
Endogenous Uncertainty and Credit Crunches∗

Ludwig Straub

MIT

Robert Ulbricht

Toulouse School of Economics

October 1, 2015

Abstract

We develop a theory of endogenous uncertainty where the ability of investors to learn about

firm-level fundamentals declines during financial crises. At the same time, higher uncertainty

reinforces financial distress of firms, giving rise to “belief traps”—a persistent cycle of uncertainty,

pessimistic expectations, and financial constraints, through which a temporary shortage of funds

can develop into a long-lasting funding problem for firms. At the macro-level, belief traps provide

a rationale for the long-lasting recessions that typically entail financial crises. In our model,

financial crises are characterized by high levels of credit misallocation, an increased cross-sectional

dispersion of growth rates, endogenously increased pessimism, uncertainty and disagreement

among investors, highly volatile asset prices, and high risk premia. A calibration of our model to

U.S. micro data on investor beliefs matches the slow recovery after the 08/09 crisis remarkably

well.
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1 Introduction

The recent financial crisis has been characterized by a sharp rise in investors’ uncertainty about

firm-level fundamentals. Figure 1 documents this by plotting a closely related proxy—the average

disagreement among analysts over firm-specific earnings forecasts.1 Before 2007, disagreement

among analysts does not show a clear cyclical pattern. Between 2007 and 2013, however, the

financial crisis and the subsequent slow recovery were accompanied by a sharp and countercyclical

rise in analysts’ uncertainty.2

In this paper, we develop a theory of endogenous uncertainty that causes investors’ uncertainty

to increase precisely during financial crises. At the same time, higher uncertainty reinforces the

impact of exogenous financial shocks on firms, unleashing a feedback loop through which a temporary

shortage of funds can develop into a long-lasting funding problem for firms. At the macro level,

financial shocks—even if short-lived—lead to resource misallocation which may persist even after

financial stress has subsided. The theory thus provides a rationale for the long-lasting recessions that

typically entail financial crises (Reinhart and Rogoff, 2009; Hall, 2014; Ball, 2014). A calibration of

the model to U.S. micro data on investor beliefs is able to capture important characteristics of the

slow recovery that followed the 2008/09 financial crisis.

The theory builds on two basic ingredients. First, investors have only limited information

about each firm’s fundamentals. Their evaluation of the fundamentals is based on noisy business

indicators that include signals related to the production and employment choices of firms. Second,

investors’ beliefs about a firm’s fundamentals shape the credit supply to that firm. When investors

are optimistic or their uncertainty is low, funding will be more generous than when investors are

pessimistic or their uncertainty is high. This follows naturally, for example, when investors assess

the repayment probabilities of loans or the value of the assets used to secure these loans.

The key feature of our model is that the interaction of these two ingredients gives rise to a

feedback loop between investors’ ability to learn and credit supply that can persistently disrupt a

firm’s access to funds: On the one hand, the ability of investors to learn about a firm’s fundamentals

depends on the degree to which the firm’s actions (investments, employment, production, etc)

reflect these fundamentals. When a firm is short of funds and its actions become increasingly

dictated by financial constraints, the actions carry less information and investors learn less about

this firm’s fundamentals. This increases investors’ uncertainty and makes previous forecast errors

more persistent, potentially propagating mistakenly pessimistic beliefs into the future. On the other

hand, whenever investors are pessimistic and uncertain, credit will be tight. This opens the door to

“belief traps”—persistent (and perfectly rational) spirals of uncertainty, coupled with pessimistic

1Forecasts are about end-of-quarter earnings per share, obtained from the IBES database. Disagreement is defined
as cross-analyst dispersion based on an average of 7 analysts per firm, and is aggregated over an average of 2483
U.S. firms per quarter (see Appendix C for further details). Similar proxies are widespread in the literature (e.g.,
Bachmann, Elstner and Sims, 2013); in particular, our proxy is closely related to Senga (2015) who also looks at the
cross-analyst dispersion within firms. In Section 5 we provide a formal argument in favor of this practice.

2From 1985 to 2006, the contemporaneous correlation of analysts’ uncertainty with GDP (bandpass-filtered at
frequencies corresponding to 6–32 quarters) was +0.18 (not significant at the 5 percent level), whereas from 2007 to
2015 this correlation is -0.57 (significant at the 1 percent level). Using the HP-filter yields similar results.
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Figure 1: Average disagreement among analysts and real GDP in the U.S. The disagreement (or cross-analyst
dispersion) is computed using IBES data (see Appendix C for details). GDP is bandpass-filtered at frequencies
corresponding to 6–32 quarters. Both series are normalized relative to 2007Q1 and scaled to have a unit range.
Without the normalization, disagreement at the peak of the 2008/09 crisis increased by 88 percent compared to its
pre-crisis average.

expectations and tight credit, that are virtually decoupled from a firm’s fundamentals.

We explore the macro implications of this two-way interaction between beliefs and financial

constraints in a neoclassical economy with a financial sector. The financial sector provides firms with

credit based on its beliefs about their productivities, and further subjects firms to both idiosyncratic

and aggregate credit supply shocks. In the model, an aggregate credit supply shock makes it more

likely for firms to become financially constrained, increasing the fraction of constrained firms. This

increases credit misallocation, which manifests itself in higher efficiency and labor wedges.3 These

wedges and the corresponding drops in output and labor are characterized by a high degree of

internal persistence that is driven by the stagnation of firms that have fallen into belief traps.

Closely related to the endogenous nature of uncertainty, financial crises in our model are marked

by a number of further characteristics that are typical for such episodes, namely: (i) high levels of

pessimism (relative to the true state of nature) and (ii) high levels of disagreement among investors;

(iii) highly volatile asset prices; (iv) high risk-premia; and (v) an increased cross-sectional dispersion

of firm growth rates (e.g., Bloom et al., 2014, Fig. 2).

In our model, the real effects of a financial crisis are driven by a single aggregate and commonly

known credit supply shock. To give intuitions for how such a shock can cause the five effects listed

above, consider first its effect on pessimism. Even though productivities are unaffected and signals

are on average unbiased, such a shock increases the average pessimism in our model because it is

precisely those firms about which investors are pessimistic that are most likely to be pushed into

belief traps. Since expectations adjust significantly more slowly for firms in belief traps compared

to unconstrained firms, average pessimism increases. Next, disagreement rises as firms place more

weight on private information when learning from firms’ actions becomes less informative; asset

3For simplicity, the model abstracts from physical capital and instead works with a working-capital requirement.
In a richer version of our model, credit constraints would manifest themselves as investment wedges as well.
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price volatility spikes as firms place more weight on asset price signals; and risk premia increase as

a direct consequence of high uncertainty. Finally, the self-reinforcing nature of belief traps causes a

sharp divergence of the dynamics of a firm that is marginally constrained compared to one that is

marginally unconstrained, helping increase the cross-sectional dispersion in firm growth rates. In

sum, the endogenous uncertainty in our model can naturally explain the comovement of various

related measures of uncertainty (see also the discussion in an earlier working paper version of this

paper, Straub and Ulbricht, 2012, and Kozeniauskas, Orlik and Veldkamp, 2014).

We explore the quantitative potential of belief traps in a calibration of the model to the

U.S. economy. Calibrating models with information frictions is notoriously hard due to the scarcity

of reliable information about beliefs. Here we address this problem by explicitly exploiting micro data

on analyst forecasts made at the firm-level to discipline investors’ beliefs in our model. Equipped

with these data we use a similar approach as in David, Hopenhayn and Venkateswaran (2015) and

construct a number of target moments that pin down the information parameters in our model.

We conduct two experiments in the calibrated model. First, we explore how a temporary credit

shock (with a half-life of four quarters) propagates through the economy, and then compare it

with counterfactual responses, where we keep investor uncertainty constant. While such a four

quarter shock to the counterfactual economy produces a short-lived recession with only a half-life of

2 quarters, the same shock produces a long-lasting recession with a half-life of 10 quarters in the

endogenous uncertainty economy. We interpret the difference between these two responses as the

contribution of belief traps to the internal persistence of financial shocks.

Second, we compare the quantitative predictions of our calibrated model with U.S. data from

the 2008/09 financial crisis. To do this, we feed our model data from the St. Louis Fed Financial

Stress Index to capture the relatively short-lived distress within the financial sector. We scale the

magnitude of the shock to match a fraction of 20 percent of firms that has reported to be constrained

by financial factors in the third quarter of 2008 (Campello, Graham and Harvey, 2010). Comparing

the resulting model responses to U.S. data, our model matches the observed series remarkably well.

In particular, the model-implied efficiency wedge is able to account for 78 percent of the observed

drop in TFP, and, in combination with a countercyclical rise in the labor wedge, explains 74 percent

of the observed drop in output. Qualitatively, the model also matches the dynamics of analysts’

disagreement and expectations, and asset price volatility.

At a methodological level, uncertainty is state-dependent in this paper because learning from

financially constrained firms gives rise to a nonlinear signal structure, where, all else equal, signals

about more constrained firms’ fundamentals are less informative. In a related contribution (Straub

and Ulbricht, 2014), we show that signal nonlinearities generally imply state-dependent posterior

uncertainty. One technical challenge in analyzing the dynamic properties of our model is that

nonlinear Gaussian signal structures do not pair with any (reasonable) conjugate prior distribution.

In this paper, we address this issue by developing a simple approximative approach, which captures

the key features of the nonlinear learning problem while preserving tractability.

In our comparisons to the data, we focus on firm-level forecast dispersion as a measure of
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uncertainty—since it precisely measures the micro-level uncertainty of investors that we focus on in

our model—and show what the effects of higher uncertainty of this kind are on the real economy.

Many other accounts of both higher uncertainty and the key role it played during the recent crisis

have been given. Perhaps most prominently, Olivier Blanchard (2009) speculated at the height

of the recent financial crisis that “the crisis would largely go away” if it were not for uncertainty.

Similarly, Bloom et al. (2014) reported how uncertainty was repeatedly recognized by the Federal

Open Market Committee as a key driver of both, the recession that followed the dot-com bubble in

2001, and the recent Great Recession; and in an empirical study, Stein and Stone (2013) find that

uncertainty, proxied by options-implied volatilities, approximately doubled in the 2007–2009 crisis,

accounting for one third of the decline in U.S. capital investments and hirings during that period.4

Our account of sharply increased firm-level forecast dispersion complements these studies.

Related literature Our paper is related to a large and growing literature that introduces

dispersed information into macroeconomics (e.g., Lorenzoni, 2009; Angeletos and La’O, 2010, 2013;

Maćkowiak and Wiederholt, 2015; Hassan and Mertens, 2014a,b; Acharya, 2013; Hellwig and

Venkateswaran, 2014; Chahrour and Gaballo, 2015). In the context of the dispersed information

literature, we are closely related to La’O (2010), who shares with us the combination of information

heterogeneities with financial frictions, and David, Hopenhayn and Venkateswaran (2015), who also

analyze information frictions as a source for factor misallocation (but focus on long-run consequences

rather than fluctuations driven by financial shocks).

An important feature of our paper is the endogeneity of uncertainty. In this respect, we are

closely related to a recent literature that explores the role of endogenous fluctuations in uncertainty

for business cycles. Most notably, this includes van Nieuwerburgh and Veldkamp (2006), Ordoñez

(2013), and Fajgelbaum, Schaal and Taschereau-Dumouchel (2015).5 In these papers, aggregate

economic activity determines the quality of information regarding the current aggregate state of

the economy. Van Nieuwerburgh and Veldkamp (2006) show that this can make firm investments

strategic complements—higher economic activity generates more information which encourages more

investment—which they use to explain the asymmetric nature of business cycles. Ordoñez (2013)

relates the business cycle asymmetry in a very similar setup to the degree of financial development,

arguing that greater financial frictions exacerbate the asymmetry. The paper by Fajgelbaum, Schaal

and Taschereau-Dumouchel (2015) combines the insight in van Nieuwerburgh and Veldkamp (2006)

with fixed costs of investment. This increases the degree of strategic complementarity in firms’

investments and is able to generate multiple steady states.

Our paper stands out in this literature in that it links financial crises and uncertainty through

a novel mechanism, providing a rationale for Figure 1. In our model, it is not the level of economic

activity that determines how much information about firms’ fundamentals is revealed; rather it is

4See also, Stock and Watson (2012), Caldara et al. (2013), and Gilchrist, Sim and Zakraǰsek (2014) for further
evidence regarding the importance of uncertainty during financial crisis.

5Studies of endogenous uncertainty in financial market settings include Veldkamp (2005), Yuan (2005), Albagli
(2011), and Sockin (2015).
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the degree to which firms’ actions (investments, employment, production, etc) actually reflect these

fundamentals. This insight naturally implies that actions from financially constrained firms carry

less information than actions from unconstrained firms.

The endogenous uncertainty literature faces two difficult challenges. First, often an unrealistically

high drop in economic activity is needed to generate a significant drop in information quality (for

a similar observation, see also Kozlowski, Veldkamp and Venkateswaran, 2015); and, second, it is

hard to discipline these models due to the widespread lack of data on beliefs. We attempt to make

progress on both of these issues. Regarding the first, two remedies help us: Agents in our model

learn about firm-specific fundamentals, not economy aggregates6; and learning breaks down when

a firm is constrained, not when economic activity comes to a stand-still. This implies that small

variations in average uncertainty (in our calibration 8 percent during the recent financial crisis), can

have severe consequences. On the second issue, we follow a calibration strategy to target moments

in data on explicit beliefs. In this effort to use explicit belief data, we are related to Coibion and

Gorodnichenko (2012, 2014) who discipline models of informational rigidities using data from the

Survey of Professional Forecasters.

Our paper also relates to a recent literature around Christiano, Motto and Rostagno (2014),

Arellano, Bai and Kehoe (2012), and Gilchrist, Sim and Zakraǰsek (2014), which stresses the effects

of exogenous uncertainty (or risk) shocks in the presence of financial market imperfections. This

literature complements our approach by emphasizing the importance of uncertainty in the financial

sector, but treats uncertainty as exogenous.7 In support of a financial transmission channel, Caldara

et al. (2013) and Gilchrist, Sim and Zakraǰsek (2014) present evidence that uncertainty strongly

affects investments via increasing credit spreads, but has virtually no impact on investments when

controlling for credit spreads.

The key predictions of our model are broadly consistent with a recent empirical literature that

measures the effects of financial constraints. Giroud and Mueller (2015) show that establishments

of firms that are more likely to be financially constrained were heavily affected by falling collateral

values (house prices). In fact, they show that the entire correlation of employment loss and house

prices is explained by these arguably financially constrained firms. Similar in spirit, Chodorow-Reich

(2013) documents that firms borrowing from less healthy lenders experience relatively steeper

declines in employment during the financial crisis, consistent with the interpretation that these

firms faced tighter financial constraints (see also Chaney, Sraer and Thesmar, 2012). Our model

clarifies how an intense but relatively short-lived financial crisis can still translate into persistent

financial constraints for firms, making it much harder for them to weather such periods and retain

6See Bachmann and Moscarini (2011) and Senga (2015) for alternative models with learning about firm-specific
fundamentals.

7Two other related strands of the literature study the propagation of exogenous uncertainty through real options
as in Bloom (2009), Bloom et al. (2014), and Bachmann and Bayer (2009, 2013), and through risk premia as in
the time-varying (disaster) risk literature (e.g., Gabaix, 2012; Gourio, 2012). Related to the latter, Kozlowski,
Veldkamp and Venkateswaran (2015) explore a model where agents learn about tail-risks and where belief revisions
after short-lived financial shocks can have long-lasting effects. Similar, Nimark (2014) presents a mechanism that
increases uncertainty after rare events, if news selectively focus on outliers.
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their employment and capital.

Outline The plan for the rest of the paper is as follows. The next section introduces the model

economy. Section 3 characterizes the equilibrium and explores the core mechanism of how to learn

from financially constrained firms. Section 4 studies the workings of belief traps for a single island

in isolation. Section 5 analyzes the model’s response to aggregate shocks and compares it to data

on the 2008/09 financial crisis. Section 6 concludes and offers a few policy insights.

2 Model

Our model is built on a standard real business cycle model without capital in which there is

a continuum of monopolistically competitive firms producing consumption varieties. Firms are

organized into a continuum of islands, so that each island is home to its own continuum of firms. The

model deviates from this standard setup in two respects: First, firms produce subject to a working

capital constraint, where the tightness of the constraint depends on how “local” (island-specific)

fundamentals are perceived by an economywide financial sector. Second, in order to form these

expectations, the financial sector has access to only limited information about each island’s business

fundamentals. Time is discrete and indexed by t ∈ {0, 1, 2, . . . }. Islands are indexed by i ∈ I. Firms

are indexed by (i, j) ∈ I × J = [0, 1]2 and both islands and firms have a unit mass.

Households The preferences of the representative household are given by

E
∞∑
t=0

βtU(Ct, Nt),

with separable isoelastic preferences over consumption Ct and labor supply Nt,

U(Ct, Nt) = logCt −
1

1 + ζ
N1+ζ
t ,

where ζ ≥ 0 is the inverse of the Frisch elasticity of labor supply and β ∈ (0, 1) is the discount

factor. Ct is a composite consumption good given by

Ct =

[∫
I×J

C
ξ−1
ξ

ij,t dj

] ξ
ξ−1

,

where Cij,t is the consumption of good (i, j) at time t, and ξ > 1.

The representative household provides the financial sector with funding Lt in an economy-wide

lending market. For simplicity, lending is assumed to be made within periods, implying an infinitely

elastic credit supply and a risk-free rate of Rt = 1. The budget constraint of the household is∫
I×J

Pij,tCij,t d(i, j) ≤WtNt + (Rt − 1)Lt +

∫
I×J

Πij,t d(i, j), (1)
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where Pij,t is the price of good (i, j), Wt is the nominal wage rate, and Πij,t are profits of firm (i, j).

In equilibrium households choose consumption, lending, and hours worked to maximize expected

utility subject to their budget constraint. From the household’s optimization problem it follows

that demand for good (i, j) is

Cij,t =

(
Pij,t
Pt

)−ξ
Ct,

where

Pt =

[∫
I×J

P 1−ξ
ij,t d(i, j)

]1/(1−ξ)

is the economy-wide price index. Throughout, we normalize Pt = 1, defining the composite

consumption good to be the numeraire.

Firms Each good (i, j) ∈ I × J is produced by a monopolistically competitive firm which has

access to a linear production technology

Yij,t = Aij,tNij,t,

where Aij,t is the firm’s productivity, and Nij,t is the firm’s employment. Wages must be paid before

production takes place and are financed by within-period working capital loans of size Lij,t = WtNij,t

that are intermediated by an economy-wide financial sector.8 The financial sector provides these

loans at the risk-free rate Rt = 1, but firms face an island-specific credit limit L̄i,t on the maximum

loan capacity.

In equilibrium, firms plan their production to maximize profits,

Πij,t = Pij,tYij,t −WtNij,t,

subject to the credit limit WtNij,t = Lij,t ≤ L̄i,t. From the firms’ optimization problem it follows

that firms access working capital loans

Lij,t = min{Aij,t, Āi,t}ξ−1 Ωt, (2)

where

Ωt =

(
ξ − 1

ξ

)ξ Ct

W ξ−1
t

summarizes the state of the aggregate economy, and where

Āi,t =

(
L̄i,t
Ωt

)1/(ξ−1)

(3)

8While we refer to the funding of firms as credit throughout this paper, the story is also consistent with other
means of finance such as corporate bonds or equity finance (see also our discussion below). Since our model does not
allow for firm entry and exit, we do abstract, however, from the possibility of firms saving their way out of constraints.
See Cooley and Quadrini (2001), Khan and Thomas (2013), Moll (2014), and Siemer (2014) for studies exploring firm
dynamics in the presence of financial constraints.
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formulates the local credit limit L̄i,t in terms of “productivity-units”.

In our model, we abstract from physical capital as a factor of production. Together with

assuming that lending takes place within-periods, this improves tractability and further sharpens

our predictions by ruling out any source of persistence beyond the information channel explored in

this paper.

Productivities Productivities have an island-specific component Ai,t and a firm-specific compo-

nent εij,t. There is no uncertainty about the economy-wide aggregate productivity distribution.

Conditional on Ai,t, within-island productivities are i.i.d. and log-normally distributed:

logAij,t = logAi,t + εij,t,

where εij,t ∼ N (0, σ2
ε ). As becomes clear below, this within-island dispersion is introduced for

technical reasons only and should be thought of as being small.9 With this in mind, our preferred

interpretation is that one island corresponds to one firm in the data. The remainder of the setup is

tailored towards this interpretation, placing the island-specific component of firms’ productivities

at the center of our analysis.10 We assume that {Ai,t} follows a Markov process, with transition

probabilities

Prob(logAi,t ≤ a|Ai,t−1) = Fa(a|Ai,t−1).

We leave this process undetermined for now in order to make a few general statements in Section 3.

Later we will assume logAi,t to be AR(1).

Household and firms’ information For simplicity, we assume that the realization of current

and past aggregate variables in the economy are common knowledge across all agents. Moreover, we

further assume that Aij,t is known by firm (i, j) at date t. In consequence, both the household and

firms have access to all relevant information, so that they follow the same decision rules as they

would under full information. The only information friction in our model concerns the information

available to financial markets regarding the local productivities of firms.11

Credit limits To complete the description of the model, we need to specify the credit limits Āi,t.

To focus our analysis on the interaction between learning and credit limits, we adopt a reduced

form formulation of the financial sector throughout the main body of the paper that exogenously

links credit limits to beliefs. A possible microfoundation is offered in Appendix B.

Specifically, suppose there is a continuum of one-period lived investors whose average belief

about an island’s productivity determines the availability of working capital loans on that island.12

9In fact, the case where productivities are homogeneous within islands can be shown to yield similar results.
10Notice, that variations in local productivities Ai,t can be equivalently interpreted as shifts in relative demand

across islands and are more generally meant as a stand-in for a variety of shocks that shape local business conditions.
11None of these assumptions is crucial for our results. See Straub and Ulbricht (2012) for an earlier version of this

paper where learning was with respect to aggregate business conditions.
12Here we assume investors to be short-lived in order to avoid dealing Townsend’s (1983) infinite regress problem.
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Letting Ēt{·} denote the investors’ average expectation given their information sets (defined below),

and letting σ̂2
i,t denote their uncertainty, the adopted credit rule (expressed in productivity units) is

given by

log Āi,t = Ēt{logAi,t}︸ ︷︷ ︸
market belief

− πσσ̂2
i,t︸ ︷︷ ︸

uncertainty

+ υt + πσσ̂
2
i,tηi,t︸ ︷︷ ︸

financial shocks

+π0, (4)

where υt and ηi,t are aggregate and island-specific credit shocks, and πσ and π0 are positive constants.

The first two terms in (4) reflect the idea that credit should naturally be more available when

investors are optimistic about the productivity of firms and when uncertainty is low compared to

when they are pessimistic and uncertainty is high (see below for further discussion). The third and

fourth term further allow an island’s credit supply to depend on aggregate and local “financial”

shocks that reduce credit limits for reasons that are orthogonal to the productive potential given by

Ai,t.
13 We assume that local shocks ηi,t follow an autoregressive process, such that

ηi,t ∼ N (ρηηi,t−1, σ
2
η),

with persistence parameter 0 ≤ ρη < 1. Because all aggregate shocks are common knowledge across

all agents and there is no intertemporal savings technology in our model, there is no need at this

point to specify any particular process for υt.

We are left to specify the investors’ information sets on which their average expectations Ēt{·}
and uncertainty σ̂2

i,t are based on (as noted before, firms and households take decisions under full

information). The critical assumption is that investors do not directly observe the local (average)

productivities {Ai,t}. While there is no aggregate uncertainty, investors are thus unable to directly

identify the productivity of any given island. Index the set of investors by k ∈ K = [0, 1]. For

any island i, each investor has access to three distinct signals regarding that island’s productivity.

First, he observes the public history of working capital {Li,s}s≤t−1 invested in the island up to date

t− 1, perturbed by some noise. This is meant as a stand-in for observing news about investments

and other production-related signals, which are often thought to be valuable indicators about

productivities and other fundamentals. We use sli,t to denote this signal and Fl to denote the

conditional distribution of sli,t, such that

Prob(sli,t ≤ s|Li,t−1) = Fl(s|Li,t−1).

Again, we make no assumptions on the signal distribution Fl for now. After our general results in

Section 3, Fl will be log-normal.

Second, investor k has access to a private signal spik,t that directly communicates Ai,t perturbed

13Here we scale the local shock ηi,t relative to the uncertainty σ̂2
i,t in order to keep the learning problem tractable.

The scaling also naturally emerges from our microfoundation where ηi,t corresponds to a local supply shock in the
collateral market, which, as in the seminal CARA-normal model, manifests itself via a shift in the risk-premia. One
implication of this scaling is that for ηi,t > 1 the credit limit increases in σ̂2

i,t. This peculiarity is, however, of little
consequence, since in either case the credit limit is unlikely to bind for large positive realizations of ηi,t.
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by some noise, and has the conditional distribution

Prob(spik,t ≤ s|Ai,t) = Fp(s|Ai,t).

This signal is meant as a stand-in for all direct information about Ai,t as well as endogenous sources

(e.g., information gained from observing output, employment, etc) that have a precision that is

unaffected by the credit channel that we highlight in this paper. Since investors are short-lived their

private information does not persist from one period to the next. This allows us to avoid dealing

with Townsend’s (1983) infinite regress problem.

Finally, investors observe the history of credit limits Āi,t on island i up to date t, which

endogenously aggregates some of the information dispersed across investors. In our microfoundation

in Appendix B, credit limits come from security prices, so that in this case Āi,t captures the

information contained in market prices.

In sum, the complete information set available to investor k is given by

Ik,t = {spik,t}i ∪ {sli,s, Āi,s, υs}i,s≤t,

where the history of aggregate credit supply shocks {υs}ts=0 is a sufficient statistic for the aggregate

state of the economy. Given their information sets, investors’ average expectation and average

uncertainty are defined by

Ēt{logAi,t} =

∫
K
E{logAi,t|Ik,t} dk

and

σ̂2
i,t =

∫
K

Var{logAi,t|Ik.t}dk.

Discussion The formulation of our credit rule is based on the idea that credit is more readily

available when financial markets believe firm fundamentals to be more favorable. This feature is,

implicitly or explicitly, present in much of the previous macro-finance literature as a borrower’s

funding position naturally depends on the lenders’ beliefs about the repayment amount (which for

both debt—either credit or bonds—and equity increases in the borrower’s fundamental).14 For

instance, suppose that firms pledge part of their future income as collateral. Then the expectation and

uncertainty over the value of the collateral will naturally affect the available credit. In Appendix B,

we offer a microfoundation, where we formalize this intuition using an approximate CRRA-normal

asset market that prices securities issued by firms to raise funds.

14In the case of unsecured debt, fundamentals affect the repayment amount via the expected repayment probability,
for secured debt that repayment amount further depends on fundamentals via the expected collateral value. Seminal
frameworks where beliefs implicitly shape the supply of funds are, e.g., the perfect information models by Kiyotaki
and Moore (1997) and Bernanke, Gertler and Gilchrist (1999), where borrowers refinance themselves by writing debt
contracts. The debt contracts are then valued according to lenders’ beliefs, which in these perfect information models
coincide with borrowers’ beliefs. In models with imperfect information or heterogeneous priors, this dependence on
lenders’ beliefs is more explicit, for example in the models by Simsek (2013a,b) or Fostel and Geanakoplos (2008,
2015).
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Two features of our credit rule deserve to be highlighted. First, the credit limit in (4) adjusts

one-to-one with the market belief. This ensures that known variations in the productivity of a

firm change the availability of credit in the same way they change the firm’s demand for credit

and, therefore, do not affect the degree to which a firm is constrained.15 This property also makes

sure that under perfect information, there is no internal propagation in our model, as firms can

only be constrained in periods with negative aggregate financial shocks υt but immediately cease to

be so as shocks fade out. Second, one might expect the credit rule (4) to also depend on future

productivities. In our setup with within-period lending, however, it is natural that the only income

a firm can pledge are its current end-of-period revenues, which is why (4) depends on the market

belief over current log productivity.16

3 Equilibrium

The equilibrium in our economy is a competitive equilibrium of a standard neoclassical economy

with two modifications. First, firms operate subject to a working capital requirement. Second, the

maximum available working capital is governed by a credit supply rule, which depends on how local

productivities—or, more generally, business conditions, including e.g. relative demand—are perceived

by the financial sector (i.e. investors). In the next subsection, we characterize the dynamics of

output and employment in the economy conditional on a given distribution of credit limits {Āi,t}. In

Subsection 3.2, we then study the learning problem of investors so as to determine the equilibrium

credit limits and fully characterize the equilibrium of our economy.

3.1 Output and employment

Recalling that firms and households effectively operate under full information, we can use their

optimality conditions to obtain the following characterization of the economy’s aggregate dynamics.

Proposition 1. In equilibrium, economy-wide hours and output are given by

Nt = (1− τNt )1/(1+ζ)

Yt = (1− τAt )AeffNt,

where

Aeff =

[∫
I×J

Aξ−1
ij,t d(i, j)

]1/(ξ−1)

15Similarly, variations in the aggregate state Ωt do not affect the available credit limit measured in productivity
units, and hence do not affect the degree to which firms are constrained.

16We expect forward looking behavior to amplify the feedback mechanism that leads to belief traps in our model,
since, similar to Kiyotaki and Moore (1997), falling in a belief trap affects many future periods as well; and this can
feed back into lower credit limits today if the credit rule is forward looking.
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is the constant efficient aggregate productivity level that would obtain if the marginal products of

labor were equalized across all firms. The labor wedge 1− τNt is given by

1− τNt =
ξ − 1

ξ

∫
I×J A

ξ−1
ij,t R

−ξ
ij,t d(i, j)∫

I×J A
ξ−1
ij,t R

1−ξ
ij,t d(i, j)

< 1

and the efficiency wedge 1− τAt by

1− τAt =
1

Aeff

(∫
I×J A

ξ−1
ij,t R

1−ξ
ij,t d(i, j)

)ξ/(ξ−1)

∫
I×J A

ξ−1
ij,t R

−ξ
ij,t d(i, j)

< 1,

where Rij,t is the shadow interest rate at which constrained firms value additional funds:17

Rij,t = max

{
1,

(
Aij,t
Āi,t

)(ξ−1)/ξ
}
.

Proposition 1 provides a simple characterization of the aggregate dynamics in terms of a labor

wedge and an efficiency wedge.18 A positive labor wedge reflects an inefficiently low labor demand

by firms whose working capital constraint is binding. The efficiency wedge in turn reflects that in

the presence of credit constraints marginal productivities are not equalized across firms, decreasing

the effective (Solow) productivity in the economy through credit misallocation. If all firms were

unconstrained (or, equivalently, if the shadow rate Rij,t = Rt = 1 for all firms), then the economy

would only face the usual labor wedge due to monopolistic competition (τNt = 1/ξ) and no efficiency

wedge (τAt = 0). However, with heterogeneity within islands, σε > 0, there are always some firms

that are constrained in the cross-section, so we generally have that τAt > 0 and τNt > 1/ξ.

The second part of the proposition states that the wedges depend only on the joint cross-

sectional distribution of productivities Aij,t and credit limits Āi,t. While the distribution across Aij,t

is exogenous, the distribution over Āi,t is endogenous. In particular, it depends on the beliefs of the

financial market. The next subsection characterizes the beliefs, completing the characterization of

the equilibrium.

3.2 Equilibrium beliefs

The information sets {Ik,t} underlying the investors’ belief formation contain three distinct signals:

{sli,t}, {spik,t} and {Āi,t}. Before turning to the full information extraction problem, we first explore

the information contained in the working capital signal sli,t. Crucially, Section 3.2.1 establishes that

the working capital signal is inherently nonlinear in the presence of financial constraints and shows

17That is, Rij,t equals one plus firm (i, j)’s multiplier on the credit limit L̄ij,t. Equivalently, Rij,t is precisely the
rate at which a firm would borrow if there were a competitive, firm-specific credit market with a limited supply of
L̄ij,t.

18As usual, the labor wedge, 1 − τNt , amounts to the household’s marginal rate of substitution divided by the
economy’s marginal product of labor; and the efficiency wedge, 1− τAt , amounts to the economy’s marginal product of
labor divided by the efficient productivity Aeff . See Chari, Kehoe and McGrattan (2007) for details.
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how this implies that tighter constraints inhibit learning. To stress the generality of this effect,

we do not built on parametric assumptions on the information structure until this point. In order

to bridge the gap to solving the full learning problem, Section 3.2.2 then refines the information

structure and presents a simple linearization method that allows us to capture all the main effects

induced by the nonlinearity of the working capital signal while preserving tractability. Finally,

Section 3.2.3 characterizes the solution to the full information extraction problem.

As this section is somewhat technical, readers who are mainly interested in the economic

mechanism should feel free to skip to Section 4 after reading Section 3.2.1.

3.2.1 Learning from financially constrained firms

The information loss caused by financial constraints is due to the fact that, for each island, working

capital responds nonlinearly to changes in credit limits. The basic intuition for this is simple and

generalizes to many other types of constraints: Whenever firms are financially constrained, their

choices will be guided less by their information about fundamentals, and are instead dictated by the

financial constraint. Therefore, markets aggregate less information.19

Fix an island i. From (2), aggregating over firms, total working capital on that island is given

by,

Li,t = Ωt

∫
J

min{Aij,t, Āi,t}ξ−1 dj. (5)

The following proposition characterizes island i’s log working capital li,t ≡ logLi,t as a function of

log productivity ai,t ≡ logAi,t and the log credit limit āi,t ≡ log Āi,t.

Proposition 2. Working capital li,t on island i takes the form

li,t = log Ωt + (ξ − 1)āi,t + L(ai,t − āi,t), (6)

where L : R→ R− is a smooth, strictly concave, and increasing function, with limx→−∞ L(x) = −∞,

limx→∞ L(x) = 0, limx→−∞ L′(x) = (ξ − 1), limx→∞ L′(x) = 0. In particular,20

(a) in the absence of credit constraints, āi,t →∞, the equilibrium sensitivity of working capital to

fundamentals, ∂li,t/∂ai,t, is constant in the credit limit āi,t (in the sense that limāi,t→∞ ∂li,t/∂ai,t
exists and is nonzero), and island fundamentals ai,t.

(b) in the presence of credit constraints, āi,t <∞, the equilibrium sensitivity of working capital

to fundamentals, ∂li,t/∂ai,t, is increasing in the credit limit āi,t and decreasing in island

fundamentals ai,t.

19In the present setup, financial frictions impact firms’ choices via credit limits, but results would be the same
if the available supply of funds were limited and firms were affected via rising credit rate spreads. More generally,
tightened credit conditions reduce the responsiveness of firms to fundamentals regardless of their origin and regardless
of whether they manifest themselves through quantity constraints or increased credit spreads.

20With σε = 0, the L function is a simple kink function, L(x) = min{(ξ − 1)x, 0}, which is not differentiable and
makes this case hard to deal with using our approximation in Section 3.2.2 below (but otherwise is consistent with our
results).
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Equation (6) is derived in closed form in Appendix A.2. The decomposition in (6) demonstrates

that working capital depends on three terms: First, it depends positively on economy-wide business

conditions Ωt. Second, it depends on the credit limit āi,t imposed on firms, since loose credit limits

naturally translate into higher business activity. Finally, and crucially, working capital depends on

the “credit tightness” (ai,t − āi,t) on island i: The island-specific fundamental ai,t drives island i’s

demand for credit, while āi,t measures the credit limit (both in productivity units). If credit is not

tight, there are sufficient funds for most firms on the island to operate without being financially

constrained. In this case, the equilibrium is governed mainly by the demand for credit ai,t and

working capital is sensitive to fluctuations in demand. If, however, credit is tight, a significant

fraction of firms on the island is financially constrained. Then, island i’s working capital is mostly

determined by the credit limit āi,t and hence almost insensitive to fluctuations in fundamentals ai,t.

The sensitivity of working capital ∂li,t/∂ai,t is key in our model as it determines the information

content of the working capital signal sli,t. This is because, when the sensitivity is small, the magnitude

of the noise induced by the conditional distribution Fl of the working capital signal sli,t given a

certain amount of working capital li,t−1 will become large in relative terms, and vice-versa if the

sensitivity is large. The goal of the following paragraphs is to formalize this intuition.

To this end, we impose a small set of assumptions on the economy’s information structure. First,

we assume that the (conditional) distribution Fl of sli,t gives rise to a “stochastically monotone”

relationship of sli,t and li,t−1, in the sense that conditional on a signal realization sli,t = s, the posterior

over li,t−1 is increasing in s with respect to the monotone likelihood ratio property (MLRP). This

ensures that the signal structure Fl associates large signals with large values for working capital. Our

second assumption is that the signal structure Fl does not become more accurate for larger signal

realizations, so that the decrease in the sensitivity of working capital does not become mechanically

overturned by an exogenous reduction in noise. Formally, we require that the variance of the

posterior of li,t−1 conditional on signal sli,t = s be nondecreasing in s. In particular, the variance

can be constant.

Based on these two assumptions, we use the results of Straub and Ulbricht (2014) to prove the

following result.

Proposition 3. Suppose the posterior distribution of log working capital li,t−1 given signal sli,t = s

is (i) increasing in s in the sense of the MLRP and (ii) its variance is nondecreasing in s. Then,

(a) conditional on a level of the constraint āi,t−1, posterior uncertainty Var{ai,t−1|sli,t = s} is

increasing in the signal realization s, and

(b) conditional on a realization of the working capital signal, sli,t = s, posterior uncertainty

Var{ai,t−1|sli,t = s} is decreasing in the credit limit āi,t−1.

Proposition 3 has two parts, which relate to the two determinants of credit tightness ai,t − āi,t:
The first part formalizes the above intuition. By assumption (i) in Proposition 3, a large realization

of the working capital signal sli,t corresponds (stochastically) to a large working capital li,t−1, which—

keeping āi,t−1 constant—corresponds to a large underlying value of ai,t−1. In Proposition 2(b) we
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showed that the sensitivity of working capital was decreasing in ai,t−1, which causes a reduction in

the informational content contained in sli,t, as measured by an increase of the posterior variance

Var{ai,t−1|sli,t = s}. In sum, higher credit demand, as signaled through high sli,t relative to a fixed

āi,t, decreases the informativeness of the working capital signal.21

The second part of Proposition 3 focuses in turn on changes in the credit limit of island i, given

by changes in āi,t−1. Again, we can let Proposition 2 guide us through the intuition: Suppose

that āi,t−1 increases. By Proposition 2(b) this heightens the sensitivity of working capital li,t−1 to

changes in fundamentals ai,t−1, causing an increase in the informational content contained in sli,t,

as measured by a decrease in the posterior variance Var{ai,t−1|sli,t = s}. Therefore, a higher credit

limit āi,t−1, ceteris paribus, increases the informativeness of the working capital signal.

3.2.2 Approximate Gaussian updating

We now approach the full information extraction problem. One technical challenge in analyzing

this learning problem is that the nonlinear working capital signal generally does not conjugate with

reasonable prior distributions. To address this problem, we apply a specific linear approximation to

the investors’ learning problem that is able to preserve the key properties of the nonlinear updating

problem derived above. This linear approximation ensures that posteriors are normal and will be

used in all sections following this one.

Specifically, we focus on a standard Gaussian information structure, with a Gaussian AR(1)

process for ai,t,

Fa(a|ai,t−1) = Φ

(
a− ρaai,t−1

σa

)
, (7)

where ρa ∈ (0, 1), and normally distributed signals sli,t and spik,t with

Fl(s|li,t−1) = Φ

(
s− li,t−1

σψ

)
, (8)

Fp(s|ai,t) = Φ

(
s− ai,t
σp

)
, (9)

and where σψ > 0 and σp > 0. Given the Gaussian structure, the working capital signal can be

written as

sli,t = L(ai,t−1 − āi,t−1) + ψi,t, (10)

where ψi,t ∼ N (0, σ2
ψ). Here we dropped the term (Ωt−1 + (ξ− 1)āi,t−1), which given information set

Ik,t is constant and hence irrelevant for signal inference. The first term in (10) reflects fundamental

variations in the signal that are driven by credit tightness; ψi,t reflects the noise in the signal

structure.

Based on this decomposition, we approximate the learning problem as follows. After observing a

realization of the working capital signal sli,t, agents linearize the function L to do standard Gaussian

21It is important to keep in mind that variations in ai,t will also affect the equilibrium credit limit āi,t. The
determinants of credit tightness, taking into account the endogeneity of āi,t, will be explored in Section 4.1.
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Figure 2: Approximate Gaussian updating. The nonlinear signal structure gives rise to signal-dependent uncertainty
that is preserved using the linearization (red line). The right panel displays the resulting signal precision as a function
of the signal realization sl.

updating. We let the linearization point, however, depend on the realization of sli,t: Large signal

realizations should correspond to larger values of the fundamental ai,t−1, and hence to flatter regions

of the concave function L. To reflect this in the linearization, the linearization point is taken to be

the “face value” of sli,t—the implied credit tightness if there was no noise in the signal structure,

sface
i,t ≡ L−1(sli,t).

22 According to this definition, the face value of sli,t exactly becomes the agent’s

belief about the true tightness of credit,23 ai,t−1 − āi,t−1, in the limit of the signal sli,t becoming

perfectly informative. When sli,t is not perfectly informative, the fact that higher signal realizations

have face values in regions where L is flatter lets agents attribute a higher uncertainty to the

information contained in the face value sface
i,t . This is formalized in the following lemma.

Lemma 1. Suppose investors linearize L around the signal’s “face-value” sface
i,t to assess the likelihood

of observing sli,t|ai,t−1. Then, agents update as if sface
i,t was a “fictitious” Gaussian signal, distributed

according to N (µl, σ
2
l ) with

µl = ai,t−1 − āi,t−1

σl =
σψ

L′(sface
i,t )

,

and where agents update as if σl were exogenous.

The updating behavior described in Lemma 1 is graphically depicted in Figure 2. It is evident

how larger signal realizations—driven by increases in either credit tightness ai,t−1 − āi,t−1 or noise

ψi,t—lead the agent to suspect the actual fundamental state in regions where L is flatter, rendering

the agent more uncertain about the state’s position. Notice that this approximate Gaussian updating

requires the function L to be differentiable, which is the reason for having a small but positive

within-island dispersion of productivities in the model.

22In the case where sli,t > L(∞), we let sface
i,t =∞.

23Recall that while āi,t−1 is perfectly known, ai,t−1 is not.
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The following proposition summarizes the ability to learn from the approximate working capital

signal.

Proposition 4. The standard deviation of the approximate Gaussian working capital signal σl(s
l
i,t−1)

is increasing, with lims→−∞ σl(s) = σψ/(ξ − 1) and lims→+∞ σl(s) = ∞. Consequently, given a

realization of the noise term ψi,t, the precision of the working capital signal declines in credit tightness

ai,t − āi,t.

The right panel of Figure 2 illustrates the resulting relation between the signal precision

1/σ2
l and the realization sl = L(ai,t−1 − āi,t−1) + ψi,t. In the limit where firms on island i are

essentially unconstrained (āi,t−1 � ai,t−1), the information content in the signal is equivalent to the

exogenous noise, σl = σψ/(ξ − 1). In the opposite case where most firms on island i are constrained

(āi,t−1 � ai,t−1), observing the working capital contains no information, σl =∞. Henceforth, we

will use σl,i,t to abbreviate σl(s
l
i,t).

3.2.3 Full learning problem

The two remaining ingredients for the full learning problem are prior beliefs and the information

contained in the credit limit Āi,t. Regarding the first ingredient, since investors were assumed to

be one-period lived, their private information dies after one period as well, so each generation of

investors has prior beliefs based on the public history of signals Ĩt ≡ Ik,t\{spik,t}i = {sli,s, Āi,s, υs}i,s≤t.
Concordantly, we denote with a “tilde” the expectation and variance of public beliefs Ẽt{ · } ≡
E{ · |Ĩt} and σ̃2

i,t ≡ Var{ai,t|Ĩt}. In conjunction with sli,t (which is a signal about ai,t−1), these

public beliefs define the prior at date t. Projecting E{ai,t−1|Ĩt−1, s
l
i,t} forward (in time) to obtain

a prior estimate of ai,t, it can be shown that the relevant precisions of the prior and the working

capital signal are given by δi,tσ̃
−2
i,t−1 and δi,tσ

−2
l,i,t, where

δi,t =
(
ρ2
a + (σ̃−2

i,t−1 + σ−2
l,i,t)σ

2
a

)−1

measures the decay in past information due to the stochastic progression in ai,t (see the proof to

Proposition 5 for details).

Regarding the information contained in Āi,t, applying techniques similar to those used when

solving a standard CARA-Normal asset pricing equilibrium (e.g., Hellwig, 1980) one finds that

observing the credit limit Āi,t is informationally equivalent to receiving the signal

sāi,t = ai,t + σ2
pπσ

(
ηi,t − ρηẼt−1{ηi,t−1}

)
,

which has time-varying noisiness σ2
ā,i,t = ρ2

ησ̃
2
i,t−1 + σ2

η(σ
2
pπσ)2.

After these preparations, we can now use the Kalman filter to recursively filter through all public

information up to period t− 1, and then use the filter one last time taking into account the private

information available in period t. The following proposition summarizes the result.
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Proposition 5. In equilibrium, average financial market beliefs are given by

Ēt{ai,t} =
σ̂2
i,t

σ2
p

ai,t +
σ̂2
i,t

σ̃2
i,t

Ẽt{ai,t}

σ̂2
i,t =

(
σ−2
p + σ̃−2

i,t

)−1
,

with public beliefs given by

Ẽt{ai,t} = σ̃2
i,t

[
δi,tσ

−2
l,i,t σ−2

ā,i,t δi,tσ̃
−2
i,t−1

]
×

ρa(s
face
i,t + āi,t−1)

sāi,t
ρaẼt−1{ai,t−1}


σ̃2
i,t =

(
δi,tσ

−2
l,i,t + σ−2

ā,i,t + δi,tσ̃
−2
i,t−1

)−1

Ẽt{ηi,t} =
1

σ2
pπσ

(
sāi,t − Ẽt{ai,t}

)
+ ρηẼt−1{ηi,t−1}.

The intuition for the equations in Proposition 5 is as follows. Since the signal structure is

Gaussian in our framework, expectations are convex combinations of signals. In particular, public

expectations are a convex combination of the working capital signal, the credit limit signal, and the

prior expectation. Investors’ private expectations are very similar, except that they also include a

term (σ̂2
i,t/σ

2
p)ai,t coming from (average) private signals.

The key ingredient in this otherwise standard Kalman filtering problem is that the noise in

the working capital signal, σ2
l,i,t, is endogenous. When this noise increases, investors optimally

shift weight away from the working capital signal towards the three other signals. This affects

their posterior expectations, as well as their posterior uncertainty: Expectations Ēt{ai,t} become

“sticky” in that now more weight is on the prior expectation. And posterior uncertainty σ̂2
i,t naturally

increases since one of the signals, the working capital signal, loses some of its precision. Both effects

are crucial to understand the propagation of shocks in the model.

3.3 Computation and illustration of equilibrium

The previous two subsections provide a complete characterization of the equilibrium in the model

economy. As established in Proposition 1, the economy’s aggregate quantities only depend on the

joint cross-sectional distribution of productivities Aij,t and credit limits Āij,t. By the credit rule

(4), the latter is pinned down by exogenous shocks and investors’ average beliefs, Ēt{ai,t} and σ̂2
i,t,

which by Proposition 5 are in turn recursively determined as functions of exogenous shocks and

productivities. Combing Propositions 1 and 5, it follows that the equilibrium in our economy is

unique and entirely backward looking.

Figure 3 illustrates the resulting equilibrium dynamics for a given island i, and how it connects

with the aggregate real economy. The state of an island i at date t is characterized by the island’s
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Figure 3: Schematic illustration of equilibrium dynamics. Green dashed arrows: Internal persistence through feedback
between beliefs and credit tightness. Red arrows: Effect of fundamentals and credit tightness on real aggregates.

(exogenous) fundamentals (ai,t, ηi,t), and (endogenous) beliefs, summarized by Ēt(ai,t, ηi,t) and σ̂2
i,t.

24

Fundamentals propagate according to the exogenous laws of motion of ai,t and ηi,t (horizontal

black arrow). Beliefs endogenously propagate through Bayesian updating but the degree of internal

persistence in beliefs is crucially determined by the island’s credit tightness ai,t − āi,t (green dashed

arrows). The red arrows illustrate what matters for the aggregate real economy: When many islands

suffer from tight credit limits, this translates into labor and efficiency wedges, affecting aggregate

variables.

In the next section, we study how the dynamics of beliefs in our economy can significantly slow

down the island-level economic adjustment after negative shocks, bearing in mind how this matters

for the aggregate economy (through the red arrows in Figure 3).

4 Belief traps

We now turn to the feedback mechanism between credit constraints and beliefs that lies at the core

of our contribution. Much of the insights can be gained at the island-level, which we explore in this

section. The dynamics of the aggregate economy will be explored in Section 5.

4.1 Pessimism, uncertainty, and credit constraints

Proposition 4 documents that, ceteris paribus, the ability to learn about an island’s productivity

deteriorates in the credit tightness ai,t − āi,t. Using the credit rule (4), credit tightness can be

24Here we drop the dependence on the aggregate state υt which could be defined as part of the fundamentals.
Moreover, we note that the link from (ai,t, ηi,t) to (ai,t+1, ηi,t+1) is stochastic, in the sense that shocks enter along
this link.
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written in terms of beliefs and fundamentals,

ai,t − āi,t︸ ︷︷ ︸
credit tightness

= ai,t − Ēi,t{ai,t}︸ ︷︷ ︸
optimism/pessimism

+ πσσ̂
2
i,t︸ ︷︷ ︸

uncertainty

− υt − πσσ̂2
i,tηi,t︸ ︷︷ ︸

credit supply shocks

− π0. (11)

Apart from being influenced by exogenous credit supply shocks, credit tightness depends on current

beliefs, Ēi,t{ai,t} and σ̂2
i,t. In particular, pessimistic beliefs (Ēi,t{ai,t} < ai,t) and high uncertainty

σ̂2
i,t each reduce the credit limit relative to ai,t and hence increase credit tightness. By virtue of

Proposition 4, tighter credit in turn feeds back into higher levels of uncertainty in the working

capital signal,

σl,i,t+1︸ ︷︷ ︸
signal uncertainty

= σl
(
L (ai,t − āi,t)︸ ︷︷ ︸

credit tightness

+ ψi,t+1

)
, (12)

and through Bayesian updating (see Proposition 5), further translates into future pessimistic

expectations Ēi,t+1{ai,t+1} and future uncertainty σ̂2
i,t+1.25 In this sense, pessimism and uncertainty

mutually reinforce each other when credit is tight (see also the green arrows in Figure 3).

Before we proceed, it is worth noting that the dependence of the signal uncertainty σl,i,t on

credit tightness (ai,t − āi,t) is highly nonlinear. This is because for ai,t � āi,t, the majority of firms

in island i are far away from the credit limit so that small changes in the credit supply bear little

effect. As credit tightens, however, the marginal fraction of firms that is affected further increases

until the median firm is affected. In line with our interpretation of islands as firms, we think about

the within-island productivity dispersion to be small, so that āi,t essentially defines a threshold

where for slightly smaller realizations in ai,t most firms are unconstrained and for slightly larger

realizations most firms are constrained.

Belief dynamics To deepen our understanding of the described feedback loop, it is useful to first

explore how beliefs for a specific island evolve absent any shocks, i.e. with ai,s = ηi,s = ψi,s = 0 and

υs = ῡ for all s, and some constant ῡ. In this case, the laws of motion for investors’ expectations

and uncertainty can be expressed as26

Ēt+1{ai,t+1} − Ēt{ai,t} = gĒ(Ē{ai,t}, σ̂i,t) (13)

and

σ̂2
i,t+1 − σ̂2

i,t = gσ̂(Ē{ai,t}, σ̂i,t). (14)

25To see why tighter credit translates into more pessimistic future beliefs, first note that from (11), credit is tight
precisely in states where expectations tend to be pessimistic. The link to future pessimistic expectations then arises,
since a higher signal uncertainty implies slower revisions in pessimism due to a greater “stickiness” in beliefs (see
Section 3.2.3).

26Of course, in equilibrium the beliefs will be fully determined by the history {ai,s, ηi,s, ψi,s, υs}s≤t. The equations
given here are more general in that they describe the precise path how beliefs converge to their steady state values for
any hypothetical starting point. To see why gĒ depends only on Ē{ai,t} and σ̂i,t, note that given the steady state
property we can write gĒ(Ē{ai,t}, σ̂i,t) = (ρaδi,t+1σ̂

2
i,t+1/σ̂

2
i,t − 1)Ē{ai,t}. Substituting for σ̂i,t+1, δi,t+1 and σl,i,t+1

using Propositions 4 and 5 then yields the result.
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Figure 4: Phase diagrams for island level beliefs, in the absence of shocks. Z-shaped blue lines are (∆σ̂i,t = 0)-loci;
vertical red lines are (∆Ē{ai,t} = 0)-loci. Arrowheads represent realizations of the state across periods along the
plotted trajectories, so that the distance between two consecutive arrows can be viewed as an inverse measure of the
speed at which the state is moving.. Left: Case with a unique steady state. Right: Case with multiple steady states.

We illustrate the state space in the left panel of Figure 4. The red line corresponds to the

constant expectations locus (gĒ = 0), which is equivalent to Ē{ai,t} = 0 as ai,t is mean-reverting.

The blue line corresponds to the constant uncertainty locus (gσ̂ = 0). The latter is “Z”-shaped,

because higher levels of time t uncertainty σ̂2
i,t not only directly increase time t + 1 uncertainty

σ̂2
i,t+1 but also indirectly through tighter credit limits and less learning from the working capital

signal: For sufficiently optimistic (or pessimistic) expectations this feedback has no effect as firms’

access to funds will be secured (or denied) regardless of σ̂2
i,t, pinning down uncertainty at time t+ 1.

For moderate levels of Ē{ai,t}, however, uncertainty becomes pivotal to the availability of funds,

so that there are multiple stationary values of uncertainty (for which gσ̂ = 0). For high levels of

uncertainty, credit is tight and information is scarce, reinforcing a high level of uncertainty, and

vice versa. Intersecting the two loci, we see that this no-shock phase diagram can have a unique or

multiple steady states, depending on the location of the uncertainty locus.

The three example paths in the left panel of Figure 4 illustrate the no-shock evolution of the

beliefs from different starting points when there is a unique steady state. Along these paths, each

arrowhead represents the realization of the state at a distinct point of time, so that the distance

between two consecutive arrowheads can be viewed as an inverse measure of the speed at which

the state is moving. The key aspect in which the three paths differ is the degree of persistence and

the amount of uncertainty induced along the path. The path starting with the (relatively) most

optimistic expectations rapidly converges back to the unique steady state. The two other paths,

however, behave distinctly differently: By starting to the left of the kink of the blue locus, investors

are sufficiently pessimistic to induce a critical level of credit tightness (āi,t < 0) so that learning

breaks down. This implies that along the two paths investors accumulate higher and higher levels

of uncertainty (given that the informativeness of past information about the current state of ai,t

decays over time) and, accordingly, pessimism starts fading out slower and slower—two tendencies

that jointly reinforce each other through tighter and tighter credit limits. Caused by the decreasing
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velocity of expectation dynamics in the neighborhood of such a “belief trap”, its effects can be very

persistent. Only after a significant amount of time do the paths cross to the right of the blue locus

(āi,t > 0) and uncertainty drops back to its steady state value.

When the value of π0 + υt is smaller than in the left panel, it can also happen that the blue

locus intersects the red locus multiple times, leading to a second stable steady state (see the right

panel of Figure 4 for an example). If this is the case, belief traps are infinitely persistent in the

absence of shocks. (In either case, the logic from Section 3.3 applies and the equilibrium is unique.)

Reintroducing shocks We now discuss how the logic developed in the absence of shocks applies

to the general case where the state includes a stochastic process of fundamentals. In the no-shock

case it was clear that belief traps emerge when the state was to the left of the uncertainty locus

or, equivalently, when ai,t − āi,t < 0 (the combination of beliefs, for which ai,t = āi,t, defines the

upward-sloping arm of the uncertainty locus in Figure 4 above). Shocks enter this picture in two

ways. First, for any sequence {ai,s, ηi,s, ψi,s, υs}s≤t, Proposition 5 pins down a pair (Ēt{ai,t}, σ̂i,t)
and thus effectively selects a particular starting point in Figure 4. Second, shocks may also have

a direct impact on (ai,t − āi,t) in addition to their impact on (Ēt{ai,t}, σ̂i,t), which in Figure 4

corresponds to a (temporary) horizontal shift of the uncertainty locus.

In our model, shocks to ηi,t are the only shocks for which these two effects are reinforcing each

other. Consider for instance an adverse shock to ηi,t. On the one hand, such a shock directly

reduces āi,t and hence increases credit tightness (ai,t − āi,t). This shifts the uncertainty locus to the

right since it needs less pessimistic beliefs to sustain a particular level of uncertainty when credit is

exogenously tighter. On the other hand, since investors learn from āi,t, an adverse ηi,t shock moves

expectations Ēt{ai,t} to the left, reinforcing the exogenous tightening of credit. If the combination

of these two effects is strong enough so that ai,t < āi,t, then learning breaks down, triggering belief

trap dynamics very similar to the ones discussed above.

In contrast, shocks to ai,t and ψi,t both induce variations in Ēt{ai,t} that are partially offsetting

the direct impact on credit tightness (ai,t − āi,t). For instance a positive innovation in ai,t naturally

increases firms’ demand for credit and thus increases (ai,t − āi,t). At the same time, however,

investors also receive signals about the productivity innovation that increase Ēt{ai,t} and thereby

partially offset the tightening of credit. An interesting observation is that depending on the ability

of investors to learn about unconstrained firms, they may still fail to fully compensate for the

increased demand of credit. This is akin to an “arrival of an unknown technology shock”: Only

firms themselves know about their inherent productivity innovations, while investors are initially

uncertain and first need to learn about them. If this leaves a firm to lack the funds to run its newest

technology, nobody will learn about its productivity, triggering a belief trap.27

Finally, shocks to υt are common knowledge and do not change beliefs per se. They do, however,

27Shocks in ψi,t are similar to technology shocks, except that the rightward shift in the uncertainty locus is not
caused by an increased credit demand of firms, but by investors perceiving credit demand to be closer to the credit
limit. Since this reduces the precision of the working capital signal, expectations have to be less pessimistic to induce
a certain level of uncertainty—similar to a rightward shift in the uncertainty locus.
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Figure 5: Impulse responses to island-specific financial shock. Solid black lines are impulse responses to a −3σ shock
to ηi,t. Dashed red lines are counterfactual responses to the same shock where the information precision is exogenously
fixed at its unconstrained level. All responses are in percentage deviations.

affect the island’s credit supply and therefore affect the credit tightness (ai,t − āi,t) similar to

island-specific shocks to ηi,t. For small shocks to υt and/or sufficiently optimistic investors, this

bears little effects on any outcome. If, however, investors happen to be sufficiently pessimistic,

an adverse shock to υt unleashes its power and plunges the island into a belief trap, similar to

island-specific credit shocks. In the cross-section of all islands, precisely the pessimistic ones are

therefore affected. This is exactly the channel through which an aggregate common knowledge shock

can cause a prolonged period of high uncertainty.

4.2 Simulation of an island-specific credit shock

So far, we explained that the two key ingredients to a belief trap are pessimistic expectations and

uncertainty, and that credit shocks are the most direct way to enter into such a trap.28 Here, we

augment our previous exploration and numerically illustrate the power of belief traps in our economy

by simulating an island’s response to an adverse credit shock to ηi,t. The simulation (and all other

in the main body of this paper) uses the parametrization presented in Section 5.1.

Belief traps versus counterfactual In particular, consider a single island that is hit by a −3ση

shock to ηi,t, while the aggregate financial state υt is set to a constant and the economy is in its

stochastic steady state. It is instructive to compare the (island-specific) dynamics of the model

to such a shock with the counterfactual dynamics that would emerge given the same shock but

where the signal precision σ−2
l,i,t is fixed in all periods at the pre-shock level (at which the island was

essentially unconstrained). Figure 5 displays the model dynamics (solid black lines) alongside the

counterfactuals (dashed red lines).

It can be seen that upon impact the financial shock affects the model economy in the same way

as it affects the counterfactual response. This is because investors observe lagged working capital,

so that an increase in uncertainty affects the dynamics with a delay of at least 1 period. On impact,

28Of course, belief traps will in general emerge from a combination of shocks. Here we focus on credit shocks because
they conveniently combine an impulse in pessimism and credit tightening. We note, however, that both ingredients by
themselves would be enough to enter a belief trap (but would require larger realizations). Alternatively, one could
yield similar results with a belief-neutral credit shock combined with a pure pessimism shock.
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the financial shock decreases the credit limit āi,t and leads to more pessimistic expectations Et{ai,t}
since traders learn from āi,t.

The difference between model and counterfactual emerges in the second period after impact,

when the initial decline in the credit limit āi,t slows down learning in the model economy. This

triggers the aforementioned self-reinforcing cycle of uncertainty and pessimism—a belief trap. As

can be seen in the first panel, this decline causes a persistent decline in output, which stands in

stark contrast to the small impact on output in the counterfactual case.29 As in the belief trap

paths in Figure 4, uncertainty accumulates over time when reliable information ceases to arrive,

explaining the hump-shaped response of uncertainty, credit limits, and output.

Since there is a unique steady state in the considered simulation, beliefs and credit limits will

eventually recover. Once expectations cross to the right of the uncertainty locus (see Figure 4)

and the island becomes sufficiently unconstrained so that a sufficient amount of new information is

aggregated, there is a sharp drop in uncertainty and rise in expectations. At this point, the island

has essentially left the “belief trap”, and further recovery proceeds quickly.

Marginally constrained versus marginally unconstrained islands We conclude our anal-

ysis with an illustration of the dynamics of a “marginally constrained” island compared to a

“marginally unconstrained” island. Based on our previous discussion, we can define a threshold η̄i,t

such that for all ηi,t ≤ η̄i,t credit is tight (āi,t < ai,t), whereas for all ηi,t > η̄i,t the majority of firms in

island i are unconstrained. In particular, letting Si,t ≡ (ai,t, Ēt{ai,t}, σ̂2
i,t), we define η̄i,t = η̄(Si,t, υt)

such that for all ηi,t ≤ η̄i,t at least fraction u = 1/2 of firms in island i are constrained.30 The

number of constrained firms on island i is captured by u = Φ((ai,t − āi,t)/σε), yielding for the

threshold

η̄(Si,t, υt) =
1

πσσ̂2
i,t

(
ai,t − Ēi,t{ai,t} − υt − π0

)
+ 1. (15)

Figure 6 displays impulse response functions for two ex-ante identical islands, but where one is

hit by a shock to ηi,t slightly above η̄i,t, whereas the other is hit by a shock to ηi,t slightly below η̄i,t.

By design, the responses for the marginally constrained island (solid black lines) closely resemble the

belief trap dynamics seen in Figure 5. In contrast, the responses for the marginally unconstrained

island (dashed red lines) show little sign of an information breakdown or belief trap, similar to the

counterfactual case discussed above.

In sum, there is de facto a discontinuity in the dynamics of the marginally constrained island

and the marginally unconstrained island. While output of the marginally unconstrained island is

virtually unaffected by the reduction in the credit limit, a slightly more constrained island remains

29Underlying the discrepancy in the output between model and counterfactual is an inherent nonlinearity in the
propagation of credit limits to output. Intuitively, for small variations in the credit limit, only firms in the right tail of
the productivity distribution are limited in their production, which under standard assumptions on the productivity
distribution are few in numbers. For larger variations in the credit limit, however, the marginally constrained firm
within an island moves closer to the median where the probability density is larger. Accordingly, the marginal impact
of a decline in an island’s credit limit on its output is necessarily increasing until output is significantly affected.

30Here the precise value for u is not crucial as long as it is not too close to 0 since in our calibration within-island
firm heterogeneity is very limited. Setting u = 1/2 is convenient as it simplifies the expression for η̄.
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Figure 6: Impulse responses to island-specific financial shock so that island is “marginally constrained” . Solid black
lines and dashed red lines are impulse responses to −2.51ση and −2.50ση shocks to ηi,t, respectively. All responses
are in percentage deviations.

constrained for a considerable amount of time, with severe consequences for resource misallocation

and output.

5 Aggregate financial shocks

We now turn to the economy’s response to an aggregate financial shock to υt. In the model, υt

matters through its effect on the threshold η̄(Si,t, υt) that determines the likelihood of an island

to fall into a belief trap. From (15), η̄ is strictly decreasing in υt. During a financial crisis when

υt is small, firms are therefore more prone to idiosyncratic financial shocks in the sense that it

takes smaller realizations of ηi,t for a firm to become constrained. In this section, we explore the

consequences of an aggregate drop in υt using numerical simulations.

5.1 Parametrization

We interpret one period as a quarter. The inverse Frisch elasticity of labor supply ζ is set to 0.5 and

the elasticity of substitution between consumption goods ξ is set to 4. The productivity parameters

are set to ρa = 0.9 and σa = 0.15, so that islands can be interpreted as firms. These parameters are

consistent with the existing literature on firm-level dynamics.31 To interpret islands as firms, we

further keep the within-island dispersion low, setting σε to 0.01.

It remains to specify the parameters of the credit rule and the parameters entering the learning

problem. Notice that π0 only matters by shifting {υt}, so that we can normalize π0 = 0. Our choice

for πσ is motivated using our micro-foundation in Appendix B, which maps a relative risk aversion

of 1.5 for investors into πσ = 7.5 (see Appendix D for robustness checks). Next, we set ρη = 0.84,

reflecting a four quarter half-life of the island-specific credit supply shocks. Finally, for the learning

parameters, we use forecasts about earnings per share (EPS) by financial analysts from the IBES

database to construct calibration targets based on the financial market’s ability to learn at the

31See, for example, Gilchrist, Sim and Zakraǰsek (2014, Appendix 4).

25



Table 1: Parameter values used in simulation

Parameter Value Description

ζ 0.50 Inverse Frisch elasticity of labor supply; set to standard value used in
business cycle literature.

ξ 4.00 Elasticity of substitution among goods; set to standard value used in
business cycle literature.

ρη 0.84 Persistence of credit supply shocks; set to (1/2)1/4, reflecting a half-life of
4 quarters.

ρa 0.90 Persistence of island-average productivities; calibrated to firm-level
productivity data.

σa 0.15 Dispersion of productivity innovations across islands; calibrated to
firm-level productivity data.

σε 0.01 Dispersion of productivities within islands; set to a small number to be
consistent with interpreting islands as firms.

σψ 0.23 Standard deviation of firm signal; calibrated to match firm-level forecast
data (see text).

σp 0.47 Standard deviation of private signal; calibrated to match firm-level
forecast data (see text).

ση 0.63 Standard deviation of financial noise; calibrated to match firm-level
forecast data (see text).

πσ 7.50 Credit rule coefficient; chosen based on our microfoundation in
Appendix B for a relative risk aversion of 1.5.

firm-level.32 We exploit data on the following 4 panel variables33:

µ̄i,t ≡ average cross-analyst belief about firm i’s end-of-quarter EPS

σcross
i,t ≡ cross-analyst belief dispersion about firm i’s end-of-quarter EPS

EPSi,t ≡ end-of-quarter realization of EPS

∆pi,t ≡ log returns of firm i’s stock (adjusted for splits and dividends)

To isolate the firm-specific components in these series, we extract time-fixed effects from each of

them, with the exception of σcross
i,t (for which we target the sample mean). We choose σψ, σp and ση

to jointly match (i) the average belief dispersion34 E{(σcross
i,t )2}/V{EPSi,t}, where E and V denote

the sample mean and variance; (ii) the signal-to-noise ratio of stock prices V{∆pi,t}/V{noisei,t},
32Our approach is similar to David, Hopenhayn and Venkateswaran (2015), but differs in that we calibrate learning

by investors about firms, whereas David, Hopenhayn and Venkateswaran calibrate the learning of firms from financial
markets. The existence of financial analysts’ forecasts about firms allows us to calibrate our model more directly
based on belief data.

33In the calibration, we compare pre-crisis model moments to monthly data prior to the financial crisis (1984Q2–
2006Q4). To reduce the sensitivity of our calibration to outliers, we trim for each month the 2% tails of all variables.
The resulting panel contains on average 2053 firms per month. Price data is adjusted for dividends and splits and is
obtained from the CRSP database. See Appendix C for further details. The model moments are computed at the
stochastic steady state with a constant υt = ῡ set so that 2.5 percent of firms are constrained.

34We normalize the average dispersion relative to V{EPSi,t} to make it unitless, allowing us to directly compare it
to the dispersion of investors’ beliefs in our model without relying on further structural assumptions.
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Table 2: Calibration targets for learning parameters (based on IBES data, see text)

Moment Value

Average of firm-specific cross-analyst dispersion E{(σcross
i,t )2}/V{EPSi,t} 0.0206

Signal-to-noise ratio of stock returns V{∆pi,t}/V{noisei,t} 1.1059
Correlation of firm-specific average belief and realized EPS Corr{µ̄i,t,EPSi,t} 0.8697

Note: All target moments are exactly matched by the calibrated learning parameters. The model moments are
computed at the stochastic steady state for a constant value of the aggregate credit shock υ0 = υ1 = · · · = ῡ, chosen
so that 2.5% of firms are constrained.

where noisei,t are the residuals from regressing ∆pi,t−1 on EPSi,t and firm-level fixed effects35; and

(iii) the correlation between average cross-analysts beliefs and actual realizations Corr{µ̄i,t,EPSi,t}.
Intuitively, the first of these moments determines the contribution of investors’ private signals

spk,t relative to all other signals, the second moment pins down the predictive power of market prices,

and the third moment parametrizes the overall information available to investors. Tables 1 and

2 summarize the target moments and the calibrated variance parameters. In line with the asset

pricing literature, the signal-to-noise ratio of prices is close to unity, reflecting a low correlation

between prices and fundamentals.36 The dispersion of beliefs and the correlation of beliefs and

actuals, however, suggests that learning from the other sources is significantly more efficient. Taken

together the learning parameters imply a moderate posterior uncertainty that averages to about

one fifth of the unconditional uncertainty at the steady state. Appendix D explores the behavior of

our model under various alterations of the information and credit rule parameters, demonstrating

that our results are robust to significant changes.

5.2 Simulation of an aggregate credit shock

We conduct two numerical experiments. In this subsection, we illustrate the model’s implication by

simulating its response to a temporary shock to υt that decays at a geometric rate. This allows us

to explore its implications in a controlled environment. The next subsection then chooses a different

process for υt that is aimed to replicate the distress within the financial sector during the 2008/09

crisis.37

We let the initial aggregate financial state υ0 = · · · = υt−1 = ῡ be such that 2.5 percent of firms

are constrained at the stochastic steady state. At date t the economy is hit by an aggregate shock

35We use lagged prices, since we are interested in calibrating the predictive power of stock prices for not yet realized
earnings. In the model, we interpret the credit supply signal sāi,t as a natural counterpart, since it similarly aggregates
information through its dependence on average expectations. Appendix B establishes this equivalence more formally.
Paralleling the treatment of the data, we do not assume any prior knowledge when computing the signal-to-noise ratio
of sāi,t; i.e., we match the (average) unconditional ratio, Var{sāi,t}/Var{sāi,t|ai,t} = Var{ai,t}/σ2

ā,i,t + 1, to the data.
36The calibration implies a relative contribution of the credit supply signal to investors’ learning between 2 and 5

percent. This is broadly consistent with David, Hopenhayn and Venkateswaran (2015) who find that the information
contained in stock market prices (the equivalent to the credit supply signal in our microfounded model in Appendix B)
contributes between 2 and 8 percent to learning about firm fundamentals at a 3-year horizon.

37The simulations are implemented by fixing a large cross-section of islands and then running the recursion outlined
in Section 3.3 for each island and the exogenous process for υt.

27



0 5 10 15 20
−4

−3

−2

−1

0
Percent

Output

0 5 10 15 20
−1.5

−1

−0.5

0
Percent

Employment

0 5 10 15 20
−2

−1.5

−1

−0.5

0
Percent
Efficiency wedge

0 5 10 15 20

−2

−1

0
Percent

Labor wedge

0 5 10 15 20
−6

−4

−2

0

2
Percent

Expectations

0 5 10 15 20
0

2

4

6

8
Percent

Uncertainty

0 5 10 15 20
0

10

20

Pp.
Constrained firms

0 5 10 15 20
0

2

4

Pp.
Credit spread

Figure 7: Impulse responses to aggregate financial shock. Solid black lines are impulse responses of the aggregated
(or averaged) endogenous uncertainty economy; dashed red lines are counterfactual responses where the signal precision
is exogenously fixed at its unconstrained level. All responses, except the last two plots, are in percentage deviations.

∆ that reduces υt and decays with a half-life of 4 quarters:

υt+s = ῡ − (0.5)s/4 ∆.

The size of the initial impact ∆ is chosen, so that 20 percent of firms are constrained at the peak of

the crisis, consistent with the number of firms that reported to be “very affected” by difficulties

in accessing the credit market during the recent financial crisis (Campello, Graham and Harvey,

2010).38

Figure 7 depicts the responses of aggregate output, employment, the efficiency wedge (1− τAt ),

the labor wedge (1− τNt ), average expectations
∫
I Ēt{ai,t} di and average uncertainty

∫
I σ̂

2
i,t di, the

economy-wide fraction of constrained firms, and the economy-wide average “credit spread”
∫
I×J(Rij,t−

1) d(i, j). All responses are reported in percentage deviations from the steady state, except for the

fraction of constrained firms (which is reported in percentage points) and the credit spread (which

is reported in percentage points relative to the steady state).

The solid black lines show the responses in the endogenous uncertainty economy. To illustrate

the effects of the belief trap mechanism, we also plot counterfactual responses where we exogenously

fix σl,i,t at their unconstrained level, shutting down any amplification and persistence stemming

from belief traps. The counterfactual responses reflect the direct impact of tighter credit limits on

38Campello, Graham and Harvey (2010) conduct a survey among CFOs, finding that that 35% of firms report that
they experience less access to credit in the 3rd quarter of 2008, 27% report that they experience higher costs of funds,
and 18% state that they have difficulties in accessing a credit line. Asked about how much credit constraints affected
their operations, 56% of firms report to be “somewhat affected” by difficulties in accessing the credit market in the
third quarter of 2008, whereas 20% of firms report to be “very affected”.
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Table 3: Half-life of output and employment to an aggregate financial shock with a half-life of 4 quarters. The size of
the shock is calibrated, so that 10 or 20 percent of firms are constrained at the peak of the crisis.

10% constrained 20% constrained

model counterfactual model counterfactual

financial shock 4 4 4 4
output 11 2 10 2
hours 10 3 8 2

the economy, whereas the difference between the counterfactual and the endogenous uncertainty

economy is due to the belief trap mechanism.

By construction, the simulated shock increases the fraction of constrained firms upon impact,

which is further reflected in an increase in the average credit spread. Tighter constraints then lead

to credit and resource misallocation, illustrated by increases in the efficiency and labor wedges, and

further causing aggregate output and employment to fall (see first row of Figure 7).

Notice that upon impact, there is no conceptional difference between the counterfactual responses

and the endogenous uncertainty economy’s—all visible differences are due to variations in the steady

state distributions between the two economies. Starting with the first period after the initial impact,

however, the responses between the model and the counterfactual persistently diverge as learning in

the endogenous uncertainty economy is inhibited for islands facing tighter credit constraints (see

our explanations in Section 4 above).

Internal persistence On an aggregate level, the disproportionately long-lasting contraction of

firms in belief traps results in a discrepancy between the underlying aggregate financial shock,

which was set to a half-life of 4 quarters, and the persistence in the endogenous responses of the

economy. This is documented in Table 3, which lists the half-lives of the simulated responses in

output and employment. It is evident that the endogenous uncertainty model has a high degree

of internal persistence, meaning that the half-life of output (10 quarters) and hours (8 quarters)

significantly outlasts the financial shock that caused the crisis. The small internal persistence of

the same shocks in the counterfactual economy (2 quarters) illustrates how in the absence of belief

traps the fundamental impact of financial constraints quickly dissipates. For a comparison, the table

also reports the half-lives for a simulation where only 10 percent of firms are constrained at the

peak of the crisis, which is similar in magnitudes, reflecting that the economy scales approximately

proportionally in the fraction of firms being constrained (see below).

Endogenous pessimism An interesting implication of our belief trap mechanism is that the

average pessimism in the economy endogenously increases as υt falls, even though υt is common

knowledge and does not directly affect learning. The reason for this is statistical selection: When

investors are pessimistic about an island, that island is more likely to become constrained. At the

same time, expectations about constrained islands are endogenously persistent due to the belief

trap mechanism. When investors are, by contrast, optimistic about an island, this relaxes credit
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Figure 8: Further impulse responses to an aggregate financial shock. Solid black lines are impulse responses in
the endogenous uncertainty economy; dashed red lines are counterfactual responses where the signal precision is
exogenously fixed at its unconstrained level. All responses are in percentage deviations.

constraints, so that the signals become more informative and investors are more likely to learn

about their too optimistic views. This asymmetry between optimism and pessimism causes the

economy-wide average expectation to fall when credit limits tighten (see the first plot in the second

row in Figure 7).

Cross-sectional dispersion A fact often stressed about the recent financial crisis is that the

cross-sectional dispersion of growth rates has drastically increased compared to the pre-crisis level

(e.g., Bloom et al. 2014). This stands in contrast to what a simple model of the financial crisis

based on financial constraints would predict: Financially constrained firms can only respond less

to productivity innovations, which increases comovement. The belief trap mechanism in this

paper opposes this effect by increasing the discrepancy between constrained and unconstrained

firms. Depending on the parametrization of our model, either of the two effects can dominate (see

Appendix D). The first panel of Figure 8 shows the response for our baseline calibration. Unlike some

of the alternative parametrizations explored in the appendix, the “constraints”-effect still dominates

here at the beginning of the crisis, causing the dispersion to initially fall, before it is overturned

by increasing dispersion in the aftermath of the crisis. In contrast, dispersion is unambiguously

reduced in the counterfactual due to the absence of belief traps.39

Disagreement, volatility, and risk premia Another set of corollaries endogenously related

to the increase of uncertainty in our model are an increasing disagreement of investors and an

increasing volatility and risk premia of stock prices. This is in line with the available data and

further provides a foundation for the common practice to use volatility and disagreement as proxies

for uncertainty (e.g., Bloom, 2009; Bachmann, Elstner and Sims, 2013).40

39The asymmetric responses of firms in belief traps compared to non-constrained firms also helps explaining the
skewness of output growth documented in recent empirical studies (e.g., Salgado, Guvenen and Bloom, 2015).
Specifically, while output growth is essentially symmetric at the steady state (γ1 = −0.01), it increases to γ1 = −0.22
at the peak of the crisis. In comparison, Bloom et al. (2014) report a skewness of γ1 = −0.33 in sales growth at the
establishment level in a pooled sample over the years 2008-2009.

40Increases in disagreement and volatility during the recent financial crisis are eminent, e.g., based on the IBES
survey data described above and the VIX volatility index (see also the next subsection). Also see Carlin, Longstaff
and Matoba, 2013 for empirical evidence (based on MBS trading and forecast data) that there is a strong positive
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The increase in the dispersion of investors, defined by Var{E{ai,t|Ik,t}} (variance with respect

to k), directly follows from Proposition 5. When less can be learned from the firm signal, sli,t,

Bayesian agents respond by increasing the weight on their private information spk,t, causing an

increase in the cross-investor dispersion of beliefs.41 For volatility and risk premia, we build on

our microfoundation where āi,t reflects variations in stock prices. Accordingly, we define volatility

as the variance of āi,t conditional on the complete history up to date t− 1 and conditional on υt.

Similar to disagreement, volatility increases when less can be learned from firms, since this causes

investors to increase the weight on the market signal sāi,t, making them more exposed to financial

noise shocks ηi,t. Finally, risk premia in our model correspond to the term πσ(1− ηi,t)σ̂2
i,t in our

credit rule, which by definition increases when investors’ uncertainty increases.42

The second to last panel in Figure 8 illustrates these effects for the simulated credit supply

shock. Notably, none of the three series increases in the counterfactual where uncertainty is fixed at

the pre-crisis level.

Asymmetric impact of financial shocks While the model’s response to a credit supply shock

scales almost linearly with the fraction of firms that are constrained during the crisis43, the model’s

response is highly nonlinear and asymmetric in the magnitude of the exogenous shock to υt. Figure 9

illustrates this, relating the output loss at the peak of a crisis to the magnitude of the initial shock

(measured in percentage deviations) and the corresponding fraction of firms that becomes constrained

on impact. As a reference, the black dotted lines indicate the stochastic steady state with a fraction

of 2.5 percent of constrained firms. Two things can be noted. First, even very large positive shocks

have only a muted impact on the economy. This is because there is no “over-borrowing” in our

model, so that positive shocks to υt merely ensure that almost all islands are unconstrained, but do

not lead to “credit booms”. Second, negative but small credit supply shocks are less severe than

the large shocks simulated in this section, since they map into disproportionately less firms that

become constrained. Similar to, e.g., Brunnermeier and Sannikov (2012), this nonlinearity generates

a discrepancy between high-frequency day-to-day fluctuations in financial markets, which have little

impact on the real economy, and rare tail events, which cause pronounced recessions.

5.3 Application to the 2008/09 financial crisis

We now compare our model to data from the 2008/09 financial crisis. To this end, we conduct

a second simulation similar to the one in the previous subsection, but where we replace the

geometrically decaying shock to υt with one that is aimed to resemble the disturbances in the

relationship between disagreement, return volatility, and risk premia.
41More formally, the disagreement across investors can be shown to satisfy Var{E{ai,t|Iik,t}|i, t} = σ̂4

i,t/σ
2
p. In

Figure 8 we report the economy-wide average disagreement, given by
∫
I
σ̂4
i,t/σ

2
p di.

42Notice the positive correlation between ηi,t and σ̂2
i,t. This explains why the average risk-premia increases more (in

percentage terms) than the average uncertainty does, even though ηi,t averages to zero in the cross-section.
43To see what drives the linearity, observe that absent general equilibrium effects, the output loss is approximately

given by the fraction of island in a belief trap times the average output loss among those islands. The linearity then
follows because the endogenous tightening of credit limits caused by pessimism and uncertainty for islands in a belief
trap is large compared to the direct effect of the credit supply shock.
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Figure 9: Output loss at the peak of the crisis in relation to the magnitude of the underlying credit supply shock to
υt (in percent) and the corresponding fraction of firms that was constrained on impact. Black dotted lines indicate
the stochastic steady state (where 2.5 percent of all firms are constrained).

financial system seen during the recent crisis. Specifically, starting from the stochastic steady state

(see above), we now simulate a sequence {υt+s},

υt+s = ῡ −∆s,

where ∆s is set proportional to the St. Louis Fed’s financial stress index (STLFSI), which is designed

to capture the “financial stress” component underlying the performance of the financial sector.44

In our simulation, we treat the STLFSI as a disturbance in credit supply that is intrinsic to the

financial sector, but we do not take a stand on the original cause or the propagation of that cause

within the financial sector. The bottom left panel in Figure 10 plots the evolution of the STLFSI

between 2007 and 2013. Since the series does not have a natural unit, we scale {∆s} so that at the

peak of the crisis 20 percent of firms in the economy are constrained. This is broadly consistent

with the empirical evidence on the fraction of firms affected by the recent financial crisis (c.f,.

Footnote 38).45 The remainder of the economy follows the parametrization discussed in Section 5.1.

Figure 10 shows the resulting model responses (black solid lines) along with the corresponding

data moments in the U.S. (green dashed lines).46 The bottom left panel displays the St. Louis

financial stress index to which we calibrated the exogenous shock υt. The other panels display

44The STLFSI is based on a principal components analysis, where “financial stress” is taken as the most important
factor explaining the comovement of several financial indicators, including 6 interest rate series, 5 yield spreads and 2
volatility indices. See https://www.stlouisfed.org/On-The-Economy/2014/June/What-Is-the-St-Louis-Fed-Financial-
Stress-Index for details.

45Since our economy scales approximately linear in the fraction of firms constrained at the peak, variations in the
scaling of {∆s} affect mainly the magnitude but not the persistence of the crisis.

46See Appendix C for a detailed description of the data. The data on output, employment, and the efficiency wedge
(measured using TFP data) are detrended using a (6,32) band-pass filter. Data on credit spreads is obtained from
Gilchrist and Zakraǰsek (2012), defining the average spread between corporate bonds and a hypothetical Treasure
security that mirrors the cash flow of the corporate bond. Expectations, uncertainty and disagreement are computed
using IBES data. The measure for volatility is the VIX. Output growth dispersion is based on COMPUSTAT data.
Volatility, expectations, uncertainty, and disagreement are all an order of magnitude larger in the data than in the
model, likely due to the fact that the EPS data are an imperfect proxy for fundamentals. To make the graphs readable
we scaled those data series down by a factor 10.
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Figure 10: Simulation of 2008/09 financial crisis. Solid black lines are simulated responses of the aggregated
(or averaged) endogenous uncertainty economy; dashed green lines are corresponding data series. The number of
constrained firms and the credit spread are in percentage points, all other responses are in percentage deviations.
Data series marked with * proxy their respective model counterparts without sharing the same units. In order to
retain the same scale, the data series were scaled down by a factor 10.

the endogenous responses. First, pointing to the core of this paper’s mechanism, it can be seen

that firm-level uncertainty in the data (proxied by the average cross-investor standard deviation of

firm-specific forecasts in the IBES database) shows a remarkably similar shape to the predicted

uncertainty. Similarly, average expectations in the data (measured by the average firm-specific

forecast in the EPS database) shows a similar shape to the one predicted by the model.

In regard to the transmission to the real economy, the model predicts an increase in credit

spreads by 433 basis points, compared to an increase in the credit spread by 621 measured in the

data. The increased spreads then translate into an increase in the efficiency and labor wedges.

Comparing the predicted decline in the model’s efficiency wedge to the measured drop in Solow

residuals in the data, the model accounts for 78 percent of the observed fall in aggregate productivity

at the peak of the crisis. In comparison, the counterfactual without belief traps (not plotted here)

only accounts for 29 percent. Similar to standard RBC models, the model underpredicts the fall in
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employment, due to the decline in the wage rate that leads unconstrained firms to increase hours

throughout the crisis. Nevertheless, the models explains 74 percent in the drop in output at the peak

(43 percent in the counterfactual).47 At the same time, the model is able to explain the persistent

decline in these variables after financial stress has faded out in 2009Q3.

Finally, the bottom row plots the model and data series on the cross-sectional growth dispersion,

disagreement (the square of our uncertainty measure48), and volatility (measured by the VIX index

in the data). It can be seen that both disagreement and volatility have similar shapes in the data.

The dispersion in output growth rates in the model first drops due to the homogeneously negative

change induced by a large tightening in financial constraints. After the initial impact, however, the

emergence of belief traps and the corresponding firms’ decline in sales increase the dispersion. The

data also show an increase in the dispersion, although it peaks before the model-implied dispersion

does. We conclude that our model captures significant aspects of the macroeconomic dynamics

during and after the recent financial crisis, using only a single shock.

6 Concluding remarks

This paper explores a novel mechanism that endogenously links financial crisis to uncertainty about

the economy’s fundamentals and explores the implications for the real economy. When firms see

their financial constraints tighten during times of financial distress, they are forced to respond by

cutting hiring—and more generally investment—even for projects they deem profitable according

to their own, private information. This makes information about firm fundamentals endogenously

scarce, generating uncertainty.

We mention a number of consequences uncertainty has within our model—e.g. dispersion of

output and beliefs, pessimism, and asset market volatility—but the most important is the feedback

effect through the financial sector’s belief about firm profitability: Financial markets see higher

credit risks associated with lending to (or more generally investing into) distressed firms, worsening

the shortage of funds even further. We illustrate that after aggregate shocks to the financial sector

this vicious circle entails not only significant losses for distressed firms, but also for the whole

economy.

There are two key externalities in our model. Both pertain to the way in which agents fail to

internalize the effects of their actions on information generation and hence future financial constraints.

First, in our model, constrained firms find it optimal to use up their whole credit limit—with the

consequence that their actions become flat in their private information about productivity. In the

aggregate, this implies a greater loss of information than if agents were pursuing actions that varied

according to their private information. Of course, given credit limits, this alternative might entail a

short-run reduction of an island’s productivity but might greatly help to reduce the amplification

47Of course, the absence of capital in our model suggests caution when interpreting the output loss. In particular,
our shortfall in matching employment is somewhat compensated by our model having an implicit labor share of 1. For
this reason, we view the efficiency wedge as a better benchmark.

48In our model, disagreement across traders is proportional to the square of σ̂2
t .
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and persistence of financial shocks.

Second, investors do not internalize their effect on information generation. Given that information

plays the role of a public good in this economy, investors provide inefficiently little credit: More

credit would relax firms’ financial constraints and improve the quality of information, akin to an

investment into a public good. This externality is particularly strong when the marginal effect of

credit on information aggregation is large. Financial intermediaries underinvest precisely when it

would be needed most to support the economy.

There are three policies that our analysis speaks to. First, a bank recapitalization is not helpful

to restore lending in our economy. The reason for this is simple: As long as it does not change the

amount of credit granted to firms, it only represents a transfer from households to investors, which

in our setup share one budget constraint with households anyway. What is helpful, however, is

direct public lending to firms.49 While in normal times such policies crowd out bank lending, in

distressed times, they crowd in bank lending: Public lending relaxes firms’ borrowing constraints

and hence provides information as to which firms are worth investing more in. Finally, the most

obvious policy implication of our setup is about information policy. While many firms commonly

attempt to obfuscate their true performance during recessions, our setup highlights that actually

policymakers might want to push for the opposite: Increasing transparency always helps, but

especially so during crises when other sources of information, such as information from investment

or business statistics, dry up. Given the significance of our positive results we speculate that the

real effects of the recent financial crisis could have been mitigated if a combination of the latter two

policies had been implemented.

We believe there to be various interesting extensions and other applications of our mechanism.

Two especially promising examples include applications to financial constraints on households, rather

than firms; and to borrowing constraints for sovereigns. We leave both examples for future research.

49Public guarantees of firm debt are similar in that they incentivize lenders to lend despite their own private beliefs.
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A Mathematical appendix

A.1 Proof of Proposition 1

Firms’ optimality implies that

Pij,t =
ξ

ξ − 1

WtRij,t
Aij,t

Yij,t = P−ξij,tC =

(
ξ − 1

ξ

)ξ ( Aij,t
WtRij,t

)ξ
Ct

Lij,t = WtNij,t =

(
ξ − 1

ξ

)ξ (Aij,t
Wt

)ξ−1

R−ξij,tCt, (16)

where Rij,t ≡ max
{

1, (Aij,t/Āij,t)
1−1/ξ

}
is the multiplier on the working capital constraint.

Aggregating over labor demands Nij,t =
Yij,t
Aij,t

and per-island output Yij,t, yields

Nt =
[
(1− τAt )Aeff

]ξ−1 [
(1− τNt )W−1

t

]ξ
Ct (17)

Yt =
[
(1− τAt )Aeff

]
Nt, (18)

where

Aeff =

[∫
I×J

Aξ−1
ij,t d(i, j)

]1/(ξ−1)

is the economy-wide efficient productivity, and where

1− τAt =
MPNt

MPNopt
t

=
Yt/Nt

Aeff
=

1

Aeff

(∫
I×J A

ξ−1
ij,t R

1−ξ
ij,t d(i, j)

)ξ/(ξ−1)

∫
I×J A

ξ−1
ij,t R

−ξ
ij,t d(i, j)

and

1− τNt =
MRSt
MPNt

=
Wt

(1− τAt )Aeff
=
ξ − 1

ξ

∫
I×J A

ξ−1
ij,t R

−ξ
ij,t d(i, j)∫

I×J A
ξ−1
ij,t R

1−ξ
ij,t d(i, j)

,

define the aggregate efficiency and labor wedge. Because Aij,t is normally distributed around

Ai,t there always exists a positive measure of firms (in each island) with Rij,t > 1, and thus

1− τNt < (ξ − 1)/ξ. To see that (1− τAt ) < 1, rearrange to obtain

∫
I×J

Aξ−1
ij,t R

1−ξ
ij,t d(i, j) <

[∫
I×J

Aξ−1
ij,t R

−ξ
ij,t d(i, j)

](ξ−1)/ξ [∫
I×J

Aξ−1
ij,t d(i, j)

]1/ξ

Defining xij ≡ A(ξ−1)2/ξ
ij,t R

−(ξ−1)
ij,t , yij ≡ A(ξ−1)/ξ

ij,t , p = ξ/(ξ − 1), and q = ξ this can be rewritten as

∫
xijyij d(i, j) <

[∫
xpij d(i, j)

]1/p [∫
yqij d(i, j)

]1/q

.
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Since 1/p+ 1/q = 1, this is an immediate consequence of Hölder’s inequality. The strictness follows

since Rij,t > 1 for a positive measure of indices (i, j).

To compute the aggregates, note that household optimization yields

CtN
ζ
t = Wt. (19)

Collecting equations and setting Ct = Yt, aggregate employment, output, and the wage rate are

pinned down by the solution to (17), (18) and (19), yielding

Wt = (1− τNt )(1− τAt )Aeff

Nt = (1− τNt )1/(1+ζ)

Yt = (1− τAt )AeffNt.

A.2 Proof of Proposition 2

Note that the integral in (5) implicitly uses the cdf Φ
(
aij,t−ai,t

σε

)
as a measure. So, another way to

express Li,t is as

Li,t = Ωt

∫ ∞
−∞

e(ξ−1) min{u,āi,t} dΦ

(
u− ai,t
σε

)
. (20)

This integral can be explicitly solved to give

li,t = log Ωt + (ξ − 1)āi,t + L(ai,t − āi,t)

where

L(x) ≡ log

[
e(ξ−1)x+ 1

2
(ξ−1)2σ2

εΦ

(
− x

σε
− (ξ − 1)σε

)
+ Φ

(
x

σε

)]
.

It is easy to see that L is smooth, and, using L’Hospital’s rule, that limx→−∞ L(x) = −∞,

limx→+∞ L(x) = 0. Next we prove that any function of the form

h(x) = log
[
ex+ 1

2
σ2

Φ
(
−x
σ
− σ

)
+ Φ

(x
σ

)]
for σ > 0 is strictly increasing and strictly concave. Notice that any result about h can easily be

translated into one of L since L(x) = h((ξ − 1)x) with σ = (ξ − 1)σε.

The first derivative of h(x) is given by

h′(x) =

(
1 +

Φ
(
x
σ

)
ex+ 1

2
σ2

Φ
(
−x
σ − σ

))−1

which is clearly positive, and strictly between 0 and 1. Using L’Hospital’s rule it is straightforward to

see that limx→+∞ h′(x) = 0 and limx→−∞ h′(x) = 1, hence limx→+∞ L′(x) = 0 and limx→−∞ L′(x) =

ξ − 1.
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The second derivative of h(x) is given by

h′′(x) = −h′(x)
(
1− h′(x)

) [ 1

σ

φ(xσ )

Φ(xσ )
+

1

σ

φ(−x
σ − σ)

Φ(−x
σ − σ)

− 1

]

which, using the fact50 that φ(z)
Φ(z) > −z for any z proves that h′′(x) < 0, so L is concave. Parts (a)

and (b) of Proposition 2 follow immediately from the properties of L.

A.3 Proof of Proposition 3

Both proofs rely on Straub and Ulbricht (2014). Before we prove the two parts, notice that equation

(6) can be solved for ai,t as function of li,t and āi,t,

ai,t = g(li,t, āi,t),

where, due to the properties of L, g is increasing and strictly convex in li,t, and decreasing in āi,t.

Moreover, g as a function of li,t becomes “less convex” as āi,t increases, in the following sense: The

function G(a) = g(g(·, ā1)−1(a), ā2) is concave and increasing for ā1 ≤ ā2. Also note that G is

differentiable with derivative between 0 and 1 since lima→−∞G′(a) = 1.

Now consider part (a). Define two random variables X and Y as having distributions equal to

li,t|(sli,t = s1) and li,t|(sli,t = s2) with s1 < s2.51 As we know that Var{li,t|sli,t = s} is nondecreasing

in s but li,t|(sli,t = s) is MLRP-increasing in a, Assumption 1 in Straub and Ulbricht (2014) is

satisfied. Therefore, we can apply the strict version of Theorem 1 using g as strictly convex function

of li,t to yield Var{ai,t|sli,t = s1} < Var{ai,t|sli,t = s2}, which proves the result.

For part (b), let ā1 < ā2 and define G as above. Define random variables Zj with distributions

ai,t|(sli,t = s, āi,t = āj) for j = 1, 2. Without loss assume that Z1 and Z2 are perfectly rank-correlated,

with G(Z1) = Z2. This, together with the fact that 0 ≤ G′(z) ≤ 1 lets us apply Lemma 3 in

Appendix B in Straub and Ulbricht (2014) using h = G−1, concluding that

Var{Z2} < Cov(Z2, G
−1(Z2)) < Cov(G−1(Z2), G−1(Z2)) = Var{Z1},

or in other words, that Var{ai,t|(sli,t = s, āi,t) is decreasing in āi,t for any given fixed s.

A.4 Proof of Lemma 1

Suppose the working capital signal sli,t realizes at some s. If agents linearize the function L around

the face value sface = L−1(s), this means that they replace L by the following linearized function in

50One way to prove this fact is using a continued fraction expansion of Φ(x), or equivalently, the complimentary
error function. See https://en.wikipedia.org/wiki/Error function#Approximation with elementary functions and Cuyt
et al. (2008).

51Since their distribution is all that matters for this result, the joint distribution of X and Y is allowed to be
anything.
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their information updating problem,

Llinear(x) = L(sface) + L′(sface)(x− sface).

This then implies that agents perceive the nonlinear signal sli,t as if it came from the corresponding

“fictitious” linearized signal,

Llinear(ai,t−1 − āi,t−1) + ψi,t,

or informationally equivalent to this, they update as if they saw the signal

sface
i,t = (Llinear)

−1(Llinear(ai,t−1 − āi,t−1) + ψi,t)

= ai,t−1 − āi,t−1 +
1

L′(sface)
ψi,t,

realizing at sface
i,t = sface. This proves the lemma.

A.5 Proof of Proposition 4

We define

σl(x, ψ) =
(
L′(L−1(L(−x) + ψ))

)−1
σψ,

so that σl = σl(āi,t−1 − ai,t−1, ψi,t) with σl from Lemma 1. Obviously, because L is increasing and

L′ is decreasing, σl is increasing in its first and decreasing in its second argument.

Now, setting ψ = 0, we find that

σl(x, 0) =
(
L′(−x)

)−1
σψ,

giving rise to limx→∞ σl(x, 0) = σψ/(ξ − 1) and limx→−∞ σl(x, 0) =∞ using Proposition 2.

A.6 Proof of Proposition 5

Signals Consider the information set of trader k at time t, Ik,t = {spik,t}i ∪ {sli,s, Āi,s, υs}i,s≤t. By

definition, υt is orthogonal to ai,t and can thus be ignored for the purpose of learning about ai,t.

Given our approximation approach, the remaining elements of Ik,t are Gaussian signals so that we can

characterize E{ai,t|Ik,t} using a standard Kalman filter. In particular, since Ĩt = {sli,s, Āi,s, υs}i,s≤t
is common knowledge, we can characterize beliefs recursively by first filtering through the publicly

observable history Ĩt, and then applying the filter one last time to process the information contained

in {spik,t, sli,t, Āi,t}.
From Lemma 1, sli,t is informational equivalent to observing sface

i,t ∼ N (ai,t−1 − āi,t−1, σ
2
l,i,t) or

s̃face
i,t ≡ sface

i,t + āi,t−1 ∼ N (ai,t−1, σ
2
l,i,t) since āi,t−1 is known. Credit limits {Āi,s} are thus the only

endogenous signals that remain to be characterized. Stripping away informationally irrelevant
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quantities from (4), the information in Āi,t is equivalent to the one in

Ēi,t{ai,t}+ πσσ̂
2
i,tηi,t. (21)

The information content in (21) is endogenous and depends on the average expectation. To solve

this fixed point, we postulate (and verify below) that (21) is informationally equivalent to a normal

signal sāi,t with yet to be determined noise σā,i,t.

Law of motion of public beliefs Letting Ẽt−1{ai,t−1} and σ̃2
i,t−1 denote the (public) prior mean

and variance given Ipt−1, we are now ready to update beliefs given s̃face
i,t , sāi,t, and spk,t. Since s̃face

i,t is

a signal about ai,t−1, we split the updating into two steps, first forming expectations about ai,t−1

using only s̃face
i,t and the prior. Standard Bayesian updating yields

E{ai,t−1|Ipt−1, s̃
face
i,t } =

σ̃−2
i,t−1Ẽt−1{ai,t−1}+ σ−2

l,i,ts̃
face
i,t

σ̃−2
i,t−1 + σ−2

l,i,t

,

Var{ai,t−1|Ipt−1, s̃
face
i,t }−1 = σ̃−2

i,t−1 + σ−2
l,i,t

Projecting forward, we get

E{ai,t|Ipt−1, s̃
face
i,t } = ρa

σ̃−2
i,t−1Ẽt−1{ai,t−1}+ σ−2

l,i,ts̃
face
i,t

σ̃−2
i,t−1 + σ−2

l,i,t

Var{ai,t|Ipt−1, s̃
face
i,t }−1 =

(
σ̃−2
i,t−1 + σ−2

l,i,t

)
δi,t,

where

δi,t =
(
ρ2
a +

(
σ̃−2
i,t−1 + σ−2

l,i,t

)
σ2
a

)−1
.

Now treating E{ai,t|Ipt−1, s̃
face
i,t } and Var{ai,t|Ipt−1, s̃

face
i,t } as prior, updating with respect to sāi,t

yields

Ẽt{ai,t} = σ̃2
i,t

[
δi,tσ

−2
l,i,t σ−2

ā,i,t δi,tσ̃
−2
i,t−1

]
×

 ρas̃
face
i,t

sāi,t
ρaẼt−1{ai,t−1}


and

σ̃2
i,t =

(
δi,tσ

−2
l,i,t + σ−2

ā,i,t + δi,tσ̃
−2
i,t−1

)−1
.

Private and average beliefs If in addition, the private signal spk,t is observed, straightforward

updating yields the following posterior, given by

E{ai,t|Ipt−1, s̃
face
i,t , s

ā
i,t, s

p
k,t} =

σ̂2
i,t

σ2
p

sk,t +
σ̂2
i,t

σ̃2
i,t

Ẽt{ai,t} (22)
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and

σ̂2
i,t =

(
σ−2
p + σ̃−2

i,t

)−1
. (23)

Aggregating across agents, we have that

Ēt{ai,t} =
σ̂2
i,t

σ2
p

ai,t +
σ̂2
i,t

σ̃2
i,t

Ẽt{ai,t}. (24)

Characterizing σā,i,t To complete the characterization, we still have to determine σā,i,t. For this,

substitute (24) back into (21). Note, however, that the last term in (24) is common knowledge

among investors, so that (21) is informationally equivalent to observing
σ̂2
i,t

σ2
p
ai,t + πσσ̂

2
i,tηi,t, or,

equivalently, ai,t + σ2
pπσηi,t. Finally, subtracting the common knowledge term ρηẼt−1{ηi,t−1} from

ηi,t, the Āi,t signal is equivalent to

sāi,t ≡ ai,t + σ2
pπσ

(
ηi,t − ρηẼt−1{ηi,t−1}

)
. (25)

Notice that the belief over ηi,t evolves according to

Ẽt{ηi,t} =
1

σ2
pπσ

(
sāi,t − Ẽt{ai,t}

)
+ ρηẼt−1{ηi,t−1}.

We subtracted the prior belief over ηi,t in (25) since(
ηi,t − ρηbηi,t−1

)∣∣∣Ipt−1 ∼ N (0, σ2
η,i,t)

where

σ2
η,i,t = σ2

η + ρ2
ηVar{ηi,t−1|Ipt−1},

and

Var{ηi,t−1|Ipt−1} = Var

{
sqi,t−1 − ai,t−1

σ2
pπσ

∣∣∣∣∣Ipt−1

}
=
(
σ2
pπσ
)−2

σ̃2
i,t−1.

Hence,

sāi,t ∼ N (ai,t, σ
2
ā,i,t),

where

σ2
ā,i,t = ρ2

ησ̃
2
i,t−1 + σ2

η(σ
2
pπσ)2.

B A microfounded version of the credit limit

In this appendix we offer a possible microfoundation for the “credit rule” adopted in the main text

(equation 4). In our derivation firms sell securities based on their revenues to investors. Since the

market price of these securities is determined by the beliefs of investors, this creates the proposed

link. We note however that the idea behind our credit rule is likely to generalizes beyond this
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particular microfoundation (see also the discussion in the main text).

Section B.1 sets up the structure of the financial market in which firms can sell the securities,

and links the credit limit āi,t on island i through the security price to investor beliefs. Section B.2

then takes a linear approximation to the resulting relationship between credit limits and investor

beliefs, yielding (4).

B.1 Investors and markets

In this microfoundation, we let the set of investors be 2-dimensional, (i, k) ∈ [0, 1]2.52 As before,

an investor (i, k) has information set Ik,t, but is restricted to trade assets that come from island i.

This partitioning of investors prevents full risk-sharing among investors, and gives a role for investor

uncertainty about firm fundamentals to affect prices.53

Investors As explained in the main text, investors are one-period lived, but do observe past

public information. Upon birth, each investor (i, k) is endowed with a basket of claims on a fraction

of the revenues on island i. In addition to holding equity, investors can borrow from households

within each period at the risk-free rate R = 1 and use this to fund firms on island i by purchasing

securities. All equilibrium profits from these investments are assumed to be transferred back to

households lump-sum. Each investor maximizes a CRRA utility function over his end-of-period

wealth, c1−γ/(1− γ).54

Funding for firms We assume that firms can pledge a total fraction χt > 0 of their revenues to

investors.55 Investors’ initial endowments constitute a claim on one half of this, while the other

half is being pledged to raise working capital, by issuing securities. Although we have fixed income

securities in mind, e.g. corporate bonds, the technical steps below turn out to be slightly easier when

firms sell equity-like claims on revenues. Henceforth we focus on equity, noting that completely

analogous steps lead to essentially the same result when using debt-like securities.

In keeping with the static nature of the firms’ decision problems, we restrict pledgability of

revenues to the current period.56 That is, we assume that firms mechanically (to avoid any adverse

52The only difference to the 1-dimensional set of investors in the main text is the notation. Anything we do above
can be done with 2 or more dimensions of investors. We chose the simplest possible set in the main part of the paper.

53One might think about this kind of limited market participation as an “expert system” where for each island
i there are “expert investors” that focus on investments on that island. In that sense, it is similar to the recent
macro-finance literature around Brunnermeier, Eisenbach and Sannikov (2012).

54To be consistent with the main text where households receive the total profits of firms, we assume here that
investors’ end-of-period wealth is taxed away with a proportional consumption tax approaching 100%, and transferred
to households. A proportional consumption tax ensures that investors’ incentives are not distorted and hence investors
behave as if there was no tax.

55The idea of limited pledgability is common among many macro and corporate finance models such as Tirole
(2010). Notice that in practice, not all costs are funded by working capital. This fact is equivalent to a rise in χt,
possibly above 1.

56Our model has a nonlinear learning mechanism which technically complicates any forward-looking behavior by
investors. Intuitively, we expect forward looking behavior to amplify the feedback mechanism that leads to belief
traps in our model, since falling in a belief trap affects many future periods as well; and this can feed back into lower
credit limits today if the credit rule is forward looking.
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selection effects), sell half of all shares on the pledgable fraction of current period revenues57

1

2
χtXij,t,

with Xij,t denoting the time t revenues of firm (i, j). We allow for aggregate shocks to χt to capture

disturbances in the financial sector (which will be mapped into υt below). These disturbances could

represent changes in the financial sector’s ability to absorb risk, to lend, or to refinance. The payoff

of all shares is realized at the end of the period.

Notice that for firms on constrained islands—islands where many firms need more than the

proceeds from the security sales—the lack of sufficient net worth has similar consequences as

in Kiyotaki and Moore (1997), albeit through a slightly different channel. Due to the financial

constraints, these firms cannot produce as much as they would like, which decreases their revenues

and hence also the payoffs from the securities, which tightens the constraints even further.

Pricing All firms within a certain island i have shares with identical payoff profiles conditional

on an investor’s information set. Therefore, investors perfectly hedge their investments within the

island and invest an equal share of their wealth into each one of the firms. We can then write the

utility maximization problem of an investor (i, k) living in period t as

max
ϑk

Ek,t
c1−γ

1− γ

for

c =
1

2
Qi,t +

1

2
Qi,tϑijk

(
χt
∫
Xij,t dj

Qi,t
− 1

)
,

and where ϑk denotes the share of wealth (Qi,t/2) investor (i, k) invests into island i’s firms’ shares,

and Qi,t denotes the price per share (that is common across firms in island i). The first order

condition of the investor’s utility maximization problem is

Ek,tc−γ
(
χt

∫
Xij,t dj −Qi,t

)
= 0. (26)

To avoid the asset price from revealing all information, there are noise traders with an inelastic,

i.i.d. island-specific asset demand of ηi,t ∼ N (ρηηi,t−1, σ
2
η). The market clearing condition is then,

1

2

∫
ϑk dk + ηi,t = 1. (27)

Credit limit From the proof of Proposition 1, revenues are given by

Xij,t =
ξ

ξ − 1

(
Aij,t min{Aij,t, Āi,t}ξ−1

)1−1/ξ
Ωt. (28)

57Notice that no firm makes negative profits by being forced to sell assets. So selling half of all shares is strictly
better than inactivity.

43



We think of the proceeds from selling the new securities as providing the firm with “credit”. In this

sense, the “credit limit” is related to the price raised by a firm on island i through (3):58

1

2
Qi,t = L̄i,t = ΩtĀ

ξ−1
i,t . (29)

Equations (26)–(29) describe an implicit mapping from island i’s credit limit Āi,t to the set of

investor beliefs about a firm’s fundamentals on island i. Those beliefs are equal across all firms

within an island i—so we can focus on any single firm (i, j)—and are described by the set of

expectations {Ek,tAij,t}k and the variance Vark,tAij,t (which is common across investors so we focus

on some k here).

In this vein, we now introduce the following shortcut notations to improve the exposition. We

denote beliefs (of various investors k) by µk ≡ Ek,tAi,t and σ2 ≡ Vark,tAi,t. Further, we drop

the subscripts from Āi,t, Aij,t, Qi,t and denote their logs with lower case ā, aj , q. Also, define

x ≡ log
∫
Xij,t dj. Finally, we drop time subscripts from expectations Ek,t, Ēt and the variance

Vark,t.

In the next section we derive a log-linearized solution to ā as function of investor beliefs and

show that it indeed yields our credit rule (4).

B.2 Deriving the credit rule approximation

We now formally linearize the (implicitly defined) function ā = ā({µk}k, σ2, logχt) in the belief,

around µk = µ0 for some µ0, around σ2 = 0 and around logχt = logχ0. We do this in a series

of three steps. First we approximate investors’ asset demands for small risks using the standard

discrete time demand functions for CRRA utility (see, e.g., Campbell and Viceira, 2002, Section

2.1.3). Aggregating the individual asset demands and applying the market clearing condition, we

can then write the price q as nonlinear function of beliefs. And finally, we linearize q around σ2 = 0,

µk = µ0 and logχt = logχ0, and relate q to ā to derive the credit rule (4).

CRRA asset demand and asset price Approximating log investor utility as

logEk,t
c1−γ

1− γ ≈ (1− γ)Ek,t log c+
1

2
(1− γ)2Vark,t log c

we use the exact same steps as in Campbell and Viceira (2002, Section 2.1.3) to arrive at individual

asset demands

ϑk =
Ekx− q + 1

2Varkx+ logχt

γVarkx
.

Market clearing (27) lets us solve for an expression for the log price q,

q = Ēx− 2γ

(
1− 1

4γ
− ηi,t

)
Varx+ logχt, (30)

58An alternative, almost exactly equivalent, microfoundation is that firms have a certain loan-to-value cap until
which they can take out loans, against an island-i collateral good.
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where we have adopted the information structure from Section 3.2.2 to ensure that Varkx is constant

across k.

Linearization of asset price Substituting in (28) and (29) we rewrite (30) in terms of ā,

ā =
1

ξ − 1
Ē
{

log

∫
e(ξ−1)aj min{1, eā−aj}(ξ−1)2/ξ dj

}
︸ ︷︷ ︸

=
∫
µkdk+

∫
H(1)(ā−µk,σ2,σ2

ε )dk

+
1

ξ − 1
log

{
ξ

ξ − 1

1

2
χt

}

− 2γ

(
1− 1

4γ
− ηi,t

)
1

ξ − 1
Var

{
log

∫
e(ξ−1)aj min{1, eā−aj}(ξ−1)2/ξ dj

}
︸ ︷︷ ︸

=
∫
H(2)(ā−µk,σ2,σ2

ε )dk

where we used the fact that investor k believes that a − µk ∼ N (0, σ2). We now linearize

ā({µk}k, σ2, logχt) around µk = µ0 for some µ0, σ2 = 0, and logχt = logχ0. Notice that the

two H functions also depend on the within-island dispersion of productivities σε, which is very small

in our calibration. For simplicity, we therefore also linearize with respect to σε around σε = 0. Since

the value of µ0 turns out to be irrelevant, we set it to zero. Letting ā∗ denote the solution at the

linearization point ā∗ ≡ ā({µ0}, 0, logχ0), we find the following slopes of the linearized function,

āµk = 1

āσ2 = −
(

1−H(1)
1

)−1
H

(2)
2 2γ

(
1− 1

4γ
− ηi,t

)
ālogχ =

(
1−H(1)

1

)−1 1

ξ − 1

where the only two non-zero partial derivatives of H(1) and H(2) can be computed as59

H
(1)
1 =

1

ξ
(ξ − 1)1{ā∗<0}

H
(2)
2 = (ξ − 1)

(
1{ā∗<0}

1

ξ2
+ 1{ā∗>0}

)
.

Both expressions depend on whether that island is mainly constrained (ā∗ < 0) or mainly uncon-

strained (ā∗ > 0) at the linearization point. In line with our calibration where 2.5% of firms are

constrained at the steady state, the calibrated value of χ0 ensures that ā∗ > 0. The slope āσ2
ε

with

respect to σ2
ε is not important for the calibrated model as σ2

ε is constant (it enters the intercept π0

in (31) below). The solution at the linearization point is given as the unique solution to60

ā∗ =
1

ξ
(ξ − 1) min {0, ā∗}+

1

ξ − 1
log

{
ξ

ξ − 1

1

2
χ0

}
,

59This holds for ā∗ 6= 0, which is the case in our calibration.
60Notice that the derivative of the right hand side with respect to ā∗ is positive but strictly bounded above by 1.
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or equivalently,

ā∗ =

(
1 + 1 ξ

ξ−1
1
2
χ0<1

(ξ − 1)

)
1

ξ − 1
log

{
ξ

ξ − 1

1

2
χ0

}
.

Putting the pieces together, the linearized credit rule is

ā =

∫
µk dk − πσσ2 + υt + πσσ

2ηi,t + π0, (31)

where we collected terms as υt =
(

1−H(1)
1

)−1
1
ξ−1 logχt, πσ =

(
1−H(1)

1

)−1
H

(2)
2 2γ

(
1− 1

4γ

)
,

π0 = ā∗ + āσ2
ε
σ2
ε −

(
1−H(1)

1

)−1
1
ξ−1 logχ0, and rescaled the standard deviation of ηi,t by a factor

of
(

1− 1
4γ

)−1
. This is precisely the credit rule in (4).

To calibrate the key parameter in the credit rule, πσ, we note that due to ā∗ > 0 in our

calibration,

πσ = (ξ − 1)γ

(
2− 1

2γ

)
.

For a modest relative risk aversion of γ = 1.5 and ξ = 4, this gives πσ = 7.5.

C Data

C.1 Data used for calibration

Our calibration of the learning parameters is based on the “Summary History” for US firms from

the Institutional Brokers Estimate System (IBES). We use forecasts about current quarter earnings

per share (EPS), which are available starting in the third quarter of 1984. From the original sample,

we exclude all forecasts that are recorded prior to the beginning of the current fiscal period and

that are recorded less than 1 week before the forecast period ends. To reduce the sensitivity to

outliers, we trim the 2% tails for each month and variable. Returns are obtained from the CRSP

database and are adjusted for splits and dividends. To assess the predictive power of prices towards

future earnings, we merge the two data sets so that returns at month t− 1 are matched to EPS

realizations at month t.61 The resulting panel contains on average 2053 firms per month.

For our calibration, we compare the pre-crisis model moments (computed at the stochastic

steady state with ῡ chosen so that 2.5 percent of all firms are constrained) to the available data

prior to the financial crisis (1984Q3–2006Q4). To isolate the firm-specific components in our data

series, we extract a time-fixed effects from each of them, except for σcross
i,t (for which we exploit the

sample mean in the calibration).62

61Due to small timing issues in the two data sets, the implemented lag varies by ±3 days, resulting in a total lag
between 28 to 33 days.

62Formally, we subtract from each data series the cross-sectional average for a given month (equivalent to regressing
each variable on a time dummy and working with the residuals).
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Figure 11: Impulse responses for output, employment, uncertainty, and the cross-sectional growth dispersion for
alternative learning and credit rule parameters. The solid black lines correspond to the baseline parametrization. The
dashed and dotted lines correspond to specifications with positive and negative changes in the parameters values,
respectively. In particular, the blue lines correspond to a ±20 percent change in σp; the green lines to a ±20 percent
change in ση; the red lines to a simultaneous ±20 percent change in σψ, σp and ση; and the magenta lines to a ±40
percent change in πσ. All impulse responses are in percentage deviations.

C.2 Data used for introduction and financial crisis plot

Here we describe the data sources for the time series shown in Figures 1 and 10. We measure output,

employment, and efficiency using real GDP (GDPC96), total nonfarm employment (PAYEMS) and

TFP (RTFPNAUSA632NRUG) data from the St. Louis Fed’s FRED database. All three series

are detrended using a (6,32) band-pass filter. Credit spreads data is obtained from Gilchrist and

Zakraǰsek (2012), defining the average spread between corporate bonds and a hypothetical treasure

security that mirrors the cash flow of the corporate bond (available until 2011). The measure for

volatility is the VIX. Output growth dispersion is measured using the dispersion in sales growth

rates in the COMPUSTAT database.

Finally, for investors’ expectations, uncertainty, and disagreement, we use the final data set

prepared for our calibration (see above), looking at the cross-sectional sample average in a given

quarter.63 The resulting time series are adjusted using a stationary seasonal filter to get rid of a

strong seasonal trend. Based on our model, disagreement (σcross
i,t )2 is proportional to σ̂4

i,t. Accordingly,

we use σcross
i,t to proxy for uncertainty, and use (σcross

i,t )2 for the disagreement time series.

D Robustness specifications (for online publication)

In this appendix we explore the role of the learning parameters and the credit rule coefficient for

the response of the model economy to an aggregate credit shock. For this purpose, we repeat our

simulation in Section 5.2 of a geometrically decaying aggregate shock for various specifications. For

each specification, we set ῡ and ∆ so that 2.5 percent of the firms are constrained in the steady

state and 20 percent of the firms are constrained at the peak of the crisis akin to our baseline

simulation. Figure 11 displays the resulting model responses for output, employment, uncertainty,

and the cross-sectional growth dispersion.

63Of course, here we cannot control for time fixed effects.
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Specifically, the figure shows four sets of specifications. First, the blue lines correspond to a

±20 percent change in σp, reflecting a relative increase (dotted lines) or decrease (dashed lines) of

the private investor signals relative to the benchmark case (solid black lines). Similarly, the green

lines correspond to a ±20 percent change in ση, whereas the red lines correspond to a simultaneous

±20 percent change in all three learning parameters (σψ, σp and ση). Finally, the magenta lines

correspond to ±40 percent changes in πσ, reflecting values for the credit rule parameter based on our

micro-foundation of the credit rule when investors have relative risk aversion of 1 and 2, respectively

(see Appendix B).

It can be seen that variations in these parameters induce only small changes in the responses

of output, employment, and uncertainty. The same holds true for all other model variables not

depicted here. Specifically, looking at output, a variation in the relative signal precision (blue and

green lines) results in responses that are within 0.5 and 0.25 percentage point bands around the

benchmark, respectively. A simultaneous increase/decrease of the informativeness of all signals

by 20 percent, leads to slightly larger deviations from the benchmark response of maximal 0.65

percentage points. Changes in the credit rule coefficient lead to deviations from the benchmark

response of maximal 0.5 percentage points.

In contrast to the small impact of these parameter changes on cross-sectional averages, variations

in the learning and credit rule parameters do have, however, important consequences for the cross-

sectional dispersion of output growth. This can be seen in the forth panel of Figure 11. In particular,

it can be seen that depending on the parametrization, the response in the growth dispersion may be

both negative or positive throughout the whole impulse response path, or can be first decreased and

then increased as is the case in our calibration.
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