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Abstract 
 
As the role of distributed generation grows in the electricity industry, this growth is accompanied 
by questions regarding its impact on the rest of the system, chiefly the impact on finances, 
environmental footprint and reliability. Unfortunately, analyses of these impacts assume, a 
priori, that generation from distributed resources displaces generation from “somewhere else”, 
usually centralized resources and a 1:1 basis. We examine the behavior of customers who install 
solar arrays on their homes and find that these customers increase consumption by 8-14%. That 
is, every 100 kWh generated by residential distributed solar displaces only 86-92 kWh from 
other sources. This result has profound impacts on the financial compensation of these resources, 
their role in reducing emissions, and their impact on system reliability. 
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I. Introduction 
 
 The decision to consume electricity, broadly speaking, is rooted in some combination of 

customer cost, comfort, and convenience. Traditional consumers receive a benefit from 

consuming electricity, and weigh this benefit against the cost of consumption. Businesses and 

other institutions receive a benefit from the effect of electricity service on their ability to conduct 

their business. Might customers think differently about electricity when they become producers 

and storage providers? Might they also think differently about their impacts when they are 

directly involved in networked information, environmental impacts, and planning? 

 This question becomes even more important when we consider the financial and policy 

implications of this behavior. Distributed generating resources are widely seen as a tool to 

achieve limits on emissions such as CO2 (U.S. EPA 2015) and the proper compensation to 

owners of these resources is a current challenge, with states such as Minnesota (Minnesota 

Department of Commerce 2014) and New York (New York Public Service Commission 2017) 

establishing formal proceedings. If the kWh generated from distributed resources do not displace 

generation from other sources on a 1 for 1 basis, then the impact of these resources on the 

environment or the compensation due the owners of these resources may be either over- or 

under-stated. Further, utility resource plans will either over- or under-state the consumption of 

their customers and the resources that are necessary to meet those needs, affecting the 

sustainability of the electricity system. Indeed the New York Public Service Commission, in its 

Order on Net Energy Metering Transition, Phase One of Value of Distributed Energy Resources, 

and Related Matters, Case 15-E-0751 and Case 15-E-0082, on March 9, 2017, stated that 

compensating distributed generation at the hourly zonal market price “precisely reflects the costs 
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that utilities are avoiding based on the injected generation”1 explicitly assuming that one kWh of 

distributed generation displaces one kWh of generation from other sources. 

 This paper addresses the question of whether consumers’ behaviors regarding electricity 

use are affected by their changing roles. We specifically examine whether households change 

their consumption after they install solar photovoltaic (PV) panels on their roofs. The possibility 

that behavioral factors might influence consumption is documented in other areas of the 

economic literature, but this would be the first application to sustainable distributed energy 

resources, of which customer-owned solar is a part. Even though customers’ roles change, the 

analytical work to date on such alternative models assumes that customers do not change their 

consumption behaviors even though their roles change. There is good reason to believe that this 

assumption is incorrect. Customers might view money represented in credits they receive for 

putting electricity onto the grid as “house money”, i.e., money given as a gift and not to be 

managed as carefully as earned money. In their analysis of house money, Thaler and Johnson 

(1990) found that subjects endowed with such funds became more aggressive consumers.  It is 

also well known that customers who adopt practices that improve their energy efficiency exhibit 

what has become known as the rebound effect (Khazzoom 1980), where a 10% increase in 

efficiency, say, leads to something less than a 10% decrease in consumption because customers 

alter their consumption habits. Customers may also view themselves as providers of green 

energy and, believing that they have alleviated possible environmental externalities from energy 

consumption, exert less effort in being energy conscious. As another possibility customers with 

solar panels may increase their consumption while the sun is shining, viewing the consumption 

as potentially costless. Finally, the producer role may make customers more aware of their 

                                                            
1 Page 96 
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energy consumption habits, leading them to be more efficient in their energy use or to undertake 

additional initiatives that reduce electricity consumption. 

 Our paper addresses this effect for households who choose to install solar panels in a net 

metering setting, for an electric utility in Florida between January 2011 and April 2016 (i.e., the 

households self-select into the treatment). Studies of demographic characteristics of early 

renewable energy adopters suggest that those who self-select into renewable energy programs 

tend to be younger, more educated, and wealthier (Labay and Kinnear 1981; Mills and Schleich 

2012; OECD 2011). According to Jacobsen, Kotchen, and Vandenbergh (2012), participation in 

environmental programs depends on household characteristics, attitudes related to the 

environment, and “warm glow” motives (participation that is due to “feeling good” rather than 

public benefits from reduced emissions, following Andreoni 1990)).  

 Whether customers change their attitudes and behaviors towards energy consumption has 

implications for business model changes, pricing, grid design, and terms and conditions for how 

customers interconnect with the utility grid. For example, every current model of compensating 

distributed generation, be it net metering, net billing, feed-in tariffs, or value of solar, assumes 

implicitly that one kWh of distributed generation displaces on kWh of generation from 

“somewhere else”. If this assumption is not true, the impacts on utility finance are profound. 

Therefore, it is important to understand how customers change as their roles change. 

 This question is important both for utility companies and consumers, and for the broader 

picture of the impacts of electricity on the environment. Distributed rooftop solar PV, a model 

for renewable energy production, has gained prominence over the last ten years with decreases in 

the costs of solar panels and government incentives for consumers to invest in this technology. It 

is often cited as a perfect substitute, in terms of kWh provided, for utility scale solar and other 
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types of centralized generation, and a component of our electricity future. But does this model 

affect consumers’ attitudes towards consumption? 

 
II. Literature Review 
 
 We are not aware of any studies of behavioral responses to the installation of solar PV in 

households using differences in the timing of adoption. The study closest to ours, Havas et al 

(2015) compares the electricity usage of households who participated in a program involving 

incentives for an energy efficiency program and solar PV system discounts as part of a 

government program to a control group in the same town that was not subject to these incentives 

in Central Australia. The control group belonged to a different electricity provider with differing 

tariffs, but similar weather (given the physical proximity).  Like our study, this paper also looks 

at pre-and-post program electricity usage. Our study differs in that we only focus on solar PV 

adoption, and that we study only the group of users who chose to install solar panels, taking 

advantage of the staggered timing of the implementation. We do not have to worry about tariff 

differences in our study because all households in our sample belong to the same utility 

company. The utility studied in Havas et al. (2015) provided a Feed-in-Tariff (FIT) for solar 

installations. The incentives provided by the program were for solar PV panels and solar water 

heaters. The combination of solar panels and FIT resulted in lower electricity bills. Households 

that adopted solar PV were analyzed 3 years after adoption and found to have a 6% increase in 

electricity usage.  

 Studies of electricity consumption (and electric appliance holdings) typically follow 

Dubin and McFadden’s (1984) econometric model, in which the demand for consumer durables 

and the derived demand for electricity are considered related decisions which need to be modeled 

accordingly. Researchers collect data on appliances and their saturation (e.g., space heaters, 
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water heaters, freezers, televisions) and come up with an electricity demand equation which 

typically includes variables such as household income, gas availability, number of rooms, 

marginal price of electricity, marginal price of gas, whether the user is a homeowner, etc. 

obtained from consumer surveys. Our paper differs from this type of study in that we are not 

studying the electricity demand equation itself (or appliance use) but rather examining behavioral 

responses in the form of changes in consumption as a response to the installation of a solar panel 

in the household. An implicit assumption of our study is that appliance use doesn’t change 

dramatically during our study period.  

Jacobsen, Kotchen, and Vandenbergh (2012) use monthly billing data from Memphis 

Light, Gas, and Water (MLGW) utility’s Green Power Switch program (GPS) between 2003 and 

2008 to compare households who participated in an environmentally friendly program to those 

who did not. The program, GPS, provided financing for electricity generation from renewable 

energy sources. Participation on the GPS program allowed customers to voluntarily increase the 

amount of electricity that was generated by “green” sources such as solar energy, wind energy, 

and methane gas by paying extra for this change in the fuel mix. They still received the same 

type of electricity as before, but contributed to a cleaner energy mix. Participation in the program 

resulted in additional charges to each participating household that ranged from $48 to $240 per 

year. Households could choose how many blocks of green energy to purchase. This study seeks 

to answer the question “why do households engage in pro-environmental behavior?” (i.e., 

voluntary provision of environmental goods), but also examines the behavioral response of 

households who participated in the program, and is similar to our study in that it exploits 

differences in timing of enrollment of participants (in addition to also comparing participants to 

non-participants). In a manner similar to our study, the authors combine household data provided 
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by the utility with demographic characteristics at the zip code level obtained from the Census. 

The authors find that GPS participation does not lead to a statistically significant change in 

electricity consumption. However, when they only consider participants who enroll at the 

minimum level (i.e., those choosing to purchase just one block) and compare them to those who 

purchase multiple blocks, households increase electricity consumption 2.5% after enrolling in the 

GPS program. This behavioral response in consumption is not enough to negate the within 

household environmental benefits. 

 Keirstead (2007), studies behavioral responses to PV systems in the United Kingdom 

using interview data from households that installed solar panels. Even though the initial goal of 

this study was to assess electricity consumption before and after solar PV panels were installed, 

this was not feasible due to data limitations. The author instead, administered surveys with 

questions regarding other forms of energy initiatives adopted by households with PV, such as 

installation of insulation, efficiency of appliances, type of lighting, etc. The surveys suggest that 

those who installed solar PV panels reported a reduction in their overall electricity use, increased 

energy awareness and the use of energy efficient lighting. 

 A related strand of literature examines the relationship between energy and behavioral 

responses in the energy efficiency sector that is known as the “rebound effect”. Whenever there 

is a rebound effect, expected gains from efficiency savings are not one-to-one because 

consumers alter their behavior. A consumer can, for example, drive more when owning an 

energy efficient automobile.  This literature is summarized in Greening, Greene and Difiglio 

(2000), and has been studied for washers, vehicles, and other durable goods. For example Davis 

(2008) proposes a model where energy efficient washers cost less to operate, resulting in higher 

household use. His article addresses endogeneity by studying a field trial in which washers were 
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replaced by the trial rather than purchased by the household, removing the self-selection bias that 

would exist if users purchased the washers themselves. The rebound effect is expected to occur 

through both an income and a substitution effect.  

 
III. Solar PV System Adoption for an Investor Owned Utility in the State of Florida 
 
 In order to obtain and operate a household solar PV system consumers of investor owned 

utility companies in the state of Florida have to first complete a certified installation of the 

system. The utility company then interconnects the user’s system to the grid and installs a bi-

directional net meter. This net meter measures excess kilowatt-hours produced by the 

consumer’s system. Excess electricity (electricity that is produced and not consumed by the 

household) is then delivered to the utility company’s grid. Customers receive a credit for that 

electricity, based on their current retail electricity rate. More information about the rules and 

regulations pertaining to net metering in the state of Florida are available in Florida Public 

Service Commission’s Rule 25-6 0652 and at each utility’s website.  

 In order to become connected, users must first self-select into the program. They must 

submit an application to the utility company, complete an interconnection agreement 

(interconnection agreements and requirements vary based on array size) and agree to an 

inspection of their system by the utility company. Once a user completes all these steps, the 

utility company replaces the household’s traditional meter with a net meter. The utility company 

provides a list of certified solar contractors in good standing for the state of Florida.  

 
 
IV. Data 
 

                                                            
2 These rules are available in the FPS Commissions website: 
https://www.flrules.org/gateway/readFile.asp?sid=0&tid=5455200&type=1&File=25-6.065.doc  
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 Our dataset was created by merging data from four sources. Our electricity data comes 

from an electric utility firm in Florida spanning several counties, this dataset was merged with 

National Oceanic and Atmospheric Administration (NOAA) weather data, NREL data, and 

demographic data from the U.S. Census.  

 The utility firm’s dataset includes monthly consumption data for all customers who 

installed panels who were in the system during the period covered (145 households) that had pre- 

and post-solar panel installation electricity usage, for a total of 8,652 observations. The period 

covered spans from January 2011 to April 2016. The data provided by the utility includes: the 

size of the solar panel, the date the household became interconnected, the total installation costs, 

the type of inverter, the inverter manufacturer, and the household’s zip code.  

 Total electricity consumption is given in kWh for the pre-solar panel period. For the post-

solar panel installation period, the dataset contains information on kWh received (what the 

household “sold” to the utility firm), and kWh purchased (what the household purchased from 

the utility firm). The amount of electricity that was produced and used by the household is 

unknown.  We create a proxy for this variable by using information provided by the utility on the 

size of the installation (in kW) and data from NREL’s PV Watts Calculator3 of the estimated 

monthly output per kW of installation for the area where the utility is located (which is available 

on a monthly basis)4. NREL’s data is provided at the MSA level. We first calculate an estimate 

of total solar output by multiplying NREL’s monthly output per kW of installation in our utility’s 

city by the size of the installation (kW). Once we have the estimated total solar output, we know 

that: 

                                                            
3 NREL’s PV Watts Calculator is available at http://pvwatts.nrel.gov/  
4 While it is possible that NREL’s numbers could be systematically overestimating solar panel output, we expect this 
to be unlikely since for some households we calculate negative electricity consumption (i.e., it works in other 
direction). 
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Estimate of total solar output = Electricity produced for self-use + Electricity produced and sold to the grid.  

Since we already know how much electricity is produced and sold to the grid, we then just 

calculate: 

Estimate of electricity produced for self-use = Estimate of total solar output – Electricity produced and sold to the 

grid5.  

 We then supplement our dataset with demographic data that was obtained at the zip code 

level from the US Census ACS database6. These variables include average household size for 

owner occupied housing, median age, and median income. Our data span 983 zip codes7. It is 

important to note that while our consumption data is at the household level, our demographic 

data is at the zip code level.  

 We used the provided zip code to find weather data for Cooling Degree Days (CDD) and 

Heating Degree Days (HDD) for each year and month combination between January 2011 and 

April 2016 from the NOAA8. HDD and CDD are functions of average daily temperature often 

used to explain demand for electricity (Papalexopoulos and Hesterberg, 1990). They are the 

aggregate of the average daily temperatures either above (cooling) or below (heating) 65 degrees 

Fahrenheit. For example, if the average daily temperature is 70 degrees, then that day is said to 

have 5 cooling degrees.  Data from the NOAA are provided on a zonal basis. Our data span two 

NOAA zones.  

                                                            
5 Using this method, 21 out of 4,577 observations end up with a negative amount of electricity produced for self-use 
(0.0046% of all observations). The negative values vary from -111 to -7 kWh. We change these values to 0 since 
negative electricity production can’t occur. For two households, this number was negative and large. We dropped 
these two households from our sample, because their numbers imply that a small panel is producing much more than 
it would be expected to produce, even in the best weather and location conditions. 
6 The ACS did not have data for 2016 available, so our observations from January to April 2016, use demographic 
data from 2015. The ACS has an income category of 250,000+. We coded these incomes as 250,000.  
7 The ACS data has missing observations for some variables in a few zip codes.  
8 The NOAA data are available here: https://www.ncdc.noaa.gov/cag/time-series/us/8/4/cdd/1/1/2011-
2016?base_prd=true&firstbaseyear=1901&lastbaseyear=2000 
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 We created a dummy variable, “treated with solar”, which takes a value of 1 if the 

household has a solar panel installed, and 0 otherwise. Data for household consumption before 

treatment (“pre solar monthly consumption”) are available and used for dates before the solar 

panels were installed. Data for household consumption after treatment (“post solar monthly 

consumption”) are calculated by adding up the variable “kWh delivered” (consisting of kWhs 

billed to customers) to our estimate of the portion of solar output that was produced for self-use 

(i.e, the solar output that was consumed by the household rather than sold to the grid). We 

estimate the model with and without fixed effects. Summary statistics are provided in Table 1. 

 

Table 1: Summary Statistics 

Variable N Mean Standard 
Deviation

Min Max 

Size (kW) 8,541 8.37 2.79 1.02 20.5 
Pre Solar (kWh) 3,964 1,724.13 1,018.40 34 9,114 
Solar output sold to grid (kWh 
received) 

4,577 429.47 268.30 0 1,650 

Solar output for self-use (kWh) 4,577 607.42 319.93 0 2,537.25 
Electricity billed to customer after 
solar panel installed (kWh delivered) 

4,577 1,180.75 701.17 0 6,196 

Post Solar (kWh) 4,577 1,788.17 934.63 40 7,542.90 
Average household size (persons) 8,477 2.76 0.26 1.75 3.34 
Median age of habitants (years) 8,477 37.6 5.31 29 73.6 
Median income ($) 8,477 62,310.97 19,926.92 25,341 101,119 
Cooling degree days (Df) 8,477 296 172.46 30 577 
Heating degree days (Df) 8,477 45.94 69.31 0 344 

 

V. Model 
 
 We use a differences strategy, taking advantage of how solar panels were installed on a 

staggered basis over time, providing rollover timing differences9. For example, in our dataset 

                                                            
9 These differences are not shocks, since consumers self-select into the program. 
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person A installed the panels in March 2013, person B in January 2014, person C in April 2014, 

etc, as opposed to all customers installing their panels on the same date. This roll-out nature 

allows us to identify effects of the installation on behavior better than if everyone installed the 

panels at the same time (by allowing us to compare the customers to themselves and to 

customers who have yet to install solar panels without worrying about “something else” 

happening at the same time of our measurement of the treatment). Every household in our 

sample installed a solar panel at some point during the study period. For this reason, we expect 

our results to only apply to consumers who choose to install solar panels in their homes. A 

potential source of bias is that the timing of solar panel adoption could be endogenous. Using an 

example similar to one proposed by Jacobsen, Kotchen, and Vandenbergh (2012), suppose that a 

household experiences a change in personal ideology and decides to conserve electricity. This 

household would simultaneously install a solar panel and change their behavior to reduce its 

electricity consumption. This endogeneity would cause a negative bias to our estimate of 

behavioral changes.  

 We control for household characteristics by linking zip codes to Census data. We can 

also control for time-invariant differences between households via individual fixed effects. The 

control group is users before adoption of panels, taking advantage of differences in timing of 

installation of solar panels.  

 The empirical model can be represented by the following equation: 

௛ܻ௧ ൌ ଴ߚ ൅ ଵߚ Ԧܺ௭௧ ൅ ଶܵ௛௧ߚ ൅ ଷߚ ሬܹሬሬԦ௥௧ ൅ ݊݋݅ݐܿܽݎ݁ݐସ݅݊ߚ ൅ ݎܽ݁ݕ߬	 ൅ ݄ݐ݊݋݉ߠ ൅ 	݌݅ݖ߮ ൅  	ߝ

 
Where ௛ܻ௧ is the log of the household’s monthly kWh electricity consumption, Ԧܺ௭௧ is a vector of 

yearly time varying zip code-level demographic characteristics such as median income, ܵ௛௧ is a 

binary variable indicating the presence of a solar panel in the household on a monthly basis. A 
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household is considered as “treated” when a solar panel is installed and in all months thereafter.  

ሬܹሬሬԦ௥௧ is a vector of variables representing Cooling and Heating degree days measured on a 

monthly basis by NOAA region.  The model also includes month and zip code fixed effects (we 

also include year fixed effects in some specifications). We also tested interactions between HDD 

and treatment and CDD and treatment. Errors are clustered at the household level, so that 

standard errors are robust to serial correlation of residential electricity consumption. 

 
VI. Results 
 
 
Table 2: The impacts of solar panel installation of household electricity consumption 

Variable (1) (2) (3) 
Treated with solar 0.0873*** 

(3.75) 
0.1483*** 

(3.81) 
0.1455*** 

(3.76) 
 

Average household size -0.0073 
(-0.04) 

-0.0064 
(-0.03) 

 

No 

Median age 0.0144 
(1.43) 

0.0144 
(1.44) 

 

No 

Median income -1.18x10-6 
(-0.34) 

-1.18x10-6 
(-0.34) 

 

No 

Cooling degree days 0.0013*** 
(9.99) 

0.0013*** 
(10.15) 

 

0.0013*** 
(10.32) 

Heating degree days 0.0013*** 
(6.11) 

0.0013*** 
(5.87) 

 

0.0013*** 
(6.02) 

CDD*Solar installed No -0.00018** 
(-2.47) 

 

-0.00018** 
(-2.49) 

HDD*Solar installed No -0.00017 
(-0.95) 

 

-0.00017 
(-0.97) 

Monthly FE Yes Yes Yes 
Zip code FE Yes Yes Yes 
Year FE Yes Yes Yes 
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Dependent variable in logs Yes Yes Yes 
Note: The dependent variable is the log of the household’s kWh monthly electricity use. *, **, and *** indicate 
significance at the 10%, 5% and 1% level, respectively. Standard errors are clustered at the household level. Year is 
relative to 2011 and month is relative to January. N = 8,477 for models (1) and (2) and N= 8,541 for model (3) 
(given missing observations in the American Community Service data from the Census). 
 
 
Our results suggest that, for the group of users who choose to install solar panels at their homes 

during the study period, households use 8-14% more electricity after the solar panels are 

installed. This result is consistent with Havas et al.’s (2015) study of solar PV and energy 

efficiency management’s rebound effect. Variables important in determining monthly household 

electricity use include HDD and CDD, as expected, with higher or lower temperatures associated 

with greater electricity consumption. Another noteworthy result is the significance of the 

interaction term between solar installations and the consumer’s response to CDD (higher 

temperatures). The coefficient is negative, suggesting that customers with solar panels consume 

less electricity on hotter days than those without. This empirical result mirrors the experimental 

results in Dominguez et al. (2011) which explored the effects of solar panels on roof heat transfer 

and concluded that the panels exhibited an insulating effect. 

 The policy implications of the main result are profound. Electricity demand in the United 

States is projected to be nearly flat through 2050, while solar generation is expected to grow 

rapidly (United States Energy Information Administration 2017). This growth in solar generation 

may spur unexpected growth in electricity consumption, affecting the planning processes used to 

ensure the sustainability of the system. Policymakers examining the role that distributed 

generation plays in allowing utilities to avoid investments in generation, transmission, and 

distribution capacity should be aware of any changes in consumer’s behavior, as distributed 

generation may displace fewer resources than previously assumed from centralized sources. 
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 Perhaps even more insidious is the degree to which this increased consumption may be 

opaque to the utility. If increased consumption as a result of the installation of solar panels is 

independent of whether those panels are actually producing electricity (a study that would 

require far more granular metering data than currently available), any interruption in the 

production capability of these solar PV systems (such as sudden cloud cover or system failure) 

would instantaneously impose the burden of that increased demand on the electricity grid. This 

heretofore hidden demand may not have been anticipated by the utilities and planning 

authorities, and may not have been accounted for in their resource planning decisions, potentially 

affecting the reliability of the system. 

 Finally, consumers make long term investment decisions in distributed generation with an 

expectation of when that investment will be repaid. Under net metering policies tied to prevailing 

retail rates, the revenue (or defrayed cost) stream is already uncertain, subject to the regulated 

rates of service. Unanticipated changes in their behavior potentially introduces additional 

uncertainty into the payback period for this investment, and if they do not recoup their costs 

within the expected time frame, it may inhibit future investment in this sector. 

 This analysis would be improved by utilizing metering data on distributed solar PV 

production, instead of the estimates that we have employed here. However, production metering 

of solar PV systems requires additional expense, and is not required by net metering, the most 

prevalent system of compensating distributed generation; therefore, its use is not widespread. As 

other compensation schemes for distributed generation are implemented that require production 

metering of distributed solar systems, the assumptions we’ve made here may be relaxed. 

 
VII. Conclusion 
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 In a manner similar to the rebound effect in the energy efficiency literature, households 

who self-select into solar panel home installations use 8-14% more electricity once the panels are 

installed. A possible explanation for this finding is that users feel that the electricity is costless 

when the sun is shining. Consumers may also view themselves as providers of green energy and, 

believing they have alleviated possible environmental externalities from energy consumption, 

exert less effort into being energy conscious (this is formally referred to in the literature as 

“moral licensing”).  While we cannot make conclusions for the general population, we can, at the 

very least, argue that it is time to stop assuming that there is no change in behavior. 

 This result has a wide range of applications within the electricity sector. This result can 

be utilized to inform more robust compensation schemes for the owners of distributed 

generation. It is also critical to discussions of system planning and resource adequacy, to ensure 

the reliability of the electricity system, as well as the planning and future expansion of any home 

solar PV panel programs.  
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