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Abstract

We identify and estimate social network models when network links are either misclassified

or unobserved in the data. First, we derive conditions under which some misclassification of

links does not interfere with the consistency or asymptotic properties of standard instrumental

variable estimators of social effects. Second, we construct a consistent estimator of social effects

in a model where network links are not observed in the data at all. Our method does not

require repeated observations of individual network members. We apply our estimator to data

from Tennessee’s Student/Teacher Achievement Ratio (STAR) Project. Without observing

the latent network in each classroom, we identify and estimate peer and contextual effects

on students’performance in mathematics. We find that peer effects tend to be larger in bigger

classes, and that increasing peer effects would significantly improve students’average test scores.

JEL classification: C31, I21, C51

Keywords: Social networks, Peer effects, Misclassified links, Missing links, Mismeasured

network, Unobserved network, Classroom performance.
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1 Introduction

In many social and economic environments, an individual’s behavior or outcome (e.g. a con-

sumption choice or a test score) depends not only on his own characteristics, but also on the

behavior and characteristics of other individuals. We refer to such dependence between two indi-

viduals as a link and individuals with such links as neighbors. A social network consists of a group

of linked individuals. In general, the set of neighbors varies across individuals within the group,

and each individual may assign heterogenous weights to his neighbors. The structure of a social

network is fully characterized by a square matrix which lists all links (with possibly heterogenous

weights) among the individuals in the group, known as the adjacency matrix.

Much of the econometric literature on social networks focuses on disentangling and estimating

various social effects based on observed outcomes and characteristics of network members. These

structural parameters include the effects on each individual’s outcome of (i) the individual’s own

characteristics (direct effects) and group characteristics (correlated effects), (ii) the characteristics

of his neighbors (contextual effects) and (iii) the outcomes of his neighbors (peer effects).

Existing methods of estimating these structural network effect parameters require either that

the adjacency matrix of links among individuals in the sample be observed (as in, e.g., Bramoullé,

Djebbari and Fortin (2009)), or that we observe many observations of outcomes of the same indi-

viduals (as in, e.g., Blume, Brock, Durlauf and Jayaraman (2015) or De Paula, Rasul and Souza

(2018)).1

1.1. Our contribution. In this paper we relax these data requirements. We first consider the
case where some network links are either misreported or missing. Here we provide good news for

empirical researchers; we show that standard instrumental variable estimation and quasi-maximum

likelihood estimation of network models (consisting of either many separate networks or a single

growing network) remain consistent even in the presence of misclassified or unreported links, as

long as the number of such links does not grow too quickly with the sample size.

We next consider point identification and estimation of structural social effects parameters when

the adjacency matrix is not observed at all, and where individuals are each observed only once.

Since many surveys do not include link data, these results have many potential applications.

In this case where the adjacency matrix is unobserved, we assume the data consists of individuals

in many separate (or almost separate) networks, such as students in many different schools or

residents of many different villages. In this data generating process, we know the group or network

each individual belongs to (e.g., which school or village each person is in), but we do not observe any

information about the links between individuals within each group. Instead, we assume each group

network is a draw from some underlying distribution of possible networks, and we identify some

features of that underlying distribution along with the structural parameters of the model. The

1Blume et al (2015) do not explicitly assume many observations of the same individuals. Rather, they assume

that the reduced-form coeffi cients implied by a fixed unknown network is identified, which would presumably require

some kind of repeated observations in practice.
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first and second parts of the paper are unified by applying our earlier results to these unobserved

networks, thereby allowing some links to exist between groups.

We illustrate these results by identifying and estimating the magnitude of peer and contextual

effects of student outcomes in classrooms, using a data set that contains no information about the

social links among the students, and where each student in each class is only observed once.

1.2. Motivation. There are many reasons why network links may be mismeasured or unreported.
Typical surveys in economics only deal with individuals and not connections, and so provide no link

data at all. Other surveys collect data on proximity or similarity of individuals (e.g., geographic

location) from which links might be imputed, but any such imputation will likely entail errors, such

as not linking people who happen to be friends despite living far apart.

Misclassification of links may also arise because links that are observed in one context may be

irrelevant for outcomes under study, e.g., two people who are observed as linked on a social media

platform may be connected there for business or political reasons, and have no effect on each other’s

personal outcomes.

Even in data sets where observed links are directly relevant for observed outcomes, link data

may suffer from a variety of reporting or recording errors. For example, many surveys limit the

number of links (e.g., the number of friends) one can report, leading to missing links for popular

individuals. Studies that measure links within groups such as classrooms or villages may not observe

links across these groups, (e.g. friendships across classrooms or villages). Also, in some surveys on

networks with undirected links, an individual A could claim to be friends with B, but B does not

report being friends with A. This leaves the status of their undirected link uncertain.

Finally, as noted above, existing results that identify social interactions without link data require

many repeated observations of the same network, which are often not available either because

individuals may only be observed once (or a small number of times), or because the underlying

network could change over time.

1.3. The Model. Let yi ∈ R and Xi ∈ RK denote the outcome and exogenous covariates for

individual i respectively. The sample data includes observations of yi and Xi for i = 1, ..., n. The

asymptotics are that n goes to infinity. Let yi and Xi denote the average outcome and average

covariates among all individuals linked with individual i.

Consider the model

yi = α+ λyi +X ′iβ +X
′
iγ + εi,

where εi is the i.i.d. error term. The structural parameters of interest include the intercept α ∈ R,
the endogenous peer effect λ ∈ R, the vector of individual effects β ∈ RK , and the vector of
contextual effects γ ∈ RK .

The adjacency matrix, denoted by G∗, is an n-by-n matrix whose (i, j)-th component equals

one if i is linked to j and zero otherwise. Constructing yi and Xi requires knowing who is linked

to individual i, because only those people are included in these averages. So construction of yi and

Xi for every individual i in the sample requires that G∗ be observed.
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A popular estimator for the structural coeffi cients (or social effects) α, λ, β, and γ is the

instrumental-variable (IV) estimator which uses the covariates for all individuals j who are friends

of friends of i to construct instruments for yi (see Bramoullé, Djebbari and Fortin (2009)). This

estimator assumes that the data includes perfect measurement of all links in G∗ so that yi and Xi

as well as the instruments for yi can be constructed from the sample. Another possible estimator is

quasi-maximum likelihood estimator (QMLE), which is based on parameterizing the distribution of

εi’s and maximizing the associated likelihood function. This estimator also assumes G∗ is correctly

observed in data.

1.4. Estimation with misclassified links. Our first set of results characterizes the impact of
misclassification of links in the data on the asymptotic properties of IV estimators of α, λ, β, and

γ. For these results, instead of observing the true adjacency matrix G∗, we observe H∗, which is

a noisy measure of G∗. The difference between H∗ and G∗ is the matrix of measurement errors in

the network in our data.

We investigate the asymptotic properties of the IV estimator when the misclassified links matrix

H∗ is used instead of the true G∗ for constructing yi, Xi and the instruments for yi. As noted

above, the results are good news for researchers. If the expected number of misclassified links

grows at a rate slower than
√
n, then the IV estimator remains

√
n-consistent and asymptotically

normal under regularity assumptions, and the usual formulas for estimating standard errors remain

consistent. Therefore, under these conditions researchers can safely ignore the presence of these

misclassified links, because both the estimator and its standard errors based on H∗ remain valid.2

We show the same result also holds for parameters that are estimated using QMLE.

These results can be applied to many of the above listed examples of measurement errors in

link data. For example, consider the common modeling environment where the data come from

many independent small groups, such as schools or villages. We can think of the groups as blocks

along the diagonal of a single growing network G∗. Models using such data often ignore or assume

away links between individuals across villages or schools (i.e., links between one block and another),

either for theoretical convenience or because no data are collected on such links. Under the general

framework we consider, this is equivalent to misclassifying all links that exist outside the diagonal

blocks in G∗. Our results show that IV estimators (and QMLE) using such a block-diagonal H∗

as a proxy for the true G∗ remain consistent, and the usual standard error formulas remains valid,

provided G∗ is suffi ciently sparse outside the diagonal blocks and the links within the diagonal

blocks are mostly correctly measured.

1.5. Identification and Estimation without link data. Our second set of results consists
of a new constructive point identification strategy and an associated closed-form estimator for the

case where the data contain no link information at all (that is, the data does not even report a

noisy measure of adjacency matrix H∗). For these results we assume observed individuals are in

2We also find that if the expected number of misclassified links grows at a rate faster than
√
n but slower than n,

then the IV estimator is still consistent. However, in this case the rate of convergence of the coeffi cients is less than
√
n and the usual standard error formulas no longer apply.
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finite-sized groups indexed by l = 1, .., L with L → ∞. In data these groups might correspond
to classrooms or villages. This is equivalent to assuming the true unobserved adjacency matrix

G∗ is block diagonal (i.e., consists of L diagonal blocks). Suppose we know what block each

individual belongs to (e.g., what classroom or village), but do not have any information regarding

the links within each block. Later we also consider the extension of our method to allow additional

unobserved sparse links outside these diagonal blocks, as above.

Our identification strategy makes use of the fact that the same unobserved G∗ that determines yi
also determines Xi, and information about Xi (on average) can be recovered from the reduced-form

coeffi cients obtained by regressing each yi on the Xj’s for all individuals j in the same group as i

(analogous to indirect least squares estimation of simultaneous systems of equations). Observation

of many groups is what allows us to identify these reduced-form coeffi cients.3

One attractive feature of this identification strategy is that it is constructive, so the same steps

used for identification can be replicated in data to obtain parameter estimates. Another feature

is that it does not require us to model how links are formed, e.g., no parametric or structural

assumptions are needed regarding how link probabilities are determined.

1.6. Classroom outcomes in Tennessee elementary schools. We apply our estimator

without link data to estimate the impact of social networks on the test performance of elementary

school students from a data set collected in Tennessee, USA. For example, without observing any

data on the links between students, we identify the peer effects coeffi cient λ, and estimate it to be

0.85 in small classes and 0.92 in large classes. Both estimates are statistically significant. These

estimates are roughly similar to those obtained by other researchers who use a linear-in-means

specification for identification with this data. We also find that, ceteris paribus, increasing the

magnitude of peer effects would result in improved average test scores.

Would it be worthwhile to institute policies that encourage students to form additional links or

friendships? Our results suggest that the impacts of such policies would be small, and could even

have negative effects depending on class size. This is an example of a counterfactual exercise we

can perform that would be diffi cult by other means with this data. We also test and reject alter-

native model specifications, including linear-in-means social interaction and simple link formation

in random Poisson networks (also known as Erdős-Rényi (1959) networks).

The next section is a short literature review. This is followed by our formal model. We then

present our results for mismeasured networks, followed by our new identification and estimation

method for unobserved networks. We then present some simulation results, followed by our empir-

ical application and conclusions. Proofs and derivations are in the Appendix.

3Another way to see the intuition behind our method is to note that the partial impacts of each vector of

individual characteristics on the outcome are determined by the same form of interaction between the adjacency

matrix and the structural social effect of that particular characteristic. Thus, by relating reduced-form coeffi cients of

various characteristics in the regression, we can disentangle the structural social effects without observing or explicitly

modeling the link structure.
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2 Literature Review

Typical social interactions models may allow an individual’s outcome to depend on his or

her own characteristics, to contextual influences from his or her peers’ characteristics, and to

endogenous effects from his or her peers’outcomes. The traditional linear-in-means model (which

assumes everyone is linked with everyone either within groups or in the whole network) suffers

from the “reflection problem”as pointed out by Manski (1993). This identification problem can be

overcome in models with more complicated social interaction structures. Lee (2007) uses conditional

maximum likelihood and instrumental variable methods to estimate peer and contextual effects in

a spatial autoregressive social interaction model, assuming links are perfectly observed in the data.

Bramoullé, Djebbari and Fortin (2009) and Lin (2010) provide specific conditions on observed

network structure in order to identify peer effects in social interaction models.

Given results like these, the model described in the introduction has been widely used to es-

timate peer effects in a variety of settings. Examples are studies of peer influence on students’

academic performance, sport and club activities, and delinquent behaviors (Hauser et al., 2009;

Calvó-Armengol et al., 2009; Lin, 2010; Lee et al., 2010; Liu et al., 2014; Boucher et al., 2014;

Patacchini and Zenou, 2012). These models all require the assumption that the network structure

is exogenously given and is correctly measured in the data.

The issue of potentially misclassified links is acknowledged and discussed in Patacchini and

Venanzoni (2014), Liu et al. (2014), and Lin (2015) among others. But these papers do not provide

a formal analysis of the asymptotic impact of mismeasured links on the performance of standard

estimators. Our results in Section 4.1 fill this void.4

There are several publications that investigate identification when network links are unobserved.

Blume, Brock, Durlauf and Jayaraman (2015) provide identification results in a setting where the

network structure is a fixed, unobserved model element that need to be recovered jointly with

the social effects. Their results assume that the reduced-form coeffi cients in front of individual

characteristics for a given fixed network structure are already known to researchers. In the setting

of cross-sectional data, this essentially requires the latent network structure be identical across a

large number of cross-sectional units (e.g., groups such as classes or villages).

De Paula, Rasul and Souza (2018) identify and estimate a linear social network model where the

4Referring to potential omission of friends, Patacchini and Venanzoni (2014) say that, “in the large majority of

cases (more than 94%), students tend to nominate best friends who are students in the same school and thus are

systematically included in the network (and in the neighborhood patterns of social interactions)”. Liu et al. (2014)

report that “less than 1% of the students in our sample show a list of ten best friends, less than 3% a list of five

males and roughly 4% a list of five females. On average, they declare that they have 4.35 friends with a small

dispersion around this mean value (standard deviation equal to 1.41), and in the large majority of cases (more than

90%) the nominated best friends are in the same school.” Lin (2015) says, “this nomination constraint only affects

a small portion of our sample, as less than 10% of the sample have listed five male or female friends. Therefore,

this restriction should not have a significant impact on the results.”This last speculation is precisely what our first

set of results establishes: that consistency of estimates will not be effected if the number of omitted (and hence

misclassified) links is suffi ciently small.
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network is completely unobserved. They require a panel data structure where researchers observe

outcomes across multiple periods for a single fixed latent network. In their model, individual

outcomes vary over time, conditional on covariates, because they are generated by random draws

of unobserved errors in each time period, while the unknown network structure is assumed to be

constant over time.5 With many time periods and aided by some notion of sparsity, they propose

a consistent estimator for the social effects.

The assumptions we need to deal with unobserved networks (in the second part of our paper)

are motivated by a different data structure, and therefore differ fundamentally from those in De

Paula, Rasul and Souza (2018). First, our method allows the unobserved network structure to vary

across groups (e.g., classes or villages), and can be applied in a cross-sectional setting where the

network varies across groups within a single period. We do not require a panel structure with the

network fixed over time. Asymptotics in our case are defined in terms of the number of groups

(each of which only needs to be observed once), not time periods.

Second, our identification argument differs qualitatively from De Paula, Rasul and Souza (2018)

in that we capitalize on the relationship between the reduced-form impacts of multiple individual

characteristics on outcomes. Our identification strategy also entails a mild exclusion restriction,

such as the absence of contextual effects for certain characteristics. This is an assumption others

have also used in the literature, e.g. Graham and Hahn (2005). We use these assumptions to

disentangle the structural social effects from moments of the network structure in the reduced-form

coeffi cients of individual characteristics.

Third, our identification strategy is constructive, and thus leads to a simple two-stage estimator

that has a closed form. The estimator is easy to compute, and attains standard consistency and

asymptotic normality.

3 The Model

Let y = (y1, ..., yn)′ ∈ Rn be a vector of individual outcomes, let ι = (1, ..., 1)′ and ε = (ε1, ..., εn)′

be n-dimensional column vectors, and let X = (x1, ..., xn)′ be an n-by-K matrix that consists of n

vectors of exogenous regressors xi ∈ RK . Let G∗ be the n-by-n adjacency matrix that summarizes
the actual, unobserved link structure in the network, with G∗ij = 1 if i and j are linked and G∗ij = 0

otherwise. Let G∗ii = 0 by convention in the literature. Define a row-normalized adjacency matrix

G by Gij = G∗ij/
(∑

j′ G
∗
ij′

)
, with

∑
j summing over j = 1, 2, ..., n. By construction, each row in G

sums up to one. Throughout the paper, we maintain that mini
∑

j G
∗
ij > 0 with probability one.

This means almost surely there are no isolated individuals in the network, or equivalently no rows

of zeros in G∗. This condition is standard in the literature and it ensures that the row-normalized

adjacency matrix G is well-defined.

5 In a general framework of a single large network, the setup in De Paula, Rasul and Souza (2018) is analogous to

an unobserved block diagonal adjacency matrix, with each block defined by a time period and each being identical to

all the others. Such a setup is motivated by a long panel of observations of the same fixed group of people, e.g., each

block corresponds to the same classroom of friends being observed in a different time period.
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We assume a linear social network model where outcomes are determined by:

y = αι+ λGy +Xβ +GXγ + ε. (1)

To reiterate, λ ∈ R is a non-zero endogenous peer effect, β ∈ RK is a vector of exogenous individual
effects, γ ∈ RK is a vector of contextual effects, and α ∈ R is the structural intercept. We assume
that |λ| < 1.

Our goal is to identify and estimate the social effects (λ, β′, γ′)′ and α, using observations of

(y,X) but allowing for misclassification or unobservability of G∗ and G. The data report (y,X)

over a single large network with n individuals as in (1). As discussed in the introduction, this

general framework subsumes models where observations in the data are from multiple, unlinked

networks. Such models can be represented as a special case where G∗ is block-diagonal.

4 Misclassified Links

A typical instrumental-variable method like Bramoullé, Djebbari and Fortin (2009) estimates

λ, β, γ and α via two-stage least squares (2SLS), using G2X as instruments for Gy on the right-

hand side of (1). This implies using information about friends of friends as instruments for friends’

outcomes. If network links in G are misclassified in the sample, then the right-hand side vectors

Gy and GX as well as the instruments G2X will be measured with errors. This raises questions

about the validity of the IV method when links are misclassified. We consider the impact of

misclassified links on the consistency and the asymptotic distribution of the IV estimator and of a

quasi maximum likelihood estimator. In particular, we show in this section that these estimators

remain consistent for λ, β, γ and α, as long as the expected number of misclassified links increases

at a rate slower than the sample size n. Furthermore, these estimators are root-n asymptotically

normal and the conventional standard errors remain valid if the expected number misclassified links

increases at a rate slower than
√
n.

Our results provide good news for applied researchers. As long as the number of misclassified

links increases at a suffi ciently slow rate with the sample size, the presence of misclassified links can

be completely ignored: standard estimators remain valid, and both the 2SLS and QMLE estimators

have the same limiting distribution as if all the links were correctly measured.

4.1 Mismeasured instruments in 2SLS

Suppose the sample data does not report the actual adjacency matrix G∗, but provides instead a

proxy measure H∗, whose off-diagonal components H∗ij ∈ {0, 1} are random misclassification of G∗ij .
Let H be the row-normalization of H∗, i.e., Hij = H∗ij/

(∑
j′ H

∗
ij′

)
. Assume mini≤n

∑
j H
∗
ij > 0

with probability one so that the row normalization is well-defined.

A feasible IV estimator for (α, β, γ, λ) uses H2X as instruments for Hy. Let ∆ ≡ H−G denote
the misclassification error, and write the structural form in (1) as:

y = αι+ λHy +Xβ +HXγ + ε̃, (2)
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where

ε̃ ≡ ε− λ∆y −∆Xγ.

Let R ≡ (ι,Hy,X,HX) denote an n-by-(2K + 2) matrix of explanatory variables in (2), let V ≡
(ι,H2X,X,HX) denote an n-by-(3K + 1) matrix of instruments. The IV estimator is:

(α̂, λ̂, β̂
′
, γ̂′)′ =

[
R′V (V ′V )−1V ′R

]−1
R′V (V ′V )−1V ′y. (3)

We first show this estimator is consistent when the order of misclassification error is small in the

following sense.

Assumption 1 E
(∑

i

∑
j

∣∣∣H∗ij −G∗ij∣∣∣) = O(ns) for some s < 1.

Assumption 1 requires the expected number of misclassified links to increase at a rate slower

than the sample size n. This condition holds, for example, if misclassification exists only for a subset

of individuals of order O(ns) with s < 1 and the expected number of misclassified links is fixed for

each individual in this subset. In contrast, this assumption will not hold if every component of G∗

is misclassified independently with some probability ρ ∈ (0, 1). In this case, the expected number

of misclassified links would be ρn(n− 1), which is O(n2).

We show that the estimation error of the IV estimator in (3) has a stochastic order of Op(n−1/2∨
ns−1). To see the intuition, notice that

(α̂, λ̂, β̂
′
, γ̂′)′ − (α, λ, β′, γ′)′ =

[
R′V

n

(
V ′V

n

)−1 V ′R

n

]−1
R′V

n

(
V ′V

n

)−1 V ′ε̃

n
. (4)

Under regularity conditions in Assumption 2, (V ′R)/n and (V ′V )/n both converge in probability

to constant matrices with rank (2K + 1), and the last term on the right-hand side of (4) can be

decomposed into
1

n
V ′ε̃ =

1

n
V ′ε− 1

n
λV ′∆y − 1

n
V ′∆Xγ. (5)

Under exogeneity of G∗, H∗, the first term in this decomposition is Op(n−1/2) by the Chebyshev’s

Inequality. The order of the second and third terms in (5) depends on the order of the misclassi-

fication errors and, as shown in the appendix, is Op(ns−1). Combining these results, we conclude

that the estimation errors in (4) is Op(n−1/2 ∨ ns−1). Thus the 2SLS estimator using H2X as an

instruments for Hy is consistent.

The rest of this subection formally states this result and suffi cient conditions required for it to

hold. Define a sequence of random vectors {ξn}n=1,2,...,∞ to be bounded (denoted as “ξn <∞”) if
there exists a finite constant ξ̄ such that Pr{‖ξn‖ ≤ ξ̄} = 1 for all n, where ‖·‖ denotes the Euclidean
norm. Let supi be shorthand for supi∈{1,...,n}. In what follows we suppress the dependence on sample

size n in the notation for matrices G∗ and H∗.

Assumption 2 (i) ε is independent from (X,G∗, H∗); εi is independent across i ≤ n, with

E(εi) = 0 for all i and supiE(ε2
i ) < ∞. (ii) supi

∑
j G
∗
ij, supj

∑
iG
∗
ij, supi

∑
j H
∗
ij, supj

∑
iH
∗
ij

are bounded. (iii) 1
nV
′V and 1

nV
′R converge in probability to constant matrices with rank (2K+1),

and supiE ( |x′ixi| | G,H) <∞.
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Part (i) of Assumption 2 states that X,G∗ are exogenous, and that ε is independent of the

proxy H∗. Part (ii) requires the row and column sums of G∗, H∗ to be bounded, which implies the

column sums of G and H are bounded. The row sums of G and H are equal to one by construction.

Proposition 1 Under Assumptions 1 and 2,

(α̂, λ̂, β̂
′
, γ̂′)′ − (α, λ, β′, γ′) = Op(n

−1/2 ∨ ns−1).

With s < 1, it then follows from this proposition that the IV estimator (α̂, λ̂, β̂
′
, γ̂′) using

instruments H2X is consistent. Furthermore, if s < 1/2, the effect of misclassification vanishes

fast enough so that it does not affect the root-n rate of convergence or the asymptotic distribution

of these IV estimators. In the appendix, we provide similar results for alternative quasi-maximum

likelihood estimators which treats H∗ as the true adjacency matrix in the likelihood.

4.2 Related applications

Our findings in Section 4.1 are applicable to a number of data scenarios that arise naturally in

many contexts, including the following.

1. Missing links across groups
Often network observations can be partitioned into naturally defined groups of individuals, such

as classes or cohorts at schools, or villages in developing countries, or more general neighborhoods

within geographic boundaries. In such cases, link data may only be collected or recorded within

these groups, but not across groups. For example data collected within schools may not record

friendships between individuals who go to different schools. Alternatively, the data may report

links across groups, but a researcher may choose to ignore these cross-group links and only consider

the links within each group, with the goal of building a tractable econometric model that applies the

law of large numbers across the groups. In either situation, one may be concerned about whether

ignoring possible links between groups affects the inference of social effects. Our findings in Section

4.1 show that such links can often be safely ignored.

To fix ideas, consider a sample of n individuals who are partitioned into L groups. The actual

n-by-n adjacency matrix G∗ consists of links between individuals from different groups as well

as links among individuals within each group. However, suppose the data only report the links

within each group. That is, the adjacency matrix reported in the data takes a block-diagonal form

H∗ ≡ diag{H∗1 , ...,H∗L}. Suppose each block H∗l mostly reports correct links within group l (that is,
within the block-diagonal elements in G∗), but all links that exist outside these L diagonal blocks

are misclassified as non-existent.

Our results in Section 4.1 suggest that if the total number of such misclassified links is small

in the sense of Assumption 1, then one can ignore the misclassification issue and construct an

IV estimator using instruments H2X (with H being a row-normalization of H∗ that contains

misclassification errors). The IV estimator will still be consistent. Moreover, if Assumption 1 holds
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with s ≤ 1/2, then the estimator converges at the root-n rate to a zero mean normal distribution,

and the usual formula for asymptotic variance remains valid.

2. Panel data with time-varying links
Consider a panel data setting similar to De Paula, Rasul and Souza (2018), where the sample

contains realizations in many time periods of outcomes over a single latent network. Suppose, in

addition, that the sample only reports links in that network in one of the time periods (e.g., the

initial or the final period in the sampling process). It is likely that the true network evolves over

time (e.g., individuals may stop being friends, or form new friendships over time). How do such

unobserved changes in the network over time affect the inference of social effects when observations

are pooled across time?

Our findings show that, if the expected changes in links over time are suffi ciently small, then the

unobserved changes in the network can be safely ignored. The 2SLS estimator can still be root-n

consistent and the usual formula for standard errors can remain valid for inference.

3. Limits on reported links
Many friendship surveys place an upper limit on how many friends one can list. As a result, for

the subset of individuals who have more friends than the upper limit, some links with friends will be

misclassified as non-existent. This source of misclassification satisfies Assumption 1 if the number

of such individuals grows at a suffi ciently slow rate. The standard 2SLS coeffi cient estimates then

remain consistent despite this source of error in the measurement of the network. Moreover, the

usual standard errors on these coeffi cients also remain valid as long as the number of such popular

individuals grows at a rate slower than root-n.

4. Undirected graphs with directed data
In many applications, G∗ is assumed to be symmetric (corresponding to an undirected network

graph), so if individual i is linked to j then j is assumed to be linked to i. However, if i reports

being linked with j and j does not report being linked to i, then whatever entry is put in positions

i, j and j, i risks being mismeasured. As long as the number of such cases does not grow too quickly

with n, our results show this problem can be safely ignored.

5 Unreported Links

In this section we consider the more diffi cult problem of identifying and estimating the model

coeffi cients α, β, γ and λ when the network is unobserved, so no H∗ matrix is reported in the

sample data. Since the vast majority of survey data does not include information on links across

individuals, these results have potentially many applications.

To make such identification possible, we now assume that the unobserved adjacency matrix G∗

is block diagonal. Later we will extend to the case where the adjacency matrix is close to block

diagonal, by exploiting the results in the previous section. The data-generating process will be we

observe what block (i.e., what group) each individual belongs to, but we have no knowledge of who

is linked to whom within each block. For example, if the blocks are villages, then we know what
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village each individual in our sample resides in, but we do not observe who is linked with whom

within each village.

We assume the unobserved network structure within each block is a draw from some underlying

unknown distribution of possible networks. Then, based on reduced-form coeffi cients estimated

across groups, we recover the structural coeffi cients in the model along with some features of the

distributions of networks across groups (analogous to the way structural parameters are obtained

from reduced-form coeffi cients via indirect least squares estimation). We provide a corresponding

closed-form consistent estimator for the model coeffi cients, along with standard root-n asymptotics.

5.1 Baseline model with many groups

To introduce the main idea in this section, first consider a baseline model where the sample

consists of L independent groups, or networks. Each group involves nl individuals and has an nl×nl
adjacency matrix Gl. The adjacency matrices vary across these groups, and are not reported in

the data. For now, assume that no links exist between individuals from different groups. (We relax

this assumption later in Section 5.8.) This baseline scenario fits in the framework introduced in

Section 3, with G consisting of L diagonal blocks {Gl}l≤L and zero entries outside these blocks.
We can rewrite (1) as a sequence of networks/groups indexed by l = 1, 2, ..., L:

yl = αι+ λGlyl +Xlβ +GlXlγ + εl, (6)

where yl and εl are nl × 1 vectors, ι is an nl × 1 vector of ones, and Xl an nl ×K matrix.

This model is interesting in its own right, because in practice data sets are often collected

from multiple independent groups of individuals. One example is the Add Health data set used

extensively in the literature on social networks. In that example, L is the number of school-grades

in the sample, and nl the number of students in each school-grade l. In the Add Health data, each

Gl is observed, while we will consider the more diffi cult problem in which each Gl is not observed.

De Paula et al (2018) show joint identification and estimation of the coeffi cients α, β, γ, and

λ in the model of equation (6) where Gl is unobserved, by assuming Gl = G1 for l = 2, ..., L, so

that Gl is identical for all groups l. They envision panel data with many time periods indexed by

l, in which outcomes are realized repeatedly over the same unobserved network (e.g. scores from

multiple tests taken by the same classroom of students over time). Their model is therefore finitely

parameterized, because the unknown parameters are the constant coeffi cients and all elements in a

fixed adjacency matrix G1, while the number of available observations goes to infinity as L→∞.
Across groups l = 1, ..., L in the sample, we instead assume that each unobserved Gl is a random

draw from some underlying unknown distribution of adjacency matrices, which are not reported

in the data. For example, our data could consist of outcomes and covariates from the members of

L different classrooms or villages, each observed only once. We don’t make specific assumptions

about how the unobserved network in each classroom or village is formed, but instead assume each

is an independent draw from some latent distribution of possible networks.
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Our method implicitly assumes the definition of groups is observed in the sample. That is,

we know to which group l each individual in our sample belongs. This is justified because in

practice groups are often defined by publicly observed information. Examples include geographic

boundaries such as rural villages in India studied in Banerjee et al (2017) where each l is a village,

or registration/enrollment records such as class enrollment in the Add Health data set, where each

l is a school-grade.

5.2 Identifying Assumptions

We maintain the following formal assumptions regarding the data-generating process. To ease

exposition and notation, suppose for now that Xl does not include any group-level variables. This

means none of the columns in Xl consists of nl identical entries. Such group-level variables are

easily accommodated by our method; details of how to do so are deferred to Section 5.6.1.

To fix ideas, suppose for now that all groups in the data-generating process share the same

size nl = n∗. (If we think of the individuals across all groups as being members of a single large

network, then the size of that network is n =
∑

l nl = Ln∗.) Later we relax this by dividing the

population into subgroups s and allow both the group size and some model coeffi cients to vary by

s.

Let Xl,ck denote the k-th column in Xl. That is, Xl,ck is an n∗ × 1 vector of the k-th regressor

for all members in group l. Let wl ≡ (1, X ′l,c1, X
′
l,c2, ..., X

′
l,cK)′ denote a (Kn∗ + 1)× 1 vector that

stacks regressors for all individuals in group l.

Assumption 2.1 (Independent groups) (Gl, Xl, εl) are i.i.d. across groups l = 1, .., L.

Assumption 2.2 (Exogenous networks) E(εl|Gl, Xl) = 0 for all l.

Assumption 2.3 (Independence) Gl is independent of Xl for each l.6

Assumption 2.4 (Rank and invertibility conditions) (i) E(wlw
′
l) exists and is non-singular. (ii)

I − λGl is invertible with probability one; and E(Ml) < ∞ and E(MlGl) < ∞ where Ml ≡
(I − λGl)−1.

In Assumption 2.4, I is the identity matrix. Invertibility ofMl could require that |λ| < 1, which

is a common assumption in the literature. Given Assumption 2.4, we can obtain the reduced form

of (6) as

yl = Ml (αι+Xlβ +GlXlγ + εl) , l = 1, ..., L. (7)

Our method for identification can be readily generalized to where Assumptions 2.2 and 2.3 hold

conditional on additional exogenous regressors instead of unconditionally. We omit that extension

in our derivations below to save on notation.

To obtain identification, we will require two additional assumptions. One, given by Assumption

2.5 in the next subsection, rules out some pathological cases in which identification fails. The

second is an exclusion restriction that will be discussed at length in Section 5.4.

6This condition can be replaced by “E(Gs|X) is mean independent of X for s = 1, 2, ..,∞”.
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5.3 Identification

Lemma 1 Under Assumptions 2.1-2.4, the following reduced-form parameters are identified:

µk ≡ E (βkMl + γkMlGl) for k = 1, ...,K;

µ0 ≡ α/(1− λ).

For each characteristic indexed by k ≤ K, the (i, j)th-component in µk is the marginal effect

of the k-th characteristic of individual j on the mean outcome of individual i in the reduced form

(7) under Assumptions 2.1-2.4. We refer to µk, k ≤ K as reduced-form coeffi cients throughout the

paper.

The intuition for identifying the reduced-form coeffi cients is as follows. Let yl,i denote the

outcome for student i in group l. By construction,

E(yl,i|Xl) = µ0 + eiE(Ml)Xlβ + eiE(MlGl)Xlγ, (8)

where ei is a 1×n∗ row unit vector whose i-th component is 1. This equation holds because Gl, and

hence Ml, are independent from Xl in Assumption 2.3 and E(Mlεl|Xl) = E [MlE(εl|Xl, Gl)|Xl] =

0 in Assumption 2.2. The equality in (8) also uses the fact that the block-diagonality and row-

normalization of G imply

αMlι = α [
∑∞

s=0 (λGl)
s] ι = µ0ι, l = 1, ..., L.

The right-hand side of (8) is linear in all Kn∗ components in Xl.

Remark 1 It is interesting to note that the representation of E(yl|Xl) in (8) is consistent not

only with a simultaneous social network model with complete information in (6), but also with an

alternative model in which individuals have private information and rational expectation of peer

outcomes:

yl = αι+ λGlE(yl|Gl, Xl) +Xlβ +GlXlγ + εl, (9)

where the private shocks εl,i are independent between group members conditional on the commonly

known Gl and the exogenous characteristics Xl. In (6), individuals have complete information

about others in the same group when the outcomes are simultaneously determined. In comparison,

each group member in (9) has private shocks, and the outcomes are determined through rational

expectation of others’ outcomes conditional on each individual’s information set (Gl, Xl). Both

models lead to the same representation of the conditional mean function

E(yl|Gl, Xl) = (I − λGl)−1(αι+Xlβ +GlXlγ),

which in turn implies (8) under Assumption 2.3.

For each i ≤ n∗, regressing (yl,i)l=1,...,L on (Xl)l=1,...,L leads to consistent estimators for the

intercept µ0 and Kn
∗ slope coeffi cients in front of all components in Xl. (Consistency is defined
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as L → ∞.) The full rank and the invertibility conditions in Assumption 2.4 guarantee the iden-
tification of these reduced-form coeffi cients. In such a regression of yl,i on Xl, the slope coeffi cient

for the k-th regressor of individual j in the group is βk
[
eiE(Ml)e

′
j

]
+ γk

[
eiE (MlGl) e

′
j

]
, where,

for a generic n∗ × n∗ matrix Q, the product eiQe′j returns the (i, j)-th component in Q. Thus by

regressing yl,i on Xl for each i = 1, ..., n∗, we obtain consistent estimators for all n∗× n∗×K slope

coeffi cients. Rearranging and packing these estimators into matrices leads to consistent estimators

for the K matrices of reduced-form coeffi cients µk, for k = 1, ...,K.

Next, we relate these reduced-form coeffi cients µ0, µk to structural parameters α, λ, β, γ. To do

so, we require mild conditions that rule out pathological cases.

Assumption 2.5 (Non-trivial effects) (i) For each k < K, the 2-by-2 matrix(
βk βK

γk γK

)
has full rank. (ii) µK 6= cI for any c ∈ R.

Part (i) of this assumption rules out the pathological case where two of K regressors have

proportional contextual and peer effects. Part (i) holds, for example, if γK = 0 (one of the

regressors has no contextual effect) while βK and βk, γk are all nonzero for k < K. Part (ii) rules

out another pathological case where the K-th regressor of each individual i has identical marginal

effects on its own expected outcome, but no impact on that of any other group member. This

condition is testable in principle, using the sample data (yl, Xl)l=1,2,...,L.

The next lemma establishes a simple linear relation between the reduced-form coeffi cients µk
and the structural social effects (λ, β, γ). This relation provides the foundation for our constructive

identification strategy and estimation method.

Lemma 2 Suppose Assumptions 2.1-2.5 hold. Then for each k = 1, ...,K the equation

akµk + bkµK = I (10)

has a unique solution (ak, bk) ∈ R2, where(
ak

bk

)
=

(
βk βK

γk γK

)−1(
1

−λ

)
. (11)

Proof of Lemma 2. For any k = 1, ...,K, the inverted matrix on the right-hand side of (11) has

full rank under condition (i) in Assumption 2.5. Hence the solution (ak, bk) is well-defined, and

(ak, bk) 6= (0, 0). By construction, akβk + bkβK = 1 and akγk + bkγK = −λ. Therefore,

akµk + bkµK = E[Ml(akβkI + akγkGl + bkβKI + bkγKGl)] = E[Ml(I − λGl)] = I.

Next, we need to show that for each k, (ak, bk) as defined in (11) is the unique solution for (10).

In other words, we need to show there exists no (ãk, b̃k) 6= (ak, bk) such that

(ãk − ak)µk + (b̃k − bk)µK = 0. (12)
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Consider three mutually exclusive cases.

Case 1: ãk = ak, b̃k 6= bk. Then (12) requires µK = 0.

Case 2: ãk 6= ak, b̃k = bk. Then (12) requires µk = 0. This in turn implies µK must be a scalar

multiple of I in order for (10) to hold for (ãk, b̃k).

Case 3: ãk 6= ak, b̃k 6= bk. Then (12) requires µk = − b̃k−bk
ãk−akµK , which is a scalar multiple of µK .

Again, this implies that in order for (10) to hold for (ãk, b̃k), µK must be a scalar multiple of I. In

each of these cases, the implication of (12) contradicts part (ii) of Assumption 2.5. �

The reduced-form coeffi cients µ0 and µk are identified by Lemma 1. Therefore, for each k < K,

(ak, bk) can be recovered as the unique solution of (10). Lemma 2 implies that these constants

(ak, bk)k<K are related to the social effects (λ, β, γ) in a system of linear equations:(
βk βK

γk γK

)(
ak

bk

)
=

(
1

−λ

)
for k = 1, ...,K − 1. (13)

Besides, by the row normalization of G,

mk ≡ (ι′µkι)/n
∗ =

βk + γk
1− λ for k = 1, ...,K, (14)

where mk is the sum of all components in µk divided by n
∗, which is identified due to Lemma 1.

Combining (13) and (14), we have a linear system of 2(K−1)+K equations for 2K+1 unknown

parameters in θ ≡ (λ, β′, γ′)′ with β ≡ (β1, β2, ..., βK)′ and γ ≡ (γ1, γ2, ..., γK)′. The rank of the

coeffi cient matrix in such a linear system is at most 2K−1 because akmk+bkmK = 1 for all k < K

by construction. For example, consider the case with K = 3. Then the linear system is:

0 a1 0 b1 0 0 0

0 0 a2 b2 0 0 0

1 0 0 0 a1 0 b1

1 0 0 0 0 a2 b2

m1 1 0 0 1 0 0

m2 0 1 0 0 1 0

m3 0 0 1 0 0 1





λ

β1

β2

β3

γ1

γ2

γ3


=



1

1

0

0

m1

m2

m3


. (15)

The rank of this coeffi cient matrix in (15) is bounded above by five.7 For general cases with K > 3,

the linear system is: 0(K−1)×1 A 0(K−1)×K

ι(K−1)×1 0(K−1)×K A

m I I


︸ ︷︷ ︸

π

 λ

β

γ


︸ ︷︷ ︸

θ

=

 ι(K−1)×1

0(K−1)×1

m


︸ ︷︷ ︸

d

, (16)

7To see this, note that the sum of the first and the third row equals a weighted sum of the fifth and the last row

(as a1m1 + b1m3 = 1 by construction). Likewise, the sum of the second and fourth rows equals a weighted sum of

the last two rows.
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withm ≡ (m1,m2, ...,mK)′, I is a K×K identity matrix, and A a (K−1)-by-K matrix constructed

from (ak, bk)k=1,...,K−1 as follows:

A ≡ [diag(a1, ..., aK−1), (b1, b2, ..., bK−1)′].

The rank of the coeffi cient matrix on the left side of (16) is generically 2K − 1. It can not be

greater than 2K− 1 by construction; and it is strictly less than 2K− 1 only for pathological values

of parameters in the data-generating process. Moreover, the coeffi cient matrix, and hence its rank,

is identified and can be inferred from sample data.

It will be useful for our empirical application (and for the exclusion restrictions to be introduced

in the next subsection) to generalize our identification result, to the case where the population can be

partitioned into S subsets, indexed by s = 1, 2, ..., S, based on observable information. Each subset

pertains to a distinctive environment with a potentially different vector of structural parameters

θ(s) ≡ (λ(s), β(s), γ(s)) ∈ R2K+1. For example, an environment could be defined by the size of group.

That is, all groups with size nl = n(s) in the sample are considered as independent draws from a

sub-population indexed by s. We can allow the structural parameters to potentially vary across

groups with different sizes.

Repeating the argument above for each environment indexed by s, we construct S linear systems

π(s)θ(s) = d(s) for s = 1, 2, ..., S,

with π(s), d(s) defined as in (16) for each environment s. We then stack these S systems to get

Πθ = D,

where θ and D are column vectors that stack θ(s) and d(s) respectively for s ≤ S; and Π is a block-

diagonal matrix with diagonal blocks being π(s), s ≤ S. We also append to this system additional

exclusion restrictions Rθ =c where R, c are known a priori (see the next subsection).

Theorem 1 θ is identified if [Π; R] has full rank.

This theorem follows immediately from Lemmas 1 and 2.

5.4 Exclusion restrictions

To obtain the full rank condition needed for identification in Theorem 1, we require a (vector-

valued) exclusion restriction of the form Rθ =c. The dimension of c, corresponding to the number

of required restrictions on the coeffi cients θ, depends on both K, the number of regressors in X,

and on the number of environments S. For example, with S = 1, two linear restrictions on θ will

generally suffi ce for identifying θ. We must be careful to ensure that the chosen restrictions do

actually make the augmented coeffi cient matrix [Π; R] attain full rank 2K + 1 given the structure

of Π, analogous to the difference between the order condition and the rank condition in standard

linear regression identification. We provide examples below.
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There are two types of exclusion restrictions one can consider. The first type of exclusion

restriction specifies that a given regressor in Xk has either no contextual effect or no individual

effect, i.e., an element of either β or of γ is assumed to equal zero. Graham and Hahn (2005)

use such an exclusion restriction to identify a linear-in-means social interaction model, which is

the special case of social networks where all group members are linked with equal weights (so the

adjacency matrix in their case is fully specified and known).

In the above example where K = 3 and S = 1 it could suffi ce to assume that one regressor Xk

has no contextual effect (γ
(1)

k = 0) and has a non-zero individual effect (β
(1)

k 6= 0) while another

regressor Xk′ has no individual effect (β
(1)

k′ = 0) and has a non-zero contextual effects (γ
(1)

k′ 6= 0).(We

need βk and γk′ to be nonzero here so that the vector (ak, bk, ak′ , bk′) is well-defined. For general

cases with K > 3 and S = 1, the matrix [Π;R] has full rank generically when R is defined by the

exclusion restrictions that there exist k, k′ < K with γk = 0, βk′ = 0 and βk, γk′ being nonzero.

However, restricting two regressors to both have nonzero individual effects but no contextual effects

would not suffi ce to make [Π; R] have full rank.

The second type of exclusion restriction exploits variation in environments s as described in

the previous subsection, along with structural coeffi cient restrictions across environments. To fix

ideas, suppose that the data contains just two different environments, so S = 2. For example,

these two environments could correspond to two different group sizes. Analogous restrictions can

immediately be constructed for S > 2. Let n(s) denote the size of group s, for s = 1, 2. Suppose

further that peer effects λ vary with the group size whereas individual effects β and contextual

effects γ do not. In this case, a linear system like that in (16) can be constructed by including

two unknown group-size-specific peer effects λ(1) 6= λ(2), stacking the two linear systems (16) for

different group sizes and appending it with any additional exclusion restrictions of the first type

we may have available.8 That is,

0 0 A(1) 0

ι 0 0 A(1)

m(1) 0 I I

0 0 A(2) 0

0 ι 0 A(2)

0 m(2) I I

r




λ(1)

λ(2)

β

γ

 =



ι

0

m(1)

ι

0

m(2)

0


(17)

where
(
m(s), A(s)

)
for s = 1, 2 are constructed as in (16), using reduced-form coeffi cients from

regressions that only use groups with n(s) members respectively, and r consists of row vectors that

summarize additional exclusion restrictions of the first type. The coeffi cient matrix on the left of

of (17) and the vector of constants on the right of this equation are both identified. Therefore,

8Stacking two linear systems alone by construction does not provide suffi cient rank in the coeffi cient matrix in

the linear system. At least one additional exclusion restriction of the first type is needed for point identification of

the structural parameters.
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λ(1), λ(2), β, γ are jointly identified, provided the coeffi cient matrix on the left side of (17) has full

rank 2K + 2. In this case, a single exclusion restriction of the first type, such as a zero contextual

effect for a single regressors, would suffi ce generically.

This exclusion example assumed that λ(1) 6= λ(2), which by Lemma 2 means that (a
(s)
k , b

(s)
k ,m

(s)
k )

will differ across s = 1, 2. If we instead had λ(1) = λ(2), then the linear system in (17) (when r

only reflects a single exclusion restriction of the first type) would not have suffi cient rank for

identification, and an additional restriction of the first type would be needed for identification. The

question of whether λ(1) 6= λ(2) can be tested. In particular, given the above assumption that β

and γ are the same across the group sizes, the reduced-form parameter m(s)
k will vary by group size

s if and only if λ(1) 6= λ(2).

The assumption that β and γ do not vary by group size can be relaxed. For example, if the

individual effects β are the same across groups but contextual effects vary, so γ(1) 6= γ(2), then the

full rank condition required for identification still holds generically by assuming that one of the

regressors has no contextual effect regardless of group sizes.

For our empirical application in Section 7, we analyze students’test scores. There we divide

classes into two sizes (s = 1 for small and s = 2 for large classes), and impose an exclusion of

this second type that λ varies by class size while β and γ do not. We then need one additional

exclusion of the first type. For this we assume that a student’s number of days of absence from

school has an impact on his own test score but not on those of other classmates, so the element of

γ corresponding to days of absence is zero.

5.5 Closed-form estimator

Here we describe a closed-form estimator for θ. The estimator is based on constructing sample

analogs of the moments and steps used for identification. The estimator is analogous to indirect

least squares, in that we first estimate reduced-form coeffi cients, and then recover the structural

coeffi cients from those reduced-form estimates.

First consider the case of a single environment, so S = 1 and the only exclusion restrictions

are of the first type, Rθ = c. The extension to the second type of exclusion restrictions based on

multiple environments is summarized at the end of this subsection.

Step One: Linearly regress yl on Xl to get estimated reduced form coeffi cients µ̂0 ∈ R and

µ̂k ∈ Rn
∗×n∗ for all k, using the simultaneous equations in (8). Let

m̂k ≡ (ι′µ̂kι)/n
∗ for k = 1, 2, ...,K.

Note that at this stage one could test the condition of non-trivial marginal effects required by part

(ii) of Assumption 2.5, using these estimates and standard errors.

Step Two: For each k < K, estimate the solution of (10), denoted (âk, b̂k), using the extremum

estimator

(âk, b̂k) ≡ arg min
ak,bk∈R

∑
i,j

[
ei(akµ̂k + bkµ̂K − I)e′j

]2 for k = 1, 2, ...,K.
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This is not by itself closed-form and so may entail a numerical search. However, one can in

closed-form use implications of (10) to construct a smaller linear system that can be solved by

matrix inversion for (ak, bk). These linear system equalities include that diagonal components in

akµ̂k + bkµ̂K sum to n∗ while the off-diagonal ones need to add up to 0. These linear-system-based

estimates could be used as consistent starting values for the extremum estimator above.9

Step Three: Given the estimates from Step Two, the closed-form estimator of the structural

parameters θ̂ ≡ (λ̂, β̂1, ..., β̂K , γ̂1, ..., γ̂K)′ is defined as:

θ̂ ≡ Ψ̂−1v̂,

where Ψ̂ is a coeffi cient matrix formed by stacking the linear systems in (13) and (14) with the

additional equations derived from exclusion restrictions, and removing redundant rows to attain

linear independence. For example, in the case with K = 3 above:

Ψ̂ ≡



0 â1 0 b̂1 0 0 0

1 0 0 0 â1 0 b̂1

0 0 â2 b̂2 0 0 0

1 0 0 0 0 â2 b̂2

m̂3 0 0 1 0 0 1

R


and v̂ ≡



1

0

1

0

m̂3

c


.

and Rθ = c represents the additional equalities due to exclusion restrictions (such as zero contextual

or direct effects by certain regressors).

These steps describe the estimator for a single environment, where S = 1. For multiple en-

vironments, steps one and two are first implemented separately for each environment. Then for

step three, stack the estimated π(s) and R matrices and the d(s) and c vectors, as described in

the previous sections (and again removing redundant rows) to obtain Ψ̂ and v̂, and estimate θ by

minimizing the Euclidean norm ||Ψ̂θ − v̂||.

5.6 Details in implementation

5.6.1 Group-level variables

The method we described in Sections 5.3, 5.4 and 5.5 immediately extends to accommodates

group-level variables. Suppose each group l has a row vector of group-level characteristic zl ∈ RP

shared by all group members, such as attributes of the teacher when each group is an elementary

school class. The structural form is

yl = αι+ λGlyl + ιzlδ +Xlβ +GlXlγ + εl,

9One can also exploit the fact that (ak, bk) is over-identified in (10) to construct closed-form estimates (âk, b̂k)

that are a (possibly weighted) average of n∗ (n∗ − 1) /2 closed-form estimates, each of which uses two of the total of

(n∗)2 equalities in (10).
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with δ ∈ RP being a column vector of coeffi cients that reflect the impact of group characteristics
on individual outcomes. One could interpret δ as a source of “correlated effects”. Let Assumption

2.1, 2.2 and 2.3 hold with Xl replaced by (Xl, zl), and let part (ii) of Assumption 2.4 hold with

wl ≡ (1, zl, X
′
l,c1, X

′
l,c2, ..., X

′
l,cK). The reduced form is now

E(yl|Xl, zl) = µ0 + E(Ml)ιzlδ + E(Ml)Xlβ + E(MlGl)Xlγ. (18)

A regression therefore identifies the reduced-form coeffi cients for zl, denoted νp ≡ δp/(1 − λ) for

p = 1, ..., P , in addition to µ0 and (µk)k≤K as defined above. This uses an implication of the row

normalization (I−λGl)−1ι = 1
1−λ ι. Following the same argument as in Section 5.3 and 5.4, one can

identify λ, β, γ, α from µ0, (µk)k≤K alone, using appropriate exclusion restrictions. It then follows

that δ is identified from the reduced-form coeffi cients of zl.10 For estimation, use δ̂ = ν̂(1 − λ̂),

where λ̂ is the peer effect estimates in Section 5.5, and ν̂ the OLS estimates for slope coeffi cients

of zl in the reduced-form regression in (18).

5.6.2 Dimension reduction

In the first-step regressions of (yl,i)l≤L on (Xl)l≤L for each i ≤ n∗, we need the number of

observations (groups) L in the sample to be large relative to the dimension of regressors Kn∗

(with n∗ being the size of each group and K the dimension of each individual’s characteristics). In

practice, it is possible that L is not large relative to Kn∗. In these cases, one can proceed with our

method with alternative sequential steps that involve lower dimension regressions.

Suppose for each individual i the vector of characteristics xl,i ∈ RK is uncorrelated with those

of other group members (xl,j)j 6=i. This may occur if, e.g., members are randomly assigned to

groups. Then we may transform all observed variables into mean deviation form: ∆yl,i ≡ yl,i − ȳi
and ∆xl,i ≡ xl,i − x̄i for i = 1, ..., n∗ where ȳi ≡ 1

L

∑
l′≤L yl′,i, x̄i ≡ 1

L

∑
l′≤L xl′,i, and run n∗

lower-dimension regressions with K regressors each. Specifically, regress (∆yl,i)l≤L on (∆xl,j)l≤L

separately for each j = 1, ..., n∗. Next, repeat these steps with dependent variables being (∆yl,j)

for all other j 6= i. This leads to n∗ × n∗ ×K consistent estimators for reduced-form coeffi cients in

µk, k ≤ K. With µk recovered for all k ≤ K, one can proceed and estimate social effects as above.11

If individual characteristics are correlated across group members, then we could instead use a

partitioned regression approach to estimate µk, k ≤ K via sequential, lower dimension regressions.

Specifically, we could partition the vector of characteristics into K1 ∪ K2 = {1, ...,K}, and let
(Xl,1, Xl,2) = Xl denote the corresponding partition of the matrix of regressors. For each i, regress

{yl,i}l≤L and {Xl,2}l≤L respectively on {Xl,1}l≤L and get the residuals. Next, regress the residuals
10 If δ does not vary across environments indexed by s = 1, 2, then the reduced-form coeffi cients for zl would vary

across environments if and only if λ(1) 6= λ(2). This provides us with yet another way to test the null λ(1) = λ(2).
11 It is worth mentioning that our method can accommodate unobserved group fixed effects (denoted $l). Using

the reduced-form coeffi cients from the demeaned regressions, one can follow the steps in Section 5.3 and 5.4 to recover

peer, individual and contextual effects λ, β and γ. Next, assuming exogeneity of group fixed effects with a location

normalization like E($l|Xl, Gl) = 0, one can use the reduced form in (18) to recover the correlated effect δ and the

structural intercept α.
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from {yl,i}l≤L on those from {Xl,2}l≤L to consistently estimate the reduced-form slope coeffi cients

for characteristics in K2. Then plug these estimates into the original regression equation, and run a

lower-dimension regression on {Xl,1}l≤L to estimate the remaining reduced-form slope coeffi cients

in K1. If K is too large, we could partition the vector of characteristics into more subvectors and

apply the partitioned regression algorithm iteratively to estimate µk, k ≤ K.

5.6.3 Individual labels

Following convention in the literature, our method requires that the individual labels i = 1, ..., n∗

in each group be such that the random vectors/matrices (Xl, Gl, εl) across the groups are drawn

from the same joint distribution. This construct is also implicit in earlier papers which identify

parameters in social network models from reduced-form coeffi cients µk (e.g., Bramoullé et al 2009

and Blume et al 2015).12

If the actual joint distribution of (Xl, Gl, εl) in the data-generating process is exchangeable in

the individual indices within each group, then the labeling of individuals has no impact on the

asymptotic properties of the estimator, and individuals within each group can just be ordered

randomly from 1 to n∗. In practice, we may label (i.e. order) individuals based on some observed

individual characteristic (e.g., date of birth, and hence exact age, in classroom data), in which

case the assumed exchangeability would only be desirable conditional on that characteristic. In

our empirical work, we compare estimates based on random labeling versus those based on date of

birth, and conclude that the estimates are not sensitive to the assumed labeling.

5.6.4 Variation in group sizes

As described in previous sections, our estimator can handle variation in group size nl by making

each group size correspond to a different environment s (recall that by definition, the reduced-

form coeffi cients µk depend on the group size). However, in some samples there may not be

enough observations of groups of each size to implement this estimator. We therefore propose two

approaches for resolving such data deficiency, by pooling observations of groups with different sizes.

One requires some uncorrelated assumptions, while the other imposes restrictions on the coeffi cient

estimates across groups of different sizes.

The first approach exploits the dimension-reduction method introduced in Section 5.6.2. To fix

ideas, first suppose the individual characteristics xl,i ∈ RK are uncorrelated across group members

(as would happen if, e.g., members are randomly assigned to groups with different sizes). Then, as

explained in Section 5.6.2, one can estimate the reduced-form coeffi cients for each i via a sequence

of lower-dimension regressions, each involving K explanatory variables only. In this case, one can

account for variation in group sizes in each of these lower-dimension regressions by including dummy

variables for group sizes and interacting them with the slope coeffi cients. This dimension reduction

12De Paula et al (2018) consider a more restricted environment where both the individual labels and the network

links themselves are the same in each observation of network/time period l. In their case the assumption is that l

indexes time periods, and it is the same group that is observed very many times.
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method can still be used if individual characteristics are correlated across group members while

group sizes are exogenously determined. In this case, one would apply the partitioned regressions

described in Section 5.6.2 to estimate reduced-form coeffi cients, again including group size dummies

(and their interactions with slope coeffi cients) to control for variation in group sizes in each of the

lower-dimension regressions.

It is possible that the number of observations of each group size is too small even for this

first approach, or that the required uncorrelatedness assumptions are implausibly strong in a given

application. We therefore also propose a second approach that can work even when the sample

contains very few observations of some group sizes. However, a limitation of this second approach

is that it requires the structural parameters λ, β, γ, α to be the same among the subset of groups in

the sample that are pooled. This second approach takes smaller groups, and augments them with

additional simulated “pseudo-individuals” to artificially increase their size, and thereby make all

groups being pooled the same size. The resulting pooled regressions then consistently estimate a

weighted average of reduced-form coeffi cient matrices for groups of different sizes. Details are in

Appendix A4.

With either of these approaches, one can define different environments s corresponding to

different ranges of group sizes. This then only requires pooling groups of relatively similar sizes. For

example, in our empirical application where groups are student’s classes, we define two environments

defined as “small classes”and “large classes,”and within each of these environments we combine

(using the second approach above) a range of small class sizes and large class sizes, respectively.

5.7 Extension: endogenous networks

In practice, the formation of links between individuals in a network may depend on some

individual demographic characteristics reported in the data. In this section we discuss how to

generalize our estimators to deal with this dependence.

For simplicity in exposition, let groups have identical sizes nl = n∗. Suppose individual char-

acteristics can be partitioned into Xl = (Xa
l , X

e
l ), with Xe

l being an n
∗ ×Ke matrix of excluded

individual characteristics, i.e., covariates that may affect outcomes but do not affect link formation.

Let Xa
l be the remaining an n

∗-by-Ka matrix of individual characteristics that may affect individ-

uals’outcomes, link formation decisions, or both. By construction, Ka + Ke = K. To illustrate,

in our empirical application below, we let Xe
l be students’days of absence from school and test

scores from previous years, assuming that friendships are independent of test scores conditional on

demographics such as proximity of age.

Our method above can then be applied after conditioning on Xa
l . Suppose the unknown network

formation is given by Gl = ζ(Xa
l , ul), which does not depend on excluded regressors in X

e
l . The

reduced form is:

E(yl|Xl) =

∫ [∑K
k=1Ml(βkI + γkGl)Xl,ck +MlE(εl|Xl, Gl)

]
dF (Gl|Xl), (19)

where Xl,ck denotes the k-th column in Xl as before. Assume (i) εl is independent of Xe
l conditional
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on (Xa
l , ul) and (ii) ul is independent of X

e
l conditional on X

a
l . Note these conditions allow the

unobserved errors εl and ul to be correlated conditional on Xa
l . Under these assumptions, E(Ml|Xl)

and E(MlGl|Xl) only depend on Xa
l , and∫

MlE(εl|Xl, Gl)dF (Gl|Xl) =

∫
MlE(εl|Xa

l , Gl)dF (Gl|Xa
l ) ≡ φ(Xa

l ).

Conditional on Xa
l , the reduced-form coeffi cients for Xl in (19) are:

µk(X
a
l ) ≡ βkE(Ml|Xa

l ) + γkE(MlGl|Xa
l ) for all k ≤ K.

With a slight abuse of notation, let Ka and Ke also denote the set of indices for characteristics in

Xa
l , X

e
l respectively, so, Ka and Ke partitions {1, 2, ...,K}. We can write (19) as

E(yl|Xl) =
∑

k∈Ke
µk(X

a
l )Xl,ck +

∑
k′∈Ka

µk′(X
a
l )Xl,ck′ + φ(Xa

l )︸ ︷︷ ︸
ψ(Xa

l )

,

which is linear in Xe
l conditional on X

a
l .

We can now identify and estimate the model by the following steps. First, recover ψ(Xa
l ) and

µk(X
a
l ) for all k ∈ Ke for a given realization of Xa

l , using a reduced-form regression of yl on Xe
l

conditional on Xa
l . Then, for all k ∈ Ke, identify λ, βk, γk from µk(X

a
l ), using the methods in

Section 5.3 and 5.4. Finally, as before, we can back out E(Ml|Xa
l ) and E(MlGl|Xa

l ) from µk(X
a
l ),

k ∈ Ke, using βk, γk, k ∈ Ke as identified in the previous step.13.

5.8 Extension: links across groups

In this section we bring together the two parts of this paper. Our model and estimator with an

unobserved adjacency matrix assumes that there are no links between groups, i.e., no links between

the blocks in the (
∑

l nl)-by-(
∑

l nl) overall adjacency matrix G
∗. It therefore treats G∗ as block-

diagonal. However, our earlier result on estimation with mismeasured links in Section 4.1 showed

that, when only links within blocks are observed, if the number of unobserved links between blocks

is suffi ciently small, then the IV estimator of linear coeffi cients remains consistent. This was the

example in Section 4.2 of unobserved links between groups (blocks) in a near-block-diagonal G∗.

We here show that a similar analysis can be applied if there exist links between groups in our

estimator with an unobserved adjacency matrix, provided that, as before, the number of such links

is suffi ciently small. In our empirical application, this corresponds to a relatively small number

of students having links to students in other classes. By assuming that G∗ is block diagonal and

hence that such links don’t exist, we are introducing measurement error in the adjacency matrix.

This scenario is more challenging than in Section 4.2, because now all elements in G∗, including

those inside the diagonal blocks, are not reported in the data. Our solution takes two steps. In

the first step, we show that when links outside the diagonal blocks are sparse (in the sense of

13 If we wanted to also recover remaining model elements φ(·) and µk(·) for k ∈ Ka from ψ(·), then doing so is
possible but would require functional form assumptions, e.g., index suffi ciency in φ(·) and µk(·) for k ∈ Ka.
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Assumption 1), then the reduced-form coeffi cients remain consistently estimable. Given this result,

the second step is then to apply our identification method from Section 5.1 to recover the model

coeffi cients from the reduced-form coeffi cients.

For simplicity, consider the case where the data contains L groups with equal size n∗, so that

the total number of individuals on the network is Ln∗. Let G∗l denote an n
∗×n∗ adjacency matrix

within the group l; and let H∗ ≡ diag{G∗1, ..., G∗L} denote an Ln∗ × Ln∗ block-diagonal matrix.
Clearly, H∗ differs from G∗ whenever there are non-zero elements outside the diagonal blocks in

G∗. Let H be the row normalization of H∗. That is, H ≡ diag{H1, ...,HL}, with each Hl being

a row normalization of G∗l . It is worth emphasizing that we are here considering a scenario where

neither G∗ nor H∗ is observed.

The expected individual outcome is

E(y|X) = E[(I − λH)−1H]Xγ + E[(I − λH)−1](Xβ + α) + η̃, (20)

where the Ln∗× 1 vector η̃ absorbs the errors resulted from replacing the actual adjacency G with

its block-diagonal approximation H. Notice that (I −λH)−1 and (I −λH)−1H are both geometric

series of a block-diagonal matrix H, and are also block-diagonal themselves. Consequently, we can

write (20) as a system of group-specific equations:

E(yl|X) = µ0ι+
∑K

k=1 µ̃kXl,ck + η̃l for l = 1, 2, ..., L, (21)

with µ̃k ≡ E[(I − λHl)
−1(βkI + γkHl)] being an n∗ × n∗ matrix of coeffi cients,14 and η̃l a group-

specific n∗ × 1 subvector in η̃ ≡ (η̃′1, ..., η̃
′
L)′.15 Let µ̃k,ri denote the i-th row of µ̃k for i = 1, ..., n∗.

Let yl,i be the outcome for individual i in group l. Then

E(yl,i|X) = w′lΦ̃i + η̃l,i,

where Φ̃i ≡ (µ0, µ̃1,ri, ..., µ̃K,ri)
′. We estimate Φ̃i, i = 1, ..., n∗ by regressing individual outcomes on

all individual characteristics in each group:

Φ̂i ≡
(∑

l wlw
′
l

)−1
(
∑

l wlyl,i) .

In the appendix we show that if the links outside the diagonal blocks in G∗ are sparse in the sense

of Assumption 1, then the impact of misclassifying components outside the diagonal blocks, as in

η̃l,i, vanishes as the network size increases (L→∞). With µ̃k consistently estimated, we can then
apply the method from Section 5.1 to identify and infer social effects.

14We assume G∗l are drawn from the same marginal distribution in the data-generating process. Therefore µ̃k is

identical across groups and not indexed by l = 1, 2, ..., L.
15While Hl depends only on the l-th block in G∗ (the adjacency matrix within group l), the subvector η̃l depends

on all links outside the diagonal blocks in G∗.
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6 Simulations

6.1 IV and QMLE with misclassified links in a fixed sample

Here we study the impact of misclassification rates on the performance of IV and QMLE esti-

mators in a fixed sample. We use data from an empirical application in Lin and Lee (2010). We

treat the adjacency matrix they report as the correct measure of the network. We then artificially

introduce misclassification errors into this matrix, and evaluate how close the resulting estimates

are to those based on the original adjacency matrix.

Lin and Lee (2010) model teenage pregnancy rates, using the model

Teeni = λ
∑760

j=1 gijTeenj + β1 + Eduiβ2 + Incoiβ3 + FHHiβ4 +Blackiβ5 + Phyiβ6 + εi,

where Teeni is the teenage pregnancy rate in county i, which is the percentage of pregnancies

occurring to females of 12-17 years old, gij is the entry in the row-normalized network Gn. The

original link matrix G∗ is constructed by g∗ij = 1 if two counties are neighboring counties. Edui
is the education service expenditure (in units of $100), Incoi is median household income (divided

by 1000), FHHi is the percentage of female-headed households, Blacki is the proportion of black

population and Phyi is the number of physicians per 1000 population, all in county i.16

In our simulations, we take their empirical estimates as true values and randomly generate

misclassified links using h∗ij = g∗ij · e1 + (1 − g∗ij) · e2 for i 6= j, where e1 and e2 are independent

Bernoulli random variables with probabilities 1−τ1 and τ2 of equalling one, respectively. Therefore,

τ1 measures the misclassification probability that h∗ij = 0 when the true g∗ij = 1, and τ2 measures

the misclassification probability that h∗ij = 1 when the true g∗ij = 0. We set τ1 = ns−1 and

τ2 = 100ns−2 with different values of s to see how the misclassification rate affects the IV estimator

and QMLE. The sample size is n = 761. The original network matrix G∗n has 761× 760 = 578, 360

entries (diagonal entries are zero). The total number of existing links on the network is 4, 606.

We first report, for different values of the rate s, the corresponding misclassification probability

τ , and the expected total number of misclassified links.

Table 6.1. Expected Number of Misclassified Links

s τ1 τ2 Mis. (1 to 0) Mis. (0 to 1) Total No. Mis.

0.1 0.0026 0.0034 11.751 192.35 204.10

0.3 0.0096 0.0013 44.230 725.06 769.35

0.5 0.0363 0.0048 166.97 2733.1 2900.0

0.7 0.1366 0.0180 629.37 10302 10931

0.9 0.5151 0.0677 2372.4 38833 41206

16The data are from the upper great plains states Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, Ne-

braska, North Dakota, South Dakota, and Wyoming, totalling 761 counties. Data details are in Lin and Lee (2010).

26



The expected total number of misclassified links increases with the rate s. When s = 0.9,

the misclassification from missing an existing link τ1 exceeds 0.5 and the expected number of

misclassified links exceeds 7% of all links in the network. Notice τ2 is mostly much smaller than τ1,

because we want our misreported matrix to have roughly similar sparsity to the real social network.

Next, we report IV and QMLE estimates using 200Monte Carlo replications under εi ∼ N(0, σ2)

with σ = 4.5, which is the QMLE estimate of the error standard deviation from original data.

Table 6.2. Simulation Results with Low Misclassification Rates

True λ = 0.4 β1 = 7 β2 = −0.01 β3 = −0.2 β4 = 0.75 β5 = 0.14 β6 = −0.5

No mis. 0.4096 6.8879 −0.0097 −0.2007 0.7498 0.1347 −0.4924

IV (0.087) (1.576) (0.0064) (0.042) (0.064) (0.056) (0.185)

[0.079] [1.553] [0.0074] [0.044] [0.063] [0.052] [0.195]

QMLE 0.3815 7.2858 −0.0097 −0.2065 0.7582 0.1383 −0.4970

(0.039) (1.123) (0.0064) (0.039) (0.061) (0.055) (0.184)

[0.045] [1.213] [0.0074] [0.042] [0.061] [0.053] [0.197]

s = 0.1 0.4121 6.9081 −0.0097 −0.2037 0.7530 0.1369 −0.4963

IV (0.089) (1.594) (0.0064) (0.042) (0.064) (0.056) (0.186)

[0.080] [1.570] [0.0074] [0.044] [0.063] [0.053] [0.195]

QMLE 0.3851 7.2856 −0.0098 −0.2089 0.7609 0.1401 −0.5004

(0.040) (1.131) (0.0064) (0.039) (0.061) (0.055) (0.185)

[0.045] [1.223] [0.0074] [0.042] [0.061] [0.054] [0.198]

s = 0.3 0.4232 6.8757 −0.0099 −0.2096 0.7600 0.1433 −0.5027

IV (0.096) (1.654) (0.0065) (0.042) (0.064) (0.056) (0.187)

[0.090] [1.652] [0.0075] [0.044] [0.064] [0.054] [0.198]

QMLE 0.3930 7.2909 −0.0099 −0.2149 0.7678 0.1462 −0.5061

(0.041) (1.145) (0.0064) (0.039) (0.061) (0.055) (0.186)

[0.050] [1.255] [0.0075] [0.042] [0.062] [0.055] [0.200]

Note: The table reports average estimates and average standard errors (in parentheses) from

from 200 simulated samples. The sample standard deviation of 200 estimates are reported in

square brackets.
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Table 6.3. Simulation Results with High Misclassification Rates

True λ = 0.4 β1 = 7 β2 = −0.01 β3 = −0.2 β4 = 0.75 β5 = 0.14 β6 = −0.5

s = 0.5 0.4578 6.7437 −0.0101 −0.2265 0.7801 0.1560 −0.5173

IV (0.122) (1.883) (0.0065) (0.042) (0.064) (0.057) (0.189)

[0.115] [1.867] [0.0077] [0.045] [0.065] [0.056] [0.205]

QMLE 0.4135 7.3237 −0.0101 −0.2321 0.7881 0.1584 −0.5196

(0.047) (1.192) (0.0065) (0.039) (0.062) (0.056) (0.188)

[0.059] [1.346] [0.0077] [0.044] [0.064] [0.057] [0.208]

s = 0.7 0.4985 6.7212 −0.0105 −0.2563 0.8163 0.1719 −0.5340

IV (0.206) (2.679) (0.0067) (0.041) (0.064) (0.058) (0.194)

[0.200] [2.756] [0.0080] [0.049] [0.066] [0.061] [0.216]

QMLE 0.4108 7.7762 −0.0106 −0.2607 0.8229 0.1734 −0.5348

(0.065) (1.333) (0.0067) (0.040) (0.063) (0.057) (0.193)

[0.084] [1.595] [0.0081] [0.048] [0.066] [0.061] [0.218]

s = 0.9 0.2829 9.4891 −0.0110 −0.2794 0.8477 0.1788 −0.5402

IV (0.407) (4.773) (0.0068) (0.041) (0.064) (0.059) (0.197)

[0.450] [3.359] [0.0083] [0.051] [0.068] [0.063] [0.224]

QMLE 0.1871 10.581 −0.0110 −0.2802 0.8488 0.1792 −0.5383

(0.069) (1.471) (0.0068) (0.041) (0.064) (0.058) (0.196)

[0.135] [1.958] [0.0083] [0.051] [0.068] [0.063] [0.226]

Note: The table reports average estimates and average standard errors (in parentheses) from

from 200 simulated samples. The sample standard deviation of 200 estimates are reported in

square brackets.

From these estimation results, we observe several patterns. First, when the misclassification

rate is low (s ≤ 0.3), both IV estimates and QMLE work fine. Estimates and the standard errors

are close to those from the true network, consistent with our theoretical results. Secondly, when

s increases, the bias and inaccuracy of both estimators increases, as expected. When s = 0.9,

estimates are severely biased for all the parameters, with estimates of λ suffering the most. Lastly,

QMLE has smaller standard errors compared to the IV estimates in all cases, which is consistent

with the asymptotic effi ciency of the QMLE.

6.2 IV estimation using misclassified links

In the previous section we added simulated measurement error to a single empirically observed

adjacency matrix. In this section we investigate the performance of the two-stage least-squares

estimator with misclassified links using simulated data with a range of sample sizes.
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The structural equation in our data-generating process (DGP) is y = α+λGy+Xβ+GXγ+ε,

where X is an n× 2 matrix that consists of two characteristics. The parameter values are: α = 1;

λ = 0.8; β = (1.5, 2)′ and γ = (0.9, 0.6)′. For each observation i = 1, .., n, the error terms εi
is independently drawn from a standard normal distribution. The elements in the first column

of X are independently drawn from a multinomial distribution with equal probability mass over

{−1, 1, 2}, and the second from a standard normal. The links in the latent adjacency matrix G∗

(of which G is a row normalization) are formed independently with probability pn = µ/n for some

constant µ <∞, so that the expected number of neighbors for each individual is n× (µ/n) = µ. In

the data-generating process, non-existent links (G∗ij = 0) are never misclassified, while existing links

(G∗ij = 1) are misclassified with probability τn = ρns−1 for some constant ρ < ∞. The expected
number of misclassified links is therefore pn × n× n× τn = µ× ρ× ns = O(ns).

We set µ = 20, ρ = 3 and s = 2/5 in simulation, and experiment with network sizes n =

250, 500, 1000, 2000. For each network size, we simulate T = 200 samples from the DGP above,
and calculate a two-stage least-squares estimator using H2X as (mismeasured) instruments, where
H is the row normalization of the network with misclassified links reported in the sample.

Table 6.4. IV Estimator with Misclassified Links

(# of simulated samples: 200)

n = 500 n = 1000 n = 2000

m.s.e. bias std a.s.e. m.s.e. bias std a.s.e. m.s.e. bias std a.s.e.

α 10.85 0.937 3.166 3.257 5.092 0.384 2.229 2.219 2.095 0.373 1.402 1.534

λ 0.074 -0.069 0.264 0.272 0.034 -0.025 0.184 0.184 0.014 -0.027 0.116 0.127

β1 0.001 -0.003 0.036 0.037 0.0006 -0.0004 0.025 0.026 0.0003 0.0004 0.017 0.018

β2 0.002 -0.010 0.048 0.046 0.0011 0.0001 0.034 0.032 0.0005 0.0024 0.023 0.023

γ1 0.182 -0.047 0.425 0.436 0.090 -0.084 0.289 0.298 0.040 -0.026 0.199 0.206

γ2 0.312 -0.038 0.558 0.573 0.144 -0.051 0.377 0.394 0.067 -0.025 0.258 0.272

Note: m.s.e (mean squared error), bias, std (standard deviation) are calculated using the empirical

empirical distribution of 200 estimates. “a.s.e.” is the average of standard errors in 200 samples.

Table 6.4 summarizes the performance of the two-stage least-squares estimator using the mis-

measured instruments based on H. It appears that the estimators for α, λ, β, γ all converge at

a root-n rate. The mean-squared errors for the coeffi cient of the discrete regressor is remarkably

lower than that of continuous regressor.

6.3 Estimation with unreported links

In this Section we provide another simulation study of the asymptotic properties of our closed-

form estimator for social effects in Section 5 where the links are completely unreported in the data.

We simulate 200 samples, each of which consists of L independent groups. Each group involves

n∗ individuals, where n∗ is a fixed small integer, and no links exist across groups. As mentioned

earlier, the DGP considered in the current section can be interpreted as a special case of a single

large network with block-diagonal adjacency matrix.
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The structural equation in our data-generating process (DGP) is y = α+λGy+Xβ+GXγ+ε,

where X is an n∗×3 matrix that consists of three characteristics. The parameter values are: α = 1;

λ = 0.7; β = (1.5, 2, 0)′ and γ = (0.9, 0, 0.6)′. For each observation i = 1, .., n∗, the error terms

εi is independently drawn from a standard normal distribution. The elements in the first column

of X are independently drawn from a multinomial distribution with equal probability mass over

{−1, 1, 2}, the second from a standard normal N(0, 1), and the third from a normal N(1, σ) with

σ = 2. The three characteristics are uncorrelated with each other. The links in the latent adjacency

matrix G∗ (of which G is a row normalization) are each independently drawn with probability 0.5.

Table 6.5. Closed-form Estimates with Unreported Links

(Group size: n∗ = 10)

L = 60 L = 120 L = 240 L = 480

m.s.e. bias std m.s.e. bias std m.s.e. bias std m.s.e. bias std

λ 0.0197 -0.0305 0.1374 0.0044 -0.0162 0.0648 0.0017 -0.0061 0.0409 0.0010 -0.0069 0.0314

β1 0.7232 0.0288 0.8521 0.0143 0.0133 0.1190 0.0047 0.0123 0.0677 0.0024 0.0086 0.0487

β2 0.6762 0.0590 0.8223 0.0078 0.0130 0.0876 0.0031 0.0072 0.0553 0.0018 0.0074 0.0416

γ1 1.3511 0.2260 1.1430 0.2911 0.0808 0.5347 0.1009 0.0399 0.3159 0.0760 0.0357 0.2740

γ3 0.1192 0.0370 0.3441 0.0484 0.0151 0.2200 0.0225 -0.0016 0.1505 0.0125 0.0061 0.1119

α 0.5919 0.1020 0.7645 0.2349 0.0955 0.4763 0.0956 0.0336 0.3082 0.0495 0.0382 0.2198

Note: m.s.e., bias and std deviation are calculated from empirical distribution of coeffi cient estimates in 200

simulated samples.

Table 6.6. Closed-form Estimates with Unreported Links

(Group size: n∗ = 20)

L = 60 L = 120 L = 240 L = 480

m.s.e. bias std m.s.e. bias std m.s.e. bias std m.s.e. bias std

λ 0.0181 -0.0340 0.1305 0.0037 -0.0086 0.0603 0.0017 -0.0037 0.0417 0.0007 -0.0059 0.0258

β1 0.0151 0.0199 0.1216 0.0031 0.0024 0.0556 0.0015 0.0051 0.0389 0.0006 -0.0020 0.0238

β2 0.0118 0.0184 0.1071 0.0022 0.0044 0.0463 0.0008 0.0028 0.0283 0.0004 -0.0017 0.0207

γ1 1.4307 0.2101 1.1805 0.2747 0.0443 0.5236 0.1233 0.0255 0.3510 0.0546 0.0279 0.2326

γ3 0.1422 0.0448 0.3753 0.0373 0.0006 0.1937 0.0209 0.0016 0.1448 0.0105 0.0184 0.1010

α 0.5534 0.1597 0.7284 0.1794 0.0582 0.4206 0.1041 0.0213 0.3228 0.0495 0.0268 0.2215

Note: m.s.e., bias and std deviation are calculated from empirical distribution of coeffi cient estimates in 200

simulated samples.

We estimate the model using the two-step method in Section 5.5. In the first step, we use the

first dimension-reduction algorithm (when regressors are uncorrelated across group members) to

estimate the reduced-form coeffi cients, as explained in Section 5.6.2. Table 6.5 and 6.6 report the

mean-squared error (m.s.e.), the bias and the standard deviation of the estimators for group sizes

n∗ = 10 and 20, using the empirical distribution of estimates calculated for 200 simulate samples.

We increase the sample size L, i.e. the number of groups in each sample, from L = 60 to L = 240.
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The results show that our estimator is reasonably accurate even when the sample is moderately

small with L = 60. Furthermore, the mean-squared errors diminish at the parametric rate, i.e.

the same rate as the increases in sample size. In fact the reduction in m.s.e. between L = 60 and

L = 120 is even more dramatic than the increase in sample size. This is because the first-step

estimation of reduced-form coeffi cients consists of n∗ × n∗ regressions on K = 3 characteristics.

The reduction in estimation error in such a low-dimension regression is substantial as the number

of observations increases from L = 60 to L = 120.

It is worth noting that the difference in m.s.e. is rather small between the DGP with small

group sizes n∗ = 10 and n∗ = 20. This illustrates a desirable feature of our two-step estimator: The

precision of the estimator depends primarily on the accuracy of the first-step reduced-form coeffi -

cients. Once the constants ak, bk are recovered from the reduced-form coeffi cients, the second step

is deterministic and does not introduce additional sampling error. A useful result for practitioners

is that the first-stage estimation precision can be enhanced using the dimension-reduction meth-

ods explained in 5.6.2. For example, in the current simulation example, the dimension-reduction

method replaces n∗ = 10 regressions on n∗ × K = 30 explanatory variables with n∗ × n∗ = 100

regressions on K = 3 characteristics. This dimension-reduction helps obtain the highly encouraging

performance results reported in Tables 6.5 and 6.6.

7 Peer Effects in Tennessee Elementary Schools

We next apply our method for dealing with unobserved adjacency matrices from Section 5 to an-

alyze the social effects among elementary school students who participated in the Student/Teacher

Achievement Ratio (STAR) Project in the U.S. State of Tennessee. The STAR project was a four-

year longitudinal study funded by the Tennessee General Assembly and conducted by the Tennessee

State Department of Education. The goal of the project was to assess the impact of class sizes on

students’academic performance through randomized experiments.17 The STAR sample data does

not report any measure of links among the students, and so is a candidate for applying our method

of estimation in Section 5.

The typical method of evaluating potential peer effects in a model without link data is to assume

a linear-in-means specification. The linear-in-means models assumes that each group member (in

this case, each student in a class) has outcomes that depend on the class average (or leave-one-out

class average) outcome, or class average covariates, as regressors. This is equivalent to assuming

an adjacency matrix where each student in a class is linked to all the others with equal weights.

Examples of papers that use this method include estimates of contextual effects of student-teacher

races in Dee (2004), gender ratios in Whitmore (2005), and a composite of peer characteristics in

Graham (2008) and Sojourner (2013). Boozer and Cacciola (2001) use experimental variation in

class quality (fraction of students exposed in the previous year to small classes) as an instrument

to identify peer effects in our STAR data, assuming a linear-in-means specification.

17A general survey of influences on learning and associated outcomes is Heckman and Mosso (2014).

31



Instead of assuming each student in a class is linked to all the others with equal weights,

our estimator makes no assumption about what the within-class unobserved links actually are,

and allows these links to vary across classes. We nevertheless identify both peer and contextual

effects. We also use our results to test some hypotheses about these effects, and about the link

formation process. This includes finding that we can reject the linear-in-means specification and

random Poisson link formation in the STAR data. We further use our structural model estimates

to perform counterfactual calculations.

7.1 Data description

The sample consists of a cohort of students who were in kindergarten between 1985-1986.

Seventy-nine public schools were selected to participate in the project, representing various geo-

graphic locations (inner city, urban, suburban or rural). Students and teachers were randomly

assigned to classes with varying sizes of 13 to 25 students18. Note that our estimator neither re-

quires nor directly exploits this random assignment, however, it does make some of our assumptions

more plausible. An example is the dimension reduction discussed in section 5.6.2.

Table 7.1. Summary Statistics

Small class (122 obs) Large class (136 obs)

mean median std dev range mean median std dev range

s3 620.7 618.0 40.88 [487.0, 774.0] 616.6 616.0 40.15 [510.0, 774.0]

s2 0.077 0.287 0.936 [-5.902, 1.042] -0.029 0.287 1.023 [-6.355, 1.042]

abs 6.743 5.000 6.643 [0, 59] 6.902 5.000 6.429 [0, 55]

mot 49.29 50.00 3.990 [17, 59] 49.14 50.00 4.013 [18, 60]

tec 13.30 13.00 8.416 [0, 36] 14.19 14.00 9.079 [0, 38]

Notes: s3 : raw scores for 3rd grade math; s2 : standardized scores for 2rd grade math (using

overall mean and std dev across all classes); abs: days of absence; mot : self-reported moti-

vation score; tec: teacher experience (in # yrs).

Our sample consists of 258 classes that had at least 15 but no more than 25 students. The total

number of students in the sample is 5,189. For ease of comparison, we partition the classes in the

sample into smaller (with 15-20 students) and larger (with 21-25 students) classes, corresponding

to two different environments in our theory. Table 7.1 reports summary statistics of the students’

mathematics test scores in the second and third grade (s2 and s3) and other individual-level or

class-level variables to be used in our empirical analysis. These include a student’s number days

of absence from school (abs), students’ self-reported motivation scores (mot), and a discretized

measure of teachers’years of experience (tec). We standardize the math scores in the second grade

s2 using the overall mean and standard deviation of raw scores of all classes in the sample.

18Students who joined the cohort at STAR schools after 1985-1986 were also included in the experiment throughout

latter years
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Table 7.1 reports that the average math score in the third grade is 620.7 for small classes, and

616.6 for large classes. In addition, Table 7.2 shows that a t-test for the null hypothesis of equal

mean scores in small and large classes (allowing for unequal variances) rejects the null at the 1%

level. The sign of this difference is consistent with findings in Krueger (1999), which reports in

a bigger sample that on average Grade K-3 test scores in smaller classes are about 5 percentage

points (or 0.2 standard deviations) higher than in larger classes. Other papers that report similar

patterns include Hanushek (1999) and Krueger and Whitmore (2001).

Table 7.2. Test of Equal Means
(small vs. large classes)

p-value p-value

s3 0.001 abs 0.401

s2 <0.001 mot 0.161

tec 0.420

Table 7.2 also reports the p-values for testing the equality of means of demographic variables in

small versus large classes. Unlike the test scores, we fail to reject the null of equal means for each

of the demographic variables. This provides some support for the assumption that the assignment

of students and teachers to classes is independent of these demographic variables. On the other

hand, Table 7.2 suggests that the small classes have a higher average for Grade 2 scores than large

classes, and the difference is highly statistically significant at the 1% level. One explanation, which

is reconcilable with earlier findings in the literature, is that the students enrolled in smaller classes

had already developed better math skills than their peers in larger classes before the beginning of

the third grade.

7.2 Econometric specification

Our model is a linear specification that incorporates direct, contextual and peer effects:

s3l,i = α +λ
∑

j Gijs3l,j + β1absl,i + β2motl,i + β3s2l,i + δtecl

+γ1

∑
j Gijmotjl + γ2

∑
j Gijs2l,j + εl,i,

where l is an index for classes, and i and j are indexes for individual members in a class. For each

pair i and j, Gij is the row-normalized unobserved zero or nonzero link between i and j. As noted

before, the coeffi cient λ reflects endogenous peer effects, (β1, β2, β3) are direct individual effects,

and (γ1, γ2) are exogenous contextual effects. The coeffi cient δ is the marginal impact of teacher

experience, which is a possible source of correlated effects.

Note this specification assumes abs has a direct effect (β1 6= 0) but no contextual effects. That

is, a student’s absence from school affects his own test scores, but has no impact on his classmates

other than through the peer effects. In contrast, a student’s self-reported motivation score mot

and his Grade 2 math score s2 are allowed to have contextual effects (γ1, γ2 6= 0) in addition to
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peer effects. These assumptions are much less restrictive than those required for identification in

a linear-in-means specification, as previous work imposed. We also assume the individual effects

β and contextual effects γ are the same in small and large classes, while the structural intercept

α, the peer effect λ and the correlated effect δ are permitted to differ in small vs large classes.

This constraint on β and γ is an example of imposing exclusion restrictions across environments.

Together, these restrictions yield over-identification, which we will exploit to provide some model

specification tests.

An advantage of our method is that it does not require explicit modeling or parametrization of

the link formation process. In general, network formation may depend on student demographics.

As a first-order control for such dependence, we partition the classes in the sample into those

with higher or lower dispersion in birthdays.19 Consistent with previous literature, we maintain

that the model coeffi cients do not vary with factors related to link formation such as birthday

dispersion. The estimates for social effects reported below are sample-size-weighted averages of

estimates obtained that condition on birthday dispersion.

7.3 Estimation results

Table 7.3 reports our estimates for social effects as well as structural intercepts α. Standard

errors are calculated using B = 200 bootstrap samples, each of which is constructed by drawing

classes from the original sample with replacement.

Table 7.3: Estimates of Social Effects

Small Class Large Class

Effects Coef. est. (s.e.) est. (s.e.)

Peer λ 0.8478*** (0.0159) 0.9208*** (0.0280)

Group δ 0.0709 (0.2885) 0.2032 (0.2609)

Constant α 94.543*** (26.221) 48.126*** (14.450)

est. (s.e.)

Direct β1 -0.3639** (0.1604)

β2 0.0384 (0.0602)

β3 23.356*** (5.0284)

Context γ1 -0.0118 (0.0728)

γ2 13.129** (6.0902)

Notes: Standard errors are computed using B = 200 bootstrap

samples. ***: significant at 1%; **: significant at 5%.

19For each class we calculate the standard deviation of students’ birthdays. We label a class as having “high

birthday dispersion” if the standard deviation exceeds six months.
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Estimates of peer effects are statistically significantly positive in both small and large classes,

with the estimated coeffi cient λ being 0.85 and 0.92 respectively. A t-test for the equality of peer

effects in small and large classes rejects the null of equality at the 1% level. The magnitudes of our

λ estimates are comparable to earlier findings that used very different methodologies. For example,

using a linear-in-means specification (with average class size of students in the previous year as an

instrument) Boozer and Cacciola (2001) estimate the peer effects to be 0.86 for the second grade

and 0.92 for the third grade. Another linear-in-means estimate is Graham (2008), who (using

GMM) reports a social interaction effect of 0.86 for normalized math scores (γ− 1 in his notation).

Although the estimate of peer effects is similar across specifications, we later test and reject the

linear-in-means specification, and also obtain estimates of both direct and contextual effects.

Unlike these previous papers, we obtain different estimates of peer effects in large versus small

classes. The bigger λ in larger classes could be due to students having more options to form

links/friendships in larger classes. This could on average lead to better matches of friends, and

hence be conducive to more productive relationships.

Our estimates also show that the number of days absent from school has a small but statistically

significant impact on a student’s test performance. We find that self-reported motivation scores

have no significant direct impact on one’s own test score, or contextual influence on classmates’

performance. On the other hand, students’performance in the second grade (s2) has statistically

significant positive impacts on their scores in the third grade (s3) both through direct and contextual

effects. A unit (one standard deviation) increase in a student’s score in the second grade would

improve his raw score in the third grade by 23.36 This impact is significant at the 1% level. In

addition, we find that a unit increase in friends’Grade 2 scores increases a student’s own Grade 3

score by 13.13. Such a contextual effect is smaller than the direct effect of one’s own Grade 2 score.

We infer that the higher average Grade 3 score in small classes should be mostly attributed to

better Grade 2 preparation in small classes, as demonstrated in Tables 7.1 and 7.2. While Table 7.3

shows that positive peer effects are bigger in large classes, this effect is not suffi cient to counteract

the trajectory of higher Grade 2 preparation in small classes. Note that the structural intercept

α, which can be interpreted as a proxy benchmark, is also higher in smaller classes. This also

contributes to the higher average Grade 3 performance in small classes.

7.4 Specification tests

In this section we report results from several tests related to model specification, using the

estimates and bootstrap standard errors calculated from the preceding section.

First, we perform a general test of our model specification. The test exploits the fact that our

model is over-identified given our exclusion restrictions. Specifically, the last step of our estimator

leads, in our specification, to a system of fifteen linear equations for seven parameters. Our estimator

chooses parameter values to minimize the distance between the left-and right-hand side of the linear

system, with the distance measured as the Euclidean norm, or dot-product, of the difference.

To construct our test based on over-identification, we use the minimized objective function in
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the last step as our test statistic.20 Under the null of correct linear specification and exclusion

restrictions, this quantity is asymptotically zero. To test if the minimized objective function is

zero, we use B = 200 bootstrap samples to estimate the sampling distribution of this statistic and

calculate p-values under the null. The results show no statistically significant evidence against the

null: The p-values are 0.580 for classes where students’birthdays are less dispersed, and 0.375 for

classes with higher birthday dispersion.

Our model only imposes regularity on the adjacency matrix data generating process. We can

therefore use our model to test commonly proposed models of the adjacency matrix. We next test

two different null hypotheses: the linear-in-means specification of the adjacency matrix, and a Pois-

son random network formation process, where links are drawn independently from a heterogenous

Bernoulli distribution.

In the linear-in-means specification of social interaction, the adjacency matrix G is constant

with all components being identical weights. This means that Gs = G for all any integer s, and

that for all individual characteristics k,

µk ≡ (I − λG)−1(βkI + γkG) =
(
I + λ

1−λG
)

(βkI + γkG).

This implies that the off-diagonal components in µk must be identical. We calculated Wald test

statistics using a 6× 6 leading principal minor of the reduced-form coeffi cient for s2 (standardized

Grade 2 score) in each of the subpopulations defined by the sample size and the birthday dispersion

of students. The test statistics are reported in the following table:

Table 7.4: Wald Tests for Linear-in Means (d.f.=29)

small class (p-val) large class (p-val)

low disp. 98.258 (<.001) 72.948 (<.001)

high disp. 47.398 (.017) 63.117 (<.001)

The number of restrictions, which equals the degrees of freedom, of each test is d.f. = 6×6−6−1 =

29, which makes 42.557 be the critical value for each test at the 5% level. We reject the linear-in-

means social interaction specification at the 5% level in all four subpopulation defined by the class

size and birthday dispersion.

Next, we construct classical minimum distance (CMD) tests for the null hypothesis of Poisson

random network formation, controlling for class sizes and birthday dispersion. Specifically, the null

hypothesis posits a random link formation process where each element of G∗ equals one with some

success probability, and equals zero with one minus that probability, independent of all the other

elements of G∗. G∗ is then row normalized to yield G. The success probability takes one of three

possible values p ∈ (0, 1)3 depending on the difference between the two students’birthdays.

20Note that our estimator does not lend itself to the use of classical J-tests for over-identification in Generalized

Method of Moments. This is because the coeffi cient matrix in the last step of estimation is constructed from the

estimates of reduced-form coeffi cients in earlier steps, analogous to indirect least squares. Once these reduced-form

coeffi cient estimates are calculated, the linear system used in the last step is deterministic.
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The CMD objective function for estimating link formation probabilities is constructed as fol-

lows. For a generic vector p ∈ (0, 1)3, simulate a large number of S networks by drawing inde-

pendently from a Bernoulli distribution with corresponding success probability. Then define the

objective function Q̂S(p) as the weighted sum of the distance between model-implied marginal ef-

fects S−1
∑

s(I − λ̂Gs)−1(β̂kI + γ̂kGs) and the reduced-form coeffi cients µ̂k in first-step regressions

controlling for class sizes and birthday dispersion. In particular, we define the distance between

matrices as two differences in average diagonal and off-diagonal components respectively.

Our statistic for testing the null of Poisson random network is the minimized objective function

under the optimal choice of weight matrix in CMD, which is constructed using bootstrap standard

errors. For each test within a subpopulation (defined by class size and birthday dispersion), the

degree of freedom of the limit distribution under the null is 3.21 The wald statistics are reported

in the following table:

Table 7.5: Wald Tests for Poisson Random Network (d.f.=3)

small class (p-val) large class (p-val)

low disp. 61.276 (<.001) 159.09 (<.001)

high disp. 39.348 (<.001) 115.752 (<.001)

Thus we reject the null of Poisson random network formation in all subpopulations.

We conclude that the link formation process is more complicated than either everyone linking

with everyone (i.e., linear-in-means), or independent random links.

7.5 Counterfactuals: complete network and alternative peer effects

Given the popularity of the linear-in-means specifications, our first counterfactual exercise is to

use the structural estimates from Table 7.3 to predict counterfactual outcomes of Grade 3 math

scores if the network were to be replaced by a linear-in-means model. For each class, we calculate

the within-class average change in Grade 3 scores under this counterfactual change (post-change

minus before-change). The expected outcome in each class under this change is calculated by

replacing the unknown random adjacency matrix Gl, which entersMl = (I−λGl)−1 in the reduced

form, with one where every entry has equal weights 1/n∗. Table 7.6 reports the average changes in

group means across the classes in each sub-population defined by class size and birthday dispersion.

21This is because the restrictions (# of links between reduced-form coeffi cients and model implied marginal effects)

used in the CMD objective function is 2K = 6, and the number of structural parameters is dim(p) = 3.
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Table 7.6: Changes in Outcome under the Linear-in-Means Network

Est. mean ∆ p-val

small, low disp 6.054 0.105

large, low disp -9.596 0.060

small, high disp 5.810 0.184

large, high disp -6.405 0.239

Notes: Est. mean ∆: average changes in class means of G3

math scores in a network with equal weights on all neighbors.

Table 7.6 shows that the overall changes induced by a complete network are relatively small,

compared with the observed standard deviation of 40 for Grade 3 raw math scores in the data (see

Table 7.1). We also report p-values of t-tests for equal sample means with unequal variance in Table

7.6. The counterfactual changes in the classes with higher birthday dispersions are statistically

insignificant. Among classes with less dispersed birthdays, those with fewer students benefit from

a complete network while those with more students see a lower class average. But both effects are

insignificant at 12% level.

These results could explain why the previous literature that assumed a linear-in-means specifi-

cation obtained peer effect estimates similar in magnitude to ours, despite the fact that our tests

in Table 7.4 reject the linear-in-means specification.

While not always statistically significant, the difference in the signs of changes in small versus

large classes reported in Table 7.6 is suggestive, and might be explained as follows: Replacing the

actual adjacency matrix with a complete network essentially amounts to redistributing weights onto

classmates who were previously not friends. This could impact a student’s score in both directions,

depending on whether the counterfactual “new friends”would have a positive or negative impact on

a student’s test performance. This average effect of potential new friends appears to differ between

small and large classes.

Would it be worthwhile to institute policies that encourage students to form additional links

or friendships? The results in Table 7.6 suggests the impacts of such policies would be small, and

could even have negative consequences based on class size.

In the next counterfactual exercise, we combine the complete adjacency matrix with alternative,

hypothetical peer effects. Specifically, we swap the estimated peer effects between small and large

classes (i.e., increase λ to 0.9208 in small classes and decrease λ to 0.8478 in large classes). The

goal of this exercise is to assess how these differences in peer effect magnitudes interact with the

contextual effects and other differences between small and large classes.

Table 7.7 reports the average changes in class means within each subpopulation defined by class

sizes and birthday dispersion. It also reports p-values of t-tests for the significance of mean changes.
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Table 7.7: Impact of Counterfactual Peer Effects
Est. mean ∆ p-val

small, low disp 16.198 0.003

large, low disp -11.637 0.001

small, high disp 2.954 0.620

large, high disp -5.301 0.187

Notes: Est. mean ∆: average changes in class mean of G3

math scores when peer effects in small and large classes are

swapped in a complete network.

The table shows that increasing peer effects in small classes would lead to significantly better

Grade 3 performance, and reducing peer effects in large classes would yield worse performance.

Again, there is evidence that the impact is statistically more significant in classes with less dis-

persed birthdays. In classes with low birthday dispersion, swapping the peer effects increases the

magnitudes of the effects reported in Table 7.6. In particular the average changes in class means

becomes highly statistically significant in these classes.

8 Conclusions

We provide two sets of results related to the estimation of social network models when the

data does not report perfect measure of links. First, we characterize conditions under which IV

and QMLE estimators of social network models remain consistent (and standard inference on these

models remain valid) despite the presence of misclassified links in the observed network.

Second, we provide an original method for identifying and estimating social effects when the

random latent network links are not reported in the data at all. In this case, we propose a simple

two-step estimator for social effects. We apply our method to estimate the direct, contextual

and peer effects among elementary school students. Among other results, we find that the peer

effects are larger in bigger classes, that encouraging more links/friendships among students might

not significantly improve outcomes (and could make them worse), and we can reject the usual

linear-in-means specification of network links.
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Appendix A. Proofs

A1. Proof of Proposition 1

For a generic matrix A, let CA denote the number of non-zero elements in A; let A(i), A[k]

denote its i-th row and k-th column respectively; and let Aij denote its (i, j)-th component. Let

∆∗ ≡ H∗ − G∗ be the difference between H∗ and G∗, where H∗ii = 0. The difference between H

and G is:

∆ ≡ H −G = diag

{(
1

CG∗
(1)

, ..., 1
CG∗

(n)

)}
∆∗ + diag

{(
1

CH∗
(1)

− 1
CG∗

(1)

, ..., 1
CH∗

(n)

− 1
CG∗

(n)

)}
H∗.

The right-hand side consists of a term that directly depends on ∆∗ and a term due to potential

wrong normalization. The second term is zero if the total number of links for each individual is

reported correctly in the data despite misclassification. We first establish two lemmas that are used

for proving Proposition 1.

Lemma A1. Let a, b be two random vectors in Rn such that supiE (|ai| |G,H) and

supj E (|bj | |G,H) are bounded. Then 1
na
′∆b = Op(n

s−1) under Assumption 1.

Proof of Lemma A1. Let
∑

i and
∑

j be shorthand for
∑n

i=1 and
∑n

j=1 respectively. By the

triangular inequality,

∑
i

∑
j |∆ij | =

∑
i

∑
j

∣∣∣∣CG∗(i)−CH∗(i)CG∗
(i)
CH∗

(i)

H∗ij + 1
CG∗

(i)

∆∗ij

∣∣∣∣
≤

∑
i

∑
j

(
1

CG∗
(i)
CH∗

(i)

∣∣∣CG∗
(i)
− CH∗

(i)

∣∣∣H∗ij + 1
CG∗

(i)

∣∣∆∗ij∣∣)

=
∑

i

 ∣∣∣∣CH∗(i)−CG∗(i) ∣∣∣∣
CG∗

(i)
CH∗

(i)

(∑
j H
∗
ij

)
+ 1

CG∗
(i)

(∑
j

∣∣∆∗ij∣∣)
 =

∑
i

 ∣∣∣∣CH∗(i)−CG∗(i)
∣∣∣∣

CG∗
(i)

+ 1
CG∗

(i)

C∆∗i


≤

∑
i

(
1

CG∗
(i)

C∆∗i
+ 1

CG∗
(i)

C∆∗i

)
≤ 2

(
sup
i

1

CG∗
(i)

)
C∆∗ = Op(n

s).

where the second inequality holds because by definition
∣∣∣CH∗

(i)
− CG∗

(i)

∣∣∣ ≤ C∆∗i
with probability one;

and the last equality holds because C∆∗ is Op(ns) under Assumption 1. Furthermore,

E
(∣∣ 1
na
′∆b
∣∣∣∣G,H) ≤ 1

nE
[∑

i

∑
j |Hij −Gij |E (|aibj | | G,H)

]
≤ 1

n

(
sup
i,j

E (|aibj | | G,H)

)
E
(∑

i

∑
j |∆ij |

)
.

Because supi,j E (|aibj ||G,H) is bounded, we have 1
na
′∆b = Op(n

s−1). �

Let V ≡ (1n, H
2X,X,HX) as defined in the text.

Lemma A2. Under Assumption 2, supiE (|Viq||G,H) <∞, supiE(V 2
iq|G,H) <∞, and

supiE (|yi| | G,H) <∞.
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Proof of Lemma A2. Let X[q] denote the q-th column of X, and note

sup
i
E[
(
H(i)X[q]

)2 |G,H] = sup
i
E

[(∑n
j=1Hijxjq

)2
∣∣∣∣G,H]

≤
(

sup
i

∑
j |Hij |

)2

sup
j
E(x2

jq|H,G) <∞;

sup
i
E
[
(H2

(i)X[q])
2|G,H

]
= sup

i
E

[(∑
k

∑
j HikHkjxjq

)2
∣∣∣∣G,H]

≤
(

sup
i

∑
k |Hik|

)2(
sup
k

∑
j |Hkj |

)2

sup
j
E(x2

jq|H,G) <∞,

By the norm inequality, supiE(V 2
iq|G,H) <∞ implies supiE (|Viq||G,H) <∞.

Note that the reduced form for y is

y = M
[
α01n +

∑
k (β0kIn + γ0kG)X[k] + ε

]
, where M ≡ (In − λ0G)−1.

It then follows that

sup
i
E (|yi| | G,H) = sup

i
E
[∣∣∣∑n

j=1Mij

(
α0 + x′jβ0 +

∑n
s=1Gjsx

′
sγ0 + εj

)∣∣∣∣∣∣G,H]
≤ sup

i

∣∣∣∑jMij

∣∣∣ sup
j

[
|α0|+ E

(
|x′jβ0|

∣∣G,H)+
∑

s |Gjs|E
(
|x′sγ0|

∣∣G,H)+ E (|εj |)
]
.

Under Assumption 2, E
(
|x′jβ0|

∣∣∣G,H) <∞ and E ( |x′sγ0||G,H) <∞. Besides,

sup
i

∣∣∣∑jMij

∣∣∣ = sup
i

∣∣ei(I − λ0G)−11n
∣∣ = sup

i

∣∣∣ei(∑∞l=0 λ
l
0G

l1n)
∣∣∣ =

∣∣∣∣ 1

1− λ0

∣∣∣∣ .
It then follows that supiE (|yi| | G,H) <∞. �

Recall from the text that the estimation error of the IV estimator using instruments H2X is

(α̂, λ̂, γ̂′, β̂
′
)′ − (α0, λ0, γ

′
0, β
′
0)′ =

[
R′V

n
(
V ′V

n
)−1V

′R

n

]−1 R′V

n
(
V ′V

n
)−1V

′ε̃

n
. (22)

where
1

n
V ′ε̃ =

1

n
V ′ε+

1

n
V ′∆Xγ0 +

1

n
λ0V

′∆y. (23)

Thanks to Assumption 2 and Lemma A2, supiE(ViV
′
i |G,H) <∞. By the Chebyshev’s inequality

1
nV
′ε = Op(n

−1/2). Lemma A2 also suggests that V , Xγ0, y all satisfy the dominance conditions

on the vectors a, b in Lemma A1. Thus the second and third terms on the right-hand side of (23)

are Op(ns−1). Combining the results above, we have 1
nV
′ε̃ = Op(n

−1/2∨ns−1). Under Assumptions

1 and 2, 1
nR
′V converge to a matrix with rank (2K + 1) and is Op(1). It then follows from (22)

that the stochastic order of this estimation error is Op(n−1/2 ∨ ns−1).
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A2. QMLE

Assume ε ∼ (0, σ2). The quasi log likelihood function for y in eq (1) is

lnL(θ) = −1

2
ln(2πσ2) +

1

n
ln |I − λH| − 1

2nσ2
ε(θ)′ε(θ),

where θ = (α, λ, β′, γ′, σ2)′, ε(θ) = y − αι− λHy −Xβ −HXγ. First order derivatives are:

∂ lnL(θ)

∂α
=

1

n

1

σ2
ι′ε(θ);

∂ lnL(θ)

∂γ
=

1

n

1

σ2
(HX)′ε(θ);

∂ lnL(θ)

∂β
=

1

n

1

σ2
X ′ε(θ);

∂ lnL(θ)

∂λ
=

1

n

1

σ2
ε(θ)′Hy − 1

n
tr[H(I − λH)−1];

∂ lnL(θ)

∂σ2
= − 1

2σ2
+

1

n

1

2σ4
ε(θ)′ε(θ),

where plugging in y = α0ι+ λ0Gy +Xβ0 +GXγ0 + ε, we can express

ε(θ) = (α0 − α)ι+ (λ0 − λ)Hy +X(β0 − β) +HX(γ0 − γ) + ε̃ with

ε̃ = ε− λ0∆y −∆Xγ0 the same as before.

Then, terms in ∂ lnL(θ0)
∂θ involve following three terms regarding to ε̃, a linear term, a quadratic

term, and a complicated term:

1

n
a′ε̃,

1

n
(ε̃′ε̃− σ2

0),
1

n

(
1

σ2
0

ε̃′Hy − tr[H(I − λ0H)−1]

)
.

We want to show that each one is op(1). From the IV estimation proof, we know for any constant

a, the linear term
1

n
a′ε̃ = Op(

1√
n
∨ ns−1).

The quadratic term 1
n(ε̃′ε̃− σ2

0) can be expressed as a linear-quadratic form of ε as

1

n
(ε̃′ε̃− σ2

0) =
1

n
(ε′ε− σ2

0) +
1

n
a′ε+

1

n
ε′Bε,

where B satisfies
∑

i

∑
j E(|bij ||G,H) = Op(n

s). Then, 1
n(ε̃′ε̃− σ2

0) = Op(
1√
n
∨ ns−1) because

E| 1
n
ε′Bε| ≤ 1

n
sup
i,j

E|εiεj |
n∑
i=1

n∑
j=1

E(|bij ||G,H) ≤ σ2
0

n

n∑
i=1

n∑
j=1

E(|bij ||G,H) = O(ns−1).

The third term 1
n

(
1
σ20
ε̃′Hy − tr[H(I − λ0H)−1]

)
can be expressed as a linear term 1

na
′ε̃ plus

1
n

(
1
σ20
ε′H(I − λ0G)−1ε− tr[H(I − λ0H)−1]

)
. With

1

nσ2
0

ε′H(I − λ0G)−1ε =
1

nσ2
0

E[ε′H(I − λ0G)−1ε|G,H] +Op(
1√
n

) =
1

n
tr[H(I − λ0G)−1] +Op(

1√
n

)

from the LLNs of quadratic terms of ε conditional on G,H, and applying D−1−E−1 = −E−1(D−
E)D−1 and

tr(ABC) =

n∑
k=1

n∑
i=1

n∑
j=1

AkiBijCjk ≤ sup
i

n∑
k=1

|Aki| · sup
j,k
|Cjk| ·

n∑
i=1

n∑
j=1

|Bij |
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for any matrices A, B, C, D, and E, to our case with A = H(I − λ0H)−1, B = G − H, C =

(I − λ0G)−1, D = I − λ0G and E = I − λ0H, we have

1

n
tr[H(I − λ0G)−1 −H(I − λ0H)−1] =

λ0

n
tr[H(I − λ0H)−1(G−H)(I − λ0G)−1] = Op(n

s−1).

and hence,
∂ lnLn(θ0)

∂θ
= Op(

1√
n
∨ ns−1).

Together with the boundedness of ∂
2 lnLn(θ̃)
∂θ∂θ′

for any θ̃ ∈ Θ, our QMLE has the same order as the

IV estimator:

θ̂QMLE − θ0 =

(
−∂

2 lnLn(θ̃)

∂θ∂θ′

)−1
∂ lnLn(θ0)

∂θ
= Op(

1√
n
∨ ns−1).

A3. GMM Estimator

As in Section 5.1, let wl ≡ (1, X ′l,c1, ..., X
′
l,cK)′ for each group l, and Xl,ck denote the k-th column

of Xl. For each i ≤ n∗,

E(yl,i|Xl) = µ0 +
∑K

k=1 µk,riXl,ck = w′l
(
µ0, µ1,ri..., µK,ri

)′
,

where µk,ri denotes the i-th row of µk. Let ȳl denote the average outcome in group l, i.e., ȳl ≡
1
n∗
∑n∗

i=1 yl,i. Let θ0 ≡ (λ0, β
′
0, γ
′
0)′. Section 5.1 shows that the following moment conditions hold:

E[yl,1w
′
l(wlw

′
l)
−1]

...

E[yl,n∗w
′
l(wlw

′
l)
−1]


(

01×n∗

Dk(θ0)

)
= In∗ for k < K ,

(0, ιk)E[(wlw
′
l)
−1wlȳl] =

β0k + γ0k

1− λ0
for k ≤ K , (24)

and

(1,01×Kn∗)E[(wlw
′
l)
−1wlȳl] = µ0,

where 01×m is a 1-by-m vector of zeros; ιk is a 1-by-Kn∗ vector with the first (k−1)n∗ and the last

(k + 1)n∗ components being zeros and all other components being ones; and Dk(θ0) is a Kn∗ × n∗

matrix defined as

Dk(θ0) ≡

(e′k, e
′
K)

( β0k β0K

γ0k γ0K

)−1(
1

−λ0

)⊗ In∗ ,
with e′k being a K-by-1 unit vector whose k-th component is 1.

A GMM estimator minimizes g(w; θ)′Ωg(w; θ) over θ subject to known linear constraints under

Assumption 2.6, where Ω is a weight matrix and g(w; θ) is a vector of sample analogs to the

moment conditions specified in (24). Compared with the two-step closed-form estimator proposed

in the text, this GMM estimator is computationally more demanding, because it involves solving a

high-dimensional nonlinear minimization problem.
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A4. Pooling groups with different sizes

In this section we explain how to impute smaller classes with simulated “pseudo-individuals”

so that the class sizes are balanced in a pooled regression, which consistently estimates a weighted

average of reduced-form coeffi cient matrices with varying class sizes.

To fix ideas, let there be two group sizes nl ∈ {n, n̄} in the data-generating process only, and
suppose the assumptions in Section 5.1 hold conditional on either group size.For each group l

with nl = n, define an n̄ × K matrix X̃l by stacking the observed matrix Xl (i.e., the n × K

matrix of regressors for group l in the sample) with an (n̄ − n) × K matrix of draws simulated

from the distribution of regressors of the other (n̄− n) individuals in groups with n̄ members. By

construction, X̃l can be considered as a draw from the distribution of Xl′ when nl′ = n̄. Define a

(n̄K + 1)-dimensional column vector:

w̃l ≡


(

1, X ′l,c1, ..., X
′
l,cK

)′
if nl = n̄(

1, X̃ ′l,c1, ..., X̃
′
l,cK

)′
if nl < n̄

,

with Xl,ck denoting the k-th column in Xl as before. By construction, E(w̃lw̃
′
l) does not vary across

groups with different sizes.

For any large group l with nl = n̄ and all i ≤ nl, we have E(w̃lyl,i|nl = n̄) = E(w̃lw̃
′
l)Φi(n̄),

where

Φi(n̄) ≡
(
µ0, µ1,ri(n̄), ..., µK,ri(n̄)

)′
and µk,ri(n̄) denotes the i-th row of the n̄× n̄ matrix of reduced-form coeffi cients µk(n̄) defined in

Lemma 1. (Note that we now write µk as a function of nl in order to emphasize its dependence on

group sizes.) Likewise, for any small group l with nl = n and all i ≤ nl, we have E(w̃lyl,i|nl = n) =

E(w̃lw̃
′
l)Φi(n), where

Φi(n) ≡
(
µ0, µ1,ri(n),0, µ2,ri(n),0, ..., µK,ri(n),0

)′
and µk,ri(n) denotes the i-th row of the n× n matrix µk(n) and 0 a row vector of (n̄− n) zeros.

Let p(·) denote the probability mass for nl in the population. It then follows that for all

i = 1, ..., n,

E(w̃lyl,i) = E(w̃lw̃
′
l) [p(n̄)Φi(n̄) + p(n)Φi(n)]

⇒ E[Φi(nl)] =
[
E(w̃lw̃

′
l)
]−1

E(w̃lyl,i).

Thus E[µk(nl)], with nl integrated out as a random variable, are identified and consistently es-

timable for k = 1, 2, ...,K. Assuming λ, β, γ, α are the same for small and large classes, one can

then proceed and apply the method in Section 5.3 to estimate the structural parameters of social

effects.
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A5. Proofs in Section 5

Proof of Lemma 1. The outcome of each individual i in group l is

yl,i = w′lδl,i + ε̃l,i,

where ε̃l,i ≡Ml,riεl with Ml,ri being the i-th row in Ml, and δl,i is a (Kn∗+ 1)-by-1 random vector:

δl,i ≡ [µ0, (β1Ml,ri + γ01Ml,riGl) , ..., (βKMl,ri + γ0KMl,riGl)]
′

with β0k, γ0k being the k-th components in β, γ. Regressing (yl,i)l≤L on (wl)l≤L gives:(∑
l wlw

′
l

)−1
(
∑

l wlyl,i) =
(

1
L

∑
l wlw

′
l

)−1︸ ︷︷ ︸
AL

(
1
L

∑
l wlw

′
lδl,i
)︸ ︷︷ ︸

BL

+
(

1
L

∑
l wlw

′
l

)−1 ( 1
L

∑
l wlε̃l,i

)︸ ︷︷ ︸
CL

.

As L → ∞, AL
p→ E (wlw

′
l)
−1 and CL

p→ E (wlε̃l,i) = 0 because of the weak law of large numbers

and Assumptions 2.1, 2.2 and 2.3. Furthermore,

BL
p→ E

(
wlw

′
lδl,i
)

= E
(
wlw

′
l

)
E (δl,i) ,

where the equality follows from Assumption 2.4. This implies(∑
l wlw

′
l

)−1
(
∑

l wlyl,i)
p→ E(δl,i).

Thus E(δl,i) is identified for i = 1, ..., n under maintained assumptions. By rearranging the com-

ponents in E(δl,i), we identify µ0 ≡ α/(1− λ) and µk ≡ E[Ml(βkI + γkGl)] for each k = 1, ...,K.

�

Consistency of Φ̂i in Section 5.8. The weak dependence in y is guaranteed by the boundedness
of column sum and row sum in G∗, so for any Ln∗-dimensional constant a, 1

L(a′y − E(a′y|X)) =

Op(L
−1/2). By construction, the composite error in (20), which absorbs the misclassification error,

is:

η̃ = E
(
MG− M̃H

)
Xγ0 + E

(
M − M̃

)
(Xβ0 + α0), (25)

where M̃ ≡ (I − λH)−1. As in the text, let η̃l denote an n
∗-by-1 subvector in η̃ that correspond

to group l in the sample, and let η̃l,i denote its i-th component. Under assumptions maintained in

Section 5, E(yl,i|X) = w′lΦ̃i+ η̃l,i, where X is Ln∗-by-K matrix of regressors for all individuals. By

construction,

Φ̂i − Φ̃i = (
∑

l wlw
′
l)
−1(
∑

l wlyl,i)− Φ̃i = (
1

L

∑
l wlw

′
l)
−1

[
1

L

∑
l wlE(yl,i|X)

]
+Op(L

−1/2)− Φ̃i

= Op(L
−1/2) + (

1

L

∑
l wlw

′
l)
−1(

1

L

∑
l wlη̃l,i).

Under usual regularity conditions, ( 1
L

∑
l wlw

′
l)
−1 = O(1).

Then, it remains to show that L−1
∑

l wlη̃l,i = Op(L
s−1). We decompose

∑
l wlη̃l,i into two

parts:
∑

l wl[E
(
MG− M̃H

)
Xγ]l,i and

∑
l wl[E

(
M − M̃

)
(Xβ + α)]l,i. Each part can be ex-

pressed as
∑L

l=1

∑
q=l,(i)wlBlqcq satisfying that

∑L
l=1

∑
q=l,(i) |Blq| = O(Ls), and
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supl,iE|τ lcq=l,(i)| = O(1). For the first part, B = E[MG− M̃H] and c = Xγ. For the second part,

B = E
(
M − M̃

)
and c = Xβ + a. From the proof in Appendix A2, we show that for both B,∑n

p=1

∑n
j=1 |Bpj | = O(Ls). Then, for any i = 1, ..., n∗,

E

∣∣∣∣∣
L∑
l=1

wlη̃l,i

∣∣∣∣∣ ≤
L∑
l=1

∑
q=l,(i)

E|wlBlqcq| ≤ sup
l,i
E|wlcq=l,(i)| ·

L∑
l=1

∑
q=l,(i)

|Blq| = O(Ls).

Therefore,

Φ̂i − Φ̃i = Op(L
−1/2) + (

1

L

∑
l wlw

′
l)
−1(

1

L

∑
l wlη̃l,i) = Op(L

−1/2 ∨ Ls−1).

When s < 1/2, the conventional asymptotic distribution holds as the effects of η̃ will vanish

asymptotically. The estimation procedure discussed in Section 4 can be directly applied to this

case.
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