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Abstract

This paper investigates the potential for mediation in a dynamic reputational bargaining
model, with flexible rational agents and inflexible behavioral types. I first show how simple
communication protocols used by professional mediators can improve outcomes. I then
fully characterize equilibria with mediation under a “good faith” bargaining assumption,
and identify a unique optimal protocol for symmetric games. Optimal mediation helps if
there is curvature in the utility-possibility frontier, or agents’ probability of inflexibility
is small relative to demands. Outcomes differ markedly when a mechanism designer can
impose agreement.
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1 Introduction

Mediators are third parties who help disputants reach voluntary bargaining agreements. Media-
tion is distinct from arbitration, another form of Alternative Dispute Resolution, which imposes
agreement. It is widely used to help resolve conflicts ranging from international wars to labor
union strikes to divorce. For instance, Dixon (1996) finds that mediation occurred in 13% of
dispute phases of international conflicts between 1947-1982.1 In a survey of general counsel for
Fortune 1000 companies, Stipanowich and Lamare (2013) found that in each of commercial,
employment and consumer disputes over 42% of companies “always” or “often” used media-
tion, and its use had increased in every category since 1997. By contrast binding arbitration
was “always” or “often” used by less than 17% of companies in each category.

Attesting to mediation’s benefits, Dixon found that mediated disputes were 47% less likely
to escalate and 24% more likely to peacefully resolve compared to disputes with no conflict
management.2 More convincing evidence comes from Emery et al. (1991), who found that
a treatment group, randomly selected to receive mediation services, settled 89% of contested

∗Brown University. jack fanning@brown.edu. Department of Economics, Robinson Hall, 64 Waterman Street,
Brown University, Providence, RI 02912. See https://sites.google.com/a/brown.edu/jfanning for latest version.

†I am grateful to many people for their input on this project, especially Ennio Stacchetti, Mehmet Ekmekci,
Oleg Semenov, Bobby Pakzad-Hurson, Larry Samuelson, and seminar audiences at Stanford GSB, UCSD, UCSB,
Kellogg Northwestern, QMUL, Yale, MSU, Columbia and the BEET Conference.

1Dispute phases are distinguished by the level of conflict (e.g. threats of hostilities, open hostilities).
2Wilkenfeld et al. (2003) and Beardsley et al. (2006) also present positive empirical assessments of mediation’s

effectiveness in resolving conflict, while Fey and Ramsay (2010) is less positive.

1

https://sites.google.com/a/brown.edu/jfanning/


custody cases out of court, compared to 28% of a control group. Mediation also halved the
time spent reaching agreement and increased parties’ satisfaction with the outcome.

Given that mediators are distinguished by having no formal power, why might mediation help?
If a mediator is independently informed about the bargaining problem, then releasing her infor-
mation can sometimes be beneficial (see Basak (2019)). However, typically mediators have no
information beyond that already available to both parties (see Fey and Ramsay (2010)). Veteran
mediator and former Secretary of Labor John Dunlop (Dunlop (1984), p16-24) describes the
benefit of uninformed mediators in difficult “end-play” negotiations as follows: “The critical
problem is that each side would prefer the other to move to avoid a further concession itself, and
that any move may create the impression of being willing to move all the way to the position
of the other side... In these circumstances a third party may greatly facilitate agreement. The
separate conditional acceptance to the mediator by one side of the proposal does not prejudice
the position of that side if there is no agreement. It is not unusual for a mediator to secure the
separate acceptance of each side of a “package” of the mediator’s design and then to bring the
parties together to announce that, even if they do not know it, they have an agreement.”

The claim is that mediators help, in part, by filtering agents’ private information. Agents may
resist proposing a compromise themselves for fear of being identified as a “weak” type, who is
willing to concede entirely to her opponent’s demand. The mediator can eliminate this fear by
filtering the information that an agent is willing to compromise (e.g. releasing it only when an
opponent is also willing to compromise), and so potentially encourage agreement.

Despite being intuitively appealing, it is far from obvious that such techniques do explain why
mediation works; indeed, to the best of my knowledge, the existing theoretical literature has
failed to identify any clear benefit from uninformed mediators in dynamic bargaining games.
Uninformed mediators have been shown to usefully filter information in simple one-shot set-
tings such as sender-receiver games (e.g. Goltsman et al. (2009)), however, the bargaining lit-
erature has shown that conclusions frequently don’t extend from one-shot settings to dynamic
ones. For instance, when a seller can make a take-it-or-leave-it offer to a buyer who has private
information about her value, outcomes are inefficient with the seller getting her maximum pos-
sible profits, but in an infinite horizon, the Coase conjecture delivers an approximately efficient
outcome with the buyer capturing all the gains from trade (Fudenberg et al. (1985) and Gul
et al. (1986)). Such efficiency rules out Pareto improvements from mediation in this setting.3

In dynamic bargaining with two-sided incomplete information about values, it is hard to iden-
tify benefits from mediation given the vast set of equilibria even without mediation (e.g. see
Ausubel et al. (2002)). Equilibrium multiplicity arises because agents can be harshly “punished
with beliefs” for deviating from a given equilibrium path (i.e. identified as a weak type), giving
them an arbitrarily small continuation payoff. This allows for both very efficient and very in-

3Clearly this is also true for canonical complete information models such as Rubinstein (1982).
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efficient equilibria. As an example of the former, if the distributions of buyer and seller values
are overlapping, independent, and have monotonic hazard rates, Ausubel and Deneckere (1993)
construct equilibria of an alternating offer game which approximate the ex-ante constrained ef-
ficient bounds of Myerson and Satterthwaite (1983). If we believe that such efficient equilibria
will arise absent mediation, there is again little scope for mediation. If we don’t (strategies
are nonintuitive: low cost sellers pool on demands with high cost sellers, but not medium cost
sellers), then which of the many other equilibria should we compare mediation to?

I do, however, identify Pareto improvements from uninformed mediators in a dynamic reputa-
tional bargaining model with two-sided incomplete information. The reputational model has
a unique equilibrium without mediation, which serves as a clear benchmark against which to
assess mediation’s effects. The model is adapted from the canonical reputational bargaining
model of Abreu and Gul (2000) (henceforth AG).4 Two agents must divide a dollar. They can
make frequent offers over the course of an infinite horizon.5 With positive probability each
agent is an inflexible behavioral type who always demands a fixed share of the dollar and ac-
cepts nothing less, otherwise the agent is flexible (rational). The unique equilibrium resembles
a war of attrition: flexible agents initially imitate inflexible demands and then concede slowly
to their opponent.6 If an agent is ever identified as flexible, she must immediately concede.
Uniqueness arises because inflexible types cannot be punished with beliefs (they make their
demand anyway). However, the model shares many tensions with other private information
models, and can explain key features of unmediated bargaining highlighted by Dunlop, such as
inefficient delay and negotiators’ justified fear that small concessions will lead to larger ones.

I show that adding noise to the simple mediation (communication) protocol outlined by Dunlop
can improve payoffs compared to unmediated bargaining, if agents are likely to be flexible.
Dunlop proposed that mediators immediately suggest a compromise if both parties privately
accept its terms. The added noise takes the form of the mediator failing to announce a deal
with (possibly small) positive probability even when both parties privately accept it, which
may occur because agents’ messages sometimes go astray, or are misinterpreted.

Adding noise turns out to be essential: I also show that Dunlop’s mediation protocol is necessar-
ily ineffective without it. Without noise a flexible agent who accepts the mediator’s compromise
learns that her opponent didn’t accept (and so is likely inflexible) when no deal is announced.
This increases her incentive to subsequently concede, which destroys a flexible opponent’s in-
centive to compromise in the first place. Adding noise makes agents less pessimistic about an
opponent’s type if no deal is announced (perhaps the mediator is at fault). The two results high-

4Myerson (1991) first analyzed reputational bargaining with one-sided inflexiblity. More recent contributions
to the literature include: Kambe (1999), Abreu and Pearce (2007), Wolitzky (2012), Atakan and Ekmekci (2013).

5This might seem inconsistent with many mediation settings, where an impending trial implies a finite horizon
(deadline). However, Fanning (2016) shows that infinite horizon and deadline reputational models are very similar.

6AG allow for discrete time bargaining, but show that outcomes converge to those of a unique continuous time
equilibrium, regardless of the fine details of the bargaining protocol.
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light the desirability of commitment for mediators, and suggest they shouldn’t be incentivized
to reach early agreements. Sometimes failing to agree spurs agreement.7

To more deeply understand why and when mediation works, the paper’s main analysis adopts a
mechanism design approach. Allowing for all possible mediator strategies, I fully characterize
outcomes in what I call good faith equilibria, in which flexible agents never demand more than
inflexible types.8 This represents all equilibria if agents can recall an opponent’s previous offer,
and initially make an inflexible type’s demand. The name derives from the National Labor
Relations Act which requires that firms and unions bargain in “good faith” and not withdraw
from provisions that they have previously agreed to.

My main result then characterizes an essentially unique good faith equilibrium that maximizes
the sum of flexible agents’ payoffs for any symmetric bargaining game.9 Optimal mediation is
symmetric, with each rational agent facing the same distribution of agreement times, and get-
ting half the dollar when facing a rational opponent. The mediator delays agreements between
two flexible agents by less than agreements between a flexible and inflexible type, to ensure
that flexible types have incentives to truthfully reveal themselves. Mediation improves on un-
mediated payoffs if and only if agents are risk averse, or inflexible demands are larger than the
probability of inflexibility.

A first interesting feature of this result is that curvature of the utility-possibility frontier can
be both necessary and sufficient for beneficial mediation. In unmediated bargaining, flexible
agents sometimes concede and are sometimes conceded to, which is inefficient if they are risk
averse (an inefficiency that has received much less attention in the theoretical literature than de-
lay). By replacing dispersed agreement terms with a single average agreement the mediator can
always improve payoffs. Indeed, doing so creates strict incentives for flexible agents to reveal
their type to the mediator and so she can then also reduce delay while preserving incentives.

The special importance of mediation when there is curvature in the utility-possibility frontier
obviously extends beyond risk aversion,10 and in particular applies to bargaining with multiple
issues. Goldberg et al. (2012) emphasizes the special role for a mediator with multiple is-
sues, because these allow for “integrative” bargaining solutions, where the mediator convinces
parties to sacrifice low value issues in return for higher value concessions elsewhere. The me-
diator’s role in devising an appropriate agreement “package” is also highlighted in Dunlop’s
quotation. The simplest illustration of how multiple issues create curvature is when agents
must divide two continuous pies (with no transferable utility), where agent i values fraction xi, j

7This may help explain why mediators are typically paid by the hour (see Velikonja (2009)) and is consistent
with the advice of veteran mediators to not overly prioritize reaching an agreement (e.g. see Brazil (2007)).

8This restriction is with some loss of generality. It is discussed in Section 4.
9Symmetric agents have equal impatience, behavioral probability, behavioral demands, and utility functions.

10For example, warring parties (or divorcing parents) may strictly prefer a 50/50 split of disputed land (parenting
time) to a 50/50 chance of all the land (sole custody) or none.
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of pie j at xi, jvi, j and vi,i > vi,−i > 0.11 Giving each agent i all of pie i, therefore, provides higher
payoffs than giving each a 50% chance of their first best agreement (all of both pies).

A second interesting feature of the result is that mediation may be most beneficial for significant
disputes, where parties’ demands are far apart. This is exemplified by the need for demands
to be larger than the probability of inflexible types for mediation to improve outcomes for risk
neutral agents. It is somewhat counterintuitive, as one might think parties have to give up too
much for compromise to work in this case, however, the smaller payoff from conceding (to a
large demand) increases a flexible agent’s incentive to truthfully reveal her type to the mediator.

In addition to unmediated bargaining, a second important benchmark with which to compare
mediation is a mechanism design problem where the designer can impose agreements, and dis-
agreement between two reportedly inflexible types.12 Not surprisingly, this benchmark always
does better than mediation. In fact, the difference is dramatic. When inflexible types are likely
or inflexible demands are moderate (close to 1/2) it achieves full efficiency, with payoffs match-
ing those under complete information.13 By contrast, the mediator was unable to improve on
unmediated bargaining for risk neutral agents in exactly those circumstances. The very differ-
ent predictions show that a mediator is constrained far more by agents’ freedom to ignore her
instructions, than by the informational problem alone.

Finally, it is worth emphasizing that the paper adopts the perspective that inflexible behavior
is not vanishingly unlikely. When it is, AG show that for generic (asymmetric) bargaining
games, bargainers agree immediately with probability approaching one, even without a media-
tor. Without curvature in the utility-possibility frontier, mediation may not be beneficial when
flexible agents are vanishingly unlikely, however, I show it can still deliver substantially higher
payoffs in such generic games for intermediate likelihoods of commitment.

The rest of the paper is arranged as follows. The remainder of this section discusses additional
related literature; Section 2 outlines the model; Section 3 analyzes the model both without
mediation and with simple mediation protocols inspired by Dunlop; Section 4 characterizes
good faith equilibria and identifies an optimal mediation protocol, before comparing it to a
mechanism design benchmark; Section 5 is a conclusion. All proofs are in Appendix B.

Further related literature

There is fairly extensive literature on uninformed mediation in simple one-shot games, which
share some similarities with my results, despite important differences to dynamic bargaining.

11If values are private, a mediator may also filter this information. However, Jackson et al. (2015) show that
with many privately valued issues and no reputational concerns, bargaining is almost efficient without a mediator.

12The difficulty of imposing disagreement may explain why such mechanisms aren’t used instead of mediation.
13This contrasts with the necessary inefficiency of Myerson and Satterthwaite (1983) with continuous overlap-

ping value distributions. The reputational model, however, is closer to a discrete value distribution setting.
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Goltsman et al. (2009) characterizes the extent to which mediation, arbitration and negotia-
tion (finitely many rounds of communication but with no discounting) can improve receiver
payoffs in a sender-receiver game. Arbitration is (generically) more effective than mediation,
while mediation is only sometimes more effective than communication. Both mediators and
arbitrators filter information, but mediators must add noise. This is in line with my finding
that noise is necessary to make Dunlop’s simple protocol effective; however, the importance of
noise isn’t restricted to a mediator’s communication. In a simple sender-receiver game with no
mediator, Myerson (1991) highlights how noisy communication is informative, but noiseless
communication isn’t. In a one-shot conflict game, Fey and Ramsay (2010) shows that media-
tion cannot improve on unmediated communication. In a slight variant of this setting, however,
Hörner et al. (2015) shows that arbitration and mediation are equally effective at deterring con-
flict, and these outperform communication when the intensity of conflict is high, or asymmetric
information is large. Meirowitz et al. (2019) shows that unmediated peace talks increase the
incentive to militarize and so increase eventual conflict, but mediated peace talks reduce mili-
tarization and conflict. The importance of mediator commitment for my results is in line with
literature investigating the incentives of informed mediators. In particular, Kydd (2001) finds
that mediators who only want to avoid war are ineffective, but biased mediators can help.

Jarque et al. (2003) is an important paper considering mediation in dynamic bargaining with
two-sided private information. Time is continuous, and agents have reservation values drawn
from a continuous distribution. A war of attrition equilibrium always exists, where agents only
ever make two demands. A mediator adopts a simple version of Dunlop’s protocol that is inef-
fective in the reputational model: she immediately announces a compromise when both parties
accept it in private. When fundamentals are symmetric, there is an equilibrium with mediation
if and only if the fraction of types willing to concede in the war of attrition is sufficiently small.
Ex-ante efficiency can be higher than in the war of attrition. The reason Dunlop’s simple pro-
tocol “works” here but not in the reputational model is that the mediator facilitates agreement
between types who would never otherwise agree. For example, if buyers demand a price of 1
and sellers a price of 4 in a war of attrition, then a buyer with value 3 and a seller with cost 2
will never agree, but they can at the mediator’s compromise price of 2.5. The extra payoffs from
such agreements can add enough grease to the system to overcome the inherent difficulties of
mediation. In the reputational model, by contrast, introducing a compromise agreement does
not expand the set of types who ultimately agree. Čopič and Ponsatı́ (2008) extends this model
to allow for a continuum of possible compromise agreements, and illustrates the existence of a
mediator supported equilibrium, where all compatible types eventually agree.

Despite identifying an equilibrium with mediation, it is unclear whether mediation is actu-
ally beneficial in Jarque et al. (2003), because multiple equilibria can exist without mediation
(the result only compares mediation to war of attrition equilibria). Without mediation, if only

three alternative agreements are possible and strategies are Markov, then Ponsati (1997) shows
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there must be a war of attrition in the reservation value model. However, she also constructs
non-Markov equilibria, in which compromise agreements are used and shows these are more
efficient than the war of attrition. Of course, it is also unclear why agents should only have
three alternative agreements, when they could also seemingly agree to choose each alternative
with positive probability (making the agreement set convex).

My equilibria with mediation are effectively communication equilibria in the sense of Myerson
(1986). The fact that communication equilibria take the game being played as fixed distin-
guishes this from a typical mechanism design exercise. The presence of a fixed game is also
shared with information design; indeed, the mediator’s problem can be thought of as informa-
tion design with an uninformed designer. Information design assumes that the designer has her
own independent source of information. These links imply similarities between my optimal
mediation problem and the literature on dynamic information design (e.g. see Ely (2017)),
which is similarly concerned with the optimal release of information over time to affect behav-
ior. The problem of how to optimally release information over time in order to affect behavior
is also addressed by the literature on motivational ratings (e.g. see Hörner and Lambert (2016),
and also Ekmekci (2011) for motivational ratings with behavioral types).

Basak (2019) considers a model very similar to reputational bargaining with a form of static
information design. An informed mediator has access to a signal about the likelihood that
an agent is committed to her bargaining demand. If the signal is perfectly informative then its
release makes bargaining efficient (eliminating delay when at least one party is not committed);
however, if the signal is only moderately informative, then its release may reduce payoffs.

Finally, it is important to acknowledge that mediation has many other reputed benefits beyond
those considered in this paper (e.g. see Goldberg et al. (2012)). These include the media-
tor’s acknowledgement of each side’s grievances, her ability to create a less confrontational
atmosphere for negotiation, and her ability to establish commonly accepted facts.

2 The model

The model presented below encompass all the mediation protocols I consider in a consistent
way. The setup adapts the discrete-continuous time bargaining protocol of Abreu and Pearce
(2007), although for much of the analysis time can be treated as completely continuous.

Two bargainers, i = 1, 2, must agree on how to divide a dollar and face an infinite horizon.
Bargainers are either rational or behavioral types. I follow Abreu and Pearce (2007) in using
the terms rational and behavioral in my formal analysis (rather than flexible and inflexible),
which highlights behavioral types’ lack of preferences. If rational bargainer i obtains a share
xi ∈ [0, 1] of the dollar at real time t then her utility is e−ritui(xi) where her discount rate is ri and
her utility function ui is strictly increasing and concave with ui(0) = 0. Behavioral types have
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no preferences, but mechanically implement an exogenously defined strategy. A third player is
a mediator, i = 3, who implements an exogenously fixed communication strategy (i.e. she is a
behavioral type). There is no fee for mediation services.

Time is discrete-continuous to allow multiple events to occur at the same time in a sequential
order. Each positive real time t ∈ [0,∞) is divided into five different discrete times t1, t2, t3, t4, t5.
Time follows a lexicographic ordering so that tk < tk+1, and tk < sl whenever t < s. The set
of discrete continuous times is DC = [0,∞) × {1, 2, ..., 5} ∪ {∞}. There is no discounting of
payoffs within each time t. The bargaining protocol is as follows: At time 01 each bargainer
i simultaneously announces a demand αi(01) ∈ [0, 1]; at t1 > 01 each bargainer can concede
to her opponent’s existing demand (accept the share (1 − α j(t1))), ending the game; at any t2

each bargainer can send a private message to the mediator θ ∈ Θ, where typically this will
simply indicate that she is rational; at t3 the mediator can send a public message θ′ ∈ Θ to the
agents, where typically this will simply involve a suggested dollar division θ′ = (m1,m2) where
m1 = 1 − m2 ∈ [0, 1] (the message space is arbitrary but sufficiently rich that Θ ⊇ [0, 1]2);
at t4 each bargainer can simultaneously change her demand to αi(t4); at t5 each bargainer can
concede to her opponent’s (possibly new) existing demand. If both bargainers concede at the
same time then each proposal is selected with probability 1

2 .

At every tk > 01 each bargainer is associated with an existing demand. If bargainer i changes her
demand at t4 then she cannot change her demand again until time (t + ∆)4 for some ∆ > 0. That
is, if αi(t3) , αi(t4) then i’s existing demand at sk is αi(sk) = αi(t4) for t4 ≤ sk < (t + ∆)4. Notice
that agents can, however, change their demand from their initial demand at (∆/2)4 because
initial demand announcements at 01 are not counted as a change. Similarly, if agent i sent a
message at tk, then she cannot send another message until (t + ∆)k. These restrictions ensure
that the bargaining environment is relatively stable, and so strategies and outcomes are more
easily defined, but the fact that ∆ > 0 is not used to argue for any result.

The above setup can be extended to allow the mediator and agents to send both private and
public messages. This does not affect any results, but makes describing agents’ information
and strategies considerably more cumbersome. The setup can also be adjusted to ensure that
there is always a “first” time at which agents can change their demands after a change in the
bargaining environment.14 Again, this does not affect any results.

Bargainer i is a behavioral type with probability zi ∈ (0, 1), and is otherwise rational. A be-
havioral type for bargainer i initially demands a share αi(01) = αi ∈ (0, 1) and never changes
this.15 She concedes to her opponent’s demand at tk ∈ {t1, t5} if and only if (1−α j(tk)) ≥ αi. She

14Let t be divided into t1, ..., t12. Times t1, ..., t4 are as before. At t5 (at t8) [at t11] an agent can message the
mediator if she observed an action at t3 or t5 (at t6 or t7) [at t8 or t9]. At t6 (at t9) the mediator can message agents
if she observed an action at t4 (at t7). At t7 (at t10) agents can change demands if they observed an action at t3, t4

or t6 (at t6, t7 or t9). At t12 agents can concede. If an agent changes her demand at tk, she can’t do so again before
(t + ∆)1. If an agent/the mediator sends a message at tk, she can’t do so again before (t + ∆)1.

15In AG, agents can imitate multiple behavioral types. I discuss this extension in the Conclusion.
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never sends a message to the mediator, and so any message indicates rationality. (Alternatively,
I could assume there is a message θ∗ ∈ Θ which a behavioral type never sends.) Because of
this, I say that an agent who sends a message to the mediator confesses rationality, and is a
confessing agent, otherwise she is a non-confessing agent. The behavioral demands of the two
bargainers are incompatible, α1 + α2 > 1.

We can describe an explicit extensive form and strategies for this game by using stopping
times.16 An agent has a new information set (private history) only when she observes a change
in her bargaining environment. At each of her information sets, she chooses an action plan,
comprised of a planned future action and future action (stopping) time. A behavior strategy
selects (potentially randomly) an action plan for every possible private history. Further details
of this game form are laid out in Appendix A.

A perfect Bayesian equilibrium requires that at each of bargainer i’s possible private histories,
her behavior strategy maximizes her continuation payoff at that time, given others’ strategies
and her beliefs. Beliefs are determined by Bayes rule where possible.

3 Unmediated bargaining and simple mediation protocols

In this section, I first highlight the unique equilibrium of the model without mediation. I then
examine the simplest version of the communication protocol suggested by Dunlop, in which
the mediator seeks a specific compromise and immediately suggests that agreement if and only
if both agents provisionally accept it. Finally, I add noise to that simple protocol.

3.1 A Baseline Without Mediation

I call bargaining without mediation the Baseline model. Without a mediator we can ignore
times t2 and t3. AG’s results (Lemma 1) imply that if agent i is revealed to be rational at time tk

in equilibrium (i.e. after i makes a non-behavioral demand), while agent j may be behavioral,
then i must immediately concede. This relies only on continuation strategies being optimal
at tk. It mirrors the logic of the Coase conjecture in that one-sided asymmetric information
implies an immediate agreement favorable to the informed party.

Given this immediate concession after revealing rationality, it is without loss of generality to
assume that rational agents always imitate behavioral types and then simply choose when to
concede. We can, therefore, describe (the on equilibrium path part of) agent j’s strategy in
continuous time, with a cumulative distribution function, F j ∈ [0, 1][−∞,∞], where F j(t) is the
total probability that agent j (who may be behavioral) has conceded before extended real time
t. We then have F j(t) = 0 for t < 0, while never conceding corresponds to a concession time of

16By using stopping times we can avoid many of the pathologies of continuous time games.
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∞, so that F j(∞) = 1. Agent j’s reputation for being behavioral at t is, therefore, z̄ j(t) =
z j

1−F j(t)
.

Given agent j’s strategy, agent i’s expected payoff to conceding at t is:17,18

Ui(t) =

∫
s<t

e−ri sui(αi)dF j(s)+(1−F j(t))e−ritui(1−α j)+
(
F j(t) − sup

s<t
F j(s)

)
e−rit 1

2
(ui(αi)+ui(1−α j))

The unique equilibrium of this model is characterized by three properties: (i) at most one
agent concedes with positive probability at time zero; (ii) both agents reach a probability one
reputation at the same time, T ∗ < ∞; and (iii) agents are indifferent to conceding at any time
on (0,T ∗]. This third indifference condition implies that agent j must concede on the interval
(0,T ∗] at the constant rate:

f j(t)
1 − F j(t)

= λ j =
riui(1 − α j)

ui(αi) − ui(1 − α j)
(1)

This implies that 1 − F j(t) = (1 − F j(0))e−λ jt. Next define rational agent j’s exhaustion time,
T j = − 1

λ j
ln(z j), as the time by which she must have conceded even if she did not concede at

time zero (so 1 = z jeλ jT j). Condition (i) and (ii) then imply T ∗ = min{T1,T2}, and finally:

1 − F j(0) = z jeλ jT ∗ = min
{

1, z jz
−
λ j
λi

i

}
(2)

Proposition 1 (AG, Proposition 1). The Baseline model has a unique distribution of equilib-

rium outcomes, characterized by equations (1) and (2).

The fact that T ∗ > 0 implies that rational agents sometimes inefficiently delay agreement. This
offers scope for mediation to improve outcomes. Baseline equilibrium payoffs are:

UB
i = ui(αi)F j(0) + ui(1 − α j)(1 − F j(0))

3.2 Simple Dunlop (S D) mediation

I next consider the simplest version of the mediation protocol suggested by Dunlop. The me-
diator suggests an agreement (m1,m2) at 03 if and only if both agents confess their rationality
at 02 and otherwise remains silent. I call this the Simple Dunlop (S D) mediation protocol, and
show that it cannot improve on unmediated bargaining outcomes.

If the mediator does make an announcement at 03, then both agents are revealed to be ra-
tional. In this case, any dollar division or even perpetual delay is consistent with sequential
rationality.19 While this is different from discrete time models where there may be a unique

17Here and elsewhere, I suppress the explicit dependence of payoffs on strategies to minimize notation.
18Here and elsewhere, I assume (without loss of generality) that agents only ever concede at t5 (and not at t1).
19Agent i changes her demand to αi(04) ∈ [0, 1] and subsequently plans not to concede unless j offers her more
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continuation equilibrium when both agents are known to be rational, by revealing information
on rationality sequentially in discrete time, an informed mediator would still have wide freedom
to implement her preferred agreement.20 Given the eventual negative result of S D mediation,
it is without loss of generality to assume that agents do follow the mediator’s suggestion (ex-
pected continuation payoffs must be weakly below some mediator proposal, and even those
payoffs can’t incentivize confession). If the mediator doesn’t announce an agreement, but an
agent subsequently reveals rationality, she must immediately concede.21

We can again simplify to a continuous time framework. Let agent i’s (on equilibrium path)
strategy be described as follows. Define pc

i ∈ [0, 1] as the total probability that agent i con-
fesses at 02 (c=confess). If both agents confess then agent i obtains the payoff ui(mi); if not,
she must choose when to concede. Agent i’s concession choice is described by two cumulative
distribution functions Fc

i ∈ [0, 1][−∞,∞] and Fn
i ∈ [0, 1][0,∞]. Let Fc

i (t) be Fc
i (t) be the prob-

ability that agent i has conceded to her opponent before extended real time t conditional on
her confessing and no mediator suggestion. Similarly, let Fn

i (t) be the probability that agent
i has conceded before time t, conditional on her not confessing (n=not confess). Finally, let
Fi(t) = pc

i Fc
i (t) + (1 − pc

i )F
n
i (t) be the probability that agent i has conceded by time t condi-

tional on no mediator suggestion. Note that while I have not included additional subscripts or
superscripts on Fi, it may be distinct from the distribution in the Baseline equilibrium.

Given agent j’s strategy, rational agent i’s utility from confessing and then conceding at time t

if the mediator makes no suggestion, is:

Uc
i (t) =pc

jui(mi) + (1 − pc
j)
( ∫

s<t
e−ri sui(αi)dFn

j (s) + (1 − Fn
j (t))e

−ritui(1 − α j)

+

(
Fn

j (t) − sup
s<t

Fn
j (s)

)
e−rit 1

2
(ui(αi) + ui(1 − α j))

)
Alternatively, rational i’s utility if she does not confess and concedes at time t is:

Un
i (t) =

∫
s<t

e−ri sui(αi)dF j(s) + (1 − F j(t))e−ritui(1 − α j)

+

(
F j(t) − sup

s<t
F j(s)

)
e−rit 1

2
(ui(αi) + ui(1 − α j))

It is clear that the Baseline model’s equilibrium can still be an equilibrium here; indeed this

than that. The claim is formally established in Lemma 3 in the Appendix.
20For instance, consider an alternating offer model. With complete information agents immediately agree to

a division (αR
1 , 1 − α

R
1 ). Suppose an informed mediator wants a division (m1,m2) between rational agents where

m1 ∈ (1 − α2,min{αR
1 , α1}) and for rational agents to concede to behavioral types. The mediator immediately

announces whether agent 1 is behavioral. If agent 1 initially demands m1, the mediator will reveal whether agent
2 is rational in period 2 and otherwise remain silent. Accepting m1 is optimal for a rational agent 2 given m1 ≤ α

R
1 .

Demanding m1 is optimal for rational agent 1 for small ∆, because otherwise the resulting game of one-sided
private information can only give her marginally more than u1(1 − α2), due to the Coase conjecture (see AG).

21This again follows immediately from AG, Lemma 1.
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is the case in all mediation protocols considered. If agent j does not confess with positive
probability then agent i has no incentive to do so either.

It is also clear that there can be no equilibrium with mi ∈ (1 − α j, αi) in which rational agent i

always confesses and j does so with positive probability. If there was, then a confessing agent j

would learn for sure that i was behavioral if the mediator made no announcement, and so would
subsequently concede immediately. Knowing this, a rational agent i would optimally choose
not to confess because this would give her a larger payoff, αi > mi. Any equilibrium with
mediation and mi ∈ (1 − α j, αi), therefore, must involve both rational agents mixing between
confessing and not.

The next proposition shows that there is no equilibrium where mediation ever improves on un-
mediated bargaining. While there can sometimes be an equilibrium where both parties confess
with positive probability if mi ∈ {1 − α j, αi}, outcomes in this case remain identical to those in
the Baseline equilibrium.

Proposition 2. The distribution of outcomes in any equilibrium where the mediator adopts the

Simple Dunlop mediation protocol is identical to that in the unique Baseline equilibrium.

The explanation for this result is similar to why it is impossible for rational agents to always
confess. I prove that if the mediator does not suggest an agreement (at 03), then at least one
confessing agent, say j, must immediately concede with probability one (Fc

j(0) = 1). Such
concession then destroys the incentive for her opponent to confess in the first place.

To understand why a confessing agent must immediately concede if there is no agreement
suggested we must consider beliefs. If there is no agreement before time t, then agent i believes
she faces a behavioral type with probability zc

j(t) =
z j

(1−pc
j)(1−Fn

j (t))
if she did confess, but with

probability zn
j(t) =

z j

1−F j(t)
if she didn’t confess.22 She is, therefore, more pessimistic about her

opponent’s type if she confessed, zc
j(t) ≥ zn

j(t) and so, other things equal, has a greater incentive
to concede earlier. This possibly small difference in beliefs ultimately has a big equilibrium
effect. By adapting standard war of attrition arguments, I shows that if neither confessing agent
has always conceded by time t (Fc

j(t) < 1, so zc
j(t) > zn

j(t)), then such agents must concede at

a constant rate at t (
f c

j (t)

1−Fc
j (t)

= λ j). But this constant concession rate would mean that they never
concede with probability one in finite time, which cannot be optimal for a rational agent facing
a possibly behavioral opponent.

The result is robust to allowing agents to confess continuously over time. In the Online Ap-
pendix, I extend the above model to allow agents to privately confess rationality to the mediator
over the infinite horizon with the mediator suggesting an agreement as soon as both have con-
fessed. This is the mediation protocol studied by Jarque et al. (2003) when agents have private

22There are potentially non-degenerate higher order beliefs in this game. If j did not confess, then she believes
that i’s beliefs about her likelihood of being behavioral are zc

j(t) with probability pc
i (1−Fc

i (t))
1−Fi(t)

and zn
j (t) otherwise.
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reservation values. I call it the Ongoing Dunlop (OD) mediation protocol and again show that
it cannot improve on the Baseline equilibrium.

3.3 Noisy Dunlop (ND) mediation

I next consider a Noisy Dunlop (ND) mediation protocol which adds noise to the mediator’s
strategy in the S D protocol. The noise takes the form of the mediator failing to suggest an
agreement even when both parties confess with positive probability. I show that this adapted
protocol can improve on unmediated outcomes if behavioral types are unlikely.

The significance of the result is that it represents the first clear theoretical demonstration of
the benefits of mediation in dynamic bargaining (to the best of my knowledge), and moreover,
the mediation protocol used is close to one actually employed by professional mediators. In
conjunction with the failure of the S D protocol (Proposition 2) it highlights the desirability of
commitment for mediators: it is important for mediation to sometimes fail, in order to succeed.

In the ND protocol, if both agents confess at 02 the mediator suggests the agreement (m1,m2) at
03 with probability b ∈ (0, 1), and otherwise remains silent. This noise can also be interpreted
as each agent’s message going astray or being misinterpreted by the mediator with probability
1 −
√

b (with the mediator always announcing agreement when she knows both parties have
confessed). I focus attention on what I call ND equilibria, which are equilibria where the
mediator adopts the ND protocol, while rational agents always confess at 02 and subsequently
immediately implement any mediator suggestion.

If the mediator makes no suggestion at 03, then rational agents must decide when to concede.
We can then describe (on path) continuation strategies using the cumulative distribution func-
tion Hc

i ∈ [0, 1][−∞,∞], where Hc
i (t) is the probability that a rational agent i has conceded before

extended real time t conditional on confessing and the mediator making no suggestion. In an
ND equilibrium, agent i’s utility if she confesses and concedes at time t is then:

Uc
i (t) =(1 − z j)

(
bui(mi) + (1 − b)

∫
s<t

e−ri sui(αi)dHc
j (s)

)
+

(
(1 − z j)(1 − b)(1 − Hc

j (t)) + z j

)
e−ritui(1 − α j)

+ (1 − z j)(1 − b)
(
Hc

j (t) − sup
s<t

Hc
j (s)

)
e−rit 1

2
(ui(αi) + ui(1 − α j)) (3)

Agent i’s utility if she does not confess and then concedes at time t is:

Un
i (t) =(1 − z j)

∫
s<t

e−ri sui(αi)dHc
j(s) +

(
(1 − z j)(1 − Hc

j(t)) + z j

)
e−ritui(1 − α j)

+ (1 − z j)
(
Hc

j(t) − sup
s<t

Hc
j(s)

)
e−rit 1

2
(ui(αi) + ui(1 − α j))

In an ND equilibrium, if the mediator does not make a suggestion at 03, then rational agent j

must believe that her opponent is behavioral with probability z̄i = zi
1−(1−zi)b

. In this case, behavior
in the continuation game must resemble that of the Baseline model but with initial reputations

13



z̄i instead of zi. As noted previously, this equilibrium is characterized by three conditions:
(i) at most one agent concedes with positive probability at time zero; (ii) both agents reach a
probability one reputation at the same time, T ∗ < ∞; and (iii) agents are indifferent to conceding
at any time on (0,T ∗].

Let F j(t) = (1− z̄ j)Hc
j(t) be the probability that a confessing agent i believes that j will concede

before t conditional on no mediator announcement. Condition (iii) then implies that agent i

must expect j to concede at rate f j(t)
1−F j(t)

= λ j on (0,T ∗]. Agent j’s exhaustion time is now T j =

− 1
λ j

ln(z̄ j). To ensure conditions (i) and (ii) are satisfied, we must have T ∗ = min{T1,T2} and

1−F j(0) = min
{

1, z̄ jz̄
−
λ j
λi

i

}
. More generally for t ≤ T ∗ we must have 1−F j(t) = (1−F j(0))e−λ jt.

Given such behavior, a rational agent i who did not confess (not her equilibrium strategy)
will subsequently find it in her interest to wait until T ∗ and then concede. This is because
conditional on no mediator suggestion, the rate at which i expects j to concede is larger if she
did not confess than if she did. That is,

(1−z j)hc
j(t)

(1−z j)(1−Hc
j (t))+z j

>
(1−z̄ j)hc

j(t)

(1−z̄ j)(1−Hc
j (t))+z̄ j

on (0,T ∗), which implies
Un

i (t)
dt >

Uc
i (t)
dt = 0. Hence, her continuation payoff, U∗ni , after not confessing is:

U∗ni = max
t

Un
i (t) = (1 − z j)

∫
s<T ∗

e−ri sui(αi)dHc
j(s) + z je−riT ∗ui(1 − α j)

When agent i does confess, she is subsequently indifferent to conceding at any t ∈ (0,T ∗]. Her
equilibrium payoff, U∗ci , can therefore be written as:

U∗ci = max
t

Uc
i (t) = Uc

i (T ∗) = (1−z j)
(
bui(mi) + (1 − b)

∫
s<T ∗

e−ri sui(αi)dHc
j(s)

)
+z je−riT ∗ui(1−α j)

(4)
This payoff suggests that confessing leads to a lottery giving ui(mi) with probability (1 − z j)b,∫

s<T ∗
e−ri sui(αi)dHc

j(s) with probability (1 − z j)(1 − b), and e−riT ∗ui(1 − α j) with probability
z j. By contrast, not confessing implies a lottery giving

∫
s<T ∗

e−ri sui(αi)dHc
j(s) with probability

(1 − z j), and e−riT ∗ui(1 − α j) with probability z j. Comparing these lotteries therefore reduces to
comparing ui(mi), the agent’s payoff from a mediated agreement, and

∫
s<T ∗

e−ri sui(αi)dHc
j(s), the

stream of payoffs from a known rational agent’s concession. That is, a necessary and sufficient
condition for an ND equilibrium to exist is for i = 1, 2:

Qi =
U∗ci − U∗ni

(1 − z j)b
= ui(mi) −

∫
s<T ∗

e−ri sui(αi)dHc
j(s) ≥ 0 (5)

The paper’s first positive result (Proposition 3, below) shows that when agents’ reputations
are sufficiently small, an ND equilibrium always exists that (strictly) Pareto dominates the
equilibrium of the Baseline model. The result allows b to be chosen arbitrarily close to one,
and so we can guarantee efficiency as behavioral types become vanishingly unlikely.
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Proposition 3. For any given ri, ui, αi for i = 1, 2, b ∈ (0, 1) and fixed K ≥ 1, there exists z > 0
such that whenever zi ≤ z and K ≥ z1

z2
≥ 1

K , an ND equilibrium exists, which both rational

agents strictly prefer to the Baseline equilibrium.

The reason equation (5) holds when behavioral probabilities are small is because in this case,
the stream of payoffs from a rational opponent’s concession,

∫
s<T ∗

e−ri sui(αi)dHc
j(s), comes

fairly slowly. For any b ∈ (0, 1), if z j is small then so is z̄ j, and so the probability that
agent j concedes before time t is very close to the probability that rational agent j concedes,
(1 − z̄ j)Hc

j(t) ≈ Hc
j(t). Hence the value of the stream of payoffs

∫
s<T ∗

e−ri sui(αi)dHc
j(s), is ap-

proximately the same as her payoff in a Baseline equilibrium with reputations z̄ j. Because the
Baseline equilibrium is inefficient, however, it is possible to choose an mi to satisfy equation
(5) for both agents.

It is illuminating to consider the special case of symmetric bargaining games with ui = u,
ri = r, αi = α, zi = z. In this case, we have Hc(t) = (1 − e−λt)/(1 − z̄). This implies∫

s<T ∗
e−rsu(α)dHc(s) = 1−z̄

u(α)
u(1−α)

1−z̄ u(1 − α), which converges to u(1 − α) as z̄ → 0 and u(α) as
z̄→ 1. We can, therefore, satisfy equation (5) for both agents with any m1 = 1−m2 ∈ (1−α, α)
as z̄ → 0, although it is easiest to satisfy with mi = 0.5. Given that Qi(1 − z̄) is concave in z̄,
there is a unique ẑ ∈ (0, 1) such that equation (5) is satisfied with equality. We then have an
ND equilibrium if and only if z̄ ≤ ẑ, where the maximum feasible b is b = ẑ−z

ẑ−zẑ . As an example,
suppose agents are risk neutral and α = 0.75, then we have ẑ = 0.62. Even a fairly large be-
havioral probability such as z = 0.5, then allows for b = 0.38 and payoffs of UND

i = 0.30. This
compares to Baseline payoffs of UB

i = 0.25, and a complete information upper bound on pay-
offs, when rational agents immediately split the dollar and concede to behavioral opponents,
of UCI

i = 0.38. A smaller behavioral probability z = 0.25, allows for b = 0.79 and payoffs of
UND

i = 0.40 (compared to UB
i = 0.25 and UCI

i = 0.44).

It might seem strange that adding noise makes a difference to the success of mediation; after
all, agents could use mixed strategies in the S D protocol (a particular form of noise). Indeed,
if both agents confessed with probability b under the S D protocol then conditional on agent i

confessing and hearing no mediator announcement, she will believe that j is behavioral with
probability z̄ j. These situations are quite distinct, however. In particular, when agents mix under
the S D protocol, continuation play after time zero must provide incentives for both a confessing
and non-confessing agent to concede continuously, whereas an ND equilibrium only needs to
provide dynamic incentives for a confessing agent. As mentioned previously, the need for noise
in effective communication is in line with the existing literature (e.g. see Myerson (1991)).

One nice feature of the ND mediation protocol is that it is fairly robust, in the sense that the
mediator needn’t know anything about the underlying parameters about the model. While it
was convenient to assume that she suggested agreement terms (m1,m2), she could just send an
arbitrary message θ′ with probability b < 1 if both agents messaged her. When the probabil-
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ity of behavioral types is small enough, there is an equilibrium where rational agents always
confess and coordinate among themselves on an appropriate (m1,m2) after observing θ′.

We saw above that mediation cannot improve on unmediated outcomes in symmetric bargaining
games when behavioral types are sufficiently likely. Proposition 4 shows that this is also true
in asymmetric games. The reason can be readily ascertained, by reexamining the inequality in
equation (5). By confessing, an agent gains an immediate payoff of ui(mi) but loses a delayed
payoff of ui(αi), when she faces a rational opponent. When even one agent is likely to be
behavioral, however, there is very little delay (i.e. T ∗ ≈ 0) and so the mediator must propose
mi ≈ αi to incentivize confession. Clearly she can’t do this for both agents.

Proposition 4. For any given ri, ui, αi for i = 1, 2 there exists z < 1 such that if z1 ≥ z, then no

ND equilibrium exists.

This result does not imply that ND mediation is unable to deliver substantial benefits outside of
(non-generic) symmetric bargaining games. AG shows that when λi , λ j, agents agree immedi-
ately with probability approaching one even without mediation, as the probability of behavioral
types becomes vanishingly small. However, Proposition 4 merely says that mediation can’t im-
prove outcomes when the probability of behavioral types is close to one. Computed examples
reveal that ND mediation does deliver substantial benefits in asymmetric games for intermedi-
ate behavioral probabilities. For instance, if agents are risk neutral, α1 = 0.75, α2 = 0.7, ri = 1
then λ1/λ2 = 5/6. If zi = z then mediation is beneficial whenever z < 0.50. If z = 0.25 the
mediator can suggest immediate agreement between rational agents with probability b = 0.66
when m1 = 1 −m2 = 0.50, which delivers payoffs of UND

i = 0.40 to each agent. This compares
with Baseline equilibrium payoffs of UB

1 = 0.3 and UB
2 = 0.34, and a complete information

upper bound on payoffs of UCI
1 = 0.45 and UCI

2 = 0.44.

4 Good faith equilibria and optimal mediation

The previous analysis has restricted the mediator to very particular strategies. We would like to
understand more generally what mediators can and cannot do by characterizing the set of equi-
libria when allowing for all possible mediator strategies. Moreover, having done this we would
like to say something substansive about “optimal” mediation. This section makes progress to-
wards these goals by adopting a mechanism design approach. I characterize the set of what I
call good faith equilibria and within this set identify an essentially unique optimal equilibrium
for symmetric bargaining games.

I define a good faith equilibrium to be one in which rational agents never demand more than
behavioral types (on the equilibrium path). This is a large class of equilibria which includes
the unmediated Baseline equilibrium and the ND equilibria of the last section, as special cases.
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As mentioned in the Introduction, the name derives from the requirement in the National Labor
Relations Act, that parties negotiate in good faith without withdrawing from previously agreed
upon provisions. Good faith equilibria encompass all equilibria in which agents initially make
behavioral demands, if agents can recall past offers. Mediators typically do intervene only
after initial demands are in conflict, and there are clearly no equilibria where rational agents
always make non-behavioral initial demands.23 The ability to recall past offers is explicitly
present in some bargaining situations, and implicitly present in many others, for instance be-
cause agents’ reference points change so that they become committed to not accepting less
than their opponent’s most generous previous offer.24 A more basic justification for good faith
equilibria is that the idea of mediators encouraging more extreme demands does not seem plau-
sible. Nonetheless, the restriction to good faith equilibria is with some loss of generality. In
the Online Appendix I show that for symmetric bargaining games with risk averse agents and a
sufficiently small probability of behavioral types, a bad faith equilibrium exists which delivers
higher expected payoffs than any good faith equilibrium.25

We can describe the distribution of outcomes in any equilibrium as follows. Let GR ∈ [0, 1][−∞,∞]

be the cumulative distribution of equilibrium agreement times conditional on two rational
agents (R=rational), so that GR(t) is the probability of agreement before extended real time
t (with t = ∞ corresponding to no agreement). Likewise let GZ

j ∈ [0, 1][−∞,∞] be the cu-
mulative distribution function of agreement times conditional on agent j being behavioral
(Z=behavioral) and i being rational, so that GZ

j (t) is the probability of agreement before ex-
tended real time t. The terms of any such rational-behavioral equilibrium agreement must be
(α j, 1 − α j), because behavioral agent j always demands α j allowing i to guarantee the dollar
share 1 − α j (and j never accepts less than α j). Let Mt

i ∈ [0, 1](−∞,∞) be the cumulative dis-
tribution function of agent i’s share conditional on an agreement between two rational agents
at time t, so that Mt

i(m) is the probability of agent i obtaining a share less than m. Feasibility
implies Mt

1(m) = 1 − supl>m Mt
2(1 − l) for all m ∈ [0, 1]. The entire set of such distributions

is described by the function Mi : [0,∞) → [0, 1](−∞,∞) such that Mi(t) = Mt
i . Finally define

T R = min{t : GR(t) = 1} and T Z
j = min{t : GZ

j (t) = 1} on the extended real line.

We are interested in what constraints must hold in good faith equilibria. Given any such equi-
librium, consider the following global deviation for rational agent i: act consistent with her
equilibrium strategy up to time t5 (this sometimes involves reaching agreement at sk ≤ t5),

23If there were, then deviating to a behavioral demand would convince a rational opponent to immediately
concede and so guarantee rational agent i = 1, 2 an equilibrium payoff of at least (1 − z j)ui(αi) + z jui(1 − α j), but
that is infeasible given behavioral types’ commitment and α1 + α2 > 1.

24This is assumed in Fershtman and Seidmann (1993). In fact any positive possibility of becoming committed
to an opponent’s previous offer will imply the implicit recall of such offers, due to the Coase conjecture.

25At time zero the mediator randomly selects one rational agent, say i, to demand the entire dollar. If she faces
a behavior opponent, the mediator eventually tells i to concede and otherwise eventually tells j , i to concede.
This eliminates j’s option of getting a positive payoff by conceding and so improves some incentive constraints.
It shows that limiting agents’ opportunity to strike a deal without the mediator can be useful.
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but always concede an instant after that time.26 Agent i’s expected payoff if she adopts this
deviation and obtains exactly the share 1 − α j from conceding an instant after t5 is:

Uc
i (t) =(1 − z j)

∫
s≤t

e−ri s
∫

ui(m)dMs
i (m)dGR(s) + z j

∫
s≤t

e−ri sui(1 − α j)dGZ
j (s)

+ e−ritui(1 − α j)
(
(1 − z j)(1 −GR(t)) + z j(1 −GZ

j (t))
)

In reality, agent i may obtain a larger share than 1 − α j when she concedes an instant after t5,
but not less, given that agent j always demands less than her behavioral type. Notice that agent
i’s expected equilibrium payoff is Uc

i (max{T R,T Z
j }). For agent i’s equilibrium strategy to be

optimal, she must not want to make the global deviation, and so we must have:

Uc
i (max{T R,T Z

j }) = max
t

Uc
i (t) (Dynamic IC) (6)

I call this the dynamic incentive constraint. An immediate observation is that for this constraint
to be satisfied we must have T Z

j ≤ T R. If this were not true, T R < T Z
j , then agent i would realize

at T R that she faced a behavioral opponent j and would profitably concede.

Rational agent i also has the option of making an alternative global deviation in which she
mimics a behavioral type prior to time t5 (i.e. always demands αi and never messages the
mediator) and concedes an instant after that time. Agent i’s expected payoff from this deviation,
again assuming that she obtains the share 1 − α j from conceding an instant after t5 is:

Un
i (t) = (1 − z j)

∫
s≤t

e−ri sui(αi)dGZ
i (s) + e−ritui(1 − α j)

(
(1 − z j)(1 −GZ

i (t)) + z j

)
In this case, agent i makes exactly the same agreements as a behavioral type at s ≤ t5 (giving
her a share αi). For rational agent i not to want to make this deviation, we must have:

Uc
i (T R) ≥ sup

t
Un

i (t) (Type IC) (7)

I call this the type incentive constraint.27

The dynamic and type incentive constraints are not only necessary for an equilibrium, they are
also sufficient. This claim is formalized below in Theorem 1. It follows from the fact that
any distribution of outcomes satisfying both constraints can be obtained in what I call a direct

mediation equilibrium.

26This deviation isn’t well defined in the sense that there is no s∗ = min{s > t5}; however, this is not important.
It is equivalent to the lack of a best deviation in a Betrand competition game.

27These incentive constraints are somewhat similar to veto incentive constraints in mechanism design (e.g. see
Forges (1999)) in that agents can (mis)report their type, observe the proposed outcome, and then walk away.
However, my agents’ outside options are an endogenous outcome of a dynamic game in which agents can strike
their own agreements, and so the mediator doesn’t immediately inform agents of their proposed outcome.
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In a direct mediation protocol, if both agents initially demand αi(04) = αi and message the me-
diator at 02, she sends a single message back to them at some random time t3 suggesting terms
for an agreement (if neither has changed demand prior to t3). If both agents initially demand
αi(04) = αi, but only agent i messages the mediator at 02, the mediator sends a single message
to the agents suggesting that i concede to j at some random time t3 (if neither has changed
demand prior to t3). If neither agent messages the mediator at 02, or some agent demands
αi(t4) , αi, the mediator is silent for the rest of the game. A direct mediation equilibrium is
then an equilibrium in which the mediator adopts a direct mediation protocol, rational agents
always message the mediator at 02, immediately implement the mediator’s suggestions, and
demand αi prior to such a suggestion.

Theorem 1. Any distribution of outcomes (GR,GZ
1 ,G

Z
2 ,M1,M2) satisfies the dynamic and type

incentive constraints (equations (6) and (7)) if and only if it can be obtained in some good faith

equilibrium, and if and only if it can be obtained in a direct mediation equilibrium.

Given the necessity of the dynamic and type incentive constraints in any good faith equilibrium
and the fact that a direct mediation equilibrium is a good faith equilibrium, to establish the re-
sult it only remains to show that if a distribution of outcomes (GR,GZ

1 ,G
Z
2 ,M1,M2) satisfies both

constraints, then it can be obtained in a direct mediation equilibrium. It is, however, straight-
forward to construct such an equilibrium where the mediator’s direct protocol announcements
are described by (GR,GZ

1 ,G
Z
2 ,M1,M2).

The ability to restrict attention to direct mediation equilibria represents a strong version of the
revelation principle. The dynamic and type incentive constraints are clearly necessary, regard-
less of whether agents or the mediator can make public or private messages, or the number of
those messages. It is sufficient, however, to allow agents to make a single private message to
the mediator at time zero, and for the mediator to send a single public message back. In general
for multistage games, Myerson (1986) shows that in a communication equilibrium, a mediator
must collect information and privately recommend actions to agents in each stage.

Direct mediation equilibria are fully described by their agreement distributions. Given this, I
henceforth treat all mediation protocols with the same distribution of equilibrium agreements as
an equivalence class, and use the term mediation protocol interchangeably with the distribution
of equilibrium outcomes which arise from that protocol.

Because the mediator reveals no information prior to a suggested agreement in a direct medi-
ation equilibrium, when there has been no agreement before time t, agent i believes that her
opponent j is behavioral with probability z̄c

j(t) if she confessed, and with probability z̄n
j(t) if she

did not, where:

z̄c
j(t) =

z j(1 −GZ
j (t))

z j(1 −GZ
j (t)) + (1 − z j)(1 −GR(t))

, z̄n
j(t) =

z j

z j + (1 − z j)(1 −GZ
i (t))

.
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So far, the only direct mediation equilibrium which we know to always exist is the unmediated
Baseline equilibrium. The distribution of agreement times in that case is

1 −GZ
j (t) =

zi

1 − zi
(eλi(T R−t) − 1) and 1 −GR(t) = (1 −GZ

i (t))(1 −GZ
j (t)),

for t ≤ T R = T Z
1 = T Z

2 = min{− 1
λ1

ln(z1),− 1
λ2

ln(z2)}. The distribution of dollar shares conditional
on an agreement at t ≤ T R is:

Mt
i(m) =



0 if m < 1 − α j
gZ

j (t)

1−GZ
j (t)

gZ
j (t)

1−GZ
j (t)

+
gZ
i (t)

1−GZ
i (t)

if m ∈ [1 − α j, αi) and t ∈ (0,T R]

GZ
j (0)

GZ
i (0)+GZ

j (0) if m ∈ [1 − α j, αi), GZ
i (0) + GZ

j (0) > 0 and t = 0

1 if m ≥ αi

These distributions cause incentive constraints to bind, so that Uc
i (t) = Un

i (t) for all t ∈ [0,T R].

For risk averse agents, there is an obvious way for the mediator to improve these bargaining
outcomes: to reduce dispersed agreement shares with an average agreement. That is, let rational
agent i get m̂i(t) =

∫
mdMt

i(m) in any agreement with a rational opponent at each time t.
Concavity ensures ui(m̂i(t)) ≥

∫
ui(m)dMt

i , with a strict inequality at t ∈ (0,T R] if the agent is
risk averse. It is easily verified that leaving the distribution of agreement times unchanged then
ensures that both incentive constraints are satisfied.

Lemma 1. If agents are risk averse,28 then there is a good faith equilibrium which delivers

strictly higher payoffs for both rational agents than the Baseline equilibrium.

While this observation is technically trivial, it may be at least as important in explaining the
benefits of mediation as reduced delay. Moreover, the slackness of the dynamic and type in-
centive constraints after eliminating dispersed outcomes, makes it clear that the mediator can
also then reduce delay compared to the Baseline equilibrium (i.e. choose some ĜR(t) > GR(t)
and ĜZ

i (t) > GZ
i (t) for t < T R). In fact, Theorem 2, below, shows that risk aversion is neces-

sary (and not just sufficient) for mediation to be beneficial when the probability of behavioral
agents is larger than their demands and agents are symmetric. As discussed in the Introduction,
the importance of curvature in the utility-possibility frontier for mediation extends beyond the
case of risk aversion. In particular, this can explain why mediation is particularly effective for
bargaining over multiple issues.

We want to understand more generally how a mediator should behave given the above incentive
constraints. Proposition 3 showed that the mediator can improve even risk neutral agents’

28So that u1 (0.5(α1 + 1 − α2)) > 0.5(u1(α1) + u1(1 − α2)).
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payoffs when the probability of behavioral types is sufficiently small. However, identifying an
optimal mediation protocol for general asymmetric bargaining games is extremely challenging.
It is clear that there are many moving parts and a great number of constraints (the type and
dynamic incentive constraints really represent four sets of infinitely many non-independent
constraints). Moreover, it is not at all obvious what objective function should be maximized to
appropriately take account of any asymmetry between the agents.

The optimal mediation problem simplifies considerably, however, if the bargaining game is
symmetric in the sense that ui = u, ri = r, zi = z, and αi = α (which also implies λi = λ).
For the rest of the paper I will assume this symmetry, and will not explicitly highlight it in
remaining results. In this symmetric setting, I maximize the sum of rational agents’ payoffs.
The optimal protocol I identify, however, necessarily implies symmetric payoffs, and so also
maximizes the Nash product of payoffs.29

I formally identify an optimal mediation protocol for symmetric bargaining games as a solution
to the following problem:

arg maxGR,GZ
1 ,G

Z
2 ,M1,M2

Uc
1(T R) + Uc

2(T R) subject to equations (6) and (7)

We can immediately simplify this maximization by focussing on what I call strongly symmetric
bargaining protocols. A mediation protocol is symmetric if GZ

i = GZ and Mt
i = Mt for all t and

i = 1, 2, and is strongly symmetric if it is symmetric and additionally Mt(0.5) = 1 (i.e. the
mediator always suggests a 50/50 division between rational agents). Given any equilibrium, it
is easy to verify that there is an equilibrium of a strongly symmetric mediation protocol which
obtains a weakly higher objective. This is formalized in Lemma 2.

Lemma 2. If (GR,GZ
1 ,G

Z
2 ,M1,M2) describes a good faith equilibrium, then the strongly sym-

metric mediation protocol (GR, ĜZ) with ĜZ = 0.5(GZ
1 + GZ

2 ) describes a good faith equilibrium

with a weakly higher objective, Uc
1(T R) + Uc

2(T R).

Optimal Strongly Symmetric Mediation Protocol (OSSMP)

Given the restriction to symmetric games and Lemma 2, we can restrict attention to searching
for an Optimal Strongly Symmetric Mediation Protocol (OSSMP), described by (GR∗,GZ∗). I
first define two special classes of agreement distributions, which will help describe an OSSMP.

Given any distribution of rational-behavioral agreements GZ, define GR
GZ as the distribution of

rational-rational agreements, which keeps an agent who confessed indifferent between con-
ceding on the interval [0,T Z], where T Z = T R.30 The indifference condition Uc(t) = Uc(T Z)

29While it might also seem reasonable to incorporate outcomes for behavioral types into the objective, it is not
obvious how this should be done, making any such exercise highly speculative.

30This is well defined whenever GZ can be combined with some GR to satisfy both incentive constraints.
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implies a linear ODE:

gR
GZ (t) = λm

(
(1 −GR

GZ (t)) +
z

1 − z
(1 −GZ(t))

)
.

where
λm =

ru(1 − α)
u(0.5) − u(1 − α)

Combining this with the boundary condition GR
GZ (T Z) = 1 gives:

GR
GZ (t) = 1 − e−λ

mt
∫ T Z

t
λmeλ

m s z
1 − z

(1 −GZ(s))ds (8)

Notice that a larger GZ(t) increases GR
GZ (0), or more precisely, if G̃Z first order stochastically

dominates GZ, then GR
G̃Z (0) > GR

GZ (0). The reason is that more rational-behavioral agreements
before time t reduce a (confessing) agent’s belief that she faces a behavioral opponent, z̄(t) =

z(1−GZ (t))
(1−z)(1−GR(t))+z(1−GZ (t)) , and so give her more incentive to wait (for u(0.5) instead of u(1−α)). This
ultimately means that fewer rational-rational agreements are needed after time t to keep the
agent indifferent to conceding, and so more agreements can occur at time zero.

Given the distribution of agreements GR
GZ , the expected payoff of a confessing agent is clearly:

Uc(T Z) = Uc(0) = (1 − z)GR
GZ (0)(u(0.5) − u(1 − α)) + u(1 − α). (9)

We next turn to rational-behavioral agreements. Given any T Z and ť ∈ [0,T Z], define the
distribution GZ

ť,T Z as one which keeps an agent who didn’t confess indifferent between conced-
ing on the interval [ť,T Z] and satisfies GZ

ť,T Z (t) = 0 for t < ť.31 The indifference condition
Un(t) = Un(T Z) for t ∈ [ť,T Z] implies

gZ
ť,T Z (t) = λ

(
1 −GZ

ť,T Z (t) +
z

1 − z

)
Combining this with the boundary condition GZ

ť,T Z (T Z) = 1 gives:

GZ
ť,T Z (t) =

0 for t < ť
1−zeλ(TZ−t)

1−z for t ∈ [ť,T Z]
(10)

Notice that for t ≥ ť this distribution corresponds to the Baseline equilibrium distribution af-
ter accounting for the different times at which agreements are completed (i.e. T Z). That is,
GZ

ť,T Z (t) = GZB(t − ln(z)/λ − T Z) for t ≥ ť, where GZB is the distribution of rational-behavioral
agreement times in the Baseline equilibrium which are completed by time −ln(z)/λ. When
agents are risk neutral, we similarly have GR

GZ
ť,TZ

(t) = GRB(t − ln(z)/λ − T Z) for t ≥ ť, where GRB

31This is certainly well defined when T Z ≤ − 1
λ
ln(z).
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Figure 1. Left: Agreement time distributions in OSSMP (GR∗,GZ∗) and Baseline equilibrium (GRB ,GZB)
when α = 0.75, z = 0.5, u(x) = x. Right: Corresponding reputations (z̄c∗, z̄n∗) and (z̄cB , z̄nB).
Payoffs: OSSMP=0.32, Baseline=0.25, Complete Information=0.38.

is the distribution of rational-rational agreement times in the Baseline equilibrium.

Having defined these distributions we are ready to state the paper’s main result, Theorem 2. It
establishes the existence of a unique OSSMP, whose agreement distributions have the above
form, as well as precisely identifying when mediation is beneficial. These optimal distributions
are illustrated and compared to the Baseline equilibrium distributions on the left hand side of
Figure 1. The right hand side of the figure displays agents’ implied beliefs (reputations).

Theorem 2. A unique OSSMP exists. It satisfies GR∗ = GR
G∗Z

and GZ∗ = GZ
ť,T Z for some ť < T Z

and implies Uc(T Z) = Un(T Z). For risk neutral agents it delivers higher payoffs than the

Baseline equilibrium if and only if z < α, where this also implies z̄c(ť) = z̄n(ť) = α and ť > 0.

For risk averse agents it always delivers higher payoffs than the Baseline equilibrium, and if

behavioral types are sufficiently unlikely or make sufficiently large demands then ť > 0.32

The need for the optimal distribution of rational-rational agreements to have the specified form
is fairly intuitive. It frontloads agreement as much as possible, while having the dynamic
incentive constraint bind at all times (i.e. Uc(t) = Uc(T R) for all t). If the dynamic incentive
constraint didn’t bind at some time (Uc(t) < Uc(T R)) then we could always move some rational-
rational agreements forward in time, while maintaining incentives not to concede before T R.33

The optimal distribution of rational-behavioral agreements is more interesting, particularly the
presence of an initial interval with no agreement (ť > 0) whenever behavioral types are unlikely
or make large demands.34 The reason that the mediator delays such initial agreements is that
it keeps rational agents honest (i.e. it relaxes the type incentive constraint). Such agreements
are worth only u(1 − α) to an agent who confessed, but u(α) to an agent who claimed to be

32Lemma 10 states this final claim more precisely. Agents are risk averse if u (0.5) > 0.5(u(α) + u(1 − α)).
33Such a change clearly also relaxes the type incentive constraint as Un(t) doesn’t change.
34It is also interesting that GZ∗ is always non-degenerate (ť < T Z), because this implies that the mediator is

needed to help rational agents back down against behavioral opponents at the right time, and not just broker
compromises. If ť = T Z then a confessing agent could simply concede at T Z without the need for direction.
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behavioral. The discontinuity of GZ∗ at ť > 035 is also interesting because it implies that
reputations are non-monotonic over time. For instance, in Figure 1’s example, a rational risk
neutral agent’s belief about her opponent’s commitment, z̄c∗(t), jumps from z = 0.5 to 0.69 at
time zero, before continuously increasing to 0.91 and then jumping back down to α = 0.75 at ť.
By contrast, reputations in the Baseline equilibrium increase monotonically with z̄cB(t) = z̄nB(t).

The ability of the OSSMP to improve on the Baseline equilibrium for risk neutral agents if and
only if the probability of behavioral types is smaller than their demand, z < α, is perhaps the
most interesting part of Theorem 2. The fact that there is more scope for mediation when agents
are less likely to be committed to their demand (z small) is fairly intuitive, but the fact that this
is also true when parties’ bargaining positions are further apart (α large) is less obvious. Some
intuition comes from the fact that the Baseline equilibrium is less efficient for more extreme
demands (payoffs of 1 − α), and so it is easier for the mediator to improve outcomes; however,
a more precise explanation must extend the discussion from the last paragraph.

The only way to benefit risk neutral agents is to reduce delay. To reduce delay while preserving
incentives to confess rationality, rational-behavioral agreements must be delayed by more than
rational-rational agreements (in particular, GR

GZ (0) > GZ(0) given α > 0.5). Rational-behavioral
agreements give a confessing agent a dollar share 1−αwith probability z, and a non-confessing
agent α with probability 1 − z. Delaying these agreements, therefore, hurts a non-confessing
agent more than a confessing agent (improving the type incentive constraint) if and only if
z(1 − α) < (1 − z)α, or equivalently z < α. This also helps explain why reputations jump to
α = z̄c(ť) = z̄n(ť) at time ť > 0 when z < α. If z̄c(ť) = z̄n(ť) < α, we could further relax
the incentive constraint by delaying rational-behavioral agreements at ť until just after, while if
z̄c(ť) = z̄n(ť) > α we could relax the constraint by bringing agreements forward to just before ť.

Even though mediation is only beneficial for risk neutral agents when the probability of behav-
ioral types is smaller than their demand, z < α, mediation can have a significant effect even
when the probability of behavioral types is quite large. For instance, in the example presented
in Figure 1 we have z = 0.5, α = 0.75 and risk neutrality. Mediated payoffs are UOS S MP = 0.32,
compared to UB = 0.25 in the Baseline equilibrium, and a (symmetric) complete information
upper bound on payoffs under complete information of UCI = 0.38. In fact, the cutoff z < α,
clearly implies that optimal mediation always has a positive impact when less than 50% of
agents are committed to their demand.

It is worthwhile to compare the result to those in subsection 3.3, concerning the ND mediation
protocol. Those previous results extended to non-symmetric games, but made no claim of
optimality. In symmetric games, ND mediation could improve on unmediated bargaining if
and only if z < ẑ for some ẑ < 1. It is simple to show that ẑ < α when agents are risk neutral.36

35If GZ∗ was continuous at ť, we couldn’t have Uc(T Z) = Un(T Z) = Un(ť) > u(1 − α).
36We showed that an ND equilibrium required 1−z

u(α)
u(1−α)

1−z u(1 − α) < u(0.5). When u(x) = x and z = α, this
inequality can be transformed into the requirement that Q̂(α) = α

1−α ln(α) − ln(0.5) > 0. Because Q̂ is decreasing
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For example with α = 0.75 we had ẑ = 0.62, and when z = 0.5, payoffs were only UND = 0.30.

More insight into the characterization of Theorem 2 comes from examining the time t type
incentive constraint of ICGZ (t) = Uc(0)−Un(t) ≥ 0 for an arbitrary GZ, after substituting in for
the distribution of rational-rational agreements, GR

GZ . Integrating by parts gives:

ICGZ (t) =u(1 − α) + (u(0.5) − u(1 − α)) (1 − z)

1 − ∫ T Z

0
λmeλ

m s z
1 − z

(1 −GZ(s))ds

 (11)

− (1 − z)
∫

s≤t
e−rsu(α)dGZ(s) − e−rtu(1 − α)

(
(1 − z)(1 −GZ(t)) + z

)
=u(1 − α)(1 − e−rt) + (u(0.5) − u(1 − α)) (1 − z)

1 − ∫ T Z

0
λmeλ

m s z
1 − z

ds


− e−rtGZ(t)(1 − z) (u(α) − u(1 − α)) +

∫ T Z

0
GZ(s)r

(
u(1 − α)eλ

m sz − 1[s≤t]u(α)e−rs(1 − z)
)

ds

In particular, consider the final integrand of ICGZ (t), which is linear in GZ(s). This integrand
captures the time t incentive costs and benefits of rational-behavioral agreements before time
s (subject to not affecting GZ(t)). The cost is direct in that earlier agreements increase a non-
confessing agent’s payoff, −u(α)e−rs(1−z) when s < t. It is decreasing in s because later payoffs
are discounted. The benefit is indirect, through relaxing the dynamic incentive constraint and
so allowing earlier rational-rational agreements, u(1 − α)eλ

m sz. This is increasing in s, because
a change in GZ(s) has a larger effect on the likelihood ratio that a confessing agent faces a
behavioral type, z̄(s)

1−z̄(s) =
z(1−GZ (s))

(1−z)(1−GR(s)) when (1 − GR(s)) is larger, ultimately implying a larger

effect on the concession rate that makes a confessing agent indifferent,
gR

GZ (s)

1−GR
GZ (s) = λm

(
1 +

z̄(s)
1−z̄(s)

)
,

which translates into a bigger effect on GR
GZ (0).

Because the incentive benefits minus costs of earlier rational-behavioral agreements, u(1 −
α)eλ

m sz − u(α)e−rs(1 − z), are increasing in s, it must be better for both the objective function
(the benefits) and incentives to have a larger GZ(s) later on in bargaining (given a fixed T Z).
This corresponds exactly to the structure of GZ∗ which has GZ∗(t) = 0 for t < ť and a binding
type incentive constraint, ICGZ∗(t) = 0, for t ∈ [ť,T Z]; in other words GZ∗(t) is as large as
possible later on. When u(1−α)z− u(α)(1− z) ≥ 0 (equivalently z ≥ α for risk neutral agents),
these incentive benefits minus costs of rational-behavioral agreements are necessarily positive
for all s, which naturally results in ť = 0 in the optimal distribution GZ∗.

Having identified the unique OSSMP, we can extend Lemma 2’s claim (that strongly symmetric
mediation protocols do at least weakly better than other protocols), to establish that any optimal
protocol must be symmetric with the same distribution of agreement times as the OSSMP, and
furthermore that the OSSMP is uniquely optimal when agents are risk averse. This result is
established in Proposition 5, and is interesting because it suggests that a mediator must treat
agents fairly, and not pick favorites if she wants to maximize total payoffs.37

in α and Q̂(0.5) = 0, however, we must have Q̂(α) < 0 for α > 0.5.
37This contrasts with the need for biased mediators in Kydd (2001), although the settings are quite different.
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Figure 2. Numerical calculations of GR∗(0) (Left) and Uc(0) (Right) in OSSMP when u(x) = x.

Proposition 5. Any optimal mediation protocol is symmetric with the same distribution of

agreement times as in the unique OSSMP. If agents are risk averse,38 then the unique optimal

protocol is strongly symmetric.

My final result on optimal mediation is Proposition 6, which provides limiting comparative
statics on behavioral demands, behavioral probabilities, and utility functions. It shows that if
the probability of behavioral types is arbitrarily small, or behavioral demands are arbitrarily
large, or agents are arbitrarily risk averse, then mediation is approximately efficient in the sense
that rational agents almost always reach agreement immediately, GR∗(0) ≈ 1, to give payoffs
that approximately match those possible under complete information UCI = (1 − z)u(0.5) +

zu(1− α). These findings are in line with Theorem 2, in that mediation is again easier with risk
averse agents, when behavioral demands are larger and behavioral probabilities are smaller.
They are fairly intuitive given the previous analysis, and indeed can be established by using a
lower bound on GR∗(0) provided by the (non-optimal) ND mediation protocol.

Proposition 6. Consider sequences of bargaining games, Bn = (α, zn, u, r) with limn zn = 0,

B̌n = (αn, z, u, r) with limn α
n = 1, and B̂n = (α, z, un, r) with limn un(α) = limn un(0.5) >

limn un(1 − α). In the associated sequences of OSSMPs limn GR∗(0) = 1.

Establishing comparative statics more generally is difficult because the characterization in The-
orem 2 does not provide a precise closed form solution for the OSSMP.39 However, Figure 2
graphically illustrates numerical calculations of the probability of immediate rational-rational
agreement, GR∗(0), when agents are risk neutral. The probability is always decreasing in agents’
probability of commitment, z, and increasing in their demands, α. Payoffs Uc(0), which are an
affine rescaling of GR∗(0) (see equation (9)), are decreasing in z, but also decreasing in α (on
net: larger demands are still bad).

38So that u(0.5) > 0.5(u(x) + u(1 − x)) for all x ∈ [α, 0.5).
39This is unsurprising given that the objective was maximized with respect to infinitely many constraints.
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4.1 A mechanism design benchmark

In this subsection, I compare optimal mediation to a mechanism design benchmark where the
mechanism designer can impose agreement and (perpetual) disagreement between agents. The
exercise is somewhat speculative in that it is not entirely clear how the designer should accom-
modate behavioral types, but the contrast helps illustrate the mediator’s problem more clearly.

The setup is as follows: Agents report their types to the designer, who chooses an agreement
time and terms, or perpetual disagreement, based on the reported types. Behavioral agents
always report their true type to the designer, but rational agents may lie. I require that the de-
signer never imposes an agreement on a (reported) behavioral type which gives her less than her
demand α. This can be thought of as a behavioral type’s ex-post participation constraint (where
her alternative to the designer’s proposed agreement is perpetual disagreement). The designer
must provide incentives for rational agents to reveal their type. I discuss imposing additional
participation constraints below. I continue to restrict attention to symmetric bargaining games
and have the designer maximize the sum of rational agents’ payoffs.

Clearly, the designer should give a behavioral type exactly α in any rational-behavioral agree-
ment, as giving her more can only decrease a rational agent’s payoff and increase her incentive
to imitate a behavioral type. For the same reasons as in Lemma 2 we can restrict attention to
strongly symmetric mechanisms with GZ

i = GZ and Mt
i(0.5) = 1 (transforming an arbitrary

mechanism into a strongly symmetric one improves incentives and payoffs). I call an opti-
mal mechanism of this kind (GR†,GZ†) an Optimal Strongly Symmetric Delegation Mechanism

(OSSDM), because agents delegate their subsequent decision making power. It must solve:

max
GR,GZ

Uc =(1 − z)
∫

e−rsu(0.5)dGR(s) + z
∫

e−rsu(1 − α)dGZ(s)

s.t. Uc ≥ Un = (1 − z)
∫

e−rsu(α)dGZ(s) (Type IC†)

The delegation mechanism problem is much simpler than the optimal mediation problem. In-
creasing GR(0) strictly improves the objective function and the type incentive constraint, and so
we must have GR†(0) = 1 in any solution. On the other hand, increasing

∫
e−rsdGZ(s) strictly

improves the objective function, but worsens the incentive constraint. If z ≥ u(α)−u(0.5)
u(1−α)+u(α)−u(0.5) , the

incentive constraint can be satisfied even with GZ†(0) = 1, and otherwise the constraint must
bind, so that

∫
e−rsdGZ†(s) =

(1−z)u(0.5)
(1−z)u(α)−zu(1−α) . There are many distributions which can make the

constraint bind; one such distribution implies agents either agree immediately with probability
GZ†(0) =

(1−z)u(0.5)
(1−z)u(α)−zu(1−α) or never agree, while other distributions imply eventual agreement.40

This characterization of OSSDM is summarized in the following proposition.

40For instance GZ†(t) = 0 if t < − 1
r ln

(
(1−z)u(0.5)

(1−z)u(α)−zu(1−α)

)
and GZ†(t) = 1 otherwise. Interesting, as zn → 0 or

αn → 1, this distribution converges to a point mass at − 1
r ln

(
u(0.5)

u(limn αn)

)
, which is also the limiting distribution of

GZ∗ in an OSSMP, while we also have GR∗(0)→ 1 = GR†(0) in the limit.
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Proposition 7. An OSSDM exists. Any OSSDM must satisfy GR†(0) = 1 with GZ†(0) = 1 if

z ≥ u(α)−u(0.5)
u(1−α)+u(α)−u(0.5) and

∫
e−rsdGZ†(s) =

(1−z)u(0.5)
(1−z)u(α)−zu(1−α) otherwise.

The characterization shows that a mediator is constrained much more by agents’ freedom to
ignore her suggestions, than by the informational problem alone. It is perhaps unsurprising
that an OSSDM always achieves a strictly higher payoff than mediation.41 However, not only
do rational agent pairs reach immediate agreement, GR†(0) = 1, but because the type incentive
constraint is less strict than under mediation (agents can’t pretend to be behavioral and then
subsequently concede) we can have an efficient outcome without any delay, GR†(0) = GZ†(0) =

1, whenever behavioral types are likely (z large) or make moderate demands (α small). For risk
neutral agents, the cutoff for efficiency z ≥ u(α)−u(0.5)

u(1−α)+u(α)−u(0.5) reduces to z ≥ 2α − 1. This holds,
for instance, in the example from Figure 1 (with α = 0.75, z = 0.5), so that OSSDM payoffs
match those under complete information of 0.38 (compared to mediation payoffs of 0.32 and
Baseline payoffs of 0.25). Of course, we also have an efficient outcome when z ≥ α > 2α − 1,
a situation where mediation was unable to improve on Baseline equilibrium payoffs at all!

More generally, comparative statics appear to be quite different to those established under me-
diation. Mediation payoffs (OSSMP) were GR∗(0)(1 − z)(u(0.5) − u(1 − α)) + u(1 − α), where
GR∗(0) was increasing in α and decreasing in z for risk neutral agents (see Figure 2). OSSDM
payoffs are (1 − z)u(0.5) + GZ†(0)zu(1 − α), where GZ†(0) is decreasing in α and increasing in
z. Perhaps a more consistent way to compare payoffs is using e(U) = U−UB

UCI−UB as a measure of
efficiency of payoff U, where UCI = (1−z)u(0.5)+zu(1−α) is the complete information payoff

and UB = u(1 − α) is the Baseline equilibrium payoff. Efficiency is then 100% in an OSSDM
when behavioral types are likely or make moderate demands, but strictly smaller otherwise. For
risk neutral agents, efficiency is 0% in an OSSMP when behavioral types are likely and make
moderate demands, but strictly larger otherwise. In all cases, however, efficiency approaches
100% when behavioral types are very unlikely (z ≈ 0) or make very large demands (α ≈ 1).

The OSSDM problem above lacks interim participation constraints, which might be thought to
constrain its efficiency. Why should agents delegate their decision making power? This wasn’t
a problem for mediation because agents were free to (privately) talk to the mediator, or ignore
her, and all agreements were voluntary. A natural participation constraint for delegation is that
agents do better than in the Baseline equilibrium. This is certainly true for rational agents, as
Uc > u(1 − α). One plausible way to create a participation constraint for behavioral types is
to assume that they have the same discount rate and same utility function as rational agents
for dollar shares greater than α but obtain −D for any smaller share, for D large. A weak
improvement on the Baseline equilibrium then translates into a constraint, Un ≥ u(1 − α)(1 −
erT Z

z), where T Z = −
ln(z)
λ

(behavioral types expect a payoff e−rT Z
u(1 − α)z less than a rational

agent who concedes at T Z). Clearly this constraint is also satisfied because Un = Uc > u(1−α)
41The OSSMP distributions GR∗ and GZ∗ satisfy the OSSDM type incentive constraint strictly. Setting GR(0) =

1 instead, strictly increases payoffs while preserving incentives.
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if z < u(α)−u(0.5)
u(1−α)+u(α)−u(0.5) and Un = (1 − z)u(α) otherwise.42 In fact, these participation constraints

are typically also satisfied for mediation (OSSMP).43

While an OSSDM achieves a strictly higher objective than mediation, the credibility of this
mechanism seems slightly dubious. It requires agents to fully delegate future decision making
to the designer, who can then maintain perpetual disagreement between two (reported) behav-
ioral types. However, courts don’t typically enforce contracts in the absence of a harmed party
(i.e. there is no party with standing to enforce a contract that constrains future agreements).
Seemingly, therefore, a rational agent should always have the option to pretend to be behav-
ioral and then change her mind and accept her (behavioral) opponent’s demand.

An OSSDM isn’t particularly close to the typical practice of arbitration (as a form of Alter-
native Dispute Resolution), because the designer sometimes imposes perpetual disagreement.
An arbitrator who always immediately imposes some dollar division even between behavioral
types, however, would seem likely to face fierce opposition. Using the assumptions about be-
havioral type “preferences” outlined above, this would necessarily give at least one behavioral
type a payoff of less than u(1) − D z

2 , which is worse than perpetual disagreement for large D.
The designer would, therefore, seem unable to satisfy any reasonable interim participation con-
straint for such types. This illustrates an important point. The knowledge that a mediator will
never impose an agreement that an agent strongly dislikes may be an important selling point of
mediation compared to arbitration and can help explain its greater popularity in Stipanowich
and Lamare (2013)’s survey. This problem of imposed agreements is in line with McEwen and
Maiman (1981)’s finding that defendants in small claims courts are twice as likely to comply
with mediated settlements as court imposed ones.

5 Conclusion

It is reassuring that economic theory can justify the effectiveness of mediation strategies similar
to those used by professional mediators. The simple mediation protocol highlighted by Dunlop,
of immediately announcing a deal when both parties agreed to its terms in private, is effective
after adding noise (consistent with messages sometimes going astray) even if it is ineffective
without noise. The reputational bargaining setting features two-sided incomplete information
about agents’ willingness to reach a deal. This may not be a perfect model for all situations
where mediation is used; however, the tractability of this form of incomplete information al-
lowed me to identify clear benefits from uninformed mediators, something that hasn’t been
possible in dynamic bargaining models with incomplete information about values.

42We can now imagine an extended game, where agents can agree to participate in an OSSDM at time zero,
with unmediated bargaining occurring if some agent refuses to participate. Because all agents prefer the OSSDM
to the Baseline equilibrium, beliefs can remain unchanged if some agent refuses to participate.

43In particular if z ≈ 0, so a behavioral type’s payoff in an OSSMP would be Un(T Z) − ze−rT Z
u(1 − α) ≈ u(0.5).
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The analysis highlighted two key ways in which mediation works. First, mediators can take
advantage of curvature in the utility-possibility frontier, by bringing together flexible (rational)
agents in agreements that are better than the average of the extreme demands proposed by
inflexible (behavioral) types. This can explain why mediation may be especially important in
multi-issue bargaining (which exhibits curvature). Second, by wisely choosing when to suggest
agreements, a mediator can reduce delay more for flexible agents than for inflexible types, and
thereby incentivize agents to reveal flexibility.

The analysis also revealed clear limits to what mediation can achieve. For symmetric games
with no curvature in the utility-possibility frontier, mediation is beneficial if and only if agents
are likely to be flexible, or inflexible types make large demands. Interestingly, this shows that
mediation may be more effective when parties are initially further apart. The finding that a
mechanism designer who can impose outcomes achieves full efficiency in settings where medi-
ation is entirely ineffective, illustrates that getting agents to follow the mediator’s suggestions
constrains behavior much more than the informational problem alone.

One obvious direction for future work is to extend the characterization of optimal mediation to
non-symmetric games. While a worthy goal, this also appears quite challenging. The ability to
restrict attention to strongly symmetric protocols massively simplified the problem. It would
obviously be even better to extend the analysis still further and allow agents to imitate many
different (asymmetric) inflexible types, something which is possible in AG. However, clearly
this makes the design of an optimal mediation protocol even more complex because mediation
will affect flexible agents’ demand choices in potentially perverse ways. In fact, in the Online
Appendix I show that with many inflexible types, providing better mediation when agents make
large demands can cause agents to make those demands more frequently, and so actually lower
both flexible agents’ payoffs compared to no mediation. These perverse effects of mediation
are somewhat similar to Manzini and Ponsati (2006)’s finding that a third party with additional
resources and an interest in agreement can actually increase bargaining delays. It is also similar
to the detrimental effect of (unmediated) peace talks in Meirowitz et al. (2019).
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Appendix A: The extensive form and strategies

At each private history hi for agent i (an information set), she chooses an action plan ai(hi). An action

plan ai(hi) = (τi(hi), xi(hi), i) for agent i consists of three parts: a future time to take action, τi(hi); an

action to take at that time, xi(hi); and a marker for agent i. She can plan to never take a future action

by setting τi(hi) = ∞. Let any actions planned for t1 or t5 be denoted xi(hi) = C (C=Concession).

Let the “action” planned for time ∞ be denoted xi(hi) = ∞. Actions at 01 or t4 must specify a dollar

division. Actions at t2 and t3 specify a message. The set of i’s possible action plans is then a subset of

Ai = DC × {C} ∪ Θ ∪ [0, 1] × {i}. A private history for agent i is then composed of a finite sequence of

action plans which she has observed (of herself and others).

Which private histories are ultimately realized is determined inductively as follows. The initial realized

private history is the null set, h1
i = ∅. Subsequent realized private histories, hk+1

i (where k ∈ N ∪ ∞),

are determined by the joint realized history hk = (hk
1, h

k
2, h

k
3) and agents’ action plans at realized private

histories, a j(hk
j). Let the time of the first action planned given hk be τ̃(hk) = min{τ1(hk

i ), τ2(hk
i ), τ3(hk

i )}.

Given hk, let the set of agents whose actions i observes at τ̃(hk) be Ji(hk). If Ji(hk) = ∅ then let hk+1
i = hk

i .

If Ji(hk) = {1, 2} then hk+1
i = (hk

i , (ai(hk
i ), a1(hk

1), a2(hk
2))). If Ji(hk) = { j} then hk+1

i = (hk
i , (ai(hk

i ), a j(hk
j))).

The game ends if ever τ̃(hk) ∈ {t1, t5} (one agent concedes to a well defined existing demand) or else

there is no agreement (agents get a zero payoff). If hk+1
i , hk

i then define the reference time of realized

private history hk+1
i as τ̌(hk+1

i ) = τ̃(hk) and let τ̌(∅) = 01. This is the time at which the history hk+1
i

occurs.

An example will help clarify this structure. At time 01, bargainers make initial behavioral demands, so

bargainer i’s action plan at h1
i = ∅ is ai(h1

i ) = (τi(h1
i ), xi(h1

i ), i) where τi(∅) = 01, xi(∅) = αi. The mediator

intends to send no message until she receives messages from both agents, and so a3(∅) = (∞,∞, 3). The

minimum time τ̃(h1) in the joint realized history h1 = (∅, ∅, ∅) is therefore 01. As all agents observe these

demand announcements, the next realized private history for agent i is h2
i = (h1

i , (a1(h1
1), a2(h1

2), ai(h1
i ))).

Given h2
1, agent 1 plans to message the mediator at 02, a1(h2

1) = (02, θ, 1), agent 2 plans to concede at time

t5, a2(h2
1) = (t5,C, 2), and the mediator plans to say nothing, a3(h2

1) = (∞,∞, 3). This means τ̃(h2) = 02.

Agent 1’s action at 02 is observed by agent 1 and the mediator but not agent 2, so that h3
1 = (h2

1, a1(h2
1)),

h3
3 = (h2

3, (a1(h2
1), a3(h2

3)), and h3
2 = h2

2. Given h3
1, agent 1 plans to change her demand to the entire

dollar at s4 > t5 so that a1(h3
1) = (s4, 1, 1), the mediator plans to say nothing a3(h3

3) = (∞,∞, 3). And so,

τ̃(h3) = t5, at which point the game ends with agent 2 conceding to agent 1’s existing (initial, behavioral)

demand α1.

Let the set of possible joint histories be H and the set of agent i’s possible private histories be Hi . A

behavior strategy for agent i randomizes over her possible action plans at each of these private histories,

σi : Hi → ∆(Ai). A belief for bargainer i is µi : Hi → ∆({Z,R}×H). This describes both her belief about

her opponent’s type and her belief about the joint history at each of her possible private histories.

A perfect Bayesian equilibrium requires that at each of bargainer i’s possible private histories, hi, her

behavior strategy maximizes her continuation payoff at reference time τ̌(hi), given others’ strategies and

her beliefs. Beliefs are determined by Bayes rule where possible.
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Appendix B:Proofs

Lemma 3. If both agents are revealed as rational at time t3, then there is a continuation equilibrium where agents
agree at time t5 on shares (m1,m2) for any m1 = 1 − m2 ∈ [0, 1], and also an equilibrium with perpetual dis-
agreement. If agent 1 is revealed as rational at time t3 or t4, but agent 2 has not been, then there is a continuation
equilibrium where agent 1 immediately concedes to 2’s behavioral demand at t5.

Proof. Continuation strategies are as follows: If both agents are revealed as rational at t3 each flexible agent i
plans to change her demands to αi(t4) = mi at t4 unless we want to implement perpetual disagreement in that case
both agents demand αi(t4) = 1. If agent 1 alone is revealed as rational at t3 then she demands some α1(t4) ≥ 1−α2

at t4, while agent 2 plans never to concede or change her demand. If agents make compatible demands at t4,
then both agents plan to concede immediately at t5. If agent 2 has still not been revealed as behavioral at t4 (and
demands are incompatible), then agent 1 plans to concede at t5, while 2 plans never to concede or change her
demand. If both agents demand αi(t4) = 1 when we want to implement perpetual disagreement, then both plan
never to concede. The mediator plans to say nothing in all circumstances. If agents follow strategies consistent
with this, we get the desired outcomes. We fill in the rest of agents’ continuation strategies below.

Let s4 ≥ t4 be the first time some agent, call her i, observably deviates from this proposed equilibrium by either
demanding: αi(s4) , mi, or αi(s4) , 1 when we want to implement perpetual disagreement, or α2(s4) , α2 when
i = 2 hadn’t been revealed as rational before t4. This creates a new information set, where we designate agent
i as the “loser”, and j as the “winner” if only agent i deviated at s4. If both agents deviate at s4 then agent 1
is the loser. Neither the winner nor the loser ever plans to change her demands. So long as the winner doesn’t
change her demand the loser concedes to the winner immediately after any history at which she gets the chance,
while the winner doesn’t plan to ever concede except if demands are compatible. If the winner subsequently
changes her demand, while the loser doesn’t (at some τ4 > sk), then roles are reversed, with the former winner
(loser) becoming the new loser (winner). Clearly, given the winner’s strategy it is optimal for the loser to concede
immediately (delaying her concession cannot bring any benefit). Given the loser’s strategy it is optimal for the
winner to never concede unless demands are compatible. There is also clearly no benefit from deviating at t4 (or
any later time) as this will ensure that the agent becomes the loser (and so must then concede). �

Proof of Proposition 2

Suppose there is an equilibrium σ = (σ1, σ2) with pc
i pc

j > 0. Let Ac
i = {t : Uc

i (t) = maxs Uc
i (s)} and An

i = {t :
Un

i (t) = maxs Un
i (s)}. Since σ is an equilibrium, An

i , ∅ , Ac
i . Define T c

i = inf{t : Fc
i (t) = 1}, as the final time by

which a confessing agent i concedes to her opponent. Similarly, define T n
i = inf{t : (1− pc

i )(1− Fn
i (t)) = zi} as the

final time a rational, non-confessing agent i concedes to her opponent. Finally, define T ∗ = max{T c
j ,T

n
j ,T

c
i ,T

n
i }

and T c = min{T c
i ,T

c
j }. I next prove a series of claims, which help establish the result.

(a) We must have T c
j ≤ T n

i < ∞. To establish T n
i ≥ T c

j suppose instead that T n
i < T c

j then after time T n
i a

confessing agent j knows that she faces a behavioral opponent, and so would prefer to concede immediately
rather than wait until T c

j .
To establish T n

i < ∞, let πt
j be the conditional probability that agent j continues to act consistent with a

behavioral type on the interval [s, s + t) for arbitrary s. For agent i not to concede at s it must be that:

ui(1 − α j) ≤(1 − πt
j)ui(1) + πt

je
−ritui(1)

πt
j ≤

ui(1) − ui(1 − α j)
(1 − e−rit)ui(1)
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where the second line simply rearranges the first. Fix δ ∈
( ui(1)−ui(1−α j)

ui(1) , 1
)
, and consider K such that δK < zi

and t′ such that δ =
ui(1)−ui(1−α j)
(1−e−ri t′ )ui(1)

. Suppose agent i does not concede on the interval [0, t′K) then it must be
that the probability j acts consistent with a behavioral type on that interval is less than (πt′

j )K ≤ δK < zi, but
this contradicts the fact that a behavioral type acts like itself. And so rational agent i will always concede by
T n

i ≤ t′K

(b) We must have max{T c
j ,T

n
j } = T ∗ < ∞. I first claim that T n

i ≤ max{T c
j ,T

n
j }. Suppose not, so that T n

i >

max{T c
j ,T

n
j }. Then after time max{T c

j ,T
n
j } a non-confessing rational agent i knows that she faces a behavioral

opponent, and so would prefer to concede immediately rather than wait until T n
i . By claim (a) we already

know that T c
i ≤ T n

j ≤ max{T c
j ,T

n
j }, hence max{T c

i ,T
n
i } ≤ max{T c

j ,T
n
j }. Reversing the labelling we also

have max{T c
i ,T

n
i } ≥ max{T c

j ,T
n
j }, which establishes max{T c

j ,T
n
j } = T ∗. Claim (a) implies max{T c

i ,T
c
j } ≤

max{T n
j ,T

n
i } < ∞, so that T ∗ < ∞.

(c) There is no jump in Fc
i at t ∈ (0,T ∗]. Furthermore, if Fn

j (0) > 0 then Fc
i (0) = 0. Suppose Fc

i jumped at
t ∈ (0,T ∗], then Fn

j must be constant on [t − ε, t] for some ε > 0, as non-confessing agent j would prefer
instead to concede an instant after t rather than on the interval [t − ε, t]. But in that case, a confessing agent i
would prefer to concede at t − ε rather than wait until t. Finally, if Fn

j (0) > 0 then a confessing agent i would
strictly prefer to concede an instant after zero rather than at zero, so that Fc

i (0) = 0.

(d) There is no jump in Fn
i at t ∈ (0,T ∗]. Furthermore, if F j(0) > 0 then Fn

i (0) = 0. Suppose that Fn
i did jump

at t ∈ (0,T ∗], then F j is constant on [t − ε, t] for some ε > 0, as a rational agent j would prefer instead to
concede an instant after t rather than on the interval [t − ε, t]. But in that case, a non-confessing agent i would
prefer to concede at t − ε rather than wait until t. Finally, if F j(0) > 0 then a non-confessing agent i would
strictly prefer to concede an instant after zero rather than at zero, so that Fn

i (0) = 0.

(e) If Fn
i is continuous at t then so is Uc

j . If Fi is continuous at t then so is Un
j . This follows from the definitions.

(f) If T ∗ ≥ t′′ > t′ then Fi(t′′) > Fi(t′). Suppose not, then let t∗i = sup{t : Fi(t) = Fi(t′)} ∈ [t′′,T ∗]. First, notice
that no rational agent j can concede at s ∈ (t′, t∗i ) because this is strictly worse than conceding slightly earlier
(e.g. at s+t′

2 ). Combining this with the continuity of F j, Uc
i and Un

i on (0,T ∗], established in claims (c), (d) and
(e), implies that rational agent i (whether she confessed or not) would strictly prefer to concede at some early
point in (t′, t∗i ), such as t∗i +t′

2 , than wait to concede at or just after t∗i . This, however, contradicts the definition
t∗i ≤ T ∗ < ∞.

(g) If T c
j ≥ t′′ > t′ then Fn

i (t′′) > Fn
i (t′). Suppose not, then let t∗ni = sup{t : Fn

i (t) = Fn
i (t′)} ∈ [t′′,T ∗]. First, notice

that a confessing agent j will not concede at s ∈ (t′, t∗ni ) because this is strictly worse than conceding slightly
earlier (e.g. at t′+s

2 ). This ensures that T c
j ≥ t∗ni . When combined with claim (f), we must have that Fn

j and Fc
i

are strictly increasing on the interval (t′, t∗ni ). Because Fc
i is strictly increasing on (t′, t∗ni ), we must have that

Ac
i is dense on that interval. By claims (d) and (e) Uc

i is continuous and hence constant on (t′, t∗ni ). In turn that
ensures that Uc

i is differentiable on (t′, t∗ni ) with dUc
i (t)

dt = 0, so that a non-confessing agent j must be conceding

at rate
f n

j (t)
1−Fn

j (t)
= λ j. Notice, however, that because pc

j(1 − Fc
j(t)) > 0 for t < T c

j where T c
j ≥ t∗ni for t ∈ (t′, t∗ni )

we must have:
f j(t)

1 − F j(t)
=

(1 − pc
j) f n

j (t)

(1 − pc
j)(1 − Fn

j (t)) + pc
j(1 − Fc

j(t))
<

f n
j (t)

1 − Fn
j (t)

= λ j

A concession rate of exactly f j(t)
1−F j(t)

= λ j would make a non-confessing agent i indifferent between conceding

at any t ∈ (t′, t∗ni ) and so a smaller concession rate, f j(t)
1−F j(t)

< λ j, means that she would strictly prefer to concede
earlier rather than later on the interval (t′, t∗ni ). The continuity of F j and hence Un

i on (0,T ∗], established in
(c) and (d), then means that a non-confessing agent i must get a strictly lower payoff when conceding at
or just after t∗ni than if she conceded earlier (e.g. at t′+t∗ni

2 ). This means that t∗ni cannot be the supremum, a
contradiction.
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(h) If T c
j > 0, then agent j must concede at rate f j(t)

1−F j(t)
= λ j rate on (0,T c

j ). If T c
j > 0, then claim (g) implies that

Fn
i is strictly increasing on [0,T c

j ], and so An
i is dense in [0,T c

j ]. From claims (c), (d), and (e) it follows that

Un
i is continuous. Hence, Un

i is constant on this interval, and so differentiable with dUn
i (t)

dt = 0, which implies
that agent j concedes at rate f j(t)

1−F j(t)
= λ j.

(i) If T c
j < T ∗, then f j(t)

1−F j(t)
=

f n
j (t)

1−Fn
j (t)

= λ j on (T c
j ,T

∗]. First, suppose that T c
j ≥ T c

i , then by claim (f) we must have
that Fn

i is strictly increasing on [T c
i ,T

∗], and so An
i is dense in [T c

i ,T
∗]. From claims (c), (d), and (e) it follows

that Un
i is continuous and hence is also constant on (T c

i ,T
∗]. In turn that implies that Un

i is differentiable on
(T c

i ,T
∗) with dUn

i (t)
dt = 0, and so agent j must concede at rate f j(t)

1−F j(t)
= λ j. Next, suppose that T c

j < T c
i , so that

at t > T c
j , a confessing and non-confessing agent i have the same beliefs (in particular, both are certain that

they face a non-confessing opponent j). This implies An
i ∩ (T c

j ,T
∗] = Ac

i ∩ (T c
j ,T

∗]. By claim (f) we know that
Fi is strictly increasing on (T c

j ,T
∗], which implies that An

i ∪ Ac
i is dense in (T c

j ,T
∗], and so An

i is also dense
on that interval. From claims (c), (d), and (e) it follows that Un

i is continuous and hence constant on (T c
j ,T

∗].

In turn that implies that Un
i is differentiable on (T c

j ,T
∗) with dUn

i (t)
dt = 0, and so agent j must concede at rate

f j(t)
1−F j(t)

= λ j. Finally, notice that for t ≥ T c
j we have 1 − F j(t) = (1 − pc

j)(1 − Fn
j (t)) and so f j(t)

1−F j(t)
=

f n
j (t)

1−Fn
j (t)

.

(j) If T c ≥ t′′ > t′, and Fc
j(t
′′) = Fc

j(t
′) then Fc

j(t
′′) = Fc

i (t′′) = 0. I first claim that a confessing agent i will not
concede with positive probability on the interval [max{t′ − ε, 0}, t′′] for some ε > 0. To see this, notice that
given Fc

j(t
′′) = Fc

j(t
′), to ensure that agent j on average concedes at rate f j(t)

1−F j(t)
= λ j on (t′, t′′) as required by

claim (h), a non-confessing agent j must concede at rate:

f n
j (t)

1 − Fn
j (t)

= λ j

1 +
pc

j(1 − Fc
j(t))

(1 − pc
j)(1 − Fn

j (t))

 (12)

For t < T c, however, pc
j(1 − Fc

j(t)) > 0 and so this rate is strictly greater than λ j, which implies that a
confessing agent i would strictly prefer to concede at t′′ rather than on the interval [max{t′−ε, 0}, t′′) for some
ε > 0. Next, define t∗∗i = inf{s : Fc

i (s) = Fc
i (t′)} ≤ t′. The previous argument with the roles of i and j reversed,

implies t∗∗i = t∗∗j = 0 and Fc
i (0) = Fc

j(0) = 0. The continuity of Fc
i on (0,T ∗], established in claim (c), then

implies Fc
i (t′′) = Fc

j(t
′′) = 0.

(k) Suppose T c > 0, let t∗c = inf{t : Fc
1(t) > 0 or Fc

2(t) > 0}, and suppose t∗c ≤ t′ < t′′ ≤ T c, then Fc
i (t′′) > Fc

i (t′).
Suppose not, so that Fc

i (t′′) = Fc
i (t′). Claim (j) then implies that Fc

1(t′′) = Fc
2(t′′) = 0. Because t∗c < t′′,

however, we must have either Fc
1(t′′) > 0 or Fc

2(t′′) > 0 given t∗c < t′′, a contradiction.

(l) If T c > 0 then
f n

j (t)
1−Fn

j (t)
=

f c
j (t)

1−Fc
j (t)

= λ j on (t∗c,T c], where t∗c is defined in claim (k). First notice that by (k) Ac
i

must be dense in [t∗c,T c]. From claims (d) and (e) Uc
i is continuous on (0,T c] and hence constant. In turn

this implies that Uc
i is differentiable on (t∗c,T c) with dUc

i (t)
dt = 0, which implies that a non-confessing agent j

concedes at rate
f n

j (t)
1−Fn

j (t)
= λ j. By claim (h) we must also have a total concession rate f j(t)

1−F j(t)
= λ j on (t∗c,T c).

If both these concession rates hold, then:

λ j =
f j(t)

1 − F j(t)
=

pc
j f c

j (t) + (1 − pc
j) f n

j (t)

pc
j(1 − Fc

j(t)) + (1 − pc
j)(1 − Fn

j (t))
=

pc
j f c

j (t) + (1 − pc
j)(1 − Fn

j (t))λ j

pc
j(1 − Fc

j(t)) + (1 − pc
j)(1 − Fn

j (t))
,

which rearranges to give
f c

j (t)
1−Fc

j (t)
= λ j.

(m) We must have T c = 0. Suppose not, and so T c = T c
j > 0 for some agent j. This clearly implies Fc

j(0) < 1.
Notice that the continuity of Fc

i on (0,T ∗] implies that either t∗c = 0 or Fc
i (t∗c) = Fc

i (0) = 0 (where t∗c is
defined in claim (k)). Claim (l) then implies that if t ∈ [t∗c,T c], then Fc

j(t) = 1− (1−Fc
j(0))e−λ jt < 1, however,

this contradicts T c
j < ∞.

We are almost done. Suppose that T c
j = 0 so that Fc

j(0) = 1 (and so Fn
i (0) = 0 by claim (d)). Claim (i) then
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implies that f j(t)
1−F j(t)

=
f n

j (t)
1−Fn

j (t)
= λ j on (0,T ∗]. This implies that (0,T ∗] ⊆ Ac

i = An
i , and so a confessing agent i who

concedes at t ∈ Ac
i must get the payoff:

Uc
i (t) = pc

jui(mi) + (1 − pc
j)
(
Fn

j (0)ui(αi) + (1 − Fn
j (0))ui(1 − α j)

)
Whereas a non-confessing agent i who concedes at t ∈ An

i must get the payoff:

Un
i (t) = pc

jui(αi) + (1 − pc
j)
(
Fn

j (0)ui(αi) + (1 − Fn
j (0))ui(1 − α j)

)
Therefore, if pc

j > 0 we must have mi ≥ αi, or agent i would not find it optimal to confess. Clearly we cannot
have m j = 1 − mi < 1 − αi, or confessing would deliver agent j a payoff of pc

i u j(mi) + (1 − pc
i )u j(1 − α j), which

is strictly less than the payoff u j(1 − αi) which she could guarantee by not confessing and then conceding (recall
that Fc

j(0) = 1 and pc
i > 0).

Suppose finally that m j = 1 − αi. In this case, we must have Uc
j (t) ≤ ui(1 − α) for all t (or we could not have

Fc
j(0) = 1) and so we must similarly have Un

j (t) ≤ ui(1 − α) for all t, which in particular implies Fi(0) = 0. Given
T c

j = 0, claim (b) implies that T n
j = T ∗.

Analogous to the requirement that both agents reach a probability one reputation at the same time in the Baseline
model, we must have T n

j = T ∗ = max{T c
i ,T

n
i }. If T n

j < max{T c
i ,T

n
i } then because T c

j = 0, any rational agent i would
know she faced a behavioral type at T n

j and would concede at most an instant after. Similarly if T n
j > max{T c

i ,T
n
i },

then a non-confessing agent j would know she faced a behavioral type at max{T c
i ,T

n
i } and would concede at most

an instant after.

Claims (h) and (i) then imply that agents must concede at rates f j(t)
1−F j(t)

= λ j and fi(t)
1−Fi(t)

= λi on (0,T ∗]. Combined
with the fact that Fi(0) = 0, this implies 1−Fi(t) = e−λit for t ≤ T ∗. The boundary conditions (1− pc

i )(1−Fn
i (T ∗)) =

zi and (1 − Fc
i (T ∗)) = 0, therefore imply 1 − Fi(T ∗) = e−λiT ∗ = zi or T ∗ = − 1

λi
ln(zi). For agent j, these concession

rates as well as Fc
j(0) = 1 imply that (1 − pc

j)(1 − Fn
j (t)) = (1 − F j(t)) = (1 − F j(0))e−λ jt. The boundary condition

(1 − pc
j)(1 − Fn

j (T
∗)) = z j then implies (1 − F j(0))e−λ jT ∗ = z j. Clearly if T ∗j = −

ln(z j)
λ j < − ln(zi)

λi = T ∗i = T ∗, we have

an immediate contradiction. Otherwise, (1 − F j(0)) = zieλ jT ∗ = ziz
−
λ j
λi

j . But in that case, any such equilibrium has
exactly the same distribution of outcomes as the Baseline equilibrium. Such an equilibrium “involving” mediation

exists whenever T ∗i , T ∗j (e.g. let pc
i = 1 − zi and pc

j ∈
(
0, 1 − ziz

−
λ j
λi

j

]
when T ∗i < T ∗j ). �

Proof of Proposition 3

Agent i is indifferent to conceding at any t ∈ (0,T ∗]. In particular, because it is optimal to concede an instant after
time zero we must have:

U∗ci = max
t

Uc
i (t) = (1 − z j)

(
bui(mi) + (1 − b)Hc

j (0)ui(αi)
)

+
(
z j + (1 − z j)(1 − b)(1 − Hc

j (0))
)

ui(1 − α j)

Setting this equal to the expression for U∗ci = Uc
i (T ∗) in the main text (equation (4)) and rearranging gives:

∫
s<T ∗

e−ri sui(αi)dHc
j (s) = ui(αi) − (1 − Hc

j (0))(ui(αi) − ui(1 − α j)) +
z j(1 − e−riT ∗ )ui(1 − α j)

(1 − z j)(1 − b)
. (13)

And so, Qi reduces to:

Qi = ui(mi) −
(
ui(αi) − (1 − Hc

j (0))(ui(αi) − ui(1 − α j)) +
z j(1 − e−riT ∗ )ui(1 − α j)

(1 − z j)(1 − b)
)
)

Suppose that T ∗ = T j = − 1
λ j

ln(z̄ j) ≤ Ti, so that 1 − Hc
j (0) = 1 and 1 − Hc

i (0) = z̄i
1−z̄i

(
z̄
−
λi
λ j

j − 1
)
. Substituting in for
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these equalities gives:

Qi =ui(mi) − ui(1 − α j) −
z j

(
1 −

(
z j

1−(1−z j)b

) ri
λ j

)
ui(1 − α j)

(1 − z j)(1 − b)

Q j =u j(m j) − u j(α j) −

zi

1 − (
z j

1−(1−z j)b

) r j
λ j

 u j(1 − αi)

(1 − zi)(1 − b)
+ (u j(α j) − u j(1 − αi))

zi

( z j

1−(1−z j)b

)− λi
λ j
− 1


(1 − zi)(1 − b)

Define mi < αi as the mediation share that causes Qi = 0, that is:

mi = u−1
i

ui(1 − α j) +

z j

(
1 −

(
z j

1−(1−z j)b

) ri
λ j

)
ui(1 − α j)

(1 − z j)(1 − b)


Notice that mi → 1 − α j as z j → 0. Setting mi = 1 − m j = mi we then have:

Q j

zi
=

u j(1 − mi) − u j(α j)
zi

−

1 − (
z j

1−(1−z j)b

) r j
λ j

 u j(1 − αi)

(1 − z j)(1 − b)
+ (ui(αi) − ui(1 − α j))

( z j

1−(1−z j)b

)− λi
λ j
− 1


(1 − zi)(1 − b)

(14)

We are interested in the limit of Q j

zi
as z j → 0. It is clear that limz j→0

1−
(

z j
1−(1−z j )b

) r j
λ j

(1−z j)
= 1 while

(
z j

1−(1−z j )b

)− λi
λ j −1

(1−zi)
= ∞. By

assumption we have K ≥ z j

zi
≥ 1

K . We can then use l’Hopital’s rule and the inverse function to show that:

lim
z j→0

u j(1 − mi) − u j(α j)
z j

= −
u′j(α j)ui(1 − α j)

u′i(1 − α j)(1 − b)
> −∞

where this uses the fact that
∂

1−( z j
1−(1−z j )b

) ri
λ j

z j(1−z j)−1

∂z j

∣∣∣∣∣
z j=0

= 1, and where u′j(α j) is a left derivative and u′i(1 − α j) is

a right derivative. And so we must have limz j→0
Q j

zi
= ∞. This ensures the existence of some z′ > 0 such that if

z j ≤ z′ we must have Q j ≥ 0 and Qi ≥ 0 and so an ND equilibrium exists.

It remains to show that such an equilibrium can strictly improve the payoff of both agents. If λ j = λi and z j ≥ zi

then clearly we must have Ti ≥ T j in any ND equilibrium and in the Baseline equilibrium. Alternatively, suppose

that λ j > λi (and possibly z j < zi). In this case let z′′ > 0 be such that for z j ≤ z′′ we have
(

z j

1−(1−z j)b

) λi
λ j
−1
≥ K.

This implies:

(
z j

1 − (1 − z j)b

) λi
λ j

≥
Kz j

1 − (1 − z j)b
≥

Kz j

1 − (1 − Kz j)b
≥

zi

1 − (1 − zi)b

T j = −
1
λ j

ln
(

z j

1 − (1 − z j)b

)
≤ −

1
λi

ln
(

zi

1 − (1 − zi)b

)
= Ti

The first inequality on the first line is directly implied, the second follows because K ≥ 1, the third because
Kz j ≥ zi. The second line is then simply a rearrangement of the inequality of the first and final term from the first

line, and implies that T j ≤ Ti in an ND equilibrium. The bound also ensures that z
λi
λ j

j ≥ Kz j ≥ zi so that in the
Baseline equilibrium we must also have T j ≤ Ti.

Let z j ≤ min{z′, z′′, 1
2 }, then the payoff to agent i in the Baseline equilibrium is ui(1−α j). Given that U∗ni > ui(1−α j)

in any ND equilibrium it is clear that we must also have U∗ci > ui(1 − α j). In the Baseline equilibrium agent j’s
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payoff is UB
j = u j(αi) − (u j(α j) − u j(1 − αi))ziz

−
λi
λ j

j . We need to compare this to her payoff in an ND equilibrium,
which can be expressed as:

U∗cj = (1 − zi)bu j(m j) + (1 − b(1 − zi))ui(α j) − (ui(αi) − ui(1 − α j))zi

(
z j

1 − (1 − z j)b

)− λi
λ j

The best possible ND equilibrium for agent j (consistent with a fixed b) has m j = 1 −mi. For that equilibrium we
have:

U∗cj − UB
j

zi
=(1 − zi)b

u j(1 − mi) − ui(α j)

zi
+ (ui(αi) − ui(1 − α j))

z− λi
λ j

j −

(
z j

1 − (1 − z j)b

)− λi
λ j


≥b(K − z j)

u j(1 − mi) − ui(α j)

z j
+ (ui(αi) − ui(1 − α j))z

−
λi
λ j

j

1 −
(

2
2 − b

)− λi
λ j


where the second line follows from the assumption K ≥ zi

z j
≥ 1

K and 1
1−(1−z j)b

≥ 2
2−b when z j ≤

1
2 (this is equivalent

to 2 − b ≥ 2(1 − (1 − z j)b)).

We previously established that the limz j→0
u j(1−mi)−ui(α j)

z j
> −∞. Additionally noticing that

(
2

2−b

)− λi
λ j < 1 and that

limz j→0 z
−
λi
λ j

j = ∞ it is clear that limz j→0
U∗cj −UB

j

zi
= ∞. This implies that there exists z > 0 such that for z j ≤ z

we have an ND equilibrium with mi = mi where both rational agents’ expected payoffs exceed their payoff in the
Baseline equilibrium. �

Proof of Proposition 4

Suppose this were not true, then there must exist some sequence of games (ri, ui, αi, zn
i ,m

n, bn) with zn
1 → 1 and

a sequence of ND equilibria in each. I first claim that any (sub)sequence of these ND equilibria must satisfy
limn T ∗ = 0. This follows immediately from the fact that T ∗ ≤ T1 = − 1

λ1 ln
(

zn
1

(1−zn
1)(1−b)+zn

1

)
.

Notice that
∫

s<T ∗ e−ri sui(αi)dHc
j (s) ≥ e−riT ∗ui(αi), hence for any ε > 0, for all sufficiently large n we need mi > αi−ε

for i = 1, 2, in order to have Qi ≥ 0. Choosing ε = α1+α2−1
2 we have m1 + m2 > α1 + α2 − 2ε = 1, a contradiction.�

Proof of Theorem 1

Following the arguments in the text it remains only to show that when a distribution of outcomes (GR,GZ
1 ,G

Z
2 ,M1,M2)

satisfies the dynamic and type incentive constraints, there is a direct mediation equilibrium with that distribution
of outcomes. We consider the direct mediation protocol where the mediator suggests an agreement before time t3

with probability GR(t) if both agents message her at 02, and with probability GZ
i (t) if only j messages her. In the

former case, the mediator suggests that i gets a share less than m with probability Mt
i (m) in a time t agreement. If

neither agent messages the mediator at 02, or agent i changes her demand from αi without being suggested to do
so by the mediator, then the mediator is silent for the rest of the game. On the equilibrium path, rational agent i
always messages the mediator at 02, demands αi prior to the mediator’s suggestion, and immediately follows the
mediator’s suggestions.

We know from Lemma 3 that when both agents are revealed to be rational by the mediator’s announcement, it
is possible to implement any agreement share (including the one suggested by the mediator) in the continuation
game. Furthermore, if agent i alone is revealed to be rational, by the mediator suggesting that i concedes to j or
by i changing her demand before any mediator suggestion, then it is a continuation equilibrium outcome for i to
immediately concede to j’s behavioral demand. After initially confessing to the mediator, we know each agent
cannot profitably deviate by conceding before the mediator makes a suggestion, because the dynamic incentive
constraint is satisfied. Furthermore, the type incentive constraint ensures that the agent optimally confesses her
rationality at 02, regardless of any continuation concession strategy. It only remains to show that a rational agent
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has a well defined optimal continuation concession strategy after she deviates by failing to confess rationality at
02. This is described by a stopping time. Consider a sequence tm such that Un

i (tm) → supt Un
i (t). The extended

real line is compact so we can consider a subsequence, converging to t. The right continuity of GZ
i then ensures

that Un
i (t) = supt Un

i (t). Moreover, planning to concede at t5 (if there is no mediator announcement by t3) ensures
exactly this payoff (because there is no concession by j at t5 unless the mediator suggests it at t3). �

Proof of Lemma 1

Let Uc
i (t) and Un

i (t) be the utilities under the Baseline equilibrium, and let Ûc
i (t) and Ûn

i (t) be utilities when
the mediator suggests a time t agreement between rational agents, which gives agent 1, m̂1(t) = 1 − m̂2(t) =∫

mdMt
1(m) − ε for t ∈ [0, ε] and m̂1(t) = 1 − m̂2(t) =

∫
mdMt

1(m) for t > ε. For ε = 0 we have Ûc
i (T R) ≥

Uc
i (t) = Un

i (t) = Ûn
i (t) with a strict inequality for agent 1 for t < T R. By continuity, for all small enough ε > 0 this

inequality must be strict inequality for both agents, so that the type incentive constraint is satisfied. Moreover, for
t ≤ T R we have

Ûc
i (T R) − Ûc

i (t) = Ûc
i (T R) − Ûc

i (t) − Uc
i (T R) + Uc

i (t) = (1 − z j)
∫

t<s≤T R
e−ri s

(
u(m̂i(t)) −

∫
ui(m)dMs

i (m)
)

dGR(s),

where the first inequality follows because Uc
i (T R) = Uc

i (t) for t ≤ T R. Clearly, Ûc
i (T R) − Ûc

i (t) ≥ 0 for ε = 0 and
strictly so for agent 1, for all t < T R. For all small enough ε > 0, therefore, we have a strict inequality for both
agents for t ∈ [0, ε) and at least a weak inequality for t ∈ [ε,T R]. �

Proof of Lemma 2

First consider the associated symmetric protocol (GR, ǦZ , M̌) where ǦZ = ĜZ = 0.5(GZ
1 + GZ

2 ) and M̌ = 0.5(M1 +

M2). Let the utilities in the original equilibrium be Uc
i (t) and Un

i (t) and the utilities in the symmetric protocol be
Ǔc(t), Ǔn(t). Symmetry then implies:

Ǔc(t) =(1 − z)
∫

s≤t
e−rs

∫
u(m)0.5(dMs

1(m) + dMs
2(m))dGR(s) + z

∫
s≤t

e−rsu(1 − α)0.5(dGZ
1 (s) + dGZ

2 (s))

+ e−rtu(1 − α)
(
(1 − z)(1 −GR(t)) + z(1 − 0.5(GZ

1 (t) + GZ
2 (t)))

)
= 0.5(Uc

1(t) + Uc
2(t)),

Ǔn(t) =(1 − z)
∫

s≤t
e−rsu(α)0.5(dGZ

1 (s) + dGZ
1 (s)) + e−rtu(1 − α)

(
(1 − z)(1 − 0.5(GZ

1 (t) + GZ
2 (t))) + z

)
=0.5(Un

1(t) + Un
2(t)).

This immediately ensures that the symmetric protocol obtains the same objective. Moreover, because the original
equilibrium satisfied Uc

i (T R) = maxt Uc
i (t) ≥ supt Un

i (t), it is clear that Ǔc(T R) = maxt Ǔc(t) ≥ supt Ǔn(t).

The proof of Lemma 1 then shows that moving from this symmetric protocol to a strongly symmetric one preserves
incentive compatibility and weakly increases the objective, because u(0.5) ≥

∫
u(m)dM̌t(m). �

Proof of Theorem 2

We establish Theorem 2 by proving each of its claims in a series of lemmas. I present all of these lemmas, before
turning to their proofs. The first lemma establishes that given any distribution GZ , the distribution GR

GZ maximizes
the objective, Uc(T R).

Lemma 4. Given any distribution GZ , if the set of distributions GR which satisfy both incentive constraints is
non-empty, then GR

GZ uniquely maximizes Uc(T R) in this set.

The proofs of Lemma 4 and other lemmas making substantive claims from Theorem 2 use the following interme-
diate result. It shows that when we can adjust distributions (GR or GZ) in a monotonic way to improve the objective
function, Uc(T R), there exists some distribution which cannot be improved in that way. For the statement of this

40



result, and elsewhere, it is helpful to define the set ∆T ⊂ [0, 1][−∞,∞] of cumulative distribution functions on the
extended real line such that G ∈ ∆T if G(T ) = 1 and G(t) = 0 for t < 0.

Lemma 5. For fixed T ≤ ∞. Consider functions of the form:

v(T,G) =

∫
s≤T

e−rsA1(s)dG(s) + A2(T )

w(t,G) =

∫
s≤t

A3(s)dG(s) +

∫
s≤T

e−rsA4(s)dG(s) + A5(t) + e−rtA6(t)G(t)

where each Ak is a continuous bounded function on [0,T ] with A5 is continuously differentiable and G ∈ ∆T . Let
X = {G ∈ ∆T : w(t,G) ≥ 0,∀t ∈ [0,T ]} and X′ = {G ∈ X : w(T,G) = 0}.

(a) Define the partial order % on X by G ∼ G, and G̃ � G if v(T, G̃) > v(T,G) and G̃(t) ≥ G(t) for all t. If
there exists some G̃ � G, then there exists some G � G for which there is no Ĝ such that Ĝ � G.

(b) For any G ∈ X′ define tG = inf{t : w(s,G) = 0 for s ∈ [t,T ]}. For any t̃ < ∞, define the partial order %t̃ on
X′ by G ∼t̃ G, and G̃ �t̃ G, if v(T, G̃) > v(T,G), tG̃ ≤ tG, G̃(t) ≥ G(t) for t ≥ t̃, and G̃(s) ≤ G(s) for s < t̃. If
there exists some G̃ �t̃ G, then there exists some G �t̃ G for which there is no Ĝ such that Ĝ �t̃ G.

The next lemma shows that type incentive constraint must bind at T Z in an OSSMP and also at any t ≥ t̂ where:

t̂ =
1

λm + r
ln

(
(1 − z)u(α)
zu(1 − α)

)

Lemma 6. Consider any distribution GZ such that inft ICGZ (t) ≥ 0. If ICGZ (t) > 0 for some t ∈
[
min{t̂,T Z},T Z

]
then there is an alternative distribution G̃Z such that mins ICG̃Z (s) = 0 = ICG̃Z (t) for t ∈

[
min{t̂,T Z},T Z

]
, and

GR
G̃Z (0) > GR

GZ (0).

Given this lemma, when t̂ ≤ 0 the optimal distribution of rational-behavioral agreements must have the form GZ
0,T Z ,

and so the OSSMP problem can be reduced to finding the minimum T Z such that ICGZ
0,TZ

(T Z) ≥ 0. It is then fairly
simple to establish that mediation cannot be beneficial for risk neutral agents in this case (where t̂ ≤ 0 if and only
if z ≥ α).

Lemma 7. If agents are risk neutral and z ≥ α, then the distribution of agreement times and payoffs in the unique
OSSMP are identical to those in the Baseline equilibrium.

The next lemma establishes the converse, that mediation is beneficial for risk neutral agents when z < α.

Lemma 8. If z < α, then an OSSMP delivers higher payoffs than the Baseline equilibrium.

The negative final integrand of equation (11) for s < min{t, t̂}, implies that GZ
min{T Z ,t̂},T Z maximizes ICGZ (T Z) among

all distributions GZ with the same T Z . This means that T Z is consistent with the incentive constraints if and only
if ICGZ

min{TZ ,t̂},TZ
(T Z) ≥ 0. In this case, we can define:

ť(T Z) = min{ť ≥ 0 : ICGZ
ť,TZ

(T Z) ≥ 0}

The next lemma establishes that an optimal distribution GZ∗ must be of the form GZ
ť(T Z ),T Z .

Lemma 9. For any distribution GZ , GZ
ť(T Z ),T Z with mins ICGZ (s) = 0 = ICGZ (t) for t ∈ [min{t̂,T Z},T Z], we have

GR
GZ

ť(TZ ),TZ
(0) > GR

GZ (0).
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The ability to restrict attention to distributions of the form GZ
ť,T Z allows me to rapidly establish four more facts

about an OSSMP, which complete the characterization of Theorem 2. First, an equilibrium exists. Second, it
is unique. Third, it features ť < T Z , so that the optimal distribution GZ∗ is non-degenerate. Fourth, it features
ť > 0 when the probability of behavioral types is small or behavioral demands are large (in particular, z < α for
risk neutral agents), so that there is a non-degenerate interval with no rational-behavioral agreements. Finally, for
risk-neutral agents we have z̄c(ť) = z̄n(ť) = α.

Lemma 10. A unique OSSMP exists. The optimal distribution GZ∗ = GZ
ť,T Z satisfies ť < T Z . Moreover, there exists

z(α, u) > 0 and α(z, u) < 1 such that if z < z(α, u) or α > α(z, u) then ť > 0. If agents are risk neutral and z < α

then ť > 0 and z̄c(ť) = z̄n(ť) = α.

I now turn to the proof of these lemmas.

Proof of Lemma 4. Throughout this proof I hold GZ fixed and consider GR such that both incentive constraints are
satisfied. Suppose that such a distribution GR, implies T R > T Z . In that case, the alternative distribution G̃R with
G̃R(t) = GR(t) for t < T Z and G̃R(T Z) = 1 so that T R = T Z strictly increases Uc(T R), while relaxing both incentive
constraints. It is, therefore, without loss of generality to focus on GR that imply T R = T Z .

Suppose that GR implies that the dynamic incentive does not bind, in the sense that Uc(T Z) − Uc(t̄1) = δ > 0 for
some real valued time t̄1 < T Z . We next want to show that in this case there must exist some alternative distribution
ǦR with ǦR(t) ≥ GR(t) satisfying both constraints, which increases Uc(T Z). To that end define t̄2 = T Z if T Z < ∞

and t̄2 = min{t : e−rtu(1) ≤ δ
2 } otherwise. Notice that we must have Uc(T Z) − Uc(t̄2) ≤ e−rt̄2 u(1) ≤ δ

2 , so that
Uc(t̄2) − Uc(t̄1) ≥ δ

2 > 0 and t̄2 > t̄1.

Next define t̄3 = min{t ∈ [t̄1, t̄2] : Uc(t̄2) − Uc(t) ≤ (t̄2 − t) δ
4(t̄2−t̄1) }. This is well defined because the right

continuity of Gz and GR ensures that Uc(t) is right continuous also. By construction t̄3 > t̄1, and Uc(t̄3) − Uc(t) =

[Uc(t̄2) − Uc(t)] − [Uc(t̄2) − Uc(t̄3)] > δ(t̄3−t)
4(t̄2−t̄1) for all t ∈ [t̄1, t̄3). For such t we have:

Uc(t̄3) − Uc(t) =(1 − z)
∫

s∈(t,t̄3]
e−rsu(0.5)dGR(s) + e−rt̄3 u(1 − α)

(
(1 − z)(1 −GR(t̄3)) + z(1 −GZ(t̄3))

)
+ z

∫
s∈(t,t̄3]

e−rsu(1 − α)dGZ(s) − e−rtu(1 − α)
(
(1 − z)(1 −GR(t)) + z(1 −GZ(t))

)
≤(1 − z)e−rt(GR(t̄3) −GR(t)) (u(0.5) − u(1 − α))

+ (e−rt̄3 − e−rt)
(
(1 − z)(1 −GR(t̄3)) + z(1 −GZ(t̄3))

)
u(1 − α),

where the inequality follows from the fact that the integrals in the first two lines are respectively smaller than
(1 − z)e−rtu(0.5)(GR(t̄3) − GR(t)) and ze−rtu(1 − α)(GZ(t̄3) − GZ(t)), and some rearrangement. Let ε = δ

4(t̄2−t̄1) so
that Uc(t̄3) −Uc(t) > ε(t̄3 − t) for t ∈ [t̄1, t̄3). By dividing the right hand side of the above inequality by (t̄3 − t) and
taking its limit infimum as t → t̄3 gives:

e−rt̄3 (u(0.5) − u(1 − α)) (1 − z)limt→t̄3 inf
s∈[t,t3)

GR(t̄3) −GR(s)
t̄3 − s

− ru(1 − α)e−rt̄3
(
(1 − z)(1 −GR(t̄3)) + z(1 −GZ(t̄3))

)
≥ ε

This in turn implies that there exists ε′ > 0 and t̄4 < t̄3 such that for all t ∈ [t̄4, t̄3],

GR(t̄3) −GR(t) ≥
(
(1 −GR(t̄3)) +

z
1 − z

(1 −GZ(t̄3))
)
λm(t̄3 − t) + ε′(t̄3 − t).

Consider then an alternative distribution, ĜR. This is defined by ĜR(t) = GR(t) for t ≥ t̄3, and satisfies the
indifference condition Uc

ĜR (t) = Uc
ĜR (t̄3) for t ≤ t̄3 (where Uc

G̃R (t) is the utility of conceding at t given G̃R). This
indifference condition implies that ĜR(t) is differentiable on (0, t̄3) with ĝR(t) =

(
(1 − ĜR(t)) + z

1−z (1 −GZ(t))
)
λm.
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It is clear that this implies the existence of some t̄5 < t̄3 such that for all t ∈ [t̄5, t̄3],

ĜR(t̄3) − ĜR(t) ≤
(
(1 − ĜR(t̄3)) +

z
1 − z

(1 −GZ(t̄3))
)
λm(t̄3 − t) +

ε′

2
(t̄3 − t).

Letting t̄6 = max{t̄4, t̄5} we must then have ĜR(t) > GR(t) for all t ∈ [t̄6, t̄3). We can now define ǦR(t) = ĜR(t)
for t ≥ t̄6 and ǦR(t) = GR(t) elsewhere. This distribution implies ǦR(t) ≥ GR(t) for all t, and ǦR(t) > GR(t) for
t ∈ [t̄6, t̄3). This ensures that Uc

ǦR (t) > Uc
GR (t) for all t ∈ [t̄6,T Z].

I claim that ǦR must satisfy the Dynamic IC constraint. For t ≥ t̄3 we have Uc
ǦR (T Z)−Uc

ǦR (t) = Uc
GR (T Z)−Uc

GR (t) ≥
0. For t ∈ [t̄6, t̄3] we have Uc

ǦR (T Z) − Uc
ǦR (t) = Uc

ǦR (T Z) − Uc
ǦR (t̄3) ≥ 0 (recall that Uc

ǦR (t) = Uc
ǦR (t̄3)). Finally for

t < t̄6 we have Uc
ǦR (t) = Uc

GR (t) and so Uc
ǦR (T Z) > Uc

ǦR (t). The new distribution ǦR must certainly also satisfy the
type IC constraint, because GZ is unchanged and therefore so is Un(t).

For arbitrary cumulative distribution function GR on [0,T Z] with T Z = T R let T = T Z , as well as v(T,GR) =

Uc
GR (T ), w(t,GR) = Uc

GR (T ) − Uc
GR (t). The proof above establishes that for any GR satisfying both constraints,

if the dynamic incentive constraint doesn’t bind (w(t,GR) > 0 for some t < T ), then there is some alternative
distribution ǦR on [0,T ] with ǦR(t) ≥ GR(t) which improves rational payoffs but still satisfies both incentive
constraints (v(T, ǦR) > v(T,GR) ≥ Un(t) and w(t, ǦR) ≥ 0 for t ∈ [0,T ]). We can then apply Lemma 5, which in
this case establishes the existence of some G

R
which satisfies both incentive constraints and delivers a higher time

T payoff than GR (i.e. v(T,G
R
) > v(T,GR) ≥ Un(t) and w(t,G

R
) ≥ 0 for t ∈ [0,T ]), for which there is no other

distribution on [0,T ] with G̃R(t) ≥ G
R
(t). This implies that the dynamic incentive constraint must bind for G

R
(i.e.

w(t,G
R
) = 0 for t ∈ [0,T ]). �

Proof of Lemma 5. Define u(Ĝ) = supG̃∈X{v(T, G̃) : G̃ % Ĝ} (respectively ut̃(Ĝ) = supG̃∈X{v(T, G̃) : G̃ %t̃ Ĝ}).
Let G0 = G and choose Gk+1 % Gk (respectively Gk+1 %t̃ Gk) such that v(T,Gk+1) ≥ u(G)+v(T,Gk)

2 (respectively
v(T,Gk+1) ≥ ut̃(G)+v(T,Gk)

2 ). Let G(t) = limk Gk(t) and then define the cumulative distribution function G by G(t) =

inf{G(s) : s > t}. Clearly we have Gk weakly converging to G (Gk−→w G).

Given Gk(T ) = G(T ) = 1 and the weak convergence of Gk, we clearly have limk
∫

s≤T Ak(s)dGk(s) =
∫

s≤T Ak(s)dG(s)
and so ultimately limk v(T,Gk) = v(T,G) and limk w(T,Gk) = w(T,G) ≥ 0. Noticing that G is continuous
almost everywhere, let Y = {t : G is continuous at t}. For t ∈ Y we have limk Gk(t) = G(t). Define the cu-
mulative distribution functions Gk,t on [0, t] by Gk,t(s) =

Gk(s)
Gk(t) and G

t
(s) =

G(s)
G(t)

, then Gk,t−→w G
t
. This ensures

limk
∫

s≤t Ak(s)dGk(s) =
∫

s≤t Ak(s)dG(s) and so ultimately for t ∈ Y we have limk w(t,Gk) = w(t,G) ≥ 0. For t < Y ,
the right continuity of G implies that w(t,G) ≥ supv>t inf s∈(t,v]∩Y w(s,G) ≥ 0. This establishes G ∈ X.

If Gk+1 % Gk then G(t) ≥ Gk(t) and v(T,G) ≥ v(T,Gk) > v(T,G0) so that G % Gk � G0. If Gk+1 %t̃ Gk

we have tG ≤ tGk (indeed, Gk(t) = G(t) for t ≥ tGk ), G(t) ≥ Gk(t) for t ≥ t̃ and G(t) ≤ Gk(t) for t ≤ t̃ and
v(T,G) ≥ v(T,Gk) > v(T,G0) so that G %t̃ Gk �t̃ G0.

Suppose then that there exists Ĝ ∈ X such that Ĝ � G (respectively Ĝ �t̃ G), then define ε = v(T, Ĝ)− v(T,G) > 0.
Clearly, Ĝ � Gk so that u(Gk) ≥ v(T,Gk) + ε (respectively Ĝ � G so that ut̃(Gk) ≥ v(T,Gk) + ε. That in turn
implies v(T,Gk) ≥ v(T,G0) + k ε2 and so v(T,G) = ∞, which contradicts the fact that v(T,G) must be bounded. �

Proof of Lemma 6. We are given that ICGZ (t) > 0 for some t ∈ [min{t̂,T Z},T Z]. We first want to find an alternative
distribution ĜZ with ICĜZ (t) ≥ 0 and ĜZ(t) ≥ GZ(t) for all t so that GR

ǦZ (0) > GR
GZ (0). Initially suppose that

ICGZ (T Z) = δ > 0. If T Z < ∞ then let t′ = T Z . If T Z = ∞ then let e−rt′u(1 − α) = δ
3 so that ICGZ (t) ≥ 2δ

3 for t ≥ t′.
Given the right continuity of GZ , we must have ICGZ (t) ≥ δ

3 for t ≥ t′ − ε for some ε > 0. Consider the alternative
distribution ĜZ , such that ĜZ(t) = GZ(t) for t < T Z−ε and ĜZ(t) = min{GZ(t)+ε′, 1} for t ≥ t′−ε and some ε′ > 0.
Notice that for t < t′ − ε we must have ICĜZ (t) ≥ ICGZ (t). For all t ≥ t′ − ε we have ICĜZ (t) ≥ ICGZ (t) − ε′u(α).
Given ICGZ (t) ≥ δ

3 , by selecting ε′ > 0 sufficiently small, we must have ICĜZ (t) ≥ 0 for all t ≥ t′ − ε.
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Next, suppose that ICGZ (T Z) = 0 but ICGZ (t′) = δ > 0 for some t′ ∈ [t̂,T Z). Let ĜZ(t) = GZ(t) if t < t′ and
ĜZ(t) = max{GZ(t′)+ε,GZ(t)} otherwise, for some ε > 0. Clearly, ICĜZ (t′) ≥ ICGZ (t′)−εu(α) so that for ε ≤ δ

2u(α)

we have ICĜZ (t′) ≥ δ
2 . If ĜZ(t) = GZ(t) then because the final integrand in equation (11) is always positive for

s ≥ t′ and ĜZ(s) ≥ GZ(s), we must have ICĜZ (t) ≥ ICGZ (t) ≥ 0. If ĜZ(t) = ĜZ(t′) > GZ(t), however, then
Un

ĜZ (t) ≤ Un
ĜZ (t′) and so ICĜZ (t) ≥ ICĜZ (t′) > 0 (a larger t simply delays a non-confessing agent’s payoff from

concession).

For arbitrary G̃Z define v(T, G̃Z) = GR
G̃Z (0) and w(t, G̃Z) = ICG̃Z (t), as well as T = ∞. The proof above establishes

that if the time t type incentive constraint doesn’t bind for some t ∈ [min{t̂,T Z},T Z] (i.e. w(t, G̃Z) > 0) then there
is some alternative incentive compatible ĜZ (w(t, ĜZ) ≥ 0 for all t ≤ T ) delivering higher payoffs (v(T, ĜZ) >
v(T, G̃Z)) with ĜZ(s) ≥ G̃Z(s). Invoking Lemma 5, this implies the existence of some G

Z
with G

Z
(t) ≥ G̃Z(t),

v(T,G
Z
) > v(T, G̃Z) and w(t,G

Z
) ≥ 0 for all t ≤ T such that there is no alternative ǦZ with ǦZ(t) ≥ G

Z
(t),

v(T, ǦZ) > v(T, ḠZ) and w(t, ǦZ) ≥ 0. And so, this incentive compatible distribution delivers higher payoffs and
must satisfy IC

G
Z (t) = 0 for t ∈ [min{t̂,T Z},T Z]. �

Proof of Lemma 7. By Lemma 6, we can restrict attention to distributions of the form GZ
0,T Z , and so maximizing

Uc(T R) reduces to the problem of minimizing T Z such that ICGZ
0,TZ

(T Z) ≥ 0 where:

ICGZ
ť,TZ

(T Z) =u(1 − α) + (1 − z)GR
GZ

ť,TZ
(0)(u(0.5) − u(1 − α)) − e−rť

(
u(1 − α) + (1 − z)GZ

ť,T Z (ť)(u(α) − u(1 − α))
)

=(1 − z)(u(0.5) − u(1 − α))

1 − zλm

1 − z

∫ ť

0
eλ

m sds −
z2λm

(1 − z)2

∫ T Z

ť
eλT Z+(λm−λ)s − eλ

m sds


+ u(1 − α)(1 − erť) − e−rť(u(α) − u(1 − α))(1 − eλ(T Z−ť)z) (15)

For risk neutral agents we have ICGZ
0,TZ

(T Z) = 0 when T Z = − 1
λ
ln(z). Taking the derivative of ICGZ

0,TZ
(T Z) we get

dICGZ
0,TZ

(T Z)

dT Z = −
z2

1 − z
ru(1 − α)

∫ T Z

0
λeλT Z+(λm−λ)sds + zru(1 − α)eλT Z

= −
z2

1 − z
ru(1 − α)

λ

λm − λ
(eλ

mT Z
− eλT Z

) + zru(1 − α)eλT Z

Notice that u(x) = x implies λm = 2λ and so λ
λm−λ

= 1. In turn, this implies
dICGZ

0,TZ
(T Z )

dT Z

∣∣∣
T Z=− 1

λ ln(z) = 0. Finally,

notice that
dICGZ

0,TZ
(T Z )

dT Z e−λT Z
is strictly decreasing in T Z and so

dICGZ
0,TZ

(T Z )

dT Z > 0 for T Z < − 1
λ
ln(z). Hence, we must

have ICGZ
0,TZ

(T Z) < 0 whenever T Z < − 1
λ
ln(z). In the OSSMP, therefore, we must have T Z = − 1

λ
ln(z), so that the

optimal distributions GZ∗ and GR∗ correspond exactly to the Baseline equilibrium. �

Proof of Lemma 8. Given Lemma 1, we only need to contend with the risk neutral case. This proof derives some
expressions in greater detail than is needed, but which are used in later proofs. Consider a distribution of the form
GZ

ť,T Z (ť,κ) where:

T Z(ť, κ) = ť +
1
λ

ln
(

u(α) − κerť

z(u(α) − u(1 − α))

)
(16)

is defined to ensure Un(t) = κ for t ∈ [ť,T Z]. Such a distribution implies that:

GR
GZ

ť,TZ (ť,κ)

(0) = 1 −
z

1 − z

∫ ť

0
λmeλ

m sds −
( z
1 − z

)2
λm

∫ T Z

ť
eλT Z+(λm−λ)s − eλ

m sds
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and so
dGR

GZ
ť,TZ (ť,κ)

(0)

dť
=

zλm

(1 − z)2

(
zeλT Z+(λm−λ)ť − eλ

m ť
)
−

dT Z(ť, κ)
dť

z2

(1 − z)2 λλ
m
∫ T Z

ť
eλT Z+(λm−λ)sds (17)

which has the same sign as

Y(w) =

dGR
GZ

ť,TZ (ť,κ)

(0)

dť
(1 − z)2

zλmeλm ť
= −1 + zeλ(T Z−ť) −

dT Z(ť, κ)
dť

zλ
λm − λ

eλ(T Z−ť)(e(λm−λ)(T Z−ť) − 1) (18)

= − 1 +

(
u(α) − w

u(α) − u(1 − α)

)
−

λu(α)
(λm − λ)u(1 − α)

(
u(1 − α) − w

u(α) − u(1 − α)

) ( u(α) − w
z(u(α) − u(1 − α))

) λm−λ
λ

− 1


where w = κerť. The first line evaluates the integral and the second imposes

dT Z(ť, κ)
dť

=
u(α)λ − (r + λ)κerť

λ(u(α) − κerť)
=

u(α)
u(1 − α)

u(1 − α) − κerť

u(α) − κerť

where this uses r+λ
λ

=
u(α)

u(1−α) . Clearly Y(u(1 − α)) = 0, as occurs when ť = 0 and κ = u(1 − α). Let V(w) =
dY(w)

dw (u(α) − u(1 − α)) then:

V(w) = −1 +
u(α)λ

u(1 − α)(λm − λ)

( u(α) − w
z(u(α) − u(1 − α))

) λm−λ
λ

− 1 + (u(1 − α) − w)
λm − λ

λ

(u(α) − w)
λm−2λ

λ

(z(u(α) − u(1 − α)))
λm−λ
λ


(19)

Imposing risk neutrality, u(x) = x, so that λm = 2λ, and evaluating V(w) at w = (1 − α) gives:

V(1 − α) = −1 +
α

1 − α

(
1
z
− 1

)
=

α − z
z(1 − α)

This is clearly positive whenever α > z, which implies Y(w) > 0 when w is slightly greater than (1 − α), and so
GR

GZ
ť,TZ (ť,κ)

(0) > 0 when κ = (1 − α) and ť is slightly greater than 0. Recalling that Un(t) = κ for t ∈ [ť,T Z(ť, κ)]

implies ICGZ
ť,TZ (ť,κ)

(t) > 0 for all t. �

Proof of Lemma 9. First notice that ICGZ
ť,TZ

(T Z) is continuous and strictly increasing in ť for ť ≤ min{T Z , t̂} (see

equation (15)), and so ť(T Z) is well defined given ICGZ
min{TZ ,t̂},TZ

(T Z) ≥ 0. We are given the existence of some ǦZ

with mins ICǦZ (s) = 0 = ICǦZ (t) for t ∈ [min{t̂,T Z},T Z] and ǦZ , GZ
ť(T Z ),T Z . Let the dependence of T Z on GZ be

explicit, so that T Z
GZ = min{t : GZ(t) = 1}, and then define:

X̌ = {GZ ∈ ∆∞ : T Z
GZ = T Z

ǦZ and min
s

ICGZ (s) = 0 = ICGZ (t) for t ∈ [min{t̂,T Z},T Z]}.

recalling that ∆∞ is the set of cumulative distribution functions with G ∈ ∆∞ if G(t) = 0 for t < 0. For the rest of
the proof, I restrict attention to GZ ∈ X̌. Let tGZ = inf{t : GZ(t) > 0} and tGZ = min{t : ICGZ (s) = 0 for s ∈ [t,T Z]}.
Clearly, we have, tǦZ ≤ tǦZ ≤ min{t̂,T Z}. Moreover, notice that we must have GZ(t) = GZ

ť(T Z ),T Z (t) for t ≥ tǦZ .

Given ǦZ , GZ
ť(T Z ),T Z , I claim that tǦZ > ť(T Z). Suppose not, then ǦZ(t) ≥ GZ

ť(T Z ),T Z (t) for all t and ICGZ
ť(TZ ),TZ

(T Z) =

0. Because the final integrand in the expression for ICGZ (T Z) in equation (11) is negative for all s < min{t̂,T Z},
we must then have ICǦZ (T Z) − ICGZ

ť(TZ ),TZ
(T Z) < 0, a contradiction. I further claim that tǦZ < tǦZ . Suppose not,

so that tǦZ = tǦZ > ť(T Z). In this case ǦZ(t) ≤ GZ
ť(T Z ),T Z (t) for all t, which implies ICǦZ (T Z) − ICGZ

ť(TZ ),TZ
(T Z) > 0.

Given that by assumption ICǦZ (T Z) = 0 we again have a contradiction.

Given some fixed t̃, define the partial order %∗t̃ over X̌ as follows. Let GZ ∼∗t̃ GZ , and let GZ �∗t̃ G̃Z if tG̃Z ≤ tGZ ,
tG̃Z ≥ tGZ , GR

GZ (0) > GR
G̃Z (0) and either (a) tGZ = t̃ and GZ(t) ≥ G̃Z(t) for t ≥ t̃, or (b) tGZ = t̃ and GZ(t) ≤ G̃Z(t) for

t < t̃.
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Given ǦZ , GZ
ť(T Z ),T Z , I claim that for any t̃ ∈ (tǦZ , tǦZ ), there exists a distribution ḠZ

t̃ such that ḠZ
t̃ �

∗

t̃ ǦZ , and
there is no distribution GZ for which GZ �∗t̃ GZ

t̃ .

I first simply look to find an alternative distribution ĜZ , which generates higher payoffs than ǦZ . For some
ε ∈ (0, t̃ − tǦZ ) and ε′ ≥ 0, let ĜZ(t) = min{ǦZ(t) − ε′, 0} for t ≤ tǦZ + ε. Suppose that ǦZ is discontinuous at some
t′ ∈ (t̃, tǦZ ] so that sups<t′ Ǧ(s) < Ǧ(t′). In this case let ĜZ(t) = sups<t′ Ǧ(s) + ε′′ for t ∈ [t′ − ε, t′), where ε′′ ≥ 0
is still to be defined and we additionally restrict attention to ε < t′ − t̃. If on the other hand Ǧ(t) is continuous
on (t̃, t] then there must exist some t′ ∈ (t̃, t] such that ICGZ (t′) > 0 and GZ(t′) > GZ(t) for all t < t′. In this case
define ĜZ(t) = max{Ǧ(t) + ε′′, Ǧ(t′)} for t ∈ [t′ − ε, t′). Let ĜZ(t) = ǦZ(t) elsewhere. We approximately have,
ĜZ − ǦZ(s) ≈ −ε′ ≤ 0 for s ∈ [tǦZ , tǦZ + ε], whereas ĜZ − ǦZ(s) ≈ ε′′ ≥ 0 for s ∈ [t′ − ε, t′) and ĜZ = ǦZ(s)
elsewhere.

For t ≥ t′ we have:

ICĜZ (t) − ICǦZ (t) =

∫ tǦZ +ε

tǦZ

(ĜZ − ǦZ(s))r
(
u(1 − α)eλ

m sz − u(α)e−rs(1 − z)
)

ds

+

∫ t′

t′−ε
(ĜZ − ǦZ(s))r

(
u(1 − α)eλ

m sz − u(α)e−rs(1 − z)
)

ds

This difference is continuous and strictly increasing in ε′ and −ε′′, is positive for ε′′ = 0 and negative for ε′ = 0.
For all sufficiently small ε′ therefore, there is a uniquely defined ε′′ such that ICĜZ (t)− ICǦZ (t) = 0 for t ≥ t′. This
leaves ĜZ as a function of ε′ and ε. For ICĜZ (t) − ICǦZ (t) = 0 as first ε′ → 0 and then ε→ 0 we must have:

lim
ε→0

lim
ε′→0

ICĜZ (t) − ICǦZ (t)
εε′

= 0 = lim
ε→0

lim
ε′→0

ε′′

ε′
r
(
u(1 − α)eλ

mt′z − u(α)e−rt′ (1 − z)
)
−r

(
u(1 − α)eλ

mtǦZ z − u(α)e−rtǦZ (1 − z)
)

Notice that for sufficiently small ε, we have ICǦZ (s) ≥ δ for s ∈ [t′ − ε, t′) and some δ > 0 and so for such s,
ICĜZ (s) > 0 for all sufficiently small ε′. For s < t′ − ε we have Un

ǦZ (s) ≤ Un
ĜZ (s), hence, so long as we can show

GR
ĜZ (0) > GR

ǦZ (0) then all time t type incentive constraints will be satisfied for ĜZ . To that end, notice that:

GR
ĜZ (0) −GR

ǦZ (0) =

∫ T Z

0
λmeλ

m s z
1 − z

(ĜZ(s) − ǦZ(s))ds

lim
ε→0

lim
ε′→0

GR
ĜZ (0) −GR

ǦZ (0)

εε′
1 − z
zλm =eλ

mt′ lim
ε′→0

lim
ε′→0

ε′′

ε′
− eλ

mtǦZ

=
eλ

mt′
(
u(1 − α)eλ

mtǦZ z − u(α)e−rtǦZ (1 − z)
)
− eλ

mtǦZ
(
u(1 − α)eλ

mt′z − u(α)e−rt′ (1 − z)
)

u(1 − α)eλmt′z − u(α)e−rt′ (1 − z)

=
u(α)(1 − z)e(λm−r)tǦZ (e−r(t′−tǦZ ) − eλ

m(t′−tǦZ ))
u(1 − α)eλmt′z − u(α)e−rt′ (1 − z)

> 0,

where the final two equalities hold for t′ < t̂ and the inequality in the final line follows because the denominator is
negative for t′ < t̂, and the numerator is also negative given t′ > tǦZ . If t′ = t̂, on the other hand then we must have
limε→0 limε′→0

ε′′

ε′
= ∞ and so the second line must certainly be strictly positive. The implication of this is that for

sufficiently small ε and ε′, GR
ĜZ (0) > GR

ǦZ (0).

Fix t̃ ∈ (tǦZ , tǦZ ) and T = T Z
ǦZ . For arbitrary GZ define v(T,GZ) = GR

GZ (0) and w(t,GZ) = ICGZ (t). We established
above that there exists some ĜZ such that tĜZ ≤ tǦZ , ĜZ(t) ≥ ǦZ(t) for t ≥ t̃, ĜZ(s) ≤ ǦZ(s) for s < t̃, v(T, ĜZ) >
v(T, ǦZ) and w(t, ĜZ) ≥ 0 for all t ≤ T . Invoking Lemma 5 (part (b)), therefore, there exists G

Z
t̃ ∈ X̌ such that

IC
G

Z
t̃
(t) ≥ 0, GR

G
Z
t̃

(0) > GR
ǦZ (0), tḠZ

t̃
≤ tǦZ , ḠZ

t̃ (t) ≥ ǦZ(t) for t ≥ t̃, ḠZ
t̃ (s) ≤ ǦZ(s) for s < t̃ (implying tǦZ

t̃
≤ tḠZ ),

and furthermore, there is no alternative incentive compatible GZ with GZ(t) ≥ G
Z
t̃ (t) for t ≥ t̃ and GZ(s) ≤ G

Z
t̃ (s)

for s < t̃, tḠZ
t̃
≥ tGZ such that GR

GZ (0) > GR
G

Z
t̃

(0).
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I claim that ḠZ
t̃ �

∗

t̃ ǦZ . Given the comparison of the descriptions above, for this not to be true requires that
both tḠZ

t̃
< t̃ and tḠZ

t̃
> t̃. But in this case, we know from the previous construction that there must exist an

incentive compatible distribution G̃Z with G̃Z(t) ≥ G
Z
t̃ (t) for t ≥ t̃ and G̃Z(t) ≤ G

Z
t̃ (t) for t < t̃, tḠZ

t̃
≥ tG̃Z such that

GR
G̃Z (0) > GR

G
Z
t̃

(0), a contradiction.

I next define a new partial order %∗ on X̌ as follows. Let GZ ∼∗ GZ , and let GZ �∗ GZ if there exists some t̃ such
that GZ �∗t̃ GZ . Let u∗(GZ) = supG̃Z∈X̌{G

R
G̃Z (0) : G̃Z %∗ GZ}. Now define a sequence of distribution functions by

G0 = ǦZ , GZ
ť(T Z ),T Z , and Gk+1 %∗ Gk such that GR

Gk+1 (0) ≥
u∗(Gk)+GR

Gk (0)

2 . Clearly, if Gk = GZ
ť(T Z ),T Z for some k then

the proof is complete (as then GR
GZ

ť(TZ ),TZ
(0) ≥ GR

ǦZ (0)), so suppose not and Gk+1 �∗ Gk for all k.

We want to establish that Gk weakly converges to GZ
ť(T Z ),T Z (Gk−→w GZ

ť(T Z ),T Z ), which if shown completes the proof as
then GR

GZ
ť(TZ ),TZ

(0) > GR
ǦZ (0). Suppose not. Let t̃k ∈ [tG0 , tG0 ] be such that Gk+1 �∗t̃k Gk, and (taking a subsequence if

necessary) let t̃k → t̃∗.

I claim that G(t) = limk Gk(t) is well defined except possibly at t = t̃∗, where we can let it be defined by some
arbitrary subsequence if necessary. This is clearly the case if tGk → t̃∗ and tGk → t̃∗ (notice that tGk and −tGk must
be increasing in k). If tGk 6→ t̃∗, then for some t < t̃∗ we have tGk < t for all k, (i.e. Gk(t) > 0). For all sufficiently
large k we must then have t̃k−1 > t, and so ICGk (s) = 0 for s ∈ [t̃k−1,T Z] and Gk(v) ≤ Gk−1(v) for v ≤ t̃k−1. But in
that case G(t) is defined for all t. Suppose instead that tGk 6→ t̃∗, then for some t > t̃∗ we have tGk ≥ t for all k. For
all sufficiently large k we must have t̃k−1 < t, and so Gk(s) = 0 for s ≤ t̃k−1 and Gk(s) ≥ Gk−1(s) for s ≥ t̃k−1. But
in that case G(t) is again defined for all t.

We can now define the cumulative distribution function G by G(t) = inf{G(s) : s > t}, so that Gk−→w G. We clearly
have Ḡ ∈ X̌ and G %∗ Gk (the proof of Lemma 5 provides explicit reasoning). If G , GZ

ť(T Z ),T Z , then there must

exist some G̃Z �∗ G. But in that case G̃Z �∗ Gk and so GR
Gk+1 (0) − GR

Gk (0) ≥
G

R
G̃Z (0)−GR

G
(0)

2 > 0, but this must then
contradict GR

Gk (0) ≤ 1 for sufficiently large k, and so imply G = GZ
ť(T Z ),T Z . �

Proof of Lemma 10. Suppose z ≥ u(α)
u(α)+u(1−α) and so t̂ ≤ 0. By Lemma 6, therefore, we can restrict attention to

GZ of the form GZ
0,T Z . To maximize Uc(T R), therefore, we simply need to minimize T Z among such distributions,

subject to ICGZ
0,TZ

(T Z) ≥ 0. Equation (15), shows that ICGZ
0,TZ

(T Z) is continuous in T Z . Because GZ
0,T Z corresponds

to the Baseline equilibrium distribution when T Z = − 1
λ
ln(z) and so ICGZ

0,TZ
(T Z) ≥ 0 we have a non-empty set over

which to minimize T Z . Clearly, therefore, an optimal distribution GZ∗ must not only exist but be unique in this
case.

Now suppose z < u(α)
u(α)+u(1−α) . By Lemma 9 we can restrict attention to GZ of the form GZ

ť(T Z ),T Z . To establish exis-
tence, first notice ICGZ

ť,TZ
(T Z) is continuous and strictly increasing in ť and continuous in T Z (again, see equation

(15)), and so the set of T Z for which ť(T Z) is defined, is closed. The fact that incentive constraints are satisfied un-
der the Baseline distribution GZ

0,− 1
λ ln(z)

implies that this set is also non-empty. Moreover, ť(T Z) is continuous on that

closed set. Hence, the OSSMP problem can be reduced to maximizing a continuous function of T Z , GR
GZ

ť(TZ ),TZ
(0) on

a compact set {T Z : ICGZ
min{TZ ,t̂},TZ

(T Z) ≥ 0} ∩
[
0,− 1

λ
ln(z)

]
. We can rule out any T Z > − 1

λ
ln(z) because this must be

worse than the Baseline equilibrium in the sense that GZ
ť,T Z (t) ≤ GZ

0,T Z′ (t) where T Z′ = − 1
λ
ln(z) and ICGZ

0,TZ′
(t) ≥ 0

(and so GR
GZ

0,TZ′
(0) > GR

GZ
ť,TZ

(0) if GR
GZ

ť,TZ
can even be defined).

We now turn to uniqueness. Let the maximized objective be Uc(0) = u > u(1 − α). Because ICGZ∗ (t) = 0 for
t ∈ [ť(T Z),T Z], we must also have Un(t) = u for such t. Knowing this, we can consider a reduced problem of
maximizing GR

GZ
ť,TZ (ť,u)

(0), with respect to ť where T Z(ť, κ) is defined in equation (16), to ensure that Un(T Z) = κ.

This reduced problem must have the same maximizers (i.e. implied distribution function) as the original problem.
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Equation (20) in the proof of Lemma 8 defines the variable Y(w) which has the same sign as
dGR

GZ
ť,TZ (ť,u)

(0)

dť where
w = uerť. Equation (19) evaluates dY(w)

dw . Its second derivative is:

d2Y(w)
dw2 = −

u(α)
u(1 − α)(u(α) − u(1 − α))

(
(u(α) − w)

λm−2λ
λ

(z(u(α) − u(1 − α)))
λm−λ
λ

+
(u(α) − w)

λm−2λ
λ

(z(u(α) − u(1 − α)))
λm−λ
λ

+ (u(1 − α) − w)
λm − 2λ

λ

(u(α) − w)
λm−3λ

λ

(z(u(α) − u(1 − α)))
λm−λ
λ

)

Evaluating at w = uerť ∈ (u(1 − α), u(α)) and noticing that λm ∈ (λ, 2λ], it is clear that this expression is strictly
negative as each of the bracketed terms is positive, the first two strictly. The implication is that GR

GZ
ť,TZ (ť,u)

is strictly

quasiconcave in ť, and so has a unique maximizer ť∗. This completes the proof of uniqueness.

To establish that ť < T Z , notice that ť = T Z(ť, u) if and only if w = uerť = u(α)− z(u(α)− u(1− α)), but in this case
Y(w) = −(1− z) < 0 and so decreasing ť slightly (which is certainly possible given T Z > 0) would strictly increase
GR

GZ
ť,TZ (ť,u)

(0).

Turning to the claim that ť > 0 for sufficiently small z or sufficiently large z, recall that Proposition 6 establishes
limn GR∗(0) = 1 if zn → 0 or αn → 1, and so limn u → u(0.5) when zn → 0 and limn u → (1 − z)u(0.5) when
αn → 0. Notice that:

lim
zn→0

z
λm−λ
λ

n Y(w) = −
λu(α)

(λm − λ)u(1 − α)
u(1 − α) − limn w
(u(α) − u(1 − α))

(
u(α) − limn w

u(α) − u(1 − α)

) λm−λ
λ

.

This must either equal zero, or it must be negative while limn w = limn u = u(0.5) (because in an OSSMP, we either
need Y(w) = 0 or Y(w) ≤ 0 with w = u). This clearly implies limn w = u(0.5)er limn ť = u(α) (taking a subsequence
if necessary to ensure convergence, and noting that limn w ≥ u(0.5) > u(1 − α)) and so limn ť = 1

r ln
(

u(α)
u(0.5)

)
> 0,

ensuring ť > 0 for all sufficiently small z.

Similarly, notice that:

lim
αn→0

Y(w)u(1 − αn) = −
u(0.5)u(1)

(u(1) − u(0.5))

(
− limn w

u(1)

) (u(1) − limn w
z(u(1))

) u(1)−u(0.5)
u(0.5)

− 1

 (20)

Again, this must either equal zero, or it must be negative while limn w = limn u = u(0.5) This clearly implies
limn w = (1 − z)u(0.5)er limn ť = (1 − z)u(1) and so again limn ť = 1

r ln
(

u(1)
u(0.5)

)
> 0 ensuring ť > 0 for all sufficiently

large α. This establishes the existence of some z(u, α) > 0 and α(u, z) < 1 such that if z < z(u, α) or α > α(u, z)
then ť > 0 in the OSSMP.

For risk neutral agents, Lemma 7 establishes that the distribution GZ
0,T Z can only satisfy both incentive constraints

for risk neutral agents when it matches the Baseline equilibrium distribution (i.e. T Z = − 1
λ
ln(z)), and so we must

have ť > 0 in the OSSMP when z < α. For these risk neutral agents with z < α, we finally turn to the claim that
z̄c(ť) = z̄n(ť) = α. We know from Lemma 9 that we must have

u = Uc(T Z) = Un(ť) = e−rť
(
(1 − z)GZ

ť,T Z (ť)(0.5 − (1 − α)) + (1 − α)
)

= e−rť
(
α − z(2α − 1)eλ(T Z−ť)

)
Letting w̄ = eλ(T Z−ť) we, therefore, have w = erťu = α − z(2α − 1)w̄. Plugging this into Y(w) we, get an equivalent
function Ȳ in terms of w̄:

Y(α − z(2α − 1)w̄) = Ȳ(w̄) = −1 + zw̄ −
α

1 − α
(zw̄ − 1)(w̄ − 1)
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The function Ȳ is readily seen to be strictly concave in w̄ (its quadratic). Moreover, we have Ȳ(1/z) = Ȳ(1/α) = 0.

Recalling that Y(w) = Ȳ(w̄) has the same sign as
dGR

GZ
ť,TZ (ť,u)

(0)

dť we would be able to increase GR
GZ

ť,TZ (ť,u)

(0) unless in

the OSSMP ť and T Z imply w̄ = eλ(T Z−ť) = 1/α (by adjusting ť and so T Z(ť, u) given our fixed u), a contradiction.
Finally, notice that for at t ∈ [ť,T Z] we must have:

z̄c(t) =
z(1 −GZ

ť,T Z (t))

z(1 −GZ
ť,T Z (t)) + (1 − z)(1 −GR

GZ
ť,TZ

(t))
= e−λ(T Z−t) =

z
z + (1 − z)(1 −GZ

ť,T Z (t))
= z̄n(t)

where we have just established that e−λ(T Z−ť) = α in the OSSMP. �

This completes the proof of Theorem 2. �

Proof of Proposition 6

Notice that payoffs in an OSSMP and under a strongly symmetric ND protocol are of the form GR(0)(1−z)(u(0.5)−
u(1 − α)) + u(1 − α) where GR(0) = b in the latter. Hence, in an OSSMP we must have GR

GZ∗ (0) ≥ b, for any b
which is part of an ND equilibrium. Let b ∈ (0, 1) arbitrary, then the condition for an ND equilibrium to exist as
highlighted by the proof of Proposition 3 is that

Q = u(0.5) − u(1 − α) −
z
(
1 −

(
z

1−(1−z)b

) r
λ

)
u(1 − α)

(1 − z)(1 − b)
≥ 0

Suppose first that Bn = (α, zn, u, r) with limn zn = 0. It is clear that the final expression vanishes so that limn Q =

u(0.5) − u(1 − α) > 0. Suppose next that B̌n = (αn, z, u, r) with limαn = 1. In this case lim u(1 − αn) = 0 and
lim r

λ
= ∞ so that limn Q = u(0.5) > 0.

Finally, suppose that B̂n = (α, z, un, r) with limn un(α) = limn un(0.5) > limn un(1 − α), and without loss of
generality normalize un(1 − α) = u(1 − α) > 0 for all n. Evaluating the limit of Q and rescaling gives

Q̂(b) = lim
n

Q(1 − b)(1 − z)
u(1 − α)

=
r
λ̄

(1 − b)(1 − z) − z

1 − (
z

1 − (1 − z)b

) r
λ̄


where r

λ̄
=

limn un(α)−u(1−α)
u(1−α) . Moreover,

dQ̂(b)
db

= −
r
λ̄

(1 − z) +
r
λ̄

(1 − z)z
r+λ̄
λ̄ (1 − (1 − z)b)−

r+λ̄
λ̄

d2Q̂(b)
db2 =

r
λ̄

r + λ̄

λ̄
(1 − z)2z

r+λ̄
λ̄ (1 − (1 − z)b)−

r+2λ̄
λ̄ > 0

Evaluating at b = 1 we get Q̂(1) = 0 and dQ̂(b)
db

∣∣∣
b=1 = 0, so that Q̂(b) > 0 for any b < 1. �

Proof of Proposition 5

Suppose there is some optimal mediation protocol which is not symmetric, (GR,GZ
1 ,G

Z
2 ,M1,M2). The proof of

Lemma 2 highlighted that the strongly symmetric mediation protocol (GR, ǦZ) with ǦZ = 0.5(GZ
1 + GZ

2 ) implied
an equilibrium with utilities Ǔc(t) ≥ 0.5(Uc

1(t) + Uc
2(t)) and Ǔn(t) = 0.5(Un

1(t) + Un
2(t)). Clearly, if this is not

the OSSMP, then the non-symmetric protocol is not optimal. Suppose that it is an OSSMP, then we must have
Ǔc(T R) = Ǔc(t) for t ≤ T R = T Z , Ǔc(T R) = Ǔn(t) for t ∈ [t∗,T R], and ǦZ(t) = 0 for t < t∗. This immediately
implies GZ

i (t) = 0 for t < t∗ for i = 1, 2.

Because the non-symmetric protocol is an equilibrium, we must have Uc
i (T R) ≥ Uc

i (t) and Uc
i (T R) ≥ Un

i (t) for
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all t. Suppose that Uc
i (T R) > Un

i (t) for some i ∈ {1, 2} and some t ∈ [t∗,T R], then clearly Ǔc(T R) > Un(t), a
contradiction. However, if we have Uc

i (T R) = Un
i (t) for t ∈ [t∗,T R] then on this interval we must have GZ

i (t) =
1−zeλ(TR−t)

1−z = ǦZ and so the original protocol must in fact be symmetric. Finally, notice that when u(0.5) < u(1−x)+u(x)
2

for x < 0.5, then u(0.5) <
∫

u(m)dM̌t(m) for any symmetric M̌t where M̌t(0.5) < 1. Hence, we must have∫
1[t:M̌t(0.5)=1]dGR(t) = 1. �
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For online publication: Appendix C

Ongoing Dunlop (OD) mediation

Below, I extend the Simple Dunlop mediation protocol by allowing the mediator to respond to agents who confess
rationality continuously over the infinite horizon, in what I call the Ongoing Dunlop (OD) mediation protocol.

In the OD protocol, if agent i confesses at time t2 and agent j confesses at s2 ≥ t2, then at s3 the mediator suggests
the agreement (m1,m2). For tractability reasons, I focus on what I call OD equilibria in which rational agents
follow the mediator’s suggestion by changing their demands to (m1,m2) at s4. Focussing on such equilibria en-
tails some loss of generality because this imposes the same continuation payoffs for an agent after a mediator
announcement, regardless of the time at which she confessed and whether she confessed before or after her oppo-
nent. Given this assumption, however, it is then without loss of generality to assume mi ∈ (1 − α j, αi), because if
mi ≥ αi then rational i would confess with probability one at 02 if this had any chance of affecting the outcome.

In an OD equilibrium, agent i’s strategy reduces to choosing a time to confess and a time to concede (to her
opponent’s behavioral demand). It is without loss of generality to assume that an agent never concedes at t1 but
only at t5, and confesses before she concedes (because doing so strictly increases her payoff whenever it affects the
game’s outcome). We can again, therefore, analyze the game in continuous time. Agent i’s strategy is described
by two cumulative distribution functions, Fc

i ∈ [0, 1][−∞,∞] and Fd
i ∈ [0, 1][0,∞]. Let Fc

i (t) be the total probability
that agent i has confessed before time t, and Fd

i (t) be the total probability that agent i has conceded before time
t (c=confessed, d=defeated) where Fc

i (t) ≥ Fd
i (t). Given j’s equilibrium strategy, rational strategy, rational agent

i’s expected utility from confessing at time s and conceding at time t ≥ s is:

Ui(s, t) =

∫
v<s

e−rivui(αi)dFd
j (v) +

∫
v∈(s,t]

e−rivui(mi)dFc
j(v)

+ (1 − Fc
j(t))e

−ritui(1 − α j) + (Fc
j(s) − sup

v<s
Fd

j (v))e−ri sui(mi)

Of course, the Baseline equilibrium is still an OD equilibrium, where Fc
i (t) = Fd

i (t) for all t. The next proposition
establishes that this is the only OD equilibrium.

Proposition 8. The distribution of outcomes in any OD equilibrium is identical to that in the unique Baseline
equilibrium.

The idea of the proof is similar to that of Proposition 2 in that unless behavior matches the Baseline equilibrium
with Fc

i (t) = Fd
i (t), then indifference conditions for confessing and non-confessing agents imply a contradiction

to the fact that rational agents must concede within finite time. However, it is somewhat more involved.

Proof of Proposition 8. Suppose there is an equilibrium σ = (σ1, σ2). In this setup, I refer to agent j who has
confessed but not yet conceded, as a confessing agent. Let Ai = {(s, t) : Ui(s, t) = maxv,w Ui(v,w)}. Since σ is an
equilibrium, Ai , ∅. Finally, define T d

i = inf{t : Fd
i (t) = 1 − zi} and T ∗ = max{T d

1 ,T
d
2 }.

(a) We must have T d
i = T ∗ < ∞. This follows for the reasons as outlined in the proof of Proposition 2, claim

(a). We must have T d
i = T d

j , because if a rational agent knows she faces a behavioral opponent she will
concede immediately. We must have T d

j < ∞ because if a rational agent j does not concede at some t to get
u j(1 − αi) > 0, she must expect her opponent to stop acting like a behavioral type soon and therefore must
eventually become convinced that her opponent is behavioral.

(b) If Fd
i jumps at t ∈ [0,T ∗] then Fc

j is constant on [t − ε, t] for some ε > 0. This follows because if agent j has
not confessed before t − ε, she would strictly increase her payoff by confessing an instant after t compared
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to slightly before as this would give her u j(α j) rather than u j(m j) with positive probability (at least Fd
i (t) −

sups Fd
i (s) > 0).

(c) If Fc
i jumps at t ∈ (0,T ∗] then Fd

j is constant on [t − ε, t) for some ε > 0. This follows because agent j
would prefer to concede an instant after t rather than slightly before as this would give her u j(m j) rather than
u j(1 − αi) with positive probability (at least Fc

i (t) − sups<t Fc
i (t) > 0).

(d) Let t′ ≤ t′′ < t′′′ ≤ T ∗. If Fc
i (t′′′) = Fc

i (t′) and Fc
j(t
′′) > Fd

j (t
′′) then Fd

j (t
′′) = Fd

j (t
′′′). If this is not true so

that Fd
j (t
′′) < Fd

j (t
′′′), then there must exist some s ≤ t′′ and some t ∈ (t′′, t′′′] such that (s, t) ∈ A j. However,

given that Fc
i (t′′) = Fc

i (t′′′) the alternative strategy of conceding slightly earlier (e.g. at 1
2 (t′′ + t)) while still

confessing at s is strictly more profitable as it moves the concession payoff u j(1 − αi) forward in time (with
probability greater than zi > 0).

(e) Let t′ < t′′′ ≤ T ∗. If Fc
i (t′′′) = Fc

i (t′) then either Fd
j (t
′) = Fd

j (t
′′′) or for all t ∈ [t′, t′′′) we have Fc

j(t) = Fd
j (t).

Suppose not, then for some t′′ ∈ [t′, t′′′) we have Fd
j (t
′′) < Fc

j(t
′′) and Fd

j (t
′) < Fd

j (t
′′′). Define ťi = sup{t :

Fc
i (t) = Fc

i (t′)}. By claim (d) we have Fd
j (t
′′) = sups<t̂i Fd

j (s) and Fc
j(t
′′) > Fd

j (t
′′). This implies that Fc

i

must be continuous at ťi, i.e. Fc
i (ťi) = sups<ťi Fc

i (s). To see this, notice that confessing at ťi and conceding
at some later date t must give i a strictly lower payoff than confessing slightly earlier (e.g. at 1

2 (ťi + t′′) and
still conceding at t (with probability Fc

j(t
′′) − Fd

j (t
′′) > 0 she receives the payoff ui(mi) earlier). By claim (d),

therefore, we must have Fd
j (t
′′′) = Fd

j (ťi). But in that case any strategy in which agent i confesses an instant
after ťi cannot be optimal either, contradicting the definition of the supremum ťi.

(f) Let T ∗ ≥ t′′ > t′. If Fd
i (t′′) = Fd

i (t′) and Fc
i (t′) > Fd

i (t′) then Fc
j(t
′) = Fc

j(t
′′) Suppose not so that Fc

j(t
′) <

Fc
j(t
′′). Then there exists (s, t) ∈ A j such that s ∈ (t′, t′′]. However, given Fd

i (t′′) = Fd
i (t′), the alternative plan

of confessing slightly earlier (e.g. at ŝ = 1
2 (t′ + s)) while still conceding at t would be strictly better for j as

this gives her the payoff u j(m j) with positive probability at an earlier time (at least (Fc
i (t′) − Fd

i (t′)) > 0).

(g) There is no jump in Fd
i at t ∈ (0,T ∗]. Suppose not, then by claim (b) Fc

j is constant on [t−ε, t] for some ε > 0.
Hence, by claim (e) either Fd

i (t) = Fd
i (t − ε) (a direct contradiction) or Fc

i (s) = Fd
i (s) for s ∈ [t − ε, t). It must

then be that Fc
i also jumps at t, because we must have sups<t Fc

i (s) = sups<t Fd
i (s) < Fd

i (t) ≤ Fc
i (t). Hence by

claim (c), Fd
j is constant on [t − ε, t) for some ε > 0 (assume the same ε without loss of generality). Given

that Fc
i and Fd

i jump at t, we must have (t, t) ∈ Ai. However, the alternative strategy for i of both confessing
and immediately conceding slightly earlier (e.g. at t − ε

2 ) delivers strictly higher expected profits as she gets
the payoffs (Fc

j(t − ε) − Fd
j (t − ε))ui(mi) and (1 − Fc

j(t − ε))ui(1 − α j) > 0 at an earlier date, without affecting
other payoffs.

(h) If Fd
i is continuous at s ≤ t then Ui(s, t) is continuous at s, and if Fc

i is continuous at t then Ui(s, t) is
continuous at t. This follows from how Ui(s, t) is defined.

For claims (i)-(m) suppose that Fc
1(t′) > Fd

1 (t′) for some t′ ∈ [0,∞) (symmetric arguments apply if Fc
2(t′) > Fd

2 (t′)).
Define t1 = inf{t ≥ t′ : Fc

1(t) = Fd
1 (t)} and t1 = inf{t : Fc

1(s) > Fd
1 (s) ∀s ∈ [t, t′]}. Notice that by claim (g), the

continuity of Fd
1 , we have Fc

1(t1) = Fd
1 (t1). Also note that t1 > t′ ≥ t1 and Fc

1(t) > Fd
1 (t) for all t ∈ (t1, t1). Let

t1 ≥ t′′′ > t′′ > t1.

(i) We must have Fc
2(t′′′) > Fc

2(t′′). Suppose not, and so let ť2 = sup{t : Fc
2(t) = Fc

2(t′′)} ≥ t′′′. I first establish the
subclaim (i’) that this must imply either Fd

1 (t′′) = Fd
1 (ť2) or Fc

1(t) = Fd
1 (t) for t ∈ [t′′, ť2). Suppose not (again),

then Fd
1 (t′′) < Fd

1 (ť2) and there is some t ∈ [t′′, ť2) such that Fd
1 (t) < Fc

1(t). By claim (g), the continuity of
Fd

1 , we must have Fd
1 (t′′) < Fd

1 (ť2 − ε) for all ε > 0 sufficiently small. Choose such an appropriately small
ε < ť2 − t, then we have Fc

2(t′′) = Fc
2(ť2 − ε), Fd

1 (t) < Fc
1(t) for some t ∈ [t′′, ť2 − ε) and Fd

1 (t′′) < Fd
1 (ť2 − ε),

which contradicts claim (e).
By assumption we have Fc

1(t) > Fd
1 (t) for all t ∈ [t′′, t1) so that subclaim (i’) in fact implies Fd

1 (t′′) = Fd
1 (ť2).
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This in turn ensures t1 > ť2 because Fd
1 (ť2) = Fd

1 (t′′) < Fc
1(t′′) ≤ Fc

1(ť2) whereas Fc
1(t1) = Fd

1 (t1). I next claim
that it can’t be optimal for agent 2 to confess at ť2 while conceding at some t ≥ ť2. To see this, notice that agent
2 would do strictly better confessing slightly earlier (e.g. at 1

2 (ť2 + t′′)) while still conceding at t as this would
bring forward the payoff u2(m2) with positive probability (at least Fc

1(t′′)−Fd
1 (t′′) > 0), without affecting other

payoffs. Given claim (g), the continuity of Fd
1 , this argument similarly also implies that confessing an instant

after ť2 is strictly worse than confessing at 1
2 (ť2 + t′′). This contradicts the definition of the supremum ť2.

(j) We must have Fd
1 (t′′′) > Fd

1 (t′′). Suppose not, then let ť1 = sup{t : Fd
1 (t) = Fd

1 (t′′)} ≥ t′′′. Given claim (g), the
continuity of F − id, we have Fd

1 (ť1) = Fd
1 (t′′). Given Fd

1 (ť1) = Fd
1 (t′′) < Fc

1(t′′) ≤ Fc
1(ť1) we must have ť1 < t1.

By claim (f) we must then have Fc
2(ť1) = Fc

2(t′′) which contradicts claim (i), that Fc
2 is increasing on (t1, t1].

(k) We must have Fd
2 (t′′′) > Fd

2 (t′′). Suppose not so that Fd
2 (t′′′) = Fd

2 (t′′). Given that Fc
2 is increasing on the

interval [t′′, t′′′] by claim (i), we must have Fc
2(t) > Fd

2 (t) for t ∈ (t′′, t′′′]. Define t2 = inf{t ≥ t′′′ : Fc
2(t) =

Fd
2 (t)} and t2 = inf{t : Fc

2(s) > Fd
2 (s) ∀s ∈ [t, t′′′]}, then switching the labelling for 1 and 2, claim (i) implies

Fc
1(t′′′) > Fc

1(t′′) and claim (j) implies Fd
2 (t′′′) > Fd

2 (t′′), a contradiction.

(l) We must have Fc
1(t′′′) > Fc

1(t′′). Suppose not, and so Fc
1(t′′′) = Fc

1(t′′). Let ť1 = inf{t : Fc
1(t) = Fc

1(t′′)}.
The right continuity of Fc

1 ensures that Fc
1(ť1) = Fc

1(t′′). Clearly, we have ť1 ≥ t1 (if ť1 < t1 then certainly at
some t ∈ (ť1, t′′] we must have Fc

1(t) = Fd
1 (t) = Fc

1(t′′) ≥ Fd
1 (t′′) ≥ Fd

1 (t), which contradicts Fc
1(t′′) > Fd

1 (t′′)).
By claim (e), we then have either Fd

2 (t′′′) = Fd
2 (ť1), which contradicts claim (k), or Fc

2(t) = Fd
2 (t) for all

t ∈ [ť1, t′′′). Notice that because Fd
1 is strictly increasing on [ť1, t′′′) by claim (j) while Fc

1 is by assumption
constant, for some s ≤ ť1 and some t ∈ (ť1, t′′′) we must have (s, t) ∈ A1. Furthermore, if (s′, t′) ∈ A1 where
s′ ∈ [s, ť1] then (s′, t) ∈ A1. This is simply because at time s′ an agent who confessed at s and another who
previously confessed at s′ have the same incentives to concede thereafter. I claim, however, that (ť1, t) < A1.
To see this, notice that such a strategy is strictly worse than both confessing and conceding at t, which gives
agent 1 the higher payoff of u1(α1) instead of u1(m1) from the positive concession of agent 2 on the interval
[ť1, t). That is:

U1(t, t) − U1(ť1, t) ≥
∫

ť1≤v≤t
(u1(α1) − u1(m1))e−r1vdFc

2(v)

≥ e−r1t(u1(α1) − u1(m1))(sup
v<t

Fc
2(v) − Fc

2(ť1)) > 0

where the first inequality follows from Fc
2(t) = Fd

2 (t) on [ť1, t′′′), the second from t ≥ v ∈ [ť1, t] and the third
from claim (i). For the same reason, confessing an instant before ť1 and conceding at t cannot be optimal
either. This either contradicts the definition of ť1 as an infimum or implies ť1 = 0 and Fc

2(0) = 0. The latter
possibility, however, clearly contradicts Fc

1(v) > Fd
1 (v) for all v ∈ (ť1, t′′′).

(m) Fc
i is continuous on (t1, t1]. If Fc

i did jump at t ∈ (t1, t1] then by (c), Fd
j is constant on (t− ε, t) for some ε > 0,

contradicting either claim (j) or (k).

We are almost done. Because Fc
1, F

d
1 are increasing on (t1, t1), established in claims (j) and (l), while by assumption

Fd
1 (t) < Fc

1(t) on this interval, it follows that there is some s′ ∈ (t1, t1) such that A1 is dense in the set {(s′, t) :
t ∈ [s′, t1]}. Notice that regardless of whether agent 1 confesses at s′ or s ∈ (s′, t1), she faces the same incentives
to concede after s if she has not already done so. Notice also, that there is always a positive probability that
agent 1 has confessed before s but has not conceded. From the continuity of Fc

2 on (t1, t1] it follows that U1(s′, t)
is constant on [s′, t1], and hence differentiable with respect to t with zero partial derivative, ∂U1(s′,t)

∂t = 0. This
implies:

f c
2 (t)

1 − Fc
2(t)

= λc
2 =

r1u1(1 − α2)
u1(m1) − u1(1 − α2)

for t ∈ [t1, t1]. Solving this linear ODE gives (1 − Fc
2(s)) = (1 − Fc

j(t1))e−λ
c
2(s−t1).
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By the same reasoning there must be some s′′ ∈ (t1, t1) such that A1 is dense in the set {(s, s′′) : s, ∈ [t1, s
′′]}. The

continuity of Fd
2 on (t1, t1] then implies that U1(s, s′′) is constant on (t1, s

′′], and hence differentiable with respect
to s with zero partial derivative, ∂U1(s,s′′)

∂s = 0. Rearranging this zero derivative condition gives:

f d
2 (s)

Fc
2(s) − Fd

2 (s)
= λd

2 =
r1u1(m1)

u1(α1) − u1(m1)

This should already suggest a problem. When Fc
2(s) − Fd

2 (s) becomes arbitrarily small f d
2 (s) must be similarly

small. However, f c
2 (t) ≥ λc

2(1 − Fc
2(t)) ≥ λc

2z2 is bounded above zero, implying Fc
2(t) − Fd

2 (t) > 0 on (t1, t1]. To be
more precise, the above linear ODE is solved to give:

(1 − Fd
2 (s)) =

φ
d
2e−λ

d
2(s−t1) + φc

2ψ2(e−λ
c
2(s−t1) − e−λ

d
2(s−t1)) if λd

2 , λ
c
2

(φd
2 + λd

2φ
c
2(s − t1))e−λ

d
2(s−t1) if λd

2 = λc
2

where, ψ2 =
λd

2

λd
2−λ

c
2

and φd
2 = (1 − Fd

2 (t1)) ≥ (1 − Fc
2(t1)) = φc

2. Define the gap between Fc
2 and Fd

2 as d2(s) =

Fc
2(s) − Fd

2 (s), and consider the following transformations of this gap:

d2(s)
eλ

d
2(s−t1)

ψ2 − 1
=
φd

2 − ψ2φ
c
2

ψ2 − 1
+ e(λd

2−λ
c
2)(s−t1) if λd

2 > λ
c
2

d2(s)
eλ

c
2(s−t1)

φd
2 − ψ2φ

c
2

=e(λc
2−λ

d
2)(s−t1) +

ψ2 − 1
φd

2 − ψ2φ
c
2

if λd
2 < λ

c
2

d2(s)eλ
d
2(s−t1) =φd

2 + λd
2φ

c
2(s − t1) − φc

2 if λd
2 = λc

2

I claim that each of these transformations is positive. Notice that ψ2 − 1 =
λc

2

λd
2−λ

c
2
> 0 when λd

2 > λc
2. Similarly

φd
2 −ψ2φ

c
2 ≥ −φ

c
2

λc
2

λd
2−λ

c
2
> 0 when λd

2 < λ
c
2, where the first inequality follows from φd

2 ≥ φ
c
2. Each of the transformed

gaps is strictly increasing in s, implying that d2(s) > 0 for s ∈ (t1, t1]. Recall that we must have t1 ≤ T ∗ < ∞, and
Fc

1(t1) = Fd
1 (t1). Now define t2 = inf{t > t1 : Fc

2(t) = Fd
2 (t)} ≤ T ∗ < ∞, where this is consistent with the definition

of t2 in the proof of claim (k). We can now repeat the above arguments with the roles of agent 1 and 2 reversed
to find that d1(s) > 0 for s ∈ (t1, t2] and Fc

2(t2) = Fd
2 (t2). Let t = min{t1, t2}. For some i we must have t = ti,

but that implies both Fc
i (ti) = Fd

i (ti) and di(ti) = Fc
i (ti) − Fd

i (ti) > 0, a contradiction. We must, therefore, have
Fc

i (t) = Fd
i (t) for t ∈ [0,∞). Given this, the unique equilibrium must match that of the Baseline model by standard

arguments (see AG). �

Bad faith equilibrium

As discussed in the main text, the restriction to good faith equilibria is with some loss of generality. I show, below,
that when the probability of behavioral types is sufficiently small, the bargaining problem is symmetric, and agents
are risk neutral, a bad faith equilibrium exists which delivers higher payoffs to rational agents than the OSSMP
(optimal good faith equilibrium).

The equilibrium takes the following form: Rational agents make a behavioral demand α at 01 and (conditional
on both doing so) confess rationality to the mediator at time 02. If both agents confess rationality then at time
03, with probability 0.5 the mediator (publicly) tells one agent i to demand αi(04) = 1 > α at 04 (revealing i’s
rationality), and otherwise tells agent j , i to demand α j(04) = 1. In the former (latter) case, the mediator suggests
that agent i ( j) gets the whole dollar in any subsequent agreement. If only agent i confesses rationality, then the
mediator always tells her to demand αi(04) = 1 at 04. In this case agent i obtains the share (1−α) in all subsequent
agreements. If neither agent confesses, then the mediator says nothing. If an agent fails to demand α at time 01
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or fails to follow the mediator’s suggestion at some time, then the mediator subsequently says nothing and the
continuation equilibrium specifies that she should concede to her opponent immediately.

Conditional on agent i (upon instruction) demanding αi(04) = 1 at 04, let the cumulative distributions of her
agreement times with a rational and behavioral opponent be GR,o and GZ,o respectively. Let T R,o = mint{t :
GR,0(t) = 1} and T Z,o = mint{t : GZ,0(t) = 1}. The conditional probability that agent i faces a behavioral opponent
after her instruction is z̄ = 2z

1+z . If she subsequently concedes at t5 (without being instructed to by the mediator),
then she obtains the expected utility:

Uc,o(t) =(1 − z̄)
∫

s≤t
e−rsu(1)dGR,o(s) + z̄

∫
s≤t

e−rsu(1 − α)dGZ,o(s)

+ e−rtu(1 − α)
(
(1 − z̄)(1 −GR,o(t)) + z̄(1 −GZ,o(t))

)
which leads to a new dynamic incentive constraint

Uc,o(T R,o) = max
t

Uc,o(t).

An agent j who confessed rationality but is not told to change her demand, can obtain u(0) = 0 from conceding and
also gets a continuation payoff of zero, and so is indifferent to subsequently following the mediator’s instructions.

If rational agent i does not confess and the mediator announces nothing at 03, then the agent realizes she must
face a behavioral opponent and subsequently immediately concedes. If the mediator instead tells her opponent at
03 to demand α j(04) = 1, then because i obtains at most ui(0) = 0 from conceding or revealing rationality, her
continuation payoff is

∫
t≤T R e−rsu(α)dGZ,o(s). In sum, her expected payoff to not confessing is:

Un,o = zu(1 − α) + (1 − z)
∫

s≤T R,o
e−rsu(α)dGZ,o(s)

The new type incentive constraint is then simply:

(1 + z)Uc,o(T R,o)
2

≥ Un,o.

Consider the distributions GZ,o
∗ (t) = 0 for t < T R,o = T Z,o and 1 −GR,o

∗ (t) = z̄
1−z̄ (eλ̄(T R,o−t) − 1) where λ̄ =

ru(1−α)
u(1)−u(1−α) .

These ensure that the dynamic incentive constraint binds in the sense that Uc,o(T R,o) = Uc,o(t) for t ≤ T R,o. We
then attempt to select the minimum T R,o such that the type incentive constraint binds. To that end define:

W(T R,o) =
(1 + z)Uc,o(T R,o)

2
− Un =

1 − z
2

(
1 −

2z
1 − z

(eλ̄T R,o
− 1)

)
(u(1) − u(1 − α))

+
1 + z

2
u(1 − α) − zu(1 − α) − (1 − z)e−rT R,o

u(α)

and let T R,o
∗ = min{T R,o : W(T R,o) ≥ 0}. Notice that W(T R,o) is strictly concave in T R,o. For all sufficiently

large z, T R,o
∗ is not well defined (this is certainly the case for z ≥ α for risk neutral agents). However, it is well

defined for sufficiently small z because as z → 0 we have W(T R,o) → 0.5u(1) − e−rT R,o
u(α), which also implies

that T R,o
∗ → 1

r ln
(

2u(α)
u(1)

)
. For all sufficiently small z, therefore, there is a bad faith equilibrium. We are interested

in payoffs under this protocol as compared to payoffs in the OSSMP as z → 0 when agents are risk neutral. The
difference between these payoffs is:

Uc,o(T R,o) − Uc(T R) =
1 − z

2
GR,o
∗ (0)(u(1) − u(1 − α)) +

1 + z
2

u(1 − α) − (1 − z)GR
GZ∗ (0)(u(0.5) − u(1 − α)) − u(1 − α)

=
1 − z

2

(
α(GR,o

∗ (0) −GR
GZ∗ (0)) − (1 −GR

GZ∗ (0))(1 − α)
)
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where the second equality imposes u(x) = x. By rearranging it is clear that Uc,o(T R,o) − Uc(T R) ≥ 0 if and only if

2α − 1
α

≥
1 −GR,o

∗ (0)
1 −GR

GZ∗ (0)
.

The optimal distribution of rational-behavioral agreement times in the OSSMP satisfies GZ∗ = 0 for t < t∗. This
implies that 1 −GR

GZ∗ (0) ≥ z
1−z (eλ

mt∗ − 1) whereas 1 −GR,o
∗ (0) = 2z

1−z (eλ̄T R,o
∗ − 1). Therefore, if we can show that

2α − 1
α

≥
2(eλ̄T R,o

∗ − 1)
eλmt∗ − 1

then the low option equilibrium delivers higher payoffs than the OSSMP. Above we noted that as z → 0 we have
T R,o
∗ → 1

r ln (2α). The proof of Lemma 10 likewise showed that t∗ → 1
r ln (2α) in this case. And so the bad faith

equilibrium gives higher payoffs than the OSSMP for all sufficiently small z if:

2α − 1
α

> lim
z→0

2(eλ̄T R,o
∗ − 1)

eλmt∗ − 1
=

2
(
(2α)

1−α
α − 1

)
(2α)

2−2α
2α−1 − 1

.

To show that this holds for α ≈ 0.5, define:

V(α) = (2α − 1)
(
(2α)

2−2α
2α−1 − 1

)
− 2α

(
(2α)

1−α
α − 1

)
noticing that limα→0.5(2α)

2−2α
2α−1 = elimα→0.5

ln(2α)
2α−1 = e it is clear that limα→0.5 V(α) = 0. However,

dV(α)
dα

= 2
(
(2α)

2−2α
2α−1 − 1

)
+ (2α)

2−2α
2α−1

(
2 − 2α
α

−
2ln(2α)
2α − 1

)
+ 2

(
(2α)

1−α
α − 1

)
− (2α)

1
α

1 − α − ln(2α)
α2

and so limα→0.5
dV(α)

dα = 2e − 4 > 0, implying that V(α) > 0 for α ≈ 0.5.

Analytically showing that V(α) or a suitable rescaling is strictly positive more generally for α ∈ (0.5, 1) is tricky
(for instance V(α) is not quasiconcave); however, it is easily verified numerically.

Lower payoffs from mediation

In the main text, I focussed on the question of whether mediation could deliver Pareto improvements on un-
mediated bargaining. Here, I will show how mediation can also lower agents’ payoffs compared to unmediated
outcomes.

The first result (Proposition 9) shows that when the probability of behavioral types is small and there is only a
single behavioral type for each agent, there always exists a mediation protocol that gives each agent i a payoff

ui(1−α j), her payoff from conceding immediately. In the Baseline equilibrium, agent i’s payoff was F j(0)ui(αi) +

(1 − F j(0))ui(1 − α j) where F j(0) > 0 if and only if Ti = − 1
λi

ln(zi) < T j. Hence, generically (whenever Ti , T j)
such mediation is Pareto inferior to the Baseline equilibrium. Clearly, this only lowers payoffs for at most one of
the two agents.

The second result (Proposition 10) highlights some of the particular difficulties for mediation when agents can
imitate multiple behavioral types. I extend the model slightly to allow for multiple types, and so mediation can
affect rational agents’ initial demand choices. I show that when the probability of behavioral types is sufficiently
small each agent obtains a payoff approximately equal to that which she would receive facing her most aggressive
possible behavioral opponent for sure. This is strictly lower than the Baseline equilibrium payoff for both agents
when the set of behavioral types is even moderately rich.
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Proposition 9. For any given ri, ui, αi for i = 1, 2 and fixed K ≥ 1, there exists z > 0 such that whenever zi ≤ z
and K ≥ z1

z2
≥ 1

K , there is an equilibrium with mediation where each agent i’s payoff is exactly ui(1 − α j).

Proof. I prove this by construction. Following the notation of Section 4 in the main text, consider the distributions
GZ

j (t) = 0 for t < T Z1 = T Z2 = T R. We would like to find some T R, some mediation proposals mi : [0,T R]→ [0, 1]
and a distribution GR such that both agents are indifferent to conceding on [0,T R] and GR(0) = 0. For arbitrary mi

and T R the fraction of remaining j agents at t < T R is 1 − F j(t) = (1 −GR(t))(1 − z j) + z j. For confessing agent i
to be indifferent to concession on (0,T R] we must have

f j(t)
1 − F j(t)

= λm
j (t) =

riui(1 − α j)
ui(mi(t)) − ui(1 − α j)

Imposing the boundary condition 1 − F j(T R) = z j and solving the linear ODE, we get

1 −GR(t) = 1 −
F j(t)
1 − z j

=
z j

1 − z j

exp

∫ T R

t
λm

j (s)ds

 − 1

 (21)

We want this equation to hold for both agents i and j for all t and so we get:

P(t) =
gR(t) − gR(t)
λm

j (t)λm
i (t)

=
z j

(1 − z j)λm
i (t)

exp

∫ T R

t
λm

j (s)ds

 − zi

(1 − zi)λm
j (t)

exp

∫ T R

t
λm

i (s)ds

 = 0 (22)

We can immediately identify m j(T R) as the unique value which solves this at T R:

z j(1 − zi)
zi(1 − z j)

=
λm

i (T R)
λm

j (T R)
=

ui(1 − m j(T R)) − ui(1 − α j)
u j(m j(T R)) − u j(1 − αi)

r ju j(1 − αi)
riui(1 − α j)

. (23)

More generally, imposing mi(t) = 1 − m j(t) and differentiating gives:

dP(t)
dt

= 0 =
z j

1 − z j

u′j(m j(t))m′j(t)

r ju j(1 − αi)
−
λm

j (t)

λm
i (t)

 exp

∫ T R

t
λm

j (s)ds


+

zi

1 − zi

u′i(1 − m j(t))m′j(t)

riui(1 − α j)
+
λm

i (t)
λm

j (t)

 exp

∫ T R

t
λm

i (s)ds


Combining this with equation (22) and solving for m′j(t) gives:

m′j(t) =
λm

j (t) − λm
i (t)

λm
i (t)u′j(m j(t))
r ju j(1−α j)

+
λm

j (t)u′i (1−m j(t))
riui(1−αi)

=
r ju j(1 − αi)(u j(m j(t)) − u j(1 − αi)) − riui(1 − α j)(ui(1 − m j(t)) − ui(1 − α j))
(ui(1 − m j(t)) − ui(1 − α j))u′j(m j(t)) + (u j(m j(t)) − u j(1 − αi))u′i(1 − mi(t))

This is uniformly Lipschitz continuous in m j(t) for t ∈ [0,T R] (its derivative is continuous) and is continuous in t,
hence by Picard’s Theorem it has a unique solution. Define m̄ j as the unique value which solves the equality:

1 =
u j(m̄ j) − u j(1 − αi)

ui(1 − m̄ j) − ui(1 − α j)
riui(1 − α j)
r ju j(1 − αi)

and λ̄m =
r ju j(1−αi)

u j(m̄ j)−u j(1−αi)
. When zi = z j, it is clear that we must have m j(t) = m̄ j and λm

j (t) = λm
i (t) = λ̄m for all t.

More generally, it is clear that m j(t) (respectively λ j(t)) is a convex combination of m̄ j and m j(T R) (respectively
λ̄m and λm

j (T R)) given that m′j(t) > 0 when λm
j (t) > λm

i (t) (which decreases
λm

j (t)
λm

i (t) ).

Let the solution be indexed by T R, mT R

j , with associated agreement time distribution GR
T R . Clearly mT R

j (T R − t)
is independent of T R and so GR

T R (0) is continuous and strictly decreasing in T R (see equation (21)). This ensures
that there is a unique value of T R such that GR

T R (0) = 0; call this T R,0. Clearly the distribution GR
T R,0 ensures that a
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confessing agent i obtains the payoff ui(1 − α j).

Now consider the payoff of an agent i who doesn’t confess. Given that GZ
i (t) = 0 for t < T R, conceding at

t ∈ (0,T R) is strictly worse than conceding at 0 for a payoff of ui(1 − α j). Conceding after T R gives at most
e−riT R

ui(αi). If T R ≥ T̄ R = maxi∈1,2

{
− 1

ri
ln

( ui(1−α j)
ui(αi)

)}
, therefore, agent i who doesn’t confess obtains a payoff of

exactly ui(1 − α j).

Assume zi, z j ≤ 1 − ε for any ε > 0 and fix ui, ri and αi. Examining equation (23) it is clear that the bound
zi
z j
∈

[
1
K ,K

]
implies that we can uniformly bound λ j(T R) and hence λ j(t), so that λ j(t) ∈

[
1
L , L

]
for some L ≥ 1.

Given this bound, equation (21) shows that in order to have GR
T R,0 (0) = 0 as z j → 0, we must have T R,0 → ∞. And

so, there exists z̄ > 0 such that if ever zi ≤ z̄ then T R,0 ≥ T̄ R. This completes the proof. �

Next I consider a generalization of the model, following AG, in which agents make their demand announcements
sequentially and agents can imitate multiple different behavioral types. To do this I introduce a new time 00

at which agent 1 makes her initial demand announcement. Agent 2 can then either immediately concede at 01

or announce a counterdemand. For each agent i there is a finite set of behavioral type demands Ei, where the
conditional probability of a behavioral agent i being of type αi is πi(αi). If a behavioral type has α2 < 1 − α1

then she immediately concedes at 01. Assume that max Ei > 1 − min E j. Let rational agent 1’s demand choice
be described by a probability distribution µ1 on E1, and rational 2’s choice after observing α1, be described by a
probability distribution µα1

1 on E2∪Q where Q indicates immediate concession. Reputations after demand choices
are:

z̄1(α1) =
z1π1(α1)

z1π1(α1) + (1 − z1)µ1(α1)
z̄α1

2 (α2) =
z2π2(α2)

z2π2(α2) + (1 − z2)µα1
2 (α2)

AG establish a unique equilibrium of this game without mediation, characterized by the condition that each type
a rational agent imitates must give her the same expected continuation payoff. After time zero, behavior matches
the Baseline equilibrium described in the main text but with zi replaced by z̄i. Let λα j,αi

j =
riui(1−α j)

ui(αi)−ui(1−α j)
be the

concession rate by j that would keep i indifferent to conceding after time zero without a mediator and demands
α j, αi. AG show that as the fraction of behavioral types becomes small (zi → 0 and z1

z2
∈

[
1
K ,K

]
for some K ≥ 1)

then bargaining becomes arbitrarily efficient so long as λα j,αi

j , λ
αi,α j

i for each pair of incompatible demands αi, α j.

Moreover, let αR
i = arg maxαi ui(αi)

r j
ri+r j u j(1 − αi)

ri
ri+r j . This is the complete information alternating offers demand

(Rubinstein (1982)) when the time between offers converges to zero. If agent i can imitate some type α′i ≤ αR
i ,

then AG show she must obtain an equilibrium payoff greater than ui(α′i). This holds because α′i ≤ αR
i implies

λ
α j,α

′
i

j < λ
α′i ,α j

i for any α j > α
′
i so that agent i builds reputation exponentially more quickly than j. If agents imitate

the demands (α′i , α j) with positive limit probability as zi → 0, therefore, agent j must concede with probability
approaching one at 04 to ensure that both agents reach a probability one reputation at the same time.

The next result, by contrast, shows that as the fraction of behavioral types becomes small, there exist equilibria
with mediation which give rational agents’ payoffs arbitrarily close to ui(1 − max E j). The mediation protocol
used for each incompatible demand pair is the same as in Proposition 9. Demand choices can then be distorted so
that both agents almost exclusively start imitating their maximum demand type. Clearly, whenever the type space
is rich enough that agent i can imitate a type α′i ∈ (1 − max E j, α

R
i ], then this implies strictly lower payoff under

mediation than without.

Proposition 10. Consider a sequence of bargaining games Bn = {ui, ri, Ei, πi, zn
i } such that limn zn

i = 0 and
zn

1
zn

2
∈

[
1
K ,K

]
for some constant K ≥ 1. Then there is a sequence of equilibria with mediation such that the limit of

agent i’s equilibrium payoffs is limn Un
i = ui(1 −max E j) for i = 1, 2, i , j.

Proof. I first construct an equilibrium which will hold for all arbitrarily large n. Given any demand α1 suppose
that whenever agent 2 makes counterdemand α2 > 1 − α1 then agent 1’s continuation payoff is u1(1 − α2). In this
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case agent 1’s expected payoff from demanding α1 is:

U1(α1) = u1(α1)

(1 − z2)µα1 (Q) +
∑

α2≤1−α1

z2π2(α2)

 +
∑

α2>1−α1

u1(1 − α2)
(
z2π2(α2) + (1 − z2)µα1

2 (α2)
)

Whenever |E1| = 1 then let µ1(max E1) = 1. Otherwise, consider any ε ∈ (0, 1) and define µ1(max E1) = 1− ε and
µ1(α1) = ε

|E1 |−1 for α1 < max E1. If |E2| = 1 let µα1
2 (max E2) = 1, in this case because max E2 > 1−min E1, we have

that agent 1’s continuation payoff is u1(1−max E2) for all α1. Suppose then |E2| > 1. Let µmax E1
2 (max E2) = 1− ε

and µmax E1
2 (α2) = ε

|E2 |−1 if α2 < max E2. If α1 < max E1 then µα1
2 (max E2) = 1 − εα1 and µα1

2 (α2) = εα1

|E2 |−1

if α2 ∈ D2(α1) = {α2 ∈ (1 − α1,max E2)} and µα1
2 (Q) =

εα1 (|E2 |−1−|D2 |)
|E2 |−1 , where εα1 is defined to ensure that

U1(α1) = U1(max E1). To check that εα1 is well defined, consider:

U1(max E1) − U1(α1) =
∑

α2≤1−α1

(
(u1(1 − α1) − u(α1)) z2π2(α2) +

(1 − z2)
|E2| − 1

(εu1(1 − α2) − εα1 u1(α1))
)

+ (εα1 − ε)(1 − z2)

u1(1 −max E2) −
∑

α2>1−α1

u1(1 − α2)
|E2| − 1


Given 1 − max E2 < min E1, this expression is continuous and strictly increasing in ε and decreasing in εα1 .
Choose ε̄ > 0 such that

∑
α2≤1−α1

ε̄u1(1 − α2) − u1(α1)
|E2| − 1

+ (1 − ε̄)

u1(1 −max E2) −
∑

α2>1−α1

u1(1 − α2)
|E2| − 1

 < 0.

for α1 = min E2. It is clear that for all ε ≤ ε̄ and for all α1 ∈ E1 there must exist some z2 such that if z2 ≤ z2, then
U1(max E1) − U1(α1) < 0 if εα1 = 1, hence εα1 ≥ ε is well defined and indeed, bounded away from 1.

Now consider the sequence of bargaining games Bn and choose N sufficiently large that zn
2 ≤ z2 for all n ≥ N.

Suppose that agents play the demand choice strategies above for all such n. Given that agent 1 imitates all her types
with probability bounded away from 0, and agent 2 likewise imitates all possible incompatible counterdemands
with probability bounded away from 0, it is clear that zn

i → 0 implies z̄1(α1)→ 0 and moreover there exists L ≥ 1
such that z̄1(α1)

z̄α1
1 (α2)

∈
[

1
L , L

]
for all incompatible behavioral demand pairs. By Proposition 9, therefore, there exists

some N′α1,α2
≥ N such that if n ≥ N′α1,α2

, we can find an equilibrium with mediation for the continuation game
with incompatible demand pair (α1, α2) such that continuation payoffs for each agent i are exactly ui(1 − α j). For
all n ≥ N′ = maxα,α2 {N

′
α1,α2
}, by construction agent 1 is indifferent between all her demand choices and agent 2 is

indifferent between all her incompatible counterdemands and conceding immediately.

The above equilibrium with mediation gives agents an expected utility of at most limn Ui ≤ (1−ε)ui(1−max E j)+

εui(max Ei). Given that ε ∈ (0, ε̄] was arbitrary it is clear that we can choose a sequence εn → 0 such that there is
an equilibrium with mediation of the above form for all n ≥ N′, and so i’s payoff converges to ui(1−max E j). �
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