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Abstract

This article expands the Sraffa framework to address environmental
sustainability by showing how to define and measure what
ecological economists call “throughput” and increases in throughput
efficiency. In the process it clarifies issues that are often muddled in
the steady-state and de-growth literatures.

As long as leisure is more enjoyable than work on average, increases in
labor productivity are socially beneficial. However, besides labor, primary
inputs from “nature” are also needed to produce goods and services. And
now that we no longer live in a mostly empty world, now that deterioration
of the natural environment has become a prime concern, now that we can ill-
afford further increases in what ecological economists call “throughput” in
general, and now that particular components of throughput such as
greenhouse gas emissions must be dramatically reduced to avoid
catastrophic consequences; increases in throughput efficiency are also
clearly socially desirable.

Whenever we apply labor to the economy we generate a surplus of produced
goods, but, loosely speaking, we also “use up” some of nature. This problem
Is invisible in the simple Sraffa model where the only primary input is
homogeneous labor and there are no primary inputs from nature. We could
continue to sidestep the problem even while recognizing that production
uses natural resources if we stipulate that whenever we apply the entire labor
force to the economy we never use up more of nature than is regenerated
naturally during the year. This is essentially what would be the case if the
world were still “empty,” in the words of ecological economist Herman
Daly, and therefore nature were infinitely bounteous compared to the
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magnitude of throughput generated by human economic activity. However,
once the “scale” of the economy grows sufficiently and throughput grows
large relative to the size, or “carrying capacity” of nature, we need to weigh
how much we are depleting nature when we work compared to how large a
surplus of produced goods we are getting.

The Sraffian theory of price and income distribution has proven to be well
suited to accommodating multiple primary inputs from nature and rental
payments to their owners. Building on the work of Schefold (1971) and von
Neumann (1945), Abraham-Frois and Berrebi (1979, chapter 5) provided
an early treatment that most importantly confirmed that the negative relation
among distributive variables holds in a model that includes rents paid to
owners of primary inputs from the natural environment. And there is now an
extensive literature elaborating what we might call the “general Sraffa
model” of price and income determination which accommodates not only
“heterogeneous” nature, but also “heterogeneous” labor and fixed as well as
circulating capital. Joint production was the key theoretical innovation that
Sraffa (1960, Part 11) himself, and others who followed in his tradition such
as Gilbert Abraham-Frois and Edmond Berrebi (1979, chapter 3), Luigi
Pasinetti (1980), Sergio Parinello (1983), Bertram Schefold (1989, Part I1),
and Heinz Kurz and Neri Salvadori (1995, chapters 7,8,9,10,11, and 12)
discovered to be of great help in completing a “classical” theory of price and
income determination.

However, beyond taking rent into account when explaining relative price
formation, few who work in the Sraffian tradition have used their framework
to analyse the detrimental effects of human economic activity on the
environment. Bertram Schefold (1985) acknowledges the importance of
environmental constraints for rendering a “classical” theory of growth
relevant to the modern age. And Gehrke and Lager (1995) use the Sraffian
framework to analyse potentially perverse effects of a tax on energy on
choice of technique. But nobody has attempted to formally model
environmental sustainability in a Sraffian framework. For the most part
multisectoral, general equilibrium work on environmental constraints on
economic growth has been done by economists working in what came to be

2 Because exhaustible resources raise fundamental issues about what a steady state or
long period analysis means, this has proven to be one area in which Sraffians have
struggled to agree on how best to incorporate insights captured by Hotelling’s Rule into
their analysis of price and income determination. See Ravagnani (2008) for a review of
what has been at times a contentious debate.
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known as the “material balances approach” pioneered by Ayres and Kneese
(1969), who used it to support their argument that external effects were
likely to be prevalent. Rudiger Pethig, a major contributor himself, provides
an excellent historical evaluation of the material balances approach in Pethig
(2003). However those working in this tradition, which include Charles
Perrings (1986, 1987) and Baumgartner and Jost (2000), have been primarily
concerned with technical issues such as taking the conservation of matter,
increasing entropy, and cumulative uncertainty into account -- all of which
are peripheral to the issues addressed in this article.

Section 1 presents the Sraffa model and some well-known results regarding
price and income determination -- first when the only primary input is
homogeneous labor, and then when there are multiple primary inputs,
including different inputs from the natural environment. Section 2 introduces
the treatment of technical change in the Sraffa framework. Section 3
explains how the overall increase in labor productivity due to a particular
change in technology in a particular industry can be rigorously measured in
the Sraffa model. Section 4 explains how to model what ecological
economists call environmental “throughput” in the Sraffa framework, and
how increases in throughput-efficiency can also be rigorously measured.
Section 5 presents a first attempt to define environmental sustainability in a
Sraffa framework. Section 6 highlights the importance of the relationship
between the rate of growth of labor productivity and the rate of growth of
throughput efficiency, and in the process helps distinguish between “sense”
and “nonsense” in the steady-state and de-growth literatures. Section 7
discusses implications of the fact that nature is no more homogeneous than
Is labor, but is, in fact, heterogeneous in meaningful ways.

1. Price and Income Determination in the Sraffa Framework®

Assume the square matrix of produced input coefficients, A, is non-negative,
indecomposable, and productive. Assume the row vector of direct, hourly,
labor input coefficients, L, is strictly positive. If we assume a uniform rate of
profit in all industries, and assume that employers must pay only for produced
inputs in advance, we can write the price and income equations for the
economy as: (1+r)pA + wL = p where r is the uniform rate of profit, w is the
hourly wage rate, and p is the row vector of relative prices for produced
goods. It is well known that:

% For a rigorous demonstration of the results in this section see Hahnel (2016b).
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o For all permissible values of (r,w) there exists a vector of all positive
relative prices for the income-price system: (1+r)pA + wL = p.

e This vector is unique for all permissible values of (r,w), but
changes, in general, when we change from one permissible
combination of (r,w) to another.

e There is a negative relationship between the two distributive
variables. In other words, when either r or w rises, the value of
the other distributive variable must fall.

e |f the column output vector for the economy, x*, is an eigenvector of
A, i.e. if we produce output in proportions equal to what Sraffa called
his “standard commodity,” then the negative relation between the wage
and profit rates is linear, and can be written as: 1 = w + (1\R)r -- where
R is the maximum value for r corresponding to a wage rate of zero, and
for convenience the amount of labor applied, Lx, has been set equal to
one unit, and the relative price vector has been normalized so the value
of net output, p[I-A]x, is equal to one.

What if, in addition to homogeneous labor, a second homogeneous,
“primary,” non-produced input traditionally thought of as “land” is needed
for production? Assume T is a strictly positive row vector of direct land
input coefficients measured in acres and u is the rent per acre. Again, if we
assume that only produced inputs must be paid for in advance, i.e. that both
wages and rent can be paid for out of revenues at the end of the production
period, we can write the price and income equations for the economy as:
(1+r)pA + wL + uT = p. In this case it can be shown that:

e For all permissible values of (r,w,u) there exists a vector of all positive
relative prices for the income-price system: (1+r)pA + wL+ uT =p.

e This vector is unique for all permissible values of (r,w,u), but
changes, in general, when we change from one permissible
combination of (r,w,u) to another.



e There is a negative relationship between all three distributive variables.
In other words, when the value of any distributive variable rises, the
value of one or both of the other distributive variables must fall.

e |f the column output vector for the economy, x*, is an eigenvector of
A, i.e. if we produce output in proportions equal to Sraffa’s “standard
commodity,” then the negative relation between r, w, and u is linear
and can be written as: 1= wbLx* + uTx* + (1\R)r where again for
convenience Lx and p[I-A]x have each been set equal to one.

Moreover, this price-income system can easily be generalized to account for
both heterogeneous labor and heterogeneous non-labor primary inputs from
“nature.” This is important because sometimes carpentry labor is needed to
produce things, while other times welding labor is needed. In which case an
hour of one is not equivalent to an hour of the other, and they are not
generally paid the same wage rate. Similarly, when producing food, an acre of
fertile river-bottom land is not the same as an acre of rocky land on a steep
slope, and they do not command the same rent. More importantly, besides the
fact that land itself is heterogeneous there are many other non-labor primary
inputs such as iron ore, oil, and timber needed in production, which command
rental payments as well. In the Sraffa framework to account for heterogeneous
labor we simply make our row vector of labor input coefficients, L, into a
matrix with as many rows as we have different kinds of labor, and we make
our hourly wage rate, w, into a row vector, w, of hourly wage rates for each
category of labor. To account for all of the heterogeneous, primary inputs
from nature needed for production we simply make our row vector of
“nature” input coefficients, T, into a matrix with as many different rows as we
have different kinds of primary inputs from nature that are needed for
production, and we make our rent per acre, u, into a row vector, u, of rental
rates per unit of each category of nature used in production. In which case:

e The negative linear relations among all of the distributive variables
becomes: 1= wLx* + uTx* + (1\R)r where again for convenience Lx
and p[I1-A]x have each been set equal to one.

In sum, this is how the Sraffa model explains the relations among distributive
variables in capitalist economies, and how it explains relative price
determination for any permissible values for the distributive variables, (w, u,
r) and any given technologies, {A, L, T}. But what happens when capitalists
discover new ways to produce things? For example, what happens when
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capitalists in industry j can choose between continuing to use [a(j), L(j), T()],
or use [a(j)’, L()’, T(j)’] instead?

2. Technical Change in the Sraffa Framework

While the Sraffa model does not claim to shed light on what enhances or
retards the discovery of new technologies, it is well-suited to analysing how
any new discoveries will be treated and their affects.

Choice of Technique: To know whether capitalists will replace an old
technique with a new one we simply compare the cost of producing a unit of
output using the old and new technologies at current prices, wages, and
rents: If pa(G)’+ wL()’ + uT(j)> < pa(j) + wL(j) + uT(j) profit maximizing
capitalists in industry j will adopt the new technology, and otherwise they
will not. Technological changes which lower production costs at current
prices and values for distributive variables are often called viable.

Technical change and prices: Sraffa (1960) clarified how new technologies
affect relative prices by distinguishing between basic goods which either
directly or indirectly enter into the production of all goods, and non-basic
goods which do not: Sraffa demonstrated that technical changes in a basic
industry will necessarily affect the entire relative price system. While
technical changes in a non-basic industry will simply lower its own relative
price, and the prices of any other non-basics if it should happen to enter into
their production.

Technical change and income distribution: How the introduction of viable
technical changes might affect the rate of profit in the economy puzzled
political economists for over a hundred years. It long appeared that the
answer to this question even in a simple framework where homogeneous
labor is the only primary input was very complicated, and quite possibly not
definitive. A capitalist in industry j would not implement a new technology
unless it was less costly and therefore more profitable than the existing
technology in the short-run, i.e. unless it was cost reducing a current prices,
wages, and rents, or “viable.” However, once all capitalists in industry j
adopted the new, lower-cost technology, absent barriers to entry and exit the
entire price system would presumably adjust to eliminate “super profits” in
industry j. In which case who could say whether at these new prices, p’, the
new uniform rate of profit in the economy would turn out to be higher or
lower than the old uniform rate of profit.
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Marx, of course, famously argued that after prices adjusted to eliminate
super profits, viable, capital-using, labor-saving technical change would
ultimately put downward pressure on the rate of profit. However, Okishio
(1961) proved that the effect on the rate of profit is exactly the opposite: For
A non-negative, indecomposable, and productive, as long as the real wage
remains constant, introduction of any viable technical change -- including
any viable, capital-using, labor-saving changes -- must raise the uniform rate
of profit in the economy. And even if the economy is decomposable, and the
viable change occurs in a non-basic industry, Okishio proved that the rate of
profit in the economy would remain the same. So as far as income
distribution is concerned, Okishio proved that the only technical changes
that a profit maximizing capitalist would ever implement cannot lower the
rate of profit in the economy, and must increase the rate of profit if the
change takes place in a basic industry -- provided we hold the only other
distributive variable, the real wage, constant.

Technical change and labor productivity: As explained in the next section, it
is well known that if we only wish to know if a viable technical change will
raise or lower labor productivity, i.e. how a viable change will affect labor
productivity qualitatively, all we need to do is compare labor values in the
economy before and after a technical change is introduced. However, in
section 3 we explain how a new theorem provides a way to calculate
guantitatively how much any technical change in any industry will increase
or decrease overall labor productivity.

Technical change and throughput efficiency: Since environmental
deterioration is largely a consequence of increases in throughput, being able
to track throughput, and analyse the effects of technical change on
throughput efficiency is of paramount importance. Section 4 deploys the
same method used in section 3 for measuring the size of any changes in
labor productivity to measure how much any technical change in any
industry increases or decreases overall throughput efficiency.

3. Technical Change and Labor Productivity

The vector of labor values, V = L[I-A]%, tells us how many hours of labor it
takes, both directly and indirectly, to produce each good in the economy. By
comparing V = L[I-A]* to V’ = L°[I-A’]" we can immediately tell if a
technical change has increased or decreased labor productivity. If V' <V it
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now takes less labor to produce at least one good and no more labor to
produce any good than it used to, so labor productivity has definitively
increased. Conversely, if V < V’ labor productivity has decreased. John
Roemer (1981) called technological changes where V' <V progressive, and
changes where V <V’ retrogressive.*

However, comparing labor values before and after any technical change only
tells us if labor productivity has increased or decreased. It does not tell us
guantitatively how much productivity has changed. Part iii of the theorem
below, proved in Hahnel (2016a), explains how to calculate the size of
changes in labor productivity in the economy as a whole stemming from any
technological change in a particular industry by comparing the dominant
eigenvalues of a particular socio-technology matrix for the economy as a
whole before and after the change.

Dominant eigenvalues, profitability, and productivity: For any given A and L
there are many A* = [A+bL] corresponding to different real wage vectors, b.
For any such A* non-negative, indecomposable, and productive:

(i) If a technical change reduces dom(A*) = B, for any A* corresponding to
any b, then provided the real wage, b, remains unchanged the uniform rate of
profit in the economy, r, must rise. (This part simply reiterates the Okishio
theorem.)

(ii) For any b sufficiently high to reduce the initial rate of profit in the
economy to zero so that dom(A*) = R = 1, if a technical change reduces the
economy’s dominant eigenvalue, i.e. if dom (A*) = dom(A’+ bL’) = R < 1,
it increases overall labor productivity and is therefore progressive.

% For a single technical change either (i) V' <V, (ii) V < V, or (iii) V = V. This is
because in the industry where the change took place either v(j) fell, rose, or remained the
same. If it fell and it enters into the production of another good, either directly or indirectly,
the value of that good must also fall since there was no change in its input coefficients. If it
does not enter into the production of another good, either directly or indirectly, the value of
that good will stay the same. Similarly, if v(j) increases, the value of other goods must
either increase or remain the same. Finally, if v(j) itself does not change, then no values
will change.

® If B” > 1 the technical change is retrogressive, and if 8’ = 1 the technical change is neutral.
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(iif) The size of the increase in overall labor productivity is p = (1 - 3*), where
R’ = dom(A**) = dom(A’+ bL").

Suppose, for example, we find that 3°, the dominant eigenvalue for the new
socio-technology matrix [A’+ bL’] equals 0.97, whereas R, the dominant
eigenvalue for the original socio-technology matrix [A+ bL], was equal to
1.00. In this case labor productivity has increased by p = (8 - B8”)/ 3= (1.00 -
0.97)/1.00 = .03, or 3%. If people next year work the same number of hours
as they did this year they will produce 3% more goods. Or, if people next
year consume exactly what they consumed this year they could work 3%
fewer hours than last year. On the other hand, suppose we find that the
dominant eigenvalue for the new socio-technology matrix [A’+ bL’], B’
equals 1.05. In this case labor productivity has decreased by p = (% - )/ 8 =
(1.0 - 1.05)/1.00 = - .05, or 5%, and people will either produce 5% less goods,
or have to work 5% more hours. In sum, by comparing the dominant
eigenvalues of the new and old socio-technology matrices for the economy,
using a real wage vector b high enough to reduce the rate of profit in the
original economy to zero, we can calculate precisely how much labor
productivity in the economy as a whole is increased or decreased due to any
particular technological change in any particular industry.

4. Technical Change and Throughput Efficiency

Ecological economists define throughput as physical inputs from the natural
environment used as inputs in production processes such as iron ore and top
soil, as well as physical outputs of production (usually thought of as waste or
pollution) such as airborne particulate matter and greenhouse gases released
back into the natural environment.

It is important to recognize a difference between how inputs from nature can
be treated for purposes of explaining prices and income distribution from
how they must be treated for purposes of analysing how production causes
nature to deteriorate. In the first case all we need to know, for example, is
how many acres of land must be available for production to take place since
the objective is simply to account for the rental payment its owner will
receive per acre. From that perspective it makes no difference what happens
to the acre of land. It makes no difference if its use in production causes it to
deteriorate in some way or not. But throughput is precisely about
deterioration, most often conceived as deletion of a scarce natural resource



or as reduction in the storage capacity of a natural sink. If land used in
production does not deteriorate, throughput is zero even though rent per acre
Is positive. And if land does deteriorate, for example because top soil is
washed away, then the throughput is the lost top soil which we can measure
in cubic feet, not the number of acres of land which obviously does not
change.

To emphasize that the amount of any natural resource or sink service that
must be present for production to take place is not necessarily the same as
the amount of the natural resource or sink service that is “used up,” “deleted
from nature,” or more generally, deteriorates in a quantifiable way, we use
different letters to represent these inputs. Whereas t(ij) was the number of
units of a non-produced natural resource or sink service i that must be
present to produce a unit of good j, without regard to what happens to i; we
define h(ij) as the number of units of the non-produced natural resource or
sink service i that production of a unit of j uses up, deletes, or otherwise
causes to deteriorate. Whereas T was the vector of appropriate coefficients
for price and income determination, H is the appropriate vector of
coefficients for tracking the detrimental effects of production activity on the
natural environment.

Throughput must be measured in some appropriate physical units such as
tons of iron ore, cubic meters of top soil, pounds of particulate matter, and
cubic tons of carbon dioxide -- which means there is no such thing as
“throughput from nature in general” that can be meaningfully measured.
Instead there is iron ore, top soil, particulate matter, and carbon throughput,
etc. — each of which can be measured in appropriate, but different physical
units. In other words, just as “labor” is not actually homogeneous, “nature”
IS not homogeneous, but instead heterogeneous in meaningful ways.
However, just as the Sraffian analysis began by treating labor as if it were
homogeneous in order to be able to talk about labor productivity in general,
we will again begin by treating nature as if it were homogeneous in order to
be able to talk about throughput and throughput efficiency in general --
postponing discussion of nature’s heterogeneity to section 7.

Just as it does not matter what unit we use to measure inputs of
homogeneous labor — we have used hours, but could just as well have used
days, or years -- it does not matter what unit we use to measure inputs from
homogeneous nature used up in production. The problem is that while
appropriate units come to mind whenever we talk about some particular part
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of nature such as oil, soil, old growth timber, airborne particulate matter,
greenhouse gases, etc., there is no conventional unit of measurement that
comes to mind when we think about nature as a homogeneous input in
human production processes. When faced with a similar dilemma others
writing about “ecological footprints” use an ‘“acre” as their unit of
measurement. But since this can lead to confusion we use a “green” instead
as our name for a unit of homogeneous nature.

At this point we need to distinguish between technical change that reduces
the amount of labor “used up” to make goods and services, i.e. that increases
labor productivity, and technical change that reduces the amount of nature
“used up” making goods and services, i.e. that increases throughput
efficiency. Fortunately, the Sraffa framework is well-suited to helping us
measure the effects of the second kind of socially beneficial technical
change very much as we measure the first.

Assume there is only one primary input from nature used up in production.
Define h(j) as the direct “nature” input coefficient — the number “greens”
used up directly in production of a unit of j -- analogous to I(j) the direct
(homogeneous) labor input coefficient — the number of hours of labor “used
up” directly in production of a unit of j -- with H the row vector of direct
nature input coefficients, analogous to L the row vector of direct labor input
coefficients. Just as the number of hours of labor used up both directly and
indirectly to make every good is given by V = L[I-A]?, the number of
greens used up both directly and indirectly to make every good is given by N
= H[I-A]™* And just as the first kind of technical improvements are changes
in the a(ij)’s and/or 1(j)’s that reduce the v(j)’s, and thereby increase the
productivity of labor; the second kind of technical improvements are
changes in the a(ij)’s and/or h(j)’s that reduce the n(j)’s, and thereby increase
nature throughput efficiency. But if there is a single number, p, which
represents how much labor productivity has changed from one year to the
next due to some particular technical change in some particular industry,
shouldn’t there also be a single number that represents how much throughput
efficiency has changed due to some particular technical change in some
industry from one year to the next?

Ignore for the moment that we need to apply labor to produce goods and

services, just as we previously ignored that we need inputs from nature to
produce goods and services in the simple Sraffa model. So instead of 1(j)’s
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and the row vector L we now have only h(j)’s and the row vector H, and we
can write the Sraffa price equations as:

(1+n)[pA + mH] = p where m is the “rent” per green of throughput used up
which capitalists must pay to owners of nature.® With m = pd, where d is a
vector of consumption goods owners of nature can purchase with their rental
payment per green used up, this becomes:

(1+1)[pA + pdH] = (1+1r)p[A+dH] = (1+r)pA* = p, where [A+dH] = A"

Just as before, we must choose the vector d carefully so that r = 0. Let the
vector d be such that dom[A+ dH] = o = 1. Calculate dom[A’+ dH’] = o’
and define p = (1 — o) as before.

This time p represents how much nature throughput efficiency has increased.
To distinguish between the two different kinds of technological progress,
from now on we will call increases in labor productivity p(l), and increases
in nature throughput efficiency p(n). We formulate this important result as a
theorem:

Dominant Eigenvalues and Throughput Efficiency: p(n) = (1-a’) is the
change in throughput efficiency in the economy where o’ = dom[A’+ dH’],
and d is chosen such that dom[A+ dH] = o = 1.

It is also helpful to distinguish between (1) capital-using, labor-saving (CU-
LS) technical changes: A < A’ and L’ < L, (2) capital-saving, labor-using
(CS-LU) technical changes: A’ < A and L < L, (3) capital-using, nature-
saving (CU-NS) technical changes: A < A’ and T < T, and (4) capital-
saving, nature-using (CS-LU) technical changes: A> < Aand T < T°. Let us
pause and review where we are.

1. We can only calculate a single measure of throughput efficiency, p(n),
when we have a single primary input from “nature.” While unfortunate, this
is hardly surprising because we can only calculate a single measure of
increases in labor productivity, p(l), when labor is presumed to be
homogeneous. Multiple primary inputs from nature render it impossible to

® This is the rent owners of nature would presumably receive per unit used up if
production were possible without any labor, or if the wage rate were equal to zero.
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calculate a single measure of increases in throughput efficiency -- just as
heterogeneous labor renders it impossible to calculate a single measure of
increases in labor productivity.’

2. Just as we have to be careful not to confuse a reduction in a direct labor
input coefficient, 1(j), with a reduction in the total amount of labor used up
both directly and indirectly to make a unit of j, v(j); we must not confuse a
reduction in a direct nature input coefficient, h(j), with a reduction in the
total amount of nature used up both directly and indirectly to make a unit of
J, n(j). It is possible that a capital-saving, nature-using (CS-NU) technical
change might lower the total amount of nature needed to make commodities
even though it increases the amount of direct nature needed. In other words,
it is N, not H that we should care about, just as it is V, not L that matters.

3. Reductions in 1(j)’s improve only labor productivity without affecting
throughput efficiency, and reductions in h(j)’s improve only throughput
efficiency without affecting labor productivity. On the other hand, any
reduction in an a(ij) will improve both labor productivity and throughput
efficiency. However, any capital using, labor saving (CU-LS) technical
change will necessarily reduce throughput efficiency, and any capital using,
nature saving (CU-NS) change will necessarily reduce labor productivity.

4. Finally, it is worth considering what happens when capitalists choose
technologies in a context where throughput from nature is under-priced.
Assume in the extreme that the price of using nature is zero. In this case
there is no incentive for capitalists to choose pure nature-saving technologies
(NS), much less capital-using, nature-saving technologies, NS-CU. Worse
still, when capitalists discover viable CU-LS technologies they will adopt
them without fail. But since they are CU, i.e. they use more of some a(ij)’s,
they necessarily use more nature indirectly as well: Viable CU-LS changes
will make N’ > N and p(n) negative.® There is every reason to believe that a
great deal of technical change during the past few hundred vyears
implemented by profit maximizing capitalists did just this. Certainly in the

" Although we can calculate how much throughput efficiency increases for each
component of heterogeneous nature individually, as discussed in section 7.

® The only circumstance under which a CU-LS technical change might not increase N and

therefore make p(n) negative is if it also just happened to be NS as well, i.e. if it was in
fact a CU-LS-NS change.
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case of carbon emissions where the price charged for carbon “throughput”
has long been zero, there was no incentive to economize on carbon
throughput, and whenever capitalists discovered and implemented viable
CU-LS changes they necessarily increased carbon emissions indirectly and
thereby decreased carbon throughput efficiency. This phenomenon may help
explain why we are now facing the possibility of cataclysmic climate change
because we have overstocked the upper atmosphere with CO..

5. Environmental Sustainability when Nature is Homogeneous

Assume there are only two primary inputs, homogenous labor, measured in
hours, and homogeneous nature measured in greens. For convenience also
assume that the size of the labor force and number of hours worked remains
the same year after year. We assume that nature consists of a certain number
of greens, GR, which is initially just sufficient to permit full employment of
the labor force. In which case, if production uses up any greens at all it is
impossible to define an environmentally sustainable steady state unless
nature also regenerates. So we assume that nature regenerates a certain
number of greens per year, REG.®

The first condition for sustainability is that the number of greens used up as
inputs in production during a year, i.e. “nature throughput,” cannot exceed
the number of greens regenerated during a year. Otherwise there will not be
enough greens of nature to allow for production to continue at the same level
as the previous year. N is our row vector representing the number of greens
of nature needed directly and indirectly to make a unit of each produced
good in the economy. So if x is the vector of produced outputs, Nx
represents throughput, the number of greens subtracted from GR because we
produced x this year. To prevent GR from shrinking, we need Nx < REG."°

% Under the assumption of a single homogeneous input from nature it is impossible for
the economy to be environmentally sustainable unless nature is assumed to be renewable.
Which means that discussion of sustainability when some natural resources are non-
renewable must be deferred until we consider a framework which treats nature as
heterogeneous in section 7.

19 Environmental sustainability is only of concern when nature is no longer infinite in size
compared to the throughput a fully employed labor force would produce. We are
assuming we have left the “empty” world where Nx <<< GR where it would be of no
concern if Nx exceeds GR.
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But even if the labor force is not growing what if labor productivity is
growing? If labor productivity increases the same number of hours worked
next year will produce a larger x than this year. In order to prevent
throughput from exceeding regeneration and rendering the economy
environmentally unsustainable N must decrease. As we have seen, the Sraffa
model allows us to represent how much x rises due to technical changes that
increase labor productivity by a single number, p(l), and also allows us to
represent how much N shrinks due to technical changes that increase
throughput efficiency by a single number, p(n). Provided the number of
hours worked does not change, as long as p(n) = p(l) throughput will not
rise, but remain constant. In sum:

e The first condition for environmental sustainability is Nx < REG. This
establishes the level of throughput we must not surpass to maintain
environmental sustainability.

e The second condition for sustainability is p(n) = p(l). This keeps
throughput from rising above REG even as labor productivity grows.

If either condition is violated the economy will become environmentally
unsustainable.

6. Implications for Steady-State and De-Growth Economics

What are we to make of statements like: “Infinite economic growth on a
finite planet is impossible. Only a madman or an economist would think
otherwise.” What are we to make of pleas to substitute the goal of a “steady
state economy” for the traditional goal of increasing economic growth?
What are we to make of the de-growth movement which argues that we must
actually reduce output to make our economies environmentally sustainable?

The key to clear thinking on these subjects is understanding the difference
between throughput and economic wellbeing.™ Our ability to rigorously
model increases in labor productivity and throughput efficiency in the Sraffa

In the real world measuring changes in economic wellbeing is very difficult, and
certainly more complicated than simply looking at changes in GDP per capita. (See
Hahnel 2013) However, in the Sraffa framework wellbeing is reduced simply to working
less to get the same output, which we can measure quantitatively by p(1).
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framework, and establish necessary and sufficient conditions for
environmental sustainability, can be extremely helpful in this regard.

If we are careful to interpret the above warnings to be referring to
throughput they can be very insightful. On a planet where the quantity of
nature available for throughput is finite, infinite growth of throughput is,
indeed, impossible -- if that is what Kenneth Boulding meant to say. Since it
Is increasingly apparent that many kinds of throughput have become so large
that their continued growth is environmentally unstable, Herman Daly’s call
to strive to maintain throughput at a steady state, rather than seek to increase
throughput, is sage advice — if that is what Daly meant to say. And since we
know that for some parts of heterogeneous nature, such as the storage
capacity for greenhouse gases in the atmosphere, maintaining throughput at
present levels will prove disastrous, calling for de-growth for some kinds of
throughput like carbon emissions is nothing more than simple sanity —
assuming that is what those in the de-growth movement are calling for.

On the other hand, if anyone claims that economic wellbeing per capita
cannot continue to grow indefinitely, or that achieving environmental
sustainability means that wellbeing per capita cannot grow, or must
decrease, our model demonstrates quite clearly that none of these
conclusions are warranted. If we keep discovering new technologies that
increase labor productivity then wellbeing per capita can continue to expand.
That’s what p(I) > 0 means. For hundreds of years we have proven capable
of finding new technologies that improve our ability to produce more goods
and services per hour, or what is the same thing, produce the same amount
of goods and services as before in less than an hour. The pace of
technological change that increases labor productivity may slacken or
increase from time to time in the future, as it has in the past, but there is no
reason to believe it cannot continue to increase indefinitely.

But will increases in labor productivity prove to be environmentally
unstable? Clearly not if we choose to take all increases in productivity in the
form of more leisure. If we continue to produce the same vector of outputs,
X, and simply do so working fewer hours, we do not increase strain on the
environment. But what if we continue to work the same number of hours as
labor productivity grows, and we therefore produce more goods and services
than before? Doesn’t this necessarily imply that throughput will be greater,
and therefore that at some point further increases in labor productivity must
cease if we are to avoid environmental disaster?
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Consider a worst case scenario: Assume that we take none of our increased
productivity in the form of leisure, and we increase every component of x in
the same proportion. So [1+ p()]x = x> > X, and therefore there is no
possibility of substituting less throughput intensive goods for more
throughput intensive goods in consumption. Even so, as long as p(n) = p(l),
N’x” will be equal to Nx, and therefore x* will tread no more heavily on the
environment than x did. So, at least in theory, it is possible for hours worked
to remain constant, labor productivity to rise, and throughput to remain
constant provided throughput efficiency rises as fast as labor productivity.
As should now be clear, it all boils down to the relationship between p(n)
and p(1). Assuming no change in hours worked or the composition of output:

e As long as Nx < REG, p(l) can exceed p(n) until throughput, NXx,
reaches REG.

e Once Nx = REG, p(n) = p(l) is necessary and sufficient to maintain
environmental sustainability.

o If Nx > REG, p(n) > p(l) is required to re-achieve environmental
sustainability.

Nothing said here should be interpreted to deny that taking more of our
productivity increases in the form of leisure rather than additional
consumption will be an important part of achieving environmental
sustainability in practice. Juliet Schor (1993 and 1999) has done a great deal
to draw attention to the astounding fact that on average Americans work
more hours today than we did forty years ago, even though we are almost
twice as productive. Moreover, there is now a great deal of empirical
research suggesting that further increases in average consumption in the
advanced economies is no longer yielding increases in happiness or
wellbeing. In which case social policy should be concentrating on shifting
material consumption from those at the top to those at the bottom of the
income distribution rather than increasing average consumption. Nor should
anything said here be construed to imply that substituting less throughput
intensive components for more throughput intensive components in our
output vector, x, will not be a crucial part of achieving environmental
sustainability. And finally, nothing said here should detract attention from
the fact that it is the throughput generated by the consumption of the very
wealthy that is the greatest threat to the environment, and therefore
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redistribution of income and wealth is important for environmental
protection as well as economic justice. In short, nothing in the abstract
treatment here need detract from any of these important priorities.

However, if the modelling of environmental sustainability which the Sraffa
framework facilitates can help clarify issues, eliminate misperceptions, and
reduce miscommunications that have plagued attempts to grapple with one
of humanity’s most pressing problems it can be useful. Moreover, there are
clear strategic and political implications: If lower middle class workers in
the advanced economies come to think environmentalists are telling them
that they must abandon hopes for a higher standard of living for their
children in order to save the environment, they may be reluctant to become
supporters. And if billions living in less developed economies who have yet
to enjoy the benefits of economic development come to think
environmentalists are telling them that they need to give up all hope of
achieving economic development if the environment is to be saved, they
may be reluctant to become supporters as well. What the above analysis
demonstrates clearly is that environmental sustainability need not be
incompatible with increases in economic wellbeing. In which case, calls for
an end to growth, or de-growth to save the environment which give that
impression are not only politically self-defeating, but misleading and
unnecessary.

7. Heterogeneous Nature

No doubt many readers have engaged in the exercise which translates one’s
consumption behaviour into an ecological “footprint” represented as a
number of “acres,” and then informs you how many planet “carths” would
be needed if everyone else tread on “mother nature” as heavily as you do.
This may well be a useful tool for raising consciousness. However, precisely
because nature is heterogeneous in meaningful ways, the ecological footprint
exercise can be grossly misleading if interpreted as a useful guide to policy.
Consider three components of mother nature: she provides sink services for
storing greenhouse gases in the upper atmosphere, fresh water, and sand.
Just as I have a “carbon footprint” we can measure in cubic meters of carbon
dioxide equivalents, I also have a “fresh water footprint” we can measure in
gallons, and a “‘sand footprint” we can measure in tons. However, unless we
know whether nature, and therefore humanity, is going to run out of
greenhouse gas storage capacity, fresh water, or sand first, we don’t know
which of my footprints is causing more environmental damage, and
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therefore treading more heavily on the environment. The answer depends on
which part of heterogeneous nature is being exhausted more rapidly — the
upper atmosphere, water, or sand — as well as on which part of nature we are
more likely to find substitutes for. Moreover, failure to model nature as
heterogeneous prevents us from exploring the beneficial effects of
substituting one part of nature that is less scarce for another part that is more
scarce.

Fortunately the Sraffa framework can still be helpful in the case of
heterogeneous nature, whether it be different “natural resources” or different
“sink services” that nature provides. It now appears that we may be
exhausting nature’s ability to store particular material “outputs” of
production processes faster than we are using up particular raw material
“inputs” from nature. However, there is no reason we cannot include
multiple additions to the environment (different emissions or pollutants)
along with multiple deletions from the environment (different raw materials)
associated with production processes in our linear production technologies.
The easiest way to do this without need to resort to the complication of joint
products is to treat the output of z units of a pollutant as an input from a sink
service which reduces the storage capacity of the sink by z units."

While the Sraffa framework cannot tell us which parts of nature’s many
services are at greater risk, and therefore what our policy priorities should
be, at least in theory it provides a way to rigorously measure throughput and
increases in throughput efficiency for individual services. Simply by turning
H, our vector of direct throughput input coefficients when we assumed nature
to be homogeneous, into a matrix with as many different rows as there are
different kinds of services from nature we “use up” in production, in theory

12 Traditionally economists thought of a “service” from nature as a natural resource
“input” like iron ore, but there is no reason the service cannot be storage of an emission
like CO,. As long as iron ore used up (tons deleted from scarce reserves) and CO,
emissions (metric tons subtracted from scarce storage capacity in the upper atmosphere)
are both listed as inputs in our “recipes” for producing different goods and services we
can calculate throughput and changes in throughput efficiency for both iron ore and CO,
individually without resort to treating pollutants as joint products. The Sraffa framework
is admirably suited to handling joint products which is required for treating fixed capital
— produced inputs like machines which last for many years. But a joint product version of
the Sraffa framework is more complicated and is not needed for purposes of measuring
throughput, even when throughput takes the form of output “wastes” released into natural
sinks.
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we can measure throughput for individual components of heterogeneous
nature and calculate changes in throughput efficiency for each individually.®
In other words, in the Sraffa framework we can define and rigorously
calculate carbon throughput and increases in carbon throughput efficiency,
water throughput and increases in water throughput efficiency, and sand
throughput and increases in sand throughput efficiency.

Since it is clear that human economic activity is exhausting some parts of
nature much faster than others, this is of great practical importance. For
example, scientists who have expertise in such matters tell us we need to
reduce carbon throughput by more than 90% by 2050 to avoid an
unacceptable risk of triggering cataclysmic climate change. While there is
good reason to worry about fresh water supplies, most estimate that this
problem is not reaching crisis proportions as quickly. In contrast, we can
probably increase throughput of sand used to make bricks and concrete for
centuries to come. Fortunately, we can measure throughput and increases in
throughput efficiency for individual components of heterogeneous nature in
the Sraffa framework just as easily as when we pretended that nature was
homogeneous and could be measured in greens. In which case our “rules”
for achieving sustainability become:

e For any component of heterogeneous nature (such as sand) for which
current levels of throughput are still lower than a level that is
sustainable, p(I) can exceed p(n) for the time being.

e [For any component of heterogeneous nature (such as water) for which
current levels of throughput are barely sustainable, p(n) = p(1) is both
necessary and sufficient to maintain sustainability.

e For any component of heterogeneous nature (such as greenhouse gas
storage capacity) for which current levels of throughput are already
higher than a level that is sustainable, p(n) > p(1) is required to re-
achieve sustainability.

3 However, saying that throughput and increases in throughput efficiency for particular
environmental services can be easily measured in a Sraffa framework in theory is not to
say that this would be easy to do in practice. Finding appropriate data bases and carrying
out necessary calculations would no doubt prove difficult. Nonetheless, in theory the
Sraffa framework extends easily to multiple services from the environment, including
sink services.
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Finally, what can we say about environmental sustainability when we
recognize not only that nature is heterogeneous, but also that some of
nature’s heterogeneous “services” are, for all intents and purposes, non-
reproducible, i.e. for these services REG = 07? It is true that we can search for
more iron ore, go to greater lengths to extract it from places once thought
impenetrable, and make do with lower grades of ore. Nonetheless, there is a
difference between iron ore and trees which has long been recognized when
we classify trees as a reproducible natural resource and oil as a non-
reproducible natural resource. Strictly speaking the existence of non-
reproducible natural resources required for production means that
environmental sustainability is impossible. But this does not mean that a
sustainable strategy is impossible. And we have already begun to describe
what such a sustainable “coping strategy” looks like.

Just as we need to search for new technologies that increase environmental
throughput efficiency in general, we need to search for new technologies
that substitute renewable throughput for non-renewable throughput, and non-
renewable throughput that is farther from exhaustion for non-renewable
throughput nearing exhaustion. Similarly, just as we need to adjust our
output vector x to substitute less throughput intensive goods for more
throughput intensive goods, we need to adjust x to substitute throughputs
from nature that regenerate for ones that do not, and we need to adjust x to
substitute throughputs from nature that may be non-reproducible but are
farther from exhaustion for non-reproducible services that are nearing
exhaustion.

But is all this “shucking and jiving” pointless if sustainability is ultimately
impossible? Not at all! Even in a worst case scenario in which there is a non-
reproducible service from nature that proves to be impossible for human
production activities to do without — i.e. that remains “basic” because no
change in technology or adjustment in x permit us to do without it altogether
-- “ultimately” can be a very, very long way off. And in a “better case”
scenario we may be able to keep eliminating the need for each non-
reproducible service from nature before it is exhausted “endlessly.”

Moreover, obsessing on all this only distracts us from the challenge at hand,
which is to change technologies to increase carbon throughput efficiency
and adjust x so as to eliminate the use of all fossil fuels ASAP -- because we
have already exhausted nature’s capacity to store greenhouse gases in the
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upper atmosphere. Fortunately, there is no physical reason this cannot be
done using known technologies while simultaneously improving economic
wellbeing. All that is lacking is the will to do what can, and must be done.
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