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Abstract
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1 Introduction

Asset pricing models commonly rely on a stochastic discount factor (SDF), whose dynamics is deter-
mined by a state vector, X, comprised of either observable or unobservable components. Examples
include the consumption CAPM and the intertemporal CAPM1 (henceforth, CCAPM and ICAPM),
where, in their original form, either consumption growth or a state vector without intertemporal per-
sistence determine the dynamics of the SDF, key macroeconomic variables as well as the pricing of
securities such as stocks, bonds, exchange rates, etc. When these models are confronted with the data,
however, in different empirical settings, consensus has emerged that they generally fail to describe a
range of key characteristics such as the aggregate equity premium and volatility (as well as risk premia
in other asset classes), to fit the moments of consumption growth and to price the cross-section of
stocks; see, e.g., the thorough reviews in Cochrane (2005) and Munk (2013).

Important extensions of the models have subsequently been developed, including the long-run risk
model by Bansal & Yaron (2004), the dynamic rare disaster model by Gabaix (2012), and the regime-
switching CCAPM by Lettau, Ludvigson & Wachter (2008). While these models differ greatly in their
design, two simple commonalities between them exist; they specify the components of the state vector
and they parameterize their dynamics. Specifically, the regime-switching CCAPM and the long-run
risk model consider shocks to consumption growth and its volatility as state variables, but imposes
different dynamics on such shocks. The disaster model, on the other hand, lets the state vector
depend on systematic and stock specific resilience, capturing the recovery of wealth in the wake of a
disaster. Despite being comprised of distinct economic drivers and their dynamics being parameterized
differently, these models often let shocks to the state vector be very persistent and small in magnitude
relative to the permanent innovations of the SDF, making them hard to detect empirically using
standard statistical techniques.2 These models calibrate and describe aggregate characteristics well,
however, their performance in terms of cross-sectional pricing is mixed.3 This suggest that the state
vector specifications of the three respective models fall short of fully capturing its dynamics as well
as its pricing in the cross-section, raising two important questions: Which key features should asset
pricing models have? And what are the dynamic properties of the state vector?

To address these questions, this paper provides a new framework for studying state vector dynamics

1See, among others, Rubinstein (1976), Breeden & Litzenberger (1978) and Breeden & Litzenberger (1979) as well as
Merton (1973) and Campbell (1993) for some early references on the two models.

2For example, and as will be detailed below, the shocks to consumption growth in the long-run risk model have a half-life
of approximately 53 months; they are permanent in the regime-switching CCAPM; and the shocks to systematic and
stock specific resilience have a half-life of 65 months in the dynamic rare disaster model. These half-lives are not observed
in the autocorrelation functions of neither consumption growth nor asset returns.

3Whereas, among others, Parker & Julliard (2005), Bansal, Dittmar & Lundblad (2005), Bansal, Dittmar & Kiku (2007)
and Gabaix (2012) provide support for either long-run risk in consumption growth or rare disasters, along with their
recovery, as important determinants in matching the moments of key financial variables, Constantinides & Ghosh (2011)
and Beeler & Campbell (2012) find reverse conclusions, e.g., that the long-run risk model fails to simultaneously match
the moments of aggregate consumption and dividend growth, the unconditional volatility of the aggregate and risk-free
return, and to price the cross-section of stock returns. They attribute the shortcoming of the model to the latent state
variables, driving the intertemporal dynamics of the economic system, not being sufficiently persistent.
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and its associated risk prices, letting, however, the components of the state vector remain unspecified
and without parameterizing their dynamics. Specifically, in a discrete time setting where the log-SDF
follows an affine jump diffusion (Duffie, Pan & Singleton 2000) with an unknown and unspecified state
vector and, thus, decomposes into permanent and transitory components, see, e.g., Hansen, Heaton &
Li (2008) and Hansen & Scheinkman (2009), we study the contribution of such components to the un-
conditional asset return premium using frequency domain techniques. First, we show analytically that
the co-spectrum between asset returns and the SDF decomposes into three separate contributions: (1)
one from permanent Gaussian shocks; (2) one from permanent non-Gaussian shocks (e.g., disasters);
and (3) one from the state vector. This is labeled the permanent-transitory spectrum decomposition.
Importantly, (3) is the only contribution that varies across frequencies, and whose magnitude and
sign are determined by the intertemporal dynamics of the state vector and its associated risk prices.
The remaining two contributions are constant across frequencies. Second, we utilize these insights
and develop new frequency dependent covariance measures that allow us to study the dynamics of
the state vector nonparametrically as well as the risk prices associated with its different components.
Third, since the SDF is latent in our setting, we show analytically how to utilize these new covariance
measures between asset returns, or portfolios of returns, to uncover such information. This allow us
to map out a frequency term structure of risk that facilitates better identification of pricing factors.
Importantly, even if we utilize known, and observable, risk factors in the literature, such as the market
or Fama & French (1993) factors, as proxies for portfolio returns, our decomposition only requires
that these factors have non-trivial loadings on components of the state vector for us to learn about
their frequency dependencies and associated risk prices.4 Hence, conditional on non-zero loadings,
our approach is fully nonparametric.5 This has a distinct advantage in that we are able to map out
which features asset pricing models should have to comply with the implied state vector dynamics in
a cross-section of assets and explain why some models are successful. As a by-product of our analysis,
we develop spectrum results for four asset pricing models and new analytical results for log-linearized
versions of the dynamic rare disaster model and the regime-switching CCAPM.

Our theoretical contributions and framework are related to others in the literature.6 First, our
spectrum decomposition is related to the permanent-transitory decompositions proposed in Fama &
French (1988), Lamoureux & Zhou (1996), Hansen et al. (2008), Hansen & Scheinkman (2009) and
Borovicka, Hansen, Hendricks & Scheinkman (2011). They study the pricing of cash flow at different
time horizons, with particular emphasis on the long-run, implicitly learning about both the permanent
and transitory components of the SDF, which affect holding period returns at different horizons.
Second, Calvet & Fisher (2007), Ortu, Tamoni & Tebaldi (2013) and Bandi & Tamoni (2017) provide
dynamic decompositions of asset returns, consumption and the price-dividend ratio based on different
time domain methods. Furthermore, they study the pricing implications of such decompositions, using

4This is ubiquitously satisfied for parametric asset pricing models, e.g., all the ones referenced above.
5Of course, nonparametric in this setting refers to the fact that the dynamic properties of the state vector as well as its
dimension have been left unspecified. We are still working within the confines of models with a log-affine SDF.

6We will briefly explain the differences here and defer details to Sections 3.3 and 5.
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both aggregate equity returns and the twenty-five Fama & French (1993) portfolios, demonstrating
that by isolating shocks to consumption or the price-dividend ratio with different persistence, this
generates to improved model fit. In the process, they provide analyses of persistence-specific betas in
the CCAPM model. In a similar spirit, Bandi, Chaudhuri, Lo & Tamoni (2019) decompose the CAPM
beta in the frequency domain and demonstrate that by measuring market betas at lower frequencies,
this substantially reduces pricing errors for the twenty-five Fama-French portfolios.7 Moreover, they
show that their spectral factor model reduces portfolio volatility in an asset allocation exercise.

Our framework differs from existing studies in that we use the frequency domain to study the pricing
of different components of the state vector without working within the confines of a model (CAPM
or CCAPM), and we refrain from imposing dynamics on the state vector.8 It is fully nonparametric,
and it allows us to disentangle and infer the properties and pricing of state vector components by
studying the permanent-transitory spectrum decomposition of the one-period equity premium using
measures constructed solely from (portfolios of) asset returns. Specifically, we demonstrate how to
use frequency decomposed covariance ratios, labelled frequency risk, between asset returns to identify
dynamic features of the state vector and analyze how these are priced in the cross-section. Hence,
our framework is complementary to those in Hansen et al. (2008), Hansen & Scheinkman (2009) and
Borovicka et al. (2011) as well as the references above studying persistence-specific betas. Given its
nonparametric nature, we may formulate stylized facts about the state vector and its risk prices that
asset pricing models will have to comply with. For example, as detailed below, we use our carefully
constructed measures to uncover frequency dependent factors related to components of the state
vector in a large cross-section of US stocks, demonstrating that these contain important information
not captured by standard risk factors and carry significant cross-sectional pricing implications.

Finally, our framework and analysis is related to prior studies in finance utilizing frequency domain
methods: Berkowitz (2001), Cogley (2001) and Yu (2012) provide frequency-domain estimators of the
CCAPM as well as the long-run risk and habit models and demonstrate that they fit (much) better at
lower frequency ordinates; using wavelet techniques, Chinco & Ye (2018) uncover a significant relation
between high-frequency movements in trading volume and stock returns, unrelated to firm characteris-
tics; and Dew-Becker & Giglio (2016) decompose risk prices and the propagation of permanent shocks
to asset pricing models in the frequency domain and use their framework to quantify the weight various
asset pricing models place on certain frequency ranges. As explained above, our aim and framework
differ from these important contributions, making our analyses complementary.

In addition to introducing a new theoretical framework for studying dynamics of the state vector
and risk prices nonparametrically, we apply our methodology to the (entire) cross-section of US stocks
and identify some new and interesting results. Specifically, we calculate the frequency risk associated
with market returns, the Fama & French (1993) value and size factors, and with the Carhart (1997)

7Gençay, Selçuk & Whitcher (2003, 2005) similarly decompose betas at different time scales with, however, the focus
of testing frequency-specific versions of the CAPM rather than study how dynamic decompositions aid the pricing of
returns at the aggregate level (that is, not the individual components of the returns).

8We will, however, provide several examples of dynamic asset pricing models that are embedded in our framework.
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momentum factor and analyze the measures using our permanent-transitory spectrum decomposition.
First, we document systematic dispersion in excess returns (alphas) across all frequency dependent
portfolios. Second, when sorting on frequency risk utilizing market returns, we find a striking hockey
stick pattern in alphas, with a large positive risk premium commanded by stocks having excess risk at
very low frequencies and a smaller, yet still significant, negative risk premium at high frequencies. The
excess returns are unspanned by a battery of appraised risk factors and characteristics in the literature.
Moreover, the alphas, with economically substantial magnitudes of approximately 6% and −2% per
year, demonstrate that our frequency risk concept adds an important dimension to cross-sectional
asset pricing. Third, when the frequency risk measure is constructed using an (orthogonalized) value
factor, we similarly find a pronounced hockey stick pattern. For an orthogonalized size factor, we
find a significant and positive risk premium at low frequencies, a negative premium at intermediate
frequencies and no significant risk at high frequencies. Importantly, the LF factors extrapolated
using the market, value and size portfolio returns are virtually uncorrelated. Hence, by applying our
frequency domain framework, we have demonstrated that the state vector has two (or more) persistent
transitory components, in addition to a risk factor operating at intermediate frequencies. Fourth, when
constructing frequency risk using the momentum factor, we find a significant negative risk premium
associated with HF risk and a flat term structure at lower frequencies. Hence, in combination with
the mildly correlated HF factor extrapolated using market returns, this allows us to deduce that the
state vector has, at least, one dynamic component operating at higher frequencies.

Throughout the empirical analysis, we discuss our findings in relation to the long-run risk model,
the dynamic disaster model, the regime-switching CCAPM and our analytical results for the SDF and
the equity premium. Whereas these models, indeed, can accommodate LF components in the state
vector and their cross-sectional pricing, the models lack the flexibility to capture all dimensions of
frequency risk. The nonparametric nature of our framework, thus, suggests to increase the number of
transitory components in the SDF, allowing them to have risk prices of opposite sign.

Finally, we note that the importance of low-frequency risk is consistent with the empirical findings
in Berkowitz (2001), Cogley (2001), Calvet & Fisher (2007), Yu (2012), Ortu et al. (2013), Dew-
Becker & Giglio (2016), Bandi & Tamoni (2017) and Bandi et al. (2019), who document improved
model- and/or utility-specification fit, lower pricing errors, tighter risk price estimation and better
asset allocation from using low-frequency variation. However, we add to their findings by identifying
important components of the state vector nonparametrically using a large cross-section of stocks and
by quantifying their associated risk premia. Moreover, we also document significant dimensions of risk
in other parts of the frequency domain, besides lower frequencies.

The outline of the paper is as follows. Section 2 introduces the pricing framework, definitions,
assumptions and provide examples of asset pricing models. Section 3 introduces the theory of fre-
quency dependent risk and establishes analytical results that lay the foundation for the nonparametric
analysis. Section 4 discusses frequency domain implications for different asset pricing models. Section
5 operationalizes the frequency risk concept and provides the empirical analysis. The appendix in
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Section A develops additional theory for the long-run-risk model, the dynamic rare disaster model and
the regime-switching CAPM, and the one in Section B contains proofs. The following notation is used
throughout. For some matrix A and vector b, ‖A‖ =

√
Tr (AA′) denotes Frobenius norm of A and

Tr (A) is its trace; D(b) is a diagonal matrix with elements b; and ◦ denotes the Hadamard product.
For some information filtration Ft, Et[ · ] = E[ · |Ft] is the conditional expectation and Vt[ · ] = V[ · |Ft]
is the conditional variance. Lastly, we denote the imaginary unit by i =

√
−1 and remark that a

standard i may still be used for enumeration.

2 Definitions, Dynamic Setting and Examples

Before introducing a new framework for studying the dynamics of the state vector and its associated
risk prices, we describe a general discrete time stochastic discount factor (SDF) setting as well as
introduce various frequency domain statistics that will be used throughout. The exposition is pur-
posely given in discrete time since all the economic models, we consider as illustrative examples, were
originally designed as such. Moreover, since the estimation is necessarily carried out using discretely
sampled data, we avoid taking a stand on, and examine the effects of, how the discretization of a
continuous time process affect the properties of our empirical risk measures.

2.1 The Stochastic Discount Factor

First, let Xt be a d-dimensional vector Markov process and (Ω,F , (F)t≥0,P) define a filtered prob-
ability space, on which all stochastic processes are defined. Then, we adopt a discrete asset pricing
framework that is similar to the affine setting of Duffie et al. (2000). Specifically, we stipulate that
the discrete time SDF, denoted by St, is log-linear with Gaussian and, possibly, Poisson shocks,

∆ lnSt+1 = µ+ F ′Xt +G′tWt+1 +H ′∆Jt+1, (1)

whereWt+1 ∈ Rk is a multivariate sequence of standard Gaussian random variables, and ∆Jt+1 ∈ Rk

is a vector of non-Gaussian shocks. In particular, for the vector Jt+1 = (Jt+1,1, . . . , Jt+1,k)′, we suppose
that Jt+1,i =

∑Nt+1,i

j=1 ψj,i, where Nt+1,i is a Poisson counting process and ψj,i is the (random) jump size
for the jth jump of the ith component. Moreover, the time-varying intensity of the vector counting
process Nt+1 = (Nt+1,1, . . . , Nt+1,k)′ is given by λt. Before detailing our pricing framework, and
relating it to the extant literature, let us impose some formal structure on (1):

Assumption 1 (Non-Gaussian Shocks). Conditional on Ft, we have for i = 1, . . . , k,

(i) Nt+1,i is independent of Nt+1,j when i 6= j;

(ii) ψt+1,i is independent with Et[ψt+1,i] = $t,i and Vt[ψ2
t+1,i] = ξt,i;

(iii) the components Nt+1,i and ψt+1,j are mutually independent for all i and j.
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Assumption 2 (Affine Dependence). Define the finite and fixed parameter matrices R ∈ Rk×k,
Ri ∈ Rk×k, i = 1, . . . d, λ0 ∈ Rk, λ1 ∈ Rk×d, $0 ∈ Rk, $1 ∈ Rk×d, ξ0 ∈ Rk, and ξ1 ∈ Rk×d.
Moreover, let $t = ($t,1, . . . , $t,k)′ and ξt = (ξt,1, . . . , ξt,k)′, then Gt, λt, $t and ξt are assumed to
be affine functions of the state vector Xt, in particular,

GtG
′
t = R+

d∑
i=1
RiXt,i, λt = λ0 + λ1Xt, $t = $0 +$1Xt and ξt = ξ0 + ξ1Xt.

First, note that this framework generalizes the equivalent settings in Alvarez & Jermann (2005)
and Hansen et al. (2008), who impose a similar structure on the SDF, but with several simplifying
assumptions. For example, Hansen et al. (2008) impose coefficient restrictions λt = 0 and Ri = 0, for
all t and i = 1, . . . , d, in addition to first-order vector autoregression (VAR) for Xt,

Xt+1 = ΦxXt +GxWt+1, (2)

where the d × d matrix Φx has eigenvalues that are strictly smaller than one, thus making the state
vector,Xt+1, a stationary sequence. Hence, we generalize their framework by accommodating stochas-
tic volatility in the SDF, non-Gaussian shocks as well as by avoiding parametric assumptions on the
dynamics of state vector. As will be explicated below, we only impose mild regularity conditions on
the spectral density of Xt+1, allowing for state variables that have excess low, business cycle or high
frequency variation. Second, the structure of the SDF in (1) has the familiar permanent-transitory
decomposition from the corresponding continuous time settings of, e.g., Hansen & Scheinkman (2009)
and Hansen (2012). Specifically, as in their case, the linear trend is captured by µ, the martingale
component by G′tWt+1 +(∆Jt+1−Et[∆Jt+1]), and the transitory “stationary” component by the com-
posite term F ′Xt + Et[∆Jt+1]. It is important to note, however, that we do not necessarily require
the latter to be a stationary process in the statistical sense, allowing, among others, Xt to contain
elements with dynamics described by Markov regime switching processes. This feature is important
since, in conjunction with the non-Gaussian shocks, it allow us to include the dynamic rare disaster
model and the regime-switching CCAPM, both described below, in our framework.

2.2 Frequency Domain Definitions

We rely on frequency domain techniques to decompose and study exposure to state vector, or factor,
risk. Let yt and xt be compatible vectors, for which

Cyx(h) = Cov(yt,xt−h), fyx(λ) = 1
2π

∞∑
h=−∞

Cyx(h)e−iλh, (3)

for i =
√
−1 and frequency λ, denote their cross-autocovariance function and co-spectral density,

respectively. Now, suppose yt and xt are observed at times t = 1, . . . , T and let λj = 2πj/T denote
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the Fourier frequencies, then, it follows from Parseval’s theorem that

Cyx(0) = 2π
∫ ∞

0
fyx(λ)dλ ' 2π

T − 1

T−1∑
j=1
< (fyx(λj)) (4)

with <( · ) denoting the real part of its argument. The last approximation holds using Riemann
integration, leaving an error that is generally of order O(T−1). Importantly, and as will be detailed
below, this decomposition provides a unique lens for studying dynamic contributions to an otherwise
static covariance measure. Moreover, to ensure that our frequency dependent decompositions are
well-defined, we require the following assumption on the state vector, Xt.

Assumption 3 (State vector). The co-spectrum of Xt satisfies ‖
∫∞

0 fXX(λ)dλ‖ <∞.

The high-level integrability condition on fXX(λ) is rather general, allowing us to avoid taking a
parametric stand on the exact dynamics of the state vector. For example, the condition is satisfied
by autoregressions such as (2) as well as Markov regime switching processes, and by cases where the
persistence of (a subset of) the state vector is described using persistent fractionally integrated or
local-to-unity processes. We provide examples of dynamic processes and asset pricing models that
satisfy Assumption 3 below. Importantly, by remaining agnostic about Xt, it not only lets us embed
many existing models in our framework, we establish nonparametric evidence of state vector features
that can guide future developments of asset pricing models. Of course, the asset pricing setting still
have to comply with the log-affine structure of the SDF as well as Assumptions 1 and 2.

2.3 Examples of Asset Pricing Models

The general theory is illustrated throughout using four different asset pricing models, which are widely
appraised in the literature. Before proceeding, however, we fix some notation. Let δ be the subjective
time preference rate, γ the relative risk aversion, ψ is the elasticity of intertemporal substitution, and
θ = (1− γ)/(1− 1/ψ). Moreover, let ct and rwt be the log-consumption and log-return on the wealth
portfolio, respectively, then, for an individual with Epstein & Zin (1989) preferences, we can write the
SDF as,

∆ lnSt+1 = −δθ − θ

ψ
∆ct+1 + (θ − 1)rwt+1, (5)

noting that corresponding SDF for time-additive power utility is recovered for θ = 1. The stochasticity
in (5) is, thus, driven by ∆ct+1 and rwt+1, which, in turn, may be determined by a vector of state
variables, Gaussian and non-Gaussian innovations. We give such examples next.9

Example 1. Suppose that ∆ct+1 ∼ N(µc, σ2
c ), rwt+1 ∼ N(µw, σ2

w) and Cov[∆ct+1, r
w
t+1] = σc,w, then

9The first two model representations are straightforward adaptations and re-parameterizations of existing results for the
log-normal CCAPM and long-run risk model, respectively, and are, thus, stated without proof.
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we may represent the SDF on the form (1), with

µ = −δθ − θ

ψ
µc − (θ − 1)µw, R =

(
σ2
c (θ/ψ)2 σc,w(θ/ψ)(θ − 1)

σc,w(θ/ψ)(θ − 1) σ2
w(θ − 1)2

)
,

the Brownian motion, Wt, being 2-dimensional and the remaining parameter matrices as well as the
state vector Xt contain only zeros. In this case, Assumption 3 is trivially satisfied.

Example 2. In the long-run risk (LRR) model of Bansal & Yaron (2004), the aggregate return on
the wealth portfolio is given by rwt+1 ' κ0 + κ1zt+1 − zt + ∆ct+1, where zt is the log-price-consumption
ratio, and, with z̄ being its average, κ1 = ez̄/(1 + ez̄) ∈ (0, 1) and κ0 = ln(1 + ez̄) − κ1z̄.10 Next, the
growth in (log-)consumption can be written as ∆ct+1 = µc + xt + σtηt+1, where

xt+1 = ρxxt + ϕxσtet+1, σ2
t+1 = σ2 + ν(σ2

t − σ2) + σvvt+1,

and the shocks ηt+1, et+1 and vt+1 are independent and standard Gaussian. Moreover, the persistence
parameters satisfy 0 ≤ ρx < 1 and 0 ≤ ν < 1, albeit close to unity.11 To solve the model, zt is
stipulated to be affine in the state variables zt+1 = A0 +A1xt+1 +A2σ

2
t+1, such that we may write the

SDF on the form (1) with state vector Xt = (xt, σ2
t )′, Gaussian shocks Wt = (ηt, et, vt)′, and

µ = (θ − 1)q − δ − µc
ψ
, q = −δ + (1− 1/ψ)µc + κ0 +A0(κ1 − 1) + κ1A2σ

2(1− ν),

F =
(

−1/ψ
(θ − 1)A2(κ1ν − 1)

)
, R =


0 0 0
0 0 0
0 0 λ2

v

 , R2 =


λ2
η 0 0

0 λ2
e 0

0 0 0

 ,
where λv = (θ − 1)κ1A2σv, λη = −γ, and λe = (θ − 1)κ1A1ϕe; the constants A0, A1 and A2 are
provided in Appendix A.1; and where the remaining parameter matrices in (1) contain zeros.

Example 3. We further illustrate our frequency domain theory for modified, adapted to fit the SDF
structure in (1), and log-linearized versions of the dynamic rare disaster model of Gabaix (2012) as
well as the regime-switching CCAPM of Lettau et al. (2008). As these, however, require separate
introductions, intuition and theoretical developments, we defer details to Appendices A.2 and A.3 for
simplicity of exposition. We emphasize here, however, that all results in the appendix are new.

3 The Theory of Frequency Dependent Risk

This section introduces the notion of frequency dependent risk for the broad class of asset pricing
models (1). Specifically, we will show that the study of the unconditional equity premium, including

10This log-linear approximation is known to be “very good”, even in the presence of price bubbles, see, e.g., Engsted,
Quistgaard & Tanggaard (2012) and Munk (2013), and it is exact if ψ = 1, see Hansen et al. (2008)

11Note that Bansal & Yaron (2004) report estimates of the persistence parameters ρx = 0.979 and ν = 0.987, suggesting
that shocks to consumption growth and its volatility have half-lives exceeding 52 months.
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the relation of asset returns to various pricing factors, depend crucially on the stationary component
of the respective models, F ′Xt, whereas the permanent components of the SDF carry no temporal
information about the state vector. We introduce a new frequency decomposition of pricing covari-
ances, which will have implications for the estimation and interpretation of state vector dynamics,
cross-sectional asset pricing, and risk-based investments, as will be shown in our empirical analysis
below. Finally, we introduce two new measures to study the proposed frequency decomposition empir-
ically. Despite providing examples from parametric models in Section 4, it is important to note that
our proposed tools are nonparametric and apply generally.

3.1 A Frequency Decomposition of the Equity Premium

Let us denote by ri,t the time-t log-return on asset i and, similarly, the one-period risk-free interest
rate by rf,t, then we may generally write the unconditional excess return as

E[ri,t+1 − rf,t] = Ci∆ lnS(0) + Jensen’s inequality correction. (6)

Motivated by this representation, and as alluded to in (4), we will introduce a new and general
frequency decomposition of Ci∆ lnS(0) to study the proficiency and implications of different asset
pricing models.12 To this end, we first establish the unconditional spectrum properties for the SDF:

Theorem 1. Suppose that the setup of Section 2.1 and the regularity conditions in Assumptions 1-3
hold. Moreover, let %t+1 = ∆ lnSt+1, gt+1 = G′tWt+1, and `t+1 = H ′∆Jt+1 then it follows that

(a) Cgg(0) = E[Tr(GtG
′
t)] <∞ and C``(0) = H ′ (E[D(λt − λt ◦ λt) ◦ D(ξt)])H <∞,

(b) f%%(λ) = (Cgg(0) +C``(0)) /(2π) + F ′fXX(λ)F ,

(c) C%%(0) = Cgg(0) +C``(0) + F ′ (2π
∫∞

0 fXX(λ)dλ)F .

Theorem 1 provides two key insights. First, spectrum contributions of gt+1 and `t+1 to the log-
innovations in the SDF, %t+1, are constants, implying that if the SDF only has permanent components,
its spectrum will be constant across frequencies, λ. This follows directly from the Gaussian and non-
Gaussian shocks being conditionally independent across time. However, if the SDF has a transitory
part, then we expect to see differential variation in its spectral density fXX(λ) at low and high fre-
quencies, depending on the dynamics of the state vector Xt.13 We shall refer to the representation in
Theorem 1(b) as the permanent-transitory spectrum decomposition. Second, as seen in Theorem 1(c),
this carries implications for the structure of the SDF variance, C%%(0), which is similarly composed of
contributions from factors that may be either persistent or short-lived (or both) as well as from perma-
nent components of the SDF. The relative importance of each component conveys information about
the underlying sources of economic uncertainty and, as a result, about how parametric asset pricing

12Note that we write Ci∆ ln S(0) instead of Cri∆ ln S(0) for notational simplicity.
13Of course, if Xt is independent over time, then its spectrum will be constant across λ, too.
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models should be designed. It is important to note that Theorem 1 applies to latent dependencies
in the unconditional risk premium, which is different from modeling time-variation in the conditional
risk premium, see, among others, Bollerslev, Engle & Wooldridge (1988), Harvey (1989), Jagannathan
& Wang (1996) and Lettau & Ludvigson (2010). Our framework also accommodates time-variation
in the conditional equity premium through the stochastic volatility matrix, Gt, and the time-varying
moments of the non-Gaussian shocks in Assumption 1.

Next, we study the co-spectrum Ci∆ lnS(0). However, before stating equivalent results, we impose
mild structure on ri,t, noting that this is satisfied by all four models in Section 2.3:

Assumption 4 (Asset Returns). ri,t+1 = µi + F ′iXt + G′i,tWt+1 + H ′i∆Jt+1 where Gi,t satisfies
regularity conditions that are similar to those stated in Assumption 2 for Gt .

Theorem 2. Suppose that the setup of Theorem 1 and the regularity conditions in Assumptions 1-4
hold. Moreover, let gi,t+1 = G′i,tWt+1, and `i,t+1 = H ′i∆Jt+1 then it follows that

(a) Cgig(0) = E[Tr(Gi,tG
′
t)] <∞ and C`i`(0) = H ′i (E[D(λt − λt ◦ λt) ◦ D(ξt)])H <∞,

(b) fi%(λ) = (Cgig(0) +C`i`(0)) /(2π) + F ′ifXX(λ)F ,

(c) Ci%(0) = Cgig(0) +C`i`(0) + F ′i (2π
∫∞

0 fXX(λ)dλ)F .

Theorem 2 shows that the spectrum decomposition of the SDF readily carries over to the pricing
of returns. That is, the unconditional pricing of ri,t will depend on permanent components, changing
the level of returns proportional to the factor loadings Gi,t and Hi, as well as on the transitory state
vector, Xt, whose impact materializes at different frequencies, e.g., long-term shocks to consumption
growth generate a larger impact from fXX(λ) at smaller λ in consumption-based asset pricing models.
Hence, by decomposing Ci%(0) across frequencies, we can study the properties of Xt, thereby testing
features of asset pricing models, without taking a parametric stand on their dynamics.

An important implication of Theorem 2 is that we can use the log-affine structure of the SDF in
conjunction with Assumption 4 to decompose bivariate return covariances as,

Cib(0) = Cgigb
(0) +C`i`b(0) + F ′i

(
2π
∫ ∞

0
fXX(λ)dλ

)
Fb, (7)

for two assets i and b. Hence, without even knowing, or imposing assumptions and structure on,
the dynamics of the SDF, we may utilize frequency dependent covariance measures between two
assets to uncover features of the state vector, Xt. A key example of such measures, which we take
advantage of in the empirical analysis below, is to decompose covariances between returns from a cross-
section of stocks and the return on the market portfolio, rM,t, thereby using partitions of CAPM-style
covariances to draw deductive inference about the implied dynamics of Xt. That is, the combined
use of spectrum techniques and (7) may reveil different dynamic components of the state vector,
operating at different frequencies. Moreover, since all returns are affine functions of SDF components,
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this principle generalizes to other factor portfolio returns, such as Fama & French (1993), since these
are constructed as linear combinations of individual assets. If the risk factors in multi-factor models
carry orthogonal state vector information, then frequency dependent decompositions of Cib(0) using
alternative baseline factor portfolio returns for asset b will reveal different features of Xt, thus aiding
in providing a detailed description of its structure. In order to identify the latter, it suffices to have
a loading matrix for the selected baseline asset, Fb, which has, at least, one nontrivial element. This
is, indeed, the case for the market return in the CCAPM, the long-run risk model, the dynamic rare
disaster model and the regime-switching CCAPM as shown by Bansal & Yaron (2004), Gabaix (2012),
Lettau et al. (2008) and Propositions 1 and 2 in Appendix A. Conditional on nontrivial loadings,
the recovery of state vector features from the decomposition in (7) is nonparametric. Moreover, as
demonstrated below, if the dynamics driving the factors operate at different frequencies, then the
utilization of frequency decompositions may give new insights into cross-sectional asset pricing.

The permanent-transitory spectrum decomposition in (7) provides the theoretical foundation be-
hind our empirical framework for studying the implied state vector dynamics and its risk pricing.
Specifically, we operationalize the former by proposing two frequency dependent covariance measures
and a framework for making deductive inference about dynamic components of Xt.

3.2 The Frequency Term Structure of Risk

First, based on the frequency decompositions in (4) and (7), we propose to isolate certain frequency
ranges implicit in the unconditional covariance measure,

Cib(ϑ1, ϑ2) ≡ 2π
T

ϑ2∑
j=ϑ1

<(fib(λj)) (8)

= (Cgigb
(0) +C`i`b(0))

(
ϑ2 − ϑ1
T

)
+ F ′i

2π
T

ϑ2∑
j=ϑ1

<(fXX(λj))

Fb,
where 1 ≤ ϑ1 < ϑ2 ≤ T , to study the properties of the state vector, Xt, and its associated risk
prices. To facilitate interpretation, and understanding, of this measure, let us consider the CAPM
(b = M) and suppose Xt is one-dimensional. Moreover, we let the factor loadings Fi and FM have
the same sign (+/−). Then, by letting ϑ1 < ϑ2 < ϑ3 < ϑ4 with ϑ2 − ϑ1 = ϑ4 − ϑ3, we can make
nonparametric statements about the state variable dynamics based on the relative magnitudes of our
frequency dependent covariance measures CiM (ϑ1, ϑ2) and CiM (ϑ3, ϑ4):

CiM (ϑ1, ϑ2) > CiM (ϑ3, ϑ4) LF component more important than HF,

CiM (ϑ1, ϑ2) = CiM (ϑ3, ϑ4) LF component equally important to HF,

CiM (ϑ1, ϑ2) < CiM (ϑ3, ϑ4) LF component less important than HF,

(9)
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where, in this simple setup, we assume that (ϑ1, ϑ2) and (ϑ3, ϑ4) correspond to Fourier frequencies
capturing low-frequency (LF) and high-frequency (HF) movements in Xt, respectively. These deduc-
tions follow since the permanent components in (8) cancel and the inequalities are solely determined
by the mass of fXX(λj) across different frequencies, λj , j = ϑ1, . . . , ϑ2.

IfXt is multi-dimensional, similar deductions can be made, although one has to be careful with the
interpretation. In this case, the relative magnitudes of CiM (ϑ1, ϑ2) and CiM (ϑ3, ϑ4) will depend on the
dynamics of Xt, including the persistence of the components and the magnitudes of their innovations,
as well as on the loadings Fi and FM . For example, if CiM (ϑ1, ϑ2) > CiM (ϑ3, ϑ4) > 0, we can infer
that there is, at least, one important LF component to the state vector, which has a loading of the
same sign. If, on the other hand, 0 > CiM (ϑ1, ϑ2) > CiM (ϑ3, ϑ4), then there is, at least, one important
HF component with a loading of opposite sign. Let us write minFiM = min(CiM (ϑ1, ϑ2),CiM (ϑ3, ϑ4))
as well as maxFiM = max(CiM (ϑ1, ϑ2),CiM (ϑ3, ϑ4)), then the indentifying deductions in the multi-
dimensional state vector and two-frequency split case, using the market return as a single baseline
asset, may be summarized by the following 2× 2 table:

CiM (ϑ1, ϑ2) > CiM (ϑ3, ϑ4) CiM (ϑ1, ϑ2) < CiM (ϑ3, ϑ4)
minFiM > 0 Important LF component with Important HF component with

loading of the same sign loading of the same sign
maxFiM < 0 Important HF component with Important LF component with

loading of the opposite sign loading of the opposite sign

This analysis may easily be extended to multiple frequency bins to map the dynamic behavior of the
components of Xt and their associated loadings Fi and FM in greater detail. For example, one could
choose to split the spectrum into HF, LF and business cycle frequencies.

In addition to nonparametric statements about the dynamic features of the state vector as well
as factor loadings, (8) can reveal how different components of Xt are priced cross-sectionally. Again,
suppose for simplicity that Xt is one-dimensional and we have used (9) to deduce that LF variation
is more important than HF, then we can make further deductions of the form,

CiM (ϑ1, ϑ2)−CiM (ϑ3, ϑ4) > CjM (ϑ1, ϑ2)−CjM (ϑ3, ϑ4) =⇒ Fi > Fj , (10)

suggesting that asset i assign a higher risk price than asset j to the transitory component. On
the other, if there is excess HF variation, then the inequality in (10) implies Fi < Fj . Thus, for
each deduction of the dynamic properties of Xt, the relative magnitudes of the frequency dependent
covariance measures across assets speak directly to the cross-sectional pricing implications of the state
vector. The interpretation, as above, becomes more subtle if the state vector is multi-dimensional.
In this case, comparisons such as (10) in conjunction with the 2 × 2 table may be utilized to deduce
the cross-sectional pricing. Let RiM (ϑ1, ϑ2, ϑ3, ϑ4) = CiM (ϑ1, ϑ2)−CiM (ϑ3, ϑ4), and Qhk with h, k =
{1, 2} correspond to the four quadrants above, then the relative risk prices for the multi-dimensional
state vector components and two-frequency split may be determined as follows:
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RiM (ϑ1, ϑ2, ϑ3, ϑ4) > RjM (ϑ1, ϑ2, ϑ3, ϑ4) RiM (ϑ1, ϑ2, ϑ3, ϑ4) < RjM (ϑ1, ϑ2, ϑ3, ϑ4)
Q11 Fi > Fj Fi < Fj

Q12 Fi < Fj Fi > Fj

Q21 Fi > Fj Fi < Fj

Q22 Fi < Fj Fi > Fj

The table demonstrates that the permanent-transitory frequency decomposition and the resulting
covariance measure (8) may be used to unveil cross-sectional pricing of HF and LF components of the
state vector. This information is lost when aggregating across all frequency ordinates.

Whereas the measure in (8), indeed, provide frequency-specific information about Xt as well as
the factor loadings Fi and Fj , one cannot readily compare cases ϑ2 − ϑ1 6= ϑ4 − ϑ3 since they assign
different weights on the constant contribution from the permanent components of the SDF. Hence, we
propose a simple modification

Tij(ϑ1, ϑ2) ≡ T

ϑ2 − ϑ1
Cij(ϑ1, ϑ2) (11)

= Cgigj (0) +C`i`j (0) + F ′i

 2π
ϑ2 − ϑ1

ϑ2∑
j=ϑ1

<(fXX(λj))

Fj ,
which corrects such limitations. This rescaled covariance measure may readily be use to study fre-
quency dependencies in the state vector, factor loadings and cross-sectional pricing over a flexible set
of time horizons, which we label the frequency term structure of risk.

It is important to emphasize one limitation of our framework when utilizing only a single baseline
portfolio to study state vector dynamics and its risk pricing. Suppose that there are two independent
and very persistent AR(1) components in the state vector, but with different factor loadings, then our
frequency decomposed methods (8) and (11) will, indeed, detect that there is excess LF dependence,
but they will measure the collective pricing from the two components. In this case, we may utilize
multiple “baseline” portfolios. If these load non-trivially on some components of the state vector and
trivially on others, this will allow us to learn about multiple components with similar spectral behavior
and their associated risk prices. In our empirical application, we consider the market, the Fama &
French (1993) value and size, as well as the Carhart (1997) momentum factors.

3.3 Relation to the literature

The proposed framework for studying the unconditional equity premium is related to, but distinct
from, the frequency domain decomposition in Dew-Becker & Giglio (2016) as well as the permanent-
transitory decompositions of Alvarez & Jermann (2005) and Hansen et al. (2008). To simplify the
exposition and highlight the relevant differences, suppose, in this section, that the setting of Hansen
et al. (2008) apply, that is, where the state vector obey the dynamics in (2). The comparison readily
extends to our generalized setting, at the expense of more complicated notation.
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Let ∆Et+1 = Et+1 − Et denote changes in expectations, then Dew-Becker & Giglio (2016) study
frequency decompositions of

∆Et+1 lnSt+1 = G′Wt+1, GG′ = R,

demonstrating that the preference structures of asset pricing models imply different decompositions
of the risk prices, G, for the vector of shocks, Wt+1. In particular, for preferences that can be
solved forward (e.g., habit formation or recursive utility), they show that G =

∑∞
j=0 zjrj , whose

component matrices, zj and rj , of dimension k × k contain shock weights and impulse response
functions of preferences, respectively, has an equivalent spectral representation. Moreover, the authors
quantify the weight various asset pricing models place on frequency ranges and analyze the implications
of frequency-dependent risk prices of shocks empirically. Rather than studying the intertemporal
properties of risk prices for the martingale, or permanent, component of the SDF, our framework
may be used to decompose the risk prices and exposures to transitory components of state vector,
nonparametrically, and to study cross-sectional pricing implications. In our setting, the frequency
decomposition is useful for obtaining identification of state vector risk that may not be visible in
standard unconditional measures, using deductions as described in the previous section.

Hansen et al. (2008) study the pricing of cash flow at different horizons, with particular emphasis
on long-run implications.14 In particular, let D∗t be the cash flow growth process, modeled as a random
walk with drift, and f(Xt) be a claim to (a subset of) the state vector. Then, they demonstrate that
observed cash flow decomposes as Dt = D∗t f(Xt), the long-run risk-return trade-off is invariant to the
specification f , and that the transient component affect asset valuation, but not the implied risk prices
in the (long-horizon) limit.15 However, when studying risk premia dynamics over alternative, and
multiple, horizons, the expected return reflects both risk exposure and risk prices associated with the
transitory component f(Xt) as well as the permanent component. Hence, by quantifying risk premia
for several horizons, these decompositions demonstrate that the term structure convey information
about the transitory state vector and its temporal impact on asset valuation; see also Borovicka et al.
(2011). Factors that are short-lived will impact shorter holding horizon returns, and more persistent
factors will affect both short- and long-horizon holding returns. Thus, the one-period expected return,
whose composition is often studied within the confines of an asset pricing model, e.g., Bansal & Yaron
(2004) and Campbell & Vuolteenaho (2004), will be some composite of risk factors and their pricing,
which is not easily disentangled without parametric assumptions on the SDF. We provide a framework
that facilitates the analysis of risk premia decompositions of expected holding-period returns for all
horizons (not just for one-period returns, although this is our focus in (6)), in addition to conveying

14Using a similar decomposition of the SDF, Alvarez & Jermann (2005) derive a lower bound for the volatilities of its
permanent and transitory components and show that the former is considerably more volatile than the latter, highlighting
the importance of including a permanent component in the innovations to consumption-based models.

15The contributions of Hansen & Scheinkman (2009), Hansen (2012) and Qin & Linetsky (2017) show that such decom-
positions and long-run risk-return insights hold under very general conditions on the SDF. Lettau & Wachter (2007)
provide similar results for the permanent component of the SDF and use them to explain the value premium.

14



information about state vector dynamics. In particular, we provide frequency domain procedures to
nonparametrically identify the risk exposures associated with dynamic components of the state vector,
utilizing their different persistence properties, as well as their pricing.

Finally, Calvet & Fisher (2007), Ortu et al. (2013), and Bandi & Tamoni (2017) provide dynamic
decompositions of asset returns, consumption growth, and price-dividend ratios based on different
time domain methods. In particular, whereas Calvet & Fisher (2007) stipulate that dividends and
returns are priced using a Markov-Switching stochastic volatility model, Ortu et al. (2013), and Bandi
& Tamoni (2017) analyze the dynamics of consumption and CCAPM betas using extended Wold
decompositions, thereby providing improved inference for the asset pricing implications of different
components of the state vector (consumption, in their setting). Similarly, Bandi et al. (2019) decom-
pose the CAPM beta in the frequency domain and demonstrate that by measuring market betas at
lower frequencies, this substantially reduces pricing errors for the twenty-five Fama-French portfolios.16

While the motivation and aim of their methodologies are similar in spirit to our frequency domain
framework – improved identification of risk prices and exposures for different dynamic components of
the state vector – there are important differences between our and their respective frameworks. First,
whereas they provide dynamic decompositions within the confines of a model and under parametric
assumptions on the economy, we refrain from imposing such structure. Instead, we demonstrate how
to utilize returns, or portfolios of returns, to make nonparametric deductions about components of
state vector and their pricing. Second, we work in the frequency domain and require only that the
spectral density of the state vector satisfies the mild regularity conditions in Assumption 3. Hence,
our framework is robust to misspecification of the state vector dynamics, nesting both the Markov-
switching processes adopted in Calvet & Fisher (2007) and the weakly dependent dynamics in Ortu
et al. (2013), Bandi & Tamoni (2017) and Bandi et al. (2019). Our framework requires only that the
spectral density of the state vector is sufficiently well-behaved such that we can study shocks with
differing periodicity. Third, due to the nonparametric nature of our framework, we need not take
an a priori stand the dimension of the state vector, whereas the aforementioned procedures requires
adaptation to comply with the assumptions at hand. Finally, and as detailed below, we utilize our
framework to uncover frequency dependent pricing factors in a large cross-section of US stocks using
co-spectrum contribution ratios labelled frequency risk, rather the decomposing pricing betas.17

4 Frequency Risk in Asset Pricing Models

It is instructive to illustrate our general frequency domain theory, presented in the previous section,
within the confines of important parametric asset pricing models in the literature, namely the CCAPM

16Bandi, Perron, Tamoni & Tebaldi (2017) decomposes aggregate stock return predictions (betas) using techniques closely
related to those in Bandi & Tamoni (2017), and Boons & Tamoni (2017) similarly decomposes cross-sectional return
predictions (betas) from macroeconomic variables. As explained in our empirical analysis below, we shall be looking at
frequency decomposed covariance contribution ratios, using our nonparametric frequency domain framework.

17Despite the differences, their important insights about how financial and macroeconomic time series may be decomposed
into dynamic components of different persistence, in part, motivate our paper.
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and LRR model, which are described in Examples 1 and 2, respectively, as well as our log-linerazied
versions of the dynamic disaster model and the regime-switching CCAPM, which are developed in
Appendices A.2 and A.3. In addition, these models may aid the formation of expectations about
dynamic patterns in risk exposures and risk prices obtained from asset returns, thereby providing
guidance for our empirical study. Interestingly, by combining results from Bansal & Yaron (2004) for
the LRR model, explicated in Appendix A.1, with our new results in the appendix, it follows that
asset returns may be written on the same generic form in all four models,

ri,t+1 = µi + F ′iXt + Ii,t+1, (12)

with, however, the constants, µi and Fi, the state vector, Xt, as well as the composite of “perma-
nent” innovations, Ii,t+1, differing across models. Hence, despite the asset pricing models having
different motivation, structure and assumptions, we may treat their implications for frequency domain
decompositions of the unconditional covariance measure, Cij(0), in a unified manner. Specifically, as
conveyed by (6)-(11), the dynamic properties of Xt, reflected by its spectral density, and its asset-
specific loading Fi determines how risk factors are priced. As a result, it is instructive to study the
spectral properties of the respective state vectors in the four asset pricing models.

CCAPM. The spectral decomposition is trivial as returns only have permanent innovations.
Hence, the model predicts the (co-)spectrum being constant across all frequencies.

LRR model. The state vector consists of two components, xt and σ2
t , both of which obey first-

order autoregressive dynamics and one with conditional heteroskedasticity. The composite innovation
term, Ii,t+1, is comprised of conditionally heteroskedastic Gaussian shocks. The spectral densities of
the state variables follow from their stationary AR(1) structure as,

fx(λj) = ϕ2
xσ

2

(1− ν)2π
1

1− 2ρx cos(2πλj) + ρ2
x

, fσ2(λj) = σ2
v

2π
1

1− 2ν cos(2πλj) + ν2 . (13)

Hence, apart from constant scaling factors, their respective contribution to Cij(0) is determined by
the persistence parameters ρx and ν, which, as mentioned earlier, are close to unity, generating shocks
to consumption growth and its volatility with half-lives exceeding 52 months.

Disaster model. The state vector dynamics is driven by two components; systemic and stock-
specific resilience in the recovery following a disaster, denoted by Bt(a) and Hi,t(a) with a being
a generic constant. Both components obey AR(1) dynamics with homoskedastic Gaussian shocks,
implying that their respective spectral densities may be written,

fB(λj) = ς2
B

2π
1

1− 2ϕB cos(2πλj) + ϕ2
B
, fi,H(λj) =

ς2
i,H
2π

1
1− 2ϕi,H cos(2πλj) + ϕ2

i,H
. (14)

As for the LRR model, the frequency dependencies in Cij(0) is determined by ϕB and ϕi,H. The
calibration in Gabaix (2012) fixes the persistence parameters to exp(−0.13) ' 0.88, referencing studies
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that utilizes annual data. This corresponds to 0.881/12 ' 0.989 for monthly observations and, thereby,
a half-life of the recovery from disasters of more than 65 months.

Regime-switching CCAPM. The state vector consists of the time-varying mean and variance
of consumption growth, µc,t and σ2

c,t, respectively, which, however, are assumed to obey Markov
regime switching processes with “small” probabilities of transitioning into “bad” regimes. Hence,
using Christensen & Varneskov (2017, Lemmas 3-4), their spectral densities may be written as

fµ(λj) '
Cµ
2π

λ−1
j

j
, fσ2(λj) '

Cσ2

2π
λ−1
j

j
. (15)

At lower frequencies, that is, when j → 0 and λj → 0, we have spikes in fµ(λj) and fσ2(λj), whose
shapes only differ by a constant scale factor. Hence, shocks to µc,t and σ2

c,t are permanent.
Despite the LRR model, dynamic disaster model and the regime-switching CCAPM either arising

from very different theoretical starting points, consumption versus disaster modeling, or having differ-
ent dynamics, persistent AR(1) versus regime-switching, it is clear from (13)-(15), that the spectral
densities of the state variables in each model generate substantial low-frequency variation, which is
illustrated in Figure 1. In fact, the spectral shapes of the components are almost identical across
models, using the recommended calibration of the persistence parameters. This similarity suggests
that we could expect to uncover an important low-frequency pricing component using the framework
in (6)-(11), if our set of tests assets load non-trivially on said part of the state vector.18

A few additional remarks are in order. First, all state vector components of the three models are
very persistent and, thus, fail to speak about the high-frequency contributions to Cij(0). Second,
the LRR model does not necessarily need stochastic volatility to generate low-frequency variation; it
will still arise through xt. The weight on dynamic components, however, will change, and so will the
aggregate weight on the lower frequency dependencies in the model.19 Third, the excess low-frequency
variation does not depend on a baseline independence assumption between the different state variables
in each model. If there is dependence between the latter, their co-spectrum can be bounded by the
Cauchy-Schwartz inequality in conjunction with (13)-(15). Fourth, note that it is the resillience of
the recovery, not the disasters themselves, that generate frequency dependencies in Cij(0). The disas-
ters are non-Gaussian shocks, which generate skewness and a permanent impact on the co-spectrum,
suggesting that the Barro (2006) disaster model does not generate frequency-dependent contributions
to the unconditional risk premium; see Theorem 2 and Propostion 1 in Appendix A.2. Similarly,
despite Drechsler & Yaron (2011) introducing non-Gaussian features in the LRR model to provide an
explanation for the variance risk premium, this does not aid identification of state vector dynamics
nor its pricing. However, it introduces important non-Gaussian shocks in conditional risk premium,

18Yu (2012) studies the co-spectrum between aggregate, or market, returns and consumption growth for the habit model
of Campbell & Cochrane (1999) and the LRR model, finding that the habit model cannot reconcile increased correlation
between returns and consumption growth at lower frequencies, whereas the LRR model can. In addition to studying
different asset pricing models above, the differences between the present framework and Yu (2012) is similar to those
decsribed for the frameworks of Calvet & Fisher (2007), Ortu et al. (2013) and Bandi & Tamoni (2017) in Section 3.3.

19However, as shown by Bansal & Yaron (2004), stochastic volatility is important for generating reasonable asset prices.

17



similarly to those for the dynamic disaster model. Finally, note that all of these models rely on cali-
bration and/or estimation of the model parameters for implementation, where, in particular, disasters
and persistent components of consumption growth can be hard to detect empirically. Our framework
sidesteps such issues, focusing exclusively on the shape of the spectral density and nonparametric
deductions to infer features of the state vector and their pricing.

5 Empirical Application: Frequency Dependent Risk

We illustrate the usefulness of our nonparametric framework for studying factor dynamics and their
pricing using data on a large cross-section of US stocks. Specifically, we collect daily US stock returns
from the CRSP database between January 1964 and December 2018, including all US common stock,
and use the CRSP value-weighted index as the market return. When computing monthly excess
returns, the one-month US Treasury rate is used as a risk-free rate. Finally, when studying the pricing
of frequency dependent risk factors, we compute their alphas against the Fama & French (1993),
Carhart (1997) and Fama & French (2015) models using data obtained from Kenneth French’s data
library as well as data related to observable stock characteristics from Compustat.

5.1 Estimation and Frequency Decompositions

First, we estimate frequency dependent covariances between individual stocks and the market factor,
returning to non-market factors in Section 5.3. Throughout, we eliminate concerns due to nonsyn-
chronous trading by using three day overlapping log-returns, r̃i,t =

∑2
k=0 ln(1 + ri,t+k). Moreover, we

operationalize CiM (ϑ1, ϑ2) in (8) using the discrete Fourier transform and co-periodograms,

CiM (ϑ1, ϑ2) ' 2π
T

ϑ2∑
j=ϑ1

<(IiM (λj)), with (16)

IiM (λj) = wi(λj)w̄M (λj), wi(λj) = 1√
2πT

T∑
t=1

r̃i,te
itλ,

and the “bar” denoting the complex conjugate. Now, rather than studying the market beta at dif-
ferent frequencies, we motivate our empirical first sorting measure by applying a decomposition the
unconditional risk premium in the standard CAPM, which isolates the contributions due to frequency
dependent risk embedded in the market factor, that is, we consider

E[ri,t+1 − rf,t] ' γ ×CiM (1, T )

= γ ×CM (1, T )βi,M︸ ︷︷ ︸
beta risk

×
q∑
j=1

CiM (ϑj , ϑj+1)
CiM (1, T )︸ ︷︷ ︸

frequency risk

(17)
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where q > 1 is the number of partitions of CiM (1, T ).20 This decomposition may be seen as arising
from a CCAPM where the representative agent has power utility (θ = 1 and γ = 1/ψ) and all
aggregate dividends are consumed, see Munk (2013, Chapters 8 and 10). Hence, by utilizing the
frequency domain framework in (6)-(11), standardized by the total covariance CiM (1, T ), we can
make nonparametric deductions about the dynamic behavior of state vector components, with which
the market factor loads non-trivially on, and how they are priced in the cross-section. Specifically,
this is achieved by answering whether CiM (ϑj , ϑj+1)/CiM (1, T ) is constant across j = 1, . . . , q for all
stocks and, if there is frequency-dependent dispersion in the ratio, by studying whether stocks that
have larger fraction of its variation stemming from certain parts of the spectrum command a different
risk premium than stocks, whose variation mainly comes from movements in the state vector at other
frequencies. Importantly, the motivational decomposition (17) illustrates that this issue is different
from the study of beta risk. However, as the pricing of market risk has a long history in finance, dating
back to the contributions by Sharpe (1964) and Lintner (1965), we will, of course, control for this
along with a battery of other appraised risk factors in our pricing exercise.21

We carry out the analysis and construction of frequency-risk portfolios in a real time manner to
avoid issues with in-sample overfitting. Specifically, we use a rolling window of 5 years to estimate
frequency-partitioned covariance ratios and require at least 2.5 years (375 observations) to remain in
the sample. Hence, our panel of stocks is unbalanced and we synthesize the cross-sectional information
using portfolio sorts. First, at the beginning of each month, rolling estimates of frequency risk are
constructed for ten equally spaced intervals from low to high frequencies:[
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(18)

In this simple partition, low-frequency risk in daily returns is conveyed by covariance ratios over the
leftmost interval

[
0, π10

)
, corresponding to state vector variation in cycles that take, at least, 20 trading

days (approximately one month) to complete. Similarly, the next frequency bin captures cycles that
take between 10 and 20 days to complete, and the highest frequency bin contains cycles that take at
most 20/9 ' 2.2 days to complete.22 At the beginning of each calendar month, we sort stocks into ten

20As mentioned in Section 3.3, Bandi & Tamoni (2017) and Bandi et al. (2019) study decompositions of consumption
growth and market betas for 25 portfolios formed on size and the book-to-market ratio. There are three main differences
between their and our cross-sectional pricing exercise. First, the framework is different. They study consumption or
market betas at different frequencies, i.e., a measure of the form CiM (ϑj , ϑj+1)/CM (ϑj , ϑj+1), adapted to our notation,
whereas we use our frequency risk measure and nonparametric framework. Second, we carry out a real time analysis to
unveil components of the state vector and their pricing, whereas they conduct specification tests a decomposed CAPM
or CCAPM. Finally, we focus on the entire cross-section of US stocks, not on factor portfolios.

21We emphasize that the decomposition in (17) only motivates our frequency dependent covariance ratios as a relevant
sorting statistic. We refrain from imposing CAPM assumptions and will, as a result, not apply (17) to test its valid-
ity. Rather, we will use the market return and frequency risk to make nonparametric deductions about state vector
components and their pricing, assuming that the market return loads nontrivial on (a subset of) the latter.

22We have experimented with different partitions of the covariance measure frequencies, e.g., using 3 or 5 equally spaced
intervals. Similarly, we have carried out robustness checks with respect to the rolling window length and the overlapping
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equally weighted portfolios corresponding to the ten frequency dependent risk measures based on the
past 5 years of data. Portfolios are, then, rebalanced every month to maintain equal weighting.

5.2 Frequency Risk Dispersion and Cross-sectional Pricing

We proceed by assessing the dynamic behavior of state vector components and their cross-sectional
pricing using portfolio sorts, as described above. Specifically, Table 1 shows the average excess returns
earned by the ten portfolio sorted on our covariance ratio measure using the lowest, respectively,
highest frequency bins.23 For the LF sort, we observe that stocks with a higher fraction of their
market covariance materializing at LFs (P10) earn a higher return than stocks having a lower fraction
of LF variation (P1), with only a slight increase in volatility. Moreover, the returns are monotonically
increasing for stocks with low to high LF risk. As a result, the long-short P10-P1 portfolio averages a
significant positive return and earns a Sharpe ratio of 0.48, with little-to-no market beta (−0.10). On
the other hand, stocks with a high fraction of HF risk earn lower average returns than stocks with a
low fraction, generating a negative Sharpe ratio on the corresponding long-short P10-P1 portfolio. The
difference between the average (risk-adjusted) returns on the two long-short portfolios is particularly
interesting. To fascilitate a better understanding of why, let us, for simplicity of argument, imagine a
setting in which we only utilize a LF and a HF bin, splitting the frequency range in two. Since the
risk measure (17) is a ratio, this would imply HF = 1− LF by symmetry. However, the risk-adjusted
return to the LF long-short portforlio does not mirror this symmetry, suggesting that seperate dynamic
components of the state vector, one LF and one HF, as well as their respective factor loadings drive
the differences in returns. To corroborate this finding, we compute correlations between frequency
dependent long-short portfolios in Figure 6 (which will be described in detail later), and observe that
the HF and LF portfolios only have a mild negative correlation of −0.49.

To evaluate the significance of this frequency-dependent return pattern in greater detail, and to
summarize information for all frequency ranges in (17) and (18), we focus on P10-P1 portfolios. In
doing so, and to simplify the nomenclature, we shall henceforth refer to the portfolio that is long stocks
with high LF risk and short stocks with low LF risk as the low frequency portfolio, the corresponding
portfolio for HF risk as the high frequency portfolio, and define portfolios for the remaining bins
analogously.24 The results in Table 1 indicate that the state vector is comprised of more than one
component with differential dynamics and risk prices. However, to discern whether this finding reflect
identification of new risk factors (or state vector components) or simply reshuffles existing factors, we
test the risk-adjusted returns (alphas) of the long-short portfolios against a battery of appraised risk
factors in the literature. In particular, Tables 2 and 3 show significance tests of the alphas for the LF
and HF portfolios relative to the CAPM, the Fama-French three and five factor models, and the three
and five factor model augmented with the momentum factor (Carhart 1997). First, from Table 2, we

log-return correction. The results are similar to those presented below and are, thus, left out for brevity.
23Specifically, for the high frequency (HF) sort, we take the average over the results from the ninth and tenth frequency
bins, which both have cycles that complete in less than 2.5 trading days.

24Again, note that HF risk spans frequency bins nine and ten.
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observe that the alpha for the LF portfolio is strongly statistically significant as well as economically
substantial, being approximately 0.5% per month. Moreover, while market returns, small-minus-big
(smb) and robust-minus-weak (rmw) all appear significantly in the regressions, the explanatory power
is low, indicating that LF risk is an important dimension of cross-sectional pricing, which is unspanned
by exisiting factors. Second, from Table 3, we observe that the HF portfolio has a significant negative
risk premium of approximately -0.20% per month. Moreover, as for LF risk, only the market, smb
and rmw factors appear significantly in the regressions and the R2 is low. Interestingly, whereas the
loadings on the market and rmw factors are of opposite sign, both HF and LF maintain a small positive
exposure to smb, illustrating, again, the lack of perfect symmetry between the two.

We generalize and visualize our results by depicting the long-short portfolio alphas as a function
of frequency bins in Figure 2, that is, by mapping out the frequency term structure of risk. The
pattern is striking. We observe a large and positive risk premium only for the very LF bin. For all
other frequency ranges, the alphas are negative and similar in magnitude to the alpha described for
the HF portfolio, resulting in a “hockey stick pattern” when moving from LF to HF sorts. Now, by
utilizing deductions, as described in Section 3.2, we can make two nonparametric statements about the
state vector: (1) The state vector has a dynamic component operating at very low frequencies, which
command a large positive risk premium; (2) There is a less persistent component operating at higher
frequencies, requiring a smaller negative risk premium. Importantly, these components are not spanned
by standard risk factors, illustrating the usefulness of our frequency risk concept and frequency domain
approach. If we relate these findings to the four asset pricing models discussed earlier, it is interesting
to see that the LF results are consistent with the LRR model, the dynamic disaster model and the
regime-switching CCAPM, whose spectral contributions from transitory components of the SDF to
the unconditional risk-premium, as captured by our risk measure, are predominantly materializing at
low frequencies, as illustrated by Figure 1. Hence, if we make the (extremely plausible) argument that
market returns load non-trivially on either consumption growth and/or recovery resilience, then our
results exactly capture the pricing of shocks to consumption growth and/or disasters; demonstrating
that the price of such risks is large, amounting to a risk-premium of 6% per year. Importantly, we arive
at these results without estimating a parametric asset pricing model. On the other hand, our results are
directly at odds with the standard CCAPM, which fails to generate frequency-specific variation in the
unconditonal risk premium.25 These results are consistent with Dew-Becker & Giglio (2016), who, by
quantifying the propagation of permanent shocks in various asset pricing models and, thus, analyzing
the implications of frequency-dependent risk prices, find that asset pricing models with preferences
that load significantly on infrequent shocks, such as Epstein-Zin or a bandpass utility specification,
fit characteristics and industry-sorted portfolios better than asset pricing models, whose preferences
load more heavily on recurring frequent shocks such as the Habit model (Campbell & Cochrane 1999).
Moreover, Dew-Becker & Giglio (2016) find that low-frequency macroeconomic shocks carry a positive
risk price in their test portfolios. Hence, despite our focus on the contribution of the transitory part

25As discussed in Section 4, the same holds for the Barro (2006) disaster model.
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of the SDF to the unconditional risk-premium, using nonparametric techniques, rather than the price
and propagation of permanent shocks, we also find LF risk to carry a positive risk price and we
demonstrate that it commands a large risk premium in the full cross section of US stocks.

Finally, while the LF results are consistent with the LRR model, the dynamic disaster model and
the regime-switching CCAPM, none of the three models are able to explain the significant, albeit
smaller negative risk premium associated with HF risk. Which dynamic feature of the state vector are
these models missing? As an exploratory gauge, we simulate a state vector with two autoregressive
components, having persistence parameters 0.97 and −0.2 as well as Gaussian innovations with vari-
ances multiplied by 0.1 and 4, respectively, and opposite risk prices of 1 and −1. These features are
consistent with a difficult-to-detect highly persistent mean component of either consumption growth,
its volatility or recovery resilience, yet this is augmented by a separate component, displaying short-
lived dependencies. In the context of the LRR model, such a feature would arise if the stochastic
consumption volatility had a long-run and a short-run component, which has a risk price with an
opposite sign compared to either of the persistent mean or volatility components. Similarly, the con-
sumption, or dividend, growth dynamics may have two components.26 Alternatively, if considering the
dynamic disaster model, as described in Appendix A.2, this would arise if, for example, stock-specific
and systemic resilience featured different persistence and loadings. Now, by depicting the individual
and joint spectral densities of the two dynamic components in Figure 3, we observe that such dynamic
features are consistent with the frequency term-structure of risk in Figure 2. The model includes
a significant LF component, which is detectable only at the very lowest frequencies, not at higher
frequencies, and a HF component, whose significance is much weaker, yet detectable in the frequency
domain. Whereas this suggests that all three dynamic asset pricing models can match the LF varia-
tion in the unconditional risk premium, they lack a short-lived component with opposite signed risk
price to fully match the frequency term structure of risk embedded in market returns. Importantly,
the joint results from Figures 2 and 3 highlights the importance of utilizing the frequency domain to
disentangle dynamic components of the state vector and their cross-sectional pricing implications.

5.3 Frequency Dependent Risk embedded in Non-Market Factors

We have, so far, utilized the market portfolio to unveil two features of the SDF; that it contains a
very persistent component that carries a positive risk premium and a less pesistent component that
earns a smaller negative risk premium. However, as described in Section 3.1, we may, in principle,
use all portfolios of returns to unveil features of the SDF, provided the selected “baseline” portfolio
loads nontrivially on these. In this section, we thus expand our empirical analysis by determining
whether there are frequency dependent risk premia embedded in other popular factor portfolios as
well as by examining how these relate to our LF and HF factors. Specifically, we carry out a similar
portfolio sorting exercise based on the individual stocks’ frequency dependent covariance ratios with
the value (hml), size (smb) and momentum (umd) factors, summarizing the results (alphas) by their

26Zhou & Zhu (2015) and Li & Zhang (2016) provide such extensions of the LRR model.
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frequency term structures of risk in Figure 4 and numerical alphas in Table 4. Interestingly, for
the frequency dependent value alphas, we observe a hockey stick pattern, very similar to the market
factor, albeit with smaller LF alphas in the 0.10-0.24 range and slightly weaker statistical significance
overall. For the size factor, we similarly find a statistically significant alphas at LFs, but also a sharpe
reversal with negative and significant alphas at frequency bins two and three, that is, at intermediate
frequencies (IFs), whereas the HF alphas are largely insignificant. As discussed for the market factor,
this suggests that size factor loads nontrivially, and with opposite sign, on two separate state vector
components, one LF and one operating at IFs. The frequency dependent momentum risk portfolios,
on the other hand, carry a negative risk premia for HF sorts and no statistically significant risk premia
for LF sorts. Generally, the statistical significance of the alphas across the various frequency-range
and factor combinations is lower compared to the corresponding market factor results.

Since the frequency term structures of risk for the value and size factors, among others, unveils a
positive premium associated with LF risk and momentum a negative premium for HF risk, similarly
to the market factor, this, naturally, renders concerns about whether these results are driven by the
Fama-French and momentum factors being correlated with the market factor. Hence, we orthogonalize
the value, size and momentum factors with respect to the market and remaining factors, that is, by
constructing

rhml
t = β0 + β1r

mktrf
t + β2r

smb
t + β3r

umd
t + εt, rhml⊥

t ≡ ε̂t, (19)

and similarly for size and momentum. We then repeat the sorting and pricing analysis using the
orthogonalized factors, summarizing the results in Figure 5. The main difference between the results
in Figures 4 and 5 is that the statistical significance drops for the frequency dependent value portfolio
alphas, whose qualitative pattern, however, remains intact. The results for the frequency dependent
size and momentum factors, on the other hand, are almost indentical to those without orthogonaliza-
tion. This corroborates the existence of a significantly positive risk premia associated with LF value
and size, and significant negative risk premia associated with HF momentum and IF size. The risk
premia are smaller in magnitude than the corresponding for our LF market factor in Table 2, however,
being (absolutely) above 0.1% per month in all cases, they are economically meaningful.

To further investigate the coherence between frequency dependent factors, we compute correlations
between the HF and LF factor portfolio returns based on covariance sorts with market, value, size and
momentum returns in Figure 6. In addition, we include correlations to the original four factors. There
are several interesting observations from Figure 6. First, both the LF and HF market factors display
low correlation with the four original pricing factors, confirming the results in Tables 2-3. Second, the
correlation between the frequency dependent factors are low, being less than ±1/2 in all cases.27 In
particular, our LF market factor, commanding a large positive risk premium, is almost uncorrelated
with the LF size and HF momentum factors, also commanding significant risk premia, and only
mildly correlated with the LF value factor. Moreover, the HF market factor is only mildly correlated
with the HF momentum factor. Third, the low correlation between the LF market, value and size

27The only exceptions being some frequency dependent factors and their own orthogonalized version.
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factors suggests the existence of more than one persistent component in the SDF, receiving a nontrivial
loading. Interestingly, this observation is, again, consistent with the three dynamic asset pricing models
discussed in Section 4, which can each feature two persistent components; the mean and volatility of
consumption growth and/or systemic- and stock-specific recovery resillience. Finally, it is important
to, once again, emphasize that the unveiling of multiple persistent and shorter-run components in the
state vector using our frequency domain approach only requires that (some) factors load nontrivially on
these components, not on any parametric asset pricing model. Hence, our approach and nonparametric
evidence demonstrate that asset pricing models should feature two, or more, persistent components
and, at least, one short-lived component, with risk prices of opposite sign and magnitude.

5.4 Properties of Frequency Dependent Risk Factors

This section proceeds by dissecting the properties of the LF market factor and its risk premium.
Specifically, we open “the black box” and study the firm characterics of companies in the long-short
portfolio. Moreover, we discuss persistence of the sorting statistic, transaction costs as well as the
time series properties of the low-frequency risk premium. We repeat this exercise for the HF market
factor in the Online Appendix, which shows implications similar to those described below.

5.4.1 Firm Characteristics

We dissect the properties of the stocks included in the LF market portfolio by providing a cross-
sectional comparison of nine firm characteristics for the companies belonging to the long and short leg
separately in Figure 7.28 All of the characteristics are well-known cross-sectional return predictors;
the book-to-market ratio (Fama & French 1992), the debt-to-price ratio (Litzenberger & Ramaswamy
1979), market equity (often referred to as “size”, e.g., Banz (1981)), profitability (recently re-examined
by Ball, Gerakos, Linnainmaa & Nikolaev (2015)), investment (Fama & French 2015), operating
accruals (Sloan 1996), the trailing three-year volatility (Freyberger et al. 2019), short-term reversal as
well as (standard) momentum, both of which are documented in Jegadeesh & Titman (1993).

From Figure 7, we observe that the low-frequency portfolio is, typically, long value firms and short
growth firms, although the differences book-to-market ratios are small. This is consistent with a
positive, but insignificant coefficient on the value (hml) factor in Table 2. Second, the portfolio is, on
average, long smaller firms with periodically higher volatility, again, consistent with the positive and
significant coefficient on size (smb) in Table 2. Remarkably, however, there is no noticeable pattern
for the debt-to-price ratio, profitability, investment, operating accruals, short term reversal (r2−1) and
standard momentum (r12−2). Except for profitability (rmw), these findings corroborate the loadings
on the corresponding factors in Table 2, which are, indeed, small and insignificant. Generally, the
analysis of firm characteristics underscores that the large and positive LF risk premium, uncovered
using our frequency domain approach, cannot be attributed to standard risk characteristics.

28This exercise is based on the methodology and data in Freyberger, Neuhierl & Weber (2019).
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5.4.2 Persistence of the sorting statistics and transaction costs

From the volatility modeling literature, it is well-established that asset return volatility and cross-
asset covariances are very persistent, see, among others, Andersen, Bollerslev, Diebold & Labys (2003)
and Andersen, Bollerslev, Diebold & Wu (2006). However, this literature is not concerned with
covariance ratios that have been decomposed into different frequency ranges. In our context, the
persistence properties of the frequency dependent covariance ratios are important for, at least, two
reasons. First, if these measures are extremely volatile over time, it renders a risk-based interpretation
difficult since it would imply that the noise-to-signal ratios of different components of the state vector
are changing rapidly, as well, making the implied dynamics difficult to reconcile with standard, and
more sophisticated, asset pricing models.29 Second, and from a more practical perspective, it would
imply that LF factor investments are associated with high transaction costs. Hence, to assess the
dynamic properties of the sorting statistic, we first estimate a first-order panel autoregression, cit =
α + βcit−1 + εit, for the LF and HF market covariance ratios. The results are presented in Table 5.
Consistent with the volatility modeling literature, we find both the LF and HF sorting measures to be
very persistent, having autocorrelation coefficients around 0.8. To corroborate and expand on these
findings, we plot the transition frequencies between the ten LF sorted portfolios from time t − 1 to
time t in Figure 8. Consistent with Table 5, this documents very low transitioning out of the lowest
and highest frequency portfolios. In fact, 88.53% and 90.13% of the stocks in the two portfolios,
respectively, remain between two consecutive periods, on average. Hence, not only is our results
compatible with a risk-based interpretation of the alphas associated with the frequency-dependent
factors, they are also useful from a more practical investment perspective.

5.4.3 Time Series Properties of the Low-Frequency Premium

The unconditional risk premium commanded by the LF factor is substantial. However, to further
develop intuition about the time series evolution of long-short portfolio alpha, we plot its logarithmic
price (cumulative returns) in Figure 9, with the superimposed shaded grey areas in the graph depicting
NBER recessions. While the returns are negative during the peak of the most recent global financial
crisis in 2008, the portfolio more than recovers during 2009. In fact, the LF portfolio does not appear
to have systematically different returns during any of the NBER recessions. We formally test this
claim by running a simple regression of the returns to the LF portfolio on a constant and an NBER
recession indicator, i.e., rLF

t = α+ β ×NBERt + εt. This results in point estimates of α̂ = 0.3415 and
β̂ = 0.3345, where, interestingly, the coefficient on the NBER recession indicator is not statistically
significant, having a p-value of 0.29. Hence, this strongly indicates that the LF risk premium is
invariant to business cycles. In the second part of Figure 9, we also plot the yearly returns of the
low frequency portfolio. Apart from the extreme positive return during 2009, there seems to be no
systematic changes in the yearly mean nor volatility over the 50 year period, clearly demonstrating

29This essentially implies that all components of the state vector have volatilities that change rapidly over time.
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the LF risk is a pervasive and significantly priced component of US stocks.

6 Conclusion

This paper provides a new nonparametric framework for studying the dynamics of the state vector and
its associated risk prices. Specifically, in a general setting where the SDF decomposes into permanent
and transitory components, we analyze their contribution to the unconditional asset return premium
using frequency domain techniques. We show analytically that the co-spectrum between returns and
the SDF only displays frequency dependencies through its transitory component, that is, through the
the state vector. The contribution from permanent components, on the other hand, such as Gaussian
and non-Gaussian shocks (e.g., disasters) are constant across frequencies. We label this the permanent-
transitory spectrum decomposition. Moreover, we demonstrate that state vector dynamics and its risk
prices can be uncovered by studying (transformations of) the covariance between (portfolios of) asset
returns. To this end, we introduce two new frequency risk measures. Since the SDF is latent in our
setting, we utilize these measures to map out a frequency term structure of risk. Our nonparametric
identification of state vector components relies on having one, or more, baseline portfolios with a
non-trivial loading on it. Conditional on this, our approach is fully nonparametric, thus allowing us
to answer questions about which key features a theoretical asset pricing model should possess to be
consistent with the implied dynamics from a cross-section of assets.

We apply our framework to study frequency risk in the full cross-section of US stocks, utilizing the
market, value, size and momentum factors as baseline portfolios to operationalize the risk measures.
Our analysis uncovers the existence of, at least, two significantly priced low-frequency risk factors, one
of which commands a large positive risk premium of 6% per year. Moreover, we document, at least, one
high-frequency component in the state vector that carries a significant risk price and whose premium
amounts to, approximately, −2% per year. Importantly, we show that these frequency dependent
risk factors are unspanned by a battery of appraised risk factors and characteristics in the empirical
asset pricing literature. Interestingly, when estimating the frequency term structures of risk for the
market, value and, to some extend, size baseline portfolios, we document a pronounced hockey stick
pattern in the risk premium when going from low to high frequencies. Hence, only by utilizing the
frequency domain, can we uncover state vector components and their associated risk premia. Our
analysis demonstrates that multiple factors with varying persistence and risk prices are needed to be
consistent with asset pricing dynamics implied by the cross-section of US stocks.

Throughout, we contrast our findings with the implications of the long-run risk model, the dynamic
disaster model as well as a regime-switching CCAPM, and, in the process, provide new analytical
results for such models. We argue that these asset pricing models, indeed, capture important aspects
of low-frequency risk. However, the models lack the flexibility to capture all dimensions of frequency
risk. The nonparametric nature of our framework, thus, suggests to increase the number of transitory
components in the SDF, thereby allowing them to contain components with different persistence and
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risk prices of opposite sign. Besides providing guidance for how to extend existing asset pricing models,
our framework may improve the estimation, or calibration, of asset pricing models by being able to
disentangle risk factors, or priced state vector components, that need to be matched by model implied
parameters, or moments, that speak directly to their persistence properties. However, we leave the
development of new asset pricing models and estimation techniques for future research.
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A Additional Definitions and Theory

This section provides definitions and return representation for the long-run risk model. Moreover,
it introduces log-linearized versions of the dynamic disaster model of Gabaix (2012) as well as the
regime-switching CCAPM model of Lettau et al. (2008).

A.1 Long Run Risk Constants and Return Representation

First, the three constants in the SDF of the long-run-risk model may be written as

A1 = 1− 1/ψ
1− ρκ1

, A2 = θ(1− 1/ψ)2

2(1− κ1ν)

[
1 +

(
κ1ϕx

1− ρxκ1

)2
]
, and

A0 = −δ + (1− 1/ψ)µc + κ0 + κ1A2σ
2(1− ν) + θκ2

1A
2
2σ

2
v/2

(1− κ1) .

Next, to achieve a representation for the log-return on asset i = 1, . . . , n, with i = M denoting the
market portfolio, we follow Bansal & Yaron (2004), see also Munk (2013, Chapter 9.3) for a textbook
treatment, and use a first-order Taylor approximation,

ri,t+1 ' κi,0 + κi,1zi,t+1 − zi,t + ∆di,t+1, (A.1)

whose constants κi,0 and κi,1 are defined as κ0 and κ1 in Example 2, zi,t+1 is the asset-specific log-
price-dividend ratio and, lastly, ∆di,t+1 is the log-dividend growth. As for consumption growth, the
latter is assumed to obey ∆di,t+1 = µi,d + ϕixt + ϕi,dσtui,t+1, where ϕi, ϕi,d > 0 and ui,t+1 is another
standard Gaussian shock, independent of the other shocks in the system. Independence can be relaxed
at the expense of more complicated notation. Let µ, λv, λe and λη be defined as in Example 2, then
the one-period risk-free rate of return is determined as,

rf,t = −µ+ xt
ψ
− λ2

vσ
2
v

2 −
(
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λ2
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e

)
/2
)
σ2
t . (A.2)

To represent ri,t+1 as a function of the state vector, and following Munk (2013, Chapter 9.3), define
the additional constants ζi,v = κi,1Ai,2 and ζi,e = κi,1Ai,1ϕx with

Ai,1 = ϕi − 1/ψ
1− ρxκi,1

, Ai,2 =
(1− θ)A2(1− κ1ν) + γ2/2 + ϕ2

i,d/2 + (ζi,e − λe)2/2
1− νκi,1

.

Moreover, define the “regression parameters”,
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Then, we may write

ri,t+1 = βi,0 + βi,1xt + βi,2σ
2
t + ζi,eσtet+1 + ζi,vσvvt+1 + ϕi,dσtut+1, (A.3)

that is, returns are a linear function of the state variables, xt and σ2
t , with conditionally heteroskedastic

innovations. Moreover, the state vector Xt = (ct, σt)2 follows a first-order VAR. The spectral density
in (13), thus, follows using (3), the autoregressive structure and

Cxx(h) = E[(ρhxxt + ϕx

h∑
i=1

ρh−1
x σt+h−iet+h+1−i)xt] = ρhxE[x2

t ] = ρhx
ϕ2
xσ

2

1− ν .

A.2 Dynamic Rare Disaster Risk Model

For direct comparability with the long run risk model, we introduce a log-linearized version of the
disaster risk model in Gabaix (2012).30 Specifically, we consider an investor with time-additive power
utility θ = 1, who, in each time period t = 1, . . . T , faces the possibility that consumption growth is
hit by a disaster, that is, ∆ct+1 = µc + vt+1, where

vt+1 = Bt+1 × St+1, St+1 ∼ Bernoulli(pt),

with some time-varying disaster probability 0 < pt < 1, and where Bt+1 measures the random drop
in consumption. In a similar setup, Gabaix (2012) prices the claims to assets such as equities, bonds,
options, and credit spreads, and Farhi & Gabaix (2016) consider exchange rates. We will illustrate
our spectrum risk pricing theory throughout for the equity case. As for the LRR model, we adopt the
first-order Taylor approximation in (A.1) and, consistent with Gabaix (2012), define the asset-specific
log-dividend growth rate,

∆di,t+1 = µi,d + σi,dεi,t+1 + ηi,t+1, ηi,t+1 = Fi,t+1 × St+1,

where µi,d and σi,d > 0 are its mean and volatility, and εi,t+1 ∼ N(0, 1) are independent shocks.
Here, Fi,t+1 captures the random recovery rate in the event of a disaster, allowing individual assets
to “partially default” without affecting aggregate consumption. As in Gabaix (2012), we impose some
simplifying assumptions on Bt+1, Fi,t+1 and St+1. First, conditional on Ft, the three components are
independent. Second, let Bt+1 ∼ N(µt,B, σ2

t,B) and Fi,t+1 ∼ N(µt,i, σ2
t,i), then we model time-variation

in the disaster shock and recovery rate through systemic and stock specific “resilience”,

Systemic resilience: Bt(a) = pt
(
aµt,B + a2σ2

t,B/2
)
,

30Importantly, Gabaix (2012) and Wachter (2013) generalize the constant rare disaster risk model in Barro (2006) by
allowing for a time-varying probability of disasters in discrete and continuous time settings, respectively, and demonstrate
that this feature alleviates several asset pricing puzzles. Moreover, they also provide different model extensions such as
treating Epstein-Zin preferences and time-variation in the expected recovery rate.
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Stock specific resilience: Hi,t(a) = pt
(
aµt,i + a2σ2

t,i/2
)
.

These quantities are comprised of two components; (1) the probability that a disaster occurs multiplied
by (2) the time-varying moment generating function (MGF) of either a disaster shock or a recovery
rate shock. Moreover, we stipulate that Bt(a) and Hi,t(a) obey AR(1) dynamics,

Bt+1(a) = ϕBBt(a) + ςBvt+1, Hi,t+1(a) = ϕi,HHi,t(a) + ςi,Hui,t+1

for which |ϕB| < 1 and |ϕi,H| < 1, and the innovations vt+1 ∼ N(0, 1) and ui,t+1 ∼ N(0, 1) are
independent of each other and εi,t+1, Bt+1, Fi,t+1 and St+1 conditional on Ft. Note that, we can allow
for Ft-adapted stochastic volatility and correlation between the various shocks of the system at the
expense of more convoluted pricing expression (cf. Proposition 1 below).31 However, to highlight the
importance of resilience dynamics, we refrain from making such generalizations here.

Our log-linearized disaster model differs from the framework in Gabaix (2012) in two ways. First,
we have a linearized impact from Bt+1 and Fi,t+1 through their MGF and the resilience terms, which
allows us to decouple and specify differential dynamics for Bt+1(a) and Hi,t+1(a). For comparison,
Gabaix (2012) captures resilience through ptEt[B−γt+1Fi,t+1 − 1]. Second, to obtain closed form pricing
expressions in the presence of such non-linearity, Gabaix (2012) assumes the coupled resilience follow a
“twisted ” AR(1) process, whereas we stipulate standard AR(1) dynamics. Our use of a log-linearized
system rather linearity-generating processes simplify our frequency domain analysis below, with no
impact on the qualitative features of the model as it is first-order equivalent to that in Gabaix (2012),
see, e.g., discussions in Gabaix (2009) and Filipovic, Larsson & Trolle (2018).

We end this section by showing that the log-linear dynamic disaster model maps into the SDF in
(1) as well as a provide return representation results that are equivalent to (A.2) and (A.3) . For the
former, we have µ = −δ − γµc, a subset of the state vector is given by XS

t = (pt, µt,B, σ2
t,B)′, the

non-Gaussian innovation is ∆Jt+1,1 = St+1, implying that for the jump intensity λt,1 = pt, and, as for
the jump sizes, ψt+1,1 = Bt+1, $t,1 = µt,B, ξt = σ2

t,B. Moreover, the first entry of F is −γ. Finally,
the following proposition provides return representation results for the disaster model.

Proposition 1. Suppose the conditions of Section A.2 hold. Moreover, define the constants βi,0 =
κi,0 + (κi,1 − 1)Ci,0 + µi,d, βi,1 = Ci,1(κi,1ϕi,H − 1), βi,2 = Ci,2(κi,1ϕB − 1), with Ci,0, Ci,1 and Ci,2
defined in (B.9)-(B.10) of Appendix B.3, then, up to a first-order Taylor expansion,

(a) rf,t = δ + γµc − Bt(−γ),

(b) ri,t+1 = βi,0 + βi,1Hi,t(1) + βi,1Bt(−γ) + σi,dεi,t+1 + ηi,t+1 + Ci,2κi,1ςBvt+1 + Ci,1κi,1ςi,Hui,t+1.

Proposition 1 shows that the conditional mean implications of the dynamic disaster model are
similar to those for the LRR model; both are driven by two first-order autoregressive processes.

31This is easily seen by noting that all components are conditionally Gaussian, implying that similar conditional het-
eroskedastic volatility and/or correlation terms will enter linearly in the pricing expressions.
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The main difference between the models arises from the former allowing both Gaussian and non-
Gaussian innovations, whereas the latter accommodates conditional heteroskedasticity. As conveyed
by Theorems 1 and 2, however, the frequency term structure is determined by the temporal properties
of the conditional mean, implying that the two models with generate equivalent implications.

A.3 A Regime Switching CCAPM

As a final example, we introduce a simple regime switching CCAPM, similar in spirit to the model in
Lettau et al. (2008), who shows that regime shifts in consumption volatility explain rare changes in
“unconditional” equity premium, cf. Fama & French (2002).32 Specifically, we consider an investor
with θ = 1, and let ∆ct+1 = µc,t + σc,tεt+1, where

µc,t = µh1{sµt = 0}+ µl{sµt = 1}, σ2
c,t = σ2

h1{sσt = 0}+ σ2
l {sσt = 1},

and with the innovations εt+1 ∼ N(0, 1) being independent and mutually independent of the state
variables sµt ∈ {0, 1} and sσt ∈ {0, 1}, which capture abrupt transitions between high and low con-
sumption growth and volatility regimes, respectively. In this setting, the constants µh and µl indicate
the consumption growth rates in high and low regimes, and similarly for σ2

h and σ2
l . The state variables

are assumed to behave according to the transition matrices,

PιT ≡
(
P[sιt = 0|sιt−1 = 0] P[sιt = 1|sιt−1 = 0]
P[sιt = 0|sιt−1 = 1] P[sιt = 1|sιt−1 = 1]

)
=
(
pι00,T pι01,T
pι10,T pι11,T

)
, ι ∈ {µ, σ},

where the sample size dependent switching probabilities pι01,T and pι10,T satisfy pι01,T = pι01/T and
pι10,T = pι10/T with 0 < pι01, p

ι
10 < T fixed as well as pι00,T + pι01,T = 1 and pι10,T + pι11,T = 1. The

switching probability are made dependent on the sample size, T , to ensure that, for a given sample
realization t = 1, . . . , T , the processes generate a finite number of transitions between states. Finally,
and as in Lettau et al. (2008), we assume that the log-dividend growth are leveraged consumptions
innovations, i.e., ∆di,t = χi∆ct and use the log-return approximation (A.1).

To describe the SDF as well as the frequency-dependent risk properties in the regime switching
CCAPM model, let use define the (latent) transition processes

µ̄t = (µl − µh)1{sµt = 0}+ (µh − µl)1{sµt = 1},

σ̄2
t = (σ2

l − σ2
h)1{sσt = 0}+ (σ2

h − σ2
l )1{sσt = 1},

and pιt,T = pι01,T1{sιt = 0}+ pι10,T1{sιt = 1}. Then, we can write µc,t and σ2
c,t as

µc,t+1 = µc,t + µ̄t × Sµt+1, σ2
c,t+1 = σ2

c,t + σ̄2
t × Sσt+1,

32The work in Lettau et al. (2008) builds on a large literature documenting structural breaks in various macroeconomic
indicators, e.g., Hamilton (1989), Perron (1989), Kim & Nelson (1999) and McConnell & Perez-Quiros (2000).
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where Sιt+1 ∼ Bernoulli(pιt,T ). This setting maps directly into (1) by writing the state, innovation and
parameter vectors; X = (µc,t, σ2

c,t)′, Wt = εt, F = (γ, 0)′, and R2 = {(0, 0)′, (0, γ2)′}. Finally, the
following proposition provides return representations for the regime switching CCAPM.

Proposition 2. Suppose the conditions of Section A.3 hold. Moreover, define the constants βi,0 =
κi,0 + (κi,1 − 1)Di,0, βi,1 = Di,1(κi,1 − 1) + χi, βi,2 = Di,2(κi,1 − 1), with Di,0, Di,1 and Di,2 defined in
(B.12) of Appendix B.4, then, up to a first-order Taylor expansion and as T →∞,

(a) rft = δ + γµc,t − γ2/2σ2
c,t,

(b) ri,t+1 = βi,0 + βi,1µc,t + βi,2σ
2
c,t + κi,1Di,1µ̄tSµt+1 + κi,1Di,2σ̄

2
t Sσt+1 + χiσc,tεt+1.

Proposition 2 demonstrates that our log-linear regime switching CCAPM generate return repre-
sentations, which, similarly to the LRR and the dynamic disaster models, are affine functions of the
state variablesXt = (µc,t, σ2

c,t)′ and displays Gaussian as well as non-Gaussian innovations. An impor-
tant difference between the models, however, is the µc,t and σ2

c,t are non-stationary regime switching
processes, in contrast to the other two models whose state variables obey stationary first-order au-
toregressive processes. Moreover, note that we have simplified the model structure relative to the
model studied by Lettau et al. (2008), who also include a learning mechanism. Our results may be
generalized at the expense of an increasingly tedious exposition. Finally, given the assumptions on
Xt, the spectral densities in (15) follow by Christensen & Varneskov (2017, Lemmas 3-4).

B Proofs

For some generic process Xt, t = 1, . . . , T , define Mt,X(u) ≡ Et[euX ] as the conditional moment
generating function (CMGF). Then, if Xt+1 ∼ N(µt,X , σ2

t,X), we have for some constant a,

Mt,aX(u) = exp
(
aµt,Xu+ a2u2

2 σ2
t,X

)
. (B.4)

Lemma 1. Suppose that Xt+1 ∼ N(µt,X , σ2
t,X) and Yt+1 ∼ Bernoulli(yt), where µt,X , σt,X > 0,

and the probability yt ∈ (0, 1) are locally bounded and càdlàg processes, and that Xt+1 and Yt+1 are
independent conditional on Ft, then the following results for the CMGF hold,

(a) Mt,aXY(u) = 1 + yt
(
Mt,aX(u)− 1

)
.

(b) Up to a first-order Taylor expansion, the following relation hold

lnMt,aXY(u) = yt

(
aµt,Xu+ a2u2

2 σ2
t,X

)
.
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Proof. For (a). First, make the following expansion of Mt,aXS(u),

Mt,aXY(u) = Et[euaX |Yt+1 = 1]× Pt[Yt+1 = 1] + (1− Pt[Yt+1 = 1]),

readily providing the result, as Et[euaX |Yt+1 = 1] = Mt,aX(u).
For (b). Note that we have the following Taylor expansions for exp and ln functions:

ex − 1 =
∞∑
n=1

xn

n! and ln(1 + x) =
∞∑
n=1

(−1)n+1x
n

n! , (B.5)

which, together with (a), readily provides the result.

B.1 Proof of Theorem 1

For (a). First, E[G′tWt+1] = E[Et[G′tWt+1]] = 0 by the law of iterated expectations (LIE). Hence,
we may write

Cgg(0) = E[(G′tWt+1)2] = E[G′tEt[Wt+1W
′
t+1]Gt] = E[Tr(GtG

′
t)].

Next, using conditional independence of the components in Assumptions 1, Assumption 2 and the
LIE,

C``(0) = H ′ (E [Vt[∆Nt+1] ◦ Vt[ψt+1]])H = H ′ (E [D(λt − λt ◦ λt) ◦ D(ξt)])H.

Finally, Cgg(0) <∞ and C``(0) <∞ follow immediately by Assumption 3.
For (b). By applying the LIE and the same arguments as in (a), we readily have Cgg(h) = 0 and

C``(h) = 0 when h 6= 0. This implies fgg(λ) = Cgg(0)/(2π) and f``(λ) = C``(0)/(2π). Hence, since
we have that Xt, gt+1 and `t+1 are conditionally independent, the result follows by sequential use of
the LIE, as above, to eliminate cross-component covariance terms.

For (c). Follows by (a) and (b) in conjunction with Parseval’s theorem.

B.2 Proof of Theorem 2

The result follows by the same arguments provided for Theorem 1.

B.3 Proof of Proposition 1

For (a). First, for power utility θ = 1, the SDF is ∆ lnSt+1 = −δ−γ∆ct+1, and for the risk free rate,
we have Et[e∆ lnSt+1Rft ] = 1 or, by re-arranging, rf,t = ln(Et[e∆ lnSt+1 ]−1). Now, since

Et[e∆ lnSt+1 ] = e−δ−γµcMt,−γBS(1),

the result follows by applying Lemma 1(b).
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For (b). As for the long run risk model in Bansal & Yaron (2004), we stipulate that the log-price-
dividend ratio is linear in stock specific and systemic resilience, i.e.,

zi,t = Ci,0 + Ci,1Hi,t(1) + Ci,2Bt(−γ), (B.6)

and subsequently verify this relation. Next, rewrite Euler pricing relation,

1 = Et
[
e−δ−γ∆ct+1+ri,t+1

]
= e−δ−γµc+κi,0−Ci,0−Ci,1Hi,t(1)−Ci,2Bt(−γ)+κi,1Ci,0+µi,d

× Et
[
e(Fi,t+1−γBt+1)St+1+κi,1

(
Ci,1Hi,t+1(1)+Ci,2Bt+1(−γ)

)
+σi,dεi,t+1

]
,

= e−δ−γµc+κi,0+(κi,1−1)Ci,0−Ci,1Hi,t(1)−Ci,2Bt(−γ)+µi,d+σ2
i,d/2

× Et
[
e(Fi,t+1−γBt+1)St+1

]
× Et

[
eκi,1

(
Ci,1Hi,t+1(1)+Ci,2Bt+1(−γ)

)]
,

with the last equality following using conditional independence of the stochastic components in the
pricing relation. By the same argument and Lemma 1, we have, up to a first-order Taylor expansion,

lnEt
[
e(Fi,t+1−γBt+1)St+1

]
= Hi,t(1) + Bt(−γ) (B.7)

Similarly, we have exactly that

Et
[
eκi,1

(
Ci,1Hi,t+1(1)+Ci,2Bt+1(−γ)

)]
= eκi,1Ci,1ϕi,HHi,t(1)+κ2

i,1C
2
i,1ς

2
i,H/2

× eκi,1Ci,2ϕBBt(−γ)+κ2
i,1C

2
i,1ς

2
B/2, (B.8)

implying that, by taking logs on both sides of the Euler condition and collecting terms, we have, up
to a first-order Taylor expansion,

0 = qi + qi,HHi,t(1) + qi,BBt(−γ), where

qi = −δ − γµc + κi,0 + (κi,1 − 1)Ci,0 + µi,d + σ2
i,d + κ2

i,1/2
(
C2
i,1ς

2
i,H + C2

i,2ς
2
B

)
qi,H = −Ci,1 + 1 + κi,1Ci,1ϕi,H, qi,B = −Ci,2 + 1 + κi,1Ci,2ϕB.

Since this relation is to be satisfied for all values of Hi,t(1) and Bt(−γ), we need qi = qi,H = qi,B = 0,
and, thus, solve for the coefficients Ci,0, Ci,1, and Ci,2,

Ci,1 = 1
1− κi,1ϕi,H

, Ci,2 = 1
1− κi,1ϕi,B

, (B.9)

Ci,0 =
−δ − γµc + κi,0 + µi,d + σ2

i,d + κ2
i,1/2

(
C2
i,1ς

2
i,H + C2

i,2ς
2
B

)
1− κi,1

. (B.10)
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This confirms the conjectured form (B.6), up to a first-order Taylor expansion, and, together with the
log-linear return approximation in (A.1) and the dynamics of ∆di,t+1, gives the final result.

B.4 Proof of Proposition 2

For (a). As in Appendix (B.3), we have rf,t = ln(Et[e∆ lnSt+1 ]−1) and ∆ lnSt+1 = −δ−γ∆ct+1. Now,
since

Et[e∆ lnSt+1 ] = e−δ × Et
[
e−γ(µc,t+σc,tεt+1)

]
= e−δ−γµc,tEt

[
e−γσc,tεt+1

]
,

we may use conditional log-normality of εt+1 to establish the result.
For (b). As for the disaster risk model in Section B.3, we stipulate that the log-price-dividend

ratio is linear in the regime switching mean and variance of consumption growth, i.e.,

zi,t = Di,0 +Di,1µc,t +Di,2σ
2
c,t (B.11)

and subsequently verify this. Hence, the Euler condition may be rewritten as

1 = Et[e−δ−γ∆ct+1+ri,t+1 ]

= eκi,0−δ+(κi,1−1)Di,0 × e(χi−γ−Di,1)µc,t−Di,2σ2
c,t × Et

[
eκi,1(Di,1µc,t+1+Di,2σ2

c,t+1)+(χi−γ)σc,tεt+1
]
,

for which, using conditional independence among εt+1 and the state variables Sµt+1 and Sσt+1, the last
term may be further decomposed as into three components,

Et
[
eκi,1(Di,1µc,t+1+Di,2σ2

c,t+1)+(χi−γ)σc,tεt+1
]

= Et
[
eκi,1Di,1µc,t+1

]
× Et

[
eκi,1Di,2σ2

c,t+1
]

× Et
[
e(χi−γ)σc,tεt+1

]
.

Now, by applying Lemma 1, we have, up to a first-order Taylor expansion,

lnEt
[
eκi,1Di,1µc,t+1

]
= κi,1Di,1

(
µc,t + µ̄tp

µ
t,T

)
,

lnEt
[
e(χi−γ)σ2

c,tεt+1
]

+ lnEt
[
eκi,1Di,2σ2

c,t+1
]

=
(
(χi − γ)2/2 + κi,1Di,2

)
σ2
c,t + κi,1Di,2σ̄

2
t p
σ
t,T ,

implying that, by taking logs, we may rewrite the Euler condition as

0 = qi + qi,µµc,t + qi,σσ
2
c,t + κi,1Di,1µ̄tp

µ
t,T + κi,1Di,1σ̄

2
t p
σ
t,T , with

qi = κi,0 − δ + (κi,1 − 1)Di,0,

qi,µ = (χi − γ + (κi,1 − 1)Di,1) ,

qi,σ =
(
(χi − γ)2/2 + (κi,1 − 1)Di,2

)
.

Next, by model design, pµt,T = O(1/T ) and pσt,T = O(1/T ) and all constants are bounded, implying
that the limiting Euler condition may be written as 0 = qi + qi,µµc,t + qi,σσ

2
c,t when T →∞. Since this
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is satisfied for all t = 1, . . . , T , we need qi = qi,µ = qi,σ = 0, thus providing the solutions

Di,0 = κi,0 − δ
1− κi,1

, Di,1 = χi − γ
1− κi,1

, Di,2 = (χi − γ)2/2
1− κi,1

, (B.12)

confirming the conjectured form (B.11), up to a first-order Taylor expansion as T →∞, and, together
with the log-linear return approximation, this delivers the final result.
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Figure 1: Spectral Density Examples
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This figure shows spectral densities for persistent components of the state vector for the long-run risk model, the
dynamic disaster model and the regime-switching CCAPM. Specifically, for each of the three models, the spectral
density of one persistent component is simulated and benchmarked against the constant spectrum of the CCAPM, see
Section 4 for a discussion. For each model, we calibrate the persistence to that recomended by the original authors, i.e.,
Bansal & Yaron (2004), Gabaix (2012), and Lettau et al. (2008). For the long-risk model, we implement the AR(1)
dynamics of xt with persistence parameter 0.979, the dynamic disaster model with 0.989 and the regime-switching
CCAPM as in (15). All constants are normalized to have unit long-run variance.
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Figure 2: Monthly Alphas - Frequency Dependent Covariance Ratios with the Market
Factor
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Frequency Dependent Covariance with the Market Factor

This figure plots monthly alphas (in percentage) against the Fama & French (1993) (FF3), Carhart (1997) (FF4),
Fama & French (2015) model (FF5) and the five factor model augment with the momentum factor (FF6). At the
beginning of each calendar month, stocks are ranked according to their frequency dependent covariance ratios and then
assigned to one of the ten portfolios. Frequency dependent covariance is estimated as detailed in Section 5.1. The
portfolio is then long the 10% stocks with highest frequency dependent covariance ratio, in a given frequency bin, and
short the 10% stocks with lowest covariance ratio. All stocks are equally weighted within a portfolio. Portfolios are
rebalanced every month. The size of the marker is proportional to the (absolute value) of the t-statistic for alpha using
the Newey & West (1987) procedure to estimate standard errors. The sample period is January 1964 to December
2018.

Figure 3: Spectral Density Examples
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This figure illustrates the spectral density of a state vector with two independent and transitory components.
In particular, the individual and joint spectral densities are depicted, assuming that the two components obey
first-order autoregressive dynamics with persistence parameters of 0.97 and −0.2 as well as standard Gaussian
innovations whose variances have been scaled by 0.1 and 4, respectively. Finally, the two components have been
implemented with opposite risk prices of +1 and −1.
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Figure 4: Monthly Alphas - Frequency Dependent Covariance Ratios with the Value, Size
and Momentum Factor
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This figure plots monthly alphas (in percentage) against the Fama & French (1993) (FF3), Carhart (1997) (FF4),
Fama & French (2015) model (FF5) and the five factor model augment with the momentum factor (FF6). At the
beginning of each calendar month, stocks are ranked according to their frequency dependent covariance ratios and then
assigned to one of the ten portfolios. Frequency dependent covariance is estimated as detailed in Section 5.1. The
portfolio is then long the 10% stocks with highest frequency dependent covariance ratio, in a given frequency bin, and
short the 10% stocks with lowest covariance ratio. All stocks are equally weighted within a portfolio. Portfolios are
rebalanced every month. The size of the marker is proportional to the (absolute value) of the t-statistic for alpha using
the Newey & West (1987) procedure to estimate standard errors. The sample period is January 1964 to December
2018.
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Figure 5: Monthly Alphas - Frequency Dependent Covariance Ratios with the Orthogo-
nalized Value, Size and Momentum Factor
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This figure plots monthly alphas (in percentage) against the Fama & French (1993) (FF3), Carhart (1997) (FF4),
Fama & French (2015) model (FF5) and the five factor model augment with the momentum factor (FF6). At the
beginning of each calendar month, stocks are ranked according to their frequency dependent covariance ratios and then
assigned to one of the ten portfolios. Frequency dependent covariance is estimated as detailed in Section 5.1. The
portfolio is then long the 10% stocks with highest frequency dependent covariance ratio, in a given frequency bin, and
short the 10% stocks with lowest covariance ratio. All stocks are equally weighted within a portfolio. Portfolios are
rebalanced every month. The size of the marker is proportional to the (absolute value) of the t-statistic for alpha using
the Newey & West (1987) procedure to estimate standard errors. The sample period is January 1964 to December
2018.
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Figure 6: Correlations of Sorted Portfolios with Common Factors
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This figure shows the correlation between monthly returns of common risk factors with long-short portfolio sorted
on HF and LF covariance ratios with the common factors and their orthogonalized versions. The subscript after
a factor denotes the frequency band over which the covariance ratios are computed, a superscript “⊥” denotes the
orthogonalized version of a factor, as introduced in (19). For example, hmlLF denotes a portfolio, which is long
stocks that have a high LF covariance ratio with the hml (value) factor and short stocks that have low LF covariance
ratio with the hml (value) factor. Similarly, hml⊥LF denotes the portfolio, which is long stocks that have a high LF
covariance ratio with the orthogonalized hml (value) factor and short stocks that have a low LF covariance ratio with
the orthogonalized hml (value) factor The sample period is January 1964 to June 2014.
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Figure 7: Characteristics of the Low Frequency Portfolio
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This figure shows the normalized rank of nine cross-sectional return characteristics for the long and short leg of the
LF portfolio (constructed using market returns). These are the book-to-market ratio, debt-to-price ratio, market equity
(size), profitability, investment, operating accruals, the trailing three-year volatility, return one month before portfolio
formation (r2−1) and the return from 12 to 2 months before prediction (r12−2). Each month, the characteristics are
normalized as in Freyberger et al. (2019), i.e., c̃it = rank(cit)

Nt+1 , where cit denotes the “raw” characteristic value and Nt

denotes the number of firms in month t, c̃it denotes the rank normalized characteristic, which is always between zero
and one. The sample period is January 1964 to December 2018.
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Figure 8: Transition Frequencies for the Portfolios Sorted on Low Frequency Risk
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The figure shows the unconditional transition frequencies between the ten portfolio sorted on LF risk, constructed from
market returns, from one month to the next. The sample period is January 1964 to December 2018.
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Figure 9: Price Path and Yearly Return of the Low Frequency Portfolio
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The top panel of the figure show the logarithmic price path (cumulative returns) of the LF long-short portfolio. At
the beginning of each calendar month, stocks are ranked according to their LF covariance ratio and then assigned to
one of ten portfolios. The frequency dependent covariance ratios are estimated as described in 5.1. The LF portfolio
is, then, long the 10% stocks with highest LF covariance ratio and short the 10% stocks with lowest LF covariance
ratio. All stocks are equally weighted within a portfolio. The gray areas depict NBER recessions. The lower panel of
the figure shows the yearly returns of the LF portfolio. Portfolios are rebalanced every month. The sample period is
January 1964 to December 2018.
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Table 2: Portfolios Sorted on Low Frequency Risk
This table reports alphas and factor loadings based on the Fama & French (1993), Carhart (1997) and Fama &
French (2015) models. At the beginning of each calendar month, stocks are ranked according to their low-frequency
covariance ratio with the market return and then assigned to one of the ten portfolios. Low-frequency covariance
ratios are estimated as detailed in Section 5.1. The portfolio is then long the 10% stocks with highest LF covariance
ratios and short the 10% stocks with lowest LF covariance ratios. All stocks are equally weighted within a portfolio.
Portfolios are rebalanced every month. Newey & West (1987) standard errors are given in parentheses. The sample
period is January 1964 to December 2018.

CAPM FF3 FF3 + UMD FF5 FF5 + UMD
(Intercept) 0.44∗∗∗ 0.37∗∗∗ 0.45∗∗∗ 0.45∗∗∗ 0.51∗∗∗

(0.11) (0.11) (0.13) (0.12) (0.14)
mktrf −0.10∗∗ −0.13∗∗∗ −0.14∗∗∗ −0.14∗∗∗ −0.15∗∗∗

(0.04) (0.03) (0.04) (0.04) (0.04)
hml 0.10 0.06 0.08 0.04

(0.10) (0.10) (0.12) (0.12)
smb 0.22∗∗∗ 0.22∗∗∗ 0.16∗∗ 0.17∗∗

(0.07) (0.06) (0.06) (0.07)
umd −0.09 −0.08

(0.06) (0.06)
rmw −0.23∗∗∗ −0.21∗∗∗

(0.08) (0.07)
cma 0.01 0.04

(0.15) (0.14)
Adj. R2 0.02 0.08 0.09 0.10 0.12
Num. obs. 660 660 660 660 660
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Table 3: Portfolios Sorted on High Frequency Risk
This table reports alphas and factor loadings based on the Fama & French (1993), Carhart (1997) and Fama &
French (2015) models. At the beginning of each calendar month, stocks are ranked according to their high-frequency
covariance ratio with the market return and then assigned to one of the ten portfolios. High-frequency covariance
ratios are estimated as detailed in Section 5.1. The portfolio is then long the 10% stocks with highest HF covariance
ratios and short the 10% stocks with lowest HF covariance ratios. All stocks are equally weighted within a portfolio.
Portfolios are rebalanced every month. Newey & West (1987) standard errors are given in parentheses. The sample
period is January 1964 to December 2018.

CAPM FF3 FF3 + UMD FF5 FF5 + UMD
(Intercept) −0.15∗∗ −0.15∗ −0.19∗∗ −0.18∗∗ −0.21∗∗∗

(0.07) (0.08) (0.08) (0.08) (0.08)
mktrf 0.08∗∗∗ 0.07∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.08∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
hml −0.02 −0.00 −0.00 0.02

(0.04) (0.04) (0.05) (0.05)
smb 0.05∗ 0.05∗ 0.07∗∗ 0.07∗∗

(0.03) (0.03) (0.03) (0.03)
umd 0.04∗∗ 0.04∗

(0.02) (0.02)
rmw 0.09∗∗ 0.08∗

(0.04) (0.04)
cma −0.02 −0.04

(0.07) (0.06)
Adj. R2 0.05 0.05 0.07 0.06 0.07
Num. obs. 660 660 660 660 660
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Table 4: Estimated Alphas For Different Frequency Band and Factors
This table reports monthly alphas (in percentage) against the Fama & French (1993), Carhart (1997) and Fama
& French (2015) models. At the beginning of each calendar month, stocks are ranked according to their frequency
dependent covariance ratios and then assigned to one of the ten portfolios. Frequency dependent covariance is estimated
as detailed in Section 5.1. The portfolio is then long the 10% stocks with highest frequency dependent covariance ratio,
in a given frequency bin, and short the 10% stocks with lowest covariance ratio. All stocks are equally weighted within
a portfolio. Portfolios are rebalanced every month. t-statistic are calculated using Newey & West (1987) standard
errors. The sample period is January 1964 to December 2018.

Frequency Band
1 2 3 4 5 6 7 8 9 10 HF

Market Factor
α̂CAPM 0.44∗∗∗ −0.17∗∗ −0.11 −0.21∗∗∗ −0.14 −0.10 −0.13 −0.23∗∗∗ −0.22∗∗∗ −0.09 −0.15∗∗

α̂FF3 0.37∗∗∗ −0.12 −0.15∗ −0.17∗∗∗ −0.15∗ −0.07 −0.13∗ −0.21∗∗∗ −0.21∗∗∗ −0.09 −0.15∗

α̂FF3 + UMD 0.45∗∗∗ −0.13 −0.13 −0.20∗∗∗ −0.21∗∗ −0.11 −0.20∗∗ −0.27∗∗∗ −0.25∗∗∗ −0.13 −0.19∗∗

α̂FF5 0.45∗∗∗ −0.15 −0.14∗ −0.17∗∗∗ −0.25∗∗∗ −0.08 −0.18∗∗ −0.27∗∗∗ −0.23∗∗∗ −0.13 −0.18∗∗

α̂FF5 + UMD 0.51∗∗∗ −0.16 −0.13 −0.20∗∗∗ −0.29∗∗∗ −0.11 −0.23∗∗∗ −0.31∗∗∗ −0.26∗∗∗ −0.15∗ −0.21∗∗∗

Value Factor
α̂CAPM 0.11 −0.01 0.02 −0.08 −0.07 −0.02 −0.10∗ −0.11∗∗ −0.05 −0.03 −0.04
α̂FF3 0.10 −0.01 0.03 −0.07 −0.07 −0.02 −0.10∗ −0.09∗ −0.05 −0.03 −0.04
α̂FF3 + UMD 0.20∗∗ −0.06 −0.03 −0.09∗ −0.08 −0.06 −0.13∗∗ −0.14∗∗ −0.08 −0.04 −0.06
α̂FF5 0.17∗ −0.01 0.00 −0.11∗∗ −0.11∗∗ −0.05 −0.11∗ −0.10∗ −0.06 −0.06 −0.06
α̂FF5 + UMD 0.24∗∗ −0.05 −0.04 −0.13∗∗ −0.12∗∗ −0.08 −0.13∗∗ −0.14∗∗ −0.08 −0.07 −0.08

Size Factor
α̂CAPM 0.10 −0.10∗ −0.13∗∗ −0.07 −0.04 −0.03 −0.06 −0.05 −0.05 −0.01 −0.03
α̂FF3 0.11∗ −0.10∗ −0.11∗∗ −0.06 −0.04 −0.03 −0.07 −0.08 −0.07 −0.05 −0.06
α̂FF3 + UMD 0.12∗∗ −0.13∗∗ −0.09∗ −0.05 −0.05 −0.03 −0.08 −0.07 −0.05 −0.03 −0.04
α̂FF5 0.15∗∗ −0.12∗∗ −0.12∗∗ −0.08 −0.02 0.01 −0.03 −0.05 −0.06 −0.07 −0.06
α̂FF5 + UMD 0.15∗∗ −0.15∗∗ −0.10∗ −0.07 −0.03 0.00 −0.04 −0.05 −0.04 −0.05 −0.05

Momentum Factor
α̂CAPM 0.12 −0.02 −0.10 −0.11∗ −0.10 −0.14∗∗ −0.08∗∗ −0.03 −0.13∗∗ −0.21∗∗∗ −0.17∗∗∗

α̂FF3 0.02 0.03 −0.03 −0.05 −0.07 −0.07 −0.06 0.01 −0.10 −0.18∗∗∗ −0.14∗∗∗

α̂FF3 + UMD 0.00 0.06 −0.02 −0.06 −0.11 −0.10 −0.07 −0.01 −0.10 −0.18∗∗∗ −0.14∗∗

α̂FF5 −0.02 0.06 0.00 −0.04 −0.08 −0.05 −0.07 0.00 −0.09 −0.18∗∗∗ −0.13∗∗∗

α̂FF5 + UMD −0.03 0.08 0.00 −0.05 −0.11 −0.08 −0.08 −0.01 −0.09 −0.18∗∗∗ −0.13∗∗

Orthogonalized Value Factor
α̂CAPM 0.05 −0.01 0.07 −0.08 −0.06 0.00 −0.08 −0.06 −0.14∗∗∗ 0.02 −0.06
α̂FF3 0.04 −0.01 0.07 −0.07 −0.08 0.00 −0.08 −0.04 −0.15∗∗∗ 0.02 −0.06
α̂FF3 + UMD 0.15 −0.06 0.02 −0.11∗ −0.12∗∗ −0.03 −0.09 −0.07 −0.17∗∗∗ 0.01 −0.08
α̂FF5 0.12 −0.01 0.06 −0.12∗∗ −0.14∗∗ −0.05 −0.09 −0.04 −0.14∗∗ 0.01 −0.07
α̂FF5 + UMD 0.20 −0.05 0.01 −0.15∗∗ −0.17∗∗∗ −0.07 −0.10 −0.07 −0.16∗∗∗ 0.00 −0.08

Orthogonalized Size Factor
α̂CAPM 0.12 −0.09 −0.10∗ −0.06 −0.04 −0.01 −0.11 0.00 0.01 0.09 0.05
α̂FF3 0.15∗∗ −0.10∗ −0.11∗ −0.07 −0.03 −0.02 −0.11 −0.05 −0.04 0.04 0.00
α̂FF3 + UMD 0.20∗∗ −0.13∗ −0.10∗ −0.11 −0.04 −0.03 −0.14∗∗ −0.04 −0.05 0.03 −0.01
α̂FF5 0.19∗∗ −0.11∗ −0.10∗ −0.09 −0.02 0.00 −0.09 −0.02 −0.02 0.00 −0.01
α̂FF5 + UMD 0.23∗∗∗ −0.13∗ −0.10∗ −0.12 −0.03 −0.01 −0.13∗ −0.01 −0.04 0.00 −0.02

Orthogonalized Momentum Factor
α̂CAPM 0.10 −0.03 −0.05 −0.09 −0.01 −0.11∗ −0.07 −0.02 −0.10 −0.13∗∗ −0.12∗∗

α̂FF3 0.02 0.02 0.00 −0.05 0.02 −0.04 −0.06 0.01 −0.07 −0.10∗∗ −0.09∗∗

α̂FF3 + UMD 0.00 0.04 0.00 −0.05 0.00 −0.09 −0.08 0.01 −0.09 −0.11∗∗ −0.10∗

α̂FF5 −0.02 0.04 0.01 −0.04 0.02 −0.02 −0.08 0.02 −0.06 −0.11∗∗ −0.09∗

α̂FF5 + UMD −0.03 0.06 0.01 −0.04 0.01 −0.06 −0.09 0.02 −0.08 −0.12∗∗ −0.10∗
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Table 5: Persistence of Spectral Covariance Ratios
This tables presents the first-order autoregressive coefficient of the LF and HF portfolios’ covariance ratios with the
market return, i.e., the estimated slope from the model cit = α+ βcit−1 + εit. The LF and HF covariance ratios are
estimated as described in Section 5.1.

Low Frequency High Frequency
Autocorrelation 0.79 0.77
Adj. R2 0.62 0.59
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Figure A.1: Characteristics of the High Frequency Portfolio
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This figure shows the normalized rank of nine cross-sectional return characteristics for the long and short leg of the
LF portfolio (constructed using market returns). These are the book-to-market ratio, debt-to-price ratio, market equity
(size), profitability, investment, operating accruals, the trailing three-year volatility, return one month before portfolio
formation (r2−1) and the return from 12 to 2 months before prediction (r12−2). Each month, the characteristics are
normalized as in Freyberger et al. (2019), i.e., c̃it = rank(cit)

Nt+1 , where cit denotes the “raw” characteristic value and Nt

denotes the number of firms in month t, c̃it denotes the rank normalized characteristic, which is always between zero
and one. The sample period is January 1964 to December 2018.
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Figure A.2: Transition Frequencies for the Portfolios Sorted on High Frequency Risk
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The figure shows the unconditional transition frequencies between the ten portfolio sorted on LF risk, constructed from
market returns, from one month to the next. The sample period is January 1964 to December 2018.
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Figure A.3: Price Path and Yearly Return of the High Frequency Portfolio
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The top panel of the figure show the logarithmic price path (cumulative returns) of the HF long-short portfolio. At
the beginning of each calendar month, stocks are ranked according to their HF covariance ratio and then assigned to
one of ten portfolios. The frequency dependent covariance ratios are estimated as described in 5.1. The LF portfolio
is, then, long the 10% stocks with highest HF covariance ratio and short the 10% stocks with lowest HF covariance
ratio. All stocks are equally weighted within a portfolio. The gray areas depict NBER recessions. The lower panel of
the figure shows the yearly returns of the HF portfolio. Portfolios are rebalanced every month. The sample period is
January 1964 to December 2018.
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