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Abstract

This paper studies sequential Bayesian persuasion games with multiple senders. We

provide a tractable characterization of equilibrium outcomes. We apply the model to study

how the structure of consultations affects information revelation. Adding a sender who

moves first cannot reduce informativeness in equilibrium, and results in a more informative

equilibrium in the case of two states. Moreover, with the exception of the first sender, it is

without loss of generality to let each sender move only once. Sequential persuasion cannot

generate a more informative equilibrium than simultaneous persuasion and is always less

informative when there are only two states. Finally, we provide a simple condition that

guarantees that full revelation is the unique equilibrium outcome regardless of the ordering

of senders.
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1 Introduction

This paper studies a canonical model of Bayesian persuasion with multiple senders in which

senders disclose information sequentially. An uninformed decision maker seeks to maximize her

state-dependent payoff. Also a number of senders move in sequence, each constructing an

experiment with a precision ranging from no information to full revelation of the state. Each

sender observes the experiments designed by previous players when moving.

Decision makers often must rely on outside experts to take informed actions. Sometimes

multiple experts are consulted, and then often consultations are sequential. For example, in

a recent lawsuit, Students for Fair Admissions claims that Harvard intentionally discriminates

against Asian-American applicants.1 Each party used an economist expert witness to analyze

Harvard’s admissions data and testify in court. Despite using the same data, the conclusions

reached by the expert witnesses on each side were vastly different due to different statistical

models. This example fits the Bayesian persuasion model well because experts were symmetri-

cally informed and designed their own experiments. Furthermore, the consultations were truly

sequential. Throughout the process, the expert on each side sequentially released rebuttals to

reports made by the other side. Our model aims to understand how strategic considerations

among experts shape information revelation in such settings.

Instead of relying on the concavification approach popularized by Aumann and Maschler

(1968) and Kamenica and Gentzkow (2011), we characterize equilibrium outcomes using linear

algebra techniques. Equilibrium conditions are expressed as incentive compatibility constraints,

and share a similar flavor as in Bergemann and Morris (2016).

The first step in the equilibrium construction is to show that every subgame perfect equilib-

rium outcome can be supported using one-step equilibrium strategies. In a one-step equilibrium,

the only player who provides information is the first sender to move. The preferences of the

other senders matter for the equilibrium, but instead of actually refining the information on

the path, their preferences restrict what the first sender does through incentive compatibility

constraints. This works on and off the equilibrium path, so any equilibrium can be replicated

by strategies that are one step on and off the equilibrium path.

Our second simplifying step is to show that only a finite set of vertex beliefs matter for the

analysis. We assume a finite set of states and actions, so, in belief space, the optimal choice

rule of the decision maker can be characterized as intersections of upper half spaces, or convex

polytopes. Each polytope defines a set of beliefs for which an action is optimal and is spanned

1Students for Fair Admissions, Inc. v. President & Fellows of Harvard Coll. (Harvard Corp.), Civil Action

No. 14-cv-14176-ADB, 2019 U.S. Dist. LEXIS 170309 (D. Mass. Sep. 30, 2019).
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by a finite set of vertices. We demonstrate that it is without loss of generality for every sender

to only provide information that generates beliefs on these vertices.

Focusing on one-step strategies with support on a finite set of vertices, we then use back-

wards induction to construct equilibria, which are Markov. We also use the fact that one-step

equilibria on a finite set of vertices fully characterize the set of equilibrium outcomes in or-

der to demonstrate that for a set of preferences of full measure, there is a unique equilibrium

distribution over states and outcomes.

The equilibrium characterization is also convenient for asking questions about the effects

of changes to the extensive form, because equilibrium distributions are recursively defined as

stable (vertex) beliefs. Concretely, for the last sender, a stable belief is a probability of the

state of the world that the last sender has no incentive to further refine, and we know that it is

without loss of generality to consider only vertices of the polytopes defining optimal actions for

the decision maker. The penultimate sender understands that the last sender (without loss of

generality) will refine whatever information provided into a distribution of such stable beliefs,

so he may as well only consider distributions over the set of vertex beliefs for the last sender.

Hence, the set of stable beliefs in the truncated game starting with the penultimate sender is

the set of stable beliefs in the one-sender game for which there is no mean-preserving spread

onto stable beliefs in the one-sender game that the penultimate sender prefers. The set of stable

beliefs for the full game is constructed recursively from this idea, and it is weakly smaller for

each step of the backwards induction process.

By studying these stable beliefs, we find that adding a sender who moves first cannot reduce

the informativeness in equilibrium. In contrast, strategic considerations may reduce information

disclosure if another sender is added later in the game. Next, we consider whether multiple

rebuttals are useful in our model. The answer is mainly negative. We prove that the set of

stable beliefs is unchanged if a sender is given an additional chance to provide information that

precedes the last time that the sender moves. Hence, there is no loss of generality in considering

an extensive form in which each sender moves only once when characterizing the set of stable

beliefs. However, the first sender to move can choose the distribution over stable beliefs, and

different senders may prefer different distributions. Hence, having all senders except possibly

the first moving only once is without loss of generality for the equilibrium outcomes.

We also compare sequential and simultaneous persuasion. We find that sequential persuasion

can never generate a more informative equilibrium than simultaneous persuasion. This result

holds for any equilibrium in the simultaneous move game, so this is not subject to the criticism

of Hu and Sobel (2019). Finally, we provide a simple and easily interpretable sufficient condition

for when full revelation is the unique equilibrium, which is invariant of the order of moves.
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Literature. Our paper relates to a large body of work on information disclosure, but is most

directly connected to the growing literature on Bayesian persuasion started by Kamenica and

Gentzkow (2011) and Rayo and Segal (2010). This literature has recently been extended to

incorporate multiple senders. See Gentzkow and Kamenica (2017a,b), Boleslavsky and Cotton

(2016), Au and Kawai (2017, 2020), and Hwang, Kim, and Boleslavsky (2019). However,

none of these papers deal with sequential moves by the senders. In a companion paper, Li and

Norman (2018) provide some examples to show that adding new senders may reduce information

revelation in multi-sender persuasion settings.

Wu (2018) considers a sequential Bayesian persuasion model similar to ours. He develops a

recursive concavification approach based on Harris (1985) and Kamenica and Gentzkow (2011)

to establish equilibrium existence, and he independently constructs a one-step equilibrium (re-

ferred to as a silent equilibrium). Our paper differs from Wu (2018) in the following aspects.

First, our methodologies are different. Thanks to the assumption of finite-action space, we can

apply primitive tools such as backward induction, convex polytope analysis, and linear pro-

gramming to transparently characterize the equilibrium. The equilibrium outcome is unique,

which makes comparisons more straightforward and convincing, and it allows us to discuss some

applications of our model. Second, our model clarifies how senders’ experiments are combined.

This enables us to transparently compare information revelation of the game where senders

move sequentially with that of the game where senders move simultaneously.

A growing body of work embeds persuasion into dynamic models (see Ely, Frankel, and

Kamenica (2015) and Ely (2017)), but the paper closest in spirit to ours is Board and Lu

(2018), which incorporates Bayesian persuasion into a search model. However, Board and Lu

(2018) consider payoff functions that are more restrictive than ours, and the decision maker in

their paper faces an optimal stopping problem. In contrast, the decision maker has no influence

on the precision of her information in our model. Our formal analysis has some similarities with

that of Lipnowski and Mathevet (2017, 2018), which focus on single-sender persuasion games.

Multi-sender information provision has been studied in other frameworks. Glazer and Ru-

binstein (2001) study a finite horizon sequential persuasion model, but they consider a very

different information structure. There are also papers in the cheap talk and disclosure lit-

erature that ask what the implications of multiple senders are. See Ambrus and Takahashi

(2008), Battaglini (2002), Kawai (2015), Krishna and Morgan (2001), Kartik, Lee, and Suen

(2016, 2017), Bhattacharya and Mukherjee (2013) and Milgrom and Roberts (1986). In a recent

paper, Hu and Sobel (2019) also compare simultaneous information disclosure and sequential

information disclosure in a setting where senders decide which set of facts to disclose, and where

the focus is on equilibria surviving iterated elimination of weakly dominated strategies. With
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different applications in mind, these papers impose restrictions in the information transmission

such as asymmetric information, limited information process ability, restricted forms of signals,

etc. Instead, the Bayesian persuasion framework we adopt eliminates all of these frictions and

focuses on the sole effect of strategic interaction among senders on information provision. It

thus serves as a theoretical benchmark for identifying sources of communication inefficiency.

Organization. The remainder of this paper is organized as follows. In Section 2, we describe

the model. Section 3 characterizes the set of equilibria. We show that every equilibrium

outcome is supported as a one-step equilibrium with finite support, that equilibria exist, and

that the equilibrium outcome is generically unique. In Section 4, we apply the equilibrium

characterization to discuss effects of changes in the extensive form. Omitted proofs are collected

in Appendix A.

2 Model

Players. Consider an environment with senders i = 1, ..., n and a decision maker d. Player

i = 1, ..., n, d has a utility function ui : A × Ω → R where A is a finite set of actions, and Ω

is the finite state space. Payoff functions are common knowledge and players evaluate lotteries

using expected utilities. Players hold a common prior belief µ0 ∈ ∆ (Ω). Fixing a belief µ and

an action a, we define player i’s expected payoff as

vi(a, µ) ≡
∑
ω∈Ω

ui(a, ω)µ(ω), for i = 1, ..., n, d. (1)

Experiments. Players are uninformed about the state of the world, but a sender may provide

information to the decision maker by creating an experiment. For reasons discussed in Section

2.1 we adopt the partition representation of experiments. This models the state-dependent

noise explicitly, which makes it clear how to combine multiple experiments. Specifically, an

experiment assumes a state-contingent partition of [0, 1], i.e., for each state ω, {π(s|ω)}s∈S are

disjoint sets such that ∪s∈Sπ(s|ω) = [0, 1] where S indexes the sets in the partitions. Given

experiment π, one can relabel partitions as signals and assign probabilities to signals according

to the measure of the corresponding partition in each state. In doing so, one obtains the state-

contingent distribution over signals pπ : Ω → ∆(S), and the probability of signal s ∈ S being

realized conditional on state ω is

pπ(s|ω) = λ(π(s|ω)), (2)

where λ(·) denotes the Lebesgue measure and
∑

s pπ(s|ω) = 1 for each ω ∈ Ω. An experiment

can be informative since it partitions [0, 1] differently in different states, making the probability
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0 1 0 1

ω0 ω1

π1 s1 s′1 s1 s′1

π2 s2 s′2 s′′2 s2 s′2 s′′2

Figure 1: There are two states: ω0 and ω1 and two senders i = 1, 2. Sender 1’s signal space contains two

signals: s1 and s′1. Sender 2’s experiment has three possible signals {s2, s′2, s′′2}. It is evident that π1 ∨ π2 = π2.

realization of each signal state-dependent. We let Π denote the set of experiments and let �
be the partial order in which π � π′ if π is a finer partition than π′.2 The space (Π,�) is a

lattice and for any two experiments π, π′, the join π ∨ π′ is also an experiment finer than both

π and π′ , so combining two experiments by taking intersections generates a more informative

new experiment. Figure 1 illustrates the simplicity of combining two experiments to get a new

experiment using the partition representation.

Extensive Form. Senders move sequentially with sender 1, ..., n posting experiments π1...., πn,

and each sender observing previous senders’ experiments. Then nature draws ω. Finally, the

decision maker observes (π1, ...., πn) and a joint realization s = (s1, ..., sn) according to the

corresponding state-contingent probability p∨iπi(s|ω) = λ(∨iπi(s|ω)) for i = 1, ..., n and takes

an action a ∈ A.

Strategies and Equilibrium. A pure strategy for sender i is a map σi : Πi−1 → Π where Π0

is the trivial null history. That is, given a history {π1, ..., πi−1}, sender i chooses πi that results

in a finer experiment ∨ik=1πk. A history for the decision maker is a vector (π1, .., πn, s1, ..., sn).

Let Hd be the set of all histories for the decision maker and σd : Hd → A denote his strategy.

There is uncertainty about the state, but information is symmetric, and there is therefore never

any point in the game in which any player needs to update the beliefs about the type of other

players. Hence, subgame perfection is applicable.

2For any π � π′, let pπ and pπ′ denote the corresponding state-contingent distributions over signals they

generate respectively. It can be shown that there is a garbling that transforms pπ to pπ′ which is less informative

in the sense of Blackwell (1953). See Green and Stokey (1978) for a proof.
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2.1 Discussion

We make two unconventional assumptions. First, we adopt the partition representation of

signal as in Green and Stokey (1978) and Gentzkow and Kamenica (2017b). Second, we assume

nature moves after all senders. Before proceeding further, we briefly discuss these modelling

choices.

On How to Represent Experiments. As shown by Green and Stokey (1978), it is without

loss to interchangeably use the state-dependent distribution representation (S, p) and the par-

tition representation π to model information disclosure in non-strategic settings. We decided to

use the partition representation in our multi-sender setting as it is significantly more convenient

for a number of reasons.

First, it transparently displays how a sender adds information to another sender’s experi-

ment. This is illustrated in Figure 1. Suppose that π1 is the experiment chosen by sender 1.

Given each signal, sender 2’s experiment π2 allows him to disclose additional information by fur-

ther partitioning π1(s|ω) for every s ∈ S1 and every ω ∈ Ω. For instance, the interval π1(s1|ω)

is further partitioned into π2(s2|ω) and π2(s′2|ω) for every ω. As long as λ(π2(s2|ω))/λ(π1(s1|ω))

varies over ω, observing signal s2 (or s′2) helps to infer the underlying state conditional on the

information generated by s1.

In a single-sender persuasion model along the lines of Kamenica and Gentzkow (2011), it

is equivalent to study the optimal information design problem and a reduced-form problem

in which the choice variable is a distribution of beliefs. In a multi-sender model, things are

less straightforward, and the representation of experiments, whether mixed strategies are al-

lowed, and the extensive form all matter for how the decision maker aggregates information (see

Gentzkow and Kamenica (2017b) and Li and Norman (2018)). One purpose of the current pa-

per is to compare information revelation in multi-sender persuasion games where senders move

sequentially with the simultaneous move benchmark (Gentzkow and Kamenica 2017b), that

adopts the partition representation. To do this, one must (i) explicitly specify the experiments

rather than jumping to the reduced-form belief-splitting game directly, and (ii) make the com-

parison fair in the sense that senders have access to similar information provision technologies

in the two games. In our sequential model with the partition representation, the combination

of multiple senders’ experiments allows a sender to choose the distribution over signals condi-

tional on the state and the signals of previous senders’ experiments. This captures the idea

that subsequent senders can observe and react upon the signals of the experiments chosen by

previous senders. In contrast, when senders move simultaneously (Gentzkow and Kamenica

2017a), allowing senders to make refinements conditional on the realizations from other senders
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signals does not have this simple interpretation.

Signal Observability. We assume that nature moves after senders choose their experiments.

Besides making subgame (rather than Bayesian) perfection applicable to the game, this specifi-

cation also eases the presentation of the proofs. Because nature moves after all of the senders,

a sender’s partition choice must specify his information disclosure for each possible realized

signal profile by precedent senders. Thus, we can consider histories while avoiding to keep

track of signal realizations, which simplifies analyzing the impact on the continuation play from

any particular experiment because partitions are much more easier to track than systems of

conditional probability distributions.

In the sequential model of ours, a sender acts as if he observes and responds to the signal

realizations of previous senders’ experiments. Consider the experiments in Figure 1 once more.

Sender 2’s experiment π2 allows him to disclose differential information conditional on the sig-

nal realization of π1. As we pointed out, when the signal is s1, π2 adds additional information

by further partitioning the corresponding intervals under both states into s2 and s′2 differently.

On the contrary, conditional on s′1 being realized, signal s′′2 has no information added to infer

the state because π2(s′′2|ω) = π1(s′1|ω) for both states. Hence, the current specification is strate-

gically equivalent to a setting in which a sender observes the signal realizations of experiments

chosen by previous senders.

3 Equilibrium Characterization

In this section, we first prove a result similar to the revelation principle that simplifies the

analysis considerably. Without loss of generality we may focus on equilibria where only the first

sender discloses non-trivial information on the equilibrium path. Preferences of other senders

are captured as incentive compatibility constraints in such equilibria. Then we construct an

equilibrium and show that, generically, the game has a unique equilibrium outcome.

3.1 Simplifying the Problem

We begin with the observation that it is without loss of generality to consider certain simple

strategies by the senders. Players ultimately care only about the distribution over actions and

states, which motivates the following definition:

Definition 1. Two strategy profiles are outcome equivalent if they generate identical joint

distributions over Ω× A.

7



There may exist many equilibrium information structures, but because players care only

about distributions over Ω×A, everyone is indifferent across all outcome-equivalent equilibria.

These equilibria can be Blackwell comparable, but since players do not care directly about

informativeness, we consider them equivalent.

Next, we define strategy profiles in which only the first sender provides any information:

Definition 2. Consider a strategy profile σ′ and let h′i denote the implied outcome path before

the move by sender i. We say that σ′ is one step if ∨ni=1σ
′
i(h
′
i) = σ′1.

We are now ready to present the first result.

Proposition 1. For any subgame perfect equilibrium, there exists an outcome equivalent sub-

game perfect equilibrium in which senders play a one step continuation strategy profile after any

history of play.

The idea behind Proposition 1 is similar to the revelation principle. Consider an arbitrary

subgame perfect equilibrium σ∗ and let h∗i = {π∗1, ..., π∗i−1} be the equilibrium path history when

it is sender i’s turn to move. This equilibrium generates a joint experiment π∗ = ∨ni=1π
∗
i . To

construct a one-step equilibrium, we let sender 1 play π∗ and assume that on the equilibrium

path players i = 2, ..., n provide only redundant information. It then follows that the decision

maker may as well generate the same distribution over A×Ω as in the initial equilibrium after

observing the one-step path history. Moreover, because π∗ is finer than π∗i for each i < n,

any deviation that is feasible from the one-step equilibrium path is feasible also in the original

equilibrium, so it is possible to replicate continuation play following deviations from the one-

step equilibrium from the original equilibrium just like in the proof of the revelation principle.

Off the equilibrium path, we can follow the original equilibrium strategies.

Finally, for the one-step equilibrium characterization to be a significant simplification, it is

important that it applies not only on the equilibrium path but also following arbitrary histories

of play. The same logic as on the equilibrium path generalizes to any continuation equilibrium

following an arbitrary history of play, but the notation gets heavy.

The observation in Proposition 1 implies that solving for an equilibrium of a sequential

persuasion game is equivalent to solving a static single-sender persuasion game disciplined by

additional incentive compatible constraints. After stage 1, no sender has an incentive to provide

further information given the threat of subsequent senders’ best responses.

3.2 Equilibrium Construction

Now we explicitly construct a one-step equilibrium. The construction is essential for the

rest of our analysis because several concepts critical to understanding the equilibrium structure
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and the effect of competition in persuasion will be introduced through the process.

The equilibrium is constructed backwardly. We begin with the decision maker’s problem.

As in standard persuasion models, what matters for the decision maker is his posterior belief

about the state. Also, we observe that it is without loss to focus on the vertices in the belief

space, making players’ problems essentially finite. Then we express each sender’s best response

as a mean-preserving spread of interim beliefs induced by previous senders’ experiments. More-

over, we recursively define stable beliefs for which senders have no incentive to provide further

information given the continuation play; thus it is sufficient to pin down the set of stable beliefs

to characterize a one-step equilibrium.

Decision Maker’s Problem. Suppose that the decision maker observes a history of experi-

ments {πj}nj=1 , which induces a joint experiment ∨nj=1πj, as well as a joint signal realization s.

Using ∨nj=1πj and s, the decision maker updates his belief about the state, which summarizes

all payoff relevant aspects of the history. Specifically, the posterior probability of state ω ∈ Ω

is thus

µ (ω|s) =
p (s|ω)µ0 (ω)∑

ω′∈Ω p (s|ω′)µ0 (ω′)
, (3)

where have dropped the subscript of p(s|ω) defined in (2). Denoting the unconditional proba-

bility of s by p (s) =
∑

ω′∈Ω p (s|ω′)µ0 (ω′), we note that an experiment π induces a distribution

of posterior beliefs that satisfies the standard Bayes-plausibility constraint∑
s∈S

µ (ω|s) p (s) = µ0 (ω) . (4)

To characterize the optimal actions for the decision maker, we note that for any distinct

pair a, a′ ∈ A, the set

H (a � a′) ≡ {µ ∈ ∆(Ω)|
∑
ω∈Ω

µ(ω)[ud(a, ω)− ud(a′, ω)] ≥ 0}, (5)

defines the set of posterior beliefs such that the decision maker weakly prefers a to a′. It follows

that the set of beliefs such that a ∈ A is optimal is given by

M (a) = ∩a′∈AH (a � a′) , (6)

which is a finite convex polytope. See Figure 2 for a simple illustration.

Interim Beliefs. A history hi = {πj}i−1
j=1 induces a joint experiment πi−1 = ∨i−1

j=1πj. For each

signal s of πi−1, the corresponding belief µ(ω|s) is given by (3). This is the decision maker’s

posterior belief if senders i+1, ..., n do not add any information in the continuation game and s
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µa2
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µa2
2 µa2

3

M(a3)

M(a1)
M(a2)

M(a4)

Figure 2: Ω = {ω1, ω2, ω3} and A = {a1, a2, a3, a4}.

is realized. We call such a belief an interim belief. Each joint experiment πi−1 ∈ Π generates a

distribution of interim posterior beliefs τ i−1, and we let ∆ (∆ (Ω)) denote the set of distributions

of (interim or posterior) beliefs.

Given a joint experiment πi−1 that induces a belief distribution τ i−1, sender i can refine the

information into any partition that is finer than πi−1. Using Theorem 1 in Green and Stokey

(1978) together with the characterization in Gentzkow and Kamenica (2017a), we know that

any mean-preserving spread of τ i−1 can be induced by some refinement of πi−1. Every feasible

experiment for sender i therefore corresponds to a mean-preserving spread of each interim

belief in the support of τ i−1. Hence, sender i’s problem separates into finding an optimal

mean-preserving spread belief by belief from the distribution induced by previous senders.

Sender n’s Problem. Next, we consider the last sender’s problem. The construction

of {M(a)} implies that we may consider optimal strategies for the decision maker than map

posterior beliefs to actions. We abuse notation and denote such a map by σd(µ) ∈ {a : µ ∈
M(a)}. To guarantee that sender n’s problem is well-defined, we assume that the decision

maker always breaks ties in favor of sender n. If there are multiple such rules, we arbitrarily

pick one of them. Given an interim belief µ and decision rule σd, sender n’s program is on the

form

Vn (µ) = max
τ∈∆(∆(Ω))

∑
µ′

vn(σd (µ′) , µ′)τ (µ′) (7)

s.t.
∑
µ′

µ′τ (µ′) = µ,
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and a solution is a mean-preserving spread of µ, denoted by τn(·|µ).

In general, the support of τn could be infinite. The following observation makes it without

loss to focus on τn with finite support. By construction, M (a) is a finite convex polytope for

each a ∈ A. Such a convex polytope has a finite set of J(a) vertices
{
µaj
}J(a)

j=1
and these vertices

span M (a) so that every µ ∈M (a) can be represented as a convex combination of the vectors{
µaj
}J(a)

j=1
.3 Denote

X = ∪a∈A
{
µaj
}J(a)

j=1
, (8)

as the set of all vertices that defines the optimal actions for the decision maker, which is finite

because both Ω and A are finite.

Lemma 1. Program (7) has a solution τn ∈ ∆(X).

The idea of Lemma 1 is that each M (a) is spanned by its vertices. Hence the sender can

replace any belief µ that is not one of the vertices with a convex combination over the vertices.

There are then two possibilities. The first is that the action σd (µ) is taken on all the vertices

in the convex combination. In this case, the sender is indifferent between µ and the convex

combination over the vertices of M (a) . The second possibility is that a different action is

taken on one or more of the vertices. Because the tie-breaking favors the sender, he is either

indifferent or strictly better off by using the convex combination. Hence, restricting τn to ∆(X)

generates a utility at least as great as (7). But ∆(X) is a subset of the feasible set in (7), so

the two problems must have the same value. Figure 2 provides an illustration. Suppose that

µ is induced with probability τ by a solution to (7), then there is another solution in which

{µa2j }j=1,2,3 is induced with probability τ1, τ2, τ3 such that
∑

j µ
a2
j τj = µ and

∑
j τj = τ .

Lemma 1 suggests that we may characterize the optimal mean-preserving spread of every

sender in terms of a finite optimization problem. The general idea is that if the last sender

always uses a best response with support on the vertex beliefs X, then previous senders may

as well use strategies limited to the same set of vertices, since the final sender will undo any

attempt to generate any other beliefs by splitting them onto X.

Stable beliefs. To proceed further, we recursively define a set of stable (vertex) beliefs. Let Xn

denote the set of vertex beliefs where sender n has no incentive to provide further information,

i.e.,

Xn ≡ {µ ∈ X : vn(σd(µ), µ) = Vn(µ)}. (9)

Then we recursively define {Xi}ni=1 such that

Xi ≡ {µ ∈ Xi+1 : vi(σd(µ), µ) = Ṽi(µ)}, (10)

3See Grünbaum, Klee, and Ziegler (1967).
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with an auxiliary problem

Ṽi(µ) = max
τ∈∆(Xi+1)

∑
vi(σd(µ

′), µ′)τ(µ′|µ) (11)

s.t.
∑

µ′∈Xi+1

µ′τ(µ′|µ) = µ.

Notice that (i) the solution to the auxiliary program (11) exists, (ii) Xi ⊆ Xi+1, and (iii) X1 6= ∅.
In the auxiliary problem (11), sender i is restricted to use experiments that only induce vertex

beliefs in Xi+1, and he believes that senders i + 1, ..., n will not add any information. Because

Xi ⊆ Xj,∀j > i, sender i’s belief is indeed justified.

Definition 3. A belief is stable if µ ∈ Xi which is recursively defined by (9) and (10) for

i = 1, ..., n.

By construction, no sender has the incentive to refine a stable belief. Therefore, one can

recursively construct a one-step equilibrium where the resulting posterior belief is distributed

only on the set of stable beliefs. On the path of play, if µ0 ∈ X1, no sender sends a non-trivial

signal; if µ 6∈ X1, only sender 1 posts an informative experiment and the other senders remain

silent. Off the equilibrium path, if one of sender i’s interim beliefs µi−1 6∈ Xi, he posts an

experiment that “splits” the beliefs only in Xi and the subsequent senders do not add further

information. The rest of the construction is relegated to the appendix. It is evident that no

player has an incentive to deviate; thus we establish the existence of a one-step equilibrium.

Formally,

Proposition 2. There exists a one-step equilibrium.

Notice that the equilibrium is Markov in the following sense. The decision maker’s equi-

librium strategy σd depends on the history only through the posterior belief, and for each

i = 1, 2..., n, for every experiment profile π1, ..., πi−1 and possible signal profile (s1, ..., si−1) that

induce the same interim belief, the mean-preserving spread τi induced by sender i’s equilibrium

strategy is identical.

3.3 Outcome Uniqueness

Our third result regards the uniqueness of the equilibrium outcome.Formally,

Proposition 3. All subgame perfect equilibria are outcome equivalent for a set of payoff function

profiles with full Lebesgue measure.
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Proposition 3 says that for generic preferences, there is an essentially unique equilibrium.

Together with the fact that we can always construct a Markov equilibrium this implies that

restricting attention to Markov strategies is almost always without loss of generality.

The proof is relegated to Appendix A. For intuition, first notice that the one-step equilib-

rium we construct in section 3.2 induces vertex beliefs only, which we show is without loss of

generality. The basic idea is the same as for Lemma 1, but the proof is notationally more cum-

bersome, as we need to replicate the “ incentives” corresponding to an arbitrary equilibrium

with continuation play that is on the vertices only.

Lemma 2. For every subgame perfect equilibrium, there exists an outcome equivalent subgame

perfect equilibrium in which senders play one step strategies with implied beliefs with support on

X after every history of play.

By Lemma 2, it is without loss to consider subgame perfect equilibria in which, after any

history of play, continuation strategies are one step strategies inducing beliefs with support on

vertices in the finite setX. In the same spirit, we note that when checking for subgame perfection

it is without loss to consider one step deviations onto the set of vertices X. Hence, after any

history, the continuation equilibrium outcome is determined by the one-step equilibrium of the

corresponding subgame, which is immune to deviations that induce vertex beliefs. If there are

multiple continuation equilibria that are not outcome equivalent, there must be a belief such

that some sender is indifferent between staying at this belief and some mean-preserving spread

over X.

Notice that there are two cases in which a sender is indifferent to splitting a belief into X.

The first case is when a mean-preserving spread always induces the same action as the original

belief. Such indeterminacy is irrelevant as the distribution over A × Ω is unchanged. Any

failure of essential uniqueness must therefore correspond to indifferences over mean-preserving

spreads that induce distinct actions. However, this case requires non-generic preferences. Since

X is a finite set, there exists a finite number of affinely independent sets of belief vectors and

indifference between any two such sets can hold for a measure zero set of preferences. There is

a finite set of pairs to consider, and it follows that a failure of essential uniqueness can occur

for only a measure zero set of preferences.

4 Applications

This section discusses some applications of the equilibrium characterization. The aim is to

shed light on some issues relevant for the design of the communication protocol. Specifically, to
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maximize the amount of information disclosure, the decision maker can structure the communi-

cation by selecting experts, organizing the order of consultations, deciding what information to

share with experts, etc. As a first step, we examine some key aspects that affect the incentives

for information revelation, including the number of senders, the order of the senders’ moves,

and the information shared among senders. Thanks to the stable belief characterization of

equilibrium outcomes, this becomes relatively straightforward, as we can focus on how changes

in the extensive form affect the set of stable beliefs.

Our goal is to derive some principles guiding the design of how to structure consultations.

We are mainly interested in results that hold for arbitrary preferences. The justification for this

is that results that do not depend on specific assumptions about preferences are more robust,

and may also be of value for real-world applications when preferences are not observable.

4.1 Information Criteria

We begin with defining the criteria to evaluate information revelation. Clearly, a unique

equilibrium outcome makes comparisons more straightforward and transparent. Unfortunately,

when senders move simultaneously, the only possibility to have such uniqueness is when full

revelation is the unique equilibrium. In general, one must therefore use set-wise comparisons.

In contrast, the sequential model has a unique outcome for generic preferences. In the rest of

the paper, we focus on the generic case with an essentially unique equilibrium distribution over

states and outcomes in the sequential model.

It is easy to construct examples with multiple equilibrium belief systems that can be ranked

according to the Blackwell order, but where the differences in informativeness are irrelevant

because all equilibria induce the same joint distribution over A× Ω. We therefore treat π and

π′ as equivalent in terms of the information content provided that they are outcome equivalent:

Definition 4 (Essential Blackwell Order). π is essentially less informative than π′ if the

finest experiment that is outcome equivalent to π is less informative than the finest experiment

that is outcome equivalent to π′ in the Blackwell order.

Unlike some partial orderings considered in the literature on information design (e.g. indi-

vidual sufficiency in Bergemann and Morris (2016)), the essential Blackwell ordering depends

on optimal actions for the decision maker, so it is not an order applying for all preferences.

Notice that the finest experiment among a class of outcome-equivalent experiments must put

probability one on being on the vertices defining the optimality areas for the decision maker,

allowing us to use stable beliefs to analyze equilibria. In the rest of this section, we adopt the

essential Blackwell order to study how changes in the extensive form matters for outcomes.
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4.2 Adding Senders in Sequential Persuasion

In this section, we examine the effect of adding senders in a sequential move Bayesian

persuasion game and derive some general results. Intuition suggests that the added competition

from an increase in the number of experts should increase the amount of information revealed

in the market. This view may even be seen as an intellectual foundation for freedom of speech,

a free press, the English common law system, and many other institutions. While the literature

provides a somewhat mixed support for this view, Gentzkow and Kamenica (2017a,b) provide

sufficient conditions under which additional senders do not reduce the amount of information

revealed in simultaneous move Bayesian persuasion games.

The support for competition being beneficial becomes weaker in our sequential framework.

Using a simple numerical example, Li and Norman (2018) show that adding senders to sequential

Bayesian persuasion games may decrease the information revealed.

To start, the implications of adding additional senders depend on the ordering of the players

as shown in the following simple example. Let the state space be {ω0, ω1}, the available actions

be {a0, a1, a2} , and assume that M(ai) = [i/3, (i + 1)/3] for i = 0, 1, 2. Assume that the

senders have state independent preferences with sender 1 having the strict preference ordering

a1 �1 a2 �1 a0 and sender 2 ranking the actions in accordance with a2 �2 a0 �2 a1. Let the

prior probability that the state is ω0 be some µ0 > 1/3. In the single-sender persuasion game

with the players being sender 1 and the decision maker, sender 1 may without loss optimally

choose a mean preserving spread with support on {1/3, 2/3} if µ0 ∈ [1/3, 2/3]. Notice that

this is a simple example of outcome irrelevant multiplicity of Blackwell rankable information

systems, as any mean-preserving spread in [1/3, 2/3] is an equilibrium. When µ0 > 2/3 the

only equilibrium is the unique mean-preserving spread with support {2/3, 1}.
Next, we add sender 2 to the game. First, suppose that sender 2 moves before sender 1.

We illustrate the equilibrium analysis in panels (a) and (c) of Figure 3. Any interim belief µ

such that 0 < µ < 1/3 will be split by sender 1 onto {0, 1/3} which implies that actions a0 and

a1 are both chosen with some strictly positive probabilities. Any belief on [1/3, 2/3] ultimately

leads to action a1 for sure and a belief on (2/3, 1) implies that action a1 is taken with some

probability and a2 with some probability. It follows that the unique best response by sender 2

is to play the unique mean-preserving spread onto {0, 1} , so the state is fully revealed. As the

payoffs are generic and do not satisfy the condition in Proposition 10 this illustrates that we

cannot obtain a simple necessary and sufficient condition for full revelation.

The case where sender 1 moves before sender 2 is illustrated in panels (b) and (d) of Figure

3. We note that sender 2 will split any 0 < µ < 1/3 onto {0, 2/3}, implying that a best response

for 1 is to split the prior to {0, 2/3} if µ0 < 2/3 and to {2/3, 1} if µ0 ≥ 2/3. Hence, we see
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v1(µ)

µ

0 1/3 2/3 1

(a) Sender 1’s payoff when sender 2 moves first

v2(µ)

µ

0 1/3 2/3 1

(b) Sender 2’s payoff when sender 1 moves first

v2(µ)

µ

0 1/3 2/3 1

(c) Sender 2’s payoff when he moves first

v1(µ)

µ

0 1/3 2/3 1

(d) Sender 1’s payoff when he moves first

Figure 3: The effect of the ordering of moves. The solid line represents the sender’s continuation payoff given

subsequent players’ best responses, while the dashed line represents his “concavified” continuation payoff.

that the informativeness and equilibrium payoffs depend on the order of moves, and also that

the equilibrium in the model with sender 1 moving before sender 2 is strictly less informative

in the Blackwell order than when sender 1 is the only sender, provided that µ0 ∈ [2/3, 1) .

While special, the example above delivers a general negative message. It is hopeless to

search for general results unless we make restrictions on when a new sender moves. However,

in the example, the equilibrium is more informative when the new sender is added as a first

mover. This is not quite general due to the incompleteness of the Blackwell ordering, but we

can establish an analogue of the result for simultaneous persuasion games:

Proposition 4. For generic preferences, if a sender is added who moves before all other senders,

there is no equilibrium with n+1 senders that is essentially less informative than the equilibrium

in the original game.

Proof. Let Xn
1 be the set of stable beliefs in the persuasion game with n senders and Xn+1

1 be

the set of stable beliefs in the game with n+ 1 senders. Because sender n+ 1 is added to move
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before senders 1, ..., n and the set of stable beliefs is defined backwardly, we have that

Xn+1
1 ⊆ Xn

1 . (12)

Fix the prior belief µ0, let Xn
1 (µ0) be the support of the equilibrium in the game with n senders

and and Xn+1
1 (µ0) be the support of the equilibrium in the game with n+ 1 senders. Since we

focus on the finest experiment, these beliefs must be vertices and stable, i.e., Xj
1(µ0) ⊆ Xj

1 for

j = n, n+ 1.

For the sake of contradiction, suppose that the game with n+ 1 senders has an equilibrium

that is essentially less informative than the equilibrium in the original game with n senders.

Then there exists at least one belief µ′ ∈ Xn+1
1 (µ0) such that µ′ is in the convex hull of Xn

1 (µ0),

but µ′ 6∈ Xn
1 (µ0). Because preferences are generic, in the original n-sender game, some sender

has a strict incentive to split µ′ onto Xn
1 . Hence, µ′ 6∈ Xn

1 , which contradicts to (12).

The proposition says that when a new sender is added to move before all previous senders,

the equilibrium cannot sustain more uncertainty regardless of the preference profile of the

senders. The reason is simple. If a belief is induced by an equilibrium, it must be stable.

Recall that the set of stable beliefs is constructed backwardly. Adding a new sender who moves

first reduces the set of stable beliefs. As a result, such a change cannot make the persuasion

outcome essentially less informative. In the special case where there are only two states, the

incompleteness of essential Blackwell order is no longer substantial, so we have a stronger result:

Proposition 5. Suppose that Ω = {ω0, ω1}. If a sender is added who moves before all other

senders, every equilibrium with n + 1 senders is weakly essentially more informative in the

Blackwell ordering.

Proof. When there are only two states, the support of the finest equilibrium contains at most

two stable beliefs for generic preferences; otherwise, we can construct multiple mean-preserving

spreads of the prior onto these stable beliefs, implying multiple equilibrium outcomes, a con-

tradiction. Let Xj
1(µ0) = {µjL, µ

j
H} be the support of the finest equilibrium in the game with

j senders where j = n, n + 1. Without loss, assume µjL ≤ µ0 ≤ µjH for every j. Then by

Proposition 4, for each µ ∈ Xn+1
1 , either µ ∈ Xn

1 , or µ is not in the convex hull of Xn
1 (µ0).

Therefore, µn+1
L ≤ µnL ≤ µnH ≤ µn+1

H . The mean-preserving spread that splits µ0 onto Xn+1
1 (µ0)

can be obtained in two steps. First, splits µ0 onto {µnL, µnH}. Second, further split µnL, µ
n
H onto

Xn+1
1 (µ0) accordingly. Therefore, the result follows.
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Figure 4: The left panel illustrates a case with |Ω| = 3 while the right panel corresponds to a case with |Ω| = 2.

The difference between Propositions 4 and 5 can be illustrated in Figure 4. The left panel of

Figure 4 visualizes a case with three states. The support of the finest equilibrium is Xn
1 (µ0) =

{µ1, µ2, µ3} in the original n-sender game. When a new sender is added to speak before other

senders, the support of the finest equilibrium becomes Xn+1
1 (µ0) = {µ1, µ2, µ4}. Proposition 4

leaves the possibility that two equilibria are incomparable in the sense of Blackwell. On the

contrary, when there are only two states, the support of the finest equilibrium contains at most

two stable beliefs for generic preferences. Proposition 4 implies that µn+1
L ≤ µnL ≤ µnH ≤ µn+1

H ,

which is visualized on the right panel of Figure 4.

We would like to make a final remark on the effect of adding senders. The example in Li

and Norman (2018) implies that, for some preference profile of senders, adding a new sender

who moves after some other senders strictly reduces information revelation. Combining this

observation and an implication of Proposition 4, we summarize the relation between the position

of the newly added sender and the amount of information revelation as follows.

Corollary 1. Fix a game with senders 1, 2, ..., n, denoted by Γ. Add a new sender j∗ and

construct another game Γ∗ with senders 1, 2, ...., n and j∗ such that sender i moves after sender

i−1 for every i = 2, ..., n. For generic preferences, there is no equilibrium of Γ∗ essentially less

informative than that of Γ if and only if the newly added sender j∗ moves before every sender

i = 1, 2, ..., n.

Corollary 1 implies that, for an arbitrary preference profile, the information revelation will

not be reduced if and only if the newly added sender speaks first. When the state space is

binary, the result becomes even stronger: regardless of the preference profile of players, adding

a new sender who speaks first will either increase or has no effect on information revelation;

thus it will never lower the payoff of the decision maker.
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4.3 Multiple Moves by the Same Sender

Our second application regards the communication protocol for a given set of senders. Up

to this point we have allowed each player to move only once, which is without loss for results

having to do with the characterization, existence, and uniqueness of equilibria because we can

always add multiple players with identical preferences. In contrast, it is not obvious whether it

is useful to allow multiple counterarguments, and this section addresses this question.

Senders who speak at late stages can make counterarguments to early movers’ arguments,

i.e. disclosing information conditional on the signals sent by previous senders. Is there any

value in letting senders respond to counterarguments from other senders? If so, what is the

source of the value? The literature has offered some discussion on this issue when senders have

restrictions on their ability to provide information in each round (Glazer and Rubinstein 2001).

The Bayesian persuasion framework we adopt offers a frictionless alternative, which helps

to identify the conditions needed to rationalize multi-rounds of rebuttals and counter-rebuttals.

In our model, the preferences of senders are common knowledge, and a sender can provide as

much information as he wants in a single round of disclosure. Hence, the only constraint on

communication is strategic considerations. Our results imply that such a strategic friction is

per se insufficient to justify multiple rounds of argument and counter-argument, except that an

opportunity to offer a rebuttal may be useful for the first sender that moves.

Formally, we let i ∈ {1, ..., n} denote the set of senders and we let the stage when senders

move be denoted by t = 1, ..., T with n ≤ T.

Proposition 6. Consider any sequential persuasion game with n senders and finite horizon

n ≤ T . Then, the set of stable beliefs is the same as in the sequential game with n senders and

n periods in which for each sender i, every move except the last one is eliminated.

Proposition 6 says that for any sequential persuasion game where senders move multiple

times, to pin down its stable beliefs, it is sufficient to examine a reduced-form sequential per-

suasion game where each sender only moves once. For example, consider a sequential persuasion

game with three senders i = 1, 2, 3 and five stages. Exactly one sender moves at each stage,

and the order of moves is 1 → 2 → 3 → 3 → 2. In words, sender 1 moves at the first stage,

sender 2 moves at the second stage, sender 3 moves at the third and fourth stages, and then

sender 2 moves again at the fifth stage. By Proposition 6, the game has the same set of stable

beliefs as the game with three stages and the order of moves is 1 → 3 → 2. The intuition is

very simple. Consider the incentive of a sender who can speak at stage t1 and t2, where t2 > t1.

He may prefer to gradually disclose at multiple stages for two reasons. First, he may want

to withhold information at t1 but release it at t2 to avoid triggering undesirable disclosure of
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his opponents who move in between. Second, he may want to respond to the experiments of

some senders, which are only observed at t2. However, neither of these concerns is sufficient to

rationalize gradual information disclosure in our model. The first concern is inconsistent with

the concept of Nash equilibrium. When it comes to the second one, whatever the sender can

disclose at early stages can also be disclosed at the last stage, making it redundant to speak

multiple times. This is due to the fact that in a Bayesian persuasion model a sender can deliver

as much information to the decision maker as he wants.

Proposition 6 implies that if we begin with a game with n rounds of persuasion and n

senders moving in the order 1, ...., n and add a move for sender i that precedes his move in

the initial game, then the set of stable beliefs is unaffected. In contrast, if the additional move

comes after player i + 1, then the stable beliefs could change. However, in this case we can

remove the move in the initial game, so the number of moves is irrelevant for the set of stable

beliefs, whereas the order of moves matters.

However, there is one case in which multiple moves can be useful. Suppose that we start

with a game in which 1 → 2 → 3, so that each player moves only once. Change the game

to 2 → 1 → 2 → 3, so that player 2 now moves first and third. By Proposition 6 the two

games have the same set of stable beliefs. However, the two games may nevertheless generate

different equilibrium outcomes because the first mover in the game can choose a Bayes plausible

distribution of stable beliefs.

If the prior belief is stable, this choice doesn’t matter, as any first mover is happy to not

provide any information. If there are only two states it is also irrelevant. However, in general,

it can be strictly better to be the first mover. Notice that the claim is that adding a first move

without giving up the existing turn is what is advantageous, whereas swapping a move from

later in the game to position 1 may be disadvantegeous, because then the relevant order of

play changes, which may affect the set of stable beliefs. A simple example illustrating this first

mover advantage is in Appendix B.2.

4.4 Simultaneous vs Sequential Persuasion

Now we fix the set of senders and the order of consultation. When the decision maker

receives disclosures from senders sequentially, he can decide to what extent (if any) to share

the received information with subsequent senders. On the one hand, revealing this information

disciplines subsequent senders’ strategic information manipulation in a certain manner. On

the other hand, as long as the decision maker’s information remains imperfect, revealing this

information allows subsequent senders to make targeted opportunistic disclosures. A natural

starting point to study this question is to compare two extreme cases: the one in which each
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sender observes all suggestions made by previous senders, and the one where a sender observes

no suggestions by other senders. The Bayesian Persuasion game of the first policy corresponds

to our baseline model, whereas the second policy corresponds to Gentzkow and Kamenica

(2017a) where senders choose their experiments simultaneously. We conclude that information

revealed in the simultaneous game cannot be essentially less informative than in the sequential

game.

Consider a simultaneous-move persuasion game. Suppose that τ ∈ ∆(∆(Ω)) is an equilib-

rium distribution of beliefs. By Proposition 2 in Gentzkow and Kamenica (2017a) we know

that this is true if and only if for each µ in the support of τ and for each player i the payoff

from µ is weakly higher than for any mean-preserving spread τ ′ of µ. Additionally, we can use

the same reasoning as in the basic sequential setup and restrict attention to distributions with

support on X :

Proposition 7. Suppose that τ ∈ ∆(∆(Ω)) is an equilibrium distribution of beliefs in a si-

multaneous persuasion game. Then there exists an outcome equivalent equilibrium in which

τ ′ ∈ ∆ (X) .

Hence, the difference between the sequential model and the simultaneous model boils down

to a comparison that can be done vertex belief by vertex belief. A vertex belief in the support of

an equilibrium of the sequential model must be unimprovable with respect to Bayes plausible

deviations over the set of stable beliefs, that is, vertex beliefs that no sender would like to

further refine. In contrast, a belief in the support of an equilibrium in the simultaneous move

game must be unimprovable with respect to any Bayes-plausible deviation.

It thus follows that for both the simultaneous and the sequential games we need to make

sure that there is no vertex belief such that an admissible mean-preserving spread is preferred to

a sender. The difference between the models is that we have to check stability against arbitrary

mean-preserving spreads in the simultaneous model, whereas some mean-preserving spreads

can be ruled out in the sequential model because they would be undone by future senders. The

following proposition therefore follows.4

Proposition 8. For generic preferences, there exists no pure strategy equilibrium in the simul-

taneous game that is essentially less informative than the equilibrium in the sequential game.

Proof. Suppose that the simultaneous game has an equilibrium essentially less informative than

the finest equilibrium in the sequential game. Then there exists an µ such that (i) it is in the

4A similar comparison is made in the multi-sender cheap talk literature. The conditions under which a fully

revealing equilibrium exists is weaker in a simultaneous-move cheap talk model than a sequential-move one. See

Ambrus and Takahashi (2008), Battaglini (2002), Kawai (2015), and Krishna and Morgan (2001).
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support of the equilibrium of simultaneous move game, and (ii) it is in the interior of the convex

hull of the beliefs in the support of the finest equilibrium in the sequential-move game.

Since preferences are generic, µ cannot be stable belief in the sequential-move game. Hence,

some sender in the simultaneous-move game has a profitable deviation, a contradiction.

Note that the comparison in Proposition 8 holds for any equilibrium in the simultaneous-

move game including the ones in surviving iterated elimination of weakly dominated strategies,

so it is not subject to the criticism in Hu and Sobel (2019).

Just like in the case of adding senders, a weakness of the result is the incompleteness of

Blackwell’s ordering, which implies that experiments may be non-comparable. However, we

can again obtain a sharp characterization for the case with two states. Note, however, that the

qualifier “pure strategy” is important. Li and Norman (2018) construct a numerical example

where a mixed strategy equilibrium in the simultaneous game with two states is strictly less

informative than the unique equilibrium in the sequential game.

Proposition 9. Suppose that Ω = {ω0, ω1} and that there is an essentially unique equilibrium

in the sequential game. Then any pure strategy equilibrium in the simultaneous-move game is

weakly essentially more informative.

The proof is similar to that of Proposition 5 and is relegated to the appendix. While there

exist non-Blackwell comparable distributions also in the case of two states, it is immediate

to see that if the result fails, there is some belief µ in the support of an equilibrium with

simultaneous moves that lies strictly between the smallest and the largest beliefs in the support

of the equilibrium with sequential moves. But then, at least one sender must have an incentive

to split the beliefs onto the smallest and the largest sequential-move beliefs. Otherwise there

must be an indifference, which is ruled out in the generic case.

The last sender can always deviate to an equilibrium of the simultaneous-move game when

the equilibrium experiments are comparable (as they are in the case of two states). Therefore

an implication of Proposition 9 is that the last sender prefers the sequential-move game to

the simultaneous move game. The same is true for the general model whenever equilibria can

be ranked using the Blackwell order. Hence, the persuasion framework generates the opposite

result compared to duopolistic quantity competition. An intuition for this is that the reason

why the Stackelberg leader is better off and the follower is worse off than under Cournot

competition is that there is commitment value to overproduction, which allows the leader to

grab a larger share of the pie. In contrast, in the persuasion model the follower can always

refine whatever the leader does. It is for this reason that the follower is made better off than
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in the simultaneous move game. Whether senders moving earlier are made better or worse off

than in the simultaneous game is ambiguous.

4.5 On Fully-Revealing Equilibria

A short-cut to the optimal design of the consultation structure problem is to look for condi-

tions under which full revelation is an equilibrium. Then the decision maker can select senders

and organize the order of moves to satisfy the conditions and achieve the complete information

payoff.

Thanks to the one-step vertex characterization of the equilibrium outcome, we can identify

an easy-to-check sufficient condition for when the unique equilibrium is fully revealing. One

can rule out non-fully revealing equilibria as long as at each non-degenerate vertex belief, there

exists at least one sender who prefers full revelation to the current belief being observed by the

decision maker.

Proposition 10. All equilibria are fully revealing if for each non-degenerate µ ∈ X, there exists

a sender i such that

vi(σd(µ), µ) <
∑
ω∈Ω

ui(σd(δω, ω))µ(ω), (13)

where δω is the degenerate belief about state ω.

Given the characterization of equilibrium outcomes in terms of stable vertex beliefs, the

proof is obvious, so it is omitted. It is easy to check condition (13) as it depends only on

the decision maker’s strategy and the current sender’s payoff at a small number of vertices.

Although persuasion is sequential, the one step characterization makes it unnecessary to take

the subsequent senders’ actions into account, which explains why the condition is order invariant

(it also applies to the simultaneous model and the case of both sequential and simultaneous

moves).

Proposition 10 suggests a simple method to achieve full revelation. The decision maker

selects senders in a way so that the corresponding sequential persuasion game does not have

non-degenerate stable beliefs. To do so, it must be the case that every particular non-degenerate

vertex belief is “disliked” by at least one sender.

It is worth mentioning that the full revelation sufficient condition (13) can be applied re-

gardless of the extensive form of the game. As discussed in Sobel (2010), in most multi-sender

strategic communication models, a fully revealing equilibrium exists under very weak condi-

tions. The key reason is that when others fully reveal the state, a sender has no way to further

affect the outcome. However, this means that full revelation can be supported as an equilibrium
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outcome even if it is Pareto dominated in a simultaneous move game, making the prediction

less convincing. Some natural questions are prompted by this. In a multi-sender Bayesian

persuasion game where senders move simultaneously, when should we expect full revelation as

an equilibrium outcome if senders are coordinating on a plausible equilibrium, and under what

conditions is full revelation the unique equilibrium outcome? Proposition 10 offers some insight

into these questions.

5 Concluding Remarks

We consider a sequential Bayesian persuasion model with multiple senders. Because it is

without loss of generality to focus on equilibria corresponding to a finite set of beliefs we can

show that subgame perfect equilibria exist and generate a unique joint distribution over states

and outcomes for generic preferences. The fact that a finite set of stable beliefs characterizes the

equilibrium makes it convenient to identify the unique equilibrium outcome and to apply the

model to study the optimal structure of consultations. In particular, (1) adding a sender who

moves first cannot reduce informativeness in equilibrium, and will result in a more informative

equilibrium in the case of two states, (2) it is without loss to let each sender speak only once, with

the exception that the first mover may benefit from having a second move, and (3) sequential

persuasion cannot generate a more informative equilibrium than simultaneous persuasion, and

is less informative in the case of two states.

A Appendix: Omitted Proofs

A.1 Proofs: One-Step Equilibrium

Proof of Proposition 1. To proceed, we extend the definition of one-step equilibrium to off-the-

path of play:

Definition 5. Consider strategy σ′ and let hi be an arbitrary history when sender i ∈ {1, ..., n−
1} moves. Also for j ≥ i let h′j|hi be the implied continuation outcome path induced if each

player j ≥ i follows σ′j after history hi and let σ′|hi denote the continuation strategy profile.5

We say that σ′|hi is one step if ∨nj=iσ′j(h′j|hi) = σ′i (hi).

Now, we are ready to proceed. Fix a subgame perfect equilibrium σ∗ and let hi = (π1, ..., πi−1)

be an arbitrary history when i moves. Let (π∗i |hi , ..., π∗n|hi) be the continuation equilibrium path

5That is, h′i|hi = hi, h
′
i+1|hi = (hi, σ

′
i (hi)) , h

′
i+2|hi =

(
hi, σ

′
i (hi) , σ

′
i+1 (hi, σ

′
i (hi))

)
and so on.
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following hi. Let

π∗|hi =
(
∨i−1
i=iπi

)
∨ (∨ni=iπ∗i |hi) (A.1)

be the joint experiment generated by the continuation equilibrium path. Replace the continu-

ation equilibrium strategies following hi by (σ′i, ...., σ
′
n, σ

′
d) where on the continuation outcome

path

σ′i (hi) = π∗|hi (A.2)

σ′j (hi, π
∗|hi , ..., π∗|hi) = π∗|hi for j ∈ {i+ 1, .., n}

σ′d (hi, π
∗|hi , ..., π∗|hi , s) = σd (hi, (π

∗
i |hi , ..., π∗n|hi) , s) ,

For a history in which i plays π∗|hi but some j ∈ {i+ 1, ..., n} deviates let

σ′k (hi, π
∗|hi , ..., π∗|hi , πj, ...., πk) = σ∗k

(
hi, π

∗
i |hi , ..., π∗j |hi , πj, ...., πk

)
(A.3)

σ′d (hi, π
∗|hi , ..., π∗|hi , πj, ...., πn) = σ∗d

(
hi, π

∗
i |hi , ..., π∗j |hi , πj, ...., πn

)
,

and for any other history; let

σ′j (hi, πi, .., πj−1) = σ∗j (hi, πi, .., πj−1) for j ∈ {i+ 2, .., n} (A.4)

σ′d (hi, πi, .., πj−1, s) = σ∗d (hi, πi, .., πj−1, s)

The decision maker plays an optimal response following any path of play after hi, as after each

continuation path the response is selected as some response for an identical joint experiment.

Moreover, if each j ≥ i plays in accordance with σ′j, it follows from (A.2) that the implied

distribution over Ω×A is identical if each j ≥ i plays in accordance with the original equilibrium

σ∗. Also, the strategies in (A.4) imply that the continuation play after a deviation by i is the

same under σ′ as under σ∗, so i has no incentive to deviate. As σ∗ is subgame perfect, the

continuation play in (A.4) is trivially subgame perfect. Finally, (A.3) implies that if j is

the first player after i to deviate from π∗|hi, then continuation play replicates that after the

same deviation from the σ∗ equilibrium following history
(
hi, π

∗
i |hi , ..., π∗j−1|hi

)
in the original

equilibrium, so j ∈ {i+ 1, ..., n} have no incentives to deviate. Clearly, σ′ is not one step after

any history, but i and hi were arbitrary, so adjusting σ∗ in accordance with (A.2), (A.3) and

(A.4) following any history i and hi we obtain a subgame perfect strategy profile which is one

step after every history h with the same equilibrium outcome.

Proof of Lemma 2. Proposition 1 implies that for every subgame perfect equilibrium there is an

outcome equivalent equilibrium in which strategies are one step for every history, so we assume

that σ∗ is such a strategy profile. Suppose that there is a sender i and history hi with associated
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continuation experiment π∗|hi such that there exists some realization s′ ∈ π∗|hi that induces a

decision maker posterior belief µ′ /∈ X with positive probability. Let a′ = σd (hi, π
∗|hi , ...., π∗|hi)

be the equilibrium action induced by s′. Furthermore, let M (a′) be the belief polytope where

a′ is optimal and X (a′) = {µj (a′)}mj=1 the set of vertices of M (a′). Since M (a′) is the convex

hull spanned by X (a′), there exists λ ∈ ∆ (X (a′)) such that µ′ =
∑m

j=1 λjµj (a′). Consider

an alternative one-step strategy with π∗|hi replaced by some π′ in which the realization s′ is

replaced by the set {s1, ..., sm}, where each sj generates posterior µj (a′) and has unconditional

probability p (s′)λj, and everything else in π′ is like the original equilibrium.6 We also assume

that the decision maker follows a strategy in which

σ′d (h, s) =



a′ if h = (hi, π
′, ...π′) and s ∈ {s1, ...., sm}

σ∗d (π∗|hi , .., π∗|hi , s)
if h = (hi, π

′, ...π′)

and s corresponds to some s ∈ π∗\s

σ∗d (π∗|hi , .., π∗|hi , πj, ..., πn, s)
if h = (hi, π

′, ...π′, πj, ..., πn)

where j ≥ i is the first player playing πj 6= π′

σ∗d (h, s) for any other h.

where σ∗d is the strategy of the decision maker in the original equilibrium. Since each µj (a′) ∈
M (a′) this must be a best response if σ∗d is a best response. Also, assume that all senders with

j < i follow the original equilibrium strategy σ∗i and that sender j = {i, .., n} play

σ′j (hj) =


π′ if hj = (hi, π

′, ..., π′)

σ∗i (hi, π
∗, .., π∗, πk, ..., πj−1) if hj = (hi, π

′, .., π′, πk, ..., πj−1)

σ∗i (hj) if hj = (hi, πi, ..., πj−1) is such that πi 6= π′
, (A.5)

and leave everything as in the original equilibrium if hi is not played by {1, ..., i− 1} The

continuation outcome path following hi is then (π′, .., π′) and

vi(a, µ) =
m∑
j=1

λjvn(a, µaj ) =
m∑
j=1

λjvn(σd (π′, .., π′, sj) , µ
a
j ), (A.6)

while nothing is changed for signal realizations that are kept like in π∗, so the distribution over

states and outcomes is the same as in the original equilibrium if no player deviates after hi.

Moreover, if j ≥ i is the first sender deviating from playing π′ to πj the path of play replicates

what happens if j is the first sender to deviate from π∗ to πj in the original continuation

equilibrium. Hence, there is no profitable deviation on the path. Finally, off-path play replicates

6It is possible that λj = 0 for some j. Instead of eliminating these beliefs we may simply generate a probability

zero signal in order not to treat this case separately.
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off-path continuation play in the original equilibrium, so there is no profitable deviation off the

path. Repeating the same argument for each history hi, every continuation experiment π∗|hi
and every realization s′ ∈ π∗|hi with corresponding belief µ′ /∈ X completes the proof.

Proof of Corollary 2. It is immediate (see Lemma 1 below for details) that n has no profitable

deviation following any history unless there is a profitable deviation onto X, so consider sender

i < n and history hi with one-step continuation experiment π∗|hi . Consider a deviation πi with

some induced belief µ′ /∈ X given all subsequent senders play sequentially rational, which is

profitable for i. By Proposition 2 (applied to truncated game with i moving first and using one

of the beliefs in the interim belief distribution as the prior) there is a continuation one-step

equilibrium after (hi, πi) that generates the same distribution over Ω × A. Hence, there is a

deviation over vertex beliefs and a one-step continuation equilibrium that is profitable.

A.2 Proofs: Equilibrium Construction

Proof of Lemma 1. For each program on form (7), we consider a restricted finite linear program

Ṽn (µ) = max
τ∈∆(X)

∑
µ′∈X

vn(σd (µ′) , µ′)τ (µ′) (A.7)

s.t.
∑
µ′

µ′τ (µ′) = µ,

where X is defined in (8). Hence, (A.7) is well defined as it is a finite dimensional bounded

linear program.

Pick any feasible solution τ to program (7). For each a ∈ A write τa (µ′) for µ′ such that

σd (µ′) = a and τ =
{
{τa(µ′)}µ′∈Ŵ (a)

}
a∈A

where M̂(a) = {µ ∈ Ω|σd(µ) = a} is the “decision

area” of action a defined by σd(·). Obviously, M̂(a) ⊂M(a), ∀a.

For each µ′ ∈ M(a) there exists λ′ ∈ ∆
({
µaj
}J(α)

j=1

)
such that µ′ =

∑J(a)
j=1 λ

′
jµ

a
j . For every

a ∈ A and µaj spanning M(a) let τ̂
(
µaj
)

=
∑

µ′∈M̂(a) τ (µ′)λ′j so that

J(a)∑
j=1

τ̂
(
µaj
)

=
∑

µ′∈M̂(a)

τ (µ′)

J(a)∑
j=1

λ′j =
∑

µ′∈M̂(a)

τ (µ′) . (A.8)

Since it is possible that vn
(
a, µaj

)
< vn

(
a′, µaj

)
for some µaj ∈ M(a) (and µaj 6∈ M̂(a), because

27



breaking the tie in favor of a′ may be better than a) it follows that the solution to (A.7) satisfies

Ṽn (µ) ≥
∑
a∈A

J(a)∑
j=1

vn(a, µaj )τ̂
(
µaj
)

=
∑
a∈A

J(a)∑
j=1

∑
ω∈Ω

un(a, ω)µaj (ω) τ̂
(
µaj
)

(A.9)

=
∑
a∈A

∑
ω∈Ω

un(a, ω)

J(a)∑
j=1

[
µaj (ω)λ′j

]  ∑
µ′∈M̂(a)

τ (µ′)

 =
∑
a∈A

∑
ω∈Ω

un(a, ω)µ′

 ∑
µ′∈M̂(a)

τ (µ′)


=

∑
µ′

vn(σd (µ′) , µ′)τ (µ′) .

This holds for any feasible solution to (7). Hence, Ṽn (µ) ≥ Vn (µ) . Moreover, any optimal

solution to (A.7) is a feasible solution to (7), so Ṽn (µ) ≤ Vn (µ) . This establishes that solutions

to (7) exist and that Ṽn (µ) = Vn (µ) and that every τ̃n ∈ ∆ (X) that solves (A.7) also solves

(7). Finally, if τn solves (7) and µ′ is such that τn(µ′) > 0, there can be no µak ∈M(a) such that

vn (a, µak) < vn (a′, µak) and λ′k > 0 for the weight on vector µak in the convex combination such

that µ′ =
∑J(a)

j=1 λ
′
jµ

a
j . This is seen from noting that this would generate a strict inequality in

the first inequality of (A.9).

Proof of Proposition 2. In what follows, we constructs a subgame perfect equilibrium where

sender i’s equilibrium strategy coincides with the solution to program (11). That is, every

sender i adds no information as long as µ ∈ Xi, and posts an experiment that induces beliefs

on Xi only.

Fix a pair (σd, τn) that solves the decision maker and sender n such that

• σd breaks the tie of the decision maker’s problem in favor of sender n, and

• sender n induces vertex beliefs only, i.e., τn ∈ ∆(Xn), which is without loss by Lemma 1.

Then, sender n− 1’s problem can be formulated as follows

Vn−1(µ) = max
τ

 ∑
µ′∈∆(Ω)

 ∑
µ′′∈∆(Xn)

vn−1(σd(µ
′′), µ′′)τn(µ′′|µ′)

 τ(µ′|µ)

 (A.10)

s.t.
∑

µ′∈∆(Ω)

µ′τ(µ′|µ) = µ.

That is, sender n − 1 chooses a mean-preserving spread which splits an interim belief µ into

some interim beliefs, and for each induced interim belief µ′, sender n − 1 further splits it into

∆(Xn) according to the selected τn.
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In general, there may exist multiple τn ∈ ∆(Xn) solving program (7), and whether program

(A.10) is well-defined depends on the selection of τn. Whenever there is multiplicity, we select

τn(µ|µ) = 1 for µ ∈ Xn. That is, the last sender adds no information whenever he has no

strict incentive to do so. As will be clear soon, such a selection ensures sender n− 1’s problem

is well-defined. As in the proof of Lemma 1, our strategy is to bound the value function of

program (A.10) and derive a feasible mean-preserving spread in ∆(Xn) that achieves the upper

bound.

Fix a feasible strategy τn−1 in program (A.10). For each µ, construct a compound mean-

preserving spread τ̃n−1 : ∆(Ω)→ ∆(Xn) using τn−1 and τn such that

τ̃n−1(µ′′|µ) =
∑

µ′∈∆(Ω)

τn(µ′′|µ′)τn−1(µ′|µ).

Since τ̃n−1 is feasible in program (11) for i = n− 1, we have

Ṽn−1(µ) ≥ Vn−1(µ),

for every µ. On the other hand, in program (A.10), it is feasible to choose any mean-preserving

spread τ ∈ ∆(Xn). By the selection rule imposing on τn, sender n will not add information

when µ ∈ Xn, so

Ṽn−1(µ) ≤ Vn−1(µ),

for every µ. Notice that this inequality crucially relies on the selection rule of τn. If sender

n further provides an informative signal when at some interim belief µ ∈ Xi, some feasible

mean-preserving spreads in program (11) are no longer feasible in program (A.10).

Consequently, Vn−1(·) = Ṽn−1(·). Since Ṽn−1(µ) is well-defined, we establish the optimal

mean-preserving spread of sender n− 1, denoted by τn−1. The support of τn−1 is Xn−1. Again,

whenever there exist multiple τn−1, we select ones that sender n − 1 adds no information at

every µ ∈ Xn−1, ensuring that the best responses of senders 1, ..., n − 2 well-define. Other

senders’ optimal mean-preserving spread can be constructed by induction.

A.3 Proof: Outcome Uniqueness

The proof of Proposition 3 has two parts. First, we state and prove a few intermediate

results. Then we use these intermediate results to prove the uniqueness of equilibrium outcome.

A.3.1 Preliminaries

The following Corollary is more or less a direct consequence of Proposition 2.
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Corollary 2. Fix an equilibrium strategy profile and a history. For any deviation of sender i,

there is a payoff-equivalent one-step continuation play where senders i + 1, ..., n add no infor-

mation and the resulting posterior beliefs are vertices.

Proof. See Appendix A.1.

There are two pathological cases to address. First, it may be that there is some state ω ∈ Ω

in which the decision maker is indifferent between two actions. In that case payoff-irrelevant

aspects of the history, such as which sender revealed state ω, can be used to construct non-

Markov mixed-strategies for the decision maker.7 The second case is that there is some interior

vertex associated with some decision area M (a) where both sender n and the decision maker

are indifferent. Both these cases are rare in the sense that the associated payoff functions are

measure zero subsets of all conceivable payoff functions.

Lemma 3. Pick any utility functions for the decision maker and sender n that belong to a set

of full Lebesgue measure. Take any pair of histories h∗, h∗∗ that generate the same posterior

belief µ ∈ X. Then the decision maker’s equilibrium choice must be identical.

Proof. Consider some action a that is taken in equilibrium and some vertex µaj ∈ M(a) ∩
X. Assume that there exist equilibria σ∗ and σ∗∗ and histories h∗, h∗∗ that generate joint

experiments π∗, π∗∗ with realizations s∗ ∈ π∗ and s∗∗ ∈ π∗∗ such that µ (s∗) = µ (s∗∗) = µaj but

that

σ∗d (h∗, s∗) = a 6= a′ = σ∗∗d (h∗∗, s∗∗) . (A.11)

Suppose first that µaj is a degenerate belief, i.e., a vertex of the simplex ∆ (Ω); then there must

be some ω such that

vd (a, ω) = vd (a′, ω) . (A.12)

A decision maker’s payoff function may be viewed as element in |Ω× A| dimensional Euclidean

space and the payoff functions that satisfy (A.12) defines a |Ω× A| − 1 dimensional subspace.

As there are a finite number of triples (a, a′, ω) ∈ A2 × Ω, the set of utility functions in which

(A.12) holds for some triple (a, a′, ω) is of Lebesgue measure zero. Next, consider the case with

(A.11) holding at some µaj that is not a vertex of the simplex ∆ (Ω) . Then sender n can deviate

in a way so that either a or a′ is chosen with probability arbitrarily close to one, implying that∑
ω∈Ω

vn (a, ω)µj (a) =
∑
ω∈Ω

vn (a′, ω)µaj , (A.13)

7In a numerical example, we construct a non-Markov equilibrium where the decision maker’s tie-breaking

rule determines by payoff-irrelevant endogenous choice senders. See Appendix B.1 for detail.
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which again defines a |Ω× A| − 1 dimensional subspace of an |Ω × A| dimensional Euclidean

space given any a, a
′
, and µaj . There is a finite set of triples (a, a

′
, µaj ) to consider and for each

triple (A.13) is satisfied for a set of payoff functions of Lebesgue measure zero, implying that

the set of payoff functions for sender n that allows for multiple tie breaking rules at an interior

vertex is of measure zero.

By Lemma 3, for generic preferences, it is without loss to restrict to a Markov strategy on

form σd : ∆ (Ω)→ A for the decision maker. It is then useful to define v̂i : ∆ (Ω)→ R, where

v̂i(µ) ≡ vi(σd(µ), µ), (A.14)

which is the implied payoff function directly over decision maker beliefs for each sender i.

Next, we show that for full measure of stable beliefs, no sender has a weak incentive to

add information. To state this result, recall that Xi is the set of stable vertex beliefs in the

truncated game starting with sender i:

Lemma 4. Suppose that the decision maker plays a Markov strategy σd : ∆(Ω) → A. Then,

for any sender i ∈ {1, ..., n} and for any µ ∈ Xi, Y ⊆ Xi, and τ such that
∑

µ′∈Xi
µ′τ (µ′) = µ,

exactly one of the following two cases holds:

1. σd (µ′) = σd (µ) for every (µ, µ′) ∈ Y,

2. there exists (µ, µ′) ∈ Y such that σd (µ) 6= σd (µ′) . In this case

v̂i (µ) >
∑
µ′∈Y

v̂i (µ
′) τ (µ′) , (A.15)

for a set of sender i’ utility functions over A× Ω with full Lebesgue measure.

Proof. If σd (µ′) = σd (µ) for each µ ∈ Xi and every i there is nothing to prove. Suppose instead

that there exists µ ∈ Xi and Y ⊂ Xi and τ ∈ ∆ (Y ) such that µ =
∑

µ′∈Y µ
′τ (µ′) and that

(A.15) is violated for sender i. Denote by {µ1, ..., µm+1} = Y and τ = (τ1, ..., τm+1) and write

the failure of (A.15) as

v̂i (µ) =
m+1∑
j=1

v̂i (µj) τj . (A.16)

If Y is an affinely independent set, there is a unique mean-preserving spread of µ onto Y . In

this case the next step in which we find an affinely independent set that spans µ can be skipped.

The case that requires more work is when Y is an affinely dependent set of vectors. This is
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true if and only if {µ2 − µ1, ...., µm+1 − µ1} are linearly dependent. Then there are scalars

(α2, ..., αm+1) 6= (0, ..., 0) such that
∑m+1

j=2 αj (µj − µ1) = 0. So(
−

m+1∑
j=2

αj

)
µ1 +

m+1∑
j=2

αjµj =
m+1∑
j=1

αjµj = 0, (A.17)

by defining α1 = −
∑m+1

j=2 αj, which also implies that
∑m+1

j=1 αj = 0. For every β, we have

µ =
m+1∑
j=1

µjτj =
m+1∑
j=1

µjτj − β
m+1∑
j=1

αjµj =
m+1∑
j=1

(τj − βαj)µj. (A.18)

Let I+ = (j ∈ {1, ....,m+ 1} |τj > 0) and let j∗ be chosen so that 0 <
τj∗

α∗j
≤ τj

aj
for all j such

that αj > 0. Such j∗ exists as there is at least one j such that αj > 0. Let β∗ =
τj∗

α∗j
and

τ ∗j = τj −
τj∗

α∗j
αj. (A.19)

It follows that τ ∗j ≥ 0 for all j, that
∑m+1

j=1 τ ∗j = 1 and τ ∗j∗ = 0. Hence, we can remove µj∗ from

{µ1, ...., µm+1} and still find a convex combination that generates µ. By induction, there exists

an affinely independent set of vectors {µ̂1, ..., µ̂k} ⊆ Y such that µ is in its convex hull, implying

that there exists a unique solution τ̂ such that µ =
∑k

j=1 µ̂j τ̂j.
8 If σd (µ̂j) = σd (µ̂j′) for every

pair of beliefs in {µ̂1, ..., µ̂k}, then µ and τ̂ are outcome equivalent. If σd (µ̂j) 6= σd (µ̂j′) for

some beliefs in {µ̂1, ..., µ̂k}

v̂i (µ) =
k∑
j=1

v̂i (µ̂j) τ̂j, (A.20)

then v̂i : ∆ (Ω)→ R belongs to a Lebesgue measure zero set of utility functions.9 We conclude

that for every affinely independent subset of Xi, there is a Lebesgue measure zero of utility

functions for i that can generate indifferences that are not outcome equivalent. There is a finite

number of affinely independent subsets and every mean-preserving spread of µ with support on

Xi can be written on form

µ =
L∑
l=1

βl

k(j)∑
j=1

µ̂j (l) τj (l) , (A.21)

8If τ̂ 6= τ̂ are distinct mean-preserving spreads of µ onto {µ̂1, ..., µ̂k}, then 0 =
∑k
i=1 µ̂i (τ̂i − τ̂i) or 0 =∑k

i=2 (µ̂i − µ̂1) (τ̂k − τ̂k) which implies {µ̂1, ..., µ̂k} is affinely dependent as τ̂i−τ̂i 6= 0 for at least one i ∈ {2, .., k}.
9By repeating the steps in (A.30), (A.31) and (A.32) below, the measure zero condition in belief space implies

measure zero in terms of maps ui : A× Ω.→ R.
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where βl ≥ 0 for each l,
∑L

l=1 βj = 1 and every set {µ̂1 (j) , ..., µ̂k (j)} is affinely independent.

Hence, if (A.15) holds for every affinely independent subset of Xi it holds for all subsets of Xi.

The result follows.

The first case of Lemma 4 simply points out that it is possible that the decision maker

action is constant on a subset of stable beliefs. This is relevant because it is possible that there

may exist a non-trivial mean preserving spread τ ∈ ∆ (Xi) of µ ∈ Xi and if σd (µ′) = σd (µ) for

each µ′ in the support of τ , the sender is indifferent. However, this multiplicity is not essential

because staying on µ or splitting beliefs in accordance to τ generates identical joint distribution

over actions and states.

In the second case of Lemma 4, Xi, the set of beliefs of the truncated game with senders

i, i+1, ..., n, contains beliefs that result in at least two distinct actions according to σd. Suppose

that τ ∈ ∆ (Y ) is a vector such that (A.15) doesn’t hold, implying that

v̂i (µ) =
∑
µ′∈Y

v̂i (µ
′) τ (µ′) , (A.22)

as otherwise µ could not be a stable belief. If Y is an affinely independent set of vectors,

there is a unique mean-preserving spread of µ onto Y and it should be clear that (A.22) can

only hold for a non-generic set of functions v̂i : ∆ (Ω) → R. 10 If, instead, Y is an affinely

dependent set, then there must be an affinely independent subset of Y such that (A.22) holds

for some mean-preserving spread with support on the affinely independent subset. For each

affinely independent subset of Y , this requires non-generic preferences, and since there is a finite

number of senders and affinely independent subsets, the result follows by induction.

In a similar spirit we establish that indifferences over distinct distributions over stable

continuation beliefs are rare.

Lemma 5. Fix any i ∈ {1, ..., n} . Then∑
µ′∈Y

v̂i (µ
′) τ (µ′) 6=

∑
µ′∈Ỹ

v̂i (µ
′) τ̃ (µ′) , (A.23)

for every µ ∈ X ∪ {µ0} and every distinct pair (τ, Y ) ,
(
τ̃ , Ỹ

)
with Y ⊆ Xi and Ỹ ⊆ Xi being

affinely independent sets and τ (τ̃) being a the unique mean preserving spread of µ onto Y (Ỹ )

holds for a set of sender i utility functions over A× Ω with full Lebesgue measure.

10This also implies that a non-generic set of utility functions ui : A× Ω→ R can satisfy the equality
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Proof. Let X (µ0) be the support for the unique equilibrium given prior µ0 and let τ be the

associated equilibrium distribution.. We note that τ and λ are unique vectors so that

µ0 =
∑

µ∈X(µ0)

µτ (µ) , (A.24)

µ̃0 =
∑

µ∈X(µ0)

µλ (µ) . (A.25)

Hence, for any β

µ0 =
∑

µ∈X(µ0)

µ (τ (µ)− βλ (µ)) + βµ̃0, (A.26)

and all coefficients are positive if β is small enough. Also, we assume that τ̃ has support on

X (µ̃0) 6= X (µ0) so that

µ̃0 =
∑

µ∈X(µ̃0)

µτ̃ (µ) . (A.27)

This implies that when the prior is µ0, it is feasible to split beliefs over X (µ0) ∪ X (µ̃0) in

accordance to

{τ (µ)− βλ (µ) + βτ̃ (µ)}µ∈X(µ0)∪X(µ̃0) , (A.28)

provided that β small enough. But, since τ is the generically unique equilibrium given µ0, this

is suboptimal, so∑
µ∈X(µ0)

v̂1 (µ) τ (µ) >
∑

µ∈X(µ0)∪X(µ̃0)

v̂1 (µ) [τ (µ)− βλ (µ) + βτ̃ (µ)]

=
∑

µ∈X(µ0)

v̂1 (µ) τ (µ) + β

 ∑
µ∈X(µ̃0)

v̂1 (µ) τ̃ (µ)−
∑

µ∈X(µ0)

v̂1(µ)λ (µ)

 .
Hence, ∑

µ∈X(µ̃0)

v̂1 (µ) τ̃ (µ) <
∑

µ∈X(µ0)

v̂1(µ)λ (µ) , (A.29)

which contradicts that τ̃ is better than λ for prior belief µ̃0.

A.3.2 Proof of Proposition 3

Lemma 2 and corollary 2 imply that for sender i = 2, ..., n we only need to consider responses

at X onto ∆ (Xi). Lemma 4 implies that, generically, each sender has a strict incentive not to

refine any µ ∈ Xi. By linearity an optimal mean-preserving spread with support on an affinely

independent set must exist, so Lemma 5 implies that for generic preferences each deviation
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onto ∆ (X) generates an essentially unique response for generic preferences and since every

deviation is equivalent to a deviation onto ∆ (X), we conclude that the off-equilibrium path is

generically unique. Finally, Lemma 5 applied to sender 1 also implies that sender 1 generically

has a unique optimal mean-preserving spread of the prior onto the set of stable beliefs.

Assume that there exist two distinct affinely independent sets of vectors Y ⊆ Xi and Ỹ ⊂ Xi

such that ∑
µ′∈Y

v̂i (µ
′) τ (µ′) =

∑
µ′∈Ỹ

v̂i (µ
′) τ̃ (µ′) . (A.30)

where τ is the unique mean-preserving spread of µ onto Y and τ̃ is the unique mean-preserving

of µ onto Ỹ . Also assume there are at least two distinct actions chosen by the decision maker.

In terms of the primitive preferences over A× Ω, (A.30) can be rewritten as∑
µ′∈Y

∑
ω∈Ω

[ui (σd (µ′) , ω)µ′ (ω)] τ (µ′) =
∑
µ′∈Ỹ

∑
ω∈Ω

[ui (σd (µ′) , ω)µ′ (ω)] τ̃ (µ′) . (A.31)

Notice that if for each a ∈ A we let Y (a) = {µ′ ∈ Y s.t σd (µ′) = a} and symmetrically for

Ỹ (a) we may rewrite (A.31) further as

∑
a∈A

∑
ω∈Ω

ui (a, ω)

 ∑
µ′∈X(µ,a)

µ′ (ω) τ (µ′)−
∑

µ′∈X̃(µ,a)

µ′ (ω) τ̃ (µ′)

 = 0. (A.32)

Since τ and τ̃ are uniquely defined, this defines a lower dimensional subspace of |A× Ω| −dimensional

Euclidean space, so the set of sender i payoff functions such that (A.30) holds is measure zero.

Since Xi is finite, there is a finite set of pairs of affinely independent sets spanning µ and we

only consider µ from the finite set X ∪ {µ0} . The result follows.

A.4 Proofs: Applications

Proof of Proposition 6. Since the stage and the player identity no longer coincide, let X t
i denote

the stable beliefs in the truncated game starting with player i moving at stage t (reference to

recursive definition of stable beliefs). Suppose that t is the final move of player i and that i

also moves at t′, with t′ < t. If t′ and t are consecutive stages, it is immediate at X t
i = X t′

i , so

assume that there exists a player j moving in between t′ and t. Without loss of generality, let

j move at time t′ + 1 and let X t′+1
j ⊆ X t

i be the set of stable vertex beliefs in the truncated

game starting with player j at time t′ + 1. We claim that X t′
i = X t′+1

j , that is, that player i

moving at t′ doesn’t affect the set of stable vertex beliefs in the truncated game starting at the

next stage, so the move by i at t′ is redundant. For contradiction, assume that the move by
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i at t′ refines the set of stable beliefs, so that there exists µ ∈ X t′+1
j such that µ /∈ X t′

i . But,

if µ ∈ X t′+1
j , then µ ∈ X t

i , which implies that i has no incentive to create a mean preserving

spread of µ with support in X t
i ⊆ X t′

i . Since any mean-preserving spread that is feasible at time

t′ is feasible also at t, this contradicts X t
i being the set of stable beliefs in the truncated game

starting a time t. Since t′ < t and i were arbitrary, the proposition follows.

Proof of Proposition 7. Consider some µ in the support of τ that is not in ∆ (X) . Assume that

σd (µ) = a is the action taken by the decision maker following µ and let M (a) be the set of

beliefs for which a is optimal. Replace µ with any mean-preserving spread τ ′ of onto beliefs

in M (a), suppose that σd (µ′) = a for each µ′ in the support of τ ′, and let the probability of

any other belief in τ be unchanged. Clearly, this belief distribution is outcome equivalent with

τ. To see that it must also be an equilibrium, assume that it is not. Then there exists some

player i and belief µ′ in the support of τ ′ and a mean preserving spread τ ′′ of µ′ such that

i strictly prefers τ ′′ to µ′. But then i strictly prefers the compound mean-preserving spread

constructed by first splitting µ into τ and then further splitting µ′ into τ ′′. Since this compound

mean-preserving spread is a feasible deviation for i given belief µ, this contradicts µ being in

the support of an equilibrium distribution. Since τ ′ is any mean-preserving spread with support

in M (a), we may choose one with support on the vertices of M (a) , which is always possible.

The proof is completed by noting the argument can be repeated for any µ not in ∆ (X) .

Proof of Proposition 9. By the proof of Proposition 5, the support of the finest equilibrium in

a sequential game contains at most two stable beliefs, i.e., {µL, µH} such that µL ≤ µ0 ≤ µH .

Take a belief µ induced by an equilibrium of the simultaneous game. By Proposition 8, either

µ ≤ µL or µ ≥ µH . The rest of the proof follows exactly the same argument in the proof of

Proposition 5, so it is omitted.

B Examples

B.1 Non-Markov Equilibrium

In this section, we consider an example which has a non-Markov equilibrium that is qual-

itatively different from the Markov Equilibrium. Suppose that Ω = {ω0, ω1} and the optimal
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choice correspondence for the decision maker is

σ(µ) =


{a1, a2} if µ ≤ 1/10

a3 if 0.1 ≤ µ ≤ 9/10

{a4, a5} if µ ≥ 9/10

. (B.1)

Also suppose that two senders have state-independent preferences

u1(a, ω) =


3 if a ∈ {a1, a4}

1 if a = a3

0 if a ∈ {a2, a5}

, and, u2(a, ω) =


3 if a ∈ {a2, a5}

1 if a = a3

0 if a ∈ {a1, a4}

. (B.2)

Consider a Markov equilibrium. Allowing for mixed strategies let σ1 (0) be the probability for

a1 given belief µ = 0 and σ4 (1) be the probability of a4 given belief µ = 1. Suppose that the

decision maker has full information. Then, the payoffs of sender 1 and 2 are 3[σ1(0) + σ4(1)]/2

and 3[2 − σ1(0) − σ4(1)]/2 respectively, so the payoff is greater than or equal to 3/2 for at

least one sender. Hence, beliefs in [1/10, 9/10] can be ruled out in any Markov equilibrium. In

contrast, if the decision maker always breaks the tie against the sender who first splits the belief

into [0, 1/10] or [9/10, 1] each sender may as well not provide any information and qualitatively

different equilibria with action a3 can be supported by such non-Markov strategies.

B.2 First-Mover Advantage

To illustrate the first-mover advantage, assume that there are three states, i.e. Ω =

{ω1, ω2, ω3}, and the prior is (1/3, 1/3, 1/3). For simplicity, take the set of stable beliefs

as a primitive. We assume that the stable vertex beliefs are e1 = (1, 0, 0) , e2 = (0, 1, 0) ,

e3 = (0, 0, 1) , µ1 = (1/2, 1/2, 0) and µ2 = (0, 1/2, 1/2). There can be an arbitrary number

of senders, but we will just consider two of then, labeled 1 and 2. Let their expected utilities

evaluated at the stable beliefs be

(v̂1 (e1) , v̂1 (e2) , v̂1 (e3) , v̂1 (µ1) , v̂1 (µ2)) = (0,−1,−1, 0, 1) ,

(v̂2 (e1) , v̂2 (e2) , v̂2 (e3) , v̂2 (µ1) , v̂2 (µ2)) = (−1,−1, 0, 1, 0) .

While e1, e2 and e3 are trivially stable we need to check stability of µ1 and µ2. We have that µ1

is stable because

v̂1 (µ1) = 0 >
1

2
v̂1 (e1) +

1

2
v̂1 (e2) = −1

2
,

v̂2 (µ1) = 1 >
1

2
v̂2 (e1) +

1

2
v̂2 (e2) = −1,
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and µ2 is stable by a symmetric computation. It follows that in the game in which sender 1

moves first the equilibrium will be that sender 1 puts probability 1/3 on e1 and 2/3 on µ2, giving

player 1 and expected utility of 2/3 and player 2 and expected utility of −1/3. In contrast, when

sender 2 moves first, µ1 is played with probability 2/3 and e3 with probability 1/3 resulting in

the opposite expected utilities.

References

Ambrus, A., and S. Takahashi (2008): “Multi-sender cheap talk with restricted state

spaces,” Theoretical Economics, 3(1), 1–27.

Au, P. H., and K. Kawai (2017): “Competitive disclosure of correlated information,” Eco-

nomic Theory, pp. 1–33.

(2020): “Competitive information disclosure by multiple senders,” Games and Eco-

nomic Behavior, 119, 56–78.

Aumann, R., and M. Maschler (1968): “Repeated games of incomplete information, the

zero-sum extensive case,” Reports ST-143, Mathematica Inc., Princeton, NJ.

Battaglini, M. (2002): “Multiple referrals and multidimensional cheap talk,” Econometrica,

70(4), 1379–1401.

Bergemann, D., and S. Morris (2016): “Bayes correlated equilibrium and the comparison

of information structures in games,” Theoretical Economics, 11(2), 487–522.

Bhattacharya, S., and A. Mukherjee (2013): “Strategic information revelation when

experts compete to influence,” The RAND Journal of Economics, 44(3), 522–544.

Blackwell, D. (1953): “Equivalent comparisons of experiments,” The annals of mathematical

statistics, 24(2), 265–272.

Board, S., and J. Lu (2018): “Competitive information disclosure in search markets,” Jour-

nal of Political Economy, 126(5), 1965–2010.

Boleslavsky, R., and C. Cotton (2016): “Limited capacity in project selection: competi-

tion through evidence production,” Economic Theory, pp. 1–37.

Ely, J., A. Frankel, and E. Kamenica (2015): “Suspense and surprise,” Journal of

Political Economy, 123(1), 215–260.

38



Ely, J. C. (2017): “Beeps,” The American Economic Review, 107(1), 31–53.

Gentzkow, M., and E. Kamenica (2017a): “Bayesian persuasion with multiple senders and

rich signal spaces,” Games and Economic Behavior, 104, 411–429.

(2017b): “Competition in persuasion,” The Review of Economic Studies, 84(1), 300–

322.

Glazer, J., and A. Rubinstein (2001): “Debates and decisions: On a rationale of argumen-

tation rules,” Games and Economic Behavior, 36(2), 158–173.

Green, J., and N. Stokey (1978): “Two Representations of Information Structures and their

Comparisons,” Institute for Mathematical Studies in the Social Sciences, Stanford University,

technical report no. 271.
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