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Abstract

We propose a decomposition to distinguish among several notions of uncertainty such as

uncertainty about the probability distribution generating the data (broadly speaking, model-

misspecification) and uncertainty about the odds of the outcomes when the probability distribu-

tion is known (risk). We obtain various measures for these notions of uncertainty: some based

on past data (referred to as ex-post measures), while others are forward-looking in nature (re-

ferred to as ex-ante measures). We use the US Survey of Professional Forecaster’s (SPF) density

forecasts to quantify overall uncertainty as well as the evolution of the different components of

uncertainty over time and investigate their importance for macroeconomic fluctuations.
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1 Introduction

The recent financial crisis has renewed interest in measuring uncertainty and studying its macroe-

conomic effects. Stock and Watson (2012) suggest that liquidity-risk and uncertainty shocks are

among the most important factors explaining the decline in U.S. GDP during the Great Recession,

accounting for about two thirds of the GDP decline. Given that uncertainty is inherently unob-

served, this has sparked a wide research agenda on various measures of uncertainty. The empirical

literature has proposed several measures of uncertainty, but does not explain how they relate to

each other. However, as shown in Rossi and Sekhposyan (2015), the macroeconomic impact of the

various uncertainty measures can be very different from each other – though it is certaintly the

case that increased uncertainty, in general, has recessionary effects across the measures used in

the literature, these effects can be dramatically different in size and persistence. This observation

naturally leads to the question of what exactly the uncertainty indices measure and how they differ

from each other.

This paper attempts to study uncertainty in a unified framework. To do so, we introduce a

new measure of uncertainty that is based on forecast densities. We focus on forecast densities for

output growth to construct a measure of uncertainty that reflects business cycle uncertainty, as

business cycles can be proxied by real output growth (Stock and Watson, 1999).2 Our new measure

of uncertainty enables us to make two main contributions to the literature:

(i) The first main contribution is that we use our new measure of uncertainty to distinguish

between situations in which agents can accurately predict the odds of the events and situations

in which they cannot.3 The use of forecast densities is key for achieving this goal since it enables

quantification of uncertainty pertaining to situations where the odds of the outcomes are known,

yet inaccurate.

(ii) The second main contribution is that we provide a decomposition of our uncertainty mea-

sure into several components that are related to the uncertainty measures used in the literature.

This analysis sheds light on why the various measures of uncertainty differ from each other, and

which one is more appropriate to use depending on the goals of the researcher. Again, the use of

forecast densities is key to provide a comprehensive decomposition of uncertainty into its sources.

International Symposium in Computational Economics and Finance, the 1st Banque de France – Norges Bank

Workshop in Empirical Macroeconomics, the 24th Annual Symposium of the Society for Nonlinear Dynamics and

Econometrics, the 9th ECB Workshop on Forecasting Techniques, the IAAE 2016 Annual Conference, the 2016 CEF

Conference, the Chicago Fed, the 2017 ASSA Meetings, UCL, York, and Henan Universities for comments. Barbara

Rossi gratefully acknowledges financial support from the European Research Council (ERC) grant agreement No

615608.
2We also plot an index of inflation uncertainty to show another empirical example of our methodology.
3One could interpret these two as risk and Knightian uncertainty, respectively, where Knightian uncertainty is

defined as the agents’ inability to correctly characterize probability distributions.
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In particular, we distinguish between disagreement and aggregate uncertainty. In this respect our

contribution is similar to that of Lahiri and Sheng (2010), who consider the relationship between

aggregate uncertainty and disagreement over the business cycle, yet measure it in terms of uncer-

tainty and disagreement about the mean of the distribution, as opposed to the whole distribution.

Our approach further enables us to distinguish between measures of realized volatility, ex-ante

uncertainty (measured by volatility embedded in the survey forecasts) and bias. These various

components have all been used in the literature as measures of uncertainty. Our approach, on the

other hand, enables us to distinguish among them and understand their relationship with each

other.

Several of the components mentioned above have been of interest on their own. For example,

Patton and Timmermann (2010) study disagreement among professional forecasters, but do not

relate disagreement to measures of uncertainty, while Lahiri and Sheng (2010) consider the relation-

ship of aggregate uncertainty and disagreement over the business cycle, yet they do not distinguish

between risk and uncertainty. Jo and Sekkel (2017) and Jurado, Ludvigson and Ng (2015) use

the forecast-error-variance-based measures of uncertainty, while D’Amico and Orphanides (2014)

consider ex-ante measures of risk for inflation forecasting.

In addition to our main contributions, we also study how uncertainty and its sources resolve

over time as the agents get closer in time to the event. For example, Patton and Timmermann

(2010) study the resolution of disagreement over time; disagreement is only one of the components

of uncertainty: we investigate both how important disagreement is as a source of overall uncertainty

over time, as well as how the other components of uncertainty resolve over time. Furthermore, we

document the macroeconomic impact and transmission of the various sources of uncertainty that

we identify.

Lastly, one of the components of our decomposition measures how accurately the agents can

predict the odds of future events. Agents may not be able to accurately predict the odds of the

events for various reasons, among which: the possibility that they are not rational; the possibil-

ity that they have different information sets or different models; or the possibility that there is

Knightian uncertainty.

It is important to note that the existing literature has focused mainly on quantifying and

understanding uncertainty associated with point forecasts, for example by mapping uncertainty to

forecasters’ prediction errors. Though the individual point forecasts are on average consistent with

the weighted mean of their predictive probability distributions (see Lambros and Zarnowitz, 1987),

predictive distributions undoubtedly contain more information. Our goal is to take advantage of

the richer information content of probabilistic forecasts to distinguish among various sources of

uncertainty. Thus, an important difference between this paper and the existing literature is that

we use the probabilistic forecasts provided by the U.S. Survey of Professional Forecasters (SPF) to
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measure and decompose uncertainty.4 We focus mainly on output growth forecasts: since output

growth is indicative of business cycle fluctuations, our analysis provides an overall measure of

macroeconomic uncertainty; in addition, we also discuss inflation uncertainty measures that might

help understand why monetary policy affects short and long term interest rates differently (Wright,

2011).

The paper is structured as follows. The next two sections present our density-forecast-based

uncertainty measures and the decompositions we investigate in this paper. Section 4 discusses the

SPF data used for the empirical implementation, while Section 5 presents the empirical results. In

Section 6 we analyze the macroeconomic impact of the various sources of uncertainty. In Section 7

we extend our results to the analysis of inflation uncertainty, while Section 8 concludes.

2 An Uncertainty Index Based on Density Forecasts

The uncertainty index we propose in this paper measures the distance, on average across forecasters,

between the forecast distribution provided by an individual forecaster and the perfect forecast

corresponding to the realization, where both are represented by cumulative distribution functions

(CDFs). We denote by xt+h a random variable equal to one when the actual realization yt+h is

below some threshold r, and it is zero otherwise: xt+h (r) ≡ 1 (yt+h < r).5 Note that xt+h (r) is

defined over the support r, r ∈ R; by varying r, we can focus on different parts of the predictive

distribution. Let Ps,t+h|t(r) be the s− th forecaster’s predictive distribution that the event xt+h(r)

equals one, i.e. Ps,t+h|t(r) = P (xt+h(r) = 1|Ωs,t), where s = 1, ..., N and Ωs,t is the information

set available to forecaster s at time t. Thus, P (xt+h(r) = 1|Ωs,t) = P (yt+h < r|Ωs,t) is a CDF. We

measure the s-th forecaster’s uncertainty as the Mean Squared Forecast Error (MSFE) of his/her

probabilistic forecast about a particular outcome, i.e.:6

us,t+h|t (r) = EQ
(
xt+h (r)− Ps,t+h|t (r)

)2
, (1)

where Qt+h is the true cumulative density and EQ denotes the expectations with respect to true

probability density ( dQt+h)7 Note that Ps,t+h|t is potentially different from Qt+h. The latter is

the true probability distribution while the former is the forecaster’s probability distribution.

4Our analysis can be done with any predictive density. We choose to use predictive densities from the SPF since

they are produced by professional forecasters monitoring a wider range of indicators rather than a specific parametric

model. Furthermore, the SPF is known for its superior forecasting performance from a point forecasting point of view,

as shown in Giannone, Reichlin and Small (2008) and McCracken, Owyang and Sekhposyan (2015), among others.

Ganics, Rossi and Sekhposyan (2018) further investigate the informativeness of the SPF density forecasts (used in a

similar manner as in this paper), and find that it is competitive relative to a wide range of popular alternatives.
5This notation is consistent with Hersbach (2000).
6In the forecasting literature, this MSFE is known as the Brier score.
7To simplify notation, we assume in this section that N is fixed over time, although in the empirical application

we let N vary.
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Note that when the forecaster’s distribution is the same as the true distribution, i.e. when there

is no misspecification, then our proposed measure of uncertainty simplifies to a variance measure

typically used to characterize risk. More specifically, when Ps,t+h|t (r) = Qt+h,then

us,t+h|t (r)=
∑
x=0,1

(
xt+h (r)− Ps,t+h|t (r)

)2
Qt+h(r) (2)

=
(
1− Ps,t+h|t (r)

)2
Ps,t+h|t (r) + Ps,t+h|t (r)2

(
1− Ps,t+h|t (r)

)
(3)

=
(
1− Ps,t+h|t (r)

)
Ps,t+h|t (r) (4)

Similarly to Jo and Sekkel (2017), Jurado, Ludvigson and Ng’s (2015) measure, eq. (1) is a

MSFE; however, it is a MSFE applied to a forecast distribution for a given binary event. As such,

it measures the unpredictable component associated with each possible value in the domain of the

predictive distribution. In fact, us,t+h|t (r) compares the probability that forecaster s assigns to the

different states of nature with the realization, while error-based measures à la Jurado, Ludvigson

and Ng (2015) only compare the point forecast with the realization.8 Note that our measure of

uncertainty is based on predictive densities (instead of point forecasts) for two reasons. The first

is that our uncertainty measure attempts to capture distributional misspecification, which requires

to distinguish situations where agents can accurately predict the odds from situations where they

cannot. It would be thus impossible to attempt to capture such measure using point forecasts. The

second reason is that uncertainty related to quantiles other than the mean and the variance of the

distribution might be important, as pointed out in the recent literature on rare disasters, which

has been shown to resolve certain puzzles in the asset market literature (e.g. Barro, 2006 and Farhi

and Gabaix, 2016, among others) and have a close association with overall uncertainty (Orlik and

Veldkamp, 2015).

The overall measure of uncertainty is then defined as the average of the individual uncertainty

across forecasters:

ut+h|t (r) =
1

N

N∑
s=1

EQ
(
xt+h (r)− Ps,t+h|t (r)

)2
.

As mentioned above, by varying r we can explore measures of uncertainty in different parts of the

predictive density. We focus on an overall measure of uncertainty (which we label “Uncertainty”)

that integrates the squared probability forecast errors over the whole domain of the distribution,

8In fact, if one associates the value r ∈ R with the corresponding quantile of the distribution, our uncertainty

index measures an average squared error for that quantile.
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that is:9

Ut+h|t =

∫ +∞

−∞
ut+h|t (r) dr. (5)

A graphical interpretation is provided in Figure 1. In the figure, the actual realization equals −2,

denoted by a vertical bar on the left panel; the predictive density is the Normal distribution. The

panel on the right shows the CDF of the Normal distribution, as well as that of the perfect forecast,

evaluated at the realization yt+h = −2. Thus, the ideal CDF equals zero for r < yt+h(= −2) and

one otherwise. At the realization, the distance between the CDFs of the perfect forecast and the

forecasted distribution, xt+h(r) − Pt+h|t(r), is depicted by a hollow vertical bar. Our measure of

uncertainty in eq. (5) squares this measure and integrates it over the various values of r (and

averages it over time).

Note that, even if an individual is certain about a future event, i.e. he/she puts very high

probability on a particular future outcome, our definition (eq. 1) implies that there is uncertainty

if that event does not happen. Our definition of uncertainty in eq. 1 will capture that, and it

will, on average, be associated with situations where “individuals cannot estimate probabilities

reliably.”10 Thus, we distinguish between risk, where probabilities can be accurately assigned,

and misspecification, where the information is too imprecise to be adequately summarized by the

probabilities. In our context, if the forecaster’s predictive distribution is 1(y∗ < r) (and so the

forecaster is certain that y∗ will happen) and the true predictive distribution chosen by nature is

1(y∗∗ < r), then there is misspecification, which will affect our overall uncertainty measure since it

is one of its components.

Zarnowitz and Lambros (1987) also emphasize how uncertainty differs from disagreement. In

our framework, the diffuseness of a forecaster’s predictive density is not the only uncertainty in

the economy: that would be true if the forecasters’ predictive densities were accurately describing

the odds, i.e. when Ps,t+h|t (r) is the same as Qt+h (r). When they are not, that is when the

forecasters’ predictive densities are different from the nature’s predictive density, giving rise to

uncertainty associated with distributional misspecification. In other words, this additional source

of uncertainty cannot be something that the forecasters are aware of: it is uncertainty about events

that the forecasters could not have predicted by their probability distributions, so it will not show

up in the diffuseness of forecasters’ predictive densities.

9Our measure of uncertainty derives from the Continuous Rank Probability Score (CRPS), which is widely used

to assess the quality of forecast distributions in statistics. In fact, the CRPS is the integral of Brier scores (Hersbach,

2000, eq. 7). In this particular case it could be viewed as an average CRPS across the forecasters. Note that eq. (5)

is the negative of the CRPS, as defined in Gneiting and Raftery (2007). Note the similarity with the stochastic loss

distance in Diebold and Shin (2015), which is equivalent to an expected loss. Galvao and Mitchell (2019), instead,

use the difference between ex-ante and ex-post CRPS as a measure of Knightian uncertainty.
10Note that this definition of uncertainty is reminiscent of what kaynes calls Knightian uncertainty, cfr Kaynes

(1921, chp. 6).
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INSERT FIGURE 1

3 The Sources of Uncertainty

This section presents our main decompositions of uncertainty into its sources.

3.1 Aggregate Uncertainty and Disagreement

One of the goals of this paper is to link existing measures of uncertainty based on aggregate

data with uncertainty measures based on disagreement among forecasters. To do so, we define an

aggregate cumulative probability density (
{
Pt+h|t (r)

}
r∈R), which is related to the individual ones

(
{
Ps,t+h|t (r)

}
r∈R) by:

Pt+h|t (r) =
1

N

N∑
s=1

Ps,t+h|t (r) . (6)

The corresponding uncertainty measure for the aggregate predictive density is:

uAt+h (r) ≡
∫ (

xt+h (r)− Pt+h|t (r)
)2
dQt+h.

Appendix A shows that we can decompose the overall uncertainty measure as follows:

ut+h|t (r) =

∫ (
xt+h (r)− Pt+h|t (r)

)2
dQt+h +

∫
1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)2
dQt+h (7)

= uAt+h|t (r) + dt+h|t (r) , (8)

where dt+h|t (r) ≡ 1
N

N∑
s=1

∫ (
Pt+h|t (r)− Ps,t+h|t (r)

)2
dQt+h measures the disagreement between in-

dividual forecast densities and the aggregate forecast density, and it is similar to the disagreement

defined in Patton and Timmermann (2010) for point forecasts. Lahiri and Sheng (2010, eq. 18)

discuss a similar decomposition for point forecasts.

Note that the decomposition in eq. (8) holds for a particular threshold r, thus it accounts for a

forecast error associated with the binary outcome 1 (yt+h < r). The overall measure of uncertainty

accounts for uncertainty at all possible values of r by considering the integral of the decomposition

in eq. (8) over r. Thus, we have “Uncertainty” decomposed into “Aggregate Uncertainty” and

7



“Disagreement”:11

Ut+h|t ≡
∫ ∞
−∞

ut+h|t (r) dr =

∫ ∞
−∞

uAt+h|t (r) dr +

∫ ∞
−∞

dt+h|t (r) dr

≡ UAt+h|t︸ ︷︷ ︸
“Aggregate Uncertainty”

+ Dt+h|t︸ ︷︷ ︸
“Disagreement”

(9)

3.2 Uncertainty and Risk

As shown in Appendix A, we can further decompose the aggregate uncertainty, UAt+h|t (r) into com-

ponents that measure mean bias, dispersion of probability forecasts, realized risk and a covariance

term between the forecasted and the ideal distribution as follows:

uAt+h (r) = uAt+h (r) = V (xt+h (r)) + V ar(pt+h|t (r)) (10)

+
[
E
(
pt+h|t (r)

)
− E (xt+h (r))

]2 − 2Cov(xt+h (r)Pt+h|t (r)),

where E(.), V (.) and Cov(.) denote the expectation, variance and covariance under the true prob-

ability density, Qt+h. Since the covariance term turns out to be rather small empirically, we

summarize aggregate uncertainty with the following additive decomposition:

UAt+h|t≈ Bt+h|t︸ ︷︷ ︸
“Mean-Bias”

+ Vt+h|t︸ ︷︷ ︸
“Dispersion”

+ V olt+h|t︸ ︷︷ ︸
“(Realized) Risk”

(11)

where:

• Bt+h|t ≡
∫∞
−∞

([
E
(
Pt+h|t (r)

)
− E (xt+h (r))

]2)
dr, where E

(
Pt+h|t (r)

)
≡
∫
Pt+h|t (r) dQt+h

and E (xt+h (r)) ≡
∫
xt+h (r) dQt+h, is the mean squared bias of the forecast distribution;

• Vt+h|t ≡
∫∞
−∞ V (Pt+h|t (r))dr, where V (pt+h|t (r)) ≡

∫ ([
Pt+h|t (r)−

(∫
Pt+h|t (r) dQt+h

)]2)
dQt+h,

is the uncertainty about the ex-ante subjective probabilities in the aggregate distributional

forecast;

• V olt+h|t ≡
∫∞
−∞ V (xt+h (r)) dr, where V (xt+h (r)) ≡

∫ (
xt+h (r)−

∫
xt+h (r) dQt+h

)2
dQt+h,

represents the realized variance of the binary outcome, xt+h (r) ≡ 1 (yt+h < r), and thus

stands for the inherent risk in the data.

The three component decomposition in eq. (11) has an interesting interpretation. We view the

realized volatility component V olt+h|t as a measure of the underlying uncertainty in the data, and

11A reason why the aggregate probability distribution, measured with a simple average of the individual probability

distributions, is a good measure of aggregate uncertainty is the fact that, as in the context of point forecasts,

combinations constructed by simple averages typically result in more accurately calibrated densities. Furthermore,

the average of probability distributions is a measure widely used in a variety of central banks and policy institutions.
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thus a measure of realized risk. On the other end, we view the bias component Bt+h|t as a measure

of how distant the predictive density is from the perfect prediction on average, while the dispersion,

Vt+h|t, measures the variability in the predictive density. As we will show, Vt+h|t is empirically small,

so it can be ignored. The bias component, Bt+h|t, could have several causes: agents’ irrationality,

or agents using a misspecified model of the economy, or being subject to Knightian uncertainty.

We isolate the components that measure agents’ uncertainty about possible future events, given

the predictive distribution of those events, from uncertainty capturing the inaccuracy of the agents’

models and implied predictive distributions from the truth. In the context of this discussion, we

assume that disagreement across agents, which can arise due to many reasons such as informational

frictions, preferences, etc., is an artifact of misspecification. In general, the components Bt+h|t and

Dt+h|t capture these misspecifications. The realized variance or realized volatility, instead, is a

measure of risk. To summarize, we have the following decomposition:

Ut+h|t≈ V olt+h|t︸ ︷︷ ︸
“(Realized) Risk”

+ Bt+h|t +Dt+h|t︸ ︷︷ ︸
“Miscalibration Uncertainty”

. (12)

3.3 Ex-ante Vs. Ex-post Uncertainty

Our proposed measure of uncertainty, Ut+h|t, as well as aggregate uncertainty UAt+h|t, are con-

structed using realizations of the data. Thus, it is interesting to refine our measure by distinguishing

between an ex-ante component (that does not include the realizations) and an ex-post component

(which does). More insights on how the expected mean and the variance embedded in the fore-

cast distribution affect our measure of uncertainty can be obtained under additional assumptions.

Let the aggregate predictive distribution for the forecast of yt+h made at time t be Normal with

mean µt+h|t and variance σ2t+h|t and the data be i.i.d.12 We have the following “Ex-ante/Ex-post”

decomposition:

UAt+h|t =

∫ [
2σt+h|tφ

(
yt+h − µt+h|t

σt+h|t

)
+
(
yt+h − µt+h|t

)(
2Φ

(
yt+h − µt+h|t

σt+h|t

)
− 1

)]
︸ ︷︷ ︸

“Ex-post”

dQt+h (13)

−
σt+h|t√

π︸ ︷︷ ︸
“Ex-ante”

(14)

where φ (.) and Φ (.) denote the PDF and the CDF of the Normal distribution, respectively. The

proof is provided in Appendix A and follows Gneiting and Raftery (2007).13

12Since the data are assumed to be i.i.d. in this sub-section, we could omit the time subscripts; however, we decided

to keep them to make the notation consistent with the rest of the paper.
13Note that even if UA

t+h|t is the difference of two components, it is always positive; thus, the ex-post component

is always bigger than the ex-ante one.
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The rightmost component in eq. (13), σt+h|t/
√
π, is the only component that is not affected

by the realization, so we refer to it as the “ex-ante” measure of uncertainty. In fact, as the proof

suggests, this is the component that arises from the average distance of random draws from a given

predictive distribution. Moreover, it is a function of the standard deviation of the forecaster’s

density forecasts, and a common measure used in the uncertainty literature as a measure of ex-

ante uncertainty. Note that the ex-ante measure of uncertainty is simply σt+h|t/
√
π, which, under

Normality, is a monotone function of the width of the predictive distribution. Thus, the ex-ante

measure is linked to the inter-quantile range measure proposed by Zarnowitz and Lambros (1987),

among others.14

Note that, more generally, for any predictive distribution, the ”ex-ante” measure of uncertainty

is the same as
∫ +∞
−∞ E

[(
xt+h (r)− Ps,t+h|t (r)

)2 |Ωs,t

]
dr =

∫
Ps,t+h|t (r)

(
1− Ps,t+h|t (r)

)
dr.15 Note

that, from eqs. (11) and (13), we have that Ex-post ≈ Bt+h|t + Vt+h|t + V olt+h|t +Ex-ante. Thus,

the ex-post measure of aggregate uncertainty combines the bias component , Bt+h|t, realized risk

(measured by the volatility in the economy, V olt+h|t), ex-ante risk (measured by the variance of the

predictive densities of the forecasters, Ex-ante) and dispersion, Vt+h|t. Note the difference between

Vt+h|t and Ex-ante: the first measures the variability of the probability distribution, while the

second measures the width of the distribution at a particular point in time. Thus, if the aggregate

density forecast does not change over time, Vt+h|t would be zero. However, Ex-ante will not be

zero as long as the forecasters provide a distributional forecast.

We should note that there is a major difference between the two decompositions in that the

“Ex-ante”/“Ex-post” decomposition is written in terms of the moments of the original predic-

tive distribution, while the “Bias/(Realized) Risk” decomposition is in terms of binary outcomes

summarized by xt+h (r). As such, the latter decomposition could be applied to general situations

(general forms of distribution and non-i.i.d. data), while the former one relies heavily on the as-

sumption of Gaussianity and independence in the underlying predictive distribution. Ganics, et

al. (2019), D’Amico and Orphanides (2014) and Giordani and Soderlind (2003) provide empirical

support in favor of Gaussianity for the Survey of Professional Forecasters.

A general note that applies to all proposed decompositions is that the resulting components are

not orthogonal to each other. This is in line with the rest of the empirical literature which typically

finds that a variety of uncertainty measures, constructed from different sources and measuring

different aspects of uncertainty, are correlated with each other.

14For a Gaussian distribution, the inter-quantile range is 1.34σ.
15In fact, in the Not-for-Publication Appendix, we report results based on this alternative formula and show that

they are identical.
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4 The Data

We use density forecasts from the Survey of Professional Forecasters (SPF) to calculate our uncer-

tainty measures. The Federal Reserve Bank of Philadelphia provides the aggregate (mean proba-

bility distribution) forecasts, as well as the underlying disaggregate density forecasts of a panel of

professional forecasters.16 We use the real GNP/GDP growth density forecasts to extract measures

of macroeconomic uncertainty, as real GNP/GDP fluctuations are indicative of the state of the

business cycle, and therefore are representative of macroeconomic uncertainty (Stock and Watson,

1999).

In the SPF data set, forecasters are asked to assign a probability value (over pre-defined inter-

vals) to inflation and output growth for the current and the following (one-year-ahead) calendar

years. The growth rate is defined as the rate of change in the average GDP from one year to

another. The forecasters update the assigned probabilities for the current-year and the one-year-

ahead forecasts on a quarterly basis. Thus, by construction, SPF forecasters provide four quarterly

forecasts of the same target variable each year; this type of forecasts are typically referred to in the

literature as “fixed-event” or “moving-horizon” forecasts. Being fixed-event forecasts, their horizon

changes over the quarter. We use the method proposed by Dovern et al. (2012) to transform

the SPF fixed-event forecasts into fixed-horizon forecasts by constructing a weighted average of

the current-year and next-year forecasts. In detail, for each quarter the survey contains a pair of

“fixed-event” density forecasts for the current-year, which we label f̂FEt+k|t, and for the next-year,

which we label f̂FEt+k+4|t. The four-quarter-ahead (fixed-horizon) forecast at time t, which we label

f̂FHt+4|t, is calculated as the average of the two fixed event forecasts using weights that are propor-

tional to their share of the overlap with the forecast horizon. Let k denote the number of quarters

from time t until the end of the year. In quarter one, k = 4, while in quarter four, k = 1. Thus, for

example, in the third quarter of the year, the four-step-ahead fixed-horizon forecast overlaps with

the current year forecasts and next year forecasts 50% of the time, respectively. Thus, it would be

the weighted average of the two-fixed event forecasts with weights equal to 2/4 and 2/4. Thus, in

general, for k = 1, 2, 3, 4:

f̂FHt+4|t =
k

4
f̂FEt+k|t +

4− k
4

f̂FEt+k+4|t. (15)

Note that the literature suggest alternatives to this weighting, but only for point forecasts.

For instance, Knueppel and Vladu (2016) propose weights for aggregating the fixed-event point

forecasts which minimize the mean squared forecast error loss of the fixed-horizon forecast. This

methodology requires a researcher to take a stand on the data generating process and is not directly

applicable to our case of density weighting. It is important to note that our results are not driven

by the particular method that we use to transform fixed-event into fixed-horizon forecasts. Ganics,

16The composition of the forecasters can change over time.
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et. al. show that these forecasts result in competitve densities when applied to aggregate density

forecasts on average, they are also competitive relative to varoius parametric and non-parametric

alternatives. While we report our main results based on the procedure outlined above to use all the

available quarterly observations, we will also show results based on yearly fixed horizon forecasts

based only on the forecasts on the first quarter of the year, which are virtually identical.

INSERT FIGURE 2 HERE

Panels A and B in Figure 2 show the evolution of the current and next year densities over

time. The figures plot the mean as well as several quantiles of the distribution, together with the

realization. Panel C, on the other hand shows the fixed horizon forecast, eq. (15). The fixed-horizon

forecast is by construction less smooth than the fixed-event forecasts. However, both share the same

feature that ex-ante uncertainty was higher earlier in the sample, in the sense that both density

forecasts have a wider distribution prior to the mid-1980s relative to the later part of the sample;

this suggest that forecasters noticed the Great Moderation starting mid-1980s. There appears to be

no dramatic shift in the forecasted densities after the Great Recession. Some descriptive statistics

on the SPF distributions is provided in Appendix B.

The analysis of SPF probability distributions is complicated since the SPF questionnaire has

changed over time in various dimensions: there have been changes in the definition of the variables,

the intervals over which probabilities have been assigned, as well as the time horizon for which

forecasts have been made. To mitigate the impact of these problematic issues, we truncate the

data set and consider only the period 1981:III-2014:II.17

As noted, our uncertainty measure depends on realizations. The realized values of output growth

are from the real-time data set for macroeconomists, also available from the Federal Reserve Bank

of Philadelphia. We use the four-quarter-ahead growth rates of output and prices calculated from

the first release of the realization. For instance, in order to get the 4-quarter-ahead realization at

the start of our sample, 1981:III, we calculate the growth rate between 1982:III and 1981:III using

the 1982:IV vintage of the data.

The probability density of the data as well as expectations are estimated based on actual

realizations using a rolling window.

5 The Dynamics of Uncertainty over Time, and Its Sources

Figure 3, Panel A, shows the evolution of our estimated measure of uncertainty and its components,

aggregate uncertainty and disagreement, over time. The figure highlights two interesting facts:

17We focus on quarterly data. See instead Ferrara and Guérin (2015) for a high-frequency analysis of uncertainty

shocks.
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disagreement is, in magnitude, only a small portion of the overall measure of uncertainty;18 in

addition, it is trending down until the financial crisis of 2007; this is in sharp contrast with the

overall measure of uncertainty, as well as aggregate uncertainty, which have clear spikes in the early

1980s, early 2000s and the financial crisis. Thus, using disagreement as a measure of uncertainty

may result in underestimating both the overall level of uncertainty in the economy as well as

its fluctuations over time, as currently the level of disagreement is similar to what it was in the

mid-1990s and lower than its value in the late 1980s. In addition, most would agree that the

early 2007-2008 were probably the most uncertain times in the latest decades; while disagreement

increases during that period, it peaks only much later, after the end of the recession, in 2009. Thus,

disagreement (i.e., the component of Knightian uncertainty due to disagreement among forecasters)

may not be a timely measure of uncertainty. Note that this result is not an artifact of constructing

disagreement measures based on density forecasts: Sill (2014, Figure 1) shows a similar delay.

In particular, Sill (2014) plots the dispersion of the mean one-year-ahead real GDP growth rate

forecasts measured by the inter-quantile range: the first peak in the disagreement does not appear

until the middle of the recession.

INSERT FIGURE 3 HERE

Panel C in Figure 3 depicts the decomposition of aggregate uncertainty into the various com-

ponents in decomposition (10), while Panel B, plots overall uncertainty and its decomposition into

Knightian uncertainty and realized risk (eq. 12). The figures suggest that realized risk (measured

by V olt+h|t) was an important component of uncertainty throughout the last three decades, as was

Knightian uncertainty, measured by the mean bias component. Some differences between the two

are important to note, however. The realized risk component was high during the latest financial

crisis, and sharply decreased as soon as the recession was over; Knightian uncertainty (measured

by Bt+h|t +Dt+h|t in Panel B, and its largest component, the mean bias Bt+h|t, depicted in panel

C) remained persistently high even after the end of the crisis. Thus, overall uncertainty remained

persistently high after the end of the latest recession mostly because of forecasters’ errors as op-

posed to risk being high. The role of dispersion in probability forecasts (Vt+h|t) as well as the

co-movement between prediction and realization (Covt+h|t) are negligible for the cyclical dynamics

of aggregate uncertainty.

Turning to the ex-ante and ex-post components, depicted in Panel D of Figure 3 together with

the aggregate uncertainty measure (UAt+h|t), it is interesting to note that ex-ante uncertainty is

quite constant in the 1980s and up to 2007. Thus, movements in uncertainty during that period

18The magnitudes of Uh+h|t and UA
h+h|t are reported on the y-axis on the left while that of disagreement is reported

on the y-axis on the right. The magnitude of disagreement is small. This is due to the fact that, unlike the existing

measures of disagreement on point forecasts, we measure disagreement in probabilities, not in the mean forecast.
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cannot be attributed to changes in ex-ante uncertainty. Ex-ante uncertainty does increase during

the latest recession, but only towards its end, and spikes much later than the peak of the recession.

This suggests that measures of volatility in the forecasters’ predictive distributions are, themselves,

not timely measures of uncertainty.

Panels E, F and G depict the same results but using only fixed horizon forecasts in the first

quarter in the year, thus sampling at the yearly frequency. In other words, we avoid Dovern et al.’s

(2012) procedure although this considerably shortens the number of available observations. The

figures show that our empirical results based on quarterly observations (interpolated using Dovern

et al.’s (2012) procedure) are not driven by the specific methodology that we used to obtain the

fixed horizon forecasts.

Finally, it is also of interest to investigate how the various components of uncertainty evolve as

the forecasters get closer in time to the realization date, that is, as the forecast horizon becomes

shorter. We separately consider forecasts for h = 1, 2, ..., 7, 8 and compare them with the fixed-

event realization. Both uncertainty as well as aggregate uncertainty decrease as the forecast horizon

increases (Panel A in Figure 4, top left and right graphs). It may seem counter-intuitive that

uncertainty decreases at longer horizons; to understand why, we examine its components. Clearly,

disagreement decreases as forecasters get closer to the realization: in fact, disagreement decreases on

average as the horizon decreases (cfr. bottom graph in Figure 4, Panel A). This finding is reassuring,

as it is reminiscent of what Patton and Timmermann (2010) discovered for point forecasts, and

our results show that similar results hold for disagreement calculated on density forecasts. The

mean bias also decreases as the horizon decreases (Panel B in Figure 4). On the other hand, the

dispersion of the density forecasts increases, thus increasing the aggregate uncertainty. The realized

variance and covariance are constant over the horizons, and the latter hovers around zero.

INSERT FIGURE 4 HERE

The most striking patterns are displayed by ex-ante and ex-post uncertainty, depicted in Figure

4, Panel C. Clearly, ex-ante uncertainty decreases monotonically as the forecast horizon decreases;

that is, forecasters’ predictive densities become more spread out when the forecast horizon increases,

thus reflecting more uncertainty in the economy when looking at events that are further in the

future. However, there is no clear pattern in ex-post uncertainty. This means that, even though the

forecasters’ predictive densities become tighter as the realization gets closer in time, the uncertainty

in the actual realizations does not diminish, as the size of the forecast errors does not diminish with

the horizon. We present detailed empirical evidence that this is indeed the case in Section A.6 in

the Not-for-Publication Appendix, where we plot the actual predictive densities and realizations

across horizons at several points in time.

Comparing the evolution of the ex-ante uncertainty in Panel C and the dispersion of the aggre-
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gate predictive density, Vt+h|t in Panel B, we note that, although forecasters, on average, become

less confident about the future as the forecast horizon increases, their views about uncertainty

does not seem to be updated often for forecasts that are further in the future, thus resulting in

the low variability of the predictive distribution over time. Moreover, as the distribution becomes

more spread out with the forecast horizon, it has a higher chance of including the realization, thus

resulting in a decline in the aggregate and overall uncertainty.

6 Understanding the Measures of Uncertainty in the Literature

and Their Macroeconomic Effects

In this section, we use our decomposition to shed some light on why existing measures of uncer-

tainty differ from each other. Understanding why they differ provides important insights on which

measure is the most appropriate for a particular analysis. To achieve this goal, in this section we

will first quantify the correlation of existing measures of uncertainty with the components in our

decomposition; then, we will perform VAR analyses that separately include each of the uncertainty

measures in a VAR. Such VARs are typically estimated in the existing literature, where different

papers use different measures of uncertainty. We do a similar exercise to answer the following ques-

tions: what happens if one replaces the uncertainty measure used in the existing studies with one

of our components? which one of our components leads to the largest business cycles fluctuations?

In other words, our exercise is not meant to capture shocks in a component of our uncertainty

measure independently of another one: it simply investigates the effects of uncertainty when it is

measured using a particular component from our decomposition. This exercise is interesting since,

as we argue, the various uncertainty measures existing in the literature capture different types of

uncertainty and our goal is to understand what these different measures stand for. Thus, replicat-

ing the exercises conducted in the literature with the various measures in our decomposition taken

one-at-a-time is useful to interpret results obtained in the literature.

The top panel in Figure 5 plots Jurado, Ludvigson and Ng’s (2015) uncertainty measure together

with Baker, Bloom and Davis’ (2016) index.19 Both indices are standardized for comparison. The

figure shows that the former is overall smaller than the latter until 1995, then it becomes overall

bigger, and in particular spikes up earlier than the latter during the latest financial crisis of 2007-

2008. The lower panel plots the decomposition of our aggregate uncertainty index into ex-ante and

ex-post components. The ex-post component is lower than the ex-ante component up to mid-1992,

then it becomes systematically larger, and spikes up around 2007-2008, behaving similarly to how

the Jurado, Ludvigson and Ng’s (2015) behaves relative to Baker, Bloom and Davis (2016). Thus,

it seems that the Baker, Bloom and Davis (2016) uncertainty measure is driven more by ex-ante

19We are using Jurado, Ludvigson and Ng’s (2015) one-year-ahead uncertainty index.
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uncertainty, while the Jurado, Ludvigson and Ng (2015) uncertainty measure is clearly affected by

ex-post uncertainty, namely uncertainty due to misspecification in the predictions.

INSERT FIGURE 5 HERE

To estimate the effects of the uncertainty and its components on the economy, we estimate a

Vector Autoregression (VAR) that includes the specific uncertainty indices (included one at a time),

(the log of) employment, the Federal Funds rate and (the log of) stock prices.20 Importantly, note

that the uncertainty indices that depend on realizations are lagged h-periods, to address potential

endogeneity related to just the timing of the uncertainty variables that use ex-post data. Note that,

when lagged, our four-quarter-ahead uncertainty index is an index based on the nowcast (according

to Dovern’s procedure).

Identification is achieved via a Cholesky procedure, which follows the order in which the vari-

ables are listed. The variables are similar to those in Baker, Bloom and Davis (2016), although ours

is at the quarterly frequency. We order the variables as in Jurado et al.’s (2015) benchmark speci-

fication, i.e. from slow to fast moving, except that we order uncertainty first. For completeness, we

investigate the robustness of our results in a larger VAR in the Not-for-Publication Appendix. To

better interpret and compare the magnitude of the effects of the uncertainty indices, the uncertainty

indices are standardized by their own means and variances.

Panel A in Figure 6 shows the effects of our uncertainty index on the economy. Clearly, an

increase in uncertainty has recessionary effects: both GDP and employment decrease, as well as the

interest rate and the S&P 500. Panels B and C describe the effects of each of the components in

the decomposition. Panel B shows the effects of a shock to aggregate uncertainty, which is in line

with that of uncertainty since aggregate uncertainty is the main determinant of the total. Panel

C focuses on disagreement; it also decreases employment although by a smaller magnitude; at the

same time, it has no significant effects on the remaining variables.

INSERT FIGURE 6 HERE

Figure 7 shows the effects of uncertainty measured by mean bias, realized volatility and the

dispersion in the probability forecasts. The mean bias and realized volatility appear to have re-

cessionary effects (Panels B and D); dispersion in the density forecasts (Panel C) drives down

employment, while it increases stock prices and output. It is important to note that, in magnitude,

the mean bias and realized volatility have similar macroeconomic impact, though these effects are

statistically significant for the first but not for the second.

INSERT FIGURE 7 HERE
20Given that our uncertainty index is based on GDP forecasts, we include employment as a proxy for real variables

instead of GDP.
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The effects of ex-ante and ex-post uncertainty on other macroeconomic variables are depicted

in Figure 8. They both lead to decreases in employment, interest rates and stock prices of similar

magnitude; an increase in ex-ante uncertainty, however, has a small negative impact effect on GDP,

while the medium run effect is positive and small, and the longer run effect is again negative; the

effects of ex-post uncertainty on GDP are, instead, negative and large.

INSERT FIGURE 8 HERE

Figure 9 compares the results with those in the existing literature; the latter are also obtained

by estimating VARs that include (the log of) real GDP, (the log of) employment, the Federal

Funds rate, (the log of) stock prices, and the alternative uncertainty index, which is demeaned and

standardized as well. The alternative uncertainty indices that we explore (one-at-a-time) include:

Bloom (2009), labeled “VXO”; Baker et al.’s (2016) policy uncertainty index, labeled “BBD”;

Jurado, Ludvigson and Ng (2015), labeled “JLN”; and Scotti’s (2016) macroeconomic surprise-

based uncertainty index.

INSERT FIGURE 9 HERE

Panel A in Figure 9 shows that the VXO and BBD indices have similar effects on the economy,

while an increase in uncertainty measured by the Jurado, Ludvigson and Ng’s (2015) index are

qualitatively similar but much larger in magnitude, and, thus, are similar to the effects that we

uncover for our ex-post index. The effects of Scotti’s index are again recessionary for GDP, em-

ployment and stock markets, and lead to an increase in the interest rate. The effects of this index

are small and overall insignificant. The effects of our realized volatility measure are more similar

to those of the VXO.

7 Inflation Uncertainty

In this last section, we focus on inflation uncertainty. Understanding inflation uncertainty is impor-

tant for several reasons. High uncertainty about future inflation, possibly spurred by high inflation

itself, may have effects on real variables (Ball, 1990). For example, Gurkaynak and Wright (2012)

and Wright (2011) have argued that inflation uncertainty matters because it might help explain

the behavior of bond risk premia, and therefore help economists understand why monetary policy

differently affects short term rates (the instrument of monetary policy) and the long term rate

(the rate that is of interest for investors and consumers). In fact, Wright (2011) has found a pos-

itive and strong relationship between long-term inflation uncertainty and bond term premia in a

large cross-section of countries. The important policy implication of Wright’s (2011) findings is

the possibility that eliminating long-run inflation uncertainty might facilitate the transmission of
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monetary policy to the economy. Also, D’Amico and Orphanides (2014) consider ex-ante measures

of risk for inflation forecasting and Caporale et al. (2012) have shown that inflation uncertainty

has decreased in the Euro area, possibly due to the fact that inflation decreased steadily since the

beginning of the Euro.

Figure 10 depicts our measure of uncertainty (Panel A) and the decompositions (Panels B,C).

Inflation uncertainty was high in the early 1980s, possibly due to oil price shocks, and decreased

substantially afterwards; typically, it tends to be high around recessions. The behavior over time

of uncertainty is very different from that of disagreement, which instead does not necessarily peaks

around recession times. While the volatility component is pretty constant over time, the major-

ity of the fluctuations in aggregate inflation uncertainty are associated with the bias component

and the ex-post components; interestingly, ex-ante inflation uncertainty seems to have decreased

monotonically since the early 1980s.

Our empirical results suggest that the most effective policies to decrease inflation uncertainty

are those that influence ex-post uncertainty. In other words, policies should aim at ensuring that

ex-post realizations of inflation are in line with the average expected inflation (for example, by

minimizing shocks to inflation), not those that decrease the agents’ ex-ante uncertainty (i.e. not

those that affect the agents’ expectation formation process), although the latter can also be effective.

INSERT FIGURE 10 HERE

8 Conclusion

This paper proposes an alternative measure of uncertainty based on survey density forecasts. The

new measure has the advantage that it can be used to decompose uncertainty into components

that can help researchers understand what existing uncertainty indices measure. In particular, our

measure of uncertainty can be decomposed into Knightian uncertainty and realized risk. The latter

inherently measure different things, have specific business cycle dynamics and different macroeco-

nomic impact. Moreover, these sources of uncertainty resolve differently across prediction horizons.

Given that our proposed uncertainty index is an ex-post measure of uncertainty, we also de-

compose it into a component that only reflects ex-ante uncertainty, which we can relate to existing

measures of uncertainty based on the inter-quantile spread of the forecast distribution, and a com-

ponent that measures ex-post uncertainty. Our analysis uncovers that some existing measures of

uncertainty capture ex-ante uncertainty (such as existing measures of uncertainty based on policy

uncertainty), while others capture ex-post uncertainty.

We also investigate the effects of the sources of uncertainty on the macroeconomy. We find

that, while an increase in overall uncertainty has recessionary effects, the effects of the various

components of uncertainty differ. For example, disagreement is only a small portion of the overall
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uncertainty, and may both underestimate and lag the actual degree of uncertainty in the economy;

thus it may not be a timely measure of uncertainty. In addition, both realized risk and Knightian

uncertainty were important components of uncertainty over the last three decades, although the

former sharply decreased as soon as the financial recession of 2007-2008 ended while the latter

remained high even after the end of the crisis. This suggests that the high overall uncertainty that

persisted after the end of the latest recession was mostly due to agents’ being unable to assign the

correct probability to the economic outcomes and disagreeing on them, rather than because risk

was high. Simulation results from a stylized macroeconomic model suggest that the behavior of

uncertainty and its components is largely reconcilable with a macroeconomic model with ambiguity.

Ambiguity can be a source of its own in increasing the overall level of uncertainty; alternatively, it

can also act as an amplifying mechanism for the increase in the level of risk.
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9 Tables and Figures

Figure 1: Brier Score Illustration
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Note: The figure on the left shows the pdf of the predicted distribution together with the realization,

yt+h = −2. On the right we have the CDFs of the predicted and ideal distribution for the realization. The

area between them (denoted by the hollow vertical bar) highlights the distance between the two.
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Figure 2. The Survey of Professional Forecasters Data

Panel A: Current Year Forecasts Panel B: Next Year Forecasts
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Panel C: Fixed-horizon Forecasts
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Note: The figure shows the means and quantiles of the SPF’s current year and next year predictive

densities for GDP growth, as well as the constructed fixed horizon four-step-ahead predictive density. The

four-step-ahead density is constructed from the SPF current year and next year density forecasts based on

eq. (15). Panel C also shows the realized value of the GDP growth.
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Figure 3: Decomposing Uncertainty

Panel A: Uncertainty, Aggregate Uncertainty and Disagreement
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Figure 3: Decomposing Aggregate Uncertainty

Panel B: Decomposition in Eq. (12)
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Figure 3: Decomposing Aggregate Uncertainty

Panel C: Decomposition in Eq. (11) Panel D: Ex-Ante Vs. Ex-Post
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Note: Panel A of Figure 3 depicts the evolution of uncertainty, aggregate uncertainty and disagreement

(eq. 9) over time. Panel B shows the evolution of the components of aggregate uncertainty based on eq.

(12). Panels C and D show the evolution of the components of aggregate uncertainty based on eq. (11)

and eq. (13), respectively. Results are based on quarterly data based on fixed horizon forecasts obtained by

Dovern et al.’s (2012) procedure.

Figure 3: Decomposing Uncertainty

Panel E: Uncertainty, Aggregate Uncertainty and Disagreement
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Figure 3: Decomposing Aggregate Uncertainty

Panel F: Knightian Uncertainty Vs. Risk Panel G: Ex-Ante Vs. Ex-Post
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Note: Panel E of Figure 3 depicts the evolution of uncertainty, aggregate uncertainty and disagreement

(eq. 9) over time. Panels F and G show the evolution of the components of aggregate uncertainty based

on eq. (11) and eq. (13), respectively. Results are based on quarterly data based on fixed horizon forecasts

using only the first quarter of the year.
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Figure 4: Decomposition of Uncertainty Across Horizons
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Panel C: Ex-Ante Vs. Ex-Post
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Note: Panel A shows uncertainty, aggregate uncertainty and disagreement over time. Panels B and C

show the components in decompositions in eqs. (11) and (13), respectively.
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Figure 5. Comparison of Uncertainty Measures
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Note: The figure compares the Jurado, Ludvigson and Ng (2015) and Baker, Bloom and Davis (2016)

uncertainty indices (top panel) with the ex-ante and ex-post components of our uncertainty measure, eq.

(13), depicted in the bottom panel.
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Figure 6. The Effects of Uncertainty on the Economy

Panel A: Uncertainty Panel B: Aggregate Uncertainty
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Panel C: Disagreement
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Note: The figure shows the impulse responses of uncertainty, aggregate uncertainty and disagreement

shocks. The components are calculated as in eq. (9) All uncertainty measures have been standardized.
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Figure 7. The Effects of Uncertainty on the Economy

Panel A: Mean Bias Panel B: Realized Volatility
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Panel C: Ex-Post Uncertainty Panel D: Ex-Ante Uncertainty
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Note: The figure shows the impulse responses of the aggregate uncertainty components: mean bias

(Panel A); realized risk measures (Panel B) – both based on eq. (11); ex-ante (Panel C) and ex-post (Panel

D) measures of uncertainty based on eq. (13). The figure also show the 68% (dashed and dotted lines) and

90% (dotted lines) confidence bands based on Kilian’s (1999) bootstrap with 500 replications.
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Figure 9. The Effects of Uncertainty on the Economy - Alternative Measures

Panel A: VXO Panel B: BBD
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Panel C: JLN Panel D: Scotti
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Note: The figure shows the impulse responses for the following uncertainty measures: VXO, JLN, BBD

and Scotti. All uncertainty measures have been standardized.
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Figure 10: Decomposing Inflation Uncertainty
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Figure 10: Decomposing Aggregate Inflation Uncertainty

Panel B: Knightian Uncertainty Vs. Risk Panel C: Ex-Ante Vs. Ex-Post
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Note: Panel A depicts the evolution of uncertainty, aggregate uncertainty, as well as disagreement (eq.

9) over time. Panels B and C show the evolution of the components of uncertainty based on eq. (11) and

eq. (13), respectively.
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Appendix A. Proofs
The appendix provides the proofs for the results in the paper. For simplicity, we write the proof

for the unconditional expectation.

Proof of Eq. (8).∫ [
1

N

N∑
s=1

[
xt+h (r)− Ps,t+h|t (r)

]2]
dQt+h

=

∫ [
1

N

N∑
s=1

[
xt+h (r)− Pt+h|t (r) + Pt+h|t (r)− Ps,t+h|t (r)

]2]
dQt+h

=

∫ (
1

N

N∑
s=1

[(
xt+h (r)− Pt+h|t (r)

)2
+ 2

(
xt+h (r)− Pt+h|t (r)

) (
Pt+h|t (r)− Ps,t+h|t (r)

)])
dQt+h

+

∫ (
1

N

N∑
s=1

[(
Pt+h|t (r)− Ps,t+h|t (r)

)2])
dQt+h

=

∫ [
1

N

N∑
s=1

(
xt+h (r)− Pt+h|t (r)

)2]
dQt+h

+ 2

∫ [
1

N

N∑
s=1

(
xt+h (r)− Pt+h|t (r)

) (
Pt+h|t (r)− Ps,t+h|t (r)

)]
dQt+h

+

∫ [
1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)2]
dQt+h

=

∫ [(
xt+h (r)− Pt+h|t (r)

)2]
dQt+h

+ 2

∫ [(
xt+h (r)− Pt+h|t (r)

) 1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)]
dQt+h

+

∫ [
1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)2]
dQt+h

=

∫ [(
xt+h (r)− Pt+h|t (r)

)2]
dQt+h

+ 2

∫ [(
xt+h (r)− Pt+h|t (r)

)(
Pt+h|t (r)− 1

N

N∑
s=1

Ps,t+h|t (r)

)]
dQt+h

+

∫ [
1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)2]
dQt+h

=

∫ [(
xt+h (r)− Pt+h|t (r)

)2]
dQt+h + 0 +

∫ [
1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)2]
dQt+h.
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Proof of Eq. (10).

uAt+h (r) ≡
∫ (

xt+h (r)− Pt+h|t (r)
)2
dQt+h

=

∫ [
xt+h (r)−

(∫
xt+h (r) dQt+h

)
+

(∫
xt+h (r) dQt+h

)
− Pt+h|t (r)

]2
dQt+h

=

∫ (
xt+h (r)−

∫
xt+h (r) dQt+h

)2

dQt+h +

∫ (∫
xt+h (r) dQt+h − Pt+h|t (r)

)2

dQt+h

+ 2

∫ [(
xt+h (r)−

∫
xt+h (r) dQt+h

)(∫
xt+h (r) dQt+h − Pt+h|t (r)

)]
dQt+h

= V (xt+h (r)) +

∫ (∫
xt+h (r) dQt+h − Pt+h|t (r)

)2

dQt+h − 2Cov(xt+h (r)Pt+h|t (r)),

where the last line follows from the fact that

2

∫ [(
xt+h (r)−

∫
xt+h (r) dQt+h

)(∫
xt+h (r) dQt+h − Pt+h|t (r)

)]
dQt+h

= 2

∫ [
xt+h (r)

(∫
xt+h (r) dQt+h

)
− xt+h (r)Pt+h|t (r)

−
(∫
xt+h (r) dQt+h

)2
+ Pt+h|t (r)

∫
xt+h (r) dQt+h

]
dQt+h

= 2

∫ [
Pt+h|t (r)

∫
xt+h (r) dQt+h − xt+h (r)Pt+h|t (r)

]
dQt+h

= 2

[(∫
Pt+h|t (r) dQt+h

)(∫
xt+h (r) dQt+h

)
−
(∫

xt+h (r)Pt+h|t (r) dQt+h

)]
≡ −2Cov(xt+h (r)Pt+h|t (r)).

Furthermore, note that
∫ (∫

xt+h (r) dQt+h − Pt+h|t (r)
)2
dQt+h =

∫ ((∫
Pt+h|t (r) dQt+h

)
−
(∫
xt+h (r) dQt+h

))2
dQt+h

+V (Pt+h|t (r)). The latter result follows from noting that:∫ (∫
xt+h (r) dQt+h − Pt+h|t (r)

)2

dQt+h

=

∫ ([
Pt+h|t (r)−

(∫
Pt+h|t (r) dQt+h

)
+

(∫
Pt+h|t (r) dQt+h

)
−
(∫

xt+h (r) dQt+h

)]2)
dQt+h

= V ar(Pt+h|t (r)) +

∫ ((∫
Pt+h|t (r) dQt+h

)
−
(∫

xt+h (r) dQt+h

))2

dQt+h

+ 2

∫ [
Pt+h|t ( r)−

( ∫
Pt+h|t ( r) dQt+h

)]
×

×
[(∫

Pt+h|t (r) dQt+h

)
−
(∫

xt+h (r) dQt+h

)]
dQt+h

= V ar(Pt+h|t (r)) +

∫ ((∫
Pt+h|t (r) dQt+h

)
−
(∫

xt+h (r) dQt+h

))2

dQt+h

≡ V ar(Pt+h|t (r)) +
[
E
(
Pt+h|t (r)

)
− E (xt+h (r))

]2
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since 2
∫ [
Pt+h|t ( r)−

( ∫
Pt+h|t ( r) dQt+h

)] [(∫
Pt+h|t (r) dQt+h

)
−
(∫
xt+h (r) dQt+h

)]
dQt+h =

2
[(∫

Pt+h|t (r) dQt+h
)
−
(∫
xt+h (r) dQt+h

)] ∫ [
Pt+h|t ( r)−

( ∫
Pt+h|t ( r) dQt+h

)]
dQt+h = 0.

Proof of Eq. (13). Our measure of uncertainty is the negative of the expectation of the

CRPS (Gneiting and Raftery, 2007). Note that CRPS(F, yt+h) = −
∫∞
−∞(F (r)−1{yt+h < r})2dr =

−UAt+h, where F (r) is the aggregate predictive distribution. Let G(r) denote the ideal distribution,

i.e. G (r) = 1{yt+h < r}. The distributions are conditional distributions, but for notational

simplicity we omit the conditionality. Then by Lemma 2.2 of Baringhaus and Franz (2004), we have

U
A
t+h =

∫∞
−∞(F (r)−1{yt+h < r})2dy = E|Y1,t+h−y1,t+h|− 1

2E|Y1,t+h−Y2,t+h|−
1
2E|y1,t+h−y2,t+h|,

where Y1,t+h and Y2,t+h are i.i.d draws from F , while y1,t+h and y2,t+h are i.i.d. draws from G (r),

and both of these variables have finite expectations. Given Lemma 2.1 of Baringhaus and Franz

(2004), E|y1,t+h−Y1,t+h| =
∫∞
−∞ F (r)(1−G(r))dr+

∫∞
−∞G(r)(1−F (r))dr. Now, for y1,t+h and y2,t+h,

we have E|y1,t+h − y2,t+h| = 2
∫∞
−∞G(r)(1−G(r))dy = 2

∫∞
−∞ 1{yt+h < r}(1− 1{yt+h < r})dy = 0,

where the last equality follows from the fact that, for a particular value of r, either 1{yt+h < r} or

1− 1{yt+h < r} will be zero, and, thus, the product will be zero. Therefore,

U
A
t+h =

∫ ∞
−∞

(F (r)− 1{yt+h < r})2dr = E|Y1,t+h − y1,t+h| −
1

2
E|Y1,t+h − Y2,t+h|. (16)

This means we can rewrite aggregate uncertainty as the sum of expected absolute distance measures

of random variables coming from the predictive distribution, and that coming from the predictive

distribution and the true distribution which generates the realization. If F (r) is the Gaussian

distribution, i.e. if Yt+h ∼ iidN(µt+h, σ
2
t+h), then by the property that the difference of the i.i.d

normal random variables is distributed normally (in this case centered around zero with a variance

of 2σ2t+h), and the fact that the absolute value of a mean zero random Normal variable has a

half-normal distribution with mean
2σt+h√

π
, we have

1

2
E|Y1,t+h − Y2,t+h| =

σt+h√
π
. (17)

To obtain E|Yt+h−yt+h|, we use the properties of Dirac delta function. We denote the PDF of yt+h

by a Dirac delta function δ(r − yt+h). From the properties of the Dirac function, E(yt+h) = yt+h

and V ar(yt+h) = 0. Then, Y1,t+h−y1,t+h ∼ N(µt+h−yt+h, σ2t+h). By property of the folded Normal

distribution, we have:

E|Yt+h − yt+h| = σt+h2ϕ

(
−µt+h − yt+h

σt+h

)
+ (µt+h − y1,t+h)

(
1− 2Φ

(
−µt+h − yt+h

σt+h

))
. (18)

Substituting (18) and (17) into (16), we get the result:

U
A
t+h =

[
2σt+hφ

(
yt+h − µt+h

σt+h

)
+ (yt+h − µt+h)

(
2Φ

(
yt+h − µt+h

σt+h

)
− 1

)]
︸ ︷︷ ︸

“Ex-post”

− σt+h√
π︸ ︷︷ ︸

“Ex-ante”

, (19)
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and UAt+h =
∫
U
A
t+hdQt+h.

Appendix B. Data
As the main text indicates, the fixed-horizon forecasts are constructed as a weighted average

of the current and next year forecasts. Figure A1 shows the number of forecasters that provided

forecasts for both, current year and next year, as well as the number of forecasters that have

provided forecasts for either one of the years, but not both. As the figure shows, the latter group

is not large. By limiting our attention to forecasters that provide forecasts for both years we

loose 10% of the total number of observations. The maximum per period loss amounts to 30%

of forecaster observations. In our sample we have 239 unique forecasters. Out of those, 108 have

been providing forecasts more than twelve times. The sample has 31 forecasters that have provided

density forecast for 8 or more but less than 12 times, while 37 of them provided forecasts for 4

times and more, but less than 8 times. Thus, the majority of the forecasters in our sample are

repeated forecasters, which increases the confidence that our results are not driven by outliers.

D’Amico and Orphanides (2014) highlight the role of approximations in individual predictive

distributions. The idea is that many forecasters tend to put a lot of weight on a few bins and zeros

on other bins. D’Amico and Orphanides (2014) argue that this could be forecasters’ true perceived

uncertainty. However, as they suggest, it is also possible that forecasters just use approximations

and lump small probabilities into the adjacent bins. To shed some light on this issue, in Figure

A2, Panel 1, we show the percentage of forecasters that put probabilities into one bin, two bins

and three bins. In general, forecasters with all the probabilities on one bin and two bins are few.

However, a non-negligible proportion of forecasters puts all the probabilities on three bins. The

proportion of these forecasters is higher prior to 1992:I. This is explained by the structure of the

bins at that point. In our sample period, the bin structure for GDP/GNP growth has changed

three times. Between 1981:III and 1991:IV there were 6 bins covering [<-2 -2 to -0.1 0 to 1.9

2 to 3.9 4 to 5.9 6+], between 1992:I and 2009:I the bins were [<-2 -2 to -1.1 -1 to -0.1

0 to 0.9 1 to 1.9 2 to 2.9 3 to 3.9 4 to 4.9 5 to 5.9 6+], while since 2009:II the bins

have been covering the following intervals [<-3 -3 to -2.1 -2 to -1.1 -1 to -0.1 0 to 0.9 1 to

1.9 2 to 2.9 3 to 3.9 4 to 4.9 5 to 5.9 6+]. Note that in the beginning of the sample the

bins have been fairly wide, not giving forecasters opportunities to differentiate among bins. Given

that we use a Gaussian approximation, in order to strive for accuracy we adjusted the bins in the

period between 1981:III and 1991:IV. The modified grid doubles the number of bins in that period,

splitting the original probabilities in each bin uniformly over the newly created ones. Effectively

the grid structure in that period becomes the same as in the period between 1992:I and 2009:I. The

summary of the number of forecasts with probabilities on one, two and three bins with the modified

grid specification is provided in Figure A2, Panel B. The figure shows that, by construction, there

are not many forecasts with probabilities on less than or equal to three bins left in the period
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prior to 1992:I. Moreover, we discarded densities that put all the probability mass on one bin in

the calculations. The second source of approximation error that arises when working with SPF

probability forecast histograms is the open ended nature of the first and last intervals. In practice,

we close these intervals. We assume that the open intervals have the same length as the rest of

the intervals in the respective grids. Panels C in Figure A2 shows the proportion of forecasters

assigning a probability value on the leftmost and rightmost bins in the survey. On the one hand,

these proportions are not negligible, and our choice of dealing with the leftmost and rightmost

intervals might have some impact on the overall results. On the other hand, Panel D suggests that

the probability value associated with these open intervals is small. Thus, closing the open intervals

should not induce a large approximation error. Lastly, since we approximate the histograms with a

Gaussian distribution, we use the mid-point approach: when fitting a Gaussian kernel we associate

all the probability mass with the midpoint of the interval.

Figure A1: Forecasters with Current Year and Next Year Forecasts
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Figure A2: Bin Statistics

Panel A: Forecasts without Grid Adjustment Panel B: Forecasts after Grid Adjustment
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Panel C: Forecasts with Open Intervals Panel D: Forecasts with >2.5% on Open Intervals
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Not-for-Publication Appendix

A.1 Descriptive Analysis of Inflation Forecasts

Figure I. The Survey of Professional Forecasters Data: Inflation

Panel A: Current Year Forecasts Panel B: Next Year Forecasts
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Panel C: Fixed-horizon Forecasts
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Note: The figure shows the quantiles of the SPF four-step-ahead predictive density, its mean, as well as

the realized value of inflation. The four-step-ahead density is constructed from SPF’s current year and next

year density forecasts based on eq. (15)
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A.2 Reliability and Resolution Analysis
Note that an additional, interesting decomposition for uAt+h|t (r) can be obtained following Mur-

phy (1973):

uAt+h|t (r) ' RELt+h|t (r)−RESt+h|t (r) + V (xt+h (r)) (20)

where:21

• RELt+h|t (r) ≡ E
([
pt+h|t (r)− E

(
xt+h (r) |pt+h|t (r)

)]2)
measures the reliability of the fore-

cast and scores the calibration of the forecast. A forecast is said “reliable” when the observed

frequency is consistent with the probabilistic forecast made for a given event. For instance,

forecasts that predict a probability of recession of 30 percent will be reliable if the economy

effectively enters a recession 30 percent of the time every time such a forecast is made. Hence,

reliability measures the unconditional (un)biasedness of the probabilistic forecasts. Because

the term is expressed as a squared error, the smaller the calibration error, the better (i.e.,

the lower) the Brier score.

• RESt+h|t (r) ≡
∫ [
E
(
xt+h (r) |pt+h|t (r)

)
− E (xt+h (r))

]2
is the resolution, i.e. the average

squared differential of the conditional and unconditional means of the observed outcomes.

It captures the “decisiveness” of forecasts by comparing the forecast probability and the

long-term average of the underlying process. The larger the term, the lower the Brier score.

As we show below, Eq. (20) holds up to an approximation error that involves within bin

variation.

The decomposition can be estimated as follows.

Reliability is estimated as follows. For each t, determine which of the forecast bins pt+h|t (r) falls

into. Let
{
p
(k)
t+h|t (r)

}
be the collection of probabilities in the k-th bin and let pEt+h|t (r) denote the

unconditional expected value over the bin. We estimate pEt+h|t (r) using a Uniform distribution over

the bin, so that pEt+h|t (r) is the midpoint of the bin.22 In addition, let the number of probabilities

in each bin be nk. Let xk be the average of the realizations conditional on the forecaster having

21In this sub-section we use pt+h|t to denote the CDF in order to better link with the notation in the literature.

Expectations are with respect to Qt+h.
22In the 3-terms decomposition that we discuss here, we abstract from within bin variance and within bin covariance;

thus, the unconditional expected value over the bin is indeed the midpoint of the bin and all forecasts in the bin

are imposed to be equal to the midpoint (so their average is also the midpoint). We derive a 5-terms decomposition

which includes within bin variance and within bin covariance (Stephenson, Coelho and Joliffe, 2008). In that case,

the reliability will be calculated using the average forecast in the bin without imposing that all forecasts in the bin

are equal. That is, p
(k)

t+h|t (r) (which is the average of the collection of probabilities in the k-th bin,
{
p
(k)

t+h|t (r)
}

),

replaces pEt+h|t (r) in eq. (21).
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made the probability forecast associated with the collection of probabilities in bin k,
{
p
(k)
t+h|t (r)

}
.

Reliability is the average square calibration error, that is,

REL(r) =
1

T

K∑
k=1

nk

(
pEt+h|t (r)− xk (r)

)2
. (21)

Thus, reliability measures the squared deviation of the predicted probability from the observed

outcome conditional probability of the event. This effectively tells the user how often (as a per-

centage) a forecast probability actually occurred. In theory, a perfect forecasting model will result

in forecasts with a probability of α% being consistent with the eventual outcome α% of the time.

Note that a forecast is reliable if the average square calibration error (REL) is small. Figure II

provides intuition to understand reliability. The x-axis reports the forecast probability,23 while

the y-axis reports the observed relative frequency. A reliable forecast would be the 45-degree line,

where the observed frequency of realizations equals the forecast probability; the data clearly show

departures from reliability in our sample.

Figure II. Reliability Diagram
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Notes. The figure plots the reliability diagram for SPF forecasts of current year (CY) GDP growth.

Resolution is the squared average difference between the conditional mean (given the forecast)

and the unconditional mean: RES(r) = 1
T

∑K
k=1 nk (xk (r)− x (r))2 . Note that good forecasts have

high resolution.

Figure III shows the evolution of the components of the alternative decomposition over time.24

23The forecast probability is the mid-point of the bin in the forecast distribution.
24Finally, note that the practical implementation of the Brier score involves “binning”. Binning smooths the data

and makes them less noisy, as larger bins limit the “sparseness” problem (Stephenson et al., 2008). Some information

is lost, however, by approximating continuous probability densities with a discrete number of bins.
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Figure III. Aggregate Uncertainty, Reliability, Resolution and (Realized) Risk
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Notes. The figure displays Aggregate Uncertainty, Reliability, Resolution and Realized Risk.

Proof of eq. (20). In practice, the Murphy decomposition requires partitioning the range of

forecasts – essentially, the [0,1] line – into K sub-segments. Let r be a number along the real line;

let p(k) denote the average probability in segment k;25 and let nk denote the number of forecast

probabilities that fall in the k-th sub-segment, for k = 1, . . . ,K. Given all forecasts in the sample,

25Alternatively, one could consider p(k) as the midpoint of the k-th segment
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the Brier score can be broken down as follows:

1

T

T∑
t=1

[xt+h(r)− Pt+h|t(r)]2 =
1

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− p(j)t+h|t(r)

]2
=

1

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− x(k)t+h(r) + x

(k)
t+h(r)− p(k)t+h|t(r) + p

(k)
t+h|t(r)− p

(j)
t+h|t(r)

]2
=

1

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− x(k)t+h(r)

]2
+

1

T

K∑
k=1

nk∑
j=1

[
x
(k)
t+h(r)− p(k)t+h|t(r)

]2
+

1

T

K∑
k=1

nk∑
j=1

[
p
(k)
t+h|t(r)− p

(j)
t+h|t(r)

]2
+

2

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− x(k)t+h(r)

] [
x
(k)
t+h(r)− p(k)t+h|t(r)

]

+
2

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− x(k)t+h(r)

] [
p
(k)
t+h(r)− p(j)t+h|t(r)

]

+
2

T

K∑
k=1

nk∑
j=1

[
p
(j)
t+h|t(r)− p

(k)
t+h|t(r)

] [
x
(k)
t+h(r)− p(k)t+h|t(r)

]

=
1

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− x(k)t+h(r)

]2
+

1

T

K∑
k=1

nk∑
j=1

[
x
(k)
t+h(r)− p(k)t+h|t(r)

]2
+

1

T

K∑
k=1

nk∑
j=1

[
p
(k)
t+h|t(r)− p

(j)
t+h|t(r)

]2
+

2

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− x(k)t+h(r)

] [
p
(k)
t+h(r)− p(j)t+h|t(r)

]
.

We can already recognize the reliability (REL) in the second term of this decomposition:

REL(r) =
1

T

K∑
k=1

nk∑
j=1

[
x
(k)
t+h(r)− p(k)t+h|t(r)

]2
=

1

T

K∑
k=1

nk

[
x
(k)
t+h(r)− p(k)t+h|t(r)

]2
. (22)
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The first term can be expressed as follows:

1

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− x(k)t+h(r)

]2
=

1

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− x(r) + x(r)− x(k)t+h(r)

]2
=

1

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− x(r)

]2
+

1

T

K∑
k=1

nk∑
j=1

[
x(r)− x(k)t+h(r)

]2
+

2

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− x(r)

] [
x(r)− x(k)t+h(r)

]

=
1

T

T∑
t=1

[xt+h(r)− x(r)]2 − 1

T

K∑
k=1

nk

[
x(r)− x(k)t+h(r)

]2
≡ V (xt+h (r))−RES(r).

Note that because the outcome variable x is binary, the uncertainty term can be expressed asV (xt+h (r)) =

x(r)(1− x(r)). To summarize, we have decomposed the Brier score in the following way:

1

T

T∑
t=1

[xt+h(r)− pt+h|t(r)]2 = V (xt+h (r)) +REL(r)−RES(r)

+
1

T

K∑
k=1

nk∑
j=1

[
p
(k)
t+h|t(r)− p

(j)
t+h|t(r)

]2
+

2

T

K∑
k=1

nk∑
j=1

[
x
(j)
t+h(r)− x(k)t+h(r)

] [
p
(k)
t+h(r)− p(j)t+h|t(r)

]
.

The last two terms measure the variance of forecasts within the sub-segments and the co-movement

between forecasts within a segment and their corresponding outcomes. The decomposition therefore

writes:

1

T

T∑
t=1

[xt+h(r)− pt+h|t(r)]2 = V (xt+h (r)) +REL(r)−RES(r) +WSV (r) +WSC(r).

Remark that the last two terms equal zero when all forecasts within the same segment are assumed

identical. Because WSV (r) and WSC(r) are quantitatively very small in the data, we will work

under the simpler decomposition:

1

T

T∑
t=1

[xt+h(r)− pt+h|t(r)]2 ' V (xt+h (r)) +REL(r)−RES(r),

as per the definitions that we have written.
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A.3 Results for the Large-Dimensional VAR
This section shows the robustness of our results to a mid-size 11 variable VAR as considered

in Jurado, Ludvigson and Ng (2015) specified in the spirit of Christiano, Eichenbaum and Evans

(2005). The VAR (11) is in the following variables: log(real GDP), log(employment), log(real

consumption), log(PCE deflator), log(real new order), log(real wage), hours, federal funds rate,

log(S&P 500 Index), growth rate of M2, and various uncertainty indices discussed in the paper.

The variables are downloaded from the 2015-11 version of the FRED-QD (Quarterly Database

for Macroeconomic Research) discussed in McCracken and Ng (2015). The labels on the impulse

responses carry the mnemonics of the variables in the database described in Table I.

Table I. Description of Variables Included in the VAR

Variable Mnemonics Description

real GDP GDPC96 Real Gross Domestic Product, 3 Decimal (Billions of Chained 2009 Dollars)

Employment PAYEMS All Employees: Total nonfarm (Thousands of Persons)

Real Consumption PCECC96 Real Personal Consumption Expenditures (Billions of Chained 2009 Dollars)

PCE deflator PCECTPI Personal Consumption Expenditures: Chain-type Price Index (Index 2009=100)

real new order AMDMNOx Real Manufacturers’ New Orders: Durable Goods (Millions of 2009 Dollars),

deflated by Core PCE

real wage AHETPIx Real Average Hourly Earnings of Production and Nonsupervisory Employees:

Total Private (2009 Dollars per Hour), deflated by Core PCE

hours HOANBS Nonfarm Business Sector: Hours of All Persons (Index 2009=100)

federal funds rate FEDFUNDS Effective Federal Funds Rate (Percent)

S&P 500 Index S&P 500 S&P’s Common Stock Price Index: Composite

M2 M2REALX Real M2 Money Stock (Billions of 1982-84 Dollars)

The impulse responses to shocks in the uncertainty indices are displayed in Figures IV-VII.

The figures show that the findings are in general the same as those we report in the main text:

all uncertainty measures are recessionary in nature. The ex-post measures, as well as realized

volatility, have higher impact in magnitude than disagreement or ex-ante uncertainty. Also, even

in the large VAR, GDP increases after a shock to dispersion.

45



Figure IV: Macroeconomic Impact of Uncertainty

Panel A: Uncertainty Panel B: Aggregate Uncertainty
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Panel C: Disagreement
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Note: The figure shows the impulse responses of uncertainty, aggregate uncertainty and disagreement

based on eq. (9).
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Figure V: Macroeconomic Effect of Uncertainty

Panel A: Aggregate Uncertainty Panel B: Mean Bias
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Panel C: Dispersion Panel D: Realized Volatility
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Note: The figure shows the impulse responses of the ex-ante and ex-post measures of uncertainty based

on eq. (11). The uncertainty measures have been standardized.
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Figure VI: Macroeconomic Impact of Uncertainty

Panel B: Ex-Ante Uncertainty Panel C: Ex-Post Uncertainty
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Note: The figure shows the impulse responses of the ex-ante and ex-post measures of uncertainty based

on eq. (13). The uncertainty measures have been standardized.
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Figure VII: Macroeconomic Effect of Uncertainty - Alternative Measures

Panel A: VXO Panel B: BBD
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Panel C: JLN Panel D: Scotti
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Note: The figure shows the impulse responses for the following uncertainty measures: VXO, JLN, BBD

and Scotti. The uncertainty measures have been standardized.
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A.4 Estimation
We estimate the decomposition using its sample counterparts:

Ût+h|t =

∫ +∞

−∞
ût+h|t (r) dr, t = R, ..., T

where R is the size of the rolling window,

ût+h|t (r) =
1

R

t∑
j=t−R+1

1

N

N∑
s=1

us,j+h|j (r) =
1

R

t∑
j=t−R+1

1

N

N∑
s=1

[
xt+h (r)− ps,j+h|j (r)

]2
and

ÛAt+h|t =

∫ +∞

−∞

(
pt+h|t (r)− xt+h (r)

)2
dr +

∫ +∞

−∞
V̂ (pt+h|t (r))dr (23)

+

∫ +∞

−∞
V̂ olt+h|t (r) dr − 2

∫ +∞

−∞
Ĉov(xt+h (r) , pt+h|t (r))dr,

where the terms on the RHS of eq. (23) are as follows:

- pt+h|t (r) , xt+h (r) are estimated by 1
R

t∑
j=t−R+1

pj+h|j (r) , 1
R

t∑
j=t−R+1

xj+h (r) ;

- V̂ olt+h (xt+h (r)) is an estimate of the variance of xt+h (r), which is a binary variable, recur-

sively over time:

V̂ olt+h (xt+h (r)) = xt+h (1− xt+h) ;

-V̂t+h
(
pt+h|t (r)

)
is an estimate of the variance of pt+h|t (r) recursively over time:

V̂t+h
(
pt+h|t (r)

)
=

1

R

t∑
j=t−R+1

(
pj+h|j (r)− pt+h|t (r)

)2
- Ĉov(xt+h (r) pt+h|t (r)) is estimated as:

Ĉov(xt+h (r) , pt+h|t (r)) =
1

R

t∑
j=t−R+1

(
pj+h|j (r)− pt+h|t (r)

)
(xj+h (r)− xt+h (r))

While we do not need the Normality assumption to calculate the decomposition above, in prac-

tice we fit a Gaussian distribution to the predictive density. The main reason is to guarantee that

the “Knightian uncertainty/(Realized) Risk” decomposition is consistent with the“Ex-ante”/“Ex-

post”, since the latter is valid only under Normality. Furthermore, in the empirical implementation

we let R = 4, which amounts to calculating 4-quarter-moving average of the various components

of uncertainty, and we proxy the indefinite integrals with definite ones by treating the extrema of

either the realization or the bins as integral bounds.
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A.5 Estimation
The “ex-ante” uncertainty, σt+h|t/

√
π, can be more generally estimated, for any predictive

distribution, as:
∫ +∞
−∞

[∫ (
xt+h (r)− Ps,t+h|t (r)

)2
dPs,t+h|t

]
dr =

∫
Ps,t+h|t (r)

(
1− Ps,t+h|t (r)

)
dr.

Figure VII shows indeed that they are the same.

Figure VII: Alternative Estimation of Ex-Ante Uncertainty
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A.6 Robustness to Final Release
This sub-section evaluates the robustness of the results to using final releases of data instead of

real-time vintages of data. By comparing Figure VIII with Figure 3 in the paper, it is clear that

the results are robust.26

Figure VIII: Decomposing Uncertainty
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Figure VIII: Decomposing Aggregate Uncertainty

Panel B: Decomposition in Eq. (11)
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26The robustness is conducted for output-growth based uncertainty measures only, since revisions to inflation are

typically very small and have been shown in the literature not to make much difference for the empirical results.
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Figure VIII: Decomposing Aggregate Uncertainty

Panel C: Decomposition in Eq. (11) Panel D: Ex-Ante Vs. Ex-Post
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Note: Panel A of Figure 3 depicts the evolution of uncertainty, aggregate uncertainty and disagreement

(eq. 9) over time. Panel B shows the evolution of the components of aggregate uncertainty based on eq.

(11). Panels C and D show the evolution of the components of aggregate uncertainty based on eq. (12)

and eq. (13), respectively. Results are based on quarterly data based on fixed horizon forecasts obtained by

Dovern et al.’s (2012) procedure using fully revised data.
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A.7 A Detailed Analysis of Uncertainty Across Forecast Horizons
Each plot in Figure IX contains eight density forecasts made in a given year: 1 quarter-ahead, 2

quarter-ahead, etc. Each density is then compared to the corresponding realization of GDP growth,

depicted as a vertical line. Two things can be noted from those graphs. First, densities tend to

get narrower at shorter horizons. That’s what one would expect based on our analysis: the shorter

the horizon, the more concentrated the forecast will be. This illustrates why ex-ante uncertainty

is lower at short horizons than at a longer horizons, which is what we found with our uncertainty

measure. Second, since densities at longer horizons are less concentrated, the actual realizations

may still end up well inside the predictive distribution and hence the ex post error (in terms of

likelihood) need not be greater than that of a concentrated, short-term forecast.

To see this in detail, consider the examples for the following years:

- 1984: Long horizon forecasts were quite flat and in the end, the realization fell quite close to

the center of the curve. On the other hand, the short term forecasts were concentrated and missed

the realization substantially. Ex post error is higher for short term horizons than for long term.

- 1995: This picture shows the opposite situation. Long-horizon forecasts missed the realization,

but short-term forecasts hit the nail on the head. Ex post error is lower at short horizons than at

long horizons.

- 1992: Both long and short term horizon failed in predicting. Ex post error should be about

the same in both cases.

As one looks across different points in time, there are many more cases where the pictures

look like the situation in 1984 than in 1995, which explains why, on average, our results show that

ex-ante uncertainty decreases as the horizon decreases, but ex-post uncertainty increases.
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Figure IX: Predictive Densities and Realizations Across Horizons for a Given Year
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