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Abstract

The paper explains long-term changes in birth, death rates and attitude to personal con-

sumption by changing patterns of cultural transmission. When communities are culturally

isolated, they are focused on population growth, resulting in large fertility and welfare trans-

fers to children, limited adult consumption and lack of old-age support. With increasing

cultural contact across communities, successful cultural traits induce their hosts to attempt

becoming celebrities by limiting fertility and increasing longevity via higher consumption

and old-age arrangements. Empirical analysis confirms that celebrities have fewer children

and live longer; their presence precedes reduced aggregate birth and death rates.
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1. Introduction

Theoretical biology disagrees with theoretical economics about the lifetime objectives of

a human being. Theoretical biology is based on the Darwinian idea, that the only possible

objective of a living organism can be maximization of the growth rate of population to

which the organism belongs. This postulate is justified by the standard natural selection
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argument: in the long run, the maximum possible rate of growth of any population is zero;

hence any population focused on any objective other than its growth will grow at a lower,

i.e. negative, rate, and will eventually become extinct. Throughout this paper, we will refer

to the population-growth-maximizing human as the Homo sapiens.

Most economists, in contrast, traditionally assume that the objective of humans is to

maximize their own material wealth. This assumption is not based on any logical proof,

but rather on a tradition introduced by the founding fathers of economics. E.g. in J.S.

Mill’s words, “[political economy] is concerned with [a man] solely as a being who desires to

possess wealth, and who is capable of judging the comparative efficacy of means for obtaining

that end.” We will use the popular term Homo economicus to characterize the human who

maximizes personal material well-being.

A number of economists have pointed out that the Homo sapiens and Homo economicus

concepts are different (e.g. Robson (2001), Bergstrom (2007)) and attempted to build alter-

native Homo sapiens-based theories of human economic behavior. For example Robson and

Kaplan (2003) study intergenerational transfers and consumption of wealth, as functions of

age, that are consistent with the objective of the Homo sapiens. Their model predicts that

there should be large donations of wealth from adults to children; that personal consumption

of adults should be modest, just enough to maintain life; that no wealth should be donated

to old individuals, as they do not contribute to population growth. The results of their

research are suitable for the “Malthusian” economies, i.e. for hunter-gatherer and possibly

agrarian societies. Kaplan (1994) demonstrates empirically that hunter-gatherer societies

indeed do not support the elderly.

At the same time, the model of the Homo sapiens cannot explain changes in human

lifestyles that occurred in the recent two centuries, i.e. throughout the demographic transi-

tion. Modern societies no longer appear to maximize the population rate of growth, as such

rate is falling in all countries of the world, and is lowest in countries that are widely regarded
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as “successful”. Most people in such “successful” countries also appear to be interested in

luxurious lifestyles; such countries practice various forms of old-age support designed to in-

crease life expectancy. The competing Homo economicus model appears to be a better fit to

the lives of modern humans. Within this model, fertility declines because large number of

children increasingly stands in a way of personal consumption, that of parents or of children

themselves (Becker and Lewis (1973), recently reviewed in Doepke (2015) and in Lee (2015)),

old-age support helps individuals to enjoy consumption for a longer time period, and the

desire for a luxurious lifestyle doesn’t even have to be explained. For this reason, the Homo

economicus concept remains the mainstream of economics despite the above mentioned lack

of theoretical foundation. In particular, theories of demographic transition, e.g. Becker

et al. (1990) and Galor and Moav (2002), are typically based on the Homo economicus con-

cept. Even the latter of these two, which introduces some elements of natural selection into

the model, assumes that the importance of personal consumption in human preferences is

exogenous and is exempt from any natural selection.

The objective of this paper is to propose a theory of how humans could evolve away from

the Homo sapiens toward the Homo economicus. Because the standard natural selection of

genes clearly cannot explain the drift away from the Homo sapiens, there must be another

type of natural selection at play. This paper emphasizes the natural selection of cultural

traits as the main driving force of changing lifestyles. The narrative of the theory goes as

follows.

1.1. The theory

Compared to other species, humans have an unprecedented ability to copy each others

behavior (Boyd and Richerson, 1985; Tomasello, 1999). Initially, when the genotype of

modern humans evolved, such imitation ability allowed individuals to learn not only from

their own mistakes but also from those of others, thus allowing to be more efficient at survival
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and procurement of resources, and to adapt faster to changing environment. Such imitation

process has led to the emergence of persistent (though evolving) behavioral patterns that are

labeled as cultures and that are passed from one generation to the next. The latter process

is labeled cultural transmission.

Because early humans lived in relatively small groups not exceeding few hundred people,

with limited contact with other groups, cultural transmission was mostly vertical, from parent

to child, i.e. happened between individuals who were relatives and knew each other. But

as human population density grew, literacy increased, communication technology improved,

humans became increasingly able to observe and imitate alternative lifestyles outside of their

community, i.e. oblique cultural transmission became more prominent. Because oblique

cultural transmission happens between individuals who do not share the same genes, it

generally does not contribute to population growth rate of the imitating community. In

other words, changing patterns of communication between humans have led to maladaptive,

from the point of view of the Homo sapiens, patterns of cultural transmission, and eventually

led to the emergence of the modern Homo economicus.

The above ideology of the demographic transition is not entirely new and has circulated

for some time in social sciences other than economics, especially to explain the declining

fertility rates. Newson et al. (2007) explains lower fertility by less cultural influence from

within community and more such influence from outside. Ihara and Feldman (2004) and

Zakharenko (2016b) propose models in which lower fertility enables individuals to achieve

higher social status, meaning that their way of life will be more imitated.

Much less effort was made to explain the rise of preference for luxurious lifestyle and of

old-age support. The rise of luxurious lifestyle can be explained by the hypothesis that such

lifestyle makes individuals more socially visible and more likely to become imitated, although

one would then have to explain why luxurious lifestyles are more imitated. Zakharenko

4



(2016a) explains rising consumption by falling population growth rates;3 this driving factor,

however, cannot plausibly explain the full magnitude of consumption increase. In calibration

of Zakharenko (2016a), in particular, consumption grows at a slower rate than income.

Evolutionary explanations of the emergence of old-age support, to the best of my knowledge,

are non-existent in the literature.

This paper adds to this line of cultural transmission literature by pointing out a very

simple yet powerful “dead men tell no tales” argument. Even if the chance of being imitated

does not depend on special effort to achieve higher social status, or on levels of consumption,

individuals can still increase the number of cultural followers by simply living longer, as long

as alive individuals are more imitated than the dead. This idea gives a whole new meaning

to the value of human life: besides traditional production of new humans, life is valuable

because it can recruit new cultural followers from outside own community via oblique cul-

tural transmission. If the latter method to produce cultural offspring is less sensitive to

age than physical reproduction, the value of longevity increases as oblique cultural trans-

mission becomes more widespread. Higher value of long life, in turn, can explain increasing

consumption (which helps to reduce mortality) and welfare transfers to the elderly.

As the frequency of communication between non-relatives increases, some individuals

may adapt to the new environment faster than others. Those who adapt sooner, according

to the theory, should have lower fertility and live longer than the general population. As their

lifestyle is better suited to the changed environment, they attract many cultural followers

which makes them celebrities.

The model developed in this paper is different from models of cultural transmission orig-

3In theoretical biology models, population growth rate plays the same role as the discount rate in eco-
nomics. If population grows fast, an individual maximizing the share of her offspring in that population
has to produce offspring as soon as possible, and is thus impatient. As population growth slows down, pro-
duction of offspring can be more spread over time, and the individual is incentivized to have more personal
consumption which reduces mortality risks and thereby increases expected number of offspring in future
periods.
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inated by Bisin and Verdier (2001). In that line of literature, the domain of possible cultural

types is usually limited to few (usually two) elements, usually with equal and predetermined

role of personal consumption, as well as a concern about culture chosen by own children,

embedded into the preferences. Baudin (2010) is an example of demographic transition

theory built on this platform. By construction, equilibria of these models are not invasion-

proof: a new cultural type that prescribes to care less about personal consumption and more

about the culture of children will overcrowd the initial cultural types. The current paper,

in contrast, makes no ex-ante assumptions about the importance of personal consumption,

and studies only cultural traits that prescribe the only possible invasion-proof objective of

maximizing the rate of growth of population belonging to that culture.

Section 2 of this paper formalizes the above intuition in a model, while section 3 verifies

empirically the key predictions of the theory. Prior to these sections, we discuss the empirical

evidence that already exists.

1.2. Existing empirical evidence

Most existing studies of cultural transmission relevant for demographic transition focus

on fertility. Colleran et al. (2014) find that fertility of an individual is more affected by

average education in her community than by her own education. This finding indicates

that fertility is more affected by patterns of cultural transmission, associated with average

community education, than by productive skills acquired individually at school. This finding

opposes the traditional economic theory (e.g. Becker et al. (1990)) that fertility declines as

a response to increased productive capabilities.

La Ferrara et al. (2012) find that fertility in Brazilian communities declines when these

communities are connected to a TV channel that broadcasts movies portraying successful

low-fertility families. Because such movies cannot affect productive skills of the viewers,

this finding is a direct evidence that cultural transmission plays a role in fertility decline.
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Van Bavel (2004) finds that 19-th century Flemish couples in the Belgian city of Leuven

reduced their fertility if their neighbors were French-speaking families, known to have lower

average fertility during that period. This finding also points to the contagious, culturally

transmitted nature of fertility decline.

A stark example of the link between cultural transmission and fertility is modern Amish

villages in the United States. Amish are religious communities which, despite living in mod-

ern times in a modern country, have some of the highest fertility rates in human history.

Greksa (2002) estimates their fertility at 7.7 children per woman while Bailey and Collins

(2011) comes up with 6 children per woman. Such fertility cannot be explained by poor ed-

ucation, as traditional economics would suggest: Amish communities have their own schools

providing 8 years of education to almost all children.4 According to Barro-Lee dataset (Barro

and Lee, 2013), this amount of human capital in the general U.S. population was observed

around 1930, when the national fertility rate did not exceed 3 children per woman.

At the same time, high Amish fertility can be explained within the cultural influence

theoretical framework of section 1.1. According to that theory, high fertility is consistent

with cultural isolation of a community and lack of external role models. This is indeed the

case for the Amish people who are notorious for their cultural isolation and denial of modern

communication devices. It is quite telling that the above mentioned study by Bailey and

Collins (2011), who work with the U.S. Census which does not explicitly identify Amish

people, identify them as individuals (i) speaking Pennsylvania Dutch and (ii) not having

a phone. Both of these characteristics, speaking a rare language and rejection of modern

communication methods, point to cultural isolation. Kraybill (1998) studies the movies of

the Amish behind their abstention from the mass media, and concludes that the Amish view

the values/cultural traits of the outside world as a direct threat to their own culture, which

4https://www.amishvillage.com/blog/amish-education/
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is perfectly consistent with the cultural influence theory of demographic transition.

2. The model

2.1. The Homo sapiens

I first introduce the model of an optimal lifecycle of the Homo sapiens who live in small

communities and who are isolated from any external cultural influence. In such environment,

natural selection favors cultural traits which maximize the rate of community growth. The

model of lifecycle decisions of this section is a simplified version of Robson and Kaplan

(2003).

Consider a model set up in continuous time with infinite horizon. There are many

isolated communities of humans, each community having its own unique cultural identity.

The economy consists of a single consumption good, which, following Robson and Kaplan

(2003), we interpret as energy needed to live and reproduce. Humans live finite lives, detailed

below.

From age 0 to a1 humans are children and can only consume; their production of energy

is y(a) = 0, a ∈ [0, a1). At age a1, the cultural identity is formed by copying a role model,

aged above a1, selected randomly from the same community. Since all potential role models

share the same culture, the cultural transmission process is trivial as all young individuals

simply join that culture.

From age a1 to a2 humans are adults and can produce two outputs: (i) the consumption

good, with exogenous age-dependent productivity y(a) > 0, a ∈ (a1, a2), and (ii) newborn

children, detailed below. Adults also pose as role models for those who form their cultural

identity.

Ages from a2 to a3 are referred to as the old age; such humans can produce neither the

consumption good (y(a) = 0, a ∈ [a2, a3]) nor children. But they can still pose as cultural

role models for the young. No life is possible beyond age a3.
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At all ages, humans face a risk of mortality that can be reduced by higher consumption.

Mathematically, death is a Poisson process with the rate of µ(c), where c is consumption while

µ(·) satisfies µ(0) = ∞ (zero consumption results in instant death), µ(c) is continuous and

finite for every c > 0, µ′(·) < 0 and µ′′(·) > 0. As we assume that no life is possible beyond age

a3, mortality is infinite starting from that age. Given consumption profile c(a), a ∈ [0, a3], the

probability of survival from birth to age a ∈ [0, a3] is then p(a, c(·)) = exp(−
∫ a

t=0
µ(c(t))dt),

so that

p(0, c(·)) = 1, ṗ(a, c(·)) = −p(a, c(·))µ(c(a)). (1)

We also have that p(a, c(·)) = 0 for a > a3.

A birth of a new human requires C0 units of energy/consumption good. Natural selection

leaves only those communities where all members have a common goal of highest population

growth rate, and are pooling their resources to achieve that goal. Hence, we can perform

our optimization calculations at the community level.

Denote the rate of population growth by r and assume the measure of newborns at time

t0 is normalized to unity. Then, the measure of individuals of age a at t0 is e−rap(a, c(·)),

where e−ra is the measure of people born at time t0 − a, while p(a, c(·)) is their rate of

survival to time t0. Then, the total amount of energy allocated by the community to births

is
∫ a3
a=0

e−rap(a, c(·)) (y(a)− c(a)) da and the mass of newly born at t0 is

u0(c(·), r) ≡
∫ a3
a=0

e−rap(a, c(·)) (y(a)− c(a)) da

C0

. (2)

By assumption we have that such mass is unity:

u0(c(·), r) = 1. (3)

Robson and Kaplan (2003) in Lemma 1 show that u0(c(·), r) must be maximized over c(·)
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for a given r; otherwise a higher r is possible. The optimal consumption path then satisfies

− µ′(c(a))V0(a) = 1, (4)

where

V0(a) ≡
1

p(a, c(·))

∫ a3

t=a

e−r(t−a)p(t, c(·)) (y(t)− c(t)) dt (5)

is the expected value of life remaining beyond age a, in terms of energy surplus produced,

discounted by the population growth rate. At the terminal age a3, the value of life is zero,

hence (4) implies zero consumption, as well. By applying reverse induction from age a3 to

age a2, where y(a) = 0, we conclude that both V0(a) = 0 and c(a) = 0 in this interval. In

other words, it is not optimal to support the elderly as they do not contribute to population

growth, and hence there is no life beyond age a2. For individuals younger than a2, optimal

value of life is positive and so is consumption.

The maximal population growth rate r is then pinned down by (3) given optimal path

c(·) and (1).

This model fits all characteristics of a Malthusian steady state. In particular, the rise in

available resources y(·) decreases mortality and increases fertility (as measured by u0 for a

given r), and therefore increases the population rate of growth. The model fails to explain

high infant mortality observed in all societies of humans; Robson and Kaplan (2003) do a

better job at explaining it by introducing endogenously accumulated somatic capital (i.e.

body mass). The somatic capital of infants is low and so the value of their life is lower than

that of grown-up individuals. In this paper, endogenous somatic capital is omitted because

infant mortality is not the main focus.

Another important distinction between this paper and Robson and Kaplan (2003) is

that the latter assume genetically hardwired consumption paths and mortality levels. This

paper assumes behaviors and associated mortality are transmitted culturally rather than
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genetically.

2.2. Oblique cultural transmission: community effects

We now generalize the model of section 2.1 to add cultural transmission across com-

munities. The mathematical concept of cultural transmission is adapted from Zakharenko

(2016a) and Zakharenko (2016b).

By followers we will label individuals of age a1, i.e. those who are about to find a

cultural role model. Suppose that, due to rising population density and improvements in

communication technology, there is probability q that a follower picks up a role model from

outside her community. We will refer to q as the cultural openness of the world’s communities

to each other.5 While previous studies assumed that potential outside role models can

increase the chance of being followed by allocating effort and/or resources toward that goal,

this paper makes a more innocuous assumption that all living individuals above age a1 are

equally likely to become role models. Even this simple setting is sufficient to explain changes

in human lifestyles; introducing special effort to become a role model would only reinforce

the conclusions of this paper.

Since we account individuals by their culture, not their genotype, followers who picked

external cultural types migrate to the community of their role models. Each community

therefore retains only fraction 1− q of followers born in that community, but it also recruits

new followers via oblique cultural transmission from outside.

Suppose for a follower born in community i, the total mass of external role models is Ni.

Since we assume that the population share of any community i is infinitesimal, Ni is equal

to global population of potential role models, and is therefore equal across communities i.

But then, any potential role model will draw external followers at Poisson rate qR where R

5This paper treats cultural openness q as an exogenous variable. Zakharenko (2016a) assumes q positively
depends on population density, making it endogenous.
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is the global ratio of followers to role models.

Suppose the mass of new followers recruited into a specific cultural type at time t0 is

normalized to unity, while the mass of births by parents of that cultural type is b.

Assuming the population of the cultural type in question grows at constant rate r, the

mass of births at time t0−a1 was be−ra1 , the mass of survivors to age a1 is be−ra1p(a1, c(·)), and

the mass of followers who retain the cultural type of their parents is (1− q)be−ra1p(a1, c(·)).

This is the amount of recruitment into the cultural type in question at time t0 via vertical

cultural transmission.

Denote by p1(a, c(·)), a ≥ a1 the probability of survival from age a1, when cultural identity

is formed, to age a.6 Following the assumptions of section 2.1, we have that p1(a, c(·)) =

exp
(
−
∫ a

t=a1
µ(c(t))dt

)
or, alternatively, (cf.(1))

p1(a1, c(·)) = 1, ṗ1(a, c(·)) = −p1(a, c(·))µ(c(a)). (6)

Then, the equilibrium mass of births b can be identified from the following energy balance

equation:

b

∫ a1

a=0

e−rap(a, ·)(−c(a))da+

∫ a3

a=a1

e−r(a−a1)p1(a, ·) (y(a)− c(a)) da = bC0. (7)

The left-hand side of (7) is the net energy production of members of the cultural trait and

their children, while the right-hand side is energy spent on new births.

The total mass of new recruits into the cultural type in question, via both vertical and

6If all cultural traits shared the same consumption path and survival rates, we would have p1(a, c(·)) =
p(a,c(·))
p(a1,c(·)) . But because consumption paths of children are determined by their parents, and because new
followers of a culture are recruited from multiple cultures, survival rates of new followers can be heterogenous
and thus such formula is generally not correct.
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oblique cultural transmission, is given by

u1(c(·), r) ≡ (1− q)be−ra1p(a1, c(·)) + qR

∫ a3

a=a1

e−r(a−a1)p1(a, c(·))da

=︸︷︷︸
cf.(7)

(1− q)
e−ra1p(a1, c(·))

∫ a3
a=a1

e−r(a−a1)p1(a, c(·)) (y(a)− c(a)) da

C0 +
∫ a1
a=0

e−rap(a, c(·))c(a)da

+ qR

∫ a3

a=a1

e−r(a−a1)p1(a, c(·))da. (8)

By earlier assumption,

u1(c(·), r) = 1 (9)

in equilibrium. At the same time, maximization of the population growth rate r is equivalent

to maximization of u1(c(·), r) over c(·) for given r: if u was not maximized, a higher r would

be feasible.

2.2.1. Child consumption problem

Apparently, optimal consumption paths for children a ∈ [0, a1) and for adults a ∈ (a1, a3]

can be calculated independently from each other. Indeed, according to (8), the optimal

children’s consumption path should maximize

e−ra1p(a1, c(·))
C0 +

∫ a1
a=0

e−rap(a, c(·))c(a)da
(10)

over c(·). Intuitively, (10) is the number of children surviving to age a1 at a representative

time t0 per unit of energy spent on children (including births and consumption) at the same

moment of time. This objective does not depend on cultural transmission parameters q, R

or on subsequent consumption path c(a), a > a1.7

7Thus, the model fails to explain the empirical observation that parental investment into children increases
with modernization (with increasing q in our context). To address the problem, the model can be modified
to assume that birth of a child not only requires energy input C0 but also excludes parents from being role
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Proposition 1. The optimal consumption path of children satisfies

− µ′(c(a))V1(a) = 1, (11)

where
V1(0) = C0, V̇1(a) = (µ(c) + r)V1(a) + c(a), a ∈ [0, a1). (12)

Moreover, given r, such consumption path is identical to that of the Homo sapiens children
of section 2.1.

The proof of the proposition is in the appendix.

Denote by B(r) the value of (10) under the optimal consumption path. By the envelope

theorem, its full derivative with respect to r is equal to the partial derivative, equal to

B′(r) = −rB(r)
C0

C0 +
∫ a1
a=0

e−rap(a)c(a)da
< 0. (13)

2.2.2. Adult consumption problem

By substituting the optimal children’s consumption path into (8), we can rewrite the

optimal adults’ consumption problem as maximization of

u2(c(·), r) ≡ (1−q)B(r)

∫ a3

a=a1

e−r(a−a1)p1(a, c(·)) (y(a)− c(a)) da+qR

∫ a3

a=a1

e−r(a−a1)p1(a, c(·))da

(14)

over c(·). This is a standard dynamic programming problem with the following solution

(cf.(4,11)):

− µ′(c(a))V2(a) = 1, a ∈ (a1, a3], (15)

models for non-relative followers for some period of time h. Then, because rising q increases returns to being
such a role model, modernization increases the opportunity costs of giving birth, thus every child’s life is
more valuable and more investment is done to preserve life. The model presented in this paper essentially
assumes h = 0 to simplify exposition of key results.
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where (cf.(5,12))

V2(a,Q) ≡ 1

p1(a, c(·))

∫ a3

t=a

e−r(t−a) (y(t)− c(t) +Q) p1(t, c(·))dt, a ∈ [a1, a3], (16)

is the updated value of life remaining beyond age a and where

Q ≡ q

1− q

R

B(r)
. (17)

The parameter Q is cultural productivity, i.e. the rate of attraction of cultural followers from

outside by a living adult, measured in the currency of energy surplus/deficit generated by

the same adult. It is immediate to verify that the Homo sapiens of section 2.1 is a special

case of this model with q = Q = 0.

We now state the key results of the model.

Theorem 1 (“Dead men tell no tales”). For given r, R, consumption c(·) rises, and
therefore mortality µ(c(·)) falls, with cultural openness q at every adult age a ∈ (a1, a3].

In words, rising return to “telling tales,” i.e. to posing as a role model for external followers,

makes individuals increase investment into survival as their capability to “tell tales” is less

age-sensitive (in this stylized model, completely independent from age) than their capability

to generate energy surplus. Such increasing interest in own survival makes individuals appear

more focused on own consumption, consistently with the Homo economicus paradigm. Also,

the theorem predicts that consumption rises with cultural openness q in the old age a ∈

[a2, a3], where no more energy can be produced, meaning that old-age support is increasing.

The proof of the theorem is analogous to that of theorem 2a in Robson and Kaplan (2003)

who show that age-invariant increase in energy production increases consumption at all ages.

Proof. The cultural openness q affects decisions only via cultural productivity Q, with
dQ
dq

> 0. Because the consumption path c(·) is chosen to maximize the value of life at any
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given age a ∈ (a1, a3], we can apply the envelope theorem to conclude

dV2(a)

dQ
=

∂V2(a)

∂Q
=

1

p1(a, c(·))

∫ a3

t=a

e−r(t−a)p1(t, c(·))dt > 0.

But then, an increase in Q should be associated with a decrease in the absolute value of

µ′(c(a)) in (15), which is consistent with rising c(a) due to the properties of µ(·).

Next, we analyze the impact of changing cultural openness on the birth rate. Calculation

of such rate according to the standard definition, new births relative to total population, is

cumbersome because the total population depends on endogenous mortality rates. Instead,

we use a modified definition of the birth rate as the number of new births to the population of

age a1, equal to F (c(·, Q)) =
∫ a3
a=a1

e−r(a−a1)p1(a,c(·,Q))(y(a)−c(a,Q))da

C0
, where c(·, Q) is the optimal

consumption path given cultural productivity Q, while p1(a, c(·)) is determined by (6).

Theorem 2. Given r, R, the birth rate F (c(·, Q(q))) falls as cultural openness q rises.

Proof. Because Q′(q) > 0, we focus on proving that F (c(·, Q)) decreases with Q. The

problem of maximization of (14) is equivalent to maximization of F (c(·)) + QG(c(·)) over

c(·), where G(c(·)) ≡
∫ a3
a=a1

e−r(a−a1)p1(a,c(·))da
C0

. Consider two values of cultural productivity,

Q1 < Q2. Theorem 1 proves that mortality strictly falls with Q, and therefore survival rates

increase: p1(a, c(·, Q1)) < p1(a, c(·, Q2)), a ∈ (a1, a3]. But then G(c(·, Q1)) < G(c(·, Q2)).

Suppose the birth rate is non-decreasing with Q, F (c(·, Q1)) ≤ F (c(·, Q2)). But then,

when cultural productivity is Q1, changing the consumption path from c(·, Q1) to c(·, Q2),

which is feasible, improves the objective function:

F (c(·, Q2)) +Q1G(c(·, Q2)) > F (c(·, Q1)) +Q1G(c(·, Q1)),

which compromises optimality of c(·, Q1) under Q1. Therefore, we have that F (c(·, Q1)) >

F (c(·, Q2)).
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2.3. Oblique cultural transmission: aggregate effects

Increasing cultural openness affects lifetime decisions not only directly but also via the

community population growth rate r and aggregate follower-role model ratio R which were

considered exogenous in the previous section. This section studies steady growth paths in

which all communities make rational decisions for cultural survival, endogenizes r and R,

and confirms that the results of theorems 1 and 2 survive. Because r is now a variable, we

add it as an argument to relevant functions.

All communities face the same value of R, which is the ratio of the measure of individ-

uals of age a1, normalized to unity, to the measure of individuals aged above a1, equal to

C0G(c(·, Q, r), r):

R(Q, r) ≡ 1

C0G(c(·, Q, r), r)
. (18)

All communities optimally follow identical consumption paths and have identical population

growth rates r. It is useful to investigate how r affects the consumption path.

Proposition 2. Given cultural productivity Q, higher aggregate population growth r causes
consumption c(a,Q, r) at every age a ∈ (a1, a3] to decline.

The proofs of this and the next propositions are in the appendix.

The equilibrium rate of population growth can be found from the following condition

(cf.(3)): B(r)C0F (c(·, Q, r), r) ≡ 1 or, in logarithmic terms,

Mr(Q, r) ≡ lnB(r) + lnC0 + lnF (c(·, Q, r), r) ≡ 0. (19)

In words, assuming the mass of individuals of age a1 is unity and population grows at rate r,

then survival to age a1 per unit of energy, times total energy surplus produced by all adults,

must be exactly equal to one.

Proposition 3. Increasing cultural openness q causes population growth r to drop and cul-
tural productivity Q to rise.
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Corollary 1. The results of theorems 1,2 are valid at the aggregate level, i.e. when account-
ing for endogeneity of R and r.

Proof. As q rises, consumption rises via increasing Q (theorem 1) and decreasing r (propo-

sition 2). This proves theorem 1 at the aggregate level. Increasing Q also reduces fertility

F by theorem 2, while (19) implies that reduced r, by increasing B(r), must result in lower

fertility F , as well. This proves theorem 2 at the aggregate level.

2.4. Celebrities

Some communities may adjust to increasing cultural openness q sooner than others.

This section analyzes how such cultural invaders differ from the general population that lags

behind.

Suppose cultural openness has recently increased from some q1 to q2 > q1, but almost

all population has culture adapted to the obsolete value q1; specifically, the system (19,A.6)

results in aggregate growth rate r and in (underestimated) cultural productivity Q1 that both

correspond to q1. Note that, because cultural openness q does not directly affect population

growth rate, only via chosen lifestyles, an increase in true q does not affect the true aggregate

r. The aggregate follower-role model ratio is then (cf.(18)) R(Q1, r).

Suppose further that a small fraction of population ϵ has adapted to the new value of q.

Because they are better adapted to the new environment, their community rate of growth

should exceed that of the general population. This means that the new lifestyle gradually

spreads to the general population; for this reason, we will denote these cultural invaders as

celebrities. As the culture of celebrities spreads, the rate of population growth of both new

and old cultures will decline and, as Proposition 3 shows, will eventually fall below the initial

level of r.

How will their lifestyles differ from those of the general population? Analyzing time-

varying population growth rates is a cumbersome task. Moreover, it is unlikely that random
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cultural selection can perfectly adjust to future changes in r. For this reason, we will assume

that celebrities behave as if their population growth was equal to r, which is an underestimate

initially but an overestimate in the long run.

Then, the perceived cultural productivity of celebrities is Q2 =
q2

1−q2

R(Q1,r)
B(r)

> q1
1−q1

R(Q1,r)
B(r)

=

Q1. But then, theorems 1 and 2 can be directly applied to conclude that celebrities consume

more, live longer, and have lower fertility. Section 3 verifies these theoretical predictions.

3. Empirical evidence

The lives of the two most frequently cited founding fathers of the Homo economicus

concept, Adam Smith and John Stuart Mill,8 match closely the properties of celebrities of

section 2.4. Both had no children and lived fairly long lives by the standards of their time, 67

and 66 years, respectively. And they indeed became celebrities, as their views of human goals

have spread to the extent that they became the standard of economics profession. Montagu

(1994) studies life expectancy of famous men from antiquity, as listed by the Oxford Classical

Dictionary. Dropping those who died from violent deaths, average lifespan of remaining

celebrities is 72 years, which is equal with high degree of statistical confidence to that of their

counterparts from the same dictionary who died between 1900 and 1950. de la Croix and

Licandro (2015) study a rich dataset of 300000 famous individuals from the entire human

history and conclude that their life expectancy has always been significantly higher than

that of the general population and, moreover, started to increase at least a century before

that of the general population. These observations confirm the idea that fame has always

selected long-lived individuals, and that celebrities pioneered demographic change. This

section verifies the key empirical predictions of section 2.4 with tests specifically designed

for that purpose.

8E.g. as cited in the Wikipedia page about the Homo economicus.
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We identify celebrities as those listed in the Pantheon 1.0 dataset (Yu et al., 2016). This

dataset includes all individuals whose biographical Wikipedia pages were translated into

at least 25 languages as of May 2013, totalling 11341 individuals. For each individual, the

dataset provides the year and location of birth, gender, occupation, as well as some measures

of their popularity on Wikipedia. To be able to test our hypotheses, we complement the

data about celebrities with additional bot- and hand-collected information.

Due to the fact that each Wikipedia page is linked to an entry in Wikidata which har-

monizes biographical information, much of additional data was collected through automated

queries. In particular, for celebrities who died before July 2018, we automatically collect the

year and location of death (Wikidata properties P570 and P20, respectively).

Because much of the analysis is country-level, we need to identify to which country each

celebrity belongs. The original Pantheon dataset provides only birth data, which is not

perfectly suitable for our purposes because celebrities often become influential far away from

their place of birth.9 Assuming that people tend to migrate to places where they have the

best chance of becoming influential, we associate celebrities with their last known place of

residence, if they were alive as of July 2018, and with their location of death otherwise.10 The

data on residence location is quite patchy so we used several Wikidata properties, as follows.

The most preferred source was “location of residence” (Wikidata property P551), followed

by “location of work” (P937), “empoyer” (P108), and “educated at” (P69). This process

yielded 4060 distinct entities related to the lives of celebrities; of them, all but 285 were

associated with a specific geographic coordinate. For the remaining missing coordinates, a

manual search was conducted. Many entities were corporations, for which the headquarters

location was used. Some were music bands (e.g. Metallica), in which case we used the

9E.g. Freddie Mercury was born in Tanzania.
10This method can still mislocate influential individuals, as some of them die in transport accidents away

from home (Lech Kaczyński) or in exile (Napoleon). But manual verification shows that the margin of error
is sufficiently small, while the cost of more accurate information is high.

20



“location of formation” property. Eventually, 245 entries were manually associated with a

geographic location; the remaining 40 entries are mostly ancient states or regions which were

not used in the analysis.

If the above procedure failed to link a celebrity to a specific geographic coordinate, the

location of birth from the original Pantheon database was used. The collected location

information was then used to associate each celebrity with a modern country.

3.1. Celebrities are different

This section tests whether fertility and mortality of celebrities differ from those of the

general population. Because the celebrity status may be correlated with educational level

which strongly affects both fertility and mortality, we studied biographies of celebrities to

collect their educational data. Such data was collected in a three-stage process.

Degree information. First, for each celebrity the Wikidata information on “academic

degree” was trawled (variable P512, either as separate property or as a qualifier for “educated

at” property). We ended up with 133 distinct degrees, of which 9 were ignored as they did not

provide conclusive information about the degree obtained (e.g. “physician”, “student”) while

the remaining were manually classified into Bachelors, Masters and Doctorate educational

levels. For celebrities with multiple degrees, the highest educational level was used.

School information. For the majority of celebrities, however, no degree data was avail-

able, which could mean either lack of tertiary education or, in most cases, omitted informa-

tion. To fill the gaps, the have further collected the Wikidata information on schools which

celebrities attended (“educated at” property, P69), which resulted in 1252 unique institu-

tions. For each institution, we downloaded the school category (“instance of” property, P31);

at least one entry is available in 97% of cases, and multiple entries are frequent. For example

Hamburg University of Technology belongs to two categories, “institute of technology” and

“public university”. For the resultant 143 categories, we attempted to manually classify them
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into those associated with three levels of education: primary, secondary and tertiary. For

45% of school categories, no such classification could be done (“school”, “nonprofit organiza-

tion”). Then, given the three-level classification of school categories, we attempt to associate

each school with one of the three educational levels, with manual verification whenever dif-

ferent categories of the same school provided conflicting educational levels. As a result, 85%

of schools were matched to one of educational levels. Finally, for each celebrity without

degree information, we impute their educational level from the level of the school they are

known to have attended.

Hand-collected information. After two previous stages of data collection, for many

celebrities educational information was still unavailable. Moreover, bot-collected data can

both underestimate (if some information is not available in Wikidata) and overestimate (if

a celebrity attended but dropped out of a school, e.g. Julia Roberts) the educational level.

For this reason, we manually searched biographical information on education of celebrities

of interest, i.e. of those to be compared against the general population, as detailed below.

First, we studied educational backgrounds of all 387 celebrities whose data was used in

education-controlled fertility comparisons. In 43 cases, bot-collected educational level was

downgraded, in 4 cases upgraded, in 105 cases, unspecified tertiary education was replaced

by a specific degree, and in 125 cases, missing educational information was filled. For 9

celebrities, no educational information could be found (e.g. Sophia Loren, Martha Argerich);

the author’s best guess about their educational background, based on their biographical data,

was used.

For education-controlled mortality comparisons, we did not verify bot-collected data,

and studied manually only celebrities without any such data, 116 individuals total. As the

previous paragraph suggests, bot-collected data tends to somewhat overstate education of

celebrities, as many of those related to show business drop out of college. Such measurement

error can only reinforce the conclusions of this study, as overstated education will take away
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Figure 1: Celebrity women by year of birth

part of true correlation between fame and mortality.

3.1.1. Fertility

Data. The theory of section 2.4 predicts that celebrities have lower fertility. To test the

hypothesis, we collect the data on the number of biological children born by 760 women from

the Pantheon dataset who were themselves born between 1750 and 1970 and lived 45 years or

more. The focus on women is due to lower error in measurement of the number of children,

as well as due to the assumption that fertility choices of men may simply crowd in/out other

men rather than affect the total number of births. The focus on age 45+ is because younger

women may have not completed their fertility. Women born before 1750 were dropped due

to poor information on both celebrities and their general-population counterparts. We will

refer to the 760 women as the fertility subsample. Figure 1 displays the distribution of their

birth years.

While Wikidata has the “number of children” entry (P1971), the information is often

missing or incorrect. For this reason, we studied the biography of each of 760 women and

recorded the most credible information on the number of live births.11

11For each observation, the url of the information source was recorded and is available on request.
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Number of children Count
None 239
1 175
2 186
3 89
4 33
5 or more 38
Total 760

Table 1: Celebrity women by number of children

Table 1 visualizes the distribution of the number of children in the fertility subsample.

A casual observation of the data is consistent with the low-fertility hypothesis. Out of ten

women whose Wikipedia pages were available in 100+ languages as of 2013, four (Angela

Merkel, Frida Kahlo, Mother Teresa, Lila Downs) had no biological children at all, while

another four (Sarah Bernhardt, Marlene Dietrich, Hillary Clinton, Hebe Camargo) had only

one.

Uncontrolled comparisons. The first formal test we conduct is to calculate the differ-

ence between the number of children of each celebrity and average number of children in the

matching general population. For each celebrity in the fertility subsample, define the control

group as women born in the same year and living in the same country. The primary source

of control group fertility information is the Human Fertility Database12 which provides an

unbalanced panel of yearly cohort fertility rates (CFR) for about 30 countries, starting from

birth year 1876. For other countries, we use the UN “World fertility data 2012”13 which

provides estimates of “children ever born” for women from all world countries, with 3-5

observations per country beginning from survey year 1960. To fill observations that were

still missing, we used the Total Fertility Rate (TFR) estimate as provided by Gapminder

12Human Fertility Database. Max Planck Institute for Demographic Research (Germany) and Vienna
Institute of Demography (Austria). Available at www.humanfertility.org.

13United Nations, Department of Economic and Social Affairs, Population Division (2013). World Fertility
Data 2012 (POP/DB/Fert/Rev2012).
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Region # of countries Relative fertility # of observations
United States 1 -1.00(-11.07) 345
Other North America 5 -2.37(-4.81) 18
United Kingdom 1 -0.83(-4.59) 87
France 1 -0.97(-5.28) 69
Germany 1 -0.55(-1.14) 24
Italy 1 -1.17(-2.83) 20
Switzerland 1 -0.67(-1.53) 19
Russia 1 -2.10(-3.96) 19
Other Europe 24 -0.93(-4.82) 81
Asia 15 -2.67(-9.73) 38
Australia, New Zealand 2 -0.42(-0.86) 12
Africa 7 -3.83(-6.18) 11
Argentina, Brazil, Peru 3 -2.54(-4.45) 8
World 63 -1.15(-17.17) 751

Table 2: Celebrity fertility, relative to general population, by region of residence. t-statistic for zero relative
ferility hypothesis in parentheses.

dataset,14 assuming that the TFR in year t corresponds to CFR for women born in year

t − 32.15 Eventually, for 751 out of 760 celebrities a control group data could be found.

Table 2 visualizes relative fertility, i.e. the average difference between celebrity fertility and

that of the control group, for multiple regions of the world, and tests the hypothesis that

such relative fertility is zero. For most parts of the world and for the world overall, the

hypothesis is rejected at a high confidence level.

Controlling for education. Much of correlation between fame and fertility can be due

to education which is strongly correlated with both. We now test whether the relationship

survives the inclusion of education as a control variable.16 The aggregate data on fertility by

educational level is generally unavailable, so we turn to nationally representative micro-level

data to construct matching general-population control group for each celebrity. Specifically,

14Free data from www.gapminder.org.
15Such formula is the best fit between CFR and TFR for country-year pairs with both measures available.
16Personal income is strongly correlated with celebrity status, but its effect on fertility is believed to be

either weakly positive or zero (Clark, 2005), thus not a threat to our empirical conclusions. Moreover, the
data on celebrity income is generally unavailable. For these reasons, we do not control for income.
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Educational level Relative fertility # of observations
Primary -1.07(-2.17) 24
High school -0.78(-5.65) 126
College -0.32(-3.51) 217
Total -0.53(-6.62) 367

Table 3: Fertility of celebrity women, relative to general population, by educational level. t-statistic for zero
relative fertility hypothesis in parentheses.

Celebrity year of birth Relative fertility # of observations
1892-1910 -1.30(-4.17) 37
1911-1920 -0.50(-1.79) 32
1921-1930 -0.50(-2.03) 38
1931-1940 -0.64(-2.65) 37
1941-1950 -0.08(-0.33) 68
1951-1960 -0.51(-3.40) 55
1961-1970 -0.54(-4.44) 100

Table 4: Fertility of celebrity women, relative to general population, by year of birth. t-statistic for zero
relative fertility hypothesis in parentheses.

we use Integrated Public Use Microdata Series database which aggregates and harmonizes

321 census samples from 90 countries (Minnesota Population Center, 2018), as well as the

US Current Population Survey (CPS, Flood et al. (2018)). For each celebrity from our own

fertility subsample born in year t, we defined the control group as women from these two

databases who resided in the same country, had the same educational level, and were born

within the interval [t − 5, t + 5].17 Overall, we were able to construct a control group with

at least one observation for 367 celebrities from 21 countries, born between 1892 and 1970,

of which 314 are from the United States. Table 3 displays relative fertility by educational

level, proving that celebrities have lower fertility regardless of their education. Table 4 shows

education-controlled fertility differences by celebrity year of birth; no specific time trend can

be seen.

Because the CPS database has more detailed educational information, with a specific

17Thus, the control group includes women as young as 40 years old who did not yet complete their fertility;
such measurement error reinforces our empirical conclusions.
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Academic degree Relative fertility # of observations
Primary education 0.77(0.58) 7
High school -0.54(-3.63) 84
Bachelor’s degree -0.31(-1.74) 83
Master’s degree -0.50(-2.12) 26
Doctorate degree -0.50(-2.91) 24
Total -0.40(-4.01) 224

Table 5: Fertility of celebrity women, relative to general population, by academic degree. t-statistic for zero
relative fertility hypothesis in parentheses.

tertiary degree, we can analyze celebrity fertility controlling for such degree. A total of 224

US-based celebrity women with degree data born between 1926 and 1970 had a matching

control group from the CPS database; table 5 demonstrates education-controlled fertility

comparisons. Celebrity status seems to have a uniform negative impact on fertility, regardless

of academic degree.

To summarize, we found a strong and robust negative relationship between celebrity

status and fertility, in line with theoretical prediction of Section 2.4.

3.1.2. Mortality

Section 2.4 predicts that celebrities live longer. To test this relationship, controlling for

individual characteristics, it is necessary to observe life histories of not only celebrities but

also those of the general population. For that purpose, we use the US Panel Study of Income

Dynamics (PSID), due to large number of celebrities from the United States and long time

span of the PSID data.

Because education is an important predictor of mortality and is strongly correlated with

the celebrity status, it must be controlled for. PSID collects detailed educational data

beginning from 1985, so we look at individual survival beginning from that year. We focus

on individuals aged 50+ as younger individuals have negligible mortality.

Our empirical strategy is to divide the lifespan of each qualified individual in both PSID

and Pantheon 1.0 samples into 6-year periods, beginning from age 50 or year 1985 (whichever
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Full sample Tertiary education only
6-year mortality

celebrity -0.149∗∗∗(-3.58) -0.116∗(-2.08)
age -0.0878∗∗∗(-6.92) -0.149∗∗∗(-5.96)
age squared 0.00107∗∗∗(11.47) 0.00152∗∗∗(8.36)
female -0.254∗∗∗(-9.77) -0.113(-1.80)
tertiary education -0.381∗∗∗(-10.62)
year -0.00865∗∗∗(-5.80) -0.00991∗∗(-3.09)
Constant 17.48∗∗∗(5.68) 21.56∗∗(3.28)
Observations 20187 6210
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 6: Predictors of mortality: probit regression.

happened later), and run a probit regression that explains 6-year mortality outcomes by

celebrity status, age, education, gender, and the time trend. Because the last PSID dataset

is from 2015, the last such period begins in 2009.

For most of PSID history, detailed educational information was collected only for house-

hold heads and their wives, so we have to drop individuals who have never been in such

status. We believe that the resultant bias is small because most individuals acquire such

status by age 50. We also drop the Latino subsample of PSID, because its short data span

makes it unsuitable for mortality studies. Eventually, 16510 person-period observations from

8053 PSID individuals were used in the analysis. Of these individuals, 54% were women,

18% had tertiary education; the oldest was born in 1887 and the youngest in 1959.

For most qualified celebrities, educational information was bot-collected and often did

not include a specific tertiary degree. At the same time, for PSID individuals for whom such

information is available, a hypothesis that people with different tertiary degrees have equal

mortality cannot be rejected, so we proxy education by a tertiary degree dummy. Overall,

3677 person-period observations from 1223 celebrity individuals were used. Among them

17% were women, 83% had tertiary degree; the birthyear range is identical to that of the

PSID sample.
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The first column of table 6 displays the regression output for the entire sample. All

regressors are significant and have the expected sign. Consistently with theory of section

2.4, celebrities have significantly lower mortality.

A potential threat to this result is omitted income variable, which is generally unavailable

for celebrities. One might expect that celebrities have higher incomes, and if income reduces

mortality, the regression results may be spurious. The study of mortality literature reveals

that the relationship between income and mortality is quite weak for those in the upper

social strata (Backlund et al. (1996),Backlund et al. (1999)), thus the potential omitted

variable bias can be minimized by focusing on those with higher education. The second

column of table 6 reports the results. Although the effect of celebrity status is reduced, it

still remains significant at the 95% level. The results of the regression imply that a typical

college-educated male who was born in 1925 and survived until 1985 was expected to live

another 24.1 years, while his celebrity counterpart lived 1.5 years more. Also note that, due

to data limitations, this analysis was focused on mortality 150 years after the onset of the

demographic transition, by which time, as theory predicts, a typical lifestyle should have

largely converged to that of celebrities.

To summarize, this section finds evidence that celebrities indeed live longer than the

general population.

3.2. Celebrities are influential

Section 2.4 predicts that a larger initial number of celebrities should lead to a faster

spread of their values to the general population, thus should be associated with lower birth

and death rates at some later point in time. This section looks for empirical evidence in

support of this hypothesis. Because it is not known exactly who was influenced by which
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celebrity,18 our analysis is based on very loose assumptions about such influence and is

therefore subject to large measurement error in the main explanatory variable.

Modern empirical literature usually identifies the effect of A on B by seeking an exogenous

variation in A. In case of celebrity influence, there is no such thing as exogenous variation

in the number of celebrities, because the celebrity status of a person cannot be identified

ex-ante and is only observed after the person becomes popular. We also cannot use previous

generations of celebrities as an instrument, because their influence can be long-lived and

have a direct effect on present outcomes. This section is limited to Granger-type causality,

i.e. to verification whether higher number of celebrities per capita precedes demographic

changes.

I assume that influence has certain geographic and time limits; then, within these limits

we create per-capita measures of the number of influential celebrities, and study whether the

variation in this influence measure can explain variation in birth and death rates.

The geography of influence is assumed to be limited to national borders. This assumption

is justified by the idea that country borders often separate different ethnicities whose cultural

contact with each other is restricted by linguistic barriers. Geographic limits of influence

were especially tight before the advent of television which dramatically reduced the cost

of cultural influence; we therefore hypothesize that the country-level density of celebrity

population was more strongly correlated with subsequent aggregate outcomes before 1950,

i.e. before television became available.

The time span of influence is assumed to be different for birth- and death rates. Specif-

ically, I assume that a celebrity can influence birth rates within her country of residence,

during 100 years beginning from age 30.19 For death rate influence, a similar interval was

18A hypothetical data allowing to study this question would be a survey which explicitly asks respondents
to identify their role models.

19While some celebrities indeed remain influential for a longer time period, their influence is more likely
to spread across national borders and therefore less likely to be identified by our analysis.
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Figure 2: Overall birthrate influence for selected countries

used but starting from age 50. Due to such loose assumptions about the timing of influence,

we cannot identify the effects of influence from within-country variation alone, and therefore

cannot use country fixed effects in the regressions. Random-effects models were used instead.

For a per capita measure of influence, population data was primarily taken from the Mad-

dison dataset (Bolt et al., 2018), complemented by census data from Iceland, Luxembourg,

Russia, and from the Gapminder dataset. Eventually, we end up with three balanced panels

of influence: overall and female influence for birth rates (to test whether female celebrities

have a different effect), as well as both-gender influence for death rates. Each panel is for

166 modern countries of the world, with the time span from 1870 until 2010 with 5-year

intervals. In 1870, 57 countries had positive measures of overall influence for birth rates, 19

had positive female influence for birth rates, and 52 had positive influence for death rates.

In 2010, the respective numbers are 158, 72, and 154. Figure 2 illustrates the dynamics of

overall birthrate influence for selected countries.

In our regressions, we control for aggregate levels of education and income. The education

is measured by total years of schooling, population aged 15-64, as provided by Barro and Lee

(2013). This is a balanced panel of 111 countries, with gender-specific observations every 5

years from 1870 to 2010. Income is GDP per capita as measured by the Maddison dataset
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1870-1950 1870-1950 1955-2010 1955-2010
Crude birth rate

Influence, both genders -0.656∗∗(-3.19) -0.613∗∗∗(-3.46) -0.210(-1.45) 0.0695(0.80)
Influence, women 0.555 (0.42) 1.197∗(2.41)
Log GDP per capita 1.656∗(1.97) 1.666∗(1.99) -0.970∗∗(-3.14) -0.980∗∗(-3.17)
Total years of schooling -2.430∗∗∗(-8.52) -2.433∗∗∗(-8.57) -2.471∗∗∗(-19.33) -2.501∗∗∗(-19.62)
Observation year -0.0365∗(-2.30) -0.0365∗(-2.32) -0.0410∗∗(-3.01) -0.0358∗∗(-2.66)
Constant 96.40∗∗(3.26) 96.37∗∗(3.27) 132.7∗∗∗(4.98) 122.5∗∗∗(4.65)
Observations 571 571 1211 1211
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 7: Celebrity influence on birth rates. Country random effects included.

(Bolt et al., 2018).

3.2.1. Birth rate

To study whether celebrities impact fertility, we use crude birth rate as the dependent

variable. The data from 1960 onward was taken from World Development Indicators. Other-

wise, we use the National Center for Health Statistic for the US birth rates, and Gapminder

data (which aggregates multiple sources) for other countries. Finally, we end up with 2588

non-missing birthrate observations, with data availability increasing from 21 countries in

1870 to all 166 countries in 2010. For education, we use data for females only, as it is

believed to impact fertility more strongly.

Table 7 reports the results of a random-effects panel regression of birth rate on measures

of influence, education, income, and time trend. To verify that influence was more local

before the television era, we run separate regressions for years 1870-1950 (with data for

51 countries) and 1955-2010 (106 countries). The effect of female celebrity density has

unexpected sign but is insignificant, which can be explained by small number of celebrity

females in the sample and therefore large measurement errors in their per-capita density.

The effect of overall influence from both genders is negative and significant before 1950, in

line with theory of Section 2.4: according to the second column of table 7, one extra celebrity
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born within [30, 130] years prior to year t ∈ [1870, 1950], per million population in year t,

reduced the birthrate in year t by 0.613 children per 1000 population. In other words, the

life of each celebrity results in roughly 613 unborn children per year, within the time span

of celebrity influence. After 1950, such effect becomes insignificant, which can be explained

by increasing globalization of influence as detailed above.

3.2.2. Death rate

To analyze the effect of celebrities on death rates, we use the Human Mortality Database20

which provides age- and gender-specific mortality rates at 5-year intervals for 40 countries,

from 1750 to 2015. We focus on ages 40-90, as younger individuals have negligible death

rates, while older population is too thin and thus the death rate measures are subject to

large error. Overall, we have 54468 country-year-age-gender observations from 31 countries

with non-missing data. We regress the logarithm of death rates on the measure of celebrity

influence, gender-specific education (also including gender-education interaction), log GDP

per capita, as well as age-gender fixed effects and observation year fixed effects. Country

random effects were also included. We run separate regressions for years before and after

1950, to address the hypothesis that country-level effect was stronger before the television

era. The total number of countries is 22 before year 1950 and 31 thereafter. To check for

robustness of results, we also run the regressions for death rates at two specific ages, 50 and

75. Table 8 reports the results.

Consistently with the theory, the estimated effect of celebrity influence on death rates is

negative and robust across regression specifications. After year 1950, the nation-level effect

is three times as low, presumably because it becomes increasingly international. According

to column 1 of table 8, one extra celebrity per million population reduced the aggregate

20Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for
Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data down-
loaded on October 17, 2018).
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Ages 40-90, Age 50, Age 75, Ages 40-90,
1870-1950 1870-1950 1870-1950 1955-2010

Log death rate
Celebrity influence -0.0271∗∗∗ -0.0251∗∗∗ -0.0121∗∗ -0.00696∗∗∗

(-18.07) (-3.68) (-2.59) (-10.28)
Total years of schooling 0.0333∗∗∗ 0.0353∗∗ 0.0180∗ 0.0570∗∗∗

(13.21) (2.87) (2.19) (37.71)
(Schooling)x(Female) -0.0130∗∗∗ -0.00559 -0.0168∗∗∗ -0.0172∗∗∗

(-12.56) (-0.97) (-4.62) (-21.91)
Log GDP per capita 0.0824∗∗∗ 0.0341 0.0722∗∗ -0.269∗∗∗

(10.81) (0.91) (2.91) (-54.67)
Age-gender fixed effect yes yes
Female -0.258∗∗∗ -0.0598∗∗∗

(-8.98) (-3.30)
Year fixed effect yes yes yes yes
Observations 20400 400 400 34068
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: Celebrity influence on death rates. Country random effects included.

death rate by 2.71% before year 1950. For example, in USA in 1930 where the aggregate

death rate was 11.3 per 1000 population, the above finding implies that the influence from

each celebrity resulted in 11300× 0.0271 ≈ 306 fewer deaths.

4. Conclusion

This paper explains the evolution in human lifecycle decisions, and apparent shift in

preferences, by changing patterns of cultural transmission. In the Malthusian era with

culturally isolated communities, humans focus on population growth, and their behavior

fits the model or Robson and Kaplan (2003): high donations to young population, modest

consumption of adults, and no support of old age. Rising cultural openness favors new

cultural traits which induce their hosts to attract cultural followers from outside own family

by posing as influential role models. As this new channel of cultural “reproduction” is less

sensitive to age than physical reproduction, new cultural traits prescribe their hosts to reduce
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fertility and invest more in own longevity by consuming more and making arrangements for

the old age.

Individuals who embrace new cultural traits sooner become celebrities as their way of life

is copied by many. The empirical part of the paper finds a negative relationship between

celebrity status, on the one hand, and fertility and mortality, on the other. We also find

evidence that a higher number of celebrities per capita in a country is associated with lower

birth and death rates in the future, in line with the theory that their way of life spreads to

the general population.

At the same time, the existing data is not well-suited for studies of cultural transmission

among non-relatives. Conducting surveys which directly ask respondents to identify their

role models would be the best practice for empirical studies of the phenomenon.

On the policy side, reducing of the cost of oblique cultural transmission can be instrumen-

tal in reducing global population growth and increasing life expectancy. A better connection

of poor nations to the Internet may become a cheap and effective method to increase people’s

focus on health and economic prosperity.

Appendix A. Proofs

Proof of proposition 1

Denote s(a) ≡ p(a,c(·))
p(a1,c(·)) , a ∈ [0, a1). It satisfies

s(a1) = 1, ṡ(a) = −µ(c(a))s(a), a ∈ [0, a1). (A.1)

Maximization of (10) is equivalent to minimization of the following:

C0s(0) +

∫ a1

a=0

e−ras(a)c(a)da, (A.2)

35



subject to (A.1). The Hamiltonian of the minimization problem reads H(s(·), λ(·), c(·)) =

e−ras(a)c(a)− λ(a)µ(c(a))s(a). Optimal consumption is found from ∂H
∂c

= 0, i.e. from

eraλ(a)µ′(c(a)) = 1. (A.3)

The costate function λ(·) is found from the following:

− λ̇(a) =
∂H
∂s

= e−rac(a)− λ(a)µ(c(a)) (A.4)

with the initial condition λ(0) = −C0. By comparing (12) and (A.4), it is straightforward

to verify that V1(a) ≡ −λ(a)era; but then, (11) is identical to (A.3), which proves the first

sentence of the Proposition. Furthermore, from (2,3,5) it follows that V0(0) = C0 = V1(0),

while differentiation of (5) with respect to a yields the same result as in (12). Therefore,

V0(a) ≡ V1(a), a ∈ [0, a1), which, by comparison of (4) and (11), means the consumption

path is identical to that of Section 2.1.

Proof of proposition 2

From (15), consumption at age a, c(a,Q, r), increases monotonically with the value of

life V2(a,Q, r). Because this value is maximized over c(·) at every age,

dV2(a,Q, r)

dr
=

∂V2(a,Q, r)

∂r
= − 1

p1(a, c(·))

∫ a3

t=a

(t− a)z(t, r)dt, (A.5)

where z(t, r) ≡ e−r(t−a) (y(t)− c(t) +Q) p1(t, c(·)). The integral in (A.5) can be rewritten

as w1z1 + w2z2, where z1 =
∫ a⋆

t=a
z(t, r)dt for arbitrary a⋆ ∈ (a, a3), z2 =

∫ a3
t=a⋆

z(t, r)dt, and

where 0 <
∫ a⋆

t=a(t−a)z(t,r)

z1
≡ w1 < w2 ≡

∫ a3
t=a⋆

(t−a)z(t,r)

z2
. Notice that z1+z2

p1(a)
= V2(a,Q, r) and

therefore z1+z2 > 0. Likewise, z2
p1(a⋆)

= V2(a
⋆, Q, r) and therefore z2 > 0. Multiplying z1+z2

by w1 > 0 and adding to (w2 −w1)z2 > 0, we obtain w1z1 +w2z2 > 0 and therefore (A.5) is

negative. Thus, higher r lowers V2(a,Q, r), which lowers c(a,Q, r).
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Proof of proposition 3

The cultural productivity is equal to (cf.(17,18)) Q ≡ q
1−q

1
B(r)C0G(c(·,Q,r),r)

or, in logarith-

mic terms,

MQ(Q, r) ≡ lnB(r) + lnQ+ lnC0 + lnG(c(·, Q, r), r) ≡ ln q − ln(1− q). (A.6)

The system (19,A.6) defines Q, r as an implicit function of q; the derivatives dQ
dq

and dr
dq

can

be found from this system as follows:

 Mrr MrQ

MQr MQQ


 dr

dQ

 =

 0

1
q(1−q)

 dq. (A.7)

Here Mrr =
dMr

dr
= B′(r)

B(r)
+ 1

F (·)
dF (c(·,Q,r),r)

dr
, where B′(r) < 0 by (13). The direct effect of r on

F (c(·, Q, r), r) is negative while the indirect, via c(·, Q, r), is positive for Q > 0:21 higher r

decreases consumption (proposition 2) which reduces life expectancy but increases fertility.

The overall effect is generally non-monotone, but F (c(·, Q, r), r) obviously converges to zero

as r goes to infinity, thus dF
dr

< 0 for large enough r. We will assume the equilibrium rate r

is within such range, thus Mrr < 0.

The signs of other elements in (A.7) are more straightforward. MrQ = dMr

dQ
= 1

F (·)
dF (·)
dQ

< 0

by theorem 2; MQr =
dMQ

dr
= B′(r)

B(r)
+ 1

G(·)
dG(·)
dr

< 0 because higher r decreases consumption

at every age (proposition 2), thus decreases survival to any given age; MQQ =
dMQ

dQ
=

1
Q
+ 1

G(·)
dG(·)
dQ

> 0 by theorem 1.

21The indirect effect is zero for the Homo sapiens (Q = 0), because in this case consumption is chosen to
maximize fertility.
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But then, the effects of q on Q, r are found from (A.7) as follows:

 dr
dq

dQ
dq

 =
1

MrrMQQ −MrQMQr

1

q(1− q)

 −MrQ

Mrr

 < 0

> 0
. (A.8)
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