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Abstract

In 2004, the Colombian city of Medellin completed the construction of a public trans-
portation system based on cable cars (Metrocable) that reached isolated dense neigh-
borhoods. Using spatial difference in differences, a mechanism estimation strategy,
and a rich, spatially disaggregated dataset, we explore the effects of the Metrocable
on crime and its mechanisms. We find a significant impact on homicide reduction in
the treated and adjacent neighborhoods, especially in the medium run. The decrease
in homicides was approximately 40 percent greater than the reduction in the general
crime rate in the city between 2004 and 2006 and 51 percent between 2004 and 2012.
We explore two mechanisms through which this intervention may affect the level
of criminality – the inclusion mechanism and the deterrence mechanism – and find
significant results that account for more than one-third of the effect in the short run.
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1 Introduction

The provision of public transportation infrastructure is an important tool for improving

the quality of life and promoting growth in urban settings (Munnell, 1992; Sanchez-Robles,

1998; Holtz-Eakin and Schwartz, 1995). Population growth, the layout of the city, and

geographical characteristics can limit residents’ mobility and integration into the urban

economy, and thus a variety of innovative transportation systems are necessary to accom-

plish these policy objectives. Over the past few years, cable cars have emerged as a new

for transportation in the developing world, due to their relative low cost and ability to

access remote, deprived, and often dangerous neighborhoods.

Unfortunately, there is little empirical evidence on the direct effects of this type of

infrastructure and even less on its unintended effects, such as either the increase or re-

duction of criminality in surrounding areas. The implications of cable car interventions

with regard to crime are of particular interest, given that cable cars are usually used to

reach isolated neighborhoods that are typically underpoliced and suffer from relatively

high crime rates.

The empirical evidence on the link between public transportation infrastructure and

crime is limited and has been generated by investigations in developed countries. On

the one hand, a handful of studies on US cities argue that train stations act as crime

attractors that create concentrations of citizens and consequently well-known opportu-

nities for particular types of crime, thereby increasing the probability of crime (Levine

and Wachs, 1986; Brantingham and Brantingham, 1993; Loukaitou-Sideris, 1999). On the

other hand, a group of studies shows that the design of stations and their surroundings

(lighting, surveillance systems, tree and vegetation placement, etc.) plays an important

role in the levels of fear related to crime and crime rates, leading to the conclusion that

proper design may reduce crime rates (La Vigne, 1996; Cozens et al., 2003). Moreover, as

argued by Foster et al. (2010) the spatial correlation between adjacent neighborhoods may

factor significantly in this relationship. From a security perspective public transportation

may reduce the fear of crime for those living close to a station, as citizens feel safer when

they trust that neighborhood acquaintances are monitoring their actions and will provide

help if criminal activity occurs.

The city of Medellin, Colombia, presents a unique framework for the study of the

relationship between public transportation infrastructure and crime. Just a couple of
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decades ago, Medellin was considered one of the most unequal and violent cities in the

world (Giraldo Ramı́rez, 2010). However, the city has shown a remarkable reduction

in crime rates, with the average annual homicide rate dropping from 381 homicides per

100,000 inhabitants in the early 1990s to 98.2 in 2003 and 26.95 in 2014. Following

major military operations, such as the one that ended the Medellin drug cartel in 1993

and the Orion Operation that retook control of the western part of the city in 2002, local

authorities implemented innovative initiatives to deal with the problems that arise when a

city’s growth exceeds the capacity of local authorities to deliver services and infrastructure

(Ibáñez and Vélez, 2008; Patiño et al., 2014).

These initiatives sought to impact mobility and economic integration simultaneously.

One of the most important investments during this period was in the construction of a

cable car (Metrocable) line at the end of 2004, which connected one of the most isolated

and far-flung neighborhoods in the northeastern hills of the city (with slopes steeper than

20 percent) to the Medellin Metro System. The Metrocable reduced commute time from

2.5 hours to 7 minutes (United Nations, 2007). This investment was multidimensional: it

provided a new transportation system, but also transformed the neighborhoods’ physical

environment. Significant investment in sidewalks, street improvement, and air quality

around the Metrocable infrastructure complemented the system.

Given the vast evidence on the relationship between public transportation infrastruc-

ture and its surroundings and crime, the construction of a cable car line connecting the

central business district (CBD) with peripheral, isolated (due to topography), and low-

income neighborhoods in one of the most violent and unequal cities in the world makes

this urban intervention a fascinating case study. Surprisingly, to the best of our knowl-

edge, since the construction of this infrastructure in 2004, only one case study has been

published in a peer-reviewed scientific journal. Cerda et al. (2012) estimated that due

to the intervention neighborhoods experienced a drop of 66 percent in homicide rates.

However, as the authors acknowledged, their study was not designed to investigate the

mechanisms that produced the observed drops in violence. Additionally, the authors dis-

regarded the potential spatial spillovers of this infrastructure by assuming that the effect

of crime reduction was limited to the neighborhoods served by the transportation system.

Using a rich crime and socioeconomic dataset and quasi-experimental methods, we

reexamine the effect of the cable car system in Medellin on crime, specifically homicide.

Furthermore, no previous study has considered the spatial nature of such an intervention,
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which implies that the presence of new transport infrastructure affects not only the areas

where the infrastructure is physically located, but also, via spillovers or indirect spatial

effects, adjacent areas (Foster et al., 2010). Finally, we explore how the Metrocable affects

homicide rates and argue for the existence of two main mechanisms in this regard. First,

this new public transportation system increases people’s accessibility to more economic

opportunities and amenities, which can play an important role in reducing criminal ac-

tivities. This mechanism is related to the spatial mismatch theory first proposed by Kain

(1968), which states that opportunities for low-income people are inaccessible, because

of where they live.1 Second, the presence of new public infrastructure usually increases

the level of surveillance, thereby increasing the probability of apprehension, which serves

as a deterrent for potential offenders (Becker, 1968). This mechanism is also related to

the routine activities theory first proposed by Cohen and Felson (1979), which states that

criminal acts require convergence in the space and time of an offender, a target, and the

absence of surveillance.

Thus, this paper contributes to the current literature in at least two ways. First, we

propose a way to estimate the impact of treatment effects and their mechanisms when the

treatment is particularly related to a geographical intervention. To this end, we extend

the literature on spatial treatment effects to include a method of examining mechanisms

in spatial difference-in-differences models (SDiD). The second contribution is a precise

estimation, based on these methods, of the effects of infrastructure on crime.

The remainder of this paper is organized as follows: The second section presents the

empirical strategy used in the paper. The third section describes the datasets used, and

the fourth section presents our results. Finally, the fifth section provides a discussion of

this analysis.

2 Empirical Strategy

The Metrocable was intended to increase the accessibility levels of people living in areas of

Medellin remote from the conventional metro system. This geographically based location

1Some additional evidence is provided by Gilderbloom and Rosentraub (1990), who found that low-
income areas and areas where people with disabilities live in Houston, Texas, are less integrated into
the public transportation infrastructure and present higher rates of fear of crime and victimization.
Furthermore, Crowe (2000) exposed the link between city infrastructure design and crime prevention,
indicating a relationship between fear of crime, victimization, and quality of life.
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process resulted in a nonrandom assignment of treatment and control units, causing a

selection bias that must be addressed. In addition, due to the characteristics of the

intervention and the available data, there exist a number of unobservables that could

potentially affect the estimates. Therefore, we applied a difference-in-differences approach

to identify the impact of the intervention. However, the observed spatiotemporal patterns

show that areas close to the treated neighborhoods initially behaved like the rest of the city

but, after a certain amount of time, began to converge toward the behavior of the treated

regions, which poses an additional challenge. To overcome these problems, we propose a

spatial difference-in-difference (SDiD) approach similar to those of Delgado and Florax

(2015) and Chagas et al. (2016) that allows for the inclusion of a component to capture

the indirect treatment effect on nearby nontreated regions. Given their proximity to the

treated regions, if the intervention is really a crime deterrent, the indirect treatment effect

on the nontreated regions should exist and be negative.2

These indirect effects, also known as spillover effects, are relevant for this empirical

exercise. First of all, geographic divisions although in place are not as visible as those

between cities or countries. While delimiting a treated region means that in theory the

geographical extent of the spread of the treatment effect is known, at minimum the clos-

est neighborhoods may need to be included in order to test whether the effect is actually

bounded by those locations. Second, crime has a spatial component that is not new to

the literature or the empirical exercise (see Urrego et al., 2016). High-crime neighbor-

hoods tend to be surrounded by high-crime neighborhoods, a pattern that is related to

socioeconomic variables at the neighborhood level, such as income, schooling, and qual-

ity of life. Recall that in the routine crime models an offense needs an opportunity, a

potential target, and an offender; either a victim or a perpetrator of a violent event can

come from neighboring regions and the spatial correlation between those neighborhoods

could account for the spillover effect deriving from their proximity to each other. Fol-

lowing Delgado and Florax (2015), we depart from the standard difference-in-differences

2The estimation method provides additional value through the consideration of spatial effects by taking
into account the spatial distribution of the regions. This approach has profound implications on the area
of influence of the intervention. In a nonspatial approach, this area of influence is defined a priori, whereas
in a spatial approach, the area of influence is endogenously defined by considering the spillover effects
(both direct and indirect) between regions. The spatial approach also allows for asymmetrical impacts
(e.g., the intervention may be beneficial for a set of regions and harmful for other regions). Finally, this
approach enables the differentiation between the portion of the effect produced by the treatment and the
portion resulting from the spatial linkages across regions.
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structure:

Yit = Xitβ + α0Di + α1tt + αDi ∗ tt + Uit (1)

Where, Yit represents the crime outcome of regions, i represents the index for regions,

and t is an index for the time periods. As in Rubin (2005), we henceforth refer to the

potential outcomes of the treatment and the control group as Y (1) and Y (0), respectively.

Xit is a vector of observed time-varying covariates. Di is a dummy variable equal to 1

if region i was treated and equal to 0 otherwise. tt is a time dummy equal to 1 for

the year after the treatment and equal to 0 for the year prior to the treatment. The

parameter α identifies the impact of the treatment, and Uit is a mean-zero error term

that is uncorrelated with Di and tt. Adding the spatial component to Eq. (1) gives us

Eq. (2):

Yit = ρWiYt +Xitβ + α0Di + α1tt + αDi ∗ tt + α2WiD + δWiD ∗ tt + Uit (2)

where, Wi corresponds to the row i of the square matrix W , which refers to the spatial

weight matrix. W is a row-standarized spatial weight matrix of dimensions N ×N , with

N representing the number of regions. The nonzero elements in W indicate the existence

of a spatial neighboring relationship between regions. One can express the Eq. (2) in

matrix form, staking the two periods considered for analysis (before and after treatment);

in such a case the spatial weight matrix W will be of dimension 2N × 2N . In this 2× 2

block matrix the top-left block represents the spatial relationship between regions in the

time before treatment, the bottom-right block captures the spatial relationship between

regions after treatment, the top-right captures the spatial relationship across regions and

across time, and a similar meaning is embedded in the bottom-left block. These two last

blocks are assumed to be zero; in the empirical setting this implies that neighborhoods

today are spatially correlated with other neighborhoods today, but the correlation with

other neighborhoods and itself is discarded in future periods.

Observe that this assumption only rules out direct correlation between a neighborhood

and others across periods coming from the spatial matrix, which in our case is defined

based on geographical location. Therefore, allowing such a direct link between neighbor-

hoods across time does not add much to the exercise, since the correlation specified using

geographical distance is constant across time. Our final block matrix W , then, has two
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submatrices different from zero and located on the main block diagonal. According to the

definition of W by Delgado and Florax (2015), each submatrix can have a different neigh-

boring relationship; in our case the two submatrices are equal, since they are constructed

using neighborhood location.3

The right-hand side of Eq. (2) combines scalars and vectors, Yt and D being vectors

N × 1 that collect all the values for the regions at a given time t. ρ is a spatial au-

tocorrelation parameter. Building on the formulation proposed by Delgado and Florax

(2015), our expression contains two spatial terms related to the treatment: α2 accounts

for the spatial autocorrelation between a region and the rest of the regions, and δ, a

spatial impact WiD = wd, accounts for the impact of the treatment on regions that were

not treated but are spatially correlated with the treated regions. In other words, observe

that wd can be different from zero even though Di = 0, because the region i is spatially

correlated with other regions that may be treated. The spatial impact is defined under

the realized spatial correlation coming from the apriori definition of the matrix W , so

that the average treatment effect (ATE) also should be understood as conditional on the

realized spatial correlation.4

From Eq. (2), we can derive the conditional ATE as follows:

ATE(wd) =[ E(Y | X, D = 1, t = 1,WD = wd)

− E(Y | X, D = 1, t = 0,WD = wd) ]

− [ E(Y | X, D = 0, t = 1,WD = 0)

− E(Y | X, D = 0, t = 0,WD = 0) ]

(3)

Before identifying the corresponding values, we should note that our specification also

contains a spatial autoregressive term, so without losing generality, we can restructure

any coefficient as α
′
= α ∗ (I − ρW )−1 (assuming that I − ρW is nonsingular).

ATE(wd) =
[
α

′

0 + α
′

1 + α
′
+ α

′

2 + δ
′
wd− α′

0 − α
′

2

]
−
[
α

′

1

]
= α

′
+ δ

′
wd (4)

3See Dubé et al. (2014) for a detailed explanation on building spatiotemporal weight matrices.
4There are other options for the matrix W , but it should be kept in mind that since the unit of analysis

is geographic and small, using socioeconomic variables to define W can be difficult, due to the process
of data aggregation and the clear delimitation of each area. Matrices using geographic information seem
appropriate, however; the location remains fixed over time, so that one can see wd as the realized location
itself rather than as a specific spatial matrix for the scope of this section.
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We can rewrite this based on the possible set of spatial impacts of the treatment and

show the similitude to the exercise by Delgado and Florax (2015):

ATE(wd) = α
′
(
I + δ

′
wd
)
→ ATE = E [ATE (wd) | WD] = α

′
(I + δWD) (5)

Our treatment impact will thus be the following:

ATE = α(I − ρW )−1 (I + δWD
)

(6)

In the next step, which presents one of this paper’s important methodological con-

tributions, we proceed to formulate the decomposition of ATE within the context of

an SDiD into two effects: a causal mechanism, or indirect effect, and a causal net, or

direct effect. This formulation enables us to understand the roles of the two proposed

mechanisms, namely, labor market outcomes (wages, informality) and the apprehension

mechanism. In the empirical framework, the indirect effect refers to the impact that the

construction of the Metrocable has on the level of crime through the impact that the

Metrocable has on the local labor markets and felons apprehensions, which we will refer

to now on as the two mechanisms. We focus on these two due to the nature of the in-

tervention, which we discuss in the next section. The labor mechanism focuses on the

impact that the new transportation system has on commuting time, cost of transporta-

tion, and access to labor markets. The apprehension mechanism refers to the fact that

when the system stations were being built, security cameras were installed, and once the

system began to operate local police were assigned to the stations, which contributed to

better police enforcement. The direct effect refers to the impact of the Metrocable that

does not come from the two mechanisms just discussed; strictly speaking, it compiles all

other mechanisms not accounted for in the variables we include to identify the labor and

apprehension mechanisms (it is indicated by the other name for this impact: the causal

net effect).

For that purpose, and based on the methodology presented by Flores and Flores-

Lagunes (2009), we define a variable Sj that represents the mechanism j through which

the intervention could affect the outcome. Sj (1) represents the value of the mechanism j

if the region is treated, and Sj (0) represents the value of the mechanism if that region is

not affected by the treatment. Thus, with this new variable we can define four potential
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outcomes: Y (1, Sj (1)), the potential outcome of those that were treated, if the mech-

anism j is affected by the treatment; Y (0, Sj (0)) the potential outcome of the control

group, if the mechanism is not affected by the treatment; Y (1, Sj (0)), the potential

outcome of those that were treated, if the treatment does not affect the mechanism; and

Y (0, Sj (1)) = 0, the potential outcome of the control group, if the mechanism has been

affected by the treatment. Similar to Flores and Flores-Lagunes (2009), we do not con-

sider this last potential outcome, since in our empirical framework it is not particularly

relevant. It implies that regions far from the Metrocable area would have benefited from

improved employment conditions and more effective policing resulting from the construc-

tion of the Metrocable, a very unlikely scenario. Labor market improvements tend to be

local, because it is not efficient for a person in another area to travel to the treatment area

in order to benefit from the Metrocable. Similarly, police presence is extremely localized,

as policemen assigned to the Metrocable stations must remain in the immediate vicinity.

Based on Frangakis and Rubin (2002), we redefine the ATE conditioning on the

specific group observed for each potential mechanism outcome {Sj (0) = sj0, Sj (1) = sj1}.
Simplifying Eq.(3), we rewrite it leaving out the index j, since the definition applies to

all j:

ATE =E[E[Y (1, S (1)) |X,D, t,W, S (0) = s0, S (1) = s1]

− E[Y (0, S (0)) |X,D, t,W, S (0) = s0, S (1) = s1]]

=E[E[Y (1, S (1))− Y (0, S (0)) |

X,D, t,W, S (0) = s0, S (1) = s1]]

(7)

To identify the relevance of a mechanism, we rewrite the latest equation as follows:

ATE =E[E[Y (1, S (1))− Y (1, S (0)) + Y (1, S (0))− Y (0, S (0)) |

X,D, t,WD, S (0) = s0, S (1) = s1]]

=E[E[Y (1, S (1))− Y (1, S (0)) | X,D, t,WD, S (0) = s0, S (1) = s1]]

+ E[E[Y (1, S (0))− Y (0, S (0)) | X,D, t,WD, S (0) = s0, S (1) = s1]]

(8)

The first term in the second equality of Eq. (8) estimates the component of the ATE

that is due to a mechanism being affected by the treatment, S (1), or the mechanism
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average treatment effect (MATE), and it applies for all mechanisms j. This component

provides evidence of the impact of the treatment on the outcome variable through the

mechanism j. Note that if the intervention did not operate through the mechanism, then

S(1) = S(0), and the first term will be zero. The second term of Eq. (8) estimates the

difference in the potential outcomes of the treatment and control groups, constituting the

effect of the treatment on the outcome that is not associated with a mechanism. We call

this component the net average treatment effect (NATE). Thus, the ATE can be defined

as ATE = MATE +NATE.

The challenge in estimating these expressions is that Y (1, Sj(0)) is not observable. We

must design a strategy to estimate the potential outcome for the treated regions if the

mechanism j is not affected by the treatment (NATE). To address this issue, we assume

(1) that the assignment of the treatment is independent of the potential outcomes given

a set of covariates X, and (2) that the potential outcomes are also independent of the

possible values of the variables of the mechanisms (this is related to Assumptions 1 and

2 in Flores and Flores-Lagunes, 2009).

Y (1, Sj (1)) , Y (0, Sj (0)) , Y (1, Sj (0)) ⊥ D| X, t,W (9)

Y (1, Sj (1)) , Y (0, Sj (0)) , Y (1, Sj (0)) ⊥ {Sj (1) , Sj (0)} | X, t,W (10)

The first difference between these assumptions and those in Flores and Flores-Lagunes

(2009) is that we also condition for the realized spillover relationship embedded in the

matrix W . Recalling the previous discussion about how W is defined in the empirical

context, using geographical distance to structure the spatial correlation seems appropriate

since our unit of analysis is region. Hence, W is assumed to be exogenous. In order to

weaken this assumption, one can iterate over different known forms of W and observe how

the results change. However, conducting that exercise is beyond the scope of the paper,

since doing so will shift the question toward how to choose W , instead of toward how it

is possible, given W , to estimate an ATE.

Similar to those in Flores and Flores-Lagunes (2009), the first assumption refers to

the conditional independence of the potential outcomes with respect to the treatment. In

our setting, this means that the potential outcomes related to the level of crime in the

neighborhood do not depend on whether the neighborhood is in the treatment or control
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group after conditioning on the set of variables X. The location of the Metrocable followed

on the geographical conditions of the neighborhoods and the lack of accessibility, variables

that will be included, so the assumption is not undermined by variables that both define

the treatment and are also related to crime. Some unobserved variables, confounders,

can play important roles: for example, one could argue that extremely localized human

behavior in the area behavior in the area reduces accessibility to the Metro system in ways

different to location (e.g., the shape of the street network) making the area more likely to

receive the treatment, as well as being more prone to higher crime rates. Although this is

unlikely to be an issue for the assumption in Eq. (9), it is a point of concern in relation

to the assumption in Eq. (10).

The assumption in Eq. (10) adds the additional layer of the potential outcomes being

independent of the potential values of the mechanism due to the treatment. To under-

stand what is behind this assumption, first recall that those regions where D = 0 has only

one option for the mechanism variable Sj(0); this additional layer thus focuses more on

the potential outcomes for those in the treatment group. For the empirical exercise, this

means that there are no other variables that are correlated with both the identified mech-

anisms (labor outcomes and police) and the potential outcomes. To better understand the

implications of this assumption for the empirical exercise, consider the following example

of variables that can undermine the independence assumption. There was a significant

police intervention in 2002 (Operation Orion) where over the course of a couple of days

the police and the army entered some isolated neighborhoods in significant numbers in

order to capture criminals and regain control. Events like this will clearly be related to

both the potential level of crime and the mechanism related to apprehension. However,

this particular event does not have a significant impact upon our estimation, since it

happened two years before the Metrocable intervention.

This exemplifies the type of confounders that may undermine the assumption in (10),

that variables are localized in specific areas and correlated with the outcomes and the

mechanisms. During the years covered by this analysis, the local government indeed

invested in many public interventions around the city, but none of them have been as

localized and therefore effective as the Metrocable. The next section will cover some of

these public policy initiatives; it is relevant to mention here that they are in most cases at

the city level. Some localized interventions, such as the construction of public libraries,

were implemented around the city, such that the distance between a neighborhood and
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the closest public library decreased in most, if not all, instances, an outcome similar to

that of the introduction of the Metrocable. For that situation, one can still argue that

Eq. (10) holds.

After setting the baseline for the SDiD approach, we can return to the functional form

considered for the spatial model at hand, Eq. (2). Translating this structure toward the

previously defined potential outcomes, one can define the expected values in terms of a

functional form for both, Y (1, Sj(1)) and Y (0, Sj(0)):

E [Y (1, Sj (1)) | Sj (1) = sj1, X, t,W ] = f1 (Sj (1) , X, t,W ) (11)

In the functional form f1(·), the subindex 1 refers to the treatment group—in other words,

the functional form is assumed to be unique for the treated regions and takes the potential

value of the mechanism and the matrices X and W as exogenous. It is possible to define

another functional form to address whether the mechanism is affected or not; however, in

this scenario that option is not worth pursuing. Consider the example of the apprehension

mechanism, where there is a given link between police efficiency and crime for the treated

area. The way the treatment affects police efficiency is through the increase of policemen,

reducing response time and improving people’s perception of safety, all of which translate

into an improvement in police efficiency rather than into a change in the relationship

between police efficiency and crime in the area. The unobservable potential outcome can

then be expressed as follows:

E [Y (1, Sj (0)) | Sj (0) = sj0, X, t,W ] = f1 (Sj (0) , X, t,W ) (12)

We similarly define Eq. (11) for the control group:

E [Y (0, Sj (0)) | Sj (0) = sj0, X, t,W ] = f0 (Sj (0) , X, t,W ) (13)

Eq. (2) and the assumptions in Eq. (9) and Eq. (10) raise the possibility that both

structural forms in equations (11) and (13) come from a more general equation, f(·), that

uses the condition of the treatment as one of its inputs. In other words, the functional

form of the treated group is equivalent to the control group when the dummy variable,

D, is included (if treated, D = 1; if not treated, D = 0). Another option is that the

functional forms are not quite comparable: on the basis of the spatial model presented

by Eq. (2), it is likely some structural changes interact all the included regressors with
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the dummy variable D. This situation is not considered in this paper, because relying

on the assumptions in Eq. (9) and Eq. (10) implies that there is at least one variable

correlated with the potential outcomes and the treatment conditions that is not included

in the matrix X.

f1(Sj(1), X, t,W ) = f(Sj(1), X,D = 1, t,W ) (14)

f0(Sj(0), X, t,W ) = f(Sj(0), X,D = 0, t,W ) (15)

Using Eq. (2), we can define the functional form as follows:

f(X,D, t,W ) =Yit = ρWiYt +Xitβ + α0Di + α1tt

+ αDi ∗ tt+α2WiD + δWiD ∗ tt + Uit

(16)

Letting g (Sj) represent how the mechanism is integrated into the functional form, we

have

f(Sj, X,D, t,W ) =Yit = ρWiYt +Xitβ + α0Di + α1tt

+ αDi ∗ tt+α2WiD + δWiD ∗ tt + γgit (Sj) + Uit

(17)

git (Sj) can take several forms, such as git (Sj) = Sj,it, git (Sj) = Sj,it +Sj,itXk,it for a given

variable k, or git (Sj) = Sj,it + WiSj,t. Thus, defining git (Sj) as an external function

allows us to simplify the estimation of NATE. Decomposing the definition of NATE,

we have

NATE =E[E [Y (1, Sj (0)) |X, t,W, Sj (0) = sj0, Sj (1) = sj1]

− E [Y (0, Sj (0)) |X, t,W, Sj (0) = sj0, Sj (1) = sj1]]

=E[E [Y (1, Sj (0)) |X, t,W, Sj (0) = sj0, ]

− E [Y (0, Sj (0)) |X, t,W, Sj (0) = sj0]]

=E[f1 (Sj (0) , X, t,WD)

− E [Y (0, Sj (0)) |X, t,W, Sj (0) = sj0]]

(18)
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Keeping the values of Sj(0) constant allows us to use Eq.(13) to express Eq. (18) as

follows:

NATE = E[f1 (Sj (0) , X, t,W )− f0 (Sj (0) , X, t,W )] (19)

Using Eq. (14) and Eq. (15), we have

NATE = E[f (Sj (0) , X,D = 1, t,W )− f (Sj (0) , X,D = 0, t,W )] (20)

Given the functional form expressed in Eq.(17), the equation for the pretreatment period

is as follows:

Yi0 = ρWiY0 +Xi0β + α0Di + α2WiD + γgi0 (Sj) + Ui0 (21)

The following is the equation for the posttreatment period:

Yi1 = ρWiY1 +Xi1β + (α0 + α)Di + α1 + (α2 + δ)WiD + γgi1 (Sj) + Uit (22)

Since we are interested in the posttreatment specification, we have two options for

modeling the transition between Eqs. (21 and 22): (1) we can assume that the structure

of the mechanism variable has changed, implying that the parameter γ of Eq.(21) is

different from the parameter γ of Eq.(22); or (2) we can assume that the structure of the

mechanism variable has not changed, thereby making the parameter γ constant across

specifications. Under both assumptions, the level of the variable is affected.

Recalling the argument presented above about the structural form condition for the

unobserved potential outcome in Eq. (12), we rely on option (2) for our analysis, argu-

ing that the structure of a mechanism is difficult to modify with an intervention, mostly

because of the nature of the mechanisms considered in this analysis. We assume that

the link between labor outcomes, police efficiency, and crime at the neighborhood level

is stable in the short and medium run. Consider the case of the labor outcomes of in-

formality and available income: there is a link between those outcomes and crime, which

we have defined as γgit(·). After the treatment, families have access to a bigger pool of

labor markets, which implies that the probability of finding a formal job is higher and the

percentage of informal workers will likely decline. Also, families will spend less on trans-

portation, so available income will be higher. These conditions account for improvements
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in the specified labor outcomes, but do not necessarily affect the relationship with crime

at the neighborhood level. With this in mind, it seems that option (2) is a good fit for

the exercise, and we can calculate the NATE. We first obtain the value of γ, which gives

us

f(Sj, X,D, t,W ) = Yit =ρWiYt +Xitβ + α0Di + α1tt + αDi ∗ tt+

α2WiD + δWiD ∗ tt + γ̄git (Sj) + Uit

(23)

Given that the term γ̄git (Sj) is now a constant, we can rewrite the equation as follows:

(Yit − γ̄git (Sj)) =ρWiYt +Xitβ + α0Di + α1tt + αDi ∗ tt+

α2WiD + δWiD ∗ tt + Uit

(24)

This equation can be also be written as:

(Yit − γ̄git (Sj)) =ρWi (Yt − γ̄gt (Sj)) +Xitβ + α0Di + α1tt+

αDi ∗ tt + α2WiD + δWiD ∗ tt + (ρWiγ̄gt (Sj) + Uit)
(25)

The NATE will be similar to the ATE calculated in Eq.(6), but we must bear in mind

that the mechanism effect has been subtracted from the dependent variable. Accordingly,

the difference between this new estimation and that for ATE represents the impact of

the treatment through this mechanism, as expressed by the following equation:

NATE = α(I − ρW )−1 (I + δWD
)

(26)

where α comes from the estimation of Eq. (25).

3 Data and Background

3.1 Dataset

We collected georeferenced homicide data for the city of Medellin, Colombia, between 2003

and 2012 from the Information System for Safety and Coexistence (Sistema de Información
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para la Seguridad y Convivencia - SISC). We also use the Medellin household surveys of

2004, 2005, 2006, and 2012, which provide covariates and labor market outcomes. We

set 2004 as the baseline for our study, and for posttreatment we used 2006 and 2012 to

examine the short- and medium-run effects. The household survey pilot was administered

in 2003, and the survey for 2004 was the first one widely available. That is why the

baseline is set to 2004.

Unit of analysis : To guarantee the temporal stability of the spatial regions of analysis

and the statistical robustness of the socioeconomic indicators calculated for each unit, we

use the analytical regions delineated with the max-p-regions model devised by Duque et al.

(2012a). The max-p-regions is a mixed-integer programming model that aggregates small

neighborhoods into the maximum number of spatially contiguous analytical regions, such

that each region is homogeneous in terms of socioeconomic characteristics and contains

at least 30 surveyed households. The max-p-regions model has been used extensively in

empirical socioeconomic analyses; examples of its usage in Medellin can be seen in Duque

et al. (2017, 2015); López-Bazo et al. (2015); Patiño et al. (2014); Duque et al. (2013,

2012b, 2011).

Figure 1 presents the area of study, Medellin, divided into analytical regions. It also

shows the Metro System, which is composed of two metro lines, the north-south line (A)

and the west-center line (B), as well as the Metrocable (line K) in the northern part of

the city. The analytical regions are classified as the control, treated, and first-, second-

and third-order neighbors of treated regions. The definition of the first-, second-, and

third-orders neighbors is given by shared-border criteria. First-order neighbors are those

that share at least one border or vertex with the treated units, second-order neighbors are

those that share at least one border or vertex with a first-order neighbor, and third-order

neighbors are those that share at least one border or vertex with a second-order neighbor.

Mechanisms : In this paper, we propose two mechanisms to explain the association

between the presence of the Metrocable and homicide rates: (1) increased accessibility

to job opportunities, which reduces the spatial mismatch (Gobillon and Selod, 2007;

Patacchini and Zenou, 2005; Andersson et al., 2014) and the rate of crime (Menezes

et al., 2013; Scorzafave and Soares, 2009; Lochner, 1999); and (2) the presence of patrols

and security cameras, as well as changes in urban attributes, which create defensible

spaces that lead to crime reduction (Loukaitou-Sideris, 1999; Loukaitou-Sideris et al.,

2001; Cozens, 2008; Patiño et al., 2014).
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Figure 1: Mapping of treated neighbors, their first-, second- and third-order neighbors,
and control units

Metro system
Metro (train) station
Metrocable line K station

Unit classification
Control
Treated
1° Neighbors
2° Neighbors
3° Neighbors

Source: author’s calculation.

Treatment and control regions : The treatment group is defined as the analytical regions

through which the path of the Metrocable runs. Although the use of analytical regions

is useful in terms of controlling for spurious spatial autocorrelation (Weeks et al., 2007),

it is expected that some substantive spatial autocorrelation will cause some regions in

the control group to be affected by the treatment. This expectation is related to the

probability of being affected by the treatment (spillover effect) increasing as the degree

of proximity to the treated regions increases.5

Earlier we introduced the idea of first-, second-, and third-order neighbors, our iden-

tifications of those analytical regions geographically close to the treatment regions. The

main purpose of doing so is to quantify the treatment effect without arbitrarily imposing

a specific boundary on the treatment effect. The Metrocable benefits those areas in the

immediate vicinity, but it is not known a priori if those effects extend to those regions

relatively close in terms of walking distance to the treatment regions. The first-order

5This argument is based on the first law of geography by Tobler (1970)
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neighbors are on average 400 meters from a Metrocable station, second-order neighbors

770 meters, and third-order neighbors 1,330 meters. Not including the first-order neigh-

bors means that we assume the impact is extremely localized and only affects areas closer

than 400 meters, which is between a 5- and an 8-minute walk. Including high-order spatial

lags will therefore reduce the need for such strong assumptions about the area affected by

the treatment. Another reason is that using only the areas in which Metrocable stations

are located yields a very small number of treatment units; that is why the first treatment

group considered consists of those areas plus their first-order neighbors.

Outcome mechanisms : To measure the impact of increased patrolling and more defen-

sible spaces, we use the number of captures not related to homicides (e.g., fraud, theft,

and extortion).6 For the mechanism related to increasing accessibility of job opportuni-

ties, we use the average income from labor activities and the percentage of formal workers

(approximated using the percentage of workers enrolled in a social-security retirement

program).

3.2 City background

In the period of analysis, Medellin had three mayors: Sergio Fajardo from 2004 to 2007,

Alonso Salazar from 2008 to 2011, and Anibal Gaviria from 2012 to 2015. We will focus

on some policies implemented in the first two mayoral terms, since the term of the last

mayor overlapped with the last year of the period of analysis only. A brief summary of

the relevant policies implemented will help provide the empirical context of this exercise,

as well as the possible treats to the identification of the impact of the Metrocable.

As mentioned before, the Metrocable intervention entailed more than just a trans-

portation system. The local government invested significantly in programs that comple-

mented the Metrocable, with the administration of Sergio Fajardo largely overseeing this

effort. Investment continued after the Metrocable began to operate in August of 2004:

between 2004 and 2007 the city spent 6.6 times the construction cost of the Metrocable

in 290 complementary programs. It modified 122,000 square meters of public space, in-

creasing the amount per resident from 0.65 to 1.48 square meters. In addition, due to a

tree-planting campaign the number of trees in the area rose from 154 to 527, improving

both the appearance and air quality of the neighborhoods. Therefore, an evaluation of

6See the appendix A for a deep analysis of the endogeneity implied between the homicides variable
and the definition of captures.
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the impact of the Metrocable must take into account more than just the investment in

the transportation system; it must consider the entire investment in a neighborhood that

occurs when a project of this magnitude is built.

Some funds of the Metrocable project did go to public libraries and recreational spaces.

However, the rationale for this was in line with that for the investments made across the

city as part of the Medellin city development plan, “Medellin la mas educada.” Such

plans focus on a specific policy issue, which in the case of “Medellin la mas educada” was

education. It covered investment in infrastructure, assistance to schools, and provision

of meals for students. By December 2007, around 45 new schools and libraries had been

built, 237 had improved their infrastructure, and more than 600 had gone through a

maintenance program. The city saw significant progress in education: the coverage of

daycare and schooling for children up to 5 years old went from 18.8 percent in 2004 to

32 percent in 2007, and the coverage for students in secondary education went from 71

percent in 2004 to 80.5 percent in 2007. These efforts were targeted at public schools,

which are present in most parts of the city.

During 2008–2011 one of the most remarkable policy initiatives was “Medellin Soli-

daria,” the focus of which was improving the quality of life of families in extreme poverty

and vulnerable conditions. The program was directed at predominantly low-income fam-

ilies. Between 17 and 20 percent of the total coordinators of the program were assigned

to the Metrocable area of influence. As a result of the program, almost 87 percent of

households with children experienced an increase in the level of school attendance.

Some policies extremely localized in nature were implemented with a focus on economic

development, with the transformation of the city’s downtown being a notable example.

This area received around USD 150 million between 2004 and 2008 to enhance economic

activity and to attract consumers who stopped visiting the area due to safety concerns.

Another relevant program promoting entrepreneurship saw the city invest more than

USD 50 million. The focus of this program was to incentivize entrepreneurs and create

a favorable environment for start-ups and small and medium companies. This program

has a flagship building located in the neighborhood of the state public university, close to

downtown. Most of the assistance to entrepreneurs, largely financial support, is facilitated

by staff in that building, but some satellite buildings exist around the city.

The year 2006 saw the initiation of a project providing sex-ed advice intended to

prevent teen pregnancy to residents of the Metrocable area of influence and neighborhoods
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close to it, which was subsequently expanded to other parts of the city. More than

12,000 individuals received counseling between 2006 and 2008 and almost 10,000 received

contraceptive methods. It is difficult to know whether this had an impact relevant to the

effects we estimated, especially for the mechanism related to labor outcomes. However,

given the population targeted and the improvements in education coverage and dropout

rates, this kind of program does significantly affect school registration and attendance.

4 Results

4.1 Summary Statistics

Table 7 in the appendix presents some summary statistics at the city level by Treated+1st

neighbors and the control group.7 The trend in homicides for the analytical units shows

a larger decrease between 2004 and 2006 than between 2004 and 2012. However, at the

city level, there is a small increase in the homicide rate for 2012. Labor income shows a

relatively stable trend with a slight, insignificant decrease between 2004 and 2006. The

percentage of informality, defined as the percentage of workers not enrolled in a social-

security retirement system, shows that almost half of the working population is in the

informal sector. The share of the married population has changed slightly over time,

but has remained relatively constant at around 25 percent. Approximately 30 percent of

youth (15 to 19 years old) do not attend school, and the percentage of the population who

has pursued secondary studies (complete or incomplete) is approximately 40 percent.

However, these results hide some heterogeneity across treated and untreated units. In

an exhaustive analysis of means and summary statistics broken down by treatment and

control groups, we found that in our baseline, the median of homicides is higher in the

treated spatial units than that in untreated spatial units. Following the implementation

of the Metrocable, treated units presented slightly fewer homicides compared to untreated

ones. As for labor income, untreated units demonstrate higher levels than treated ones

over the entire period of analysis. Some of our socioeconomic covariates show differences

between untreated and treated groups in terms of cultural and economic characteristics.

The married population is higher in the treated areas, as is the percentage of those who

have some but not complete secondary education. The average number of children per

7Complete summary tables upon request.
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family is also higher in treated regions.

Figure 2 shows the homicide rate per 100,000 inhabitants for two groups of neighbor-

hoods: (1) treated neighborhoods and their first-order neighbors and (2) control neigh-

borhoods. Before the treatment, both groups presented a negative trend, and the treated

units were more violent than the control group. After the treatment, the control group

showed a higher homicide rate for almost all periods.

Figure 2: Pre & post-treatment homicide behavior

Source: author’s calculation.

Following the general trend in the research about impact evaluation, we rely on the

common trend assumption, which is embedded in Eq. (9) and Eq. (10). Figure 2 tries

to get a sense of how plausible this assumption is, given that both groups—control and

treatment— seem to show similar trends. The treatment group, comprising the direct

treatment regions and their first-order neighbors, behaves noisier than the control group;

however, this is a result of the fewer number of units in the treatment (17 analytical re-

gions) and the time frequency (2 months). If one ignores the noise typical of the treatment

group, the trend before the treatment is similar between the groups and after the treat-

ment the difference in the rate of homicides between the two groups starts to increase in

favor of the treated units. We repeat the exercise using a time frequency of three months
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and including the second-order neighbors in the treatment group. As we expected, the

lines are smoother and the main idea still holds.

4.2 Main Results

Table 1 presents the results of the estimations using treated units, treated units plus

first-order neighbors, treated units plus second-order neighbors, and treated units plus

third-order neighbors. We also differentiate between regular and SDiD estimations.

The estimates for the short-term impact (2004–2006) using the regular difference-in-

differences approach indicate a negative effect of the cable car line in terms of homicide

reduction, but some of these results are statistically insignificant. The point estimates

suggest the implementation of the cable car did have an effect on the treated units alone,

although we should note the small sample size, which drives the relative high standard

errors compared to the other estimations. This impact does become larger and statistically

significant when we consider the treated and first-order neighbor units, but the effect

vanishes when the second- and third-order neighbors are included.

As for the medium-term effects (2004–2012), results from the ordinary least square

(OLS) estimates are highly encouraging: While we found statistically insignificant effects

for the treated units, when the first-, second-, and third-degree neighbors are included, the

impact of the Metrocable is statistically significant at a 1 percent level of confidence and

is much larger than that identified for the short term. In fact, we could infer that for first-

order neighbors, the homicide rate decreased by 100[exp(0.72) − 1] = 51 percent. These

figures should be considered carefully in order to avoid misinterpretation. This 51 percent

indicates that the homicide rate for the treated units decreased by 51 percent more than

that for the control group—in other words, if the rate for the control group decreased by

20 percent, the rate for the treated units should have decreased by 30.3 percent. This

effect declines with the inclusion of second-order neighbors, reaching a total impact of 44

percent. Finally, when including third-order neighbors, the impact becomes 46 percent.

A spatial difference-in-differences approach yields similar results.

Another important finding in Table 1 is that the standard errors decrease sharply as we

move from treated units to third-order neighbors, which strongly suggests an increase in

the statistical power. This decrease also indicates the high possibility that the coefficient

of the treatment is indeed negative, but due to the small sample size, we failed to obtain
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statistical significance.

In summary, we have found strong and sizable time and distance effects in homicide

reduction around the Metrocable areas. Our SDiD model, which includes controls as

covariates, shows a reduction in the homicide rate of approximately 51 percent in the

neighborhoods treated by the Metrocable and their first-level neighbors. When we in-

crease the area of influence to include second-order neighbors, the impact decreases by 7

percentage points. Finally, when we include third-order neighbors, the impact increases

by 1.5 percentage points. These results provide evidence of a spatial decay function of

the Metrocable and an increase in impact over time.8

4.3 Mechanisms

As presented in the previous subsection, the implementation of the Metrocable reduced

homicides in the affected areas (first-, second-, and third-order neighbors) by approxi-

mately 51, 44, and 46 percent, respectively. We decompose this impact into its constituent

mechanism effects (i.e., we clarify the causal pathways through which this reduction in

homicides was achieved). To this end, we consider two mechanisms related to deterrence

and the labor market. As mentioned in earlier sections of this paper, many other mecha-

nisms might have contributed to the decrease in the crime rate related to the Metrocable

intervention. However, we focus only on the following two, which represent major topics

in crime analysis: labor accessibility and police efficiency.

Table 2 shows the full impact estimated for the short and medium terms, and each of

the impacts is broken down by the NATE, the average treatment effect net of the mech-

anism. For each time period of analysis, we calculate the impact net of the socioeconomic

mechanism, net of the police mechanism, and net of both mechanisms together. Using

the total impact and the impact net of a mechanism, we can calculate the percentage of

the total impact that the mechanism accounts for (which is presented in the third row

for each mechanism, whenever the mechanism is significant at standard levels). If both

mechanisms are relevant to the explanation of why the Metrocable led to crime reduc-

tion in that area, the percentage of the total impact for which both mechanisms (taken

8Additional analysis of two other types of crimes, auto theft and theft from commercial establishments,
is provided in the appendix D. It suggests that in the short run the Metrocable increases the number of
auto thefts, due to greater accessibility of cars in the area, but that in the medium run there is a negative
effect—which is, however, lower than that observed for homicides.
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Table 1: Results for Traditional and Spatial Difference-in-Differences

Dependent: Treated Treated + Treated + Treated +
ln(Homicides+1) 1st Neighbors 2nd Neighbors 3rd Neighbors

Difference-in-Differences
Short Impact (2004-2006)

Total Impact -0.390 * -0.511 *** -0.167 -0.092
(0.23) (0.20) (0.19) (0.17)

-32.28% -40.04% -15.36% -8.82%
Medium Impact (2004-2012)

Total Impact -0.630 * -0.721 *** -0.587 *** -0.611 ***
(0.37) (0.22) (0.20) (0.17)

-46.75% -51.40% -44.39% -45.72%

Spatial Difference-in-Differences
Short Impact (2004-2006)

Total Impact -0.388 * -0.511 *** -0.163 -0.089
(0.23) (0.19) (0.18) (0.17)

-32.17% -40.00% -15.00% -8.54%
Medium Impact (2004-2012)

Total Impact -0.633 * -0.721 *** -0.585 *** -0.612 ***
(0.37) (0.22) (0.20) (0.17)

-46.89% -51.40% -44.29% -45.78%

Number of treated
units

6 17 27 41

Number of control
units

170 159 149 135

Source: Author’s calculation
Note:∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Percentages are calculated using the formula to approximate
the marginal impact of a dummy in a log functional form. The spatial unit of analysis is the analytical
region.

together) account should be at least as much as the sum of the individual impacts.

Socioeconomic mechanism: One of the mechanisms through which the Metrocable may

be reducing homicides is the economic inclusion of people in the city. People can access

jobs and increase their productivity due to the reduction in transportation costs, which

include temporal costs, as well as the increase in access to new job opportunities (Gobillon

and Selod, 2007; Patacchini and Zenou, 2005; Andersson et al., 2014). To further explore

this mechanism, we examine the labor income and the percentage of formal employees.

As can be inferred from Table 2, for the treated units and their first-order neighbors
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in the short term, approximately 13 percent of the total effect can be attributed to the

socioeconomic mechanism, an effect that tends to decrease in the medium term to 5

percent.

In the medium run, when we consider a broader area of impact, the socioeconomic

mechanism accounts for 3 percent of the total impact for treated plus second-order neigh-

bors and 2 percent for third-order neighbors. The impact of the socioeconomic mechanism

decreases with distance, which is not surprising. This mechanism is the more locally con-

centrated of the two analyzed in this paper. Neighborhoods far away from the Metrocable

may not experience the significant reduction in travel costs and the same accessibility ad-

vantages created by the new system. This finding concurs with the research mentioned

above that has found accessibility to the labor market plays an important role in reducing

crime crime rates.

Deterrent mechanism: The second potential mechanism for the reduction in homicides

is related to deterrence. The implementation of the Metrocable also acts as a deterrence

mechanism due to the increased number of policemen in the area, which, in turn, may

result in a larger number of arrests. We found that nearly 17 percent of the effect for

treated units plus first-order neighbors can be explained by this mechanism in the short

run; however, this effect decreases to 13 percent in the medium term. The impact is

particularly significant for second- and third-order neighbors. For the medium term,

in which all the coefficients remain statistically significant, the deterrence mechanism

accounted for 17 percent of the total reduction in the homicide rate in the treated units

plus their second-order neighbors and 21 percent in the treated units plus their third-order

neighbors.

The new facilities are not only equipped with surveillance cameras, but also house a

permanent police presence. These policemen monitor the stations and adjacent zones.

All stations are widely accessible to the public, and visibility is a prior characteristic.

Although the police are not allowed to make rounds around the neighborhood, their

presence acts as a deterrent for incipient criminals, mainly those especially concerned

with being caught. The prevalence of the impact seems to be clear evidence that no crime

displacement takes place; however, this finding merits further analysis.

As mentioned earlier, the impact of both mechanisms (socioeconomic and deterrence)

together should not be lower than the sum of the individual impacts, if the estimations are

relevant and accurate. Both mechanisms for the treated units plus first-order neighbors
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in the short run account for 42 percent of the intervention’s total impact. Although this

figure decreases in the medium term, the impact does spread to adjacent zones, as both

mechanisms account for 22, 25, and 28 percent of the intervention’s total reduction for

the treated plus first-order, second-order, and third-order neighbors, respectively. The

impact of both mechanisms together being greater that the individual sum is an example

of a multisectoral policy implementation, which, in this scenario, was unintended; the

mechanisms identified in this paper worked together to reduce crime in the treated areas.

In addition, we can conclude from these results that some aspects of the impact will vanish

over time, but in a spatial framework the impact should have an effect on units linked

somehow to the treated units.

4.4 Robustness Checks

Units of analysis (neighborhoods): One of the main concerns in this study is the units

of analysis proposed. We are working with analytical regions designed with the max-

p-regions model. Although the minimization of aggregation bias makes these regions

particularly safe in statistical terms, the usage of these regions may not enable the direct

implementation of public policy, because they do not coincide with the administrative

units.

To address this matter, we propose a robustness check, in which we use the neighbor-

hoods of the city instead of the analytical regions. The aim of this exercise is to ensure

that our main results are not driven by the composition of the spatial units of analysis.

Table 3 shows both the traditional and the spatial difference-in-differences results for this

exercise. The variation between the impact estimated using the analytical regions and

that using the administrative neighborhoods is consistently small.

The SDiD shows reductions in the homicide rate of 49, 45, and 42 percent in the

medium term for treated neighborhoods plus first-, second-, and third-order neighbors,

respectively. The figures for the analytical regions are similar: 51, 44, and 46 percent for

treated units plus first-, second-, and third-order neighbors, respectively.

Although we presented some reasons above to support the use of analytical regions,

a reiteration of them here in a summary, after ensuring that there is no considerable

difference between them, is in order. The first reason is statistical: We should conduct

the analysis based on variables representative at the selected spatial unit of analysis.
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Table 2: Mechanism decomposition within the Spatial Difference-in-Differences

Dependent: Treated Treated + Treated + Treated +
ln(Homicides+1) 1st Neighbors 2nd Neighbors 3rd Neighbors

Short impact (2004-2006)
Total Impact -0.388 * -0.511 *** -0.163 -0.089

(0.23) (0.19) (0.18) (0.17)
-32.17% -40.00% -15.00% -8.54%

Net of Economic mechanism -0.350 -0.443 ** -0.117 -0.051
(0.22) (0.19) (0.18) (0.16)

- 13.37% - -
Net of Police mechanism -0.359 -0.422 ** -0.138 -0.062

(0.22) (0.19) (0.17) (0.15)
- 17.45% - -

Net of Both mechanisms -0.278 -0.298 -0.049 0.016
(0.22) (0.19) (0.17) (0.15)

- 41.76% - -

Medium impact (2004-2012)
Total Impact -0.633 * -0.721 *** -0.585 *** -0.612 ***

(0.37) (0.22) (0.20) (0.17)
-46.89% -51.40% -44.29% -45.78%

Net of Economic mechanism -0.577 -0.687 *** -0.568 *** -0.600 ***
(0.37) (0.22) (0.20) (0.17)

- 4.83% 2.92% 2.02%
Net of Police mechanism -0.480 -0.629 *** -0.486 *** -0.483 ***

(0.37) (0.21) (0.18) (0.16)
- 12.80% 16.87% 21.06%

Net of Both mechanisms -0.376 -0.560 *** -0.440 ** -0.443 ***
(0.37) (0.21) (0.18) (0.16)

- 22.35% 24.71% 27.61%

Source: author’s calculation
Note:∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Percentages displayed for total impact correspond to the
impact on homicides calculated using the formula to approximate the marginal impact of a dummy in
a log functional form. The percentages shown for both mechanisms correspond to the proportion of the
total impact for which each mechanism accounts (obtained as the difference between the coefficients for
total impact and for the value net effect of the mechanism over the total impact coefficient). Only the
percentages for significant regressions are displayed. Analysis conducted using analytical regions.

The exercise using the neighborhoods is more biased, due to its strong relationship with

the survey design. The second is practical: Because of the definition of our theoretical

framework, all the matrices are designed to work with a balanced dataset, and if at
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any time observations of one neighborhood are missing for one year, the unbalanced

dataset will not enable any estimation. Ultimately, after this robustness check, and given

that there is not a big difference across the two options, we conclude that there are no

constraints on our use of analytical regions.

Table 3: Traditional and Spatial DiD using Neighborhoods

Dependent: Treated Treated + Treated + Treated +
ln(Homicides+1) 1st Neighbors 2nd Neighbors 3rd Neighbors

Difference-in-Differences
Short Impact (2004-2006)

Total Impact -0.430 * -0.501 ** -0.133 -0.041
(0.23) (0.20) (0.17) (0.16)

-34.98% -39.38% -12.47% -4.00%
Medium Impact (2004-2012)

Total Impact -0.619 * -0.676 *** -0.605 *** -0.561 ***
(0.32) (0.22) (0.18) (0.17)

-46.17% -49.12% -45.39% -42.96%

Spatial Difference-in-Differences
Short Impact (2004-2006)

Total Impact -0.435 ** -0.523 *** -0.150 -0.058
(0.22) (0.20) (0.16) (0.16)

-35.27% -40.74% -13.89% -5.64%
Medium Impact (2004-2012)

Total Impact -0.588 * -0.676 *** -0.601 *** -0.553 ***
(0.31) (0.22) (0.18) (0.17)

-44.45% -49.12% -45.18% -42.49%

Number of treated
units

7 18 31 40

Number of control
units

219 208 195 186

Source: author’s calculation
Note:∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Percentages are calculated using the formula to approximate the
marginal impact of a dummy in a log functional form.

Crime displacement: A common question when implementing strategies for crime

reduction is whether the intervention actually reduces crime or just displaces the phe-

nomenon to another location. To test whether the Metrocable generated a displacement

effect, we ran our main estimation sequentially (i.e., instead of estimating a unique coeffi-
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cient for the influence area, we estimated one coefficient for treatment and one coefficient

each for first-, second-, and third-order neighbors). Although this approach allows us to

identify changes in the impact for each area, it does increase the number of coefficients

required for the estimation, which costs us some efficiency.

Table 4 shows the results of the robustness check. The aim of this exercise is to

check whether the estimated coefficient is weakened when more-distant neighborhoods

are considered in the analysis; by “weakening,” we mean a reduction in magnitude or

an increase in standard errors. The results show that the inclusion of additional neigh-

borhoods that are progressively farther away from a Metrocable station does not lead to

significant changes in coefficients, nor does it change their standard errors. Thus, there is

no evidence of the existence of a crime displacement effect.

Another concern related to crime displacement is the possible change in criminals’

places of residence. Crime displacement refers not only to crime happening in another

place, but also to criminals moving to other neighborhoods. In the studied case, some

criminals, due to the increased presence of police, may decide to move to other neigh-

borhoods. We do not have access to criminal migration patterns, so we must look at

patterns for all residents. Using the data from the “Quality of Life” survey, we found

that in 2006, the level of migration in the treated neighborhoods was 7.49 percent, and

in untreated neighborhoods, it was 10 percent. In 2012, these figures were 9 and 11 per-

cent, respectively. These results indicate that migration may not be a major issue for our

analysis.

Genetic Matching: This robustness check aims to ensure that the results are not driven

by the number of control units included. Our results consider the control group to be

the spatial units that are not in the treatment group and are within the urban area of

Medellin. This classification may raise some doubts on the basis that this is a convenient

assumption.9

To address this potential downside, we implement a genetic matching algorithm to find

a more similar control group. Then, we estimate the difference-in-differences for the short

and medium term and for first-, second-, and third-order neighbors. With this approach,

we do not apply spatial difference-in-differences, because we no longer have a geographic

9In contrast to this approach, other studies use a considerably lower ratio of treated to control units:
Di Tella and Schargrodsky (2004) has 14 treated and 53 control; Corsaro et al. (2012) has 122 treated
and 1,583 control. Similarly, Benavente et al. (2011) used 12 treated and 84 control.
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Table 4: Sequential estimations.

Dependent: ln(Homicides+1)

Short impact (2004-2006)
Treated 1st Neighbors 2nd Neighbors 3rd Neighbors

Treated -0.388 *
(0.23)

Treated + 1st Neighbors -0.415 * -0.564 **
(0.23) (0.26)

Treated + 2nd Neighbors -0.388 * -0.527 ** 0.389
(0.22) (0.26) (0.31)

Treated + 3rd Neighbors -0.392 * -0.528 ** 0.392 0.055
(0.23) (0.26) (0.32) (0.26)

Medium impact (2004-2012)
Treated 1st Neighbors 2nd Neighbors 3rd Neighbors

Treated -0.633 *
(0.37)

Treated + 1st Neighbors -0.684 * -0.742 ***
(0.36) (0.26)

Treated + 2nd Neighbors -0.717 ** -0.769 *** -0.319
(0.36) (0.26) (0.33)

Treated + 3rd Neighbors -0.785 ** -0.829 *** -0.378 -0.534 **
(0.37) (0.26) (0.34) (0.27)

Source: author’s calculation
Note:∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. For each row named as Treated, Treated plus first-, second-,
and third-order neighbors the impact of each group is estimated separately. For example, the last row
of Treated + 3rd Neighbors has four coefficients: the first is associated with the treated units only, the
second with first-order neighbors only, the third with second-order neighbors only, and the fourth with
third-order neighbors only. The spatial unit of analysis used is the analytical region.

continuum on the basis of which to calculate the spatial neighboring relationships (W

matrix). Table 5 shows the results of this exercise. The upper panel of the table contains

the results using the analytical regions, and the bottom panel presents the results using

the administrative neighborhoods. The results are consistent across specifications and

reinforce the finding that the Metrocable had a significant impact on the treated units. In

fact, the results of this robustness check are greater in magnitude, with most percentages

above 50 percent. This result is not surprising, since the analysis of a given control group

can overestimate the impact by not taking into account the decreasing trend in the city’s
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homicide rate.

Table 5: Genetic Matching & Difference-in-Differences

Analytical regions as spatial units

1st Neighbors 2nd Neighbors 3rd Neighbors
Short impact (2004-2006) -0.531 -0.532 ** -0.410 *

(0.32) (0.24) (0.21)
-41.21% -41.28% -33.61%

Medium impact (2004-2012) -1.008 *** -0.817 *** -0.840 ***
(0.30) (0.24) (0.20)

-63.50% -55.82% -56.83%

Neighborhoods as spatial units

1st Neighbors 2nd Neighbors 3rd Neighbors
Short impact (2004-2006) -0.248 -0.284 -0.175

(0.26) (0.23) (0.23)
-22.00% -24.72% -16.07%

Medium impact (2004-2012) -0.554 * -0.830 *** -0.688 ***
(0.31) (0.26) (0.22)

-42.55% -56.39% -49.75%

Source: author’s calculation
Note:∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Percentages are calculated using the formula to approximate
the marginal impact of a dummy in a log functional form. For the matching initial process, we include
variables for the slope and elevation of the units of analysis. As we expected, those variables are statis-
tically significant in terms of explaining the probability of being treated. The results of this process are
available upon request.

Buffers: Our last robustness check consists of using a symmetric definition for the

area of influence (i.e., buffers) instead of a neighborhood ordering based on administrative

units. In this case, we take advantage of homicide data at the point level to identify events

that occur within 500 meters, 1 kilometer, and 2 kilometers of the Metrocable stations.

The resulting buffers are presented in Figure 3.

This approach works under the premise that the administrative borders are somehow

invisible to people, whereas based on the first law of geography (Tobler, 1970), the effect

of the Metrocable should decay with distance. Table 6 shows the results of using buffers

to identify treated and control units. The results for the impact in the buffers around the

Metrocable line with a radius of 500 meters are similar to those for treated units, because

the treated neighbors are, on average, 500 meters from a Metrocable station. The impact
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Figure 3: Buffers for the spatial relationship

Metro system stations
500m Buffer
1km Buffer
2km Buffer

Source: author’s calculation
Note: using the complete line of the Metrocable, we draw buffers around the line with radii of 500 m, 1
km, and 2km. We define as the unit of analysis those neighborhoods or analytical regions that had more
that 10 percent of their area inscribed in the buffer.

is much greater on the units 1 kilometer away than on those units 2 kilometers away.

In the 1-kilometer radius, the implementation of the Metrocable decreased homicides in

the medium run by 47 percent more than in the control group, but this figure falls to

44 for the buffer of 2 kilometers. The estimated impacts are similar to the main results

previously discussed, and they strongly support the strategy chosen.
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Table 6: Buffer Treatment Assignment with Difference-in-Differences

Dependent: ln(Homicides+1) 500m 1km 2km

Short Impact (2004-2006)
Total Impact -0.335 -0.313 -0.047

(0.21) (0.20) (0.18)
-28.45% -26.88% -4.63%

Net of Economic mechanism -0.304 -0.255 -0.035
(0.21) (0.20) (0.17)

- - -
Net of Police mechanism -0.399 * -0.265 -0.055

(0.22) (0.19) (0.16)
- - -

Net of Both mechanisms -0.300 -0.153 0.015
(0.23) (0.19) (0.16)

- - -

Medium Impact (2004-2012)
Total Impact -0.334 -0.628 *** -0.578 ***

(0.26) (0.22) (0.19)
-28.42% -46.63% -43.91%

Net of Economic mechanism -0.324 -0.582 *** -0.572 ***
(0.27) (0.22) (0.19)

- 7.38% 1.16%
Net of Police mechanism -0.347 -0.521 ** -0.477 ***

(0.25) (0.21) (0.17)
- 16.97% 17.52%

Net of Both mechanisms -0.296 -0.449 ** -0.431 **
(0.26) (0.21) (0.17)

- 28.43% 25.48%

Source: author’s calculation
Note:∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Percentages displayed for total impact correspond to the impact
on homicides calculated using the formula to approximate the marginal impact of a dummy in a log
functional form. The percentages displayed under both mechanisms correspond to the proportion of the
total impact that each mechanism accounts for (obtained as the difference between the coefficients for
total impact and for the value net effects of the mechanism over the total impact coefficient). Only the
percentages for significant regressions are displayed. Analysis conducted using analytical regions.

5 Discussion

Innovations in public infrastructure can do a great deal to promote economic and human

development and improve quality of life, especially in cities, where space is both limited
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and geographically dissimilar. As an example of their positive impacts, these types of

interventions may contribute to reductions in crime payoffs in urban settings through

various channels, such as deterrence and social inclusion (Glaeser and Sacerdote, 1999;

La Vigne, 1996; Crowe, 2000; Cozens, 2008). Over the past few years, cable cars have

emerged as a viable mode of public transportation for densely populated cities located

within challenging terrain. However, there exists little empirical evidence on the effects

of this form of innovative public infrastructure on outcomes such as criminality in sur-

rounding neighborhoods. Given the growing use of such systems in the developing world,

it is of paramount importance to understand how the establishment of cable cars impacts

crime, especially in areas with high criminality.

This paper is driven by a research question that focuses on the relationship between

investments in urban public transportation and their impact on crime (in terms of homi-

cide rates). Using a rich spatial dataset and myriad econometric techniques, we estimate

the short- and medium-term effects of the implementation of cable cars (Metrocable) in

Medellin, Colombia.

The Metrocable, which opened in 2004, has attempted to integrate isolated areas

of the city into the public transportation system. Metrocable stations can serve as a

source of security, as the probability of criminals being apprehended increases with their

appearance, and the perception of deterrence is greater in areas in which new stations are

located.

We found strong evidence that the implementation of the Metrocable reduced crime in

the areas neighboring those in which this infrastructure was located, but the results were

not statistically significant. However, we did find evidence supporting spatial spillover of

the Metrocable: our estimation results using a spatial difference-in-differences approach

suggest that the Metrocable had a large and significant impact on reducing homicides.

Those neighborhoods in which the Metrocable is located (and their first-order neighbors)

experienced a decrease in the level of homicides by an average of 51 percent more than

the overall decrease in the homicide rate experienced by all neighborhoods of the city over

the same period.

These effects tended to be stronger in the medium run than in the short run. We

explored two different mechanisms through which these effects may operate: the inclusion

effect and the deterrence effect. Both mechanisms explain more than one-third of the effect

in the short run and more than one-fourth of the effect in the long run, with the deterrence
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mechanism being stronger than the inclusion mechanism.

The implications of our results are fourfold. First, our results contribute to the limited

literature on the effects of innovation in infrastructure and their unintended outcomes such

as crime reduction. More specifically, our findings reinforce the empirical literature that

supports the use of public infrastructure as a tool to improve the quality of life within

cities. Second, our results highlight the importance of considering spatial effects when

estimating the impacts of these interventions, given the spatial correlation that exists

between neighborhoods within a city. Third, a significant portion of the effects of the

implementation of the Metrocable on crime is indirect, which is natural, since this type

of infrastructure was not intended to reduce crime. The reduction of crime is achieved

through a series of channels such as deterrence and inclusion, and thus policies that boost

these channels may result in greater positive effects with regard to crime.

Finally, our results highlight the efficacy of innovative forms of public transportation in

cities with limited space, difficult terrain, and high levels of crime. While we do not claim

the external validity of our results, these results are, for the most part, strong and signif-

icant, highlighting the potential benefits of innovative public infrastructure interventions

within cities.
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Appendix A Endogeneity of captures

To measure the police mechanism – by which a higher police presence increases the prob-

ability of apprehension and thereby deters crime – we used captures as a proxy. However,

in this context, in which we have more than one period of time, we faced the problem

of possible endogeneity across the variables of captures and homicides. More captures

deter crime, but there are no captures if there are no homicides. To address this prob-

lem, we took advantage of the extremely disaggregated information we have for captures.

We identified the type of captures, determining whether they were for homicides, drug-

related crimes, extortion, sex-violence, or one of many other classifications. We used a

simple strategy to test how concerned we should be about this problem by applying a

similar strategy to the Granger causality and dynamic panels. The following equation

summarizes the strategy used:

Homi,t = α0 +

p∑
j=1

ρjHomi,t−j +

q∑
m=0

βmCap
(k)
i,t−m + ui,t (27)

To cover all possible options and to address the main issue, we have two variations of

i (units of analysis: neighborhoods and analytical regions) and two variations of t (time:

annual and quarterly). For the yearly specification, we have information from 2004 to

2014, and the values of p and q are both equal to 2 (two-year lags). Let us clarify that

p represents the number of homicide lags used in the right-hand side and q the number

of capture lags also used as controls. However, for the quarterly specifications, we used

p = 7 and q = 11. Those figures were determined by the number of quarters included in

the first yearly scenario.

The logic here is fairly simple. We included the homicide lag because we are dealing

with a dynamic panel, and thus, the history of homicides should matter. Then, if endo-

geneity between captures and homicides exists, using the captures’ lags as instrumental

variables will ensure that the captures’ lags are statistically significant in explaining homi-

cides (i.e., the joint t-test on the βm will be different from zero, and the p-value will be
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below the common confidence level, 10%). To test this, we use different definitions of

captures (Cap(k), where K = 1, 2, ..., 6), which are defined in Table 8.

Summarizing this strategy, Figure 4 displays the p-value corresponding to the joint

t-test on the statistical significance of βm for each of the four variations (each variation

per line) and for each of the capture variables (each capture on the X-axis). This figure

states that from the moment we stopped excluding the captures related to drugs (Cap(5)),

the joint t-test fell in the rejection zone, meaning that the captures’ lags are indeed

significant to explain homicides, presenting some evidence of endogeneity. However, for

Cap(1) through Cap(4), the figure does not show strong evidence of endogeneity for these

capture definitions. In our paper, we used Cap(2) as the proxy for the police mechanism.

Figure 4: Endogeneity test for different capture measurements

Source: author’s calculation
Note: the orange lines represent the quarterly models, while the blue lines are the yearly models. The
red dotted line on 0,1 p-value represents the standardized threshold for rejection of the null hypothesis.
The main models used Cap(2), but as it shows, Cap(1) through Cap(4) work.
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Appendix B Monthly structure

Our database allows us to run some models on a monthly structure. Although we cannot

have any particular covariates for this exercise, we include month-year fixed effects to

account for all specific events during that period. We also use a similar estimation strategy

as the main estimation. We divide the impact of the direct effect (the effect of the

treatment on the treated) and the indirect or spatial component (the effect on those

untreated but located close to the treated). It is important to mention that this monthly

structure can identify temporal variations or shocks in the outcome variable that can

be explained by the treatment, but in this case, the strategy does not strongly identify

structural relationships.

Table 9 presents the results of a model in which the log of the homicides in the neigh-

borhood i is the dependent variable and is a function of the homicides in its neighbors

(rho) if it and its neighbors have been treated. The inclusion of the neighbors follows

the structure stated by Anselin and Smirnov (1996), who argued that using the contigu-

ity matrix enables the building of a matrix that contains greater spatial lags, resulting

in matrices that can identify the second-order neighbors (neighbors of neighbors) until

umpteenth-order neighbors. The first panel of the table “Effect Treatment (t0−2006m12)”

contains the results of this calculation. In this case, the impact is negative for both direct

and indirect effects, but the indirect effect is statistically significant. This result emu-

lates exactly what we have seen before. Due to the reduced number of neighborhoods

treated, there is not enough statistical power to check the significance of the direct im-

pact; however, the indirect impact, which accounts for the first-, second-, and third-order

neighbors, shows a significant decrease in homicides. This analysis was conducted for the

period from 2003 to 2006, and the treatment variable equals 1 for all periods after the

intervention in July 2004.

The following three panels also contain the direct, indirect, and total impacts of the

treatment, but we break down the treatment variable by period, which allows us to identify

the exact period when the intervention had a significant impact. The relevant periods for

us are the first 6 months after the treatment (t0 − t5), between 6 and 12 months of the

treatment (t6 − t11) and between 12 and 18 months (t12 − t17). Additionally, we want to

corroborate if there is any particular effect driving the results prior the intervention, so

we added a variable that equals one for the 6 months prior the Metrocable construction
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(t−6). In all cases, this last variable was insignificant, which serves as evidence that there

were no pre-trend effects driving the results of this study.

Regarding the direct impact, the treatment shows some effect after six months of

the intervention, meaning that neighborhoods where the Metrocable is located began to

experience greater reductions in homicides than the rest of the city between six months

and one year after the construction. However, most of the indirect impact began six

months later. The neighborhoods near the Metrocable experienced greater reductions in

the homicide rate after more than one year of the construction. These figures sustain our

hypothesis and the results discussed in the paper: the impact of the intervention spreads

across the neighborhoods if there is indeed a spatial link between them. The intervention

begins to show an impact in 2006.

Appendix C Placebo test

To identify the impact that the new public transportation intervention had on crime,

this study concludes with what is commonly called the “placebo test.” In this paper,

we have shown satisfactory results relating to the intervention of the Metrocable and its

significant impact on decreasing homicides in the treated areas and their surrounding

zones. We would also like to show that the results obtained are not driven by a general

reduction pattern in the homicide rate of the city nor confounded significantly with other

public interventions. To do so, we defined a “placebo” Metrocable, or a fake Metrocable.

In Figure 5, light green dots show the stations of our fake Metrocable. We tried as

much as possible to ensure that the Metrocable fit in an area with similar characteristics,

specifically in slope and elevation, to the one where it was actually built. Additionally,

the length of the fake Metrocable is the same as that of the real one, and the distance

between the stations remains unchanged. Similar to our estimate of the impact of the

real Metrocable, we defined the units treated as those in which any Metrocable facility

was located. Then, we identified their first-, second-, and third-order neighbors.

Finally, we ran the main model using this fake Metrocable as the intervention. In

terms of expectations, if the Metrocable is a real deterrent of crime, we should not see

any impact in this exercise. Conversely, if we find a significant impact, the impact of

the Metrocable identified previously contains influences from sources that were not the

intervention. Table 10 shows the principal results of the placebo test, both the traditional
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and spatial difference-in-differences results, and those for the short and medium run for

treated units and their first-, second-, and third-order neighbors. Although some signifi-

cance is captured for the treatment model, we should recall that we have few units in this

model and results on that spectrum are somewhat noisy. Therefore, we can infer that

there is no strong evidence that the placebo Metrocable is responsible for variations in

the homicide rate in that area of the city.

Figure 5: Placebo treatment assignment

Metro system stations
Metro stations
Metrocable line K stations
Placebo Metrocable stations

Placebo treatment
Control
Treated
1° Neighbors
2° Neighbors
3° Neighbors

Source: author’s calculation
Note: the location of the fake Metrocable was chosen according to the terrain’s slope, which is similar to
the slope of the real Metrocable. Additionally, the distance between stations is the same as that of the
real one and of the complete length of the Metrocable.
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Appendix D Other Crimes

We repeat the main exercise for other types of crimes that we have information: auto theft

and theft to commercial establishments. In order to understand the possible links between

the investment in the Metrocable and these types of crime, we need to come back to the

basic relationship between homicides and the Metrocable. Compare to other countries

where homicides are mainly related to personal reasons, in Colombia the presence of

illegal groups and the influence of the drug cartels have made homicides a business for

low income people.

The results we have documented are related to economic and criminal incentives re-

lated to the Metrocable transportation system. The investments done through the Metro-

cable improved low income households’ accesibility to the rest of the city, including labor

markets across town. It also decreased the cost of public transportation for those house-

holds. The presence of police and the improvement in the street network increased the

efficiency of police to deter crime.

Table 11 shows the results for auto theft and thefts to establishments. In the case of

auto theft, we observe positive impacts in the short-run, which does not seem surprising

since auto theft depends on the availability of automobiles in the area. After the improve-

ment in the street network and the accesilibilty of the treated neighborhoods to the rest

of the city, it is expected that more cars will be able to transit in the area and this could

explain the positive effects in the short-run. To further support this, the effects found in

the medium run are negative, suggesting that the implementation of the Metrocable also

reduces the level of auto theft in the treated plus second and third neighbors. The effects

are smaller that those found for homicides, but they are increasing in absolute values as

one includes more neighbors suggesting similar behaviour to the one of homicides.

The bottom panel of Table 11 shows the results for thefts to commercial establish-

ments, which in conclusion provide no evidence of positive or negative effect of the Metro-

cable in the level of thefts in the short- or medium-run. One reason why there is no clear

effect of the Metrocable on thefts to commerce is that the different mechanisms work

in opposite directions. The improvement conditions of the neighborhoods would led to

increase commercial activity and not surprisingly increases in thefts to stores. However,

the increase in police presence would deter some criminal activity against commercial

establishments. Then, the final impact is ambiguous and in this case there is no evidence
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of a final impact. Another challenge of using the variable of thefts is the level of underre-

porting in the city. In Colombia, crimes related to theft are usually not reported to the

police unless the property stolen is highly valuable and there is not immediate danger of

retaliation to the owners by the perpetrators.

Trying to disentangle the mechanisms behind the effects found on those types of crimes

is much harder than the case of homicides. One of the assumptions to identify the mech-

anisms behind the effect of homicides is that captures not related to homicides can be

considered as a measure of police efficiency that is affected by the treatment but not

directly by the number of homicides. This relies on the fact that homicides’ offenders

respond more to criminal investigations than just police presence, which is not the case

for auto theft and other types of theft.
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Table 7: Summary statistics for the city and for the analytical regions (Treated+1st
Neighbors)

Variable Observations Statistic
Year

2004 2006 2012

City data
Homicides per 100,000 50.51 35.91 52.28
Captures per 100,000 315.03 212.33 225.57
% workers without retirement 70.39% 60.22% 42.95%
Average labor income $667,107 $542,474 $929,615
% Married 24.68% 24.50% 23.97%
% Youth 15-19 not in school 31.84% 28.17% 28.17%
% Secondary education 45.51% 41.01% 39.67%

Treated+1st Neighbors
Homicides per 100,000 17 Mean 54.18 20.58 25.97
Homicides per 100,000 17 Std. Dev. 28.53 22.93 23.77
Homicides per 100,000 17 Median 51.08 13.15 16.42
Captures per 100,000 17 Mean 194.28 72.65 118.63
Captures per 100,000 17 Std. Dev. 74.20 53.88 69.32
Captures per 100,000 17 Median 173.31 76.42 99.71
% workers without retirement 17 Mean 77.36% 74.97% 58.76%
% workers without retirement 17 Std. Dev. 7.77% 10.40% 7.77%
% workers without retirement 17 Median 78.80% 75.92% 59.94%
Average labor income 17 Mean $393,935 $386,661 $482,469
Average labor income 17 Std. Dev. $46,474 $52,504 $48,231
Average labor income 17 Median $395,443 $360,634 $479,387

No treated
Homicides per 100,000 159 Mean 58.56 35.41 51.57
Homicides per 100,000 159 Std. Dev. 111.57 42.58 61.88
Homicides per 100,000 159 Median 36.88 26.14 36.15
Captures per 100,000 159 Mean 505.94 253.90 305.05
Captures per 100,000 159 Std. Dev. 1726.42 888.07 700.51
Captures per 100,000 159 Median 217.66 91.10 155.97
% workers without retirement 159 Mean 69.35% 58.25% 40.83%
% workers without retirement 159 Std. Dev. 13.79% 13.54% 15.14%
% workers without retirement 159 Median 70.12% 56.89% 42.07%
Average labor income 159 Mean $789,289 $582,321 $1,000,106
Average labor income 159 Std. Dev. $582,971 $363,935 $736,281
Average labor income 159 Median $577,223 $475,269 $710,941

Source: author’s calculation
Note: complete summary statistics are available upon request.
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Table 8: Specification of capture variables

Capture variable Excluded types of captures

Cap(1) Kidnapping, illegal recruitment, terrorism,
drug-related, manslaughter and homicide

Cap(2) Illegal recruitment, terrorism, drug-related,
manslaughter and homicide

Cap(3) Terrorism, drug-related, manslaughter and
homicide

Cap(4) Drug-related crimes, manslaughter and
homicide

Cap(5) Manslaughter and homicide

Cap(6) Homicide
Total None

Source: author’s calculation
Note: the grouping of the captures for each definition were made according to the Medellin case. First,
we drop strict homicides, then all drug related crimes, and then all crimes related to illegal armed groups.
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Table 9: Direct, Indirect, and Total impacts of the Spatial Durbin Model: Monthly

1st Neighbors 2nd Neighbors 3rd Neighbors

Effect Treatment (t0 − 2006m12)

Direct -0.064 -0.156 -0.204 *
(0.16) (0.11) (0.11)

Indirect -0.431 * -0.528 *** -0.682 ***
(0.24) (0.16) (0.23)

Total -0.495 *** -0.684 *** -0.886 ***
(0.16) (0.17) (0.24)

Rho 0.037 *** 0.112 *** 0.138 ***
(0.01) (0.02) (0.03)

Direct Effect Treatment broken down by time

0-5 Months after -0.056 -0.073 -0.084
(0.09) (0.06) (0.05)

6-11 Months after -0.153 -0.134 *** -0.147 ***
(0.11) (0.05) (0.04)

12-17 Months after -0.046 -0.100 -0.136
(0.11) (0.09) (0.08)

6 month prior -0.142 -0.107 -0.102
(0.10) (0.08) (0.07)

Indirect Effect Treatment broken down by time

0-5 Months after -0.084 -0.106 -0.123
(0.14) (0.17) (0.22)

6-11 Months after -0.055 -0.217 -0.346 **
(0.20) (0.15) (0.17)

12-17 Months after -0.253 ** -0.323 *** -0.361 *
(0.12) (0.12) (0.19)

6 month prior 0.085 0.021 0.008
(0.12) (0.17) (0.22)

Total Effect Treatment broken down by time

0-5 Months after -0.139 * -0.179 -0.207
(0.08) (0.13) (0.20)

6-11 Months after -0.208 * -0.350 *** -0.493 ***
(0.12) (0.14) (0.16)

12-17 Months after -0.299 *** -0.423 *** -0.497 ***
(0.10) (0.12) (0.19)

6 month prior -0.057 -0.085 -0.094
(0.08) (0.14) (0.21)

Source: Author’s calculation.
Note:∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Models include time and neighborhoods fixed effects. Errors are
clustered at the neighborhood level.
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Table 10: Placebo test, conducted by creating a fake Metrocable line

Dependent: Treated Treated + Treated + Treated +
ln(Homicides+1) 1st Neighbors 2nd Neighbors 3rd Neighbors

Difference-in-Differences
Short Impact (2004-2006)

Total Impact -0.477 -0.172 -0.123 -0.218
(0.42) (0.34) (0.26) (0.20)

-37.95% -15.82% -11.54% -19.56%
Medium Impact (2004-2012)

Total Impact -0.661 ** -0.441 -0.312 -0.203
(0.30) (0.29) (0.24) (0.18)

-48.35% -35.65% -26.81% -18.33%

Spatial Difference-in-Differences
Short Impact (2004-2006)

Total Impact -0.524 -0.180 -0.129 -0.217
(0.36) (0.30) (0.24) (0.19)

-40.79% -16.50% -12.14% -19.54%
Medium Impact (2004-2012)

Total Impact -0.639 ** -0.462 * -0.340 -0.222
(0.30) (0.27) (0.23) (0.18)

-47.23% -37.01% -28.79% -19.93%

Number of treated
units

5 12 24 39

Number of control
units

171 164 152 137

Source: author’s calculation
Note:∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. The place for the fake Metrocable was chosen according to the
terrain’s slope, which is similar to the slope of the real Metrocable. Additionally, the distance between
stations is the same as that of the real one and of the complete length of the Metrocable.
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Table 11: Spatial DiD for other types of crimes

Dependent: Treated Treated + Treated + Treated +
1st Neighbors 2nd Neighbors 3rd Neighbors

ln(Auto Theft+1)
Short Impact (2004-2006)

Total Impact -0.502 0.318 0.502 ** 0.477 **
(0.35) (0.30) (0.25) (0.21)

-39.50% 37.44% 65.17% 61.05%
Medium Impact (2004-2012)

Total Impact -0.199 -0.278 -0.433 * -0.518 **
(0.28) (0.25) (0.25) (0.22)

-18.08% -24.28% -35.13% -40.44%

ln(Theft to Establishments+1)
Short Impact (2004-2006)

Total Impact -0.058 0.060 0.217 0.176
(0.57) (0.35) (0.29) (0.25)
-5.61% 6.20% 24.27% 19.23%

Medium Impact (2004-2012)
Total Impact -0.065 0.074 0.103 0.269

(0.54) (0.33) (0.28) (0.23)
-6.32% 7.68% 10.80% 30.81%

Number of treated
units

7 18 31 40

Number of control
units

219 208 195 186

Source: author’s calculation
Note:∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Percentages are calculated using the formula to approximate the
marginal impact of a dummy in a log functional form. The unit of analysis is the analytical region.
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