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Abstract

This paper proposes a new strategy for the identification of all the marginal effects of an endoge-

nous multi-valued variable (which can be continuous, or a vector) in a regression model with one

binary instrumental variable (IV). Identification is achieved by exploiting heterogeneity of the “first

stage” in covariates that are separable from the endogenous variables of interest. The covariates

themselves may be endogenous, and their endogeneity does not need to be modeled. With some

modifications, the identification strategy is extended to the Regression Discontinuity Design (RDD).

Ours is the first paper to obtain identification of nonparametric marginal effects in an RDD setting.

This paper also provides parametric, semiparametric and nonparametric Two-Stage Least Squares

(TSLS) estimators which are simple to implement, discusses their asymptotic properties, and shows

that the estimators have satisfactory performance in moderate samples sizes. Finally, we apply our

methods to the problem of estimating the effect of air quality on house prices, based on Chay and

Greenstone (2005).
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1 Introduction

Instrumental variables (IV) methods are well established as one of the most useful approaches to

identify causal effects in econometric models. Consider the regression model

Y = g(X) + h(Z) + ε, (1)

where Y is the dependent variable, g and h are unknown functions of X and Z respectively, and ε is

an unobservable error term. X and Z are endogenous, so that E[ε|X,Z] 6= 0 with positive probability.

In addition to (Y,X,Z) we also observe an IV T which satisfies E[ε|T,Z] = E[ε|Z].1 We are interested

in identifying the marginal effects of X on Y, given by g, while h is considered a nuisance parameter.

Depending on the nature of X and functional form assumptions on g and h, a traditional IV

approach requires, among other things, that the IV T be sufficiently complex (see Newey and Powell

(2003)). For instance, if X is continuous and we wish to identify g nonparametrically, then T must be

continuous. If X is discrete with q points of support and we wish to identify all of its marginal effects,

then T needs to have at least q points of support. If X is a vector of continuous variables, then T must

have at least as many components as X, even if we impose substantial restrictions on the shape of g,

such as linearity.

In this paper we propose a strategy for the identification of g in equation (1) (up to a constant)

which applies to cases in which the support of X is larger than that of T (and thus it is impossible to

achieve identification with a traditional IV approach.) For simplicity we focus on the case in which T

is a binary variable, say T ∈ {0, 1}, while X takes 3 or more values, and may even be continuous, or

a vector. In particular, our approach opens up the possibility of the identification of all the marginal

effects of a complex variable X in cases where the instrument may be an experiment or a natural

experiment.

Furthermore, we show that with some modifications our methodology can be extended to the

Regression Discontinuity Design (RDD). To the best of our knowledge, we are the first to show how

to identify all the marginal effects of a complex variable (e.g. continuous, discrete with more than

two points of support, or a vector) using the RDD (see van der Klaauw (2008), Imbens and Lemieux

(2008), Lee and Lemieux (2010), and Dinardo and Lee (2011) for surveys of the RDD literature, and

Hahn, Todd and van der Klaauw (1990) for an analysis of identification of the classic RDD).

The identification strategy is based on the observation that if the population is categorized according

to a covariate Z, the discrete variation that T induces on the distribution of X may vary with Z. This

may allow us to recover a rich (e.g continuous) set of marginal effects. The following example illustrates

some of the main ideas.

Example 1.1 (Binary linear case) Suppose that X = (X1, X2) and g is linear, so the model in (1) is

Y = β0 + β1X1 + β2X2 + h(Z) + ε

where E[ε|X1, X2, Z] 6= 0. Even if h is assumed to be zero, standard IV methods are unable to identify

β1 and β2 with a single binary instrument T , because the classical order condition fails.

1Such an IV is referred to as a Conditional IV (CIV) in the literature. See, e.g., Frolich (2007) and Kasy (2009).
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For our approach, we require that T be excluded from the structural equation conditional on Z, i.e.

E[ε|Z, T ] = E[ε|Z], but Z itself may be endogenous. Then

E[Y |T = 1, Z]− E[Y |T = 0, Z] = β1 [E[X1|T = 1, Z]− E[X1|T = 0, Z]]

+ β2 [E[X2|T = 1, Z]− E[X2|T = 0, Z]] .

To identify β1 and β2 we need to invert this equation. The condition that guarantees that we can

invert it is the following: there exists no pair (λ1, λ2) 6= (0, 0) such that

λ1 (E[X1|T = 1, Z]− E[X1|T = 0, Z]) + λ2 (E[X2|T = 1, Z]− E[X2|T = 0, Z]) = 0 a.s.

This condition states that the “first stage” effects of T on X1 and X2 vary (in a linearly independent

manner) with Z. In other words, our identification strategy exploits the heterogeneity in the “first

stages” to separate the marginal effects of X1 and X2.

Note that Z itself may be endogenous, and thus the nuisance function h is not identified. In fact,

our approach does not require at all the specification of h(Z), or even of h(Z) +E[ε|Z]. Note also that

the constant β0 is not identified.

Based on our identification results, we propose parametric, semiparametric and nonparametric

estimators of g (up to a constant). In models that are linear in parameters we show that our identifi-

cation strategy in the binary IV can be straightforwardly implemented with a simple Two-Stage Least

Squares (TSLS) estimator that treats the possibly endogenous covariate Z as if it were exogenous and

uses interaction terms between Z and T as instruments. For the RDD, we consider a semiparamet-

ric varying coefficients specification, which also leads to a simple TSLS implementation and provides

a practically convenient way to incorporate information on covariates’ heterogeneity in applications,

while dealing with the “curse of dimensionality” problem present when the dimension of Z is moderate

or large, which is often the case in applications. Additionally, we propose nonparametric estimators

that relax the functional form assumptions, and discuss the rates of consistency based on results by

Blundell, Chen and Kristensen (2007) both for the IV and the RDD cases. Our identification strategy

in the nonparameric cases can also be implemented as TSLS regressions with off-the-shelf econometric

software.

Our approach has some connections with the local average treatment effect literature (see Imbens

and Angrist (1994) and Angrist, Graddy and Imbens (2000)) and the related RDD literature (see

Hahn, Todd and van der Klaauw (1990)). However, both literatures have traditionally focused on

the causal impact of a binary endogenous variable and discrete or continuous instruments, whereas

here we are interested in complex endogenous variables and one binary instrument. Our results also

complement alternative identification strategies for binary instruments and continuous endogenous

variables in Chesher (2003), D’Haultfoeuille and Fevrier (2014), Torgovitsky (2014), D’Haultfoeuille,

Hoderlein and Sasaki (2013) and Masten and Torgovitsky (2014). None of these papers exploit the

heterogeneity of the “first stage” conditional on possibly endogenous covariates.

The rest of the paper is organized as follows. Section 2 develops an intuitive example which shows

explicitly what are the fundamental requirements of our method, as well as how our identification
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approach works. Section 3 focuses on the binary IV case. It presents the identification results and also

shows that the identification strategy can be implemented with a suitable TSLS estimator. Section 4

focuses on the RDD case. It extends the identification results of the binary IV case to the RDD, and

it also proposes a TSLS estimator for a semiparametric varying coefficient specification. We present

proofs in the Appendix discuss implementation in the fully non-parametric cases both in the binary

IV case as well as in the RDD in the Appendix A.2. Section 5 reports the results of Monte Carlo

experiments. Section 6 contains an empirical application of our method to the problem of estimating

the effect of air quality on house prices, based on Chay and Greenstone (2005). This empirical example

is particularly convenient because we are able to explore both a standard binary IV as well as an RDD

design in the same problem, and using the same data. Finally, we conclude in Section 7, summarizing

of our main findings and pointing out further applications of our results, which include an extension to

non-separable models in unobservables (see also Remark 3.3) and tests of overidentification restrictions

in models where classic IV provides just-identification.

2 An Example

The idea is best explained in an applied example. We will consider the problem of estimating the

marginal effect of the amount a woman smokes during pregnancy (average daily number of cigarettes)

on the baby’s weight at birth (see Almond and Currie (2011) and Lumley et al. (2011) for discussions

of the literature on this problem.) The variable of interest, “number of cigarettes,” is naturally prone

to endogeneity, given that there are many pre-existing selection factors associated both with smoking

and with birth weight. A large literature has addressed this problem using experimental approaches

(see Lumley et al. (2011)). Unfortunately, experiments provide only a binary instrument, and so it is

impossible to uncover the effects of each marginal cigarette using the standard approach.

The following setup is entirely fictitious, but we believe that the association of our notation to a

real problem can be helpful. Although the exposition below is rather informal, the rigorous arguments

behind all claims can be seen in Example 3.1 in Section 3. In the maternal smoking context, the

variable X represents the average number of cigarettes smoked per day during pregnancy, which may

take several values. Suppose that an experiment implements an intervention in the treatment group

that incentivizes women to reduce, and perhaps quit smoking, while the women in the control group

are merely observed. The variable T is thus equal to one if the woman is in the treatment group, and

zero otherwise. If we were able to observe the same woman under treatment and control, we could use

the variation in the smoking dosages across the different women to recover the entire response function

of birth weight to smoking. Precisely, we would learn the effect of the first cigarette from the women

who smoked one cigarette, and then quit after the intervention. We would learn the effect of the second

cigarette both from the women that smoked 2 cigarettes and then reduced to 1 cigarette under the

intervention, or by subtracting the effect of the first cigarette from the effect found from the women

that smoked 2 cigarettes and then quit after the intervention. We could continue with this strategy

until we had the effects of each subsequent cigarette.

Unfortunately, we do not observe the same woman under both treatment and control. The main
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insight of our method is that we can sometimes use a covariate to classify women into different groups,

and thus generate artificially heterogeneous counterfactuals. For example, suppose that Z is the number

of years of education of the mother. Although the experiment may have been performed without taking

education into consideration at all, we can still separate women according to their education level, as

long as this information is included in our data. The following table proposes a fictitious situation in

which we do just this. Column (I) represents the years of education, and at first we are considering

Table 1: Identification Idea

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI)

Z X̄0,Z X̄1,Z ∆Y(Z) P0,Z(0) P0,Z(1) P0,Z(3) P1,Z(0) P1,Z(1) P1,Z(3) row #

6 3 2 10 0 0 1 0 1/2 1/2 (1)

10 3 2 22 0 0 1 1/5 1/5 3/5 (2)

17 3 2 30 0 0 1 1/3 0 2/3 (3)

only 3 possibilities: 6, 10 and 17. Columns (II) and (III) show the average amount smoked by the

women in the control and treatment groups, respectively, for the given number of years of education.

Curiously, on average all groups reduced one cigarette because of the intervention. This is not a

requirement of our method, we just want to show what can be achieved even when the “first stages”

do not vary at all across the different values of Z. Column (IV) shows the average difference (in

grams) in the birth weight between the treatment and the control groups for that level of education

(∆Y (Z) = E[Y |T = 1, Z]− E[Y |T = 0, Z]).

The first fundamental assumption of our method is a validity condition, which requires that

E[ε|T,Z] = E[ε|Z]. It implies that within each education level we can compare treatment and con-

trol groups to obtain the causal effect of the intervention for each of the education groups (∆Y (Z) =

E[g(X)|T = 1, Z] − E[g(X)|T = 0, Z]). In this example, the smoking variable X takes the values 0,

1 or 3 (generalization to a more complex X will become clear later). Of course, in this multi-valued

setting we cannot translate the effect of the intervention directly into information about the actual

causal effects of smoking on birth weight, which is described by the function g, because the treatment

and control groups for a given education level are only comparable as a whole.

We do, however, observe exactly what each woman consumed. Columns (V) to (VII) show the

smoking distribution in the control group. For example, the numbers in row (1) are the fractions of

the women educated 6 years and in the control group that smoked 0, 1 or 3 cigarettes, respectively. In

this example everyone in the control group smokes 3 cigarettes (one can think of an experiment that

specifically recruited women who smoked 3 cigarettes to participate). This is also not a requirement of

the method, but it simplifies the explanations to have one less moving part.

Columns (VIII) to (X) show the corresponding fractions in the treatment group. As we can see,

each row is different. It means that the intervention did not affect all groups in the same way. Even
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though each education group had the same reaction to the intervention on average, a reduction of one

cigarette, the distribution of behaviors is very different. Among the women educated 6 years, half

reduced their smoking by 2 cigarettes, while the other half did not modify their behavior. The women

educated 10 years had more divided reactions, with 3/5 keeping their old habit, while the remaining

were divided, half quitting, and half reducing to one cigarette per day. Among the women educated

17 years, an even higher fraction did not modify their behavior, 2/3, but the ones that did all quit.

The resulting distributions of smoking levels across the different education levels are very diverse. It is

this variation in the distributions that is at the heart of our approach. It does not matter that all the

average effects are the same, it would not even matter if there were no first stage effects at all. Our

ability to identify the marginal effects comes from the fact that the instrument affected the distribution

of X differently across the different Z, as we will show below.

This variation in the distributions also explains the outcome differences seen on column (IV). Even

though the women behaved the same on average, if the effects are nonlinear the resulting effects across

the groups can vary. For example, if the birth weight is affected disproportionately more by the first

cigarette than the rest, we may find that the group in row (3), where a higher proportion of women quit,

may have a much more pronounced effect in the birth weight than the group in row (1), where nobody

quit. It is important to notice that the different numbers in column (IV) could also be explained by

a non-separability of X and Z in the structural equation, for example if smoking could interact with

education in such a way that a reduction of one cigarette was more effective among women educated 10

years than among women educated 6 years. This explanation is, however, ruled out indirectly by the

separability between g and the other terms in the model in (1) together with the validity condition. We

can thus write E[Y |T = 1, Z]− E[Y |T = 0, Z] = E[g(X)|T = 1, Z]− E[g(X)|T = 0, Z]. Therefore any

differences across the rows of column (IV) must be due to nonlinearities of g combined with differences

in the distribution of X across the different levels of education.

We will use the variations in distributions in the following manner: the treatment and control

groups are comparable for each level of education, but only as a whole. Hence, the differences in the

outcomes between treatment and control are the result of the effects of the possible smoking behaviors

combined with the differences in the probabilities of each smoking behavior. For example, row (1) gives

us 10 = E[Y |T = 1, Z = 6]−E[Y |T = 0, Z = 6] = 0·g(0)+0.5·g(1)+0.5·g(3)−[0·g(0)+0·g(1)+1·g(3)] =

0.5 · g(1) − 0.5 · g(3). The resulting equation provides some information about g, but combining this

with the differences for other Z’s, we can get a system of equations:

0.5g(1)− 0.5g(3) = 10 (2)

0.2g(0) + 0.2g(1)− 0.4g(3) = 22 (3)

0.33g(0)− 0.33g(3) = 30 (4)

Notice that in order to combine the information learned across all the different levels of Z into a

common system, it is imperative that Z’s own effect be separable from that of X. The separability of

the model is thus not a simplification, it is vital for the method.

This system has 3 equations and 3 unknowns. However, only two equations are linearly independent

(since 0.4(2) + 0.6(4) = (3)). In fact, if we had used more values of the variable Z, we could have more

6



equations, but it would not change the fact that at most two equations would be independent. This

is caused by the fact that the coefficients of each of these equations always add up to zero, as can be

easily verified in the example above. The reason for this phenomenon is that the coefficients come from

the subtraction of probabilities. Since probabilities always add up to one, the subtraction of two sets

of probabilities always adds up to zero. This is true not only for this example, but for all cases. For

example, if X assumes q values, then the maximum number of linearly independent equations we can

hope to get is q − 1.

Since we have 2 linearly independent equations, we cannot recover the values of g(0), g(1), and g(3),

but we can recover the value of any increment. It is straightforward to see in this example that, from

equation (2), g(3) − g(1) = −20, from equation (4), g(3) − g(0) = −90, and combining both results,

g(1)− g(0) = −70. In a situation where X assumes more values, say q, we can get all the increments

provided we have q − 1 linearly independent equations. Hence, the second fundamental requirement

of this method is a relevance condition which requires that the change in the distribution of behaviors

between treatment and control groups differs for the Z’s. If X takes q values, there must be enough

variation for at least q− 1 values of Z (indirectly it requires that Z must assume at least q− 1 values).

We never discussed why would such variations in the change of distributions occur. This depends on

the example, the particular intervention, and the chosen Z. For example, suppose that the intervention

in our example requires that the women in the treatment group read extensive material. This inter-

vention could affect women of different levels of education in different manners. Less educated women

might be less likely to get through the material, and therefore to quit as a result of the intervention. In

the fictitious example we created the more educated women were indeed the most likely to quit, even

if on average the behaviors were the same across all levels of education. In a real example it is unlikely

that even the average behavior will be the same across all groups, thus possibly generating even more

variation.

3 The Case with a Binary Instrumental Variable

3.1 Identification

Throughout this section we assume the random vector (Y,X,Z, T ) satisfies the model

Y = g(X) + h(Z) + ε, (5)

where the following exclusion restriction holds

Assumption 1 (validity) E[ε|Z, T ] = E[ε|Z] a.s.

We can thus write

E[Y |Z, T = 1]− E[Y |Z, T = 0] = E[g(X)|Z, T = 1]− E[g(X)|Z, T = 0] a.s. (6)

Identifying g (up to location) from this implicit equation depends on our ability to invert it. To better

understand the conditions that guarantee the invertibility of equation (6) consider first the following
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example for the case where X is discrete. This example formalizes the discussion in Section 2, and it

extends naturally to the general case.

Example 3.1 (X and Z discrete) Denote by SX := {x1, ..., xq} and SZ := {z1, ..., zl} the supports of

the distributions of X and Z, respectively, with q <∞ and l <∞.

Our identification strategy consists of inverting equation (6), which in this context can be written

as m = Ag, where, m := (m(z1), . . . ,m(zl))
′, (a′ denotes the transpose of a) with m(z) := E[Y |T =

1, Z = z] − E[Y |T = 0, Z = z], z ∈ SZ , the matrix A is given by P1 − P0, where Pt = (ptij) is the

l × q matrix with entries ptij = P[X = xj |T = t, Z = zi], i = 1, ..., l, j = 1, ..., q and t = 0, 1, and

g : = (g(x1), ..., g(xq))
′. Notice that since P0 and P1 are matrices of probabilities, Aι = 0, where ι

denotes the q × 1 vector of ones. Therefore, A is not full-rank, and thus g is not identified from (6).

However, in this context we can identify linear functionals c′g with c in a space of dimension rank(A).

In particular, if rank(A) = q − 1, then all linear functionals c′g with c′ι = 0 are identified. In this

case, all increment effects g(xh) − g(xj), h 6= j, are identified. Of course, this is only possible if the

order condition l ≥ q − 1 holds, so Z needs to assume at least q − 1 different values.

In contrast, the classic nonparametric IV strategy is based on the equation

E[Y |T ] = E[g(X) + h(Z)|T ].

If E[h(Z)|T ] = 0 (for example if h ≡ 0 or if T is independent of Z), then the equation above translates

into the system of equations r = Pg, where r := (E[Y |T = 0],E[Y |T = 1])′, and P = (ptj) is the 2× q
matrix with entries ptj := P(X = xj |T = t), t = 0, 1, j = 1, . . . , q. In this classic setting the matrix P

has a rank of at most 2, and so g is not identified if q > 2 (see Newey and Powell (2003)). In fact,

we can only identify linear functionals c′g where c is spanned by the two rows of P (see Severini and

Tripathi (2006, 2012)), which are not necessarily of interest. Having E[h(Z)|T ] 6= 0 does not reduce

the identified set for g, as the number of estimating equations remains the same but the number of

unknowns increases.

This discussion of Example 3.1 extends to the general case as follows. With some abuse of notation,

we write equation (6) also as

m = Ag, (7)

where now Ag := E[g(X)|Z, T = 1]− E[g(X)|Z, T = 0] is a continuous (i.e. bounded) linear operator,

A : G ⊆ L2(X) → L2(Z), where henceforth, for a generic random vector ζ, L2(ζ) denotes the Hilbert

space of square-integrable functions with respect to the distribution of ζ. Here G is a subspace of L2(X)

that may incorporate prior restrictions on g such as functional form restrictions or shape restrictions.

We introduce our identification assumption as follows. Define N (A) = {g ∈ G : Ag = 0}, the null space

of A. Our fundamental relevance condition requires that the null space of A is composed exclusively

of the constant functions:

Assumption 2 (relevance) N (A) = {f ∈ G : f ≡ c ∈ R}.
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Notice that the identification condition in Example 3.1 that rank(A) = q−1 is equivalent to Assumption

2 in the discrete support case, since dim (N (A)) + rank(A) = q. In the general case, Assumption 2

is a nonparametric rank condition which is the analogue of the L2−completeness condition required

in nonparametric IV (see Newey and Powell (2003), Blundell, Chen and Kristensen (2007), Andrews

(2011) and D’Haultfoeuille (2011) for discussions on completeness). We compare formally these two

identification assumptions in Remark 3.4 below.

Theorem 3.1 Under Assumptions 1 and 2, g is identified up to location.

Proof. Note that Ag̃ = m, with g̃(X) = g(X)− E[g(X)] and A is invertible on the orthocomplement

of N (A), which by Assumption 2 is given by N⊥ = {λ ∈ G : E[λ(X)] = 0}. Thus, since g̃ ∈ N⊥ it

holds that g̃ = A−1m.

In general, necessary conditions for Assumption 2 in the nonparametric case are that X and Z have

the same level of complexity (e.g. both are continuous) and that they are not functionally dependent

(nonparametric separability). Intuitively, what is needed for Assumption 2 to hold is that the differ-

ences between the distributions of X under “treatment” (T = 1) and “control” (T = 0) groups vary

sufficiently with Z. The following examples illustrate the meaning of Assumption 2 in some important

special cases.

Example 3.2 (Gaussian variables) Suppose that (X,Z) is jointly normal conditionally on T, i.e.

(X,Z)|T ∼ N

((
0

0

)
,

(
1 ρT

ρT 1

))
.

Following Dunker, Florens, Hohage, Johannes and Mammen (2014), we can compute

E[g(X)|Z = z, T = t] = (2π)−3/4 exp

(
−z

2

2

) ∞∑
j=0

µj(ρt)E[g(X)pj(X)]
zj√
j!
,

where pj are the Hermite functions, pj(x) = (j!2π)−1/2 exp
(
−0.5x2

)
Hj(x), with Hj the j-th Hermite

polynomial, and µ(ρ) = ρ/
√

1− ρ2. Therefore,

Ag(z) = (2π)−3/4 exp

(
−z

2

2

) ∞∑
j=0

{
µj(ρ1)− µj(ρ0)

}
E[g(X)pj(X)]

zj√
j!
.

By the completeness of the Hermite polynomials, Assumption 2 in this context translates into ρ1 6= ρ0

(with G = L2(X)). Notice that if fX|T,Z denotes the density of X conditional on T and Z, then

fX|T=t,Z=z(x) =
1√

2π(1− ρ2
t )

exp

(
−(x− ρtz)2

2(1− ρ2
t )

)
.

Therefore, the condition ρ1 6= ρ0 is equivalent to saying that the difference between the distribution of

X between “treatment” (T = 1) and “control” (T = 0) groups varies with Z.
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Example 3.3 (Linear multivariate model) Suppose that g is linear, so that the model is

Y = β′X + h(Z) + ε, E[ε|Z, T ] = E[ε|Z], (8)

where X is a d-dimensional vector which does not include a constant. Note that ε is not required to have

zero mean, so it may include an intercept and/or functions of Z. In this model, the integral equation

can be written as

E[Y |Z, T = 1]− E[Y |Z, T = 0] = β′ (E[X|Z, T = 1]− E[X|Z, T = 0]) ,

or in short (using the generic notation ∆V = E[V |Z, T = 1]− E[V |Z, T = 0])

∆Y = β′∆X . (9)

Hence, in this example we take G = {b′X : b ∈ Rd} and Assumption 2 is equivalent to

E[∆X∆′X ] is positive definite.

It is straightforward to see why β is identifiable under this condition, since from equation (9) β =

(E[∆X∆′X ])−1 E[∆X∆Y ]. In practice, this condition requires that the “first stages” of the several ele-

ments in the vector X vary with Z in a linearly independent manner. Notice that in linear models we

can relax the conditions on the complexity of Z. For example, even though X is multivariate, Z may

be univariate (though it must assume at least d− 1 different values).

The following interesting examples are special cases of the linear multivariate model.

The discrete case: In Example 3.1 we discussed the case where the endogenous variable is discrete.

However, it is well known that is possible to analyze the discrete case within the framework of a linear

model. Suppose that the endogenous variable D has support SD := {d1, ..., dq}, then

g(D) = g(d1) + (g(d2)− g(d1))1(D = d2) + · · ·+ (g(dq)− g(d1))1(D = dq)

≡ α+ β′X,

where α = g(d1), X = (1(D = d2), ..., 1(D = dq))
′, and β = (g(d2) − g(d1), ..., g(dq) − g(d1))′ denotes

the increment effects of interest.

Nonlinear cases: Several nonlinear models cans still be written as linear-in-parameters models, such

as, for example, the piecewise linear model. The simplest case is

Y = β1D + β2D1(D > 0) + h(Z) + ε,

where D is an endogenous variable. In the application Section 6 we discuss connected piecewise linear

models with more than two pieces, which can also be modeled similarly. We can also include some

models with infinite, but parametric, variation in the marginal effects, such as

Y = β1D + β2D
2 + h(Z) + ε.
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Classic IV identification conditions require two instruments in all examples above. In contrast,

our identification assumption can still be applied when only T is used as instrument. These models,

although nonlinear in variables, are linear in parameters, and therefore they can be treated as the linear

model (8) above, simply defining X = (D,D1(D > 0))′ and X = (D,D2)′, respectively.

Remark 3.1 (Relation to panel data models) Consider the panel data model for t = 0, 1

Yt = g(Xt) + η + ut

where E[ut|X0, X1] = 0. Then,

Y1 − Y0 = g(X1)− g(X0) + u1 − u0,

and we can identify g up to a constant from E[Y1 − Y0|X0, X1]. We can understand this heuristically

as an IV model with T = t as the IV. Even though the IV is binary, we can identify g’s derivatives in

this case because we observe the counterfactuals X0 and X1 for the same observation. In the standard

IV setting we cannot observe the counterfactuals. Our idea is to generate artificial counterfactuals by

classifying observations according to a covariate Z so that we can apply a similar strategy.

Remark 3.2 (Separability and the choice of Z) The classification variables Z are chosen by the re-

searcher, and often there can be many options. The main consideration in the choice of Z is that it

must be separable from X in the structural equation. It is important to notice that not all covariates in

the model need to be separable from X, just those which will be used as Z in our identification approach.

To better understand how to make this choice, consider the extended model

Y = g(X,Zc) + h(Z) + ε,

where E[ε|T,Zc, Z] = E[ε|Z]. In this model the researcher chose to separate the variables into two

groups. The variables Zc are included into the model as exogenous controls. The variables Z are used

as the classification variable.

The first question is why would the researcher include Zc in the first place. In some cases it may be

important to include such controls either because of suspected nonseparable effects or because it is hard

to argue the validity of the IV unless it is conditional on Zc as well.

The next question is which variables should be used as Z and which should be used as Zc. There is

a trade-off: on the one hand, Z can be endogenous, while Zc must be exogenous. On the other hand,

Z must be separable from X, while Zc may interact with X in arbitrary ways.

Notice that Z needs to be only as complex as X, and so, for example if X is one continuous

variable, it suffices to find just one continuous covariate which can be argued to be separable from X.

The application Section 6 provides an explicit example of such considerations in an empirical problem.

Note that if we assume a semiparametric structure for g, for example if g(X,Zc) = β(Zc)
′X, then we

can often drop the exogeneity requirement for Zc (see Remark 3.3 below).
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Remark 3.3 (Non-separability between X and Z) Although our method cannot identify fully nonpara-

metric non-separable heterogeneous effects in X and Z when X is not binary, i.e. g cannot be a fully

nonparametric function of both (see Newey and Powell (2003)), we can extend our results to some

non-separable models. For example, consider the following examples.

Example 3.4 (Linear model with heterogeneous effects in Z) Consider the varying coefficient model

Y = β(Z)′X + h(Z) + ε, E[ε|Z, T ] = E[ε|Z],

where X is a d-dimensional vector. In this model, we can write

∆Y = β(Z)′∆X ,

which can be used to identify β(Z) provided ∆X∆′X is non-singular with positive probability. Under

this assumption, we can estimate β(·) nonparametrically from local least squares regressions, similar to

those carried out for the RRD below. Alternatively, we could specify β(Z) as a linear function of Z,

say β(Z) = β0 + β′1Z, which results in a linear-in-parameters model with endogenous variables X and

interactions between X and Z, which can be dealt with as in Example 3.3 above. By comparing β(·)
with the estimator obtained from β = (E[∆X∆′X ])−1 E[∆X∆Y ] we can test for heterogenous marginal

effects in Z. In the linear specification, this can be done by simply testing if β1 = 0. For alternative

models with random coefficients of endogenous variables see e.g. Hoderlein, Holzmann and Meister

(2015) and references therein.

Example 3.5 (non-separability in unobservables) Consider the model

Y = g(X,h(Z) + ε), (10)

where E[ε|X] 6= 0 with positive probability, and ε is a structural unobservable error term. Assume g is

monotonic in the second argument and denote by g−1 its inverse, i.e. g−1(Y,X) = h(Z) + ε. Then, by

the exclusion restriction E[ε|Z, T ] = E[ε|Z], it holds

E[g−1(Y,X)|Z, T = 1]− E[g−1(Y,X)|Z, T = 0] = 0 a.s. (11)

Under suitable conditions, including the scale normalization g−1(y, x̄) = y for some known x̄ in the

support of X (see Matzkin (2003)), we can identify g−1 from (11). For example, in the discrete setting

of Example 3.1 if Y also has a discrete support with qY points, then the order condition for identification

of g−1 under the normalization is l ≥ qY · (q − 1), where l and q are as in Example 3.1.

Remark 3.4 It should be noted that Assumption 2 is different from the completeness between X and

Z, but it can be understood as a weighted completeness or covariance completeness assumption between

these two variables. To see this, define the propensity score p(z) = E[T |Z = z], assume 0 < p(z) < 1

a.s., and note that Assumption 2 is equivalent to the implication: E[λ(X)(T − p(Z))|Z] = 0 a.s.

=⇒ λ(X) = E[λ(X)] a.s. In contrast, the classical L2 completeness between X and Z is equivalent to

E[λ(X)|Z] = 0 a.s. =⇒ λ(X) = 0 a.s. (see Newey and Powell (2003)). Furthermore, our identification
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and estimation can be cast as nonparametric IV with “instrument” Z in the transformed model Y (T −
p(Z)) = g(X)(T − p(Z)) + ε(T − p(Z)). That is, our identifying assumption requires that we can

uniquely solve g (up to a constant) from the equation Cov (Y, T |Z) = Cov (g(X), T |Z) . This explains

our terminology of covariance completeness.

Remark 3.5 We present our method not as an alternative to the classic IV, but as a way to explore

separability to identify quantities which cannot be identified with classical IV methods. However, in

some instances, even when it is possible to use a classical IV approach, our method may have some

advantages over classic IV. For example, in a linear model with a single endogenous variable and a

single binary IV, a classical IV approach may be used. However, the IV may be weak, in the sense that

E[X|T = 1]−E[X|T = 0] could be small, but E[∆2
X ] could still be large. Consider the following example.

Suppose that Z is a binary variable which can assume values {z1, z2}, with P(Z = z1) = 1/2. Suppose

that E[X|T = 1, Z = z1]− E[X|T = 0, Z = z1] = 10, and E[X|T = 1, Z = z2]− E[X|T = 0, Z = z2] =

−10. In this example, the instrument had a strong, but opposed effect on the subpopulations defined

by Z. This is an extreme case in which there is no “first-stage” in the classical IV approach, since

E[X|T = 1] − E[X|T = 0] = 0. However, the strength of our method (in the same units) is given by√
E[∆2

X ]) =
√

E[(10 · 1(Z = z1)− 10 · 1(Z = z2))2] = 10.

3.2 Estimation

In this section we discuss estimation when g and h(Z) + E[ε|Z] are linear in parameters. To see

the discussion of the estimation in the nonparametric case, refer to Appendix A.2.1. As shown in the

Appendix, the nonparametric sieve estimator is also linear in parameters, therefore the implementation

of this section is also relevant for the nonparametric case.

Our identification strategy in the linear multivariate model is based on the identity ∆Y = β′∆X as

derived in Example 3.3. This identity suggests a three-step estimator for β : Step 1, estimate ∆X by

∆̂X using regression methods; Step 2, estimate ∆Y by ∆̂Y using regression methods; and Step 3, run

a regression of ∆̂Y on ∆̂X by ordinary least squares (OLS) to obtain an estimate β̂3Step.

It turns out that this estimation strategy can be easily implemented as a TSLS. Specifically, given

a random sample {(Yi, Xi, Zi, Ti)}ni=1 of (Y,X,Z, T ), we propose to estimate β with the coefficient of

the Xi on a TSLS regression of Yi onto Xi and Zi, using Ti and TiZi as instruments for Xi, and

treating Zi as exogenous. This estimator, which we denote by β̂, can be implemented with off-the-shelf

econometric software. Additionally, the standard errors are correctly estimated as the standard errors

of the TSLS regression proposed above, without the need for any correction.

To see why β̂3Step = β̂, suppose that g(X) = β′X and h(Z) +E[ε|Z] = α+ γ′Z. Then, we can write

the model (1), by adding and subtracting E[ε|Z], as

Y = α+ β′X + γ′Z + u, (12)

where u = ε−E[ε|Z]. We can see from this representation that Z is different from a classical “control”

variable, since X is still correlated with u even after controlling for Z. Note that our validity condition,
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E[ε|Z, T ] = E[ε|Z], can be equivalently written as

E[u|Z, T ] = 0 a.s.,

and thus β in (12) can be identified as in a standard instrumental variable model, and estimated with a

TSLS regression as β̂ described above, provided the relevance condition holds; see Theorem 3.2 below.

Explicitly, let the “first-stage” regression fitted value be Ê[X|Z, T ] = α̂0X + α̂1XT + α̂′2XZ+ α̂′3XZT

and the “reduced-form” fitted value be Ê[Y |Z, T ] = α̂0Y + α̂1Y T + α̂′2Y Z + α̂′3Y ZT , then it is well

known that the TSLS estimators are related to the reduced form fits through the equation

Ê[Y |Z, T ] = α̂+ β̂′Ê[X|Z, T ] + γ̂′Z.

If we evaluate this empirical equation at T = 1 and T = 0 and subtract, we arrive at

∆̂Y = β̂′∆̂X .

Thus, by definition of OLS, β̂3Step must be equal to β̂.

The asymptotic distribution of β̂ is well-known, so the novelty of the next result is in the consistency

argument under our identification assumptions. Its proof can be found on Appendix A.1.1.

Theorem 3.2 Let Assumptions 1 and 2 hold with G = {b′X : b ∈ Rd}. Then,

√
n(β̂ − β)→d N (0,Σ) ,

where Σ is the classical TSLS asymptotic variance (which is assumed to be finite).

Remark 3.6 The arguments above show that the TSLS will be consistent for β even when E[X|T,Z]

and h(Z) + E(ε|Z) are non-linear, as long as g(X) is a linear function of X and our identifying

assumptions hold.

Remark 3.7 It can be shown that the TSLS γ̂ is a consistent estimator of γ. However, γ is generally

not a structural parameter. The effect of Z on Y when Z is endogenous is given by h(Z), which is not

identified. Even if we suppose h(Z) = γ′zZ, the parameter γz is generally not identified in our setting.

Remark 3.8 The choice of Z with regards to identification was discussed in Remark 3.2. However,

when choosing Z, further consideration should be given to the variance of the estimator which would

result from each possible choice. In the parametric setting of this section, the relevance condition is a

standard TSLS rank condition that can be tested by traditional methods. The order condition here is

that dimension of Z needs to be at least d − 1 (the dimension of X minus one). Therefore, if there

are several variables which satisfy the identification conditions, we recommend that Z be chosen as the

variable (or variables) for which T and TZ make up the strongest instruments.
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4 The Regression Discontinuity Design Case

4.1 Identification

The notation in the Regression Discontinuity standard framework follows from that of the treatment

effects literature (Imbens and Angrist (1994)). As such, it is usually concerned with the effects of a

binary intervention. However, one can envision many applications of the RDD methodology where

the endogenous variable of interest can take multiple values (see e.g. Chay and Greenstone (2005),

Carpenter and Dobkin (2009) and Brollo, Nannicini, Perotti and Tabellin (2013)). We need to extend

the notation to allow for this generalization. On that account we will generalize the notation of Hahn,

Todd and van der Klaauw (1990) for the constant treatment effects case in the fuzzy design. The

method can be extended to variable treatment effects analogously to the discussion in Remark 3.3. We

study the fuzzy design because the endogenous variable in our setting may take potentially any value

both below and above the threshold.

Let the potential outcome random variable Y (x) satisfy the model2

Yi(x) = g(x) + h(Zi) + εi. (13)

Let the “predictor” or “running” variable be denoted by W , which is univariate and continuously

distributed, with threshold w̄. The quantities of interest are E[Yi(x) − Yi(x
′)|W = w̄], for x 6= x′.

Given equation (13) and our assumptions below, these are the same as the increments g(x)− g(x′).

As in Section 3, we will use a covariate Z to classify the observations. The validity condition is the

same as in the standard RDD setting, after conditioning on Z.

Assumption 3 (validity) E[ε|W = w,Z] is continuous in w at w̄ with probability one.3

Then, assuming the limits involved are well defined, we obtain

lim
w↓w̄

E[Y |W = w,Z]− lim
w↑w̄

E[Y |W = w,Z] = lim
w↓w̄

E[g(X)|W = w,Z]− lim
w↑w̄

E[g(X)|W = w,Z].

The right hand side defines implicitly a linear operator of g. We denote it by Ag, with some abuse

of notation. Assumption 2 can be interpreted in the context of the RDD analogously to the cases

discussed in Section 3.1. Therefore, if Assumptions 2 (for the new A) and 3 hold, g is identified up to a

constant (see Theorem 3.1 for the proof). The fundamental requirement is that the difference between

the distribution of X conditional on W and Z at the limits from above and below w̄ vary sufficiently

with Z. The following example shows the translation of this condition for the multivariate linear case.

Example 4.1 (Linear model) Consider the linear model (where X may be multivariate) under As-

sumption 3,

Y = α+ β′X + h(Z) + ε,

2Hahn, Todd and van der Klaauw (1990) denote the potential outcome yi = αi + xi · β. In our case, α is represented

by h(Z) + ε and g(x) is the generalization of x · β.
3Assumption (A1) in Hahn, Todd and van der Klaauw (1990).
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so that

lim
w↓w̄

E[Y |W = w,Z]− lim
w↑w̄

E[Y |W = w,Z] = β′
(

lim
w↓w̄

E[X|W = w,Z]− lim
w↑w̄

E[X|W = w,Z]

)
. (14)

Denote, for a generic random vector V ,

δV = lim
w↓w̄

E[V |W = w,Z]− lim
w↑w̄

E[V |W = w,Z],

assuming the limits exist. Then equation (14) can be written shortly as δY = β′δX . Assumption 2 in

this context is equivalent to E[δXδ
′
X ] being positive definite. In other words, we need that the variation

around the threshold in the mean of X for a given Z vary in a linearly independent way.

To better understand the meaning of the relevance condition above, consider the following simplified

example in which X is univariate. In this case we can apply the classic RDD identification strategy as

well as ours (in the general case above where X is multivariate identification with the classic RDD is

not possible). Assume the specification

X = α0 + α11(W ≥ 0) + α2Z + α31(W ≥ 0) · Z + εX ,

where (εX ,W,Z) are independent and identically distributed as standard normals. Note that with this

design and with w̄ = 0,

δX = lim
w↓0

E[X|W = w,Z]− lim
w↑0

E[X|W = w,Z] = α1 + α3Z,

while since E[Z|W ] = 0,

lim
w↓0

E[X|W = w]− lim
w↑0

E[X|W = w] = α1.

If α1 6= 0 both classic RDD and our new RDD identify β. If in addition α3 6= 0, our RDD overidentifies

β, which may result in an increase of precision relative to classic RDD. However, if α1 = 0 the classical

RDD identification fails, but our method identifies β if α3 6= 0, since E[δ2
X ] = α2

3 > 0. These theoretical

results are confirmed in our simulations below.

4.2 Estimation

In this section we discuss estimation for the RDD case when g is linear, as in Example 4.1. To see the

discussion of the estimation in the nonparametric case, refer to Appendix A.2.2. We write

Y = α+ β′X + h(Z) + ε, (15)

where E[ε|W = w,Z] is continuous in w at w̄ with probability one, and satisfies further conditions

below (see Assumption 4 in the Appendix). Without loss of generality we take hereinafter w̄ = 0.

We assume that the first stage is given by the semiparametric varying coefficient models

E[X|Z,W ] := α0X(W ) + α′1X(W )Z, (16)
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where α0X (·) and α1X (·) are unknown functions of W. This specification overcomes the “curse of

dimensionality” problem when the dimension of Z is large, as can be the case in applications.

Model (16) provides a natural extension of the model with interactions that we used in the binary

IV case to the continuous case. In fact, if we approximate α0X(·) and α1X(·) locally at W = 0 by

constants to each side of the threshold, the resulting model is exactly a model with interactions where

the binary IV is Ti = 1(Wi ≥ 0). This suggests that a local version of the proposed TSLS estimator in

the IV case (see Section 3.2) will provide valid inference on β.

However, it is well known that the local constant kernel estimator has generally worse bias properties

than the local linear kernel estimator at discontinuity points; see Fan and Gijbels (1996). For this

reason, we suggest implementing our identification strategy for the RDD with a local linear estimator

instead. This corresponds to the use of linear (as opposed to just constants) approximations for α0X(·)
and α1X(·) around each side of the threshold w̄ = 0. More generally, we can apply higher order

approximations, resulting in local polynomial estimators of a certain degree. All these estimators can

be implemented as TSLS estimators by defining a suitable vector of instruments, which can be seen

similarly to the binary IV case.

Specifically, consider the uniform kernel

khni = 1(−hn ≤Wi ≤ hn), (17)

where hn is a bandwidth parameter satisfying that hn → 0 as n → ∞ and other conditions below.

Then, our estimator for RDD can be easily implemented by restricting the sample {(Yi, Xi, Zi,Wi)}ni=1

to only those observations such that −hn ≤ Wi ≤ hn, and running a TSLS regression of Yi onto Xi

and Zi, treating Zi as exogenous, and using

Vi = (Ti, Zi · Ti,Wi, Ti ·Wi, Zi ·Wi, Zi · Ti ·Wi)
′ (18)

as a vector of “instruments” for Xi. Denote by β̃ the corresponding TSLS estimator of the coefficient

of X, then the asymptotic behavior of β̃ is described in the following theorem.

Theorem 4.1 Let Assumption 2 hold with G = {b′X : b ∈ Rd}, as well as Assumption 3 and Assump-

tion 5 in Section A.1.2 in the Appendix. Then√
nhn(β̃ − β)→d N

(
0, Q2ΩQ′2

)
,

where expressions for Q2 and Ω are given in Section A.1.2.

The proof of this theorem for a slightly generalized version of β̃ in which a general kernel, not

necessarily the uniform kernel (17), is used can be found in Section A.1.2 in the Appendix.

The asymptotic variance of β̃ can be consistently estimated by the standard TSLS asymptotic

variance (see Imbens and Lemieux (2008) for related discussion). Implementation of β̃ requires the

choice of a bandwidth parameter hn. We can choose hn along the lines suggested in Calonico, Cattaneo

and Titiunik (2014), which can be adapted to the presence of covariates.
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Note that the way in which we introduce covariates in our RDD approach is different from how

is traditionally done, which does not account for interaction terms between the covariates and the

running variable; see, e.g., Imbens and Lemieux (2008). Our arguments suggest that, provided the

separability conditions that we impose are satisfied, including covariates in this way may allow us to

identify quantities which would otherwise not be identifiable with the current state-of-the-art in the

RDD literature.

5 Monte Carlo Simulations

5.1 The case with a binary IV

Consider the following Data Generating Process (DGP):

Y = α+ β1X1 + β2X2 + γzZ + u,

Z = αzu+ εz,

X1 = α01 + α11T + α21Z + α31T · Z + ε1,

X2 = α02 + α12T + α22Z + α32T · Z + ε2,

where (u, εz, ε1, ε2) are independent standard normal random variables independent of T, which is

distributed as Bernoulli random variable with probability p = 0.5. This is a linear model with three

endogenous variables and one binary instrument. The classical order condition of standard IV does

not hold in this case, and hence, classical IV is unable to identify the marginal effects β1 and β2. For

identification of the marginal effects, our method requires that Assumption 2 holds, which in this case

is equivalent to

det

∣∣∣∣∣ α11 α31

α12 α32

∣∣∣∣∣ 6= 0.

The parameters in the structural equation are set at α = 0, β1 = 1, β2 = 2 and γz = 1. We set

α01 = α02 = α21 = α22 = 0, and αz = 1, so Z is endogenous. Table 2 provides the average bias and

Mean Squared Error (MSE) based on 10,000 Monte Carlo simulations, sample sizes n = 100, 300, 500

and 1000, and several values for (α11, α31, α12, α32). There are three variables in the structural equation

and three in each reduced form equation, and therefore, the TSLS estimator is an IV estimator that

treats T and the interaction term T · Z as instruments.

We observe a satisfactory bias performance uniformly over all parameter values. For the first two

cases (α11 = 1, α31 = 0, α12 = 0, α32 = 1) and (α11 = 0, α31 = 1, α12 = 1, α32 = 0) the sample

variance of the estimators is already small for small sample sizes as 100, and it decreases to zero

with the sample size, in accordance with the consistency of the estimator. For the parameter values

(α11 = 1.25, α31 = 1, α12 = 1, α32 = 1.25) identification is much weaker, and larger sample sizes are

required for a good performance, as expected. Overall, these results provide supporting evidence of

the robustness of our identification strategy to the endogeneity of Z.
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Table 2: IV Case

α11 α31 α12 α32 n Bias(β1) MSE(β1) Bias(β2) MSE(β2)

1 0 0 1

100 -0.0041 0.0252 0.0013 0.0123

300 0.0015 0.0070 0.0000 0.0034

500 -0.0014 0.0041 0.0000 0.0020

1000 0.0001 0.0020 0.0003 0.0010

0 1 1 0

100 -0.0002 0.0121 0.0009 0.0243

300 -0.0004 0.0035 0.0002 0.0070

500 0.0002 0.0020 0.0000 0.0041

1000 -0.0001 0.0010 0.0004 0.0020

1.25 1 1 1.25

100 0.1247 259.7900 -0.0897 193.4900

300 0.0528 11.1740 -0.0434 7.2709

500 -0.0065 0.2693 0.0053 0.2085

1000 0.0007 0.0157 -0.0003 0.0136

10000 Monte Carlo Simulations.

In the second set of simulations we show how the estimator performs when the first stages are not

linear. Consider now the DGP:

Y = α+ β1D + β2D1(D > 0) + γzZ + u,

Z = αzu+ εz,

D = αdZ + γdT · Z + εd,

where (u, εz, εd) are independent standard normal random variables, independent of T, which is again

distributed as Bernoulli with probability p = 0.5. This corresponds to a linear model

Y = α+ β′0X + ε,

where β0 = (β1, β2)′, X = (D,D1(D > 0))′ and ε = γzZ + u. Here

E[D|Z, T = 1]− E[D|Z, T = 0] = γdZ,

so γd controls the identification strength. Since there is only one binary IV, T , standard IV methods

cannot be applied in this example. Note also that under this DGP the difference of conditional means

∆X is nonlinear in Z in its second component. However, it can be shown that our estimator based on

the linearity assumption is still consistent, as we illustrate with some Monte Carlo experiments. This

shows the robustness of our estimator to the failure of the linearity assumption in the conditional mean

E[X|Z, T ] = α0X(T ) + α′1X(T )Z.
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Table 3 provides the average bias and MSE based on 10000 Monte Carlo simulations. In all cases

α = 0, γz = 1, β1 = 1, β2 = 2, αz = 1, αd = 1. We consider two levels of identification, “moderate”

γd = 1 and “high” γd = 2.

Table 3: IV Case - Misspecified Model

γd n Bias(β1) MSE(β1) Bias(β2) MSE(β2)

1

100 0.00107 0.48403 -0.01446 2.64655

300 -0.00067 0.01124 0.00039 0.03006

500 0.00001 0.00638 0.00042 0.01664

1000 0.00003 0.00303 -0.00072 0.00802

2

100 -0.00160 0.00924 0.00320 0.02321

300 -0.00065 0.00252 0.00089 0.00645

500 0.00000 0.00148 0.00024 0.00385

1000 0.00031 0.00074 -0.00019 0.00189

10000 Monte Carlo Simulations.

The reported results show that the estimator is still consistent even though the conditional means

are not linear. Estimates of β2 require larger sample sizes than those of β1 to achieve the same level

of precision and bias performance. There is an efficiency loss in estimating β2 relative to β1, probably

due to the nonlinearities in E[D1(D > 0)|Z, T = j] for j = 0, 1. As expected, the results improve with

the identification strength. In sum, these simulations provide finite sample evidence of a satisfactory

performance of the TSLS estimator and its robustness to the endogeneity of the covariates and the

nonlinearity of the first stages.

5.2 The RDD case

We consider now a third DGP to evaluate the new RDD estimator. The DGP is given by:

Y = α+ βX + γzZ + u,

T = 1(W ≥ 0),

X = α0 + α1T + α2Z + α3T · Z + εX ,

where (u, εX ,W,Z) are independent and identically distributed as standard normals. Note that with

this design

lim
w↓0

E[X|W = w,Z] = α0 + α1 + (α2 + α3)Z

and

lim
w↑0

E[X|W = w,Z] = α0 + α2Z.
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Therefore, δXi = α1 + α3Zi. On the other hand, since E[Z|W ] = 0,

lim
w↓0

E[X|W = w] = α0 + α1

and

lim
w↑0

E[X|W = w] = α0.

Therefore, in this model α1 controls the level of identification of the classical RDD, whereas α1 and α3

control that for the new RDD estimator. We compare the classical RDD estimator (β̂RDD) and the

new RDD estimator (β̃). We consider the parameter values (α, β, γz) = (0, 1, 0), (α0, α2, α3) = (0, 1, 1)

and several values of α1. We implement both estimators as in Section 4.2 with a uniform kernel (17)

and a bandwidth hn = 2n−1/4. In particular, the classical RDD estimator β̂RDD is obtained as a TSLS

Table 4: Average Bias and MSE: RDD

α1 n Bias MSE

β̂RDD β̃ β̂RDD β̃

0

100 -0.0048 0.0016 0.8018 0.0650

300 0.0018 -0.0004 0.8084 0.0275

500 0.0024 -0.0014 0.8077 0.0182

1000 -0.0014 0.0016 0.6842 0.0107

1

100 0.0002 0.0006 0.0784 0.0348

300 -0.0008 -0.0006 0.0292 0.0139

500 -0.0018 -0.0016 0.0192 0.0094

1000 0.0016 0.0015 0.0104 0.0053

2

100 0.0005 0.0007 0.0181 0.0141

300 -0.0004 -0.0004 0.0071 0.0056

500 -0.0008 -0.0010 0.0047 0.0038

1000 0.0007 0.0009 0.0026 0.0021

10000 Monte Carlo Simulations.

estimator in the restricted sample {(Yi, Xi, Zi,Wi) : −hn ≤Wi ≤ hn}ni=1, where the structural equation

is given by

Yi = α+ βX + γZ + u,

and the first stage is given by

E[X|Z,W ] = α0X + α1XT + α2XZ + α3XW + α4XT ·W,
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whereas β̃ uses the first stage

E[X|Z,W ] = α0X + α′1XV + α2XZ,

where V is defined in (18).

Table 4 reports the average bias and MSE based on 10000 Monte Carlo simulations. For α1 = 0,

the classical RDD is not able to identify the parameter β, and, as expected, has a MSE that does not

converge to zero for large n. In contrast, our estimator β̃ presents a satisfactory performance, with

small MSEs that decrease with the sample size. The classic RDD requires a value of α1 = 2 to achieve

comparable results to those of the new RDD. Unreported results with other bandwidths and with other

parameter values for (α0, α2, α3) show a similar behavior. This Monte Carlo exercise illustrates the

potential benefits of our approach even in situations where the classical RDD is applicable.

6 An Application to the Estimation of the Effects of Air Pollution

on House Prices

We apply our identification strategy to the problem of estimating the effects of pollution on house

prices, as in Chay and Greenstone (2005). The concern with endogeneity in this problem is warranted,

since counties may differ from each other in many ways which may not be accounted by their observable

characteristics and amenities. Chay and Greenstone base their identification strategy on an instrumen-

tal variable approach, which takes advantage of the quasi-experiment generated by the Clean Air Act

around the time it was first implemented. Because the non-attainment threshold is sharp, it allows

Chay and Greenstone to also pursue identification in an RDD framework. Thus, this application can

illustrate our approach both in the binary IV and the RDD cases.

As explained in Remark 3.2, it is not necessary that all the covariates be separable from X in the

model. Let Y denote the change between 1970 and 1980 in the logs of the county’s median property

values, X is the change between 1970 and 1980 in the geometric mean total suspended particulates

(TSP) across all monitors in the county, T is the county’s attainment status in 1975 according to the

Clean Air Act, and Zc and Z denote vectors of further variables which are used by Chay and Greenstone

as controls in their model specification (2) (Chay and Greenstone (2005), p. 411). We can estimate a

model

Y = g(X,Zc) + h(Z) + ε,

with the exclusion restriction E[ε|T,Zc, Z] = E[ε|Z], thus allowing a set of covariates Zc to be non-

separable from X as long as they are exogenous. We can generalize Chay and Greenstone (2005)’s

approach in two directions. First, even though the instrument T is binary we are able to identify g

when it is more general than simply linear. Second, since Z in our approach may be endogenous, the

covariates which we choose to use as Z need no longer be assumed exogenous.

In choosing which covariates are part of Z, we must be concerned with their separability from X.

The issue is that counties’ preference for pollution may differ as a function of some of the covariates.

Because of this, it is unadvisable to use covariates such as, for example, the percent change in income,
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education levels, racial composition and unemployment in the county population, as these could be

reasonably assumed to influence the population’s taste in pollution. The covariates which we believe are

most likely to be separable are the county’s changes between 1970 and 1980 in the percent spending in

highways, health and education. We considered estimators of our method with each of those variables

separately and also together, as can be seen in Table 5.

The estimation is done using the same data set as in Chay and Greenstone (2005) as well as the

exact same covariate specification. The first column in Table 4 shows the results of a standard IV

estimation of the effects of pollution change, which is what is done in Chay and Greenstone (2005).

The replicated results are, not surprisingly, identical to that paper. Columns A to D show the results of

our estimation approach using different variables as the separable classification covariate Z. Row I uses

a specification without exogenous control variables. Although in specification I our results are of similar

Table 5: Estimation Results - Linear Case, Binary IV

IV A B C D

I
-.347 -.340 -.327 -.317 -.327

(.140) (.138) (.136) (.134) (.135)

II
-.203 -.208 -.202 -.203 -.208

(.093) (.094) (.093) (.093) (.093)

Table 5: Columns A to D use our approach with Z equal to the change from 1970 to 1980 in the % spending on highways

(A), health (B), and education (C). In column (D), Z is the vector of all three variables. Specification I has no exogenous

covariates Zc. Specification II uses as exogenous covariates Zc the exact same specification as in Chay and Greenstone

(2005) excluding the covariates which we are using as Z.

magnitude to the standard IV, they are slightly smaller and vary depending on the covariate. They

are particularly smaller when all three covariates are used. We believe that this happens because when

covariates Zc are not used, the classic IV operates under the assumption that the IV is unconditionally

valid, while our estimator operates under the assumption that the IV is valid only conditional on the

separable covariate (E[ε|T,Z] = E[ε|Z]). That said, Chay and Greenstone never suppose that their

IV is valid, but only that it is valid conditional on controls. Row II shows the results conditional on

controls. There the identifying assumption of the classic IV approach is that E[ε|T,Zc, Z] = 0, while

our identifying assumption is that E[ε|T,Zc, Z] = E[ε|Z]. Nevertheless, our results generally confirm

the estimates found by Chay and Greenstone.

As a robustness check of the separability of the variables we chose as Z, we ran the same regressions

using each of the other covariates in the model as Z instead. The results are extremely similar. The

5 covariates which yielded the most different results are the number of houses built between 1970 and

1980, the rate of vacancies in 1980, change in income per-capita, the change in government revenue

per-capita and the change in the fraction of the population with at least a college degree. However,
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we should point out that even for these covariates, the differences between our estimates and -.203 was

still less than .1.

The advantages of our method are better showcased in the nonlinear case, where the classical instru-

mental variables methods cannot identify marginal effects with a single instrumental variable. In order

to compare our results to Chay and Greenstone’s we maintain their specification in all aspects, but al-

low X to have richer marginal effects on Y . The model is thus Y = g(X)+Z ′cγc+Z
′γ+ε, assuming that

E[ε|T,Zc, Z] = E[ε|Z], where g is a connected piecewise linear function and Zc is the entire specification

of controls in Chay and Greenstone (2005) except for the variables in Z. Figure 1 has three linear pieces,

which connect at the terciles of the distribution of X. Hence, we can write g(x) = a1ψ
3
1(x) +a2ψ

3
2(x) +
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Figures 1 to 4: Nonlinear case – IV approach. Curves are the results of our approach with exogenous covariates,

and Z as in column D in Table 5. The domain of each piece is determined by the quantiles. For instance, Figure 2’s

pieces connect at the 25th, 50t and 75th quantiles of the change in the geometric Mean TSP between 1970 and 1980.

a3ψ
3
3(x), where the ψ3

j (x) are the elements of a B-spline basis of degree 1 and smoothness 0 with knots

at the terciles just described. In practice this is the same as if we had three endogenous variables ψ3
1(X),

ψ3
2(X) and ψ3

3(X). For Z we used the three variables in column D in Table 5 (call them High, Health

and Educ) expanded into the elements of the B-spline basis. So, with some abuse of notation Z =
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(ψ3
1(High), ψ3

2(High), ψ3
3(High), ψ3

1(Health), ψ3
2(Health), ψ3

3(Health), ψ3
1(Educ), ψ3

2(Educ), ψ3
3(Educ))′.

Figures 2 to 4 are obtained analogously.

In Figure 1 the standard errors are calculated as the standard error of the predicted ĝ(x) =

â1ψ
3
1(x) + â2ψ

3
2(x) + â3ψ

3
3(x), so SE(ĝ(x)) = (ψ3

1(x), ψ3
2(x), ψ3

3(x))′Ω(ψ3
1(x), ψ3

2(x), ψ3
3(x)), where Ω

is the estimated covariance matrix of (â1, â2, â3)′. In a pre-packaged software the standard errors can

be programmed directly as the standard errors of the predicted g. Standard errors in Figures 2 to 4

are obtained analogously.

Our results qualitatively confirm the findings of the linear case, but it is important to notice that

the effect may be even more negative than predicted in the linear case in the majority of the domain.

Also, interestingly, for an important part of the domain the effect seems to go in the opposite direction.

In fact, for small reductions in pollution, all regressions show derivatives which are not only positive,

but rather high.

Figures 1 to 4 are representative of the patterns we found when we tried other strategies. For exam-

ple, we also used as Z each of the elements used in columns A to C in Table 5 separately (i.e. for g with

three pieces we did Z =
(
ψ3

1(High), ψ3
2(High), ψ3

3(High)
)′

, and we also expanded the elements of Z in

other ways, for example into two piece B-splines (Z = (ψ2
1(High), ψ2

2(High), ψ2
1(Health), ψ2

2(Health),

ψ2
1(Educ), ψ2

2(Educ))′), four piece B-splines, etc., all with very similar results. The standard errors get

substantially larger as we increase the number of pieces in g, but they are not affected (and seem in

fact to decrease) as we increase the number of elements in Z.

For the RDD approach, Chay and Greenstone (2005) report the results with bandwidth hn = 25

and local quadratic estimators in the paper, which can be seen in the fourth row of results in Table 6

for direct comparisons. The results show some variability and dependence on the bandwidth size, but

qualitatively they confirm the findings of the standard IV case. For the smallest bandwidth hn = 15

our results are considerably smaller than the standard RDD, and they show large variations depending

on the chosen Z. However, for the larger bandwidths they become more stable and similar to the

standard RDD, although still smaller (and generally closer to the numbers found in the IV case).

We can also apply our method for the RDD to identify the response curve in the nonlinear case,

which cannot be achieved with the standard RDD identification method. Figures 5 to 8 below are

very similar to the curves estimated in the IV case, and they still show the curious pattern of positive

derivatives for part of the support. However, the slopes are substantially smaller in the entire domain.

The standard errors are also smaller, which is in part due to the fact that there are no covariates Zc.

These curves are representative of the patterns we find when we try other strategies. For example,

Figures 5 to 8 use the local quadratic instead of the local linear estimator because we wanted to compare

our results to Chay and Greenstone (2005)’s which use the local quadratic estimator in their approach.

However, the results with the local linear are nearly identical. We also experimented using different

combinations of variables to form Z, just as described in the standard IV case. The results are again

very similar, with one interesting difference: when we used the % spending on education (column C)

the curve slopes downward for the highest quantiles.
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Table 6: Estimation Results - Linear Case, RDD

h p RDD A B C D

15

1
-.305 -.155 -.145 -.173 -.074

(.246) (.206) (.171) (.175) (.148)

2
-.292 -.019 -.120 -.137 .034

(.240) (.179) (.157) (.163) (.130)

25

1
-.249 -.233 -.192 -.234 -.182

(.142) (.137) (.122) (.131) (.117)

2
-.275 -.169 -.212 -.253 -.112

(.141) (.119) (.120) (.132) (.106)

35

1
-.374 -.305 -.307 -.332 -.227

(.156) (.138) (.132) (.145) (.118)

2
-.330 -.208 -.267 -.289 -.151

(.142) (.114) (.121) (.131) (.101)

45

1
-.419 -.405 -.364 -.379 -.311

(.139) (.134) (.124) (.131) (.115)

2
-.391 -.373 -.342 -.355 -.310

(.136) (.128) (.119) (.126) (.115)

Table 6: Columns A to D use our approach with Z equal to the change from 1970 to 1980 in the % spending on highways

(A), health (B), and education (C). In column (D), Z is the vector of all three variables. h is the bandwidth and p is the

degree of the local polynomial. We used local linear and local quadratic estimators because Chay and Greenstone (2005)

reported estimates use the local quadratic.

Our application on the effect of air pollution on house prices confirms the findings of Chay and

Greenstone (2005) when a constant marginal effect model is considered, but also uncovers substantial

heterogeneity in the effect of pollution on house prices when richer marginal effects are entertained. The

impact of air quality on house prices is much larger for counties that significantly change their behaviour

as a result of the Clean Air Act than for other counties that experience a minor decrease or an increase

in pollution during the 1970-1980 period. Thus, our results are consistent with a nonparametric local

average treatment effect interpretation where for the population of compliers the marginal effect is

larger than the overall average marginal effect (averaged over the whole population) documented in

Chay and Greenstone (2005).
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Figure 5: 3 pieces
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Figure 6: 4 pieces
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Figure 8: 6 pieces
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Figures 5 to 8: Nonlinear case – RDD approach. Curves are the results of our approach using Z as in column D

in Table 5 and the local quadratic (bandwidth is h = 25). The domain of each piece is determined by the quantiles. For

instance, Figure 6’s pieces connect at the 25th, 50t and 75th quantiles of the change in the geometric Mean TSP between

1970 and 1980.

7 Conclusions

In this paper we have proposed a strategy to identify marginal effects of “complex” variables using

a binary IV in the presence of other possible endogenous covariates. The strategy hinges on the

heterogeneity of the “first stages” and separability of some covariates, and it can be extended to the

RDD. It can be applied to parametric, semiparametric and nonparametric settings. In models that are

linear in parameters (which also include nonparamatric models estimated by sieves), the identification

strategy can be implemented with a simple TSLS estimator that treats the covariates as if they were

exogenous, and runs a first stage with interactions between the Binary IV and the covariates. Thus,

our identification strategy can be implemented with off-the-shelf econometric software. Monte Carlo

simulations show that this TSLS estimator performs well in practice, and it is robust to endogeneity

of covariates and misspecification of the first stage linear conditional expectation.

In the RDD case, we propose a semiparametric estimator based on a linear specification of the
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structural equation and a varying coefficients specification of the first stages that is linear in covariates

but nonparametric in the running variable. We have provided an asymptotic analysis for this semipara-

metric estimator which parallels that of the classical RDD estimator for binary endogenous variables

in Hahn, Todd and van der Klaauw (1990). The estimator can be also implemented as a simple TSLS.

There are several extensions of our methods that deserve further investigation. First, as shown in

Remark 3.3 our identification strategy can be extended to some non-separable models in unobservables.

It is of interest to develop estimation strategies for such non-separable models (e.g. sieve nonparamet-

ric estimation) and establish their asymptotic properties. With simple modifications, this strategy

could also be extended to the some RDD models with heterogeneous treatment effects. Second, our

method may lead to overidentification even in situations where the classic IV and RDD provide just-

identification. In such scenario, one can use our methods to test for the overidentifying restrictions,

which is not possible with classical IV or RDD.

A Appendix

A.1 Theory for Parametric and Semiparametric Estimators

A.1.1 Proof of Theorem 3.2

We prove the consistency of the TSLS estimator. Its asymptotic distribution follows standard argu-

ments, which are therefore omitted. TSLS identifies the coefficients of the regression of Y on a constant,

X∗ and Z, where

X∗ = α0X + α1XT + α′2XZ + α′3XZT.

By the Frisch-Waugh-Lowell Theorem, the slope of X∗, say β∗, is given by

β∗ =
(
E[ΠzΠ

′
z]
)−1 E[ΠzY ],

where Πz = X∗ − E[X∗|Z] = E[X|T,Z] − E[X|Z]. We prove that is legitimate to take the inverse

of E[ΠzΠ
′
z] under our conditions, by showing that E[ΠzΠ

′
z] is invertible if and only if E[∆X∆′X ] is

invertible. To see that, suppose E[∆X∆′X ] is singular. Then, there exists a λ 6= 0 such that, a.s.

E[λ′X|T = 1, Z] = E[λ′X|T = 0, Z].

Then,

E[λ′X|T,Z] = E[λ′X|Z],

and therefore, λ′Πz = 0 a.s. (i.e. E[ΠzΠ
′
z] is singular). The reciprocal follows the same arguments.

Then, substituting (12) into β∗, yields that β∗ = β, thereby proving the consistency of the TSLS

for β.

A.1.2 Theory for Semiparametric RDD

In this section we establish the asymptotic normality for a generalized version of the TSLS β̃ for RDD

where a general kernel, not necessarily the uniform kernel (17), is used. For simplicity, we only consider
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the case where X and Z are univariate. Without loss of generality assume hereinafter that w̄ = 0.

We introduce some notation. Let εVi = Vi − E[Vi|Wi, Zi] denote the regression errors for V = Y and

V = X. We assume that

E[V |Z,W ] := α0V (W ) + α′1V (W )Z (19)

for both V = Y and V = X. To simplify notation denote

lim
w↓0

α0V (w) = α+
0V lim

w↓0
α1V (w) = α+

1V

and

lim
w↑0

α0V (w) = α−0V lim
w↑0

α1V (w) = α−1V .

We can then estimate these quantities using local linear regression. Precisely, for V = X or V = Y , let

α+
V = (α+

0V , α
+′
1V , α

+
2V , α

+′
3V )′, and

α̂+
V = argmin

α+
V

n∑
i=1

(
Vi − α+

0V − α
+′
1V Zi − α

+
2VWi − α+′

3V ZiWi

)2
khn(Wi)1(Wi ≥ 0),

where khn(W ) = k(W/hn), k is a kernel function and hn is a bandwidth parameter satisfying some

conditions below (Assumption 4). The estimation of α̂−0V and α̂−1V for V = Y and V = X is analogous,

replacing 1(Wi ≥ 0) in the minimization problem by 1(Wi < 0).

We can now apply the arguments of equation (14). Notice that in this setting δXi = α+
0X − α

−
0X +(

α+
1X − α

−
1X

)′
Zi and δY i = α+

0Y − α−0Y +
(
α+

1Y − α
−
1Y

)′
Zi, and thus we can obtain δ̂Y i and δ̂Xi by

substituting the estimated α’s from the previous step. Then, β̃ is obtained from the OLS regression of

the δ̂Y i on the δ̂Xi (without intercept), and has the closed-form expression

β̃ =

(
n∑
i=1

δ̂Xiδ̂
′
Xi

)−1 n∑
i=1

δ̂Xiδ̂Y i.

We investigate the asymptotic properties of β̃ under the following assumptions, which parallel those of

Hahn, Todd and van der Klaauw (1990):

Assumption 4 Suppose that

1. For w > 0 and V = Y and X, α0V (w) and α1V (w) are twice continuously differentiable. There

exists some M > 0 such that α̇+
jV (w) = limu↓w ∂αjV (u)/∂u and α̈+

jV (w) = limu↓w ∂
2αjV (u)/∂u2

are uniformly bounded on (0,M ], for j = 0, 1. Similarly, α̇−jV (w) = limu↑w ∂αjV (u)/∂u and

α̈−jV (w) = limu↑w ∂
2αjV (u)/∂u2 are uniformly bounded on [−M, 0), for j = 0, 1.

2. Equation (19) holds. The limits (α+
jV , α̇

+
jV , α̈

+
jV , α

−
jV , α̇

−
jV , α̈

−
jV ) are well-defined and finite for

j = 0, 1 and V = Y and X.

3. The density of W, f(w), is continuous and bounded near w = 0. It is also bounded away from

zero near w = 0.
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4. The kernel k is continuous, symmetric and nonnegative-valued with compact support.

5. The functions µj(w) = E[Zj |W = w], qY j(w) = E[Z2jε2
Yi
|W = w], qXj(w) = E[Z2jε2

Xi
|W = w],

rj(w) = E[Z2jεYiεXi |W = w], sY j(w) = E[Z3jε3
Yi
|W = w] and sXj(w) = E[Z3jε3

Xi
|W = w] are

uniformly bounded near w = 0, with well-defined and finite left and right limits to w = 0, for

j = 0, 1 and 2.

6. The bandwidth satisfies nh5
n → 0.

Define the vector of estimates δ̂hn = (δ̂0Y , δ̂1Y , hnδ̂2Y , hnδ̂3Y , δ̂0X , δ̂1X , hnδ̂2X , hnδ̂3X)′ and true pa-

rameters δhn = (δ0Y , δ1Y , hnδ2Y , hnδ3Y , δ0X , δ1X , hnδ2X , hnδ3X)′, where δ̂jV = α̂+
jV − α̂

−
jV and δjV =

α+
jV − α

−
jV for j = 0, 1, 2, 3 and V = Y or X. There are two main steps in the proof of asymptotic

normality of β̃. First, we show that

β̃ − β0 =
(
E[δ2

Xi]
)−1

E[δXiZ̃
′
i]B2

(
δ̂hn − δhn

)
+ oP ((nhn)−1/2)

≡ Q2

(
δ̂hn − δhn

)
+ oP ((nhn)−1/2), (20)

where Z̃i = (1, Zi)
′, Q2 =

(
E[δ2

Xi]
)−1

E[δX Z̃
′
i]B2, and

B2 =

[
1 0 0 0 −β0 0 0 0

0 1 0 0 0 −β0 0 0

]
.

Second, following similar arguments to those of Hahn, Todd and van der Klaauw (1990) we show in

Lemma A.8 that √
nhn

(
δ̂hn − δhn

)
→d N(0,Ω), (21)

and provide an expression for Ω. The asymptotic normality then follows from (20) and (21).

To prove (20), use δY i = β0δXi and substitute δ̂Y i = β0δ̂Xi + δ̂Y i − δY i − β0(δ̂Xi − δXi) in β̃ to get

β̃ = β0 +

∑n
i=1 δ̂Xi(δ̂Y i − δY i)∑n

i=1 δ̂
2
Xi

− β0

∑n
i=1 δ̂Xi(δ̂Xi − δXi)∑n

i=1 δ̂
2
Xi

.

By Lemmas A.1-A.8 below, we can further write

β̃ − β0 =
(
E[δ2

Xi]
)−1

(
1

n

n∑
i=1

δXi(δ̂Y i − δY i)−
β0

n

n∑
i=1

δXi(δ̂Xi − δXi)

)
+ oP ((nhn)−1/2).

With some simple manipulations this leads to (20).

Henceforth we focus on the analysis for α+
V , since that of α−V is symmetric. Introduce the notation

f(0+) = limw↓0 f(w),

V +
i = Vi − α+′

V Si and k+
ihn

= khn(Wi)1(Wi ≥ 0),

where Si := (1, Zi,Wi,WiZi)
′ and Sihn := (1, Zi,Wi/hn, ZiWi/hn)′. Then, with this notation we can

write the OLS problem for α+
V as

min
α

n∑
i=1

(
V +
i − (α− α+

V )′Si
)2
k+
ihn
,
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whose first order condition yields
α̂+

0V − α
+
0V

α̂+
1V − α

+
1V

hn
(
α̂+

2V − α
+
2V

)
hn
(
α̂+

3V − α
+
3V

)

 =

(
n∑
i=1

SihnS
′
ihnk

+
ihn

)−1( n∑
i=1

SihnV
+
i k

+
ihn

)
.

Based on this expression we analyze the asymptotic properties of the local linear estimators. All the

Lemmas below make use of Assumptions 2, 3 and 4.

Lemma A.1 (Denominator)

1

nhn

n∑
i=1

SihnS
′
ihnk

+
ihn
→p f(0+)Γd

where

Γd =


γ0 γ0µ

+
1 γ1 γ1µ

+
1

γ0µ
+
1 γ0µ

+
2 γ1µ

+
1 γ1µ

+
2

γ1 γ1µ
+
1 γ2 γ2µ

+
1

γ1µ
+
1 γ1µ

+
2 γ2µ

+
1 γ2µ

+
2

 ,

γl =

∫ ∞
0

ulk(u)du and µ+
j = lim

w↓0
E[Zj |W = w].

Proof. Let

θlj =
1

nhn

n∑
i=1

(
Wi

hn

)l
Zji k

+
ihn
, l, j = 0, 1, 2.

Then, by the change of variables u = w/hn,

E[θlj ] = h−1
n E

[(
Wi

hn

)l
Zji k

+
ihn

]

=

∫ ∞
0

ulk(u)µj(uhn)f(uhn)du

= µ+
j f(0+)γl + o(1),

where µj(w) = E[Zj |W = w] and the convergence follows by the Dominated Convergence theorem. As

for the variance

V ar(θlj) ≤
(
nh2

n

)−1 E

[(
Wi

hn

)2l

Z2j
i k

+2
ihn

]

= (nhn)−1
∫ ∞

0
u2lk2(u)µ2j(uhn)f(uhn)du

= o(1),

again by the Dominated Convergence theorem.
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We now consider the asymptotic behaviour of the numerator. Define the function

ζV (w, z) = α0V (w) + α1V (w)z − α+
0V + α+

1V z

−
(
α̇+

0V + α̇+
1V z
)
w − 1

2

(
α̈+

0V + α̈+
1V z
)
w2,

where α̇+
0V = limw↓0 ∂α0V (w)/∂w and α̈+

0V = limw↓0 ∂
2α0V (w)/∂w2, and similarly for α1V . Note that

α̇+
0V = α+

2V and α̈+
0V = α+

3V and observe that

sup
0<w<Mhn

|ζV (w, z)| = o(h2
n)(1 + |Z|).

Lemma A.2 (Numerator: Expectation)

E

[
1

nhn

n∑
i=1

SihnV
+
i k

+
ihn

]
→p

1

2
f(0+)h2

n(b+V + o(1)),

where

b+V =


γ2(α̈+

0V + α̈+
0V µ

+
1 )

γ2(α̈+
0V µ

+
1 + α̈+

0V µ
+
2 )

γ3(α̈+
0V + α̈+

0V µ
+
1 )

γ3(α̈+
0V µ

+
1 + α̈+

0V µ
+
2 )

 .
Proof. Let

ulj =
1

nhn

n∑
i=1

(
Wi

hn

)l
Zji V

+
i k

+
ihn
, l, j = 0, 1.

Then, write

E[ulj ] = h−1
n E

[(
Wi

hn

)l
Zji V

+
i k

+
ihn

]

= h−1
n E

[(
Wi

hn

)l
Zji

(
1

2

(
α̈0V (0+) + α̈1V (0+)Zi

)
W 2
i + ζV (Wi, Zi)

)
k+
ihn

]

= h−1
n

1

2
α̈0V (0+)E

[(
Wi

hn

)l
ZjiW

2
i k

+
ihn

]
+ h−1

n

1

2
α̈1V (0+)E

[(
Wi

hn

)l
Zj+1
i W 2

i k
+
ihn

]

+ h−1
n E

[(
Wi

hn

)l
Zji ζV (Wi, Zi)k

+
ihn

]
.

By the change of variables u = w/hn,

h−1
n E

[(
Wi

hn

)l
ZjiW

2
i k

+
ihn

]
= h2

n

∫ ∞
0

ul+2k(u)µj(uhn)f(uhn)du

= h2
nµ

+
j f(0+)γl+2 + o(1),

and similarly

h−1
n E

[(
Wi

hn

)l
Zj+1
i W 2

i k
+
ihn

]
= h2

nµ
+
j+1f(0+)γl+2 + o(1).
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On the other hand, assume without loss of generality that [−M,M ] contains the support of k, so that

h−1
n E

[(
Wi

hn

)l
Zji ζV (Wi, Zi)k

+
ihn

]
= o(h2

n).

Lemma A.3 (Numerator: Conditional Expectation)

1

nhn

n∑
i=1

E[SihnV
+
i k

+
ihn
|Wi, Zi] =

1

nhn

n∑
i=1

E[SihnV
+
i k

+
ihn

] + op(h
2
n).

Proof. We have

1

nhn

n∑
i=1

E[SihnV
+
i k

+
ihn
|Wi, Zi] =

1

nhn

n∑
i=1

Sihnk
+
ihn

(
1

2

(
α̈0V (0+) + α̈1V (0+)Zi

)
W 2
i + ζV (Wi, Zi)

)

=
1

2
α̈0V (0+)

1

nhn

n∑
i=1

Sihnk
+
ihn
W 2
i +

1

2
α̈1V (0+)

1

nhn

n∑
i=1

Sihnk
+
ihn
ZiW

2
i

+
1

nhn

n∑
i=1

Sihnk
+
ihn
ζV (Wi, Zi).

Observe that

V ar

(
1

nhn

n∑
i=1

Sihnk
+
ihn
W 2
i

)
=
(
nh2

n

)−1
V ar

(
Sihnk

+
ihn
W 2
i

)
≤ C (nhn)−1 h−1

n E
[
SihnS

′
ihnk

+2
ihn
W 4
i

]
= O

(
(nhn)−1 h4

n

)
= o(1),

since for l, j = 0, 1, 2

h−1
n E

[(
Wi

hn

)l
Zji k

+2
ihn
W 4
i

]
= h4

n

∫ ∞
0

ulk2(u)µj(uhn)f(uhn)du

= h4
nµ

+
j f(0+)vl + o(1),

where

vl =

∫ ∞
0

ulk2(u)du.

Similarly,

V ar

(
1

nhn

n∑
i=1

Sihnk
+
ihn
ZiW

2
i

)
= o(1).

and

V ar

(
1

nhn

n∑
i=1

Sihnk
+
ihn
ζV (Wi, Zi)

)
= o(1).
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Note that
1

nhn

n∑
i=1

Sihnk
+
ihn

(
V +
i − E[V +

i |Wi, Zi]
)

=
1

nhn

n∑
i=1

Sihnk
+
ihn
εVi ,

where εVi = Vi − E[Vi|Wi, Zi] denotes the regression error. Then, we have the following result.

Lemma A.4 (Numerator: Conditional Variance)

V ar

(
1

nhn

n∑
i=1

Sihnk
+
ihn

(
V +
i − E[V +

i |Wi, Zi]
))

=
1

nhn
f(0+)ΣV + + o(1),

where

ΣV + =


v0 v0q

+
1 v2 v2q

+
1

v0q
+
1 v0q

+
2 v2q

+
1 v2q

+
2

v2 v2q
+
1 v4 v4q

+
1

v2q
+
1 v2q

+
2 v4q

+
1 v4q

+
2

 ,

vl =

∫ ∞
0

ulk2(u)du and q+
j = lim

w↓0
E[Z2jε2

Vi |W = w].

Proof. Consider the generic term, for l, j = 0, 1

1

nhn

n∑
i=1

(
Wi

hn

)l
Zji k

+
ihn
εVi ,

and its variance, which equals

(nhn)−1 h−1
n E

[(
Wi

hn

)2l

Z2j
i k

+2
ihn
ε2
Vi

]
= (nhn)−1

∫ ∞
0

u2lk2(u)qj(uhn)f(uhn)du

= (nhn)−1 f(0+)q+
j v2l + o(1)

where qj(w) = E[Z2jε2
Vi
|W = w].

Lemma A.5 (Numerator: Conditional Covariance)

Cov

(
1

nhn

n∑
i=1

Sihnk
+
ihn
εYi ,

1

nhn

n∑
i=1

Sihnk
+
ihn
εXi

)
=

1

nhn
f(0+)ΣY X+ + o(1),

where

ΣY X+ =


v0 v0r

+
1 v2 v2r

+
1

v0r
+
1 v0r

+
2 v2r

+
1 v2r

+
2

v2 v2r
+
1 v4 v4r

+
1

v2r
+
1 v2r

+
2 v4r

+
1 v4r

+
2


and

r+
j = lim

w↓0
E[Z2jεYiεXi |W = w].

Proof. The proof is analogous to the previous Lemma, and hence it is omitted.
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Lemma A.6 (Numerator: Conditional CLT)

(nhn)−1/2
n∑
i=1

(
Sihnk

+
ihn
εYi

Sihnk
+
ihn
εXi

)
→d f(0+)N

(
0,

[
ΣY + ΣY X+

ΣY X+ ΣX+

])
.

Proof. Consider a generic term for l, j = 0, 1

1√
nhn

n∑
i=1

(
Wi

hn

)l
Zji k

+
ihn
εVi .

We apply Lyapounov with third absolute moment. By the lemma on the asymptotic variance, we need

to establish

(nhn)−1/2 h−1
n E

[(
Wi

hn

)3l

Z3j
i k

+3
ihn
ε3
Vi

]
= o(1).

But note that, defining sj(w) = E[Z3jε3
Vi
|W = w],

h−1
n E

[(
Wi

hn

)3l

Z3j
i k

+3
ihn
ε3
Vi

]
=

∫ ∞
0

u3lk3(u)sj(uhn)f(uhn)du

= O(1).

Lemma A.7 (Numerator: Unconditional CLT)

(nhn)−1/2
n∑
i=1

(
Sihnk

+
ihn
Y +
i

Sihnk
+
ihn
X+
i

)
− (nhn)1/2h2

n

2
f(0+)

(
b+Y
b+X

)
→d f

1/2(0+)N

(
0,

[
ΣY + ΣY X+

ΣY X+ ΣX+

])
.

Proof. It follows from previous Lemmas.

Denote

α̂+
hn
− α+

hn
=



α̂+
0Y − α

+
0Y

α̂+
1Y − α

+
1Y

hn
(
α̂+

2Y − α
+
2Y

)
hn
(
α̂+

3Y − α
+
3Y

)
α̂+

0X − α
+
0X

α̂+
1X − α

+
1X

hn
(
α̂+

2X − α
+
2X

)
hn
(
α̂+

3X − α
+
3X

)


α̂−hn − α

−
hn

=



α̂−0Y − α
−
0Y

α̂−1Y − α
−
1Y

hn
(
α̂−2Y − α

−
2Y

)
hn
(
α̂−3Y − α

−
3Y

)
α̂−0X − α

−
0X

α̂−1X − α
−
1X

hn
(
α̂−2X − α

−
2X

)
hn
(
α̂−3X − α

−
3X

)


and

Σ+ =

[
ΣY + ΣY X+

ΣY X+ ΣX+

]
Σ− =

[
ΣY − ΣY X−

ΣY X− ΣX−

]
,

where the definition of Σ− is like Σ+ but with limits to the left of w = 0.
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Lemma A.8 (Joint CLT)

√
nhn

(
α̂+
hn
− α+

hn
− α̂−hn + α−hn

)
− (nhn)1/2h2

n

2

[
Γ−1
d 0

0 Γ−1
d

](
b+Y − b

−
Y

b+X − b
−
X

)

→d f
−1/2(0+)

[
Γ−1
d 0

0 Γ−1
d

]
N (0,Σ+ + Σ−) .

Proof. It follows from previous Lemmas and the asymptotic independence of (nhn)−1/2
(
α̂+
hn
− α+

hn

)
and (nhn)−1/2

(
α̂−hn − α

−
hn

)
.

Define

Ω = (Σ+ + Σ−).

Proof of the Theorem 4.1:. From (20),√
nhn

(
β̃ − β0

)
= Q2

√
nhn

(
δ̂hn − δhn

)
+ oP (1).

Then, apply the previous Lemma and Slutsky’s Lemma.

A.2 Nonparametric Estimators

A.2.1 Binary IV Case

We first introduce some notation that will be used throughout this Section. Henceforth, A′, rank(A),

A−, tr(A) and |A| := (tr(A′A))1/2 denote the transpose, rank, Moore-Penrose generalized inverse,

trace and the Euclidean norm of a matrix A, respectively. For generic random vectors ζ and ξ, let

Fζ and Fζ/ξ be the cumulative distribution function (cdf) and conditional cdf of ζ and ζ given ξ,

respectively. Denote the corresponding densities with respect to a σ-finite measure µ(x) by fζ and

fζ/ξ. Unless otherwise stated, the underlying measure will be the Lebesgue measure. Let Sζ denote the

support of ζ. Let L2(ζ) denote the Hilbert space with inner product 〈h, g〉 :=
∫
f(x)g(x)dFζ(x) and

the corresponding norm ‖g‖22 := 〈g, g〉. Henceforth, sometimes we drop the domain of integration for

simplicity of notation. For a linear operator K : L2(X)→ L2(Y ), denote the subspaces R(K) := {f ∈
L2(Y ) : ∃s ∈ L2(X),Ks = f} and N (K) := {f ∈ L2(X) : Kf = 0}. Let D(K) denote the domain of

definition of K. Let K∗ denote the adjoint operator of K. We will use some basic results from operator

theory and Hilbert spaces. See Carrasco, Florens and Renault (2006) for an excellent review of these

results.

Equation (7) provides an integral equation of the first kind that can be used for estimating g.

Similar estimators have been proposed before in Newey and Powell (2003), Hall and Horowitz (2005),

Blundell, Chen and Kristensen (2007), Darolles, Fan, Florens and Renault (2011), Horowitz (2011),

Chen and Pouzo (2012) and Santos (2012), to mention just a few. Here, we follow closely Blundell,

Chen and Kristensen (2007). Although, strictly speaking, our model is not given by a conditional

moment restriction on a unique set of covariates, we can easily adapt the existing results to make them

applicable in our setting. For simplicity, we focus here on the univariate Z and X case.
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There are many nonparametric methods that can be used to estimate m and A. Here we follow

Blundell, Chen and Kristensen (2007) and use a sieve OLS estimator (SLS), see also Ai and Chen

(2003) and Newey and Powell (2003). Optimally weighted estimators can be obtained applying ideas in

Blundell, Chen and Kristensen (2007). We assume we have a random (i.e. independent and identically

distributed, in short iid) sample {(Yi, Xi, Zi, Ti)}ni=1 of size n ≥ 1, with the same distribution as the

fourth-dimensional vector (Y,X,Z, T ). We assume g is in a suitable space of smooth functions. Suppose

SX is a bounded interval of R, with non-empty interior. For any smooth function h : SX ⊂ R→ R and

some r > 0, let [r] be the largest integer smaller than r, and

‖h‖∞,r := max
j≤η

sup
x∈SX

∣∣∇jh(x)
∣∣+ sup

x 6=x′

∣∣∇[r]h(x)−∇[r]h(x′)
∣∣

|x− x′|r−[r]
.

Further, let Crc (SX) be the set of all continuous functions h with ‖h‖∞,r ≤ c. Since the constant c

is irrelevant for our results, we drop the dependence on c and denote Cr(SX). We shall assume that

g ∈ Cr(SX) for some r and approximate Cr(SX) with a sieve space Gn satisfying some conditions

below. Define kn = dim(Gn). Given an integer s > 0 define the Sobolev norm ‖h‖2s :=
∑s

l=0

∥∥h(s)
∥∥2

2
,

where h(s)(x) := ∂sh(x)/∂xs, with h(0) ≡ h.
We approximatemt(z) ≡ m(z, t) := E[Y |Z = z, T = t] by the function m̃(z, t) :=

∑
j∈Jn mtjp0j(z, t),

where p0j are some known basis functions and Jn := # (Jn) → ∞ as n → ∞. We write m̃(z, t) =

pJn(z, t)′mJn(t), where pJn(z, t) = (p01(z, t), ..., p0Jn(z, t))′ and mJn(t) = (mt1, ...,mtJn). Define P :=

(pJn(Z1, T1), ..., pJn(Zn, Tn))′. Then, the SLS is

m̂(z, t) = pJn(z, t)′(P ′P )−
n∑
i=1

pJn(Zi, Ti)Yi.

More precisely, we take pJn(z, t) = (BJ2n(z), t ·BJ2n(z)), where BJ2n(z) is a J2n · 1 vector of univariate

B-splines or polynomial splines and Jn = 2J2n. We define m̂(z) := m̂(z, 1)− m̂(z, 0).

Similarly, for a fixed g, we consider the sieve estimator of Ag as Âg = Â1g − Â0g, where

Âtg = pJn(z, t)′(P ′P )−
n∑
i=1

pJn(Zi, Ti)g(Xi).

Finally, the SLS for g is given by the solution of

ĝn = arg min
g∈Gn

1

n

n∑
i=1

(
m̂(Zi)− Âg(Zi)

)2
.

We assume the sieve space Gn is of the form

Gn = {gn : SX → R, sup
x
|gn(x)| < c, sup

x

∣∣∣∇[r]gn(x)
∣∣∣ < c

gn(x) = ψkn(x)′Π, gn(x0) = 0},

where ψkn(·) is a kn × 1 vector of known basis that are at least γ = ([r] + 1) times differentiable

and Π is a kn × 1 vector of coefficients to be estimated. In the application we use B-splines for ψkn .
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Blundell, Chen and Kristensen (2007) discussed practical ways to incorporate the constraints into the

computation of ĝn. For large samples the unconstrained estimator performs well. Note that gn(x0) = 0

is a normalization restriction (location), where x0 is an arbitrary point in SX .
The following sieve measure of ill-posedness plays a crucial role in the asymptotic theory of sieve

estimators, see Blundell, Chen and Kristensen (2007),

τn := sup
g∈Gn

‖g‖∥∥(A∗A)1/2g
∥∥ .

Consider the following assumptions, which are the same as in Blundell, Chen and Kristensen (2007),

and therefore are discussed extensively there.

Assumption 5 Suppose that

1. The data {(Yi, Xi, Zi, Ti)}ni=1 are iid and Assumption 2 holds.

2. (i) g ∈ Cr(SX) for r > 1/2 and g(x0) = 0; (ii) E[|X|2a] <∞ for some a > r.

3. For t = 1, 2, mt ∈ Crm(SZ) with rm > 1/2 and E[gn(X)|Z = ·, T = t] ∈ Crm(SZ) for any gn ∈ Gn.

4. (i) The smallest and the largest eigenvalues of E[BJ2n(Z) · BJ2n(Z)′] are bounded and bounded

away from zero for each J2n; (ii) BJ2n(Z) is a B-spline basis of order γ > rm > 1/2; (iii) the

density of Z is continuous, bounded, and bounded away from zero over its support SZ , which is a

compact interval with non-empty interior.

5. (i) kn →∞, J2n/n→ 0; (ii) limn→∞ (J2n/kn) = c0 > 1 and limn→∞
(
k2
n/n

)
= 0.

6. There is gn ∈ Gn such that τ2
n ‖A(g − gn)‖2 ≤ C ‖g − gn‖2.

The following Theorem establishes rates for ‖ĝn − g‖ . Its proof is the same as that of Theorem 2 in

Blundell, Chen and Kristensen (2007), hence it is omitted.

Theorem A.9 Let Assumption 5 hold. Then,

‖ĝn − g‖ = OP

(
k−rn + τn ·

√
kn
n

)
.

A.2.2 RDD Case

The estimator in the RDD case is also a SLS for g given by the solution of

ĝn = arg min
g∈Gn

1

n

n∑
i=1

(
m̂(Zi)− Âg(Zi)

)2
,

where now m̂ and Â are estimated by local linear kernel estimators. For the sake of space, we only

consider the univariate case for X and Z, and provide only a sketch of the arguments to avoid repetition
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with the existing literature. Similarly as before, we write m̂(z) := m̂+(z)−m̂−(z) and Âg = Â+g−Â−g,
where m̂+(z) = â in the solution to the least squares problem

(â, b̂0, b̂1) = arg min
a0,b0,b1

n∑
i=1

(Yi − a0 − b0W − b1(Zi − z))2 khn(Wi)khn(Zi − z)1(W ≥ 0),

where khn (zl) = h−1
n k (zl/hn), k (·) is a kernel function, and hn denotes a bandwidth parameter satis-

fying regularity conditions described below. Similarly, m̂−(z) = â in

(â, b̂0, b̂1) = arg min
a0,b0,b1

n∑
i=1

(Yi − a0 − b0W − b1(Zi − z))2 khn(Wi)khn(Zi − z)1(W < 0),

Â+g = â in

(â, b̂0, b̂1) = arg min
a0,b0,b1

n∑
i=1

(g(Xi)− a0 − b0W − b1(Zi − z))2 khn(Wi)khn(Zi − z)1(W ≥ 0),

and Â−g = â in

(â, b̂0, b̂1) = arg min
a0,b0,b1

n∑
i=1

(g(Xi)− a0 − b0W − b1(Zi − z))2 khn(Wi)khn(Zi − z)1(W < 0).

We can follow Theorem 2 in Blundell, Chen and Kristensen (2007) to obtain the rates for ĝn,

‖ĝn − g‖ = OP

(
k−rn + τn ·

√
kn
n

)
,

provided we show that

‖m̂−m‖ = OP

(√
kn
n

)
and

sup
g∈Gn

∥∥∥(Â−A) g(Zi)
∥∥∥ = OP

(√
kn
n

)
;

see Claim 2 in p. 1658 of Blundell, Chen and Kristensen (2007). But Theorem 6 in Masry (1996) shows

that

‖m̂−m‖ = OP (dn) ,

where dn =
(
log n/nh2

n

)1/2
+ h4

n. Combining standard empirical processes arguments with the results

of Masry (1996), we similarly obtain

sup
g∈Gn

∥∥∥(Â−A) g(Zi)
∥∥∥ = OP (dn) .

Therefore, we require rates on the bandwidth hn so that

dn = OP

(√
kn
n

)
.
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This provides some flexibility in how to choose the bandwidth hn. Higher order polynomial estimation

improves the bias of the first step estimates, and leads to wider set of possible bandwidths. The reader

is referred to Blundell, Chen and Kristensen (2007) and Masry (1996) for discussion on rates permitted

for kn and hn to obtain the desired rates for ĝn−g under different scenarios on the rate for the measure

of ill-posedness.
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