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Abstract

Due to non-linear transaction costs, the financial performance of a trading strategy decreases

with portfolio size. Using a dynamic trading model a la Garleanu and Pedersen (2013), we derive

closed-form formulas for the performance-to-scale frontier reached by a trader endowed with a

signal predicting stock returns. The decay with scale of the realized Sharpe ratio is slower

for strategies that (1) trade more liquid stocks (2) are based on signals that do not fade away

quickly and (3) have strong frictionless performance. For an investor ready to accept a Sharpe

reduction by 30%, portfolio scale (measured in dollar volatility) is given by

SR

⇤

10��2 , where SR

⇤

is

the frictionless Sharpe, � a measure of price impact, and � a measure of the speed at which the

signal fades away. We apply the framework to four well-known strategies. Because stocks have

become more liquid, the capacity of strategies has increased in the 2000s compared to the 1990s.

Due to high signal persistence, the capacity of a “quality” strategy is an order of magnitude

larger than the others and is the only one highly scalable in the mid-cap range.
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1 Introduction

The empirical asset-pricing literature documents a wide array of variables that predict stock returns

(Harvey et al., 2014). In various settings, these “signals” are shown to correlate with future returns

in a statistically significant way: This is typically done either by using Fama-MacBeth stock-level

regressions or by computing Jensen’s alphas of sorted long-short portfolios, controlling for known

risk factors. The interpretation of such findings is either that the E�cient Market Hypothesis

fails, or that the benchmark asset pricing model is missing an important risk factor. Under both

interpretations, statistical significance implicitly measures the size of the economic “anomaly”. The

asset management industry can exploit these signals by o↵ering investment strategies that can be

viewed either as profitable arbitrage portfolios or as diversifying exposure to a new risk factor.

However, even when the predictive power of the underlying signal is statistically significant, some

of these investment strategies are di�cult to implement at a reasonably large scale. The reason is

that transaction costs increase more than linearly with the size of trading portfolios, which makes

profitability shrink (Korajczyk and Sadka (2004), Frazzini et al. (2012)). This concern is especially

acute for signals that work mostly with small caps – or equivalently for signals that work better in

equal-weighted than value-weighted terms. It is also present when signals are not persistent enough,

since they force investors to trade more often. Illiquidity and signal dynamics limit the extent

to which asset managers can scale their investments up. Overall, in order to assess the economic

significance of an asset-pricing anomaly, it is crucial to determine the amount that can be e↵ectively

invested on it, i.e. its capacity.

This paper o↵ers a framework to compute and estimate the capacity of a trading strategy. The

three key inputs are: (1) gross performance (the Sharpe ratio of the arbitrage portfolio absent

transaction costs), (2) liquidity of underlying securities and (3) dynamics of the signal on which

the strategy is based. Intuitively, strategies based on a highly predictive signal, trading more liquid

securities, and on slow-moving signals, have greater capacity. To evaluate the relative importance

of these three ingredients, we use the dynamic trading model proposed by Garleanu and Pedersen

(2013). In this model, the investor’s flow utility is equal to trading profits, minus a penalty for

portfolio risk (scaled by risk aversion, as in the classical Markowitz model) and another penalty

reflecting the cost of trading. The main advantage of this model is that it rests on intertemporal

optimization, which turns out to be critical to study the e↵ect of signal dynamics on capacity. The
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intuition is that the model optimally “slows-down” trading to mitigate the impact of transaction

costs. When the signal is relatively slow-moving, it may be optimal to trade more aggressively that

in a purely static set-up. This comes from the fact that the position being built now will pay o↵

during a longer period. A dynamically trading investor takes this e↵ect into account, while a static

optimizer does not. A constraint of the intertemporal framework is that, in order to solve explicitly

the optimization problem, we are restricted to quadratic transaction costs; Its advantage is that we

obtain simple tractable formulas.

We use this model to obtain a closed-form relationship between the trading scale of a strategy

and its e↵ective risk-adjusted performance. We define trading scale as the dollar volatility targeted

by the investor, which measures the amount of money e↵ectively put at work in the strategy. For a

given trading scale, the model pins down the optimal portfolio at each point in time, and therefore

its Sharpe ratio net of transaction costs. We call this curve the “performance-to-scale” frontier: It

tells the net Sharpe that an optimizing trader can expect when targeting a given P&L volatility.

For a large class of “fundamental” signals and assuming investments at the scale of the asset-

management industry, we find closed forms for the performance-to-scale frontier. Consider a strategy

which, neglecting transaction costs, has a Sharpe ratio SR

⇤ in a given pool of stocks. We find the

following simple expression relating the scale of the portfolio (measured by the dollar volatility of

profits, V ol) and the realized Sharpe ratio:

V ol =
SR

��

2

⇥�

SR

⇤

SR

�

2/3 � 1
⇤

2

. (1)

In this formula, � measures the illiquidity of the stocks that are traded, and � measures the speed

at which the signal underlying the trading strategy fades away. In line with economic intuition, the

realized Sharpe SR is equal to SR

⇤ at very small portfolio scales (V ol) and declines as V ol increases;

This decline is sharper when underlying stocks are more illiquid (i.e. � higher) or when the signal

fades away quickly (i.e. � higher). For instance, for an investor ready to accept a performance

degradation by 30% (SR = 0.7SR⇤), the portfolio scale that can be reached is given by V ol = SR

⇤

10��

2 .

Constructing the “scale-to-performance frontier” (1), which links the realized Sharpe and the

portfolio scale, is the central result of our paper. This relationship shows that the capacity has an

elasticity of 1 w.r.t. to the price impact factor, and an elasticity of 2 w.r.t. to the speed of signal

mean-reversion. This result implies that high-frequency signals have capacities that are very small
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compared to “fundamental” signals based on corporate accounts (who have lower �’s). We also

provide a simple formula that shows how much of the gross P&L should be “burnt” in transaction

costs by an optimizing trader aiming for a given Sharpe degradation. These amounts are large:

Typically, an investor ready to accept a performance degradation by 30% would lose as much as

20% of his P&L in transaction costs.

We then calibrate this model on four classical “fundamental” strategies and two di↵erent pools

of US stocks (large caps, and mid caps. The four strategies are: book-to-market value of equity

or “value” (Fama and French, 2006), minus rolling volatility or “lowvol” (Ang et al., 2009), minus

growth in shares outstanding or “repurchasers” (Ponti↵ and Woodgate, 2008) and operating cash

flows to assets, or “quality” (Novy-Marx (2013), Asness et al. (2014)). We use US data to estimate,

for each strategy, the persistence of the signal and the gross performance. For each pool of stocks,

we estimate the price impact coe�cient. We then inject these parameters in the model, implicitly

assuming that the data-generating process (DGP) and the price impact function used the model

are correct. We find that under this assumption, the capacity of “quality” is an order of magnitude

larger than the others, with a reachable volatility about $80bn in the large cap pool, and 10bn in

the mid-cap range. Also, the calibration exercise shows that the capacity of strategies has increased

in the 2000s compared to the 1990s, mostly because all pools (including mid caps) have become

significantly more liquid. Thus, if anything, these anomalies continue to be large, in spite of the

inflow of arbitrage capital.

We also backtest the model on historical returns. This alternative investigation allows to look

at the robustness of Garleanu and Pedersen (2013)’s assumptions about the DGP. Using historical

returns, we compute what would have been the P&L of a trader aiming for a given $ volatility

and optimizing dynamically under the model’s assumption. We can thus estimate the “realized”

performance-to-scale frontier that an investor following the model’s trading rule would have realized

on historical returns. We find that this realized frontier does not di↵er very much from the calibrated

one. Hence, the model seems reasonably robust: In some cases, the realized performance is even

higher in the backtesting than in our calibration exercise. To further investigate the significance of

our simulations, we then simulate counterfactual histories of stock returns where the signal does not

predict returns. We find that Sharpe ratios of 0.5 are frequently reached at all scales of trading, even

when the signal does not actually predict returns. Given this falsification test, the only strategy

that has “significant” capacity is again quality. All in all, our investigation suggests that quality is
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the largest anomaly of the four, by a large margin.

We finally investigate the robustness of the model to various assumptions. First, we calibrate

the loss made by an investor who would make a mistake on the mean-reversion or the price impact

parameters. We find that estimating price impact properly is more important than estimating signal

dynamics. Second, we investigate the impact on the performance-to-scale frontier of an error in the

DGP. While Garleanu and Pedersen (2013) assume that the signal is an AR(1), we simulate signals

that have predictive power but a di↵erent time-series structure, and estimate the frontier resulting

from an investor trading under the AR(1) hypothesis. We find that for a class of “long memory

signals” (AR(k) where k > 1, like “lowvol”) realized capacity is actually larger than expected because

the investor systematically underestimates the persistence of the signal. For signals that are natural

moving averages (like “momentum” or “repurchasers”), the framework has in contrast a very low

realized capacity. The take-away of these simulations is that understanding the exact dynamics of

signal may be a critical ingredient. Finally, in this robustness section, we estimate the loss that a

static trader would make compared to an investor that trades dynamically. We find this loss to be

significant.

This paper relates to the recent literature that studies the impact of trading costs on the per-

formance of various strategies. This literature departs from the traditional market microstructure

literature in that it focuses on price impact, rather than fees and bid-ask spreads. Garleanu and

Pedersen (2013) develop a framework that produces an optimal trading rule given a strategy and

costs of execution. We use their results in order to compute the capacity of an optimally traded

signal. Novy-Marx and Velikov (2014) propose a new rule to avoid trading “too much” when imple-

menting a series of well-known strategies. Their insight is that investors should not react too quickly

to changes in signals, in order to avoid useless round-trips. They do not focus on the persistence of

strategies, as we do and do not investigate price-impact increasing in trade size (e.g. quadratic trans-

action costs) but rather focus on linear transaction costs. Korajczyk and Sadka (2004) study how

price impact deteriorates returns in trading momentum; Using a calibration, they find that capacity

of value-weighted momentum ($ 2 Bn) is much higher than its equal-weighted capacity ($200 Mil.).

But their optimization is static which leads to significant underestimation of capacity, as we show in

our last Section. Frazzini et al. (2012) analyze actual trade data with both executed and intended

trades to infer trading costs, and then analyze the performance of well-known strategies once these

trading costs are taken into account. Using these data, they find larger capacity for these strategies
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than existing papers. Compared to these studies, our paper uses the dynamic model of Garleanu

and Pedersen (2013), which features an investor that takes into account the future implications of its

current trading. This turns out to be particularly important for fundamental signals. The dynamic

optimization allows us to trade e�ciently even for large capacities, so that net-of-transaction cost

performance does not become negative in the large investment range, in contrast to Korajczyk and

Sadka (2004) and Frazzini et al. (2012).

This paper also indirectly relates to the “skeptical” literature that asks whether published mar-

ket anomalies are really present in the data. Lean and Ponti↵ (2014) show that many anomalies

disappear as soon as they are published on SSRN, thereby suggesting that arbitrage capital moves

in quickly and makes anomalies go away. Harvey et al. (2014) provide a recent discussion of why

most trading strategies uncovered by the literature are actually not statistically significant, because

of data-snooping bias. Our paper focuses on another line of criticism, which is that anomalies may

exist statistically, but that no investor with significant capacity can take advantage of them. We find

that this is not the case for a class of slow moving signals. We also find that the increase in stock

liquidity between the 1990s and the 2000s has been large enough to compensate for the reduction

in the performance of these strategies. So, even if the alpha generated by some anomalies is lower

today that in the 1990s, the “size” of these anomalies is as large, sometimes even larger than before.

Finally, our analysis strongly underscores the fact that “quality” (Novy-Marx (2013), Asness et al.

(2014)) is a very large anomaly, by far the largest of the four that we document here. Such a large

deviation from the standard asset-pricing model begs for an explanation.

The next section lays out the dynamic trading framework which is an application of Garleanu

and Pedersen (2013). We derive in this section an explicit formula for the link between $ volatility

of a strategy (the amount invested) and its Sharpe ratio. We define the notion of capacity as the

level of $ volatility that is consistent with a given target Sharpe ratio. We then investigate the

e↵ect of signal persistence on volatility, and how this interact with liquidity. We use approximations

and make approximations to build intuition and get functional forms. Section 3 describes the data.

Section 4 calibrates and backtests the model. Section 5 investigates the robustness of the model.

Section 6 concludes.
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2 Framework

2.1 Set-Up

2.1.1 Data Generating Process

In this section, we discuss the return generating process, which is essentially the same as Garleanu

and Pedersen (2013) (henceforth, GP). Let s

t

be a signal that is used to forecast returns. s

t

is

assumed to be a vector whose dimension is equal to the number of securities traded. We assume

that this signal can be described as an AR(1) process with persistence parameter �:

�s

t+1

= ��s

t

+ ✏

t+1

(2)

where � is a scalar and �s

t+1

= s

t+1

� s

t

. This assumption on the signal’s behavior is important to

solve the dynamic programming problem. We explore its consequences numerically in Section 5.2.

The signal has some forecasting power over returns. To simplify exposition, we assume that the

signal at t is the only variable forecasting returns at t+ 1:

r

t+1

= p

t+1

� (1 + r

f

)p
t

= Bs

t

+ u

t+1

. (3)

In equation (3) we omit exposure to risk factors that price returns. This omission does not a↵ect

our results but keeps exposition simple. r

f

is the risk-free rate. B is a scaling factor. Another

consequence of equation (3) is that past values of the signal (i.e. s

t�k

for k > 0) do not add useful

information to predict r
t+1

, conditionally on s

t

. Note also that we follow GP in defining r

t

as share

price change (adjusted for dividends and splits) rather than returns for tractability of the dynamic

optimization problem.

This assumption about the data-generating process fits the GP framework. Their model is

written in the spirit of APT: there is a set of K factors, and each security may have a di↵erent

–but constant – loading on each of the factors. In our paper, we assume that there is one factor per

security, and that each security has a loading of B on this factor. So our model corresponds to a

special case of theirs, and their formulae apply.

Last, a critical assumption behind equation (3) is that the forecasting power of the signal does not

change over time. One possible alternative model would be that the regression coe�cient B is itself
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noisy, i.e. that r
t+1

= (B+ ⌘

t

)s
t

+ u

t+1

. Such a model accommodates better the fluctuations in the

performance of the strategy based on the signal s
t

. Since the focus of this paper is on transaction

costs, it is natural to start with the simple model in equation (3). Also, the GP model needs a

constant variance-covariance matrix, so our analytical results do not hold under this alternative

assumption.

2.1.2 Portfolio Optimization

We use the results derived in Garleanu and Pedersen (2013). They assume quadratic trading costs

(e.g. linear and temporary price impact) defined by a mean variance criterion with risk-aversion of �

and trading costs determined by a liquidity matrix �⌃
u

, where ⌃
u

is the variance-covariance matrix

of price changes (conditional on the signal vector s
t

) and � is a scalar reflecting the illiquidity of the

pool of stocks being traded.

The dynamic problem the trader faces is to optimize dynamically over (x
t

), while taking into

account expected returns, risk and trading costs and the discount rate �:

max
(x

t+s

)

E

t

n

X

s�0

1

(1 + �)s

h

� �

2
(�x

0
t+s

)⌃
u

(�x

t+s

) +
1

1 + �

⇣

x

0
t+s

r

t+s+1

� �

2
x

0
t+s

⌃
u

x

t+s

⌘io

(4)

where �x

t

= x

t

� x

t�1

.

Solving the dynamic problem, they obtain the following formula for the optimal portfolio, in

number of shares of each stock:

x

t

= (1� ⌧)x
t�1

+ ⌧x

?

t

(5)

where ⌧ , which Garleanu and Pedersen (2013) label the “trading rate” is the solution of the second

order equation:

⌧

2 + (
�

�

+ �)⌧ � �

�

= 0 (6)

The trading rate ⌧ has nice properties. First, it is smaller than 1. Second, it is a decreasing

function of �. This is in part due to the fact that execution costs are paid one period before returns

are obtained: When investors become more impatient (� goes up), trading costs become more

important in present value terms, and investors trade less. Finally, the trading rate is an increasing
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function of �/�: Less risk-averse (i.e. bigger) investors care relatively more about execution costs,

and therefore prefer to trade slowly. At the same time, investors operating on relatively less liquid

markets (higher �) trade more slowly.

Garleanu and Pedersen (2013) call x?

t

the ”aimed portfolio”, and is given by:

x

?

t

=
1

� + ��⌧

⌃�1

u

Bs

t

=
�

� + ��⌧

x

M

t

(7)

where x

M

t

is the Markowitz portfolio (�⌃
u

)�1

Bs

t

.

The aim does not fully respond to changes in the Markowitz portfolio because �⌧ > 0. This

comes from the fact that the trader expects the signal to mean-revert (more likely if � is larger).

Because trading is costly, the traders knows she is likely to have to wind down the position in

the future (at a quicker pace if ⌧ is larger). Thus, the aim is simply a less levered version of the

Markowitz portfolio to account for the cost of potential unwinding.

When bringing the Garleanu-Pedersen (henceforth GP) model to the data, four caveats arise,

that we discuss here. First, the model omits costs due to broker fees and financing fees. These costs

are linear in the amount of $ traded, and hence fees per $ traded do not depend on the pool of

stocks traded. They thus shift all of our result on returns by the same amount, but do not a↵ect

the comparisons across pools of stocks (for instance, large and mid caps).

Second, the GP model omits shorting fees: While these can vary across stocks, they do not

substantially di↵er across the pools of stocks that we study. True, as mid-caps are more likely to

be on special, shorting fees tend to be higher for smaller stocks (see for instance Stambaugh et al.

(2012) and Dreschler and Dreschler (2014)). Using proprietary data from a large asset manager, we

show that for su�ciently large amounts traded this e↵ect is second order compared to price-impact

concerns. Brokers typically split stocks between “General Collateral” (GC) and “Hard to Borrow”

(HTB or “on special”). Most stocks belong to the GC category, and for these stocks, the shorting fee

is the same (the “GC rate”) and hovers around 10bp annually. HTB stocks are those for which the

shorting demand is unusually high, or for which stock lenders are di�cult to find. For these stocks,

the shorting fee can be several percent in annualized terms. In Figure 2, we use our proprietary

data on quotes, and show the di↵erence in cost between GC and HTB stocks during the 2012-2014

period. The Panel A of the Figure reports the average excess rate charged for all hard-to-borrow

stocks, removing all stocks for which the rate is above 2%. Even for the pool of relatively illiquid
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stocks (between the 1000th and the 1500th rank of stock market capitalization, the average cost of

shorting for hard-to-borrow stocks is around 10bp. The right panel (Panel B) plots the fraction of

extremely HTB stocks, i.e. stock for which the extra lending fee is above 2%. This fraction lies

between 2% for the least liquid pool, and almost 0% for the most liquid pool. Thus, even extremely

HTB stocks are not that expansive to short, compared to the trading costs typically incurred by

large asset managers. They are also a very small fraction of the stock universe. On average, the

data reveals that the gap in shorting costs between top 500 US stocks (ranked by market cap) vs.

stocks that are in the (1000-2000) size range is less than 5bps annualized, which for a strategy with

unlevered returns above 1% implies a Sharpe reduction of less than 5 percent.

Third, the GP model omits some rebalancing trades in the objective function by assuming that

price changes as opposed to returns are normally distributed. When implementing the model, such

rebalancing trades will however show-up as the variance-covariance matrix is evaluated using rolling

windows. This will bias simulation results regarding the Sharpe deterioration in a conservative

direction as our trades won’t be optimal vis-a-vis a more realistic dynamic structure of variance (see

Collin-Dufresne et al. (2012)).

Fourth, our trading-cost model assumes no permanent price-impact (i.e. prices revert instan-

taneously after trading). It is possible to introduce slow reversal of price-impact in GP, but this

comes at the cost of not having closed form solutions any more (a very attractive feature of the GP

framework). Introducing such costs would lead us to be somewhat more conservative on capacity

estimates as it would force traders to slow down their trading further. Brokmann et al. (2014) show

that full reversal of prices post trading typically takes a few days. By contrast Frazzini et al. (2012)

find in their trading data that 70% of price-impact is permanent.

2.2 Defining Capacity

2.2.1 The Sharpe-to-volatility Frontier

We assume that stock-return variance is largely driven by idiosyncratic noise rather than di↵erences

in signals. Under this assumption, we can use equations (5)-(6)-(7) to derive an explicit formulation

for the Sharpe-to-volatility frontier:

Proposition 1. Assume that B

2

Es

0
t

s

t

<< ⌃
u

. Then, for each trading rate ⌧ used, we can explicitly
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compute the Sharpe Ratio and the $ volatility that are reached:

SR(�) =
h

1� 2�⌧

�/�+ �⌧

1

2� ⌧

ih 1� (1� ⌧)2

1� (1� ⌧)2(1� �)2)

i

1/2

SR

?

V ol(�) =
1

�

1

�/�+ �⌧

h

⌧

2� ⌧

1 + (1� �)(1� ⌧)

1� (1� �)(1� ⌧)

i

1/2

SR

?

where SR

?

is the Markovitz Sharpe (SR

? = B.E(s0
t

⌃�1

u

s

t

)1/2) and ⌧ is function of � given by

equation (6).

Proof. See calculations in Appendix A

The above system of equations thus describes the Sharpe-to-volatility frontier: An investor of

risk aversion � while optimally reach a risk-adjusted performance SR(�), and a volatility V ol(�).

The formulae include another parameter, the trading rate ⌧ which is in fact a function of � as shown

in equation (6). ⌧ increases from 0 when � = 0 to 1 when � ! 1. An infinitely risk-averse traders

thus aims for a zero volatility and a 100% trading rate since the relative weight of trading costs is

negligible (� much larger than �). SR(�) goes to SR

? because the portfolio is infinitely small.

As risk-aversion decreases, it is possible to show that there is a level of risk-aversion below which

the target $ volatility increases. The main reason for this is that increasing risk aversion reduces the

size of the “aimed” portfolio via two channels: (a) even without dynamic trading, more risk-averse

investors take smaller positions (this is the standard static Markowitz e↵ect – the � in (�/�+ �⌧))

and (b) risk-aversion makes investors more sensitive to potential reversal in the signal that will occur

in the long run, so they want to reduce the scale of their aimed portfolio (the ⌧ term in (�/�+ �⌧),

since a is an increasing function of �). This e↵ect is however counteracted by the fact that the

trading speed ⌧ is also an increasing function of � (risk-averse investors care relatively less about

transaction costs). This tends to increase the volatility of the portfolio. Quite reasonably, this force

is dominated for scales of capacity that correspond to industry numbers (� low enough to reach

at least million dollar of investments in the strategy); we make the corresponding approximations

explicit in the next section and make the link with orders of magnitude coming from the data.

Simultaneously, in this parameter range (� is low enough; see next Section) the Sharpe ratio

decreases as � increases. The intuition is that very risk-averse investors tend to take smaller positions

(to reduce $ volatility). Since their trading is small, performance is not very much impaired by price

impact. The formula also receives a simple economic interpretation. The “pure” Markowitz Sharpe
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ratio, SR⇤, is reduced by optimal trading for two reasons, which correspond to the two terms in the

product. The first term corresponds to the impact of trading costs. Trading costs are bigger when

the signal is less persistent (� larger) which tends to reduce the e↵ective Sharpe of the strategy.

This reduction is there even if the trader trades infinitely fast (⌧ = 1). The second term corresponds

to the loss of Sharpe coming from the fact that the trader is never exactly on a multiple of the

Markowitz portfolio (here, the aim). This reduces the Sharpe as portfolio composition is suboptimal

from a Sharpe viewpoint. If the signal is perfectly persistent (� = 0), or when the trading rate is 1,

there is no such gap and the term is equal to 1.

Asymptotically, it is easy to see that when � goes to zero, which corresponds to risk-neutrality,

the trading rate goes to zero, $ volatility goes to infinity and SR goes to zero. This is interesting

because it shows that in a dynamic trading model, the capacity of a strategy cannot be defined by

the break-even constraint SR = 0 (as for instance in Frazzini et al. (2012)): When the portfolio

becomes large, the trader slows down trading, which makes the Sharpe go to zero, but never become

negative.

Together, the two equations of Proposition 1 determine the Sharpe-to-volatility frontier. Higher

scale ($ volatility) is reached by less risk-averse investor; Less risk-averse investors invest more,

and therefore face bigger trading costs, which reduces the e↵ective performance of the investment

strategy. The formulae are however a bit opaque and the dependence of both SR and Vol in �

is ambiguous. To clarify intuition and generate additional comparative statics, we thus study an

approximation in the next Section.

2.2.2 Large Investments Approximation

In this Section, we use two approximations to rewrite Sharpe-to-volatility frontier in a more easily

interpretable way. The approximation focuses on very large scales of investment for which the

optimal trading rate ⌧ is a few percentage points. The second approximation focuses on slow-moving

signals. Both approximations will hold in the data.

Assumption 1. Large Investments

1.

⇣

�

�

⌘

1/2

⌧ 1.

2. � ⌧
⇣

�

�

⌘

1/2
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These two assumptions are easy to interpret. When they both hold, it is easy to show that

⌧ ⇡
p

�/�. Hence, the first approximation means that the e↵ective trading rate has to be small: At

most a few percents of the portfolio can be traded every day. The second interpretation means that

discounting issues (at the daily horizon, again) are negligible compared to the trading rate. In our

applications, both assumptions are easily satisfied.

Under the large investment approximation, we can then derive the Sharpe-to-volatility frontier:

Proposition 2. Assume that the “large investment approximation” holds. Then:

• The trading speed is given by

⌧ = (�/�)1/2

• The large investment approximation therefore rewrites as ⌧ ⌧ 1 and ⌧ � �. Daily portfolio

churn needs to be small, but larger than the daily discount rate.

• The Sharpe-to-volatility frontier writes as:

SR ⇡
⇣ 1

�+ ⌧

⌘

⌧

3/2

1� �

⇣ 1
(1�(1��)

2
)

2(1��)

2 + ⌧)

⌘

1/2

SR

⇤

V ol ⇡ 1

�⌧

1/2

1

⌧ + �

h 1� �/2

�+ ⌧(1� �)

i

1/2

SR

?

Proof. See Appendix B.

This simply rewrites equations of Proposition 1 under the large investment approximation. As

previously discussed the trading rate ⌧ takes a simple form. As is apparent from the equations, �

does not appear explicitly any more but only through the trading rate ⌧ .

The above formula is still hard to interpret. We now add a second approximation:

Assumption 2. Slow Signal � ⌧ 1.

This second approximation is valid for most strategies except the most high frequency ones. Note

that � measures the speed of mean-reversion at the daily frequency. For instance, for a signal with

a half-life of 10 days, we have that � = .066. Hence, the “slow signal” approximation is not valid for

the daily mean-reversion, but it is for instance valid for the “leader-laggards” strategy which buys

small stocks in industries where large firms have just announced favorable earnings (Hou, 2007). For

the fundamental signal that we study in this paper, � is in the 10�3 range.
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Using the formulae of Proposition 2 and the slow signal approximation, we obtain the following

set of results:

Proposition 3. Assume the “large investment” and the “slow signal” approximations hold:

• The large investment approximation rewrites:

q

SR

�V ol

⌧ 1 and

q

SR

�V ol

� �.

• The targeted $ volatility is an explicit function of the pure and targeted Sharpes, the signal

persistence and the pool’s liquidity:

V ol =
SR

��

2

⇥�

SR

⇤

SR

�

2/3 � 1
⇤

2

For a given targeted Sharpe, the $ volatility has an elasticity of 2 w.r.t. signal persistence �,

and an elasticity of 1 w.r.t. to price impact �.

• For a given $ volatility, performance decreases faster with liquidity when the signal is less

persistent:

@

2

SR

@�@�

< 0

• Transactions costs are a simple fraction of the gross profit of the strategy:

TC

ER

=
�

�+ ⌧

= 1�
⇣

SR

SR

⇤

⌘

2/3

where ER is the steady state expected $ gross profit (i.e. net profit plus transaction costs) from

the strategy.

Proof. See Appendix C.

The above Proposition summarizes the core message of this paper, i.e. that trading costs matter

less when the signal is more persistent. The first bullet point defines the range for which the

approximations are valid. In the following, we will assume � ⇡ 8.10�5, which corresponds to an

annualized discount rate of 2%. As we will see later in our data, the price impact parameter

� ⇡ 10�5 in the mid-cap range (we describe the data and the calibrated parameters in greater detail

in Section 3). Assume to simplify that we are targeting a Sharpe ratio of 0.5. The first bullet point

of Proposition 3 simply states that, as long as Vol is at least 100m$, and below 40bn$, the two parts
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of large investment approximation are satisfied.1

The second bullet point combines the two equations of Proposition 2 to compute the maximum

$ volatility compatible with a given Sharpe ratio. This value is the “capacity” of a strategy. It is

obviously an increasing function of the “pure” Markowitz Sharpe SR

⇤. Assume for instance that

the investor aims for an e↵ective Sharpe of .5. Then, the term in SR

⇥

(SR⇤
/SR)2/3 � 1

⇤

2

will be

worth .008 if the pure Sharpe is .6 (as for instance for the low vol strategy), and .11 if the pure

Sharpe is .9 (as for the cash-flow strategy). Thus, the model suggests that, even if one assumes equal

persistence and liquidity, the cash-flow strategy will have 10 times as much capacity as the low vol

strategy, simply because its pure performance is better.

A simple rule of thumb about Sharpe decay can be derived as follows from the second bullet

point: SR is 30% lower than the frictionless Sharpe ratio SR

⇤ when the portfolio scale (measured

in dollar volatility) is

V ol =
SR

⇤

10��2

.

Thus, Sharpe decay with scale is sharper when underlying stocks are more illiquid (i.e. � higher) or

when the signal fades away quickly (i.e. � higher).

We show these comparative statics graphically in Figures 4 and 5, where we investigate the e↵ects

of � and � on the Sharpe-to-volatility frontier defined by the formula in Proposition 2. Figure 4

investigates the e↵ect of liquidity. We consider a fictitious strategy whose frictionless Sharpe ratio is

equal to 1, and whose persistence � = 2.10�3, which roughly corresponds to the average persistence

of our fundamental signals. We use 4 di↵erent values of �, which correspond to the median � in

the mid pool in 1991-1995 (1.310�4), 1996-2000 (1.5.10�4), 2001-2005 (7.6.10�4) and 2006-2013

(1.8.10�4). We see there that liquidity has a very large impact on the capacity of strategies. For

instance, the Sharpe loss due to trading $ 5bn could be as large as .8 with the liquidity level of the

early 1990s, it is not more than .3 with the liquidity level of the early 2000s. This suggest that the

increase in liquidity witnessed in the 2000s –in particular in the mid-cap range– led to a considerable

increase in the capacity of the fundamental strategies we are studying here.

1If Vol = 100m$, then
r

SR

�V ol

= .02 ⌧ 1

while if Vol = 40bn$, then
r

SR

�V ol

= .001 � 810�5
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Figure 5 highlights the e↵ect of the speed of signal mean-reversion � on the scale-performance

frontier. Again, we consider a fictitious strategy whose frictionless Sharpe ratio is equal to 1, and a

pool whose price impact � = 1.8e � 6, which corresponds to the liquidity that prevails in the mid

pool in 2012. We use 4 di↵erent values of �, which correspond to the � of book-to-market in the large

(0.610�3, the most persistent strategy), book-to-market in the mid (0.810�3), low vol (1.310�3) and

net shares growth (1.810�3, the least persistent strategy). � has a discernable impact on capacity,

although less pronounced than liquidity. Assuming the target is a volatility of $ 5bn, going from

the least to the most persistent strategy allows to reduce the Sharpe degradation by about .1. This

shows that, in the range of persistence for the fundamental strategies we are looking at, capacity

does not di↵er much.

The relative insensitivity of capacity w.r.t. � comes from the fact that we focus on a group of

similarly slow strategies. More “transient signals” have little capacity, and this is why we do not

include them in our study. Take for instance the standard daily mean-reversion, which uses minus

last day’s return as the signal. This high-speed strategy has a � ⇡ 1 –since returns are almost

i.i.d (see for instance Lo and Khandani (2008) for a description). For such values of �, the “large

investment approximation” is still valid, but the “slow signal” approximation is not any more

If one however assumes that � � ⌧ , which is typically the case when � ⇡ 1, it is then easy to

show that the capacity frontier is given by:

Vol =
SR

⇣

1� �

2

⌘

1/3

��

2

⇣

SR

⇤

SR

⌘

4/3

which shows quite clearly that the capacity becomes tiny when � is near unity. This comes from

the fact that the Sharpe decreases with �

2 both for high and low values of mean-reversion, so going

from � ⇡ 1 (daily mean-reversion) to � ⇡ 10�3 (our fundamental strategies) essentially multiplies

capacity by a factor of about 106. Given the above formula, assuming for instance that SR

⇤ = 5,

SR = .5 and � = 1, one obtains a capacity of about $ 760k, a tiny fraction of what can be obtained

with slower strategies. So in general, signal persistence has a big e↵ect, just not so much in the

range (� ⌧ 1) we focus on in the empirical application of this paper.

Going back to Proposition 2, the third bullet point shows that, for given $ volatilities, the Sharpe

reduction due to trading costs @SR/@� is bigger (more negative) when the signal is less persistent.

This equation embodies an important e↵ect, i.e. that “slow-moving” strategies are relatively more
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scalable when stocks are more liquid.

The fourth bullet point gives a useful intuition about the levels of transaction costs. The first

part of the equality shows that how much transaction costs are ”burnt” as the optimal trading

increases with �/⌧ . When the signal reverts more quickly, e↵ective transaction costs are bigger.

When the trader trades more quickly, transaction costs are lower. This second e↵ect comes from

the fact that fast traders in the model are the ones that care the about transaction costs (compared

to risk). They prefer low capacity, and low trading costs. Note in passing that the first equality

is valid even outside of the “slow signal” approximation (see proof). Going back to the example

of daily mean-reversion discussed above, assuming � 1 � ⌧ we obtain that TC/ER ⇡ 1: Even if

they are traded optimally, the profits of high-frequency strategies are almost entirely wiped out by

transaction costs.

The second part of the equality provides a simple rule that ties the Sharpe degradation due to

transaction costs with the fraction of the PNL that is lost in trading. For instance, assume that

a strategy has a Markowitz Sharpe of .7 but is traded with an e↵ective Sharpe of .5, the formula

suggests that –provided the DGP that is assumed is correct– e↵ective trading costs should be around

20% of the realized PNL. If one starts from a pure Sharpe of 1, trading costs would be as high as

37% of the e↵ective PNL. This formula can be used to estimate the minimal trading costs that a

trader aiming for a particular risk-adjusted performance should expect to incur.

3 Data & Definitions

3.1 Data

Our analysis of raw returns (gross of transaction costs) is done using monthly returns from CRSP

and annual accounting variables from COMPUSTAT, as it is done in most of the asset-pricing

literature. Our period range is 1990-2013. When we move to the optimal trading analysis (the core

of the paper), we use daily split- and dividend-adjusted returns from CRSP. We believe that it is

important to allow investors to trade at the daily frequency in order to account for the potential

fast decay of a signal’s predictive power. At the end of the paper, we implement some simulations

on monthly data for pure computational convenience.

We start with monthly data. From the CRSP universe of stocks, we extract two pools: “Large”

and “Mid”. Every month, we sort stocks by market capitalization computed at the end of the
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previous month. “Large” is the set of the largest 500 stocks. “Mid” is the set of stocks ranking

from 501 to 1500 in terms of this measure of size. Overall, the two pools change composition every

month, but turnover is low. Every month, on average 1.2% of the stocks leave and enter the “large”

pool. Monthly turnover is 2.4% in the “mid” pool, consistent with the intuition that stocks can

move both up and down in and out of the mid-cap range.

Table 1, panel A, gathers the main descriptive statistics of our data. The average turnover is

similar in the large and mid pool (24% among large stocks, versus 29% among mid caps). The total

volume traded in mid caps is about $ 3.5tn annual versus $ 15tn among large caps. So, just looking

at volume and without discussing price impact issues at this stage, it looks like it is possible to

increase the capacity of a strategy by about 20% by moving into the mid cap range.

3.2 Calibrating the Price Impact Parameter �

We now describe the parameter � which measures the illiquidity of a given pool of stocks. Gar-

leanu and Pedersen (2013) propose the following calibration, based on Engle et al. (2008) : trades

amounting to 1.59% of the daily volume in a stock have a price impact of about 0.10%. Using this

approximation, for each stock i, we can compute a liquidity parameter �
i

as the solution of:

1.59%⇥ volume

i

⇥ �

i

2
⇥ �

2

i

= 0.1%,

where �

i

is the daily volatility of stock i and volume

i

is its average dollar daily volume. This leaves

us for each stock with the following formula:

�

i

=
1

8⇥ volume

i

⇥ �

2

i

.

Using CRSP daily data, we compute for each year a stock-level �
i

. Separately for the “large” and

the “mid” pools, we then define for each year the pool’s � as the median of the liquidity parameters

(�
i

) of stocks belonging to the pool.

Time-series changes in each pool’s � are reported in Figure 3. We observe a strong increase in

liquidity during 1990-2000 for both pools. Given the way we measure liquidity (proportional to the

inverse of Volume⇥ �

2), the sharp decrease in � mostly comes from the increase in trading volume

already documented for instance by Chordi et al. (2011) and Novy-Marx and Velikov (2014). Chordi

et al. (2011) for instance document a fivefold increase in turnover between 1995 and 2009.
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In our calibrations, we use the average values of � in the last five years of our sample, i.e. values

from 2009-2013, in order to examine the scalability of strategies in the context of contemporary

liquidity conditions. This leads to � = 4 10�6 in the large pool and � = 2.4 10�5 in the mid pool.

We report these numbers in Table 1.

3.3 Definition of Anomalies Traded

We focus on four well-known “fundamental” anomalies. Signals are updated monthly. Let us denote

t the month of trading.

• First, we compute a standard “ Value ” signal, which is the ratio of book value of equity

to market value of equity (Fama and French, 2006). Book value of equity (item CEQ in

COMPUSTAT) is taken from the most recent annual accounts corresponding to the fiscal year

ended in month t� 7.2 Market value is computed as the end of December of the last calendar

year.

• Second, we compute a “Low Vol” signal, which is equal to minus the volatility of daily returns

computed using returns from month t � 4 to month t � 1. This signal takes inspiration from

papers documenting the fact that low volatility stocks tend to perform well in the long run.

Frazzini and Pedersen (2013) use the stock’s � as a measure of its riskiness. Ang et al.

(2009) use a measure of idiosyncratic volatility closer in spirit to the one we use here. One

interpretation for this anomaly is that these stocks provide “embedded leverage” to investors

who are not allowed to borrow.

• Third, we compute a “Net Repurchaser” signal with is equal to minus the growth rate in (split

adjusted) shares outstanding between t� 24 and t� 1, where t� 1 denotes the last available

calendar month (Ponti↵ and Woodgate, 2008). The economic intuition for this signal is that

firms trade their own stock with superior information, so that their trading predicts returns.

• Finally, the fourth signal we look at is the “Cash-Flows” signal, which is equal to net operating

cash flows (item OANCF in COMPUSTAT) normalized by total assets (item AT). These

accounting items are taken from the last available annual accounts available 7 months before

the current month. The economic intuition as to why this signal predicts returns is not

2Our assumption is therefore that the information available today from COMPUSTAT was available 6 full months
after the end of the fiscal year.
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fully understood: Novy-Marx (2013) hypothesizes that return on assets –which our cash-flow

measure approximates– captures some measure of risk exposure of the firm; and therefore

predicts returns. Asness et al. (2014) provide evidence consistent with the idea that investors

persistently underestimate good quality stocks. Another possibility is that firm earnings attract

too much attention compared to cash-flows, which are a better predictor of value (Sloan, 1996).

We then normalize each of these signals in the following manner. First, we compute for each

stock the rank of the stock according to the signal using information available at the beginning of

month t, in the pool that is considered (mid or large). We then normalize these ranks so that they

lie -0.5 and +0.5.

3.4 Persistence Parameters �

To estimate �, for each signal s
i,t

, we estimate the following regression on monthly data:

s

i,t+1

= a+ b.s

i,t

+ ✏

i,t

via plain OLS (we are not interested in the standard error). We estimate the above equation sepa-

rately for each strategy, and for each pool of stocks. This allows us to retrieve the daily persistence

parameter � = 1�b

1/20. In Table 1, we report the values of � for each pool and each strategy. Look-

ing at Table 1, several noteworthy features emerge. First, all these strategies are very persistent.

The plain book-to-market signal is the most persistent of the four. For mid caps, the half-life of this

signal (� log 2/(250 ⇤ log (1� �))) is about 4.6 years in the “mid” pool, versus 2 years for “low vol”.

“repurchasers” is the least persistent strategy, with a half-life of about 1.5 years. All these signals

are therefore very slow-moving.

3.5 Scaling Parameter B

To estimate the signal scaling parameter B, separately for each strategy, we run the following re-

gressions:

r

i,t+1

= A+B.s

i,t

+ u

i,t

using monthly data on returns and signal described above. The coe�cient B is estimated through
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OLS –we are not interested in the standard errors in this paper, though we will provide evidence on

the risk-adjusted performance of all strategies in Section 4. To run the estimation, we use the entire

sample period 1990-2013. The simulation will therefore have some element of look ahead bias, but

this is not critical here since, again, the focus of the study is the analysis of trading costs rather

than the actual risk-adjusted performance of stock market anomalies.

4 Back-Testing

To validate our approach, back-testing our trading rule on real-life signals is a crucial step. A large

gap between our theoretical predictions and e↵ective trading performance could arise if our initial

model is too largely mis-specified. Remember the model assumes that the signal is AR(1) and that

returns only depend on the most recent value of the signal. But these assumption may not hold in the

data. For example, consider a fundamental signal based on yearly accounting data. By definition,

such signal persists at least one year and will therefore be categorized as a slow signal. However, it

might for instance be possible that arbitrageurs act massively when accounting data become public,

such that the signal’s predictive power on returns quickly fades away after data publication: in

such case, the signal, while persistent, would not be one that could be traded slowly and our model

which assumes that predictive power is constant as long a a signal does not change would be highly

flawed. Other structural assumptions of our model will also fail to hold exactly in the data: (1) the

variance-covariance matrix ⌃
u

is probably not stationary, (2) the predictive power of the the signal

may vary over time, and (3) the stationary DGP probably involves stock returns, rather than price

changes. All of these assumptions (except the second one) are needed to find a closed form solution

to the dynamic problem and are susceptible to create slippage between theoretical transaction costs

and simulation results.

To alleviate concerns about model mis-specification, it is therefore needed to compute the real-

ized performance of anomalies, using the trading rules derived by theory, on actual returns data.

Throughout the analysis, a crucial assumption is that the price impact does not a↵ect the dynamics

of returns. Another important feature is that such an analysis is contingent on a given history of

realized returns. We will explore the sensitivity of our results to this last assumption at the end of

this Section.
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4.1 Back-testing Procedure

This Section describes in detail how we run the back-testing procedure. We construct our trading

portfolios on each pool of stocks separately.

At the beginning of each round, we first fix �, the level of risk aversion. We use the dynamic

trading rule summarized in equations (5) and (7). The time-unit for portfolio trading in this equation

is the day. We use the estimates of � for each pool, and � for each strategy, from the data section.

We assume that in January 1991, the investor holds the null portfolio. Equation (5) then tells

us how to update the portfolio holdings x
t

, but it requires the computation of the “aimed” portfolio

�/(� + a�)xM

t

, where x

M

t

is the Markowitz portfolio. In order to compute it, we need to compute

the inverse variance-covariance matrix. To do so in closed-form, we assume a one-factor structure

for the error term in the returns generating process:

r

i,t+1

= B.s

t

+ �

i

r

M,t+1

+ ✏

i,t+1

r

M,t

is the market return and we assume that all shocks ✏

i,t

have the same variance �

2

✏

. We note

�

2

M

the variance of the common factor r
M,t

and � the vector of stock betas. Under this simple risk

structure, it is easy to show (see Appendix F) that the Markowitz portfolio is given by:

x

M

t

=
B

��

2

✏

{s
t

� �

2

M

�

2

✏

�

0
s

t

1 +
�

2
M

�

2
✏

(�0
�)

�} (8)

which can be easily interpreted. First, if stocks are volatile or the investor risk averse, the portfolio

is less levered (the term in ��

2

✏

). Second, other things equal, the Markowitz portfolio underweights

high beta stocks, in particular if the market is more volatile. This is to reduce exposure to risk

factor and hence volatility. Third, the correlation between the betas and signals plays a critical role

in the size of the beta and net dollar exposure of the portfolio. If signal and beta or uncorrelated,

the Markovitz portfolio is beta-neutral.3 For instance, if beta and signal are negatively correlated

(as is the case with “low vol”), then the Markowitz portfolio has a long bias.

The parameters required to compute the Markowitz portfolio x

M are estimated on a rolling

3It is easy to see that the beta of the Markowitz portfolio is given by:

B

�

0

s

t

��

2
✏

n

1�

�

2
M

�

0

s

t�1

�

2
✏

+ �

2
M

�

2
✏

(�0

�)

o

. It is equal to zero if � is uncorrelated with s in the cross-section, since Es = 0 by construction.
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basis –thus we allow the variance-covariance matrix to move slowly over time, in contrast with the

assumptions of the GP model. Using monthly returns data, we estimate all the covariance parameters

(�
M

, �
✏

, �) based on 24 months rolling windows: Every month t, for every stock i, we compute

the volatility of returns over the past 24 months. �2

✏

is then estimated as the cross-sectional average

of idiosyncratic variances over the pool. We also compute the univariate �

i,t

as the univariate beta

of the stock’s return with the market returns –net of the risk-free rate– over the past 24 months.

Finally, we compute �2

M,t

as the volatility of monthly market returns (adjusted for the risk-free rate),

over the past 24 months. Both signals and inverse variance matrix are thus estimated with monthly

returns, so that the portfolio weights change only once a month. x

M

t

is thus updated on the first

day of each month.

Using equation (5), we thus compute portfolio holdings x
t

every month, and the realized returns

x

0
t

r

t+1

. The resulting time series of portfolio returns are then used to compute the realized Sharpe

ratio and $ volatility. We then iterate the entire process with a di↵erent level of risk-aversion. We

span the Sharpe-to-volatility with values of � going from 10�25 (low Sharpe, high volatiltiy) to 10�7

(high Sharpe, low volatility).

4.2 Performance under Zero Transaction Costs

As a benchmark, we use our back-testing process to analyze performance in the absence of transaction

costs, which is a particular case of the back-testing described above. Making transaction costs go to

zero leads the trader to invest instantaneously in the Markowitz portfolio. When the trader invests

in the Markowitz portfolio, the expected Sharpe is given by BE

q

s

0
t

⌃�1

u

s

t

which does not depend

on �. The Sharpe-to-volatility frontier is a flat line, where the same Sharpe –the maximum possible

one– is reached whatever the $ volatility aimed.

Note that backtesting the zero transaction cost strategy is an essentially monthly exercise in

our setting. Because of the absence of transaction costs here, for given risk-aversion, the investor

immediately reaches at the beginning of each month the Markowitz portfolio described in equation

(8), and does not move until the end of the month, since no new information comes in (we update

our signals on a monthly basis).

In Figure 1, we show for each strategy and in each size pool, the performance of the Markowitz

portfolio (also referred to as the “pure” performance). As discussed in introduction, our 4 strategies

tend to perform better on smaller capitalizations. But even on the “mid” pool, the realized Sharpe
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ratios of book-to-market and low vol are below 0.5 - a level that we will later consider as critical.

We also report the annualized Sharpe ratios of these strategies in Table 1, assuming no trading

friction at this stage. We directly report the Sharpe of the Markowitz portfolio. Looking at the

Table, we observe three salient features. First, the raw Sharpe of book-to-market and low vol are

extremely low, even slightly negative for large caps. The raw performances of repurchasers and

cash-flows are higher. Secondly, for all strategies, the performance is higher in mid caps than in

large caps. Thirdly, the hedging procedure improves risk-adjusted performance a lot, from .20 to

.55 in the case of low vol. This is all the more striking because our method puts a lot of structure

on the variance-covariance matrix of returns –in particular, it assumes only one factor, as well as

homoskedastic returns. This confirms the intuition of Barroso and Santa-Clara (Forthcoming) that

even a simple hedging procedure can significantly improve the risk-adjusted performance of some

strategies.4

4.3 Calibrating the Sharpe-to-volatility frontier

At this stage, a very natural first step consists of “taking the model seriously”, by using the closed

form of the Sharpe-to-volatility frontier equation in Proposition (3). Provided that the DGP of

the model is correct, using this formula directly would give us a good idea of the capacity of each

strategy. This is obviously a strong assumption, and our next step will be to confront the trading

model with the real returns data using the procedure described in Section 4.1.

In order to use this formula, we need to use the following three parameters for each strategy:

Markowitz Sharpe SR

⇤, persistence � and liquidity �. We then assume that the investor aims for a

net-of-cost Sharpe ratio of .3. Proposition 3 tells us that the $ volatility is given by:

Vol =
.3

��

2

⇣⇣

SR

⇤

.3

⌘

2/3

� 1
⌘

2

(9)

We compute the $ volatility for each strategy, each pool of stocks, and for two separate decades:

1991-2000 and 2001-2010.5 We do this because, as we saw in Section 3.2, liquidity increased markedly

in the 2000s, in particular for midcaps. Of course, when the hedged Markowitz Sharpe is below .3,

4Barroso and Santa-Clara (Forthcoming) focus on momentum, and use a di↵erent hedging procedure from ours.
They hedge for changes in volatility by essentially scaling the momentum factor by the inverse of rolling momentum
volatility. While the philosophy is di↵erent from our paper –in the GP model a key assumption is that ⌃

u

is very
slow moving– the main point remain that simple hedging procedures have a big impact on risk-adjusted performance.

5We exclude the last 3 years (2011-2013) of our sample in this Section for the sake of symmetry. We will add them
back in the next Section.
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we set the capacity to 0, since it is not feasible to reach the minimum Sharpe of .3.

We report the results of this simple calibration in Table 2. Several salient facts emerge. First,

the increase in liquidity appears to have a strongly positive impact on the predicted capacity of

strategies in the mid-cap range. For both pools, the � has been divided by 10, which, in formula

(9) automatically leads to a tenfold increase in capacity. For instance, the capacity of “cash-flows”

in the mid cap range has been multiplied by 10 between the 1990s and the 2000s, an e↵ect entirely

attributable to the increase in liquidity. Thus, even though the “pure” performance of cash-flows in

the mid-cap range has, if anything, decreased, the e↵ective size of the anomaly has been multiplied

by a factor of 10, simply because mid-sized stocks have become more liquid. Given that � is defined

at the pool level, this e↵ect is of course visible for all strategies.

The second feature of Table 2 is that the “pure” Sharpe ratio is a critical determinant of capac-

ity. Many strategies have zero capacity in the large cap pool because their Sharpe ratio, even in the

absence of adjustment costs, does not even reach 0.3. For instance, compare “low vol” and “repur-

chasers” in the large cap range. In the 2000s, both strategies have an annualized � of about 0.3 and

face the same liquidity parameter, but repurchasers have more than six times as much capacity as

low vol because its “pure” Sharpe is .45 compared to 0.34. Capacity is therefore quite sensitive to

the “pure” performance.

Finally, � does not play much of a role in the restricted set of very slow strategies that we explore.

But this does not mean that persistence plays no role in general. As we discussed earlier, it is the

case that, within the class of strategies that we explore, di↵erences in persistence do not matter

very much, but strategies whose signal moves a bit faster can have their capacity much reduced.

To fix ideas about the e↵ect of �, let us discuss the standard momentum signal, which we define

here as the cumulative return of the stock between month t� 12 and t� 2. This signal has a daily

� = .008 (obtained through OLS over 1990-2013), which is thus 8 times larger than the fundamental

strategies that we focus on here. Assuming momentum had the same Sharpe ratio as, say quality,

in the mid-cap range (it does not), this would lead to a predicted capacity 64 times smaller for

momentum than for cash flows. So � does play a big role in determining capacity, but as we have

already noticed, not within the restricted set of strategies that we focus on here in this paper.
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4.4 Back-testing the Sharpe-to-volatility frontier

In this Section, we analyze fully back-tested results based on past returns, in order to obtain an

empirical view of the capacity of each strategy. This approach is the most conservative as it adjusts

for the fact that the DGP used in the model may di↵er from the true process underlying returns

and signal data. For instance, our very simplified representation of the covariance structure might

miss various sources of correlation. Therefore, portfolio trading that is optimal in the model might

not be optimal in reality. Moreover, contrary to the model, real covariance evolves over time, which

we take into account by updating the covariance matrix. However, this means that trading costs

might be higher than expected in the model. If we can show that, despite the trading rule being

based on a quite simplified covariance structure, back-testing yields significantly high Sharpes even

at high capacities, we could be quite confident about our message that slow signals have capacity in

the mid-cap range.

We report in Figure 6 our simulation results. The thick line represents the Sharpe ratio (net

of trading costs) that is realized at various levels of volatility. To span these di↵erent levels of

volatility, we vary �. For a very high �, the trader trades arbitrarily small amounts, leading to

vanishing transaction costs, thus in these graphs for a near-zero dollar volatility the Sharpe is equal

to the Markovitz Sharpe.

We note that when signals have a relatively large pure Sharpe ratio, such as “cash-flow” or “low

vol” in the mid pool, the back-tested Sharpe decays as expected in theory. The most striking feature

is the large capacity of the cash-flows strategy in the mic-cap range: At an annual volatility of 15

Bn. dollar, the realized Sharpe of the Cash-flows strategy in the mid remains above 1. So, even

in the mid-cap range, a strategy based on persistent stock characteristics with a high Markowitz

Sharpe such as quality has high capacity, well above 10 Bn dollar of annual volatility. Interestingly,

back-testing the trading rule on actual data gives even more aggressive estimates of capacity for

“cash-flows” in the mid-cap range than the calibration in Table 2.

Figure 6 also provides information on what the Sharpe-to-volatility frontier could be, under

the null hypothesis that signals had no predictive power on returns. We obtain these intervals by

running Monte-Carlo simulations where we assume that the DGP such that (1) the signal has the

same persistence as in the data (and thus di↵ers across strategies and pools), while (2) the signal

has no predictive power, i.e. r

i,t+1

= R + u

i,t+1

where u

i,t+1

is i.i.d and independent of s
it

. In
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each of these simulations, all data, including stock-returns are drawn from the calibrated generating

process. For a given draw of the data, we vary � such as to span all levels of volatility and obtain

the Sharpe-to-volatility frontier for this draw.

We then repeat this procedure 100 times with 100 new simulated data. The confidence interval

for a given volatility corresponds to twice the standard deviation each side around the mean of the

distribution of Sharpe ratios. This mean is a priori non-zero because some signals have correlation

with beta, which leads to portfolios that have a non-zero beta and thus some exposure to the market

risk-premium. The set of possible Sharpe-to-volatility frontiers also vary across signals because they

have di↵erent persistence parameters �. Interestingly, we see that a realized Sharpe of say .4 is

typically not outside these simulated 95% confidence intervals, meaning that realizing a track-record

with such Sharpe ratios does not automatically mean that the underlying signal has real predictive

power. In the large cap range, “cash-flows” is the only strategy for which we can reject the hypothesis

that the Sharpe-to-volatility frontier comes from a non-predictive signal. In the mid-cap pool, the

same is true for both “cash-flows” and “low-vol”. The “repurchasers” strategy does not, however,

manage to emerge from the noise present in the data.

4.5 Anatomy of slow trading: example of Cash-Flows

In this last section of our back-testing analysis, we look in detail at how increasing portfolio volatility

impacts optimal trading. We build on our back-testing data and extract from them some easily

interpretable metrics.

In Figure 7, we use back-testing results from the Cash-Flows strategy in the mid-pool, following

the back-testing technique described in Section 4.1. In all graphs from panels A,B,C, the horizontal

axis is the portfolio volatility targeted by the trader. Panel A shows together the gross (of transaction

costs) Sharpe and the realized Sharpe (i.e. net of transaction costs). The striking fact is that the

Sharpe of the gross PNL (i.e. “gross of transaction costs”) does not decrease much: this means that

the “slowing down” in trading and the deformation it induces vis-a-vis the target portfolio has only

a small impact on the Sharpe. Most of the Sharpe deterioration actually comes from trading costs.

Panel B shows average monthly dollar turnover divided by the gross market value of portfolio (i.e.

the dollar value of the long positions plus the dollar value of the short positions). We see that for

small portfolios, about 12% of all positions are traded monthly: this is the rebalancing dictated by

the frictionless Markowitz portfolio. Due to transaction costs, the trader slows down trading and
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we see that turnover is about only half of its original level when annual volatility is above $ 10bn.

Panel C shows average transaction costs per $ of PNL. We see that this rate goes up in a concave

manner with the portfolio’s scale, reaching about one third at $10bn, when the realized Sharpe is

halved, in line with predictions of theory.

In Panel D, we show how e↵ective holdings respond to a one-o↵ unit shock to “aimed” holdings.

The methodology takes inspiration from impulse responses obtained in VAR analyses. We first run

our back testing procedure fr two separate portfolios: a ”small portfolio” corresponding to a target

volatility of $ 10m, and a ”large portfolio” corresponding to a target volatility of $ 15bn. For each

of these portfolios, we obtain a time series of vectors of stock holdings x
i

(t), as well as a time-series

of aimed portfolios aim

i,t

. We then run the following OLS regression in the back-testing portfolio

panel corresponding to each targeted volatility:

x

i,t

=
25

X

k=0

c

k

aim

i,t�k

+ ✏

i,t

.

and retrieve the coe�cients c
k

. Then, we define the cumulative response at t+ k in the holdings of

a generic portfolio stock i to a unit shock to aim

i,t

as C
t+k

=
s

P

k

0
=0

c

k

0 . We report these cumulative

responses C
t+k

, as a function of k in panel D. k is in month since our data here are monthly.

We observe that for small portfolios, a quarter after the shock, the holdings have reached roughly

80% of the aimed level whereas in the large portfolio, after one year only 40% of the aim has been

reached. This means that after a signal is ”on” for a stock, for large portfolios, the trader keeps

buying at a constant rate more than two years later –notice that, as long as signals do not change,

the aimed portfolio remains fixed. This ”ramp-up” period is much shorter for the small portfolio.

This is the optimal behavior only because the signal is highly persistent. These patterns come from

back-tested data: They reflect the real dynamics of a portfolio trading the ”Cash-Flows” signal

according to the trading rule derived from the model, taking into account the e↵ective realizations

of signals and returns.

Panel E shows the times series of the gross exposure in $ bn (i.e. long market value plus short

market value) of the large portfolio (the small portfolio has very similar features, on a much smaller

scale). This illustrates how Markowitz optimization (here with � = .5E � 10) picks a portfolio scale

that varies negatively with the volatility predicted by the variance-covariance matrix: in periods

of turmoil, such as the financial crisis, the portfolio is endogenously descaled. This is because
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our variance-covariance matrix is updated monthly in back-testing; In this application, we assume

persistence �, liquidity � and forecasting power B to be constant since we estimate them on the

entire sample. If assets under management were constant, this would correspond to an endogenous

choice of volatility / leverage. The order of magnitude of the gross market value at the end of the

time series, $ 500bn could for instance be generated by a fund with $ 100bn of AUM, with a long

and a short of equal size ($ 250bn) and a ⇥2.5 leverage.

Last, Panel F shows cumulative e↵ective returns on gross exposure (i.e. PNL divided by gross

exposure) for the large and small portfolios. It shows in a metric that is quite familiar, that the

impact of trading costs is large. Returns on gross exposure are scale-free, thus the di↵erence between

the two curves can be attributed fully to transaction costs incurred when trading at large scale.

The cumulative returns of the small portfolio are very close to those that would be found if we

were ignoring transaction costs altogether and simply analyzing the ”pure” Markowitz portfolio.

Interestingly, we see that the large portfolio loses money in the very first years of the time-series:

this corresponds to a period of fast scaling-up of the strategy toward the aimed portfolio, where

transaction costs are higher than in steady state (we initialize holdings at zero). This last observation

suggests a crucial role for the discount rate used in the model in the transition period. While the

investor reaches his desired size, he can choose to trade slowly to preserve performance on the

transition path, or to reach the transition path more quickly. Investors with a higher discount rates

are more impatient: They value future PNLs less, and trade more slowly. In our application, we have

set � = 2% on an annualized basis, which is low and may explain why the trader in our backtesting

is so “eager” to reach the aim that he incurs losses on the transition path.

5 Robustness

To explore the practical relevance of our framework, we explore how robust it is to various types of

noise sources. First, we explore the e↵ect of “parameter noise”: We assume that the model holds

but that the trader only has noisy measures of the underlying parameters (�, �) and we ask how

this impacts the performance of his trading. Second, we consider the impact of “model noise”: We

assume that the true data generating process is di↵erent from that assumed in the model, and ask

how a trader using the model to trade would perform. Third, we examine how needed the dynamic

optimization approach chosen in the paper is, by comparing its outcomes to those of a myopic trader
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that would just use static optimization.

5.1 Sensitivity to Noise in Parameter Estimates

In this subsection, we check whether a mistake in estimating parameters strongly a↵ects the perfor-

mance of the strategy. We focus on two parameters: signal persistence � and liquidity �. We run

the following thought experiment: The trader believes that the true value of these parameters di↵ers

from their actual values. The result of these beliefs is that the trader does not trade optimally. For

instance, if the trader overestimates the persistence of the signal, he will “aim too high”, i.e. he will

trade too aggressively on the signal.

We can easily derive expressions for the Sharpe-to-volatility frontier, assuming that the trader

makes such mistakes. To make things simple and comparable to our previous results, we make the

“large investment approximation”. We summarize our results in the following Proposition:

Proposition 4. Assume the “large investment” and the “slow signal” approximations hold. Let

⌧ = (�/�)1/2. Then:

• If the trader wrongly believes that the price impact coe�cient is equal to �, but the true liquidity

is �

⇤
, then the Sharpe-to-volatility frontier is given by:

SR =
⇣

1� �

⇤

�

�

�+ ⌧

⌘⇣

�

�+ ⌧

⌘

1/2

SR

⇤

Vol =
1

�⌧

⇣

�

�+ ⌧

⌘

1/2

SR

⇤

• If the trader wrongly believes that the persistence coe�cient is equal to �, but the true persis-

tence is �

⇤
, then the Sharpe-to-volatility frontier is given by:

SR =
⇣

1� �

�

⇤ + ⌧

⌘⇣

⌧

�

⇤ + ⌧

⌘

1/2

SR

⇤

Vol =
1

�⌧

⇣ 1

�

⇤ + ⌧

⌘⇣

⌧

�

⇤ + ⌧

⌘

1/2

SR

⇤

Proof. See Appendix D

We use the two sets of formulae above to investigate quantitatively the e↵ect of an error on the

models parameters. This approach assumes that the DGP used by the Garleanu-Pedersen model is
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correct, and that the trader only makes a mistake about the parameter values of either � or �.

We show the results of our investigations in Figures 8 and 9. Figure 8 explores the e↵ect of a

mistake about liquidity. In this first Figure, we assume that � = .001 and the actual � = 2.10�5 (the

price impact of midcaps). We then plot 4 di↵erent curves where the trader wrongly believes that �

is 10�6, 10�5, 2.10�5 and 5.10�5. The main lesson of this Figure is that small mistakes about � do

not a↵ect the capacity of the strategy very much: Taking 10�5 or 5.10�5 instead of 2.10�5 does not

change the capacity very much, compared to taking the “true” value of �. If however, the trader

believes that the price impact is 10�6 (instead of 2.10�5), i.e. if the trader thinks mid-caps are as

liquid as large caps, then capacity is a lot smaller. Overall, believing that midcaps are as liquid as

large caps will have a huge impact on performance, but smaller (and more reasonable) mistakes will

be more forgiving.

Figure 9 explores the e↵ect of a mistake about the persistence parameter. We also assume that

� = .001 and � = 2.10�5, but now we assume that, in each of the 4 curves, the trader makes a

counterfactual assumption on �: .001, .0011, .0015, .002 and .005. Here, the mistake has very little

impact on the actual capacity of the strategy, as long as we remain in the range of slow-moving

strategies. Overall, our analysis suggests that the Sharpe-to-volatility frontier is not too sensitive to

reasonable “mistakes” in the persistence or liquidity coe�cient. As mentioned earlier, this relative

insensitivity to estimation error comes from the fact that we focus on a relatively narrow range of

slow-moving strategies. A similar mistake on faster strategies would obviously have a more dramatic

impact.

5.2 Model robustness to alternative signal process

In this section we explore the model’s robustness (beyond the issue on sensitivity to � and � that

has already been studied in Section 5.1). We want to evaluate the extent to which our assumption

that the signal follows an AR(1) is important or not.

We thus run the following thought experiment: Imagine that the signal were to follow another

process and let the trader evaluate an AR(1) in the data and trade according to the model. We then

ask whether the realized Sharpe massively di↵ers from that predicted by the GP trading model. We

answer this question by performing Monte-Carlo simulations. We simulate data where the signal

allows to forecast returns as in equation (3), but the signal comes from a non-AR(1) generating

process. We then assume that the trader fits an AR(1) model on the signal data, and trades
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according to the GP model. We compute realized Sharpe and $ volatility for this process, and

compare them with the Sharpe and $ volatility that would emerge if the model was correct (i.e. if

the signal really was an AR(1)). These values are directly taken from the closed-form equation (9).

More precisely, we consider two families of alternative signal-generating processes. First, we

assume that:

s

t+1

=
N

X

i=1

(1� �)

N

s

t�i

+ ✏

t+1

.

Our model assumes N = 1. We simulate such process for N = 2, 4, 6. We do so on a panel of

1000 stocks with same liquidity and time length as our mid-cap pool. We generate return data using

the signal above and assuming that the predictive power of the signal is that of the cash-flows signal

in real data and idiosyncratic volatility matches real data. For each dataset of signals and returns

that is generated, we compute the parameter �̂ that results from estimating in those synthetic data

an AR(1) : s

t+1

= (1 � �)s
t�i

+ ✏

t+1

. Then, we trade according to the model’s optimal rule and

compute performance net of transaction costs for various target volatilities. We perform this for a

large number of synthetic (signal-return) draws. Finally, we report in Table 3 the average Sharpe

ratio decay (i.e. SR/SR

⇤) that is reached at various volatility scales, and compare them to the

prediction of the model given the persistence parameter �̂ estimated from the data.

We find that the realized Sharpe ratios are quite similar to prediction, even for high $ volatility.

In fact, the realized Sharpe is even higher than anticipated. The reason is that at low frequency, the

signal is actually more persistent than what the estimation of a monthly AR(1) suggests, therefore

trading costs are smaller than expected. This result does not depend on all coe�cients in the AR(n)

being equal.

We consider a second family of alternative processes, closer to a moving average than an auto-

regressive process. We start from a random walk variable x
t+1

= x

t

+⌘

t+1

. Then, we construct s
t

as

the normalized rank at time t of x(t)/x(t�N). “repurchasers” or “momentum” which is defined as

cumulative returns over a rolling window) are signals generated by such process –and are thus likely

to di↵er significantly from the AR(1) we use in our model. To generate the data, we use parameters

from the ”repurchasers” strategy, because this signal is constructed precisely in this manner using

outstanding shares as x
t

: We thus use for �
⌘

the estimate that we get from the volatility in stock-
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level change of shares outstanding from the mid-cap pool data. We also assume the same return

predictability (B coe�cient) as that of the ”repurchasers” signal. Then, as previously, we generate

a large number of synthetic datasets based on independent (signal,return) draws. We show results

in Table 3 for N = 24 and N = 12. Here, we observe that the realized performance is very poor

compared to realizations. For this kind of process, the AR(1) representation is very misleading for

the trader, which may explain why, in spite of a reasonable pure performance, the “repurchasers”

signal does not do so well in our backtesting exercise. This suggest that the GP model that we using

is going to be ill-suited to trade a momentum signal.

All in all, this robustness exercise suggests that our modeling approach remains valid for signals

that are AR(n) with positive coe�cients.For such signals, the AR(1) estimation does not lead to

trading realizations that are far from expectations. Sorting on a persistent fundamental characteristic

of a firm is therefore well represented by our model. By contrast, our approach seems less robust

for signals that are constructed by sorting on the growth rate of a persistent variable, such as

”repurchasers”.

5.3 Myopic Trading

This final section shows that the dynamic setting of this paper cannot be adequately approximated

by a myopic optimization. The dynamic apparatus of GP is critical for the slow-moving signals that

we focus on here; As we will see, a static approximation is very suboptimal.

To show this, we consider a “myopic” alternative to the model, where the investor does not take

into account the future trading costs that his current trading decision would entail. This is, in some

sense, the framework used in most existing studies of capacity (Frazzini et al. (2012), Korajczyk and

Sadka (2004)): Traders optimize the expected risk-adjusted performance, taking into account the

instantaneous impact of their trades. They do not, however, taking into account the e↵ect of current

trading on future profits (if the signal persists) or future trading costs (if the signal mean-reverts).

To remain consistent with the paper’s framework, we model the optimization problem as:

max
x

t

E

t

h

� �

2
(�x

0
t

)⌃
u

(�x

t

) +
1

1 + �

⇣

x

0
t

r

t+1

� �

2
x

0
t

⌃
u

x

t

⌘i

(10)

for each period t and taking x

t�1

as given. This linear-quadratic static optimization is easy to solve.

The FOC yields:
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x

t

= (1� ⇡)x
t�1

+ ⇡x

M

t

(11)

where x

M

t

= (�⌃
u

)�1

s

t

is the Markowitz portfolio and ⇡ = �

�+�(1+�)

is the trading speed of the

myopic agent.

To fix ideas, we make a large investment approximation similar (less restrictive) to the one we

explored in Section 2.2: (�/�) ⌧ 1 and (�/�) � �. Under this approximation, the trading speed

becomes ⇡ ⇡ �

�

⌧ 1. Conditionally on this approximation, it is easy to see that the di↵erence

between the myopic and the dynamic model is twofold. On the one hand, the myopic investor trades

too slowly. The dynamically optimal trading rate is ⌧ = (�/�)1/2 while the myopic one is ⇡ = �/�.

Second, the myopic investor aims “too high”, since he goes towards the Markowitz portfolio, which

is more levered than the “aimed” portfolio. The di↵erence between the two targets is larger when

mean-reversion � is bigger, and when risk-aversion � is bigger: In both cases, the myopic trader

makes bigger mistakes because he does not take into account the future cost of exiting the position.

In order to see more clearly the e↵ect on capacity and implement some simple quantification, we

explictly formulate the Sharpe-to-volatility frontier of the myopic trader in the following Proposition:

Proposition 5. Under the “large investment” approximation, the Sharpe-to-volatility frontier real-

ized by a myopic trader writes as:

Vol =
SR

��

h⇣

SR

⇤

SR

⌘

2

� 1
i

Proof. See Appendix E.

Let us consider trader aiming for a Sharpe of SR and trading a signal of mean-reversion �. Let

Vol
Dyn

be the $ volatility reached if he trades dynamically, and Vol
Myo

the $ volatility if he trades

myopically. In the large investment approximation, the ratio of the two volatilities is thus given by:

Vol
Dyn

Vol
Myo

=
1

�

.

[(SR⇤
/SR)2/3 � 1]2

(SR⇤
/SR)2 � 1

The myopic capacity frontier is much smaller than the dynamically traded frontier. This comes

from the fact that, for our strategies � ⇡ .001 (see data Section). When SR

⇤

SR

⇡ 1.1 (the trader

aims for a small reduction in performance), then Vol

Dyn

Vol

Myo

⇡ 20. When the trader is more ambitious,

34



say, SR

⇤

SR

⇡ 2, then Vol

Dyn

Vol

Myo

⇡ 100. So in the range of parameters that we explore, not optimizing

dynamically reduces capacity by a factor of 20 to 100. Of course, for shorter-lived signals the

di↵erence is much smaller.

6 Conclusion

Anomalies are ”abnormal” only if substantial dollar amounts can be profitably put at work to ar-

bitrage them. This paper explores the deterioration of the Sharpe ratio of a trading signal when

the dollar scale of the traded portfolio increases. We show that, using dynamic optimization under

quadratic transaction costs, yields closed form formula for the Sharpe-to-scale frontier. When sig-

nals are persistent enough, arbitrageurs can put large amounts of money at work by trading more

slowly. Back-testing optimal trading rules shows that even in the mid-cap range, strategies based on

persistent stock characteristics such as quality have high capacity, well above 10 Bn dollar of annual

volatility.
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Table 1: Large vs Mid Caps

Large Mid

Panel A: Sample Statistics
Total Capitalization (bn) 8389 1258

Total Volume (bn) 14771 3411

Average Turnover (%) 24 29

� (⇥10

�6
) 4 24

Panel B: Strategy-level Statistics
Book-to-market

Raw (unhedged) Sharpe -.05 .06

Markowitz Sharpe -.04 .19

� (persistence ⇥10

�3
) .6 .8

Low vol

Raw (unhedged) Sharpe -.05 .06

Markowitz Sharpe .5 .71

� (persistence ⇥10

�3
) 1.3 1.3

Repurchasers

Raw (unhedged) Sharpe .19 .37

Markowitz Sharpe .41 .45

� (persistence ⇥10

�3
) 1.8 1.8

Cash-Flows

Raw (unhedged) Sharpe .5 .88

Markowitz Sharpe .56 1.1

� (persistence ⇥10

�3
) .9 1.3

Note: This table reports summary statistics on the pools of “Large” and “Mid” caps. Every month, stocks are

sorted by stock market capitalization. The largest 500 ones belong to the “Large” pool. Stocks ranking between 501

and 1500 belong to the “mid” pool. Panel A reports summary statistics for each pool: Aggregate volume in $bn;

aggregate market capitalization; average monthly turnover (annualized) and the illiquidity parameter �. Panel B

reports statistics for each of the 4 strategies we cover in this paper. � has no unit. Volume, turnover, persistence and

Sharpe ratios are annualized.
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Table 3: Expected vs. Simulated Performance-Capacity Frontier for non-AR(1) Signals

SR/SR

⇤

Real signal $Volatility Expected Realized

AR(6) vol=5 0.75 0.76

vol=10 0.68 0.75

vol=20 0.54 0.7

AR(4) vol=5 0.78 0.81

vol=10 0.69 0.72

vol=20 0.58 0.65

AR(2) vol=5 0.81 0.77

vol=10 0.74 0.75

vol=20 0.63 0.64

x(t)/x(t� 24) vol=5 0.68 0.1

vol=10 0.69 -0.11

vol=20 0.35 -0.15

x(t)/x(t� 12) vol=5 0.64 0.29

vol=10 0.69 -0.32

vol=20 0.35 -0.34

Note: This Table reports the Sharpe decay, SR

SR

⇤ as a function of dollar volatility (in annualized Bn dollar) for

several synthetic signals that do not follow an AR(1) process. We perform monte-carlo simulation, where an AR(1)

estimation is performed on the signal, and trading occurs according to those estimates. For each alternative process,

we draw a large number of synthetic (signal,returns) datasets, on which we perform simulations. The number of stocks,

liquidity, time length and volatility parameters are based on our mid-cap pool. For each draw of (signal,return), we

estimate an AR(1) and simulate the performance of the trading rule recommended by the model. We vary � to

span a large spectrum of volatilities. The first three alternative signals correspond to an AR(n) process of the form:

s

t+1 =
N

P

i=1

(1��)
N

s

t�i

+ ✏

t+1. The � parameter and signal noise are taken from the Cash-Flows signal. The last

two signal processes are constructed as follows: we generate a variable x

t+1 = x

t

+ ⌘

t+1. Then, we construct s

t

as

the normalized rank at time t of x(t)/x(t � N). We show results for N = 24, N = 12. Data are generated using

parameters (notably return predictability and �

⌘

) from the ”Repurchasers” strategy.
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Figure 1: Performance of Four Strategies: Large vs Midcaps
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Panel D: Cash-Flows Big Cash-Flows Mid

-2
0

0
20

40
60

80

1990 1995 2000 2005 2010 2015
 

Sharpe = .5600000000000001

0
20

40
60

80
10

0

1990 1995 2000 2005 2010 2015
 

Sharpe = 1.14

Note: These four panels correspond to four classical signals: Book-to-market, 1/rolling volatility, decrease in shares

outstanding and cash-flows. Portfolio weights are computed as the rank of each stock, normalized so as to lie between

-.5 and .5. We then hedge the portfolio using the simplified Markowitz procedure described in Section 4.1: This

procedure assumes a simplified correlation structure of returns, and no transaction costs.
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Figure 2: Cost of shorting: Hard to borrow rates by size pools

Note: Hard-to-borrow rates minus the General Collateral rate (or ”easy-to-borrow rate”) across size pools, using prop

data. Rates are annualized, in %. The ”General Collateral rate” corresponds to stocks which are not ”‘hard-to-

borrow”’ at a given point in time. We use the top 1500 US stocks sorted by size at each point in time. Pool 1 denotes

the top 500 stocks, pool 2 is (500,1000) and pool 3 is (1000,1500).
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Figure 3: Illiquidity lambdas by size pool (X 10-6)
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Note: Using CRSP daily data, we compute for each year a stock-level � using the formula �

i

= 1
8⇥volume

i

⇥�

2
i

. We

divide stocks into two time-varying pools: the ”large” pool is composed of the top 500 stocks by market capitalization

and the ”mid” pool is that of stocks ranked between 500 and 1500. For each pool of stocks, we then define for each

year the pool’s � as the median of the liquidity parameters (�
i

) of stocks belonging to the pool. Scaling of lambdas

is reported in (X 10-6).
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Figure 4: Pool Liquidity and Capacity
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Note: This chart illustrates the impact of liquidity on strategy capacity. We consider a fictitious strategy whose
frictionless Sharpe ratio is equal to 1, and whose persistence � = 2.10�3 (25% in annualized terms), which roughly
corresponds to the average persistence of our fundamental signals (see Table 1). Then, for each value of the Sharpe
between 0 and 1, we compute the $ volatility reached using the formula drived in the main text:

V ol =
SR

��

2

⇥�

SR

⇤

SR

�2/3
� 1

⇤2

We use 4 di↵erent values of �, which correspond to the median � in the mid pool in 1991-1995 (1.3e-4), 1996-2000

(1.5e-5), 2001-2005 (7.6e-6) and 2006-2013 (1.8e-6). We then draw the 4 frontiers with $ volatility on the x axis. Hence

the blue line corresponds to the Sharpe-to-volatility frontier in the early 1990s, while the yellow line corresponds to

the frontier in the later 2000s.
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Figure 5: Signal Persistence and Capacity
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Note: This chart illustrates the impact of signal persistence on strategy capacity. We consider a fictitious strategy
whose frictionless Sharpe ratio is equal to 1, and a pool whose price impact � = 1.8e � 6, which corresponds to the
liquidity that prevails in the mid pool in 2012 (see Table 1). Then, for each value of the Sharpe between 0 and 1, we
compute the $ volatility reached using the formula drived in the main text:

V ol =
SR

��

2

⇥�

SR

⇤

SR

�2/3
� 1

⇤2

We use 4 di↵erent values of �, which correspond to the � in the 2000s for book-to-market (.2), cash-flows (.27), low

vol (.31) and net shares outstanding growth (.36). We then draw the 4 frontiers with $ volatility on the x axis. Hence

the blue line would correspond to the Sharpe-to-volatility frontier of book-to-market in the “mid” pool if it had a

Sharpe of 1, while the yellow line would be the frontier of “net repurchasers” if it had a Sharpe of 1.
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Figure 6: Performance-Capacity Frontiers: Backtesting Results
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Note: The thick line represents the Sharpe-to-volatility frontier obtained by optimally trading on each of the 4 signals.

The procedure is detailed in Section 4.1. The dashed lines represent the top and bottom 5% Sharpe-to-volatility

frontiers obtained in simulated data where the signal does not predict returns.

46



Figure 7: Slowing-down Trading: Example of Cash-Flows in the Mid Pool

Panel A: Gross and Net Sharpe Deterioration Panel B: Dollar turnover of gross portfolio (monthly)
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Note: We use back-testing results from the Cash-Flows strategy in the mid-pool. In panels A,B,C, the horizontal axis

is the portfolio volatility targeted by the trader. Panel A shows together the Sharpe gross and net (of transaction

costs). Panel B shows average monthly dollar turnover divided by the gross market value of portfolio (i.e. the dollar

value of the long positions plus the dollar value of the short positions). Panel C shows average transaction costs per

dollar of pnl. In Panel D, we show the cumulative response of x

i

(t) to aim

i

(0) = 1, estimated in the back-tested

portfolio panel using regression of x
i,t

on 25 lags of aim
i,t

. ”Small portfolio” corresponds to a target volatility of $

10 mil., and ”large portfolio” corresponds to a target volatility of $15 Bil. The horizontal axis is months since the

shock. Panel E shows the times series of the gross exposure (i.e. long market value plus short market value) of the

large portfolio. Panel F shows cumulative returns on gross exposure (i.e. pnl divided by gross exposure) for the large

and small portfolios. The back-testing technique used to produce these results is detailed in Section 4.1. The time

period is 1990-2013.
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Figure 8: The E↵ect of a Mistake on Liquidity
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Note: In this Figure, we assume that � = .001 and the actual � = 2.10�5. To construct each one of the curves, we
then assume that the trader believes that � is 10�6, 10�5, 2.10�5 (the correct assumption) and 5.10�5. For each
of these expected values of �, we use the results in Proposition 4 to compute the hypothetical capacity frontier of a
trader expecting liquidity � while its actual value is 2.10�5. Thus, the green curve corresponds to a trader using the
correct parameters to calibrate his trading.
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Figure 9: The E↵ect of a Mistake in Signal Persistence
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Note: This chart illustrates the Sharpe-to-volatility frontiers of traders who hold “wrong beliefs” in the actual persis-

tence of the signal. In all simulations, the price impact is given by � = 1.5e� 5 and the actual � = .001. To construct

each one of the curves, we then assume that the trader believes that � is 10�3 (the correct assumption), 1.110�3,

1.5.10�3, 2.10�3 and 5.10�3. For each of these actual values of �, we use the results in Proposition 4 to compute the

hypothetical capacity frontier of a traders believing liquidity is � while the true parameter is 10�3. Thus, the blue

curve corresponds to a trader using the correct parameters to calibrate his trading.
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APPENDIX

A Proof of Proposition 1

We note E is the unconditional expectation operator, which can be applied to any stationary process. We will use
repeatedly two simple time-series properties: First if E

t

(y
t+1) = 0 then for any stationary variable x

t

, E(x
t

(y
t+1)) =

0; second, E(x
t

) = E(x
t�1).

Step 1: Expected PNL.

We first compute the expected return of the optimal portfolio, without transaction costs:

ER

t

= E

⇥

x

0

t

r

t+1
⇤

= E

⇥

x

0

t

s

t

⇤

= E

n

⇥

(1�

a

�

)x
t�1 +

a

�

x

?

t

⇤

0

⇥

(1� �)s
t�1 + ✏

t

⇤

o

= (1�

a

�

)(1� �)ER
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a

�

E(x?0

t

s
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= (1�

a

�

)(1� �)ER
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�

✓E(s0
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⌃�1
u
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t

)
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a/�

1� (1� �)(1� a/�)
✓E(s0

t

⌃�1
u

s

t

)

where

✓ =
1

� + a�

Step 2: Volatility of PNL.

Next, we compute the unconditional variance of R
t

. Using the assumption Es

0

t

s

t

<< ⌃
u

, we get:

(V ol(R
t

))2 = E

⇥

x

0
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t+1r
0

t+1xt

⇤
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⇥
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0
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⌃
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Now, we use x
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= 1
�+a�
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Step 3: Expected transaction costs.
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This can be conveniently expressed by unit of volatility:
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Step 4: PNL Sharpe Ratio.
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The formula for the Sharpe Ratio follows directly.
The last step consists of computing the portfolio volatility:
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QED.
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B Proof of Proposition 2

First, we compute the approximation for the trading rate ⌧ = a/�. It is given by:
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Under the large investment approximation, � ⌧ (�/�)1/2 ⌧ 1, so the trading rate simplifies into:
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Also, �
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⌧ 1 thus:
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Thanks to the assumptions that �
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⌧ 1 and �
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2, the term in square root dominates so that:
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Given the above formula for the trading speed ⌧ , the large investment approximation implies that: t ⌧ 1 and
t � �. Only a few percent of the portfolio are traded every day, but this churning rate is much larger than the daily
discount rate.

We then compute the Sharpe ratio. The first term of the Sharpe Ratio formula is given by:
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The second term of the Sharpe ratio is given by
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where we also use the fact that t ⌧ 1.
Combining the two parts, we obtain that:
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which is the expression for the Sharpe ratio in the proposition.
We now compute volatility:
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Using the assumption that ⌧ ⌧ 1 we get that:
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This proves the second equation. QED

C Proof of Proposition 3

First, we take the results from Proposition 2, and let � ⌧ 1, which leads to:
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Combining the two equations, it is easy to see that: V ol = SR/(�⌧2) which leads to the following expression that
combines ⌧ with the SR and the $ volatility:
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The validity conditions in the Proposition immediately follow from � ⌧ ⌧ ⌧ 1.
To obtain the second result, we just need to reverse the expression for the Sharpe ratio obtained previously:
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We then combine the two definitions of ⌧ and obtain the formula in the proposition.
To show the third bullet point in the proposition, we first note F (x) = x((SR⇤

/x)2/3 � 1)2. It is easy to see that
F is convex (it is the square of a convex function) and decreasing. Hence, its inverse is concave and decreasing. Let
us call it G, then:
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< 0. QED
For the last bullet point of the proposition, we go back to expressions of TC in the proof of Proposition 1 and

combine them with the approximation:
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which is valid even when the “slow signal” approximation is not valid.
We combine the above expression with the formula of SR at the beginning of this proof, and obtain the stated

result. QED

D Proof of Proposition 4

Let us first show the first bullet point. The fact that the true transaction cost parameter is �

⇤ only changes the
transaction costs:
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We inject this new formula into the definition of the net Sharpe ratio, and obtain:
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We then make the large investment approximation, so that ⌧ ⇡
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Then, we make the slow signal approximation: � ! 0, so that:
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The algebra for volatility follows similar steps.
The second result is shown using a similar method, except that, if the investor makes a mistake on �, it does not

a↵ect his trading speed but only the aimed portfolio. QED.

E Proof of Proposition 5

Given the dynamics in equation (11), the formulae developed in Appendix A are still valid, except that we need to
replace a/� by ⇡ and ✓ by 1/�. The formula for the Sharpe ratio becomes:
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while the formula for the volatility becomes:
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We combine the two equations and obtain:
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QED.

F A simple implementation of Markowitz hedging

Finding the Markowitz portfolio requires inverting the variance-covariance matrix of stocks. A simple way to do this
is to assume a specific albeit quite general form to this matrix. In this section, we assume that within a given liquidity
pool, we can describe returns as:
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. Therefore, the variance-covariance matrix is (omitting the time subscript for
simplicity):

⌃ = �

2
M

��

0 + �

2
✏

Id

Proposition 6.

⌃�1 =
1

�

2
✏

{Id�

�

2
M

�

2
✏

1

1 +
�

2
M

�

2
✏

(
P

i

�

2
i

)
��

0

}

and the Markowitz portfolio is

1

��

2
✏

{s

t

�

�

2
M

�

2
✏

P

i

�

i

s

i

1 +
�

2
M

�

2
✏

(
P

i

�

2
i

)
�}

54



Proof. Note that (��0)k = (
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It is then easy to compute the Sharpe ratio of the hedged portfolio:
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which is the formula we show in the text. QED
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