0
xp | Λ̃se) = 0.(B4)

If (w1
xp , w

0
xp) maximizes L(w1, w0 | Λ̃se), then for any (w1, w0) ∈ Φ̂, it must be true

that
d

dǫ
L((w1

xp , w
0
xp) + ǫ((w1, w0)− (w1

xp , w
0
xp)) | Λ̃

se)

∣

∣

∣

∣

ǫ=0

≤ 0.

Hence, ∂L(w1
xp , w

0
xp ; (w

1, w0)−(w1
xp , w

0
xp) | Λ̃se) ≤ 0. Setting (w1, w0) = (w1

xp , w
0
xp)/2 ∈

Φ̂ yields ∂L(w1
xp , w

0
xp ;w

1
xp , w

0
xp | Λ̃se) ≥ 0. By the definition of (w1

xp , w
0
xp), there ex-

ists ǫ > 0 sufficiently small such that (1 + ǫ)(w1
xp , w

0
xp) ∈ Φ̂. Setting (w1, w0) to be

(1 + ǫ)(w1
xp , w

0
xp) yields ∂L(w1

xp , w
0
xp ;w

1
xp , w

0
xp | Λ̃se) ≤ 0. Together, (B3) and (B4)

obtain.

The last step is to show that there exists no Λ̃se that satisfies the first-order
conditions (B3) and (B4). Here, I use the same approach as in the proof of
Proposition 4 in Amador, Werning and Angeletos (2006). The Gâteaux differen-
tial ∂L(w1

xp , w
0
xp ;w

1, w0 | Λ̃se) is similar to (A4) with θp replaced by xp. Conditions

(B3) and (B4) imply that Λ̃se(θ) = 0. Integrating the Gâteaux differential by parts
yields

(B5) ∂L(w1
xp , w

0
xp ;w

1, w0 | Λ̃se) = χ(θ)w1(θ) +

∫ θ

θ
χ(θ)dw1(θ),

with

χ(θ) ≡ ηα

∫ θ

θ

[

Λ̃se(θ̃)− (1−G(θ̃))
]

dθ̃ + ηα

∫ θ

max{xp,θ}
(θ̃ − xp)dΛ̃

se(θ̃).

By condition (B3), it follows that χ(θ) ≤ 0 for all θ. Condition (B4) implies that
χ(θ) = 0 for θ ∈ [θ, xp]. It follows that Λ̃se(θ) = 1 − G(θ) for all θ ∈ (θ, xp]. This

implies that xp ≤ b otherwise the associated multiplier Λ̃se would be decreasing.
Integrating by parts the second term of χ(θ), I obtain

χ(θ) =

∫ θ

θ
G(θ̃)dθ̃ + (θ − xp)(1− Λ̃se(θ)), ∀θ ≥ xp.
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By definition of θp, there must exist a θ ∈ [xp, θp) such that the first term is strictly

positive; since Λ̃se(θ) ≤ 1, the second term is nonnegative. Hence χ(θ) > 0, contra-
dicting the necessary conditions. �

B3. Lévy processes and Lévy bandits

Here, I extend the analysis to the more general Lévy bandits (Cohen and Solan
(2013)). The risky task’s payoff is driven by a Lévy process whose Lévy triplet
depends on an unknown binary state. In what follows, I start with a reminder
about Lévy processes and Lévy bandits. Then, I show that the optimality of the
cutoff rule and its time consistency property generalize to Lévy bandits.
A Lévy process L = (L(t))t≥0 is a continuous-time stochastic process that (i)

starts at the origin: L(0) = 0; (ii) admits càdlàg modification;21 (iii) has stationary
independent increments. Examples of Lévy processes include a Brownian motion, a
Poisson process, and a compound Poisson process.
Let (Ω, P ) be the underlying probability space. For every Borel measurable set

A ∈ B(R \ {0}), and every t ≥ 0, let the Poisson random measure N(t, A) be the
number of jumps of L in the time interval [0, t] with jump size in A: N(t, A) =
#{0 ≤ s ≤ t | ∆L(s) ≡ L(s)− L(s−) ∈ A}. The measure ν defined by

ν(A) ≡ E[N(1, A)] =

∫

N(1, A)(ω)dP (ω).

is called the Lévy measure of the process L.
I focus on Lévy processes that have finite expectation for each t. For a fixed Lévy

process L, there exists a constant µ ∈ R, a Brownian motion σZ(t) with standard
deviation σ ≥ 0, and an independent Poisson random measure Nν(t, dh) with the
associated Lévy measure ν such that, for each t ≥ 0, the Lévy-Itō decomposition of
L(t) is

L(t) = µt+ σZ(t) +

∫

R\{0}
hÑν(t, dh),

where Ñν(t, A) ≡ Nν(t, A) − tν(A) is the compensated Poisson random measure.22

Hence, a Lévy process L is characterized by a triplet 〈µ, σ, ν〉.
The agent operates a two-armed bandit in continuous time, with a safe task S that

yields a known flow payoff si to player i, and a risky task R whose payoff, depending
on an unknown state x ∈ {0, 1}, is given by the process Lx. For ease of exposition,
I assume that both players derive the same payoff from R but different payoffs from
S. For a fixed state x, Lx is a Lévy process characterized by the triplet 〈µx, σx, νx〉.
For an arbitrary prior p that the state is 1, I denote by Pp the probability measure
over space of realized paths.
I keep the same assumptions (A1–A6) on the Lévy processes Lx as in Cohen and

21It is continuous from the right and has limits from the left.
22Consider a set A ∈ B(R \ {0}) and a function f : R → R. The integral with respect to a Poisson

random measure N(t, A) is defined as
∫

A
f(h)N(t,dh) =

∑

s≤t f(∆L(s))1A(∆(L(s))).
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Solan (2013) and modify A5 to ensure that both players prefer to use R in state 1
and S in state 0. That is, µ1 > si > µ0, for i ∈ {α, ρ}.23 Let ηi = (µ1− si)/(si−µ0)
denote player i’s net gain from the experimentation. I assume that the agent gains
more from the experimentation, i.e., ηα > ηρ.

24

A (pure) allocation policy is a non-anticipative stochastic process π = {πt}t≥0.
Here, πt ∈ [0, 1] (resp. 1− πt) may be interpreted as the fraction of the resource in
the interval [t, t+ dt) that is devoted to R (resp. S), which may depend only on the
history of events up to t.25 The space of all policies, including randomized ones, is
denoted Π. (See Footnote 9.)

Player i’s payoff given a policy π ∈ Π and a prior belief p ∈ [0, 1] that the state is
1 is

Ui(π, p) ≡ E

[∫ ∞

0
re−rt

[

dLx
(∫ t

0
πsds

)

+ (1− πt) sidt

]

∣

∣

∣ π, p

]

.

Over an interval [t, t + dt), if the fraction πt of the resource is allocated to R, the
expected payoff increment to player i conditional on x is [(1 − πt)si + πtµ

x]dt. By
the Law of Iterated Expectations, player i’s payoff can be written as the discounted
sum of the expected payoff increments

Ui(π, p) = E

[∫ ∞

0
re−rt [πtµ

x + (1− πt)si] dt
∣

∣

∣
π, p

]

.

For a fixed policy π, I define w1(π) and w0(π) as follows:

w1(π) ≡ E

[∫ ∞

0
re−rtπtdt

∣

∣

∣ π, 1

]

and w0(π) ≡ E

[∫ ∞

0
re−rtπtdt

∣

∣

∣ π, 0

]

.

Then, player i’s payoff can be written as

Ui(π, p) = p
(

µ1 − si
)

w1(π) + (1− p)
(

µ0 − si
)

w0(π) + si.

Let Γ denote the image of the mapping (w1,w0) : Π → [0, 1]2, referred to as the
feasible set. The following lemma characterizes the southeast boundary of Γ.

23The assumptions are (A1) E[(Lx)2(1)] = (µx)2 + (σx)2 +
∫

h2νx(dh) < ∞; (A2) σ1 = σ0; (A3)

|ν1(R \ {0}) − ν0(R \ {0})| < ∞; (A4) |
∫

h(ν1(dh) − ν0(dh))| < ∞; (A5) µ0 < sα < sρ < µ1; (A6)

For every A ∈ B(R \ {0}), ν0(A) < ν1(A). Assumption (A1) states that both L1 and L0 have finite
quadratic variation. It follows that both have finite expectation. Assumptions (A2) to (A4) ensure that
players cannot distinguish between the two states in any infinitesimal time. Assumption (A5) states that
the expected payoff rate of R is higher than that of S in state 1 and lower in state 0. The last assumption
(A6) requires that jumps of any size h, both positive or negative, occur more often in state 1 than in state
0. Consequently, jumps always provide good news, and increase the posterior belief of state 1.

24The results generalize to the case in which, for a fixed state x, the drift term of the Lévy process Lx

differs for the principal and the agent, as long as the relation ηα > ηρ holds.
25Suppose the process L is a Lévy process L1 with probability p ∈ (0, 1) and L0 with probability 1− p.

Let FL
s be the sigma-algebra generated by the process (L(t))t≤s. Then it is required that the process π

satisfies that {
∫ t
0 πsds ≤ t′} ∈ FL

t′
, for any t, t′ ∈ [0,∞).

46



LEMMA 8: There exists a∗ > 0 such that the southeast boundary of Γ is given by

{(w1, w0) | w0 = 1− (1− w1)a
∗/(1+a∗), w1 ∈ [0, 1]}

PROOF:

Based on the proof of Lemma 2, I want to show that the maximum in (5) is
achieved by either a lower-cutoff policy when p1 ≥ 0, p2 ≤ 0. If p1 ≥ 0, p2 ≥ 0 (p1 ≤
0, p2 ≤ 0), maxw∈Γ(p1, p2) ·w is achieved by the policy which directs all resources to
R (S). If p1 > 0, p2 < 0, according to Cohen and Solan (2013), maxw∈Γ(p1, p2) · w
is achieved by a lower-cutoff Markov policy which directs all resource to R if the
posterior belief is above the cutoff and to S if below. The cutoff belief, denoted
p∗, satisfies the equation p∗/(1 − p∗) = a∗/(1 + a∗), where a∗ is the positive root
of Equation 6.1 in Cohen and Solan (2013). Let K(p) ≡ maxw∈Γ(p1, p2) · w. If
|p1|/(|p1| + |p2|) ≤ p∗, K(p) equals zero. If |p1|/(|p1| + |p2|) > p∗, I obtain K(p) =

−p2
(

−p2a∗
p1(1+a∗)

)a∗

/(a∗ + 1) + p1 + p2. It is easy to verify that the functional form of

the southeast boundary is

βse(w1) = 1− (1− w1)
a∗

a∗+1 , w1 ∈ [0, 1].

�

Given Lemma 8, the proof of Proposition 2, which only relies on the properties
of the southeast boundary of the feasible set, applies directly to the current setting.
Therefore, the cutoff rule is optimal.

PROPOSITION 10 (Lévy bandits—sufficiency):
The cutoff rule is optimal if Assumption 2 holds.

For every prior p ∈ [0, 1] that the state is 1, the probability measure Pp satisfies
Pp = pP1+(1−p)P0. An important auxiliary process is the Radon-Nikodym density,
given by

ψt ≡
d(P0 | FK(t))

d(P1 | FK(t))
, where K(t) =

∫ t

0
πsds and t ∈ [0,∞).

According to Lemma 1 in Cohen and Solan (2013), if the prior belief is p, the
posterior belief at time t is given by

pt =
p

p+ (1− p)ψt
.

The agent of type θ updates his belief about the state. He assigns odds ratio θ/ψt
to the state being 1, referred to as his type at time t. Let θt = max{θ, θ∗αψt}. Recall
that θ∗α denotes the odds ratio at which the agent is indifferent between continuing
and stopping. At time t, only those types above θt remain. The principal’s updated
belief about the agent’s type distribution, in terms of his type at time 0, is given by
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the density function

f0t (θ) =







[p(θ)+(1−p(θ))ψt]f(θ)
∫ θ
θt
[p(θ)+(1−p(θ))ψt]f(θ)dθ

if θ ∈ [θt, θ],

0 otherwise.

The principal’s belief about the agent’s type distribution, in terms of his type at
time t, is given by the density function

ft(θ) =

{

f0t (θψt)ψt if θ ∈ [θt/ψt, θ/ψt],

0 otherwise.

I prove that continuing the cutoff rule is optimal by showing two things. First,
given the distribution ft at time t, the threshold of the top pooling segment is
θp/ψt. Second, if Assumption 2 holds for θ ≤ θp under distribution f , then it holds
for θ ≤ θp/ψt under ft. The detailed proof is similar to that of Proposition 5 (see
Appendix) and hence omitted.

PROPOSITION 11 (Lévy bandits—time consistency):
If Assumption 2 holds, the cutoff rule is time-consistent.

B4. Optimal contract with transfers

The set-up

In this section, I discuss the optimal contract when the principal can make trans-
fers to the agent. I assume that the principal has full commitment power, that is,
she can write a contract specifying both an experimentation policy π and a trans-
fer scheme c at the outset of the game. I also assume that the agent is protected
by limited liability so only non-negative transfers from the principal to the agent
are allowed. An experimentation policy π is defined in the same way as before. A
transfer scheme c offered by the principal is a non-negative, non-decreasing process
{ct}t≥0, which may depend only on the history of events up to t, where ct denotes
the cumulative transfers the principal has made to the agent up to, and including,
time t.26 Let Π∗ denote the set of all possible policy and transfer scheme pairs.
For any policy and transfer scheme pair (π, c) and any prior p, the principal’s and

the agent’s payoffs are respectively

Uα(π, c, p) = E

[∫ ∞

0
re−rt [(1− πt)sα + πtλ

ωhα] dt+

∫ ∞

0
re−rtdct

∣

∣

∣
π, c, p

]

Uρ(π, c, p) = E

[∫ ∞

0
re−rt [(1− πt)sρ + πtλ

ωhρ] dt−
∫ ∞

0
re−rtdct

∣

∣

∣
π, c, p

]

.

26Formally, the number of successes achieved up to, and including, time t defines the point process
{Nt}t≥0. Let F := {Ft}t≥0 denote the filtration generated by the process π and Nt. The process {ct}t≥0

is F-adapted.
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For a given policy and transfer scheme pair (π, c), I define t1(π, c) and t0(π, c) as
follows:
(B6)

t1(π, c) ≡ E

[∫ ∞

0
re−rtdct

∣

∣

∣
π, c, 1

]

and t0(π, c) ≡ E

[∫ ∞

0
re−rtdct

∣

∣

∣
π, c, 0

]

.

I refer to t1(π, c) (resp. t0(π, c)) as the expected transfer in state 1 (resp. state 0).

LEMMA 9 (A policy and transfer scheme pair as four numbers):
For a given policy and transfer scheme pair (π, c) ∈ Π∗ and a given prior p ∈ [0, 1],
the principal’s and the agent’s payoffs can be written as

Uα(π, c, p) =p
[(

λ1hα − sα
)

w1(π) + t1(π, c)
]

+ (1− p)
[(

λ0hα − sα
)

w0(π) + t0(π, c)
]

+ sα

Uρ(π, c, p) =p
[(

λ1hρ − sρ
)

w1(π)− t1(π, c)
]

+ (1− p)
[(

λ0hρ − sρ
)

w0(π)− t0(π, c)
]

+ sρ.

PROOF:
The agent’s payoff given (π, c) ∈ Π∗ and prior p ∈ [0, 1] is

Uα(π, c, p) =pE

[∫ ∞

0
re−rtπt

(

λ1hα − sα
)

dt+

∫ ∞

0
re−rtdct

∣

∣

∣
π, c, 1

]

+ (1− p)E

[∫ ∞

0
re−rtπt

(

λ0hα − sα
)

dt+

∫ ∞

0
re−rtdct

∣

∣

∣
π, c, 0

]

+ sα

=p
[(

λ1hα − sα
)

w1(π) + t1(π, c)
]

+ (1− p)
[(

λ0hα − sα
)

w0(π) + t0(π, c)
]

+ sα.

The principal’s payoff can be rewritten similarly. �

Lemma 9 shows that all payoffs from implementing (π, c) can be written in terms of
its expected resource and expected transfer pairs. Instead of working with a generic
policy/transfer scheme pair, it is without loss of generality to focus on its expected
resource and expected transfer pairs. The image of the mapping (w1,w0, t1, t0) :
Π∗ → [0, 1]2 × [0,∞) × [0,∞) can be interpreted as the new contract space when
transfers are allowed. The following lemma characterizes this contract space.

LEMMA 10: The image of the mapping (w1,w0, t1, t0) : Π∗ → [0, 1]2 × [0,∞) ×
[0,∞), denoted Γ∗, satisfies the following condition

int(Γ× [0,∞)2) ⊂ Γ∗ ⊂ Γ× [0,∞)2.

PROOF:
The relation Γ∗ ⊂ Γ × [0,∞)2 is obviously true. Hence, I only need to show

that int(Γ × [0,∞)2) ⊂ Γ∗. Given that Γ∗ is a convex set, I only need to show
that Γ∗ is a dense set of int(Γ× [0,∞)2): For any (w1, w0, t1, t0) ∈ int(Γ× [0,∞)2)
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and any ǫ > 0, there exists (π, c) such that the Euclidean distance ‖(w1, w0, t1, t0)−
(w1,w0, t1, t0)(π, c)‖ is below ǫ. Pick any point (w1, w0) ∈ int(Γ), there exists a bun-
dle (w̃1, w̃0) ∈ int(Γ) and a small number ∆ such that (w1, w0) = (1−∆)(w̃1, w̃0)+
∆(1, 1). The policy is as follows. With probability 1 − ∆, the agent implements
a policy that is mapped to (w̃1, w̃0). With probability ∆, the agent implements
the policy that is mapped to (1, 1). In the latter case, the agent allocates the unit
resource to R all the time. Transfers only occur in the latter case. Here, I construct
a transfer scheme such that the expected transfer is arbitrarily close to (t1, t0). Let
pt denote the posterior belief that ω = 1. Given that all the resource is directed
to R, pt converges in probability to 1 conditional on state 1 and pt converges in
probability to 0 conditional on state 0. This implies that ∀ǫ̃ > 0, ∃t̃ such that for
all t ≥ t̃, I have Pr(|pt − 1| > ǫ̃ | ω = 1) < ǫ̃ and Pr(|pt − 0| > ǫ̃ | ω = 0) < ǫ̃. The

transfer scheme is to make a transfer of size t1/(∆re−rt̃) at time t̃ if pt̃ > 1− ǫ̃ and

make a transfer of size t0/(∆re−rt̃) if pt̃ < ǫ̃. The expected transfer conditional on
state 1 is

∆re−rt̃
[

Pr(pt̃ > 1− ǫ̃ | ω = 1)
t1

∆re−rt̃
+ Pr(pt̃ < ǫ̃ | ω = 1)

t0

∆re−rt̃

]

=Pr(pt̃ > 1− ǫ̃ | ω = 1)t1 + Pr(pt̃ < ǫ̃ | ω = 1)t0.

Given that 1 − ǫ̃ < Pr(pt̃ > 1 − ǫ̃ | ω = 1) ≤ 1 and 0 ≤ Pr(pt̃ < ǫ̃ | ω = 1) < ǫ̃, the
expected transfer conditional on state 1 is in the interval (t1− ǫ̃t1, t1+ ǫ̃t0). Similarly,
the expected transfer conditional on state 0 is in the interval (t0 − ǫ̃t0, t0 + ǫ̃t1). As
ǫ̃ approaches zero, the constructed transfer scheme is arbitrarily close to (t1, t0). �

Lemma 10 says that any (w1, w0, t1, t0) ∈ Γ × [0,∞) × [0,∞) is virtually imple-
mentable: for all ǫ > 0, there exist a (π, c) such that (w1,w0, t1, t0)(π, c) is ǫ-close
to (w1, w0, t1, t0). To proceed, I treat the set Γ× [0,∞)× [0,∞), the closure of Γ∗,
as the contract space.

Based on Lemma 9, I can write players’ payoffs as functions of (w1, w0, t1, t0). To
simplify exposition, I assume that sα − λ0hα = sρ − λ0hρ. The method illustrated
below can be easily adjusted to solve for the optimal contract when sα − λ0hα 6=
sρ − λ0hρ. Without loss of generality, I further assume that sα − λ0hα = 1. The
principal’s and the agent’s payoffs given (w1, w0, t1, t0) and type θ are then respec-
tively

θ

1 + θ

(

ηρw
1 − t1

)

− 1

1 + θ

(

w0 + t0
)

and
θ

1 + θ

(

ηαw
1 + t1

)

− 1

1 + θ

(

w0 − t0
)

.

Based on Lemma 9 and 10, I reformulate the contract problem. The principal simply
offers a direct mechanism (w1, w0, t1, t0) : Θ → Γ× [0,∞)× [0,∞), called a contract,
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such that

max
w1,w0,t1,t0

∫

Θ

(

θ

1 + θ

(

ηρw
1(θ)− t1(θ)

)

− 1

1 + θ

(

w0(θ) + t0(θ)
)

)

dF (θ),

s.t. θ
(

ηαw
1(θ) + t1(θ)

)

− w0(θ) + t0(θ) ≥
θ
(

ηαw
1(θ′) + t1(θ′)

)

− w0(θ′) + t0(θ′), ∀θ, θ′ ∈ Θ.

Given a direct mechanism (w1(θ), w0(θ), t1(θ), t0(θ)), let Uα(θ) denote the pay-
off that the agent of type θ gets by maximizing over his report, i.e., Uα(θ) =
maxθ′∈Θ{θ

(

ηαw
1(θ′) + t1(θ′)

)

−w0(θ′)+t0(θ′)}. As the optimal mechanism is truth-
ful, Uα(θ) equals θ(ηαw

1(θ)+t1(θ))−w0(θ)+t0(θ) and the envelope condition implies
that U ′

α(θ) = ηαw
1(θ)+t1(θ). Incentive compatibility of (w1, w0, t1, t0) requires that,

for all θ

(B7)
(

t0
)′
(θ) = −θ

(

ηα
(

w1
)′
(θ) +

(

t1
)′
(θ)
)

+
(

w0
)′
(θ),

whenever differentiable, or in integral form,

t0(θ) = Uα(θ)−
∫ θ

θ

(

ηαw
1(s) + t1(s)

)

ds− θ
(

ηαw
1(θ) + t1(θ)

)

+ w0(θ).

Incentive compatibility also requires ηαw
1 + t1 to be a nondecreasing function of θ.

Thus, (B7) and the monotonicity of ηαw
1 + t1 are necessary for incentive compati-

bility. As is standard, these two conditions are also sufficient.
The principal’s payoff for a fixed θ is denoted Uρ(θ)

Uρ(θ) =
θ

1 + θ

(

ηρw
1(θ)− t1(θ)

)

− 1

1 + θ

(

w0(θ) + t0(θ)
)

.

The principal’s problem is to maximize
∫

Θ Uρ(θ)dF subject to (i) (B7) and the
monotonicity of ηαw

1 + t1; (ii) the feasibility constraint (w1(θ), w0(θ)) ∈ Γ, ∀θ ∈ Θ;
and (iii) the limited liability constraint (LL constraint, hereafter) t1(θ), t0(θ) ≥
0, ∀θ ∈ Θ. I denote this problem by P. Substituting t0(θ) into the objective, I
rewrite

∫

Θ Uρ(θ)dF as

∫ θ

θ

[

(ηα + ηρ)θw
1(θ)

1 + θ
− 2w0(θ)

1 + θ
+

(

ηαw
1(θ) + t1(θ)

)

H(θ)

f(θ)

]

f(θ)dθ − Uα(θ)H(θ),

where h(θ) =
f(θ)

1 + θ
and H(θ) =

∫ θ

θ
h(s)ds.

I then define a relaxed problem P ′ which differs from P in two aspects: (i) the
monotonicity of ηαw

1 + t1 is dropped; and (ii) the feasibility constraint is replaced
with w0(θ) ≥ βse(w1(θ)), ∀θ ∈ Θ, where βse(·) characterizes the southeast boundary
of Γ. If the solution to P ′ is monotone and satisfies the feasibility constraint, it is

51



also the solution to P. The problem P ′ can be transformed into a control problem
with the state s = (w1, w0, t1, t0) and the control y = (y1, y0, y1t ). The associated
costate is γ = (γ1, γ0, γ1t , γ

0
t ). The law of motion is

(B8)
(

w1
)′
= y1,

(

w0
)′
= y0,

(

t1
)′
= y1t ,

(

t0
)′
= y0 − θ

(

ηαy
1 + y1t

)

.

For problem P ′, I define a Lagrangian

L(s,y,γ,µ, θ) =
[

(ηα + ηρ)θw
1(θ)

1 + θ
− 2w0(θ)

1 + θ
+

(

ηαw
1(θ) + t1(θ)

)

H(θ)

f(θ)

]

f(θ)

+ γ1(θ)y1(θ) + γ0(θ)y0(θ) + γ0t (θ)
[

y0(θ)− θ
(

ηαy
1(θ) + y1t (θ)

)]

+ γ1t (θ)y
1
t (θ) + µ1t (θ)t

1(θ) + µ0t t
0 + µ(θ)

[

w0(θ)− βse(w1(θ))
]

,

where µ = (µ1t , µ
0
t , µ) are multipliers associated with the LL and feasibility con-

straints. From now on, the dependence of (s,y,γ,µ, f, h,H) on θ is omitted when
no confusion arises. Given any θ, the control maximizes the Lagrangian. The first-
order conditions are,

(B9)
∂L
∂y1

= γ1 − ηαθγ
0
t = 0,

∂L
∂y0

= γ0 + γ0t = 0,
∂L
∂y1t

= γ1t − θγ0t = 0.

The costate variables are continuous and have piecewise-continuous derivatives,

γ̇1 = − ∂L
∂w1

= −
[

θ

1 + θ
(ηα + ηρ) +

ηαH

f

]

f + µ (βse)′ (w1),

γ̇0 = − ∂L
∂w0

=
2

1 + θ
f − µ, γ̇1t = − ∂L

∂t1
= −H − µ1t , γ̇0t = − ∂L

∂t0
= −µ0t .

(B10)

This is a problem with free endpoint and a scrap value function Φ(θ) = −Uα(θ)H(θ).
Therefore, the costate variables must satisfy the following boundary conditions,

(γ1(θ), γ0(θ), γ1t (θ), γ
0
t (θ)) = (0, 0, 0, 0),

(γ1(θ), γ0(θ), γ1t (θ), γ
0
t (θ)) =

(

∂Φ

∂w1
,
∂Φ

∂w0
,
∂Φ

∂t1
,
∂Φ

∂t0

)∣

∣

∣

∣

θ=θ

=
(

−ηαθH(θ), H(θ),−θH(θ),−H(θ)
)

.

(B11)

Also, the following slackness conditions must be satisfied,

µ1t ≥ 0, t1 ≥ 0, µ1t t
1 = 0; µ0t ≥ 0, t0 ≥ 0, µ0t t

0 = 0;

µ ≥ 0, w0 − βse(w1) ≥ 0, µ
(

w0 − βse(w1)
)

= 0.
(B12)

LEMMA 11 (Necessity and sufficiency):
Let y

∗ be the optimal control and s
∗ the corresponding trajectory. Then there
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exist costate variables γ
∗ and multipliers µ

∗ such that (B8)–(B12) are satisfied.

Conversely, (B8)–(B12) are also sufficient since the Lagrangian is concave in (s,y).

Based on the sufficiency part of Lemma 11, I only need to construct (s,y,γ,µ) such
that the conditions (B8)–(B12) are satisfied. In what follows, I first describe the
optimal contract and then prove its optimality.

Optimal contract: description

I identify a bundle (w1, w0) on the southeast boundary of Γ with the deriva-
tive (βse)′ (w1) at that point. If the optimal contract only involves bundles on the
southeast boundary, the trajectory (βse)′ (w1(θ)) uniquely determines the trajectory
(w1(θ), w0(θ)) and vice versa. Figure B1 illustrates three important trajectories of
(βse)′ (w1(θ)) which determine the optimal contract under certain regularity condi-
tions. The x axis is the agent’s type. The y axis indicates the slope of the tangent
line at a certain bundle on the southeast boundary. The thick-dashed line (labeled
T2) corresponds to the slope (or the bundle) preferred by the agent for any given
θ. The thin-dashed line (labeled T3) shows the bundle preferred by the principal if
she believes that the agent’s type is above θ. The thin-solid line (labeled T1) is the
bundle given by the following equation

(B13) (βse)′ (w1(θ)) =
(ηα + ηρ)θ

2− (1+θ)H
θf + 1+θ

θ2f

∫ θ
θ H(s)ds

.

Loosely speaking, it is the bundle that the principal would offer if the LL constraint
were not bound. Besides these three trajectories, the dotted line shows the bundle
preferred by the principal for any given θ. Let θ∗ denote the type at which T1 and
T2 intersects and θp the type at which T2 and T3 intersects. Equations (B14) and
(B15) gives the formal definition of θ∗ and θp. It is easy to verify that θ∗ > θ and
θp < θ. Moreover, θ∗ increases and θp decreases in ηα/ηρ.

θ∗ := sup







θ̂ ∈ Θ :
(ηα + ηρ)θ

2− (1+θ)H
θf + 1+θ

θ2f

∫ θ
θ H(s)ds

< ηαθ, ∀θ ≤ θ̂







,(B14)

θp := inf







θ̂ ∈ Θ :
ηρ
∫ θ
θ sh(s)ds

H(θ)−H(θ)
≤ ηαθ, ∀θ ≥ θ̂







.(B15)

When the bias ηα/ηρ is small, θ∗ < θp. The optimal contract (the thick-solid line)
consists of three separate segments, i.e., [θ, θ∗], [θ∗, θp], and [θp, θ]. (See Figure B1.)
When the agent’s type is below θ∗, the equilibrium allocation is given by (B13),
which lies between that optimal for the principal ((βse)′ (w1(θ)) = ηρθ) and that
optimal for the agent ((βse)′ (w1(θ)) = ηαθ). As θ increase, the contract bundle
shifts toward the agent’s preferred bundle, with a corresponding decrease in the
transfer payments. When θ ∈ [θ∗, θp], the bundle that is preferred by the agent
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is offered and no transfers are made. It is as if the agent is free to choose any
experimentation policy. For types above θp, the agent always chooses the bundle
preferred by type θp. There is, effectively, pooling over [θp, θ].

When the bias ηα/ηρ is large, θ∗ > θp. The optimal contract (the thick-solid

line) consists of only two segments which are denoted [θ, θ̃p] and [θ̃p, θ]. (See Figure

B2.) When θ ∈ [θ, θ̃p], the equilibrium allocation is between the principal’s preferred
bundle and the agent’s preferred one. The contract bundle shifts toward the agent’s
preferred one as the type increases with a corresponding decrease in the transfers.
When θ ∈ [θ̃p, θ], all types are pooled. The pooling bundle specifies a lower level of

experimentation than what the principal prefers given the pooling segment [θ̃p, θ].
There is no segment in which the agent implements his preferred bundle.

T1

T2

T3

Equilibrium

Principal’s preferred

Principal’s preferred

given [θ, θ]

Agent’s preferred

Positive transfers

θ θθ∗ θp

(βse)′ (w1(θ))

θ

Figure B1. Equilibrium allocation: three segments

Note: Parameters are ηα = 1, ηρ = 4/5, θ = 1, θ = 3, f(θ) = 1/2.

One immediate observation is that the most pessimistic type’s policy is socially
optimal. The contract for type θ is chosen such that (βse)′ (w1(θ)) = (ηα + ηρ)θ/2.
A key feature is that transfers only occur in state 1. The intuition can be seen by
examining a simple example with three types θl < θm < θh. To prevent the medium
type from mimicking the high type, the principal compensates the medium type by
promising him a positive transfer. This transfer promise makes the medium type’s
contract more attractive to the low type. To make the medium type’s transfer less
attractive to the low type, the principal concentrates all the payments in state 1 as
the low type is less confident that the state is 1. Whenever the principal promises
type θ a positive transfer, she makes type θ’s contract more attractive to a lower
type, say θ′ < θ. As type θ′ is less confident that the state is 1 than type θ, type θ′

does not value transfers in state 1 as much as type θ is. Therefore, the most efficient
way to make transfers is to condition on state being 1.
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T1

T2

T3

Equilibrium

Principal’s preferred

Principal’s preferred

given [θ, θ]

Agent’s preferred

Positive transfers

θ θθ∗θp θ̃p

(βse)′ (w1(θ))

θ

Figure B2. Equilibrium allocation: two segments

Note: Parameters are ηα = 1, ηρ = 3/5, θ = 1, θ = 3, f(θ) = 1/2.

Optimal contract: proof

I start with the case when the bias is small and the contract has three seg-
ments. The proof is constructive. I first determine the trajectory of the costate
γ0, which pins down γ1, γ1t , γ

0
t according to (B9). Then I determine the trajectories

of µ, µ1t , µ
0
t , w

1 based on (B10). The trajectories of w0, t1, t0 then follow.

On the interval [θ, θ∗], t1 > 0 and t0 = 0, so the LL constraint t1 ≥ 0 does not bind.
Therefore, I have µ1t = 0 and γ̇1t = −H. Combined with the boundary condition,

this implies that γ1t = −
∫ θ
θ H(s)ds. From (B9), we know that γ0 =

∫ θ
θ H(s)ds/θ

and γ1 = −ηα
∫ θ
θ H(s)ds. Substituting γ̇1 and γ̇0 into (B10), I have

µ =
2f

1 + θ
− H(θ)

θ
+

∫ θ
θ H(s)ds

θ2
and (βse)′ (w1(θ)) =

(ηα + ηρ)θ

2− (1+θ)H
θf + 1+θ

θ2f

∫ θ
θ H(s)ds

.

Since µ0t = −γ̇0t = γ̇0, I have µ0t = −
∫ θ
θ H(s)ds/(θ2) + H(θ)/θ, which is always

positive.

On the interval [θ∗, θp], the type θ is assigned his most preferred bundle. Transfers
t1 and t0 both equal zero. Therefore, I have (βse)′ (w1(θ)) = ηαθ. From (B9), we
know that γ0 = −γ̇1/ηα − θγ̇0. Substituting γ̇1, γ̇0 and (βse)′ (w1(θ)) = ηαθ, I have

(B16) γ0 = H − θ

1 + θ

ηα − ηρ
ηα

f.
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Combining (B10) and (B16), I have

µ =
f

1 + θ

(

1 +
ηα − ηρ
ηα

1

1 + θ
+
ηα − ηρ
ηα

f ′

f
θ

)

µ0t =
f

1 + θ

(

1− ηα − ηρ
ηα

1

1 + θ
− ηα − ηρ

ηα

f ′

f
θ

)

µ1t =
θ

1 + θ
f

(

1− ηα − ηρ
ηα

2 + θ

1 + θ
− ηα − ηρ

ηα

f ′

f
θ

)

.

The multipliers µ, µ0t and µ1t have to be weakly positive, which requires that

ηα
ηα − ηρ

≥ − 1

1 + θ
− f ′

f
θ, ∀θ ∈ [θ∗, θp](B17)

ηα
ηα − ηρ

≥ 2 + θ

1 + θ
+
f ′

f
θ, ∀θ ∈ [θ∗, θp].(B18)

Note that Assumption (B17) is the same as the main assumption in the delegation
case.

On the interval [θp, θ], all types choose the same bundle, the one preferred by type
θp. Transfers t1 and t0 both equal zero. The threshold of the pooling segment θp
satisfies the following condition,

(βse)′ (w1(θp)) = θpηα =
ηρ
∫ θ
θp
θh(θ)dθ

H(θ)−H(θp)
.

I first check that the boundary condition γ1(θ) = −ηαH(θ)θ is satisfied. Over the
interval [θp, θ], I have

γ̇1 = −
[

θ

1 + θ
(ηα + ηρ)f + ηαH

]

+ µ (βse)′ (w1(θp)).

Given the definition of θp, it is easy to verify that

(βse)′ (w1(θp))

∫ θ

θp

µdθ = (βse)′ (w1(θp))

∫ θ

θp

(

2f

1 + θ
− γ̇0

)

dθ

= ηρ

∫ θ

θp

θh(θ)dθ − (ηα − ηρ)
θ2p

1 + θp
f(θp).
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Therefore, I have

γ1(θ)− γ1(θp) = −ηα
∫ θ

θp

θh(θ)dθ − ηα

∫ θ

θp

H(θ)dθ − (ηα − ηρ)
θ2p

1 + θp
f(θp)

= −H(θ)θηα − γ1(θp).

Therefore, the boundary condition γ1(θ) = −ηαH(θ)θ is satisfied. The slackness
condition µ ≥ 0 and µ0t ≥ 0 requires that 0 ≤ γ̇0 ≤ 2f/(1+ θ). This is equivalent to
the condition that 0 ≤ γ0(θ)− γ0(θp) ≤ 2

(

H(θ)−H(θp)
)

, which is satisfied iff

(B19)
ηα

ηα − ηρ
≥

θp
1+θp

f(θp)

H(θ)−H(θp)
.

The slackness condition µ1t ≥ 0 requires that γ̇1t ≤ −H. This is equivalent to the
condition that

γ1t (θ)− γ1t (θp) = −θH(θ) + θpH(θp)−
θ2p

1 + θp

ηα − ηρ
ηα

f(θp) ≤ −
∫ θ

θp

H(s)ds,

which is always satisfied.
To sum, if Assumptions (B17), (B18) and (B19) hold, the constructed trajectory

solves P ′. If the trajectory w1 defined by (B13) is weakly increasing over [θ, θ∗], the
monotonicity of ηαw

1+ t1 is satisfied.27 Therefore, the constructed trajectory solves
P as well.
When the bias is large and the contract has two segments, the proof is similar to

the previous case. So, I mainly explain how to pin down the threshold θ̃p. When

θ ∈ [θ, θ̃p], the LL constraint t1 ≥ 0 does not bind. The costate is derived in

the same way as in the previous case when θ ∈ [θ, θ∗]. This implies that γ1(θ̃p) =

−ηα
∫ θ̃p
θ H(s)ds. On the other hand, the threshold θ̃p is chosen so that the boundary

condition γ1(θ) = −ηαH(θ)θ is satisfied. This means that
∫ θ
θ̃p
γ̇1dθ = −ηαH(θ)θ +

ηα
∫ θ̃p
θ H(s)ds. Substituting γ̇1 and simplifying, I obtain that (βse)′ (w1(θ̃p)) must

satisfy the following condition

(B20) (βse)′ (w1(θ̃p)) =
ηρ
∫ θ
θ̃p
θh(θ)dθ − ηαθ̃pH(θ̃p) + ηα

∫ θ̃p
θ H(s)ds

H(θ)− 2H(θ̃p) +

∫ θ̃p
θ

H(s)ds

θ̃p

At the same time, θ̃p must also satisfy (B13). Equation (B13) and (B20) determines

27Given that t0 is constantly zero, I have ηα
(

w1
)′

(θ)+
(

t1
)′

(θ) =
(

w0
)′

(θ)/θ. Therefore, the monotonic-

ity of w0 implies the monotonicity of ηαw1 + t1. Given that only boundary bundles (w1, w0) are assigned,
the monotonicity of w1 suffices.
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the threshold θ̃p. Since (βse)′ (w1(θ̃p)) < ηαθ̃p, (B20) implies that

(βse)′ (w1(θ̃p)) <
ηρ
∫ θ
θ̃p
θh(θ)dθ

H(θ)−H(θ̃p)
.

This shows that over the pooling region [θ̃p, θ] the agent is asked to implement a
bundle with less experimentation than what the principal prefers given that θ ∈
[θ̃p, θ].
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