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Abstract

In this paper I present and analyze a new linearization based method
for automated solution of heterogeneous agent models with continuously
distributed heterogeneity and aggregate shocks. The approach is based
on representation of the model equilibrium conditions as a system of
smooth functional equations in terms of endogenously time-varying dis-
tributions and decision rules. Taking the value of these functions at a set
of grid points as arguments, the equilibrium conditions can then be lin-
earized, interpolated with respect to a set of basis functions, and solved
through a procedure relying on automatic differentiation and standard
discrete time linear rational expectations solution algorithms. While so-
lution approaches based on linearization of discretized or projected models
have achieved substantial popularity in recent years, it has been unclear
whether such approaches generate solutions which correspond to that of
the true infinite dimensional model. I characterize a broad class of models
and a set of regularity conditions which ensure that this is indeed the case:
the solution algorithm is guaranteed to converge to the first derivative of
the true infinite dimensional solution as the discretization is refined.

The key conceptual result leading to these methods is a recognition
that a broad variety of heterogeneous agent models can be interpreted as
infinite width deep neural networks [Guss, 2017], constructed entirely by
iterated composition of pointwise nonlinearities and linear integral opera-
tors along a directed acyclic computational graph. On a theoretical level,
this formulation ensures commutativity of differentiation and sampling
and so permits construction of approximate functional derivatives with-
out performing direct manual calculations in infinite dimensional space.
On a practical level, this permits implementation using existing fast and
scalable libraries for automatic differentiation on Euclidean space while
maintaining the consistency guarantees derived for solutions based on
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derivatives computed directly in infinite dimensional space in Childers
[2018].

In addition to providing precise technical conditions under which this
method yields accurate representations, I provide examples and guidelines
for how to formulate models to ensure that these conditions are satisfied.
These conditions are shown to hold in models which possess smooth con-
ditional densities of idiosyncratic state variables as in the class of het-
erogeneous agent models formalized in Arellano and Bonhomme [2016]
augmented with aggregate shocks, subject to a particular choice of repre-
sentation of the model equations which can be implemented by a change of
variables. Convergence rates for the approximation are derived, depend-
ing on the classes of functions defining the nodes in the network and the
overall network topology for a variety of choices of interpolation method
including polynomials, splines, histograms, and wavelets. The procedure
is demonstrated numerically by application to a version of the incomplete
markets model of Huggett [1993] with continuously distributed idiosyn-
cratic and aggregate income risk.

1 Introduction
Dynamic structural models of heterogeneous individual consumer or firm behav-
ior have by now become a common tool for empirical microeconomics. Incor-
porating into these models a stochastically changing environment and allowing
this environment to respond endogenously to the aggregated behavior permits
the integration of these frameworks with those used to study macroeconomic
questions. Due to the high dimensionality of the resulting spaces, the inte-
gration of these frameworks is computationally challenging, often requiring the
use of heuristic approximation approaches or computational methods specially
adapted to particular features of the model environment. This work presents
a powerful general purpose framework for building and approximately solving
dynamic economic models with heterogeneity and endogenous stochastic aggre-
gate variation over time. The approach enjoys strong theoretical guarantees
on approximation quality and is highly modular and flexible, permitting fast
and scalable model construction and iteration. The construction which makes
this feasible is a realization that a wide variety of dynamic economic models
can be built, exactly as modern deep neural network architectures are, by re-
peated composition of “nodes” built from only two types of map: a linear map,
approximable by a matrix, and a nonlinear function applied pointwise to its
output.

Models with this structure can be represented as a computational graph.
From the user side, this allows automated linearization and solution of the
model using a combination of standard automatic differentiation libraries and
linear rational expectations solution methods. From the analysis side, this allows
constructing approximation guarantees for large and complicated models based
on low level conditions on the functions used in the individual nodes which
ensure the high level conditions in Childers [2018], and so ensure the accuracy
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of the solution in terms of the exact infinite dimensional representation. Among
other advantages, this allows the application of the function space methods used
there to versions of standard models of heterogeneous consumers and firms and
extensions thereof.

The class of models and procedures introduced here combine the structure
and solution methods for linearized Dynamic Stochastic General Equilibrium
(DSGE) models to describe the behavior of aggregates, which may include cross-
sectional distributions and other function valued objects, with fully nonlinear
projection methods for individual level intertemporal decision problems and
their aggregation up to the distribution level: see Fernández-villaverde et al.
[2016] for an overview of both perturbation and projection methods. A variety
of solution methods for heterogeneous agents models of this type already exist
in the literature, many of which are similarly based on combination of func-
tion approximation and perturbation methods, including those of Reiter [2009],
Winberry [2016], Ahn et al. [2017], Veracierto [2014], Boppart et al. [2017],
Auclert et al. [2019], and Chung [2007]. Unlike Childers [2018], each of these
approaches is based on linearization of a discretized or projected approximation
of a model, rather than the reverse order. This facilitates the use of standard
software, but makes analysis of the quality of the approximation difficult. The
structure imposed in the approach introduced here ensures commutativity of
these operations and so preserves the advantages of both classes of method.
As some care must be taken with the model structure in order to ensure this
equivalence, implementation of model solution differs in practice from that ad-
vocated in previous work, first in the way the equations defining a model must
be written, and second, in some additional preprocessing steps performed by the
solution algorithm to map the derivatives to the coefficients of a representation
with respect to a set of basis functions. This step is automatable but not per-
formed in existing procedures, which either work directly with derivatives of the
model equations at a set of points [Reiter, 2009, Ahn et al., 2017], or represent
the model equations in terms of sums of basis functions and take derivatives
directly with respect to the coefficients [Winberry, 2016], rather than starting
with the derivatives of the functions at a set of grid points and then interpo-
lating, as is done here. The presence of guarantees relying on modifications
of existing procedures should not be taken to indicate that existing procedures
may not also exhibit strong performance, only that the additional structure here
facilitates analysis by highlighting a set of features which can ensure algorithm
performance.

While highly flexible, the class of model structures covered does impose some
economically meaningful restrictions. Most important of these is the existence
of continuous conditional densities for agent actions and states, which may re-
quire the incorporation of additional sources of stochastic heterogeneity beyond
those included in standard dynamic models. Section 2 describes a benchmark
class of heterogeneous agent models, nesting the class described in Arellano and
Bonhomme [2016], which satisfies these conditions, shows how models of this
type can be represented so as to be able to apply the methods introduced here,
and provides as an example a version of the model of Huggett [1993] with con-
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tinuous heterogeneity. The main section, 3, describes mathematically a much
broader class of models defined in terms of directed acyclic graphs of nodes tak-
ing functions as inputs and outputs, introduces an algorithm for linearization
and model solution, and describes conditions which ensure guarantees on the
accuracy of the output of this algorithm. Section 4 demonstrates the applica-
tion of this method to models of the type described in Section 2, and Section
5 concludes with some discussion of implications of the results for alternative
methods. Appendix A discusses in depth how to choose the set of basis functions
used with the procedure based on the properties of the model to be solved, and
provides lemmas showing how these choices affect the convergence properties of
the algorithm in Section 3. Appendix B collects supplementary technical results
and Appendix C collects all proofs.

Regarding notation, k.k will denote the norm of a Banach space, in the ab-
sence of a subscript specifying the space; e.g. kfk

p

= (

P

i

f(i)p)
1
p or kfk

L

p

=

�R

f(x)pdx
�

1
p , applied to vectors it will denote Euclidean norm, to functions will

denote L2 norm, and applied to operators will denote operator norm kAk
op

:=

sup

kfk
L

2=1

kA[f ]k
L

2 . Discretization parameters will be denoted by K, with sub-

scripts in cases with multiple such parameters, and C will denote a constant
independent of parameters K but which may change from line to line. “Big O”
order notation will be used throughout; e.g. ✏ = O(f(K)) denotes ✏

f(K)

 C for
some C independent of K.

2 Heterogeneous Agent Models - A Framework
While heterogeneous agent models have been applied to a variety of contexts
including consumer expenditure, financial, and mobility decisions and firm en-
try, exit, investment, and pricing,1 many models in this class retain important
structural similarities in terms of the types of equations used, which can be
exploited to describe general properties which can be applied more broadly. For
the purposes of the solution algorithm, a heterogeneous agent model is defined,
exactly as in the literature on perturbation methods for DSGE models following,
e.g. Schmitt-Grohé and Uribe [2004], as a system of recursive expectational dif-
ference equations differentiable with respect to a set of predetermined and jump
variables, to be solved for a recursive solution which takes current predeter-
mined variables and stochastic shocks and produces current jump variables and
next period predetermined variables. Unlike in this setup, these variables are
allowed to be function valued,2 so the equilibrium conditions are functional equa-
tions, which must be functionally differentiable. I will also impose additional
regularity conditions on the structure of these functional equations to ensure
that they can be well approximated. The key assumption here will be that all

1See, respectively Huggett [1993] and Krusell and Smith, Jr. [1998], Kaplan et al. [2016],
Childers [2018], Hopenhayn [1992], Khan and Thomas [2008] and Bachmann et al. [2013],
Costain and Nakov [2011], for a far from comprehensive sample.

2More precisely, elements of a separable Hilbert space.
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equilibrium conditions are composed of repeated composition of only two types
of maps; either integration or composition with a smooth function. Although
model derivations are now standard in the finite dimensional case, one of the
more difficult aspects of using perturbation methods to solve a heterogeneous
agents model is deriving the equilibrium condition equations and choosing the
function-valued variables and their arguments.

Mathematically, following Schmitt-Grohé and Uribe [2004], Childers [2018] I
define a model as a recursive system of equations, which I will call “equilibrium
conditions,” in predetermined and jump variables in current period (x, y) 2
H

1

= H
x

⇥H
y

and in future period (x0, y0) 2 H
1

EF (x, y, x0, y0,�) = 0

where F : H
1

⇥H
1

⇥R
+

! H
2

is (functionally) differentiable in each argument.
Let x = (x

1

, x
2

) 2 H
x

= H
x1 ⇥H

x2 be divided into endogenous component
x
1

and exogenous component x
2

such that x0
2

= h
2

(x
2

)+�z0 for z0 a H
x2�valued

random element. A recursive solution is a pair of functions g(x,�) : H
x

⇥R
+

!
H

y

and h(x,�) : H
x

⇥ R
+

! H
x

where h(x,�) = (h
1

(x,�), h
2

(x
2

)) and ⌘ =

[0, IH
x2
] : H

x2 ! H
x

such that for all x

EF (x, g(x,�), h(x,�) + �⌘z0, g(h(x,�) + �⌘z0,�),�) = 0

I will introduce a method which can calculate a recursive solution with par-
ticular properties, including stationarity, by discretization and linearization. In
order to build an efficient method which can approximate such a solution nu-
merically with the flexibility to handle heterogeneous agent models, I will im-
pose additional structure on F , moving from general maps between functions
to maps which are built from only two simple building blocks. The function
valued variables whose law will be determined by the equilibrium of the model,
such as a probability density function of individual level states or a policy rule
as a function of those states, will be functions of the form, for some domain
S
1

⇢ Rd1

g(.) : S
1

! R

The equilibrium conditions will be maps, or operators, which take such
functions as input, and produce similar functions as output, though possibly
in different arguments. A simple example of a map which can perform this
is composition with a pointwise nonlinearity (called a Neymitski’i operator in
the functional analysis literature [Kesavan, 2004]), defined, for some function
f(s

1

, s
2

, s) : S
1

⇥ S
2

⇥ R ! R as a map which takes as input a function
g(.) : S

1

! R and produces a function S
1

⇥ S
2

! R of the form

F
f

[g(.)] = f(s
1

, s
2

, g(s
1

)) (1)

Another simple example of a map between functions is a (Fredholm) integral
operator, which outputs a weighted average of the input function g(.) : S

1

! R,
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with the weighting at every point given by a kernel function k(s
2

, s
1

) : S
2

⇥S
1

!
R, producing a function S

2

! R of form

F
k

[g(.)] =

Z

k(s
2

, s
1

)g(s
1

)ds
1

(2)

More complicated maps can be made by repeated composition of maps with
these simple forms. The simplest example of such a map is the composition of
a nonlinearity and then an integral operator to form a map F

k

[F
f

[.]] that takes
as input a function g(.) : S

1

! R and outputs a function S
2

! R of the form
Z

k(s
2

, s
1

)f(s
1

, s
2

, g(s
1

))ds
1

(3)

Such a mapping is referred to in the functional analysis literature as a Hammer-
stein integral operator [Kesavan, 2004]. In discrete form, maps of this kind are
ubiquitous in models of trade and economic geography (see Allen et al. [2015]),
and they have also attracted attention in the literature on functional data anal-
ysis, where the form is referred to as a functional additive model [McLean et al.,
2014], as it nests the standard generalized additive model in the case where s

1

is discrete.
More generally, any structure composed of nested pointwise nonlinearities

and integral operators can be used. In what follows, I will in fact impose the
restriction that models are built only by repeated composition of maps of the
above two forms, (1) and (2). Such structures are extremely expressive. In the
finite dimensional case, feedforward deep neural networks (see Goodfellow et al.
[2016] for overview) are defined as iterated compositions of linear and pointwise
nonlinear maps, and can approximate any continuous function [Hornik et al.,
1989]. In the case where inputs are functions, rather than finite dimensional vec-
tors, the corresponding structures, referred to by Guss [2017] as “Deep Function
Networks”, retain a similar universal approximation property. The structure
will in fact allow even greater generality, as rather than restricting to compo-
sitions which can be ordered into layers in a tree structure, it suffices to allow
compositions to be defined in terms of a general directed acyclic graph (DAG),
with nodes defined by integral operators or nonlinearities, and edges passing the
output of one node to the input of another. This permits any sequence of com-
positions which does not result in a cycle, including layered structures but also
those which cannot be uniquely ordered, such as “residual” or “skip connections”
[He et al., 2016].

A major advantage of using models with the required form is that approxi-
mation of and computation with maps in the above form is simple and composes
straightforwardly. In place of an input function g(.) : S

1

! R, one can use a
discretized form, at grid points {s

1k

}K1
k=1

, replacing the function with a vector
{g(s

1k

)}K1
k=1

, and likewise discretize S
2

using points {s
2k

}K2
k=1

. Using this repre-
sentation, a pointwise nonlinearity of form (1) produces a map from a K

1

vector
to a length (K

1

⇥K
2

) vector with k
1

⇥ k
2

element

f(s
1k1 , s2k2 , g(s1k1))
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and, using quadrature weights {⇡s1
k

}K1
k=1

and the same grid points, an integral
operator of form (2) produces a map from K

1

⇥K
2

vectors g(., .) on {s
1k

}K1
k=1

⌦
{s

2k

}K2
k=1

to length K
2

vectors with jth element

K1
X

k=1

⇡s1
k

k(s
2j

, s
1k

)g(s
1k

, s
2k

)

Repeatedly composing these two forms, which always produce vectors on a grid
which is fixed ex ante, produces a network mapping vectors to vectors, nesting
traditional finite dimensional neural networks. To produce a linearized model,
the network can be differentiated through by the chain rule as implemented
in standard automatic differentiation software. In principle, one could take
the resulting Jacobian matrices and apply linear rational expectation solution
algorithm to produce an approximate model solution. In practice, additional
post-processing steps will be introduced, based on interpolation of grid points
to full functions, which can be used to allow high accuracy with a substantially
coarser discretization. Under a set of conditions on the structure of the network
and the functions of which it is comprised, I will show that such a procedure
can have highly desirable accuracy properties.

While networks of the described form may approximate nearly arbitrary
continuous maps (see Guss [2017], Guss and Salakhutdinov [2019] for precise
universality claims in weak and uniform norm topologies, respectively), it is
natural to consider whether models of interest naturally take such a form, or if
they must be modified in order to use tools based on the structure. Fortunately,
the structure nests many standard economic models exactly, though formatting
a model in order to fit the form may require some transformation of variables.
Many forms which are ruled out by the limitation to maps of classes (1) and (2)
are excluded deliberately, as they often result in models which are difficult or
impossible to differentiate or approximate well by a finite set of basis functions.
The most common such form is the evaluation (or Dirac delta) operator: given
a function f(.) : S

2

! S
1

, it takes an input function g(s
1

) and produces a
function S

2

! R of form
�
f

[g(.)] = g(f(s
2

)) (4)

Such evaluation operators typically come up in intertemporal decision prob-
lems, where a value or policy tomorrow must be evaluated at a point determined
by a decision today. While superficially similar to a pointwise nonlinearity, the
reversal of the order of composition is quite troublesome. On a practical level,
it requires evaluating an input function at points other than a predefined set of
grid points.3 At the level of performance guarantees, this creates issues with
approximation accuracy because some functions g(.) can be very sensitive to

3This issue is sidestepped in existing perturbation and projection approaches by using a
representation of the function g(s1) defined off of a grid either by numerical interpolation, as
in Reiter [2009], or using basis functions, as in Winberry [2016]. This makes the form imple-
mentable, but theoretical issues remain. It is still an open problem to describe circumstances
under which such an approach can ensure consistent approximation.
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small shifts in their input. For example, if they have a large spike at one point,
small movements in the argument can lead to large changes in the output. More-
over, because the functions g(.) are determined endogenously in equilibrium, it
is hard to ensure that they will not be so poorly behaved. At a technical level,
this sensitivity reflects the fact that the evaluation operator is not continuous
in g(.) unless g(.) is restricted to a small class, and this discontinuity can con-
fer large sensitivity to approximation errors. The precise concern is that maps
of this form are not compact, and so cannot be consistently approximated in
operator norm by any linear map which maps a finite dimensional basis func-
tion representation to a finite dimensional basis function representation. This
compactness condition was key to the solution accuracy guarantees of Childers
[2018] for a projection approximation of the solution to models of this type.
While problematic when occuring alone, in many models, maps of this form oc-
cur only when composed with other (compact) operators, and so compactness
can be restored by applying a change of variables; in others, one can change
the model by adding additional sources of noise and then apply a change of
variables. This technique will be applied in subsequent sections to construct
classes of models which do retain compactness and so can be approximated by
projection methods.

Beyond the restrictions imposed by building models only from components
of forms (1) and (2), ensuring consistent approximation will impose some re-
strictions on how they are composed. The point of such restrictions is to ensure
that the linearized form of the model is made up only of maps which can be
well approximated by function interpolation. This is easily achieved if the lin-
earized model is composed of kernel integral operators (2), for which uniformly
accurate approximation of their action on the space of functions is implied by
uniform approximation of the kernel function k(s

2

, s
1

), which can be guaranteed
by standard interpolation methods. Applying the chain rule, any directed path
composed of maps of types (1) and (2) containing at least one map of type (2)
will have a derivative in this form. The identity map is also easily approximated
by replacing it with an identity matrix. The only concern in a model of this
type is the presence of chains along the graph containing only nonlinear maps
of type (1). These result in a derivative which takes the form of a multipli-
cation operator. Given a function f(.) : S

1

! R, it takes an input function
g(.) : S

1

! R and produces a function S
1

! R of form

F
f

[g(.)] = f(s
1

) · g(s
1

) (5)

The reason such a map is not innocuous is that when the input is represented
by a finite representation, the resulting output need not be well approximated
in the same space. Consider the multiplication map with f(s

1

) = s
1

. If g(s
1

)

is approximated by an order K polynomial, s
1

g(s
1

) must be a polynomial of
order K + 1, and this is true for any K. As a result, a square matrix of
any size will not (uniformly) accurately represent the behavior of this map.4

4Non-square matrices could be used instead; see Adcock et al. [2014] for discussion of
approximation by rectangular matrices and Childers [2016, Ch. 3] for a solution approach

8



However, if the function f(s
1

) is nonzero, one can often get rid of maps of
this form by dividing the equation through by f(s

1

), so that the multiplication
becomes an identity and any kernel integral maps remain so, but now with the
kernel function divided by f(s

1

). When feasible, this step can be checked and
performed automatically. One may also be able to avoid these cases by changing
choice of functions used as state variables, eg, if g(s

1

) appears inside f(g(s
1

)),
one can define `(s

1

) := f(g(s
1

)) directly as the state variable. Examples of this
approach are also provided. Precise sufficient conditions ensuring that a model
takes a form which can be represented in the restricted form are provided, and
verified in realistic examples, in the subsequent sections

In order to see how this abstract setting nests practically relevant heteroge-
neous agent models, and how to set them up so that the methods introduced
here can be used, I first introduce a specialized setup with greater economic
structure.

2.1 Canonical Class of Heterogeneous Agent Models
In what follows, I describe a class of heterogeneous agent models, corresponding
to those studied in Arellano and Bonhomme [2016], Arellano et al. [2017], in
which one can systematically derive a choice of functions and arguments suffi-
cient to fully characterize the model, classify them as predetermined or contem-
poraneous, and derive a formula for the law of motion of the function-valued
states which is sufficiently regular.

Ensuring that a model is sufficiently regular may often require the inclusion
of additional sources of idiosyncratic heterogeneity beyond those traditionally
included in non-quantitative heterogeneous agents models, in order to ensure the
existence of non-singular conditional densities. However, given these conditions,
one has the advantage that the nonparametric identification arguments of Arel-
lano and Bonhomme [2016] may then easily be verified (given appropriate data)
and so the version of their estimation procedure permitting time-varying func-
tions may be used to recover period-by-period estimates of the function-valued
state variables of interest.

In what follows, I adopt the notation of Arellano et al. [2017]. For notational
convenience I omit time-invariant unobserved heterogeneity (i.e., “fixed effects”),
which may trivially be added as an argument to all the functions without chang-
ing any of the subsequent results. At the individual level, I introduce the vari-
ables (Y

it

, X
it

) 2 (X ,Y) ✓ Rn

y

+n

x which are the individual level “choice” and
“predetermined” variables, respectively, not to be confused with the same desig-
nations for aggregate states. For example, in a consumption-savings model, Y

it

might contain consumption of agent i in time t, as well as decisions such as labor
supply or spending on durable goods, while X

it

might contain asset holdings and
(persistent and transitory components of) productivity or labor income. In ad-
dition to these variables, I consider vectors of auxiliary variables (U

it

, ✏
it

) which

based on this method. This introduces a variety of complications which are avoided by the
methods introduced here.
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are independent of each other and across time and individuals, with absolutely
continuous densities f

U

and f
✏

, respectively and whose functional role is to in-
troduce stochastic variation and ensure existence of conditional densities of X

it

and Y
it

, respectively. I require that (U
it

, ✏
it

) 2 (U , ✏) ✓ Rn

u

,n

✏ with n
u

� n
x

.
An example of such shocks might be, for U

it

, stochastic income or asset returns
which make next period asset holdings stochastic conditional on decisions today,
and for ✏

it

, idiosyncratic shocks to preferences or constraints which cause con-
sumers with the same current assets to engage in different spending and savings
behavior.

For the purpose of solving the model via the proposed algorithms, the vari-
able U

it

is essential while ✏
it

can be omitted entirely if not economically rele-
vant. While both are necessary for the estimation procedure and identification
arguments of Arellano and Bonhomme [2016], which require existence of a con-
ditional density for both X

it

and Y
it

, the procedure only needs existence of a
nonsingular conditional density for the former. Singularity of the latter density
is not a computational problem, and in fact may have desirable computational
properties as omitting ✏

it

would reduce the dimensionality of the endogenous
functions. Such a simplification cannot be made with respect to the X

it

vari-
ables. This nonsingularity condition rules out models where idiosyncratic states
evolve deterministically over time. In some cases this can be avoided by a re-
definition of variables; in others, it requires the addition of novel idiosyncratic
shocks.

At the aggregate level, I introduce a set of aggregate variables P
t

= (P
1t

, P
2t

) 2
H

P1 ⇥H
P2 , which represent the endogenous and exogenous aggregate variables,

respectively, which do not depend on i, may be of arbitrary dimension, and may
even be functions on X , Y, or ✏ to be evaluated at X

it

, Y
it

, or ✏
it

. Examples
of P

1t

might include market prices and aggregate quantities or other endoge-
nous features of the environment determined collectively by the distribution of
agent behavior. P

2t

may include aggregate shocks which may affect the pref-
erences, technologies, or other aspects of the environment facing many agents.
The procedure will treat arguments with it subscripts (idiosyncratic variables)
differently from those with only t subscripts (aggregate variables); projection
will be applied to functions of idiosyncratic variables, while perturbation will
be applied to aggregate variables.

The predetermined state variables X
it

are assumed to follow a law of motion,
given exogenously by the model itself.

X
it+1

= Q(Y
it

, X
it

, P
t

, P
t+1

, U
it+1

)

where Q is a known, given function, where Y
it

, X
it

and P
t

(but not U
it+1

or P
t+1

)
are presumed to be known at time t. An example of such a function would be the
law of motion for an exogenous idiosyncratic productivity or wage process, or
an asset accumulation equation determining next period asset holdings based
on current saving decisions. Note that both time t and time t + 1 aggregate
variables may be included in this rule. For example, the value of an agent’s
time t+ 1 asset holdings might depend on time t+ 1 asset prices.
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In contrast, the choice variables Y
it

are determined contemporaneously by a
function of current period predetermined variables

Y
it

= g
t

(X
it

, ✏
it

)

which in general is not known directly but must be determined endogenously
as, for example, the solution to a set of optimization conditions, and may vary
over time. An example would be a consumption or labor supply decision rule
as a function of current income and/or assets.

Given such a model, I can characterize the set of function valued states
needed to describe the model and their laws of motion.

As indicated by the time subscript, the function g
t

(., .) can be used as a
function-valued state variable in the aggregate model, living on the space of
functions over the joint support of X

it

and ✏
it

. Its law of motion may be writ-
ten implicitly as the solution of a set of optimization conditions (either through
an Euler equation or a Bellman equation). This function will be a jump vari-
able with respect to the aggregate variation. In many cases, it is sensible to
use some other function of arguments X

it

, ✏
it

instead of the decision rule as the
function-valued state variable, such as a value function (as used in the economic
geography model in Childers [2018]) or the “parameterized expectations” func-
tion [Christiano and Fisher, 2000], so long as the decision rule determining Y

it

can be written as a known function of the real-valued output of this function.
This can be used to handle models with occasionally binding constraints on
individual-level decisions while maintaining smoothness of the function-valued
state.

There are a variety of ways to derive such a decision rule, but the most
common is from an intertemporal optimization problem. A version of such
a problem consistent with this setup is as follows. An agent solves Bellman
equation

V
t

(X
it

, ✏
it

) = max

Y

it

2S(X

it

,P

t

,✏

it

)

u(Y
it

, X
it

, P
t

, ✏
it

)+�E
t

Z Z

V
t+1

(Q(Y
it

, X
it

, P
t

, P
t+1

, U
it+1

), ✏
it+1

)·

f
U

(U
it+1

)f
✏

(✏
it+1

, P
t+1

)dU
it+1

d✏
it+1

where u(., ., ., .) describes contemporaneous utility and S(.) contemporaneous
constraints, and E

t

describes the conditional expectation over macroeconomic
aggregate P

t+1

. The additively separable discounted form of the decision prob-
lem is meant to be illustrative; nonseparable preferences may be accommodated
at the cost of a minor increase in notational complexity. The variable ✏

it

, rep-
resenting contemporaneous shocks to preferences or constraints, may often be
solved out by use of the “ex ante” value function, defined as the expectation of
V (X

it

, ✏
it

) with respect to the distribution of ✏
it

, as is common in the case of
dynamic discrete choice problems following Rust [1987]. It may also be omitted
entirely, which causes no computational issues, though may lead to stochastic
singularity and its associated econometric difficulties. Note that P

t

is not de-
noted as entering directly as an argument to the value function. This is not
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because the value function does not depend on it; instead, it is left implicit in
the t subscript. Less innocuously, aggregate variables also do not enter into
the density f

U

. This is important for the computations but not in any way
economically restrictive as any effect of aggregates on the distribution of this
idiosyncratic shock can be expressed through the functional form of Q.

Assuming differentiability and concavity of the utility function and an inte-
rior solution,an optimal decision rule Y

it

= g
t

(X
it

, ✏
it

) satisfies equations

V
t

(X
it

, ✏
it

) = u(g
t

(X
it

, ✏
it

), X
it

, P
t

, ✏
it

)+

�E
t

Z Z

V
t+1

(Q(g
t

(X
it

, ✏
it

), X
it

, P
t

, P
t+1

, U
it+1

), ✏
it+1

)·

f
U

(U
it+1

)f
✏

(✏
it+1

, P
t+1

)dU
it+1

d✏
it+1

and

u
Y

(g
t

(X
it

, ✏
it

), X
it

, P
t

, ✏
it

)+

�E
t

Z Z

@

dX
it+1

V
t+1

(Q(g
t

(X
it

, ✏
it

), X
it

, P
t

, P
t+1

, U
it+1

), ✏
it+1

)·

@

dY
it

Q(g
t

(X
it

, ✏
it

), X
it

, P
t

, P
t+1

, U
it

)f
U

(U
it+1

)f
✏

(✏
it+1

, P
t+1

)dU
it+1

d✏
it+1

= 0

In order to be consistent with the conditions of the method, the above
conditions must be transformed to be used directly in the method to be de-
scribed. Supposing I let the functions g

t

(X
it

, ✏
it

) and V
t

(X
it

, ✏
it

) be function
valued variables, the above equations require evaluating V

t

at the value of an-
other function and using its derivative, both of which correspond to application
of operations other than integration and composition with a function; from a
technical perspective, these transformations are non-compact and so are not ap-
proximable directly. Combining these two equations into a single Euler equation
removes the value function as a variable, but generally is defined in terms of
g
t+1

(Q(g
t

(X
it

, ✏
it

), X
it

, P
t

, P
t+1

, U
it+1

), ✏
it+1

), which again involves a noncom-
pact evaluation operator.

The solution to this is simple, so long as there exists a shock term U
it+1

with
smooth density which enters the transition rule of X

it

. To remove the nested
evaluations, one can apply a change of variables so that V

t

(respectively g
t+1

) is
instead integrated over the smooth conditional density of X

it+1

. To remove the
differentiation, one can apply integration by parts or, equivalently, first perform
the change of variables and then take the first order condition with respect to
X

it+1

. Applying the transform X
it+1

= Q(g
t

(X
it

, ✏
it

), X
it

, P
t

, P
t+1

, U
it+1

) with
inverse U

it+1

= Q�1

g

t

(X

it

,✏

it

),X

(X
it+1

), which has P
t

, P
t+1

arguments omitted for
brevity, this results in equivalent equations
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V
t

(X
it

, ✏
it

) = u(g
t

(X
it

, ✏
it

), X
it

, P
t

, ✏
it

) + �E
t

Z Z

V
t+1

(X
it+1

, ✏
it+1

) · (6)

f
U

(Q�1

g

t

(X

it

,✏

it

),X

(X
it+1

))f
✏

(✏
it+1

, P
t+1

) ·
�

�

�

�

det

@

dX
it+1

Q�1

g

t

(X

it

,✏

it

),X

(X
it+1

)

�

�

�

�

dX
it+1

d✏
it+1

and

u
Y

(g
t

(X
it

, ✏
it

), X
it

, P
t

, ✏
it

) (7)

+�E
t

Z Z

V
t+1

(X
it+1

, ✏
it+1

)

@

dU
it+1

f
U

(Q�1

g

t

(X

it

,✏

it

),X

(X
it+1

)) ·
@

dY
Q�1

g

t

(X

it

,✏

it

),X

(X
it+1

)f
✏

(✏
it+1

, P
t+1

) ·
�

�

�

�

det

@

dX
it+1

Q�1

g

t

(X

it

,✏

it

),X

(X
it+1

)

�

�

�

�

dX
it+1

d✏
it+1

= 0

It is this latter system of equations which is consistent with the conditions
of the baseline perturbation approach so long as the associated components are
appropriately regular. In cases in which the constraint Y

it

2 S(X
it

, P
t

, ✏
it

) is
occasionally binding, a Lagrange multiplier may need to be added as a state,
along with a complementary slackness condition as an equation. In these cases,
as well as in others, it may be possible to combine the set of equations into a
single Euler equation, with only the policy rule g

t

(X
it

, ✏
it

) as a state variable,
eliminating the value function and, if included, the Lagrange multiplier from
the system. See the example version of the consumption savings model with
borrowing constraint in section (4) for an example of this process. Alternately, in
those cases where the first order conditions can be solved explicitly for a solution
in terms of the value function, the policy rule g

t

(X
it

, ✏
it

) can be eliminated as
a state variable, and replaced where it appears in subsequent calculations by a
composition of functions.

To describe how individual behavior aggregates, I take the cross sectional
distribution over individuals of X

it

, represented by its density, denoted f
X,t

(.)
as a state variable. In order to assure that such a density exists and has an
easily representable law of motion, I consider first the case where n

x

= n
u

,
and assume that for any fixed (Y

it

, X
it

) = (y, x), the function Q
y,x

(U
it+1

) :=

Q(y, x, P
t

, P
t+1

, U
it+1

) is invertible in U
it+1

with inverse Q�1

y,x

(X
it+1

) which is
differentiable in argument X

it+1

. Given a conditional density f(X
it+1

|Y
it

, X
it

),
the unconditional density of X

it+1

can be derived from its previous value by
first substituting in the law of Y

it

to obtain

f(X
it+1

|g
t

(X
it

, ✏
it

), X
it

) = f(X
it+1

|X
it

, ✏
it

)

which can be integrated over the conditioning set to obtain the unconditional
density as

f
X,t+1

(X
it+1

) =

Z Z

f(X
it+1

|X
it

, ✏
it

)f
X,t

(X
it

)f
✏

(✏
it

, P
t

)dX
it

d✏
it
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The conditional density f(X
it+1

|Y
it

, X
it

) can be derived from the law of
motion for X

it

by integrating out the shock and performing a change of variables
to ensure that this object can be represented as a smooth density:

f(X
it+1

|Y
it

, X
it

) =

Z

f(X
it+1

|Y
it

, X
it

, U
it+1

)f
U

(U
it+1

)dU
it+1

=

Z

�(X
it+1

�Q(Y
it

, X
it

, U
it+1

))f
U

(U
it+1

)dU
it+1

= f
U

(Q�1

Y

it

,X

it

(X
it+1

))

�

�

�

�

det

@

dX
it+1

Q�1

Y

it

,X

it

(X
it+1

)

�

�

�

�

where �(.) is the Dirac delta distribution. Substituting in the above, I obtain
the law of motion for f

X,t

as

f
X,t+1

(X
it+1

) =

Z Z

f
U

(Q�1

g

t

(X

it

,✏

it

),X

it

(X
it+1

))·
�

�

�

�

det

@

dX
it+1

Q�1

g

t

(X

it

,✏

it

),X

it

(X
it+1

)

�

�

�

�

f
X,t

(X
it

)f
✏

(✏
it

, P
t

)dX
it

d✏
it

(8)

In the case where n
u

> n
x

, invertibility can be replaced with surjectivity:
so long as one can find a map Q�1

y,x

(X
it+1

) injective into the support of U
it+1

which is differentiable, one can perform a change of variables over the range
of Q�1

x,y

, leaving the complement of this support unchanged and proceed as
below. For example, if U

it+1

= (U1

it+1

, U2

it+1

) with density f
U

(U1

it+1

, U2

it+1

) and
Q(y, x, U1

it+1

, U2

it+1

) is invertible in U1

it+1

, one can use Q�1

Y

it

,X

it

(X
it+1

, U2

it+1

) and
the law of motion becomes

f
X,t+1

(X
it+1

) =

Z Z Z

f
U

(Q�1

g

t

(X

it

,✏

it

),X

it

(X
it+1

, U2

it+1

), U2

it+1

)·
�

�

�

�

det

@

dX
it+1

Q�1

g

t

(X

it

,✏

it

),X

it

(X
it+1

, U2

it+1

)

�

�

�

�

f
X,t

(X
it

)f
✏

(✏
it

, P
t

)dX
it

d✏
it

dU2

it+1

(9)

If surjectivity holds but U
it+1

does not have such an a priori decomposition,
a similar formula may be derived, albeit with a more complicated change of
variables formula.

In the special case where Q(.) is additive in U
it+1

, X
it+1

= Q(Y
it

, X
it

, P
t

, P
t+1

)+

U
it+1

the determinant term is just a constant, and the inverse is given as
U
it+1

= X
it+1

�Q(Y
it

, X
it

, P
t

, P
t+1

), so the transition equation is just

f
X,t+1

(X
it+1

) =

Z Z

f
U

(X
it+1

�Q(g
t

(X
it

, ✏
it

), X
it

, P
t

, P
t+1

))f
X,t

(X
it

)f
✏

(✏
it

, P
t

)dX
it

d✏
it

In many cases, one can save on arguments by creative definition of what
X

it

is, pushing other variables into U , which doesn’t enter as an argument to
the function-valued states. This may be model-specific, but should be exploited
when possible.
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Beyond the equations determining the decision rule and the implied law of
motion for the cross sectional distribution, there may be additional equations
describing how aggregate variables are determined endogenously from individ-
ual cross section. These can take a variety of forms, including market clearing
constraints, aggregate production functions, government policy responses, or
much more complicated systems such as a complete intratemporal trade model,
including, for example, any of the CES class of trade models described in Arko-
lakis et al. [2012] or economic geography models as in Krugman [1991]. For the
purposes of the methods introduced here, any such system can be represented
as an equation of the form

F (f
X,t

(X
it

), g
t

(X
it

, ✏
it

), P
t

) = 0 (10)

where F is defined in terms of integration and composition of its arguments.
For example, if Y

it

is quantity demanded by consumer i of a good or ser-
vice, and supply is fixed at 0, the equation F (f

X,t

(X
it

), g
t

(X
it

, ✏
it

), P
t

) :=

R R

g
t

(X
it

, ✏
it

)f
X,t

(X
it

)f
✏

(✏
it

, P
t

)dX
it

d✏
it

= 0 could represent market clearing
in this market.

Finally, exogenous sources of aggregate variation which I denote Z
t

, enter
the model directly only through P

2t

, which follows a law of motion of the form

P
2t+1

= h
P

(P
2t

,�Z
t+1

) (11)

where h
P

is an exogenously given function and � is a scalar parameter indexing
the magnitude of the shocks.

One important concern when introducing aggregate shocks into a model
is that the timing of their realization can affect whether a variable should be
treated as predetermined or a jump variable. As long as Q(Y

it

, X
it

, P
t

, P
t+1

, U
it+1

)

is a non-constant function of P
t+1

, then the distribution f
X,t+1

(X
t+1

) will in
part be determined by these same-period variables. As a result, f

X,t+1

(X
t+1

)

must be considered a jump variable rather than a predetermined variable. A
simple way to handle this, if it occurs, is to add additional lagged versions Lf

X

and Lg of the cross section distribution and policy function to the model, which
are predetermined variables, add the equations

Lf
X,t+1

(X
it

) = f
X,t

(X
it

) (12)
Lg

t+1

(X
it

, ✏
it

) = g
t

(X
it

, ✏
it

) (13)
LP

t+1

= P
t

(14)

and replace the Kolmogorov Forward Equation (8) with

f
X,t

(X
it

) =

Z Z

f
U

(Q�1

Lg

t

(X

it�1,✏it�1),Xit�1
(X

it

))·
�

�

�

�

det

@

dX
it

Q�1

Lg

t

(X

it�1,✏it�1),Xit�1
(X

it

)

�

�

�

�

Lf
X,t

(X
it�1

)f
✏

(✏
it�1

, LP
t

)dX
it�1

d✏
it�1

(15)
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or if this rule is defined by Equation (9), perform the analogous replacement.
Together, equations (6), (7), (10), (11), (13), and (15) fully define a het-

erogeneous agents model. The predetermined state variables are Lf
X,t

(X
it

),
Lg

t

(X
it

, ✏
it

), LP
t

, and P
2t

and jump variables are f
X,t

(X
it

), g
t

(X
it

, ✏
it

), P
1t

,
and V

t

(X
it

, ✏
it

).

2.2 Example: A Version of Huggett [1993]
To see how the above framework allows expression of models of interest, includ-
ing the consumption savings framework which has been dubbed the “standard
incomplete markets model” for its use as a workhorse in studying consumer
behavior [Heathcote et al., 2009], I express a consumer model with borrowing
constraint and one bond as in Huggett [1993] in terms of the above framework.
In order to represent the individual states in terms of continuous functions, I
assume individual income is drawn from a distribution with absolutely continu-
ous density. To illustrate the role and timing of aggregate shocks, I incorporate
both a shock to aggregate income, shared by all individuals, and an “antici-
pated uncertainty shock”, which leads to an anticipated increase in the next
period dispersion of idiosyncratic income.

A complete description of the model is as follows. Households solve

maxE
0

1
X

t=0

�t

(c
it

)

1��

1� �
(16)

s.t. w
it+1

= R
t

(w
it

+ z
t

� c
it

) + y
it+1

(17)
R

t

(w
it

� c
it

) � a (18)

where a < 0 and
z
t+1

= ⇢
z

z
t

+ ✏z
t+1

(19)

and y
it+1

⇠ g̃(·|�
t

) where

ln�
t+1

= ⇢
�

ln�
t

+ ✏�
t+1

(20)

Markets clear, with the bond in 0 net supply.
Z

(w
it

+ z
t

� c
it

)di = 0 (21)

In this model, the individual predetermined variable X
it

is w
it

, cash on hand,
with density f

X,t

(.) denoted as m
t

(w
it

), and the individual decision variable Y
it

is c
it

, spending. Note that the use of cash on hand rather than income as the
individual state is deliberate; while income is determined exogenously, cash on
hand is a persistent state which evolves stochastically over time, and so will have
a continuous conditional density, due to the continuous density of y

it+1

. In this
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model there is no idiosyncratic shock ✏
it

to the choice variable.5 The exogenous
aggregates P

2t

are z
t

,�
t

, with shocks Z
t+1

= (✏z
t+1

, ✏�
t+1

) and h
P

is given by
equations (19) and (20). The endogenous aggregate P

1t

is R
t

, the interest rate.
In order to represent the model in the above form the idiosyncratic shock

to the predetermined state must be represented in a nonstandard way. The
reason for this is that to be able to invert the transition rule and obtain a
map which is a differentiable integral operator in the function valued variables,
the density of U

it

must be time invariant. Although y
it

, the individual level
component of income, represents a shock to X

it

, due to the fact that aggregate
variable affects the density, it cannot be placed in this role. Fortunately, this
is resolvable by a simple reparameterization trick which leaves the model itself
unchanged. Let U

it

instead be a variable with time invariant density q(.), and
y
it

, be a function of this and the aggregate variable P (in this case, �
t

). So long
as this mapping is invertible, it can be introduced into the transform Q, which
is allowed to take aggregate variables as arguments, without loss of generality.
There are many acceptable ways to perform this reparameterization, so long as
q(.) is time invariant and the combination ensures that y

it+1

⇠ g(.|�
t

); here I
introduce two.

The first is the inverse CDF transform. Let U
it+1

⇠ Uniform[0, 1] and
G�1

(.|�
t

) be the inverse CDF (quantile function) associated to PDF g(.|�
t

).
Then y

it+1

= G�1

(U
it+1

|�
t

) ⇠ g(.|�
t

), and U
it+1

can be recovered by applying
the CDF transform to y

it+1

. This transformation can be applied any time a
unique quantile transformation exists; if desired, U

it+1

can be allowed to take
any density by including the associated CDF in the transformation. An alternate
mapping, which can be used any time the density g(.|�

t

) is smooth and is
slightly simpler to implement, albeit more difficult to derive, is to define y

it+1

=

U
it+1

+ s
it+1

, where U
it+1

⇠ q(.) and s
it+1

⇠ g(.|�
t

) is an additional variable
drawn independently. The resulting sum has density equal to the convolution
of the two variables, g̃(y

it+1

;�
t

) :=

R

g(s
it+1

;�
t

)q(y
it+1

� s
it+1

)dy
it+1

, which
by appropriate choice of g and q can be made to represent an arbitrary smooth
density. Strictly, s

it+1

should be interpreted as the inverse CDF transform of an
additional element of U2

it+1

, through which one can apply the multidimensional
inverse transform from equation (9), after which a reverse change of variables
can be used to recover the density g. Solving for the inverse gives a Bellman
equation of form

V
t

(w
it

) = max

{c
it

: R

t

(w

it

�c

it

)�a}
(c

it

)

1��

1� �
+ E

t

�

Z Z

V
t+1

(w
it+1

) ·
q(w

it+1

�R
t

(w
it

+ z
t

� c
it

)� s
it+1

)g(s
it+1

;�
t

)ds
it+1

dw
it+1

Due to the presence of a borrowing constraint, a first order condition alone
5Such a shock could easily be added by adding an idiosyncratic preference shifter to the

utility function or discount rate, reflecting idiosyncratic heterogeneity in demand, liquidity,
or patience, or into the borrowing constraint to reflect idiosyncratic variation in access to
credit. While such variation would be necessary to match data on individual spending, it
is not needed for the computational procedure proposed and adds a dimension to the value
function and so is omitted for simplicity of exposition and computation.
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is insufficient to characterize an optimal consumption policy rule corresponding
to the above Bellman equation; at minimum, one also needs a complementary
slackness condition. Following Christiano and Fisher [2000], these optimality
conditions can be combined into a single Parameterized Expectations represen-
tation of an Euler equation, introducing a variable `

t

(w
it

) defined as �R
t

times
the expected marginal utility tomorrow, and then defining the policy rule for
consumption as the function which ensures that the constraint is always satis-
fied, c(w, `, R) := min

n

`�1/� , w � a

R

o

. Following those steps results in Euler
equation

`
t

(w
it

) = (22)

E
t

�R
t

Z Z

q(w
it+1

�R
t

(w
it

+ z
t

� c(w
it

+ z
t

, `
t

(w
it

), R
t

))� s
it+1

)·
g(s

it+1

;�
t

)c(w
it+1

+ z
t+1

, `
t+1

(w
it+1

), R
t+1

)

��ds
it+1

dw
it+1

This construction removes the max operator over a set of functions, which
is not differentiable, and also replaces all inequalities with strict equalities, al-
lowing the model to be represented solely as a system of equations. It does
introduce a min operator in the definition of the consumption rule, but this is
simply a pointwise nonlinear function composed with its argument, resulting in
a form which is precisely that which can be handled by the proposed method.

Combing these steps to construct the state transition rule for cash on hand,
obtain

m
t+1

(w
it+1

) = (23)
Z Z

q(w
it+1

�R
t

(w
it

+ z
t

� c(w
it

+ z
t

, `
t

(w
it

), R
t

))� s
it+1

)·
g(s

it+1

;�
t

)m
t

(w
it

)ds
it+1

dw
it

which also results in the market clearing condition

0 =

Z

(w
it

+ z
t

� c(w
it

+ z
t

, `
t

(w
it

), R
t

))m
t

(w
it

)dw
it

(24)

Finally, in order to maintain the timing distinctions between predetermined
and jump variables, lagged versions of aggregate variables are added of forms
Lm

t

, L`
t

, LR
t

, Lz
t

, L�
t

defined as

Lm
t+1

(w
it

) = m
t

(w
it

)

L`
t+1

(w
it

) = `
t

(w
it

)

LR
t+1

= R
t

Lz
t+1

= z
t

L�
t+1

= �
t

(25)
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and resulting in modified state transition equation (23)

m
t

(w
it

) = (26)
Z Z

q(w
it

� LR
t

(w
it�1

+ Lz
t

� c(w
it�1

+ z
t

, L`
t

(w
it

), LR
t

))� s
it

)·
g(s

it

;L�
t

)Lm
t

(w)ds
it

dw
it�1

Together, equations (19), (20), (24), (22), (25), and (26) define a system of
equations in terms of predetermined variables Lm

t

(w), L`
t

(w), LR
t

, Lz
t

, L�
t

, z
t

,�
t

and jump variables m
t

(w), `
t

(w), R
t

. All equations defined are constructed in
terms of pointwise nonlinear composition and application of integral operators,
and so the algorithm which will be defined in the next sections applies directly
to this version of the model.

3 Model Class and Algorithms
In order to construct a solution of a model with a mix of function and scalar
valued state variables as described above numerically, one needs to build a
finitely computable numerical representation. This can be achieved very sim-
ply for models consisting only of integral and pointwise nonlinear composition
maps by using a discretized version of the function valued state variables and a
finite quadrature representation of the integrals, reducing evaluation of the func-
tions defining the equilibrium conditions at a potentially infinite set of points
to evaluation at a finite set and linearization to the calculation of a finite Jaco-
bian matrix, which can be performed automatically by automatic differentiation
software.6 A challenge that one faces when doing this is evaluating and guar-
anteeing the accuracy of the discretized representations and solutions. As the
exact and the discretized functions do not live in the same space, this requires
putting the objects on a comparable footing.

A simple way to ensure comparability is to map the discrete points to
functions through an interpolation procedure.7 Beyond interpretability and
amenability to quantitative guarantees, this approach has the substantial ad-
vantage that, especially when a model is defined in terms of smooth functions,
one can attain quite high accuracy using only a small number of points. While
in principle such an approach might require using a construction which requires
repeated mapping back and forth between spaces in order to construct approx-
imate solutions, for models built from pointwise nonlinear composition and in-
tegration only this can be reduced to a small number of post-processing steps,
defined as simple matrix multiplies, which can be conducted automatically. The

6In the numerical experiments, this is performed in the environment Juliadiff [Revels et al.,
2016], though any environment, such as Autograd [Maclaurin et al., 2015], that permits cal-
culation of Jacobians by automatic differentiation through matrix operations could be used
here.

7One might instead consider simply using a criterion which allows discrete and continuous
objects to converge to each other, such as a weak convergence criterion; see Chatelin [2011]
for an overview of such methods and the associated challenges.
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model entered by the user can be defined using only discrete representations.
The idea behind this equivalence is that for a linear integral operator, it is
equivalent to interpolate the argument and output functions and to interpolate
the kernel function of the integral operator. By composing guarantees for the
accuracy of interpolation for each of the component steps, one can ensure the
accuracy of the kernel representation, and then, using the accuracy guarantees
for linearized solutions in terms of the approximation error in the derivatives
of the equilibrium conditions from Childers [2018], ensure the accuracy of the
solutions themselves.

Interpolation
In order to define a procedure based on interpolating the derivatives, I set out
some preliminary objects including the class of interpolation methods that can
be used. I will require the interpolation maps to satisfy a number of properties
in order to provide accurate representations for the models of interest.

Definition 1. A (linear) interpolation scheme is a sequence of tuples {T
K

,M
K

,�
K

}
consisting of a sequence of point sets T

K

= {s
k

}K
k=1

2 S (not necessarily nested)
and linear maps M

K

2 RK⇥K such that for any input function f(.) : S ! R,
letting ~f = {f(s

k

)}K
k=1

and ˆf = M
K

~f , for some set of basis functions �
K

=

{�
k

(s)}K
k=1

, produce an approximating function ˆf
K

(s) :=
P

K

k=1

ˆf
k

�
k

(s).

Examples of interpolation schemes are polynomial interpolation at the Cheby-
shev points or otherwise, cubic spline interpolation, Gaussian process interpo-
lation, and so on. See Appendix (A) for a list and discussion. In principle,
function approximations which do not satisfy ˆf(s

k

) = f(s
k

) for all k could
be used with no loss in what follows, though for deterministic solution such
methods are not needed.

The feature that will be needed for an interpolation scheme is that for ap-
propriately smooth input functions, it produces output functions which are ac-
curate in sup norm, and moreover, that for functions on S⇥S in an appropriate
smoothness class, applying it argument by argument likewise produces sup norm
accurate approximations. A tensor product interpolation takes an input func-
tion f(., .) : S⇥S ! R and given interpolation scheme {T

K

,M
K

,�
K

} produces
the matrix ~f 2 RK⇥K with elements [

~f ]
ij

= f(s
i

, s
j

) and maps it into a ma-
trix of basis coefficients ˆf = M

K

~fM⇤
K

producing an approximating function
ˆf
K

(s, t) =
P

K

i=1

P

K

j=1

ˆf
ij

�
i

(s)�
j

(t)

Definition 2. An interpolation scheme {T
K

,M
K

,�
K

} is sup norm accurate at
rate ✏

K

for function class F , a subset of functions f(.) : S ! R, if for any input
function f 2 F ,

�

�

�

ˆf
K

(s)� f(s)
�

�

�

1
 ✏

K

for some sequence ✏
K

! 0 as K ! 1.
A tensor product interpolation based on {T

K

,M
K

,�
K

} is sup norm accurate at
rate ⇣

K

for function class F2, a subset of functions f(., .) S ⇥ S ! R, if for any
input function f 2 F2,

�

�

�

ˆf
K

(s, t)� f(s, t)
�

�

�

1
 ⇣

K

for some sequence ⇣
K

! 0

as K ! 1.
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For many standard interpolation schemes, including B-splines and Cheby-
shev polynomials, the default choice of basis functions may fail to be orthonor-
mal. In these cases, one may construct an equivalent basis with identical ap-
proximation properties through orthonormalization. In such cases, M

K

can be
replaced by J

K

M
K

and �
K

= {�
k

(s)}K
k=1

by  
K

= { 
k

(s)}K
k=1

for an equiv-
alent interpolation matrix and orthonormal family. Furthermore, for variables
which live in the space of densities, which must inegrate to 1, relevant pertur-
bations reside in L2

0

the subspace of square integrable functions which integrate
to 0. Restriction of an interpolation scheme to operate only on this subspace
can be achieved by orthogonalization of a standard basis with respect to the
constant function, which can be achieved by replacing the interpolation matrix
M

K

2 RK�1⇥K with the modifed S
K

M
K

2 RK�1⇥K (or S
K

J
K

M
K

if both
standardization and orthonormalization are needed). Generic procedures for
constructing both classes of transform are reviewed in Appendix (A.1). In fur-
ther discussions, interpolation schemes (T

K,

M
K

,�
K

) will always be assumed
to refer to schemes which have been orthonormalized and, for density-valued
variables, standardized in this way.

Given an interpolation scheme and, if needed, a map which converts the
output of the interpolation scheme into coefficients with respect to an orthonor-
mal basis and possibly normalizes as well if the functions are constrained, an
integral kernel operator

R

k(t, s)[.]ds with k(t, s) : S ⇥ S ! R may be approx-
imated by a representation of the operator in terms of this basis by mapping
the coefficients of the tensor product interpolation of the kernel to the coeffi-
cients with respect to an orthonormal basis. This produces a representation
P

K

i=1

P

K

j=1

✓
i,j

h 
j

, .i 
i

, where, if [K]

i,j

= K(t
i

, s
j

), ✓
i,j
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M
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KM⇤
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if not normalized and ✓
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J
K

M
K

KM⇤
K

J⇤
K

S⇤
K

]

ij

if normalized. Further-
more, supposing that the tensor product interpolation scheme is sup norm accu-
rate, an application of Young’s inequality (and an operator norm bound on S

K

if
applied) implies that if k(t, s) 2 F2,

�

�

�

R

k(t, s)[.]ds�PK

i=1

P
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j=1

✓
i,j

h 
j

, .i 
i

�

�

�

op

converges to 0 as K ! 1. Sufficient conditions will be given below such that
this is the case. While this transformation may be used directly to construct
a basis representation of the functional derivatives satisfying the conditions of
Theorem 1 in Childers [2018] and so suitable for application of a linear ratio-
nal expectations solver, this requires constructing functional derivatives before
taking the appropriate transforms.

A key restriction is that the above mapping result applies only to opera-
tors which take kernel integral operator form. In general, even when a model is
defined only in terms of kernel integral and piecewise nonlinearity maps, its func-
tional derivatives need not take only this form. Certain functional derivatives
will instead take the form of identity operators, or multiplication of an input
function by another function. This latter type can be detected and solved out
automatically;8 the former require special treatment. The numerical derivatives

8Cases where this cannot be solved out may also exist; these violate Condition (4) below
and create problems for the algorithm and indeed any method based on the guarantees of
Childers [2018]. Current implementations return a warning in this case.
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in the case of an identity map will produce a finite identity matrix. In gen-
eral, applying an interpolation scheme to an identity matrix will not produce an
accurate representation of an identity map on a space of coefficients.9 This is
easily resolved, however, as an identity matrix, interpreted as a map over a set
of coefficients of an orthonormal basis, is a valid representation of an identity
operator, and so the solution is to only apply the interpolation transforms to the
model components which take the form of kernel integral operators. These can
be determined, even without taking derivatives, by the structure of the model.
By detecting the appropriate components and transform them, I can now de-
fine a general set of conditions and an algorithm for model solution based on
interpolation schemes described here.

A very general class of operators
In order to provide a procedure applicable to the widest feasible class of economic
models amenable to a linearization procedure based on pointwise differentiation,
it will be helpful to introduce notation compatible with a variety of models. In
essence, the models which can be handled by a procedure in this class consist
of those derived from repeated composition of linear integral operators and
pointwise nonlinearities. In the case where functions of interest live on a finite
support, this is a class which includes (most) deep neural network architectures;
including the generalization of neural networks to infinite-dimensional input and
output data as examined by Guss [2017].

The following conditions define the class of model equilibrium conditions in
terms of repeated composition of integral and pointwise composition operators
along a structured graph. Condition (3) defines the components of this graph in
a way which ensures the input and output functions have the right arguments.
Condition (4) imposes primitive conditions on the graph topology which ensure
that the derivatives take the form of Fredholm integral equations of the second
kind by making sure that all paths from input to output either consist of an
identity map or contain a kernel integral operator. Notation is introduced to
mark distinctions between these classes of path, which will need to be treated
differently when interpolating the discretized model. Given a model following
these conditions, an algorithm (Algorithm 1) is introduced which constructs
approximate functional derivatives through discretization, differentiation, and
interpolation along the graph. Smoothness conditions on the steady state func-
tions which are composed to produce the equilibrium conditions (Condition (5))
and their derivatives (Condition (6)) are provided which ensure that the steady
state functions and the resulting functional derivatives are smooth enough to
be approximated with (asymptotically) negligible error, with rates quantified in
Lemmas (7) and (9), respectively. As a result, under the approximation sta-

9An exception to this is when the maps J
K

M
K

are unitary, so J
K

M
K

(J
K

M
K

)

⇤
= I

k

.
This does occur, possibly up to a rescaling, for certain interpolation schemes, in particular
some classes of wavelet and histogram methods: see Appendix (A). In these cases, a somewhat
simpler version of the procedure developed here can be used. This is described in a companion
paper, Childers and Dogra [2018].
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bility conditions for linear rational expectations solution algorithms provided
in Childers [2018] (which include generalizations of the Blanchard Kahn local
existence and uniqueness conditions for the model solution which are not guar-
anteed by these primitive conditions), the resulting linearized solution will also
have negligible error.

The class of permissible operators F
`

describing each equation ` = 1 . . . d
2

will be constructed iteratively as the composition of simpler operators organized
along a directed acyclic computational graph, with inputs given by the function-
valued state variables {g

j

(.)}2d2
j=1

. While most practical models of interest are
likely to correspond to a fairly shallow computational graph, the use of such
a formalism facilitates construction of functional derivatives through the chain
rule in a principled fashion, and allows, if needed, a highly expressive class
for approximation of nonlinear operators, building on universal approximation
results for neural networks.

Condition 3. Suppose that S = ⇥q

i=1

S
i

, where i indexes a mutually exclu-
sive and exhaustive partition of q  d

1

subsets of dimensions of S and each
element j = 1 . . . 2d

2

of the set of state variables [g(s)]
j

= g
j

(s
[j]

) depends on
a subset [j] ✓ {1 . . . q} of these subsets of dimensions, denoted S

[j]

= ⇥
i2[j]

S
i

.

In total, computations may reference up to � + 1 possible arguments, indexed
by i 2 {1 . . .�+ 1}, where the first q correspond to S

i

, i 2 {1 . . . q}, additional
arguments i 2 {q + 1 . . .�}, � � q, live on some spaces S

i

, where S
i

for i > q
is some compact subset of a finite-dimensional Euclidean space, and argument
�+ 1 is t living on S

[`

o

]

for some subset [`o] ⇢ {1 . . . q}.
For each condition ` = 1 . . . d

2

, the equilibrium condition operator F` is
described by a directed, acyclic, connected computational graph with P ` nodes.
Nodes p` 2 {1 . . . P `} in the graph each produce as output a function np

`

:

S
[p

`

]

! R, where [p`] ✓ {1 . . .�+ 1} is some subset of possible arguments, and
may take as input the functions produced by parent nodes par(p`). There is
one output node nP

` (with only incoming edges) whose output is a function
only of t 2 S

[`

o

]

. For each input function j = 1 . . . 2d
2

, there is one input node
with index p` = j with no parents and output nj

= g
j

(s
[j]

). In addition, there
may be o`  2d

2

additional input nodes, each corresponding to a separate input
function j(p`) 2 {1 . . . 2d

2

} such that S
[j(p

`

)]

⇠
=

S
[`

o

]

and which produce output
np

`

= g
j(p

`

)

(t) : S
[`

o

]

! R.
All intermediate nodes consist of two components, a nonlinear map and

a subsequently applied linear map. The composition of these two maps ap-
plied to the output of all ingoing edges generates the function np

`

. The non-
linear map corresponding to index p` with parents par(p`) ⇢ {1 . . . P `} is
associated with a function fp

`

(s
[p

`

I

]

, (.)) : S
[p

`

I

]

⇥ R|par(p`

)| ! R for some
subset [p`

I

] ⇢ {1 . . .� + 1} which is composed with the output of its par-
ent nodes to produce output fp

`

(s
[p

`

I

]

, n[par(p

`

)]

(s
[par(p

`

)]

)) : S
[p

`

n

]

! R for
[p`

n

] = [p`
I

] [ [
p2par(p

`

)

[p]. Within each node, this function is then composed

with a linear map, corresponding to a linear operator taking one of two forms:
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either an identity map I or an integral operator
R

kp
`

(s
[p

`

a

]

)[.]ds
[p

`

b

]

for some
subsets [p`

a

] ⇢ {1 . . .�}, [p`
b

] ⇢ ([p`
a

] [ [p`
n

])/{� + 1}. In the identity case,
the resulting output takes form np

`

(s
[p

`

]

) = fp

`

(s
[p

`

I

]

, n[par(p

`

)]

(s
[par(p

`

)]

)) for
[p`] = [p`

n

]. In the integral operator case, the node output takes form np

`

(s
[p

`

]

) =

R

kp
`

(s
[p

`

a

]

)fp

`

(s
[p

`

I

]

, n[par(p

`

)]

(s
[par(p

`

)]

))ds
[p

`

b

]

where [p`] = ([p`
a

][[p`
n

])/[p`
b

]. The
final output node P ` takes the same structure as all intermediate nodes, with
the restriction that [P `

] = {�+1}, and the final output of equilibrium condition
` is given by F`

({g
j

(.)}2d2
j=1

)(t) = nP

`

(t).

The above condition generates a broad class of operators whose derivatives
may be approximately computed in an automated fashion using only pointwise
information. In order to apply solution procedures, I impose additional regu-
larity conditions on the operators. Condition (a) ensures maps and derivatives
are well-defined, while condition (b) ensures that the operator, after suitable
transformation, produces derivatives which satisfy the compact plus identity
representation condition in Childers [2018].

Condition 4. (a) All nonlinear maps fp

`

are bounded, measurable, and dif-
ferentiable in all arguments. Further, both fp

`

and the derivative of fp

`

() with
respect to any parent node should be Hölder continuous with Hölder exponent
↵p

`

> 0 in each argument corresponding to a parent node, uniformly in all
other arguments. Similarly, all kernel functions kp

`

(s
[p

`

a

]

) should be bounded
and measurable.

(b) For all equilibrium conditions ` = 1 . . . d
2

, the operator F` satisfies one
of the following two conditions.

(i) o`  1, so that there is at most one input node np

`

(out), p`(out) = 2d
2

+1

such that np

`

(out)

= g
j(p

`

(out))

(t) where S
[j(p

`

(out))]

⇠
=

S
[`

o

]

, or
(ii) For all input nodes np

`

such that p` 2 (2d
2

+ 1) . . . (2d
2

+ o`) , so that
np

`

= g
j(p

`

)

(t) where S
[j(p

`

)]

⇠
=

S
[`

o

]

, all descendant nodes have a nonlinear
component f(.) which is linear in any argument such that np

` is an ancestor
and linear component given by the identity map.

Due to the generality of directed acyclic graph structure, this class of opera-
tors includes as a subset Hammerstein integral operators and sums thereof, the
Deep Functional Networks of Guss [2017], and many more general functions,
which do not necessarily take a tree structure or have recursive representation.
By restricting to acyclic graphs, it does rule out recursive maps, though any
finite set of iterations can be generated by passing through a long enough path
of identical nodes. The Hölder condition is a sufficient condition to ensure that
not only will a finite approximation of each node converge, but that passing the
approximation error through a computational graph of arbitrary finite depth
will not cause the approximation error to explode. It is satisfied if each function
is Hölder of order ↵p

`

+1 over all of its arguments, though this is not a necessary
condition.
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The true functional derivatives to be approximated can be computed by
accumulating along the directed computational graph either through forward
or reverse mode (or through a combination thereof), as functional derivatives
follow a standard chain rule. While the task of computing the derivative of
each output F` with respect to 2d

2

+ o` input functions suggests advantages for
reverse mode, this depends on the topology of the computational graph and in
computational experiments forward mode appears to outperform.

To construct the partial derivatives at each node, first note that the deriva-
tive of the linear component of any node is equal to the component itself.
For nonlinear components, the derivative with respect to any ingoing node
i 2 par(p`) at a value n[par(p

`

)]⇤ of its inputs is given by the multiplication op-
erator d

dn

i

fp

`

(s
[p

`

I

]

, n[par(p

`

)]⇤
(s

[par(p

`

)]

)) · [.] where the derivative is the ordinary
scalar derivative of the function fp

`

with respect to the argument corresponding
to input ni.

Approximation of functional derivatives of the above form can be performed
by representing the functions generating all operators using tensor product in-
terpolation schemes. While a variety of methods are available for approximat-
ing the integrals in these operators, I will mainly focus on a particular choice
with both desirable ease of use and accuracy properties. In particular, all inte-
grals in the discretized equilibrium conditions may be represented by the exact
quadrature scheme corresponding to the interpolation scheme. The resulting
nonlinear map then takes as input 2d

2

+ o` vectors corresponding to the value
of the input functions at the appropriate grid points, and produces as out-
put a vector corresponding to the (approximate) value of the output function
F`

({�!g
j

}2d
j=1

, {�!g
j(p

`

)

}2d2+o

`

p

`

=2d2+1

)(t) over a grid of points on S
[`

o

]

. This map be-
tween finite dimensional vector spaces can then be differentiated according to
the same computational graph as the exact operator by standard automatic dif-
ferentiation software over vectors to produce a set of Jacobian matrices. These
matrices can then be transformed into representations of functional derivatives
by applying a few simple matrix transforms and then the appropriate interpo-
lation maps to produce matrices of coefficients, which can then be put through
standard rational expectations solution software.

To construct this procedure, let {T
z

,M
z

,�
z

}�
z=1

be a set of interpolation
schemes with respective cardinalities K

z

for functions on domains {S
z

}�
z=1

re-
spectively. Note that a tensor product interpolation scheme over functions on
a subset [p] ✓ {1 . . .�} with cardinality K

[p]

= ⇧

z2[p]

K
z

can be constructed
as Q

[p]

:= {⇥
z2[p]

T
z

,⌦
z2[p]

M
z

,⌦
z2[p]

�

z

}, where M
[p]

:= ⌦
z2[p]

M
z

indicates
the Kronecker product of the matrices M

z

and ⌦
z2[p]

�

z

consists of the set of
tensor products over the sets �

z

of basis functions. Without loss of generality,
assume the basis sets �

z

are orthonormal: if this is not true, M
z

,�
z

may be
replaced by orthonormalized versions as constructed by Algorithm (2). Denote
by Q

[�+1]

:= {T
�+1

,M
�+1

,�
�+1

} := {⇥
z2[`

o

]

T
z

,⌦
z2[`

o

]

M
z

,⌦
z2[`

o

]

�

z

}, where I
have abused notation as this object depends on `; however the use will be clear
from context. I will assume that each individual scheme is sup norm accurate, as
are all tensor product schemes used, for functions in appropriate function classes.
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Primitive conditions for this will depend on the scheme and the function classes
used. For example, tensor product spline or wavelet approaches over Hölder
classes or, if some S

z

are multidimensional, tensor products of sparse grid spline
interpolation over spaces of continuous functions with bounded mixed partial
derivatives will ensure consistency over any subset of dimensions.

An interpolation scheme {T
z

,M
z

,�
z

} induces an exact quadrature scheme
with abcissas (evaluation points) T

z

and weights ⇡z

= (q0
z

M
z

)

0, where the jth

element of q
z

equals
R

S
z

�
j

(s
z

)ds
z

, the integral of the jth basis function. It is
easily seen that the quadrature scheme corresponding to a sup norm accurate
interpolation scheme over a bounded domain converges over the same function
class at a rate identical to the sup norm approximation rate. For tensor product
quadrature over functions on a subset [p] ✓ {1 . . .�}, denote ⇡[p]

= ⌦
z2[p]

⇡z

the length K
[p]

vector of weights corresponding to abcissas ⇥
z2[p]

T
z

, and a
corresponding result holds. Beyond the accuracy properties, schemes of this
form, unlike Gaussian quadrature, have the advantage that they use the same
function evaluations as used to construct an interpolation. In practice, it is
the latter property which is necessary for the algorithm; non-exact schemes
which use the same grid points as abcissas can be used, and will result in
similar guarantees so long as they are sufficiently accurate. By representing
all equilibrium conditions using the interpolation scheme corresponding to the
variables contained in each state and using these quadrature schemes to ensure
additional dimensions get integrated out, one can construct an algorithm which
accounts for the different arguments of each state, introduced as Algorithm 1.

Definition. Let kp
`

(s
[p

`

a

]

) 2 RK[p`
a

]⇥1 be the kernel of the integral operator of

node p` evaluated at K
[p

`

a

]

points, and let ˆ

⇧

[p

`

a

][[p

`

n

] 2 RK[p`
a

][[p`
n

]/K[p`
b

]
⇥K[p`

a

][[p`
n

]

be ˆ

⇧

[p

`

a

][[p

`

n

]

:= I
K[p`

a

][[p`
n

]/K[p`
b

]
⌦ ⇡[p

`

b

]0 for ⇡[p

`

b

] a vector of quadrature weights
over the abcissas ⇥

z2[p

`

b

]

T
z

. Then

Lp

`

:=

ˆ

⇧

[p

`

a

][[p

`

n

]Diag(kp
`

(s
[p

`

a

]

)⌦ 1

K[p`
a

][[p`
n

]/[p`
a

]
)(1

K[p`
a

][[p`
n

]/[p`
n

]
⌦ I

K[p`
n

]
).

This representation of the integral operator
R

kp
`

(s
[p

`

a

]

)[.]ds
[p

`

b

]

serves the sole
purpose of reshaping the discretized operator with integrals approximately eval-
uated by quadrature into matrix form, so that its derivative may be evaluated
efficiently (viz, by linearity, as the integral itself). Alternately, in a conceptually
simpler but more memory-intensive representation, this operator and all inter-
mediate functions could be expressed in terms of tensors of order (up to) �+1,
with all operations except integration then expressible as pointwise operations
and integration through summing over respective arguments. This scheme would
be numerically equivalent, and likely easier to code, but is extremely memory
inefficient, with each tensor having dimension and so memory cost exponential
in �.

The application of Algorithm (1) yields a consistent approximation of the
functional derivatives of operator F under mild conditions on the model and the
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Algorithm 1 Construction of spectral approximation over a graph
Input: Equilibrium conditions F`

(g(.))(t) as in Condition (3), approximate
steady state functions g̃⇤(t), and interpolation schemes {T

z

,M
z

,�
z

}�
z=1

Output: Approximate solutions ˜hK

x

, g̃K
x

1. If {�
z

}�
z=1

not each orthonormal, apply Algorithm (2) to orthonormalize
all interpolation schemes

2. Build vectors of input variables

(a) Construct input vectors {�!g
j

}2d2
j=1

as x := {{g
j

(s
[j]i

)}K[j]

i=1

}dx

j=1

, y :=

{{g
j

(s
[j]i

)}K[j]

i=1

}d2
j=d

x

+1

, x0
:= {{g

j

(s
[j]i

)}K[j]

i=1

}d2+d

x

j=d2+1

, and y0 :=

{{g
j

(s
[j]i

)}K[j]

i=1

}2d2
j=d2+d

x

+1

, where {s
[j]i

}K[j]

i=1

= ⇥
z2[j]

T
z

(b) Construct {�!g
j(p

`

)

}2d2+o

`

p

`

=2d2+1

as {{g
j(p

`

)

(t
[j(p

`

)]i

)}K[j(p`)]

i=1

}2d2+o

`

p

`

=2d2+1

where {t
[j(p

`

)]i

}K[j(p`)]

i=1

= ⇥
z2[j(p

`

)]

T
z

(c) For p` = 1 . . . 2d
2

+ o`, define nodes �!n p

`

(

�!g
j(p

`

)

) :=

�!g
j(p

`

)

3. For each node p` = 2d
2

+ o` + 1 . . . P `, construct node representation
�!n p

`

({�!n p}
p2par(p

`

)

) ⇥
p2par(p

`

)

RK[p] ! RK[p`] by composing

(a) Nonlinear component
�!
f p

`

() as map ⇥
p2par(p

`

)

RK[p] ! RK[p`
n

] with in-

puts {�!n p}
p2par(p

`

)

and values {fp

`

(s
[p

`

I

]i

, n[par(p

`

)]

(s
[par(p

`

)]i

))}K[p`
n

]

i=1

(b) If node p` has linear map I, apply matrix I
K[p`

n

]
. If linear map is

of form
R

kp
`

(s
[p

`

a

]

)[.]ds
[p

`

b

]

, apply K
[p

`

]

⇥K
[p

`

n

]

matrix Lp

`

specified
below.

4. 8` = 1 . . . d
2

, apply automatic differentiation along the computational
graph with respect to {�!g

j

}2d2
j=1

to build matrices {F`�!
g

j

(in)

}2d2
j=1

and

to {�!g
j(p

`

)

}2d2+o

`

p

`

=2d2+1

to build matrices {F`�!
g

j(p`)(out)
}2d2+o

`

p

`

=2d2+1

around

{�!̃g ⇤
j(p

`

)

}2d2+o

`

j=1

, the (approximate) steady state values of {�!g
j(p

`

)

}2d2+o

`

j=1

.

5. 8` = 1 . . . d
2

, if ` satisfies Condition (4)(b)(ii), 8j = 1 . . . 2d
2

rep-
resent the (`, j) block of the equilibrium equations as F`�!

g

j

(out)

+

M
[`

o

]

F`�!
g

j

(in)

(⇧

[j]

)

�1M⇤
[j]

, while if ` satisfies Condition (4)(b)(i), 8j =

1 . . . 2d
2

represent the (`, j) block of the equilibrium equations as
(F`�!

g

j(p`(out))
)

�1F`�!
g

j

(out)

+M
[`

o

]

(F`�!
g

j(p`(out))
)

�1F`�!
g

j

(in)

(⇧

[j]

)

�1M⇤
[j]

6. Apply standard rational expectations solution algorithm as in Schmitt-
Grohé and Uribe [2004] to the system of equations to obtain
solution matrices gK

x

, hK

x

of coefficient representations of solu-
tions which result in maps g̃K

x

=

P

i

P

j

[gK
x

]

ij

h'
j

(.), .i�
i

(.) and
˜hK

x

=

P

i=1

P

j=1

[hK

x

]

ij

h'
j

(.), .i'
i

(.) for ' 2 ⌦
z2{1...d

x

}�z

, � 2
⌦

z2{d
x

+1...d2}�z
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interpolation schemes used. Due to the nature of the functions to be approxi-
mated, it is necessary to apply approximation procedures and conditions which
maintain accuracy when interpolation and function composition are repeatedly
composed. While weaker conditions are likely possible, the following set of re-
strictions provides a simple set of sufficient conditions for these approximations
to be valid.

Condition 5. (i) For all `, for all p` = 1 . . . P `, for each p 2 par(p`) let
fp

`

(s
[p

`

I

]

, (.)) be Hölder continuous with exponent ↵p

`

(p) in input np

(.) (consid-
ered as a scalar) uniformly over all inputs other than p

(ii) For all `, for all p` = 1 . . . P `, let G[p

`

a

][[p

`

n

]

: S
[p

`

a

][[p

`

n

]

! R and G[p

`

]

:

S
[p

`

]

! R be classes of bounded functions on S
[p

`

a

][[p

`

n

]

and S
[p

`

]

, respectively,
such that for all `, for all p` = 1 . . . P ` kp

`

(s
[p

`

a

]

)fp

`

(s
[p

`

I

]

, (.)) : ⇥
p2par(p

`

)

G[p] !

G[p

`

a

][[p

`

n

] and, if the linear component of node p` is an integral operator
R

[]ds
[p

`

b

]

:

G[p

`

a

][[p

`

n

] ! G[p

`

], otherwise G[p

`

]

:= G[p

`

n

], i.e., such that the application of each
node maps to an appropriate function class.

(iii) Let steady state state variables g⇤
j

(.) 2 G[j]

(iv) Given tensor product interpolation schemes Q
[p

`

a

][[p

`

n

]

, for all `, for
all p` = 1 . . . P `, let ˆG[p

`

a

][[p

`

n

]

: S
[p

`

a

][[p

`

n

]

! R and ˆG[p

`

]

: S
[p

`

]

! R be
classes of bounded functions on S

[p

`

a

][[p

`

n

]

and S
[p

`

]

, respectively, such that
for all `, for p` = 1 . . . 2d

2

+ o
`

, g̃⇤
j(p

`

)

2 ˆG[p

`

], and for all p` = 1 . . . P `, (a)
kp

`

(s
[p

`

a

]

)fp

`

(s
[p

`

I

]

, (.)) : ⇥
p2par(p

`

)

ˆG[p] ! ˆG[p

`

a

][[p

`

n

], and (b) if the linear compo-

nent of node p` is an integral operator, the quadrature scheme ⇡[p

`

b

] correspond-
ing to integral

R

[]ds
[p

`

b

]

maps ˆG[p

`

a

][[p

`

n

] ! ˆG[p

`

], otherwise ˆG[p

`

]

:=

ˆG[p

`

n

], i.e.,
that each approximated node likewise maps to an appropriate function class

(v) Let ˆG[p

`

b

]

: S
[p

`

b

]

! R be a class of functions such that 8f(s
([p

`

a

][[p

`

n

])/[p

`

b

]

, s
[p

`

b

]

) 2
ˆG[p

`

a

][[p

`

n

], 8s
([p

`

a

][[p

`

n

])/[p

`

b

]

2 S
([p

`

a

][[p

`

n

])/[p

`

b

]

, f(s
([p

`

a

][[p

`

n

])/[p

`

b

]

, .) 2 ˆG[p

`

b

]

(vi) For all `, for j = 1 . . . 2d
2

+ o`, let the approximations of each steady
state function converge at rate ⇣p

`

(K), i.e.
�

�

�

g̃⇤
j(p

`

)

� g⇤
j(p

`

)

�

�

�

1
 ⇣p

`

(K), and
for all `, for all p`, (i) let tensor product interpolation schemes Q

[p

`

]

be sup
norm accurate over classes ˆG[p

`

] at rates ⇣ [p
`

]

(K
[p

`

]

), (ii) let tensor product
interpolation schemes Q

[p

`

b

]

be sup norm accurate over classes ˆG[p

`

b

] at rates
⇣ [p

`

b

]

(K
[p

`

b

]

)

Remark. Regarding condition (5), the function classes invoked in this theorem
and the resulting rates will depend on the smoothness assumed for the structural
objects, how this is preserved under composition, multiplication, integration,
and quadrature, and the appropriateness of the interpolation schemes used over
these classes. Note that Hölder continuity of fp

`

and kp
`

over all inputs guar-
antees condition (i) and also ensures that condition (ii) holds if function classes
G[p

`

] are given by the Hölder classes ⇤↵[p`]
[S

[p

`

]

] for appropriate exponents ↵
[p

`

]
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guided by composition rules for Hölder functions. A useful sufficient condition
is that if fp

`

and kp
`

have Hölder exponent greater than or equal to 1 for all
`, p, then ↵

[p

`

]

� 1. Sufficient conditions for (iii) will depend on the properties
of the full system: depending on the class, proof of this may proceed by the
use of a fixed point theorem. Parts (iv) and (v) of this condition hold for a
number of commonly used combinations of function classes and interpolation
schemes, with rates depending on the degree of accuracy of the interpolation
scheme over the induced classes. While (iv)(a) may generally be derived from
the smoothness-preserving properties of integration, multiplication, and com-
position with smooth functions, holding, for example, over Hölder classes as in
(ii), (iv)(b) requires that when replacing exact integration by numerical quadra-
ture, as performed in the algorithm, the resulting function preserves a degree of
smoothness. In the case of functions which are Hölder smooth in s

([p

`

a

][[p

`

n

])/[p

`

b

]

uniformly over s
[p

`

b

]

, as is true for, functions in, say, ˆG[p

`

a

][[p

`

n

]

= ⇤

↵

(S
([p

`

a

][[p

`

n

])

)

for any ↵ > 0, this is true because for any quadrature scheme with summable
weights the output function remains in a Hölder ball in s

([p

`

a

][[p

`

n

])/[p

`

b

]

regardless
of the order of integration, as follows from the characterization of Hölder classes
as hyperrectangles in the space of Wavelet coefficients (see Johnstone [2015] Ch
4.7). This property likewise extends to other function classes requiring uniform
bounds on derivatives, such as tensor products of F↵

z

d

z

(S
z

) (see Appendix (A)
for definition), as these are preserved under summable linear combinations. For
other function classes which may not in general be preserved under infinite sums
(including Sobolev and non-uniform Besov classes), this property is harder to
guarantee, but may still hold under slightly stronger conditions on the inte-
grand. Condition (v) is a “marginalization” condition which requires that fixing
one argument of a regular function, it remains a regular function of the other ar-
guments. This holds for a variety of regularity classes with uniform definitions:
in particular, if ˆG[p

`

a

][[p

`

n

]

= ⇤

↵

(S
([p

`

a

][[p

`

n

])

) for any ↵ > 0, ˆG[p

`

b

]

= ⇤

↵

(S
[p

`

b

]

)

may be used here. Tensor products of F↵

z

d

z

(S
z

), along with any other condition
imposing uniform bounds on partial derivatives likewise satisfy this property,
with appropriate adjustments for the dimension of the function. Regarding the
rates in part (vi), for intermediate nodes these may be derived from standard
function approximation rates.

For the input functions at the steady state, bounds on
�

�

�

P

K[j]

k=1

(M
K[j]

�!̃
g ⇤

j(p

`

)

)

k

�
k

�g⇤
j(p

`

)

�

�

�

1
can be derived from the triangle inequality and Condition (5)(v) and

(vi), which requires that the approximation of the steady state is reasonably ac-
curate and that the interpolation scheme is sup norm accurate. As a wide
variety of algorithms are used for steady state approximation, I leave only the
high level condition that the approximation lies in a useful smoothness class
and is uniformly accurate. Uniform accuracy can be guaranteed by a variety of
fixed point algorithms, while smoothness of the approximation is a property of
a variety of projection schemes using sufficiently regular basis functions, though
it is worth noting that even if the true functions g⇤

j

lie in a class G[j], uniformly
accurate approximations may not remain in this class. For example, conver-
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gence of values need not imply convergence of derivatives, or even existence of
derivatives. Nevertheless, possibly by allowing ˆG[j] to be less regular than G[j],
a reasonable degree of smoothness (and therefore, reasonably fast convergence
rates) may still be attainable.

Condition 6. (i) For all `, for all p` = 1 . . . P `, for each p 2 par(p`) let the
partial derivative @

dn

p

fp

`

(s
[p

`

I

]

, (.)) of fp

`

(s
[p

`

I

]

, (.)) with respect to input np

(.) be

Hölder continuous with exponent ↵p

`

(p)

d

in input np

(.) (considered as a scalar)
uniformly over all inputs other than p.

(ii) For all `, for all p` = 1 . . . P `, let G[p

`

n

]

d

: S
[p

`

n

]

! R, G[p

`

a

][[p

`

n

]

d

:

S
[p

`

a

][[p

`

n

]

! R and G[p

`

]

d

: S
[p

`

]

! R be classes of bounded functions on
S
[p

`

n

]

, S
[p

`

a

][[p

`

n

]

, and S
[p

`

]

, respectively, such that for all `, for all p` = 1 . . . P `

for each q 2 par(p`), if the linear component of node p` is an integral op-
erator, kp

`

(s
[p

`

a

]

)

@

dn

q

fp

`

(s
[p

`

I

]

, (.)) · (.) : ⇥
p2par(p

`

)

G[p] ⇥ G[q]

d

! G[p

`

a

][[p

`

n

]

d

and
R

[.]ds
[p

`

b

]

: G[p

`

a

][[p

`

n

]

d

! G[p

`

]

d

, and if the linear component of node p` is an iden-

tity @

dn

q

fp

`

(s
[p

`

I

]

, (.)) · (.) : ⇥
p2par(p

`

)

G[p] ⇥ G[q]

d

! G[p

`

n

]

d

:= G[p

`

]

d

, i.e., such that

the application of the derivative of each node preserves the function class.
(iii) For each `, for each p`, for each input variable j = 1 . . . 2d

2

+ o` let
[p`

dj

] = [p`
b

]/([p`
b

] \ [j]) indicate the set of integrands integrated over in node p`

excluding the components of input j. For each `, for each p`, for each input
variable j = 1 . . . 2d

2

+ o`, define recursively along the computational graph
the sets [p`m

j

], [p`m
ej

] for terms m 2 Mp

`

j

, a set defined as follows. Start at
node j with M j

j

= 1 and let [jm
j

] = ;, [jm
ej

] = ;. For a node p`, let q
j

(p`)

be the set of q 2 par(p`) such that q lies along a directed path from node
j to node p`. For each p`, for each q 2 q

j

(p`), for each m0 2 Mq

j

, define
an m = m(q,m0

) 2 Mp

`

j

where m(q,m0
) uniquely assigns an index for each

parent: e.g. is one to one and onto. If the linear component of p` is an identity
map, [p`m

j

] = [p`
n

] [ [qm
0

j

], [p`m
ej

] = [p`m
0

ej

]. If the linear component of p` is
an integral map, [p`m

j

] = ([p`
a

] [ [p`
n

] [ [qm
0

j

])/(([p`
b

] \ [qm
0

ej

]) [ [p`
dj

]), [p`m
ej

] =

[p`m
0

ej

] [ ([p`
b

] \ ([j]/[qm
0

ej

])).

For all p` = 1 . . . P `, 8j = 1 . . . 2d
2

+ o`, for all m 2 Mp

`

j

, let ˆG[p

`m

j

];[p

`m

ej

]

d

:

S
[p

`m

j

]

⇥S
[p

`m

ej

]

! R be classes of bounded functions containing the constant func-

tion 1 and 8q 2 q
j

(p`), for all m0 2 Mq

j

let ˆG[p

`

a

][[p

`

n

][[q

m

0
j

];[q

m

0
ej

]

d

: S
[p

`

a

][[p

`

n

][[q

m

0
j

]

⇥

S
[q

m

0
ej

]

! R and ˆG[p

`

n

][[q

m

0
j

];[q

m

0
ej

]

d

: S
[p

`

n

][[q

m

0
j

]

⇥S
[q

m

0
ej

]

! R be classes of bounded

functions such that kp
`

(s
[p

`

a

]

)

@

dn

q

fp

`

(s
[p

`

I

]

, (.)) · (.) : ⇥
p2par(p

`

)

ˆG[p] ⇥
q

ˆG[q

m

0
j

];[q

m

0
ej

]

d

!

ˆG[p

`

a

][[p

`

n

][[q

m

0
j

];[q

m

0
ej

]

d

if p` contains an integral operator and @

dn

q

fp

`

(s
[p

`

I

]

, (.)) · (.) :
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⇥
p2par(p

`

)

ˆG[p] ⇥
q

ˆG[q

m

0
j

];[q

m

0
ej

]

d

! ˆG[p

`

n

][[q

m

0
j

];[q

m

0
ej

]

d

:=

ˆG[p

`m

j

];[p

`m

ej

]

d

otherwise.

(iv) For each `, for each p`, for each j = 1 . . . 2d
2

+ o`, for all 8q 2 q
j

(p`), for

all m0 2 Mq

j

let ˆG([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

d

: S
([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

! R be classes of bounded
functions such that

(a)

f(s
([p

`

a

][[p

`

n

][[q

m

0
j

])/(([p

`

b

]\[q

m

0
ej

])[[p

`

dj

])

, s
([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

, s0
[q

m

0
ej

]

) 2 ˆG[p

`

a

][[p

`

n

][[q

m

0
j

];[q

m

0
ej

]

d

implies that 8s
([p

`

a

][[p

`

n

][[q

m

0
j

])/(([p

`

b

]\[q

m

0
ej

])[[p

`

dj

])

, s0
[q

m

0
ej

]

f(s
([p

`

a

][[p

`

n

][[q

m

0
j

])/(([p

`

b

]\[q

m

0
ej

])[[p

`

dj

])

, ., s0
[q

m

0
ej

]

) 2 ˆG([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

d

(b) the quadrature scheme ⇡([p

`

b

]\[q

m

0
ej

])[[p

`

dj

] corresponding to integral
R

[.]ds
([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

maps ˆG[p

`

a

][[p

`

n

][[q

m

0
j

];[q

m

0
ej

]

d

! ˆG[p

`m

j

];[p

`m

ej

]

d

.
(c) For each ` = 1 . . . d

2

, for all j = 1 . . . 2d
2

+ o`, for all 8q 2 q
j

(p`),
and for all m0 2 Mq

j

let the quadrature schemes ⇡([p

`

b

]\[q

m

0
ej

])[[p

`

dj

] associated
with tensor product interpolation schemes Q

([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

be such that for all

classes ˆG([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

d

sup

f2 ˆG[p`
a

][[p`
n

][[qm
0

j

];[qm
0

ej

]

d

sup

s

[p`m
j

];[p`m
ej

]
2S

[p`m
j

];[p`m
ej

]

�

�

�

�

�

�

�

K

[p`
b

]\[qm
0

ej

])[[p`
dj

]
X

i=1

⇡
([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

i

f(s
([p

`

b

]\[q

m

0
ej

])[[p

`

dj

],i

, s
[p

`m

j

];[p

`m

ej

]

)

�
Z

f(s
([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

, s
[p

`m

j

];[p

`m

ej

]

)ds
([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

�

�

�

�

 ⇣p
`

jm

dK

where the rate is ⇣p
`

jm

dK

:= ⇣
([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

d

(K
([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

)

(v) For each ` = 1 . . . d
2

, if row ` satisfies Condition (4)(b)(ii), for all j =

1 . . . 2d
2

, for all m 2 MP

`

j

let schemes Q
[�+1]

⌦Q
[j]

be sup norm accurate over

classes ˆG[P

`m

j

];[P

`m

ej

]

d

at rate ⇣`jm(K
[�+1]⇥[j]

)

(vi) For each ` = 1 . . . d
2

, if row ` satisfies Condition (4)(b)(i), let ñP

`

j(out)

and
nP

`

j(out)

, defined in Thm (9), be bounded away from 0. For all j = 1 . . . 2d
2

, m 2
MP

`

j

, let ˆG[P

`m

j

];[P

`m

ej

]

dd

: S
[P

`m

j

] [
m

0[P
`m

0
j

];[P

`m

ej

] [
m

0[P
`m

0
ej

]

! R be classes of bounded

functions such that if f
1

2 ˆG[P

`m

j

];[P

`m

ej

]

d

, then f1

ñ

P

`

j(out)

2 ˆG[P

`m

j

];[P

`m

ej

]

dd

. For all j =
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1 . . . 2d
2

let schemes Q
[�+1]

⌦Q
[j]

be sup norm accurate over classes ˆG[P

`m

j

];[P

`m

ej

]

dd

at rate ⇣`jm
d

(K
[�+1]⇥[j]

).

Remark. Regarding Condition (6), this condition ensures that the functional
derivatives are also approximable, and holds under similar conditions to Con-
dition (5), with the differences that I consider different subsets of arguments
and that, as the functions of interest are now the derivatives of the structural
functions, smoothness conditions on the original function must be stronger to
achieve a given rate. For example, if f(s

1

, s
2

) 2 ⇤↵, ↵ > 1, then d

ds1
f(s

1

, s
2

) 2
⇤

↵�1, and if f(s
[p

`

]

) 2 ⌦
z2[p

`

]

F↵

z

d

z

(S
z

) , then for any z
i

2 [p`], d

ds

z

i

f(s
[p

`

]

) 2

F
↵

z

i

�1

d

z

i

(S
z

i

) ⌦
z2[p

`

]/z

i

F↵

z

d

z

(S
z

) and so these function classes suffice. Intuitively,

taking derivatives loses up to one derivative of smoothness.
The idea behind conditions (iii)-(v) is that the algorithm distinguishes two

types of integrals: integrals taken directly over inputs, for which the operator
is represented in spectral form, after interpolation, and integrals taken at inter-
mediate steps, which do not appear in input or output and which are approx-
imated by quadrature. Applying the chain rule repeatedly over the graph, the
algorithm constructs for each block (`, j) a representation of the kernel function
of the operator, which is a function of inputs S

[j]

and outputs S
[�+1]

, at interpo-
lation nodes in these variables, with all intermediate variables in this function
integrated out numerically, and uses an interpolation scheme in these variables
to construct a spectral representation of the integral operator. The reason to
make a distinction between input and intermediate variables is that integrals
over input variables must attain uniform accuracy over the full Hilbert space of
potential inputs in order to achieve operator norm approximation, while inter-
mediate variables are only integrated at a fixed value, the steady state, for which
it is reasonable to assume substantially stronger smoothness assumptions (viz,

that these functions are elements of a class ˆG([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

d

) and so guarantee
accuracy of a fixed quadrature scheme.

The reason to distinguish in each term between sets [p`m
j

] and [p`m
ej

] is that
the latter represent those arguments of inputs for which one calculates integrals
by quadrature, while the former represent arguments of inputs for which one
will compute integrals by interpolation. I must keep track of the difference not
only at each node but at each term in the sum of each node because the argu-
ment alone may be insufficient to distinguish which units are integrated over by
which procedure. The rules for propagating which sets are integrated over and
which are interpolated in each component are slightly notationally cumbersome,
but at no point in the calculations does one actually need to determine the sets
[p`m

j

], [p`m
ej

], and so on. The integrals represented by quadrature and those rep-
resented by spectral methods are determined automatically by the operation of
the chain rule over the graph. These subsets and the associated function classes
do, however, determine the dimensionality and so the convergence rate of the
functions to be approximated and so are useful in the analysis of the procedure
and potentially in the choice of representations. The particular accuracy bound
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which is needed in (iv)(c) is that the quadrature scheme computes integrals ac-
curately over the intermediate units, uniformly over all other inputs. In the case
where the exact quadrature scheme corresponding to the interpolation scheme
is used, this is implied by the stronger condition that the interpolation scheme is

sup norm accurate over classes ˆG([p

`

b

]\[q

m

0
ej

])[[p

`

dj

]

d

, because sup norm convergence
implies L1 convergence. However, the reverse is not true, and in some cases the
weaker condition is needed to show consistency.

The conditions may be guaranteed in the same way as the corresponding
clauses in Condition (5), through the use of multivariate function classes with
appropriate properties of composition and marginalization for any relevant sub-
set of arguments. In particular, Hölder smoothness of high enough order for
all functions guarantees all conditions for appropriate interpolation schemes in-
cluding wavelets, splines, and polynomials, and so long as the marginal Hölder
condition in (i) is satisfied, extensions can be made to mixed and/or anisotropic
classes with corresponding representations.

A simple example may be used to illustrate the distinctions being made be-
tween the arguments. Suppose F`

(g
1

(s
1

))(t) =
R

f3

(t,
R

f2

(s
1

, g
1

(s
1

))ds
1

, g
1

(s
1

))ds
1

.
In this case, n1

= g
1

(s
1

) is the input node, n2

=

R

f2

(s
1

, n1

(s
1

))ds
1

has parent
node n1 and integral linear map, and n3

(t) =
R

f3

(t, n2, n1

(s
1

))ds
1

has parent
nodes n1 and n2. In this case, the derivative F`

g

(g⇤(s
1

))(t) can be computed by
the chain rule as

Z

d

dn2

f3

(t, n2⇤, n1⇤
(s

1

))

d

dg
1

n2

[.]ds
1

+

Z

d

dn1

f3

(t, n2⇤, n1⇤
(s

1

))[.]ds
1

=

Z

d

dn2

f3

(t, n2⇤, n1⇤
(s

1

)) ·
Z

d

dn1

f2

(s0
1

, n1⇤
(s0

1

))[.]ds0
1

ds
1

+

Z

d

dn1

f3

(t, n2⇤, n1⇤
(s0

1

))[.]ds0
1

This has an expression as a sum of two integral operators, corresponding to
m = 1, 2 2 M3

1

with kernel functions
R

d

dn

2 f
3

(t, n2⇤, n1⇤
(s

1

))· d

dn

1 f
2

(s0
1

, n1⇤
(s0

1

))ds
1

and d

dn

1 f
3

(t, n2⇤, n1⇤
(s0

1

)) applied to input function g
1

(s0
1

). To represent this nu-
merically, these functions are interpolated and mapped to a set of basis function
coefficients. Because the first function contains an integral, this must be approx-
imated as well, which can be performed by numerical quadrature. Note that
both kernel functions have arguments (t, s0

1

), while the argument s
1

in the first
function is integrated out. To see that this corresponds to the above description,
note that the arguments in a node p` which are integrated by quadrature are
([p`

b

] \ [qm
0

ej

]) [ [p`
dj

]. In the case of p` = 2, s
[p

`

b

]

, the integrand, is s
1

, which is
an input variable so [p`

b

] = [j], and so [p`
dj

] = ;, and the single parent satisfies
[qm

0
ej

] = ;, so the integral is not taken by quadrature. However, now that this
integral has been taken, I set argument s

1

to s0
1

to indicate that it will be in-
terpolated over and set [pm

ej

] = {1}. In the case of p` = 3, s
[p

`

b

]

, the integrand
in node 3, is again s

1

, which is an input variable so [p`
b

] = [j], and so [p`
dj

] = ;.
However, for the first parent node n2, [qm

0
ej

] = [1] and so [p`
b

]\ [qm
0

ej

] = [1] and the
integral over s

1

is calculated by quadrature, while for the second parent node
n1, [qm

0
ej

] = ; and so [p`
b

]\ [qm
0

ej

] = ; and so the integral over s
1

is not calculated
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by quadrature and is instead interpolated over.
The following lemma shows that the above conditions ensure that a reason-

able approximation of the steady state also ensures a reasonable approximation
of all node values at that point. Two approximations of the exact steady state
value of the node function n⇤p`

are used: the numerically feasible discrete ap-
proximation �!n ⇤p`

produced by the algorithm up to node p` for the value of
the node on the grid and the intermediate construction ñp

`

derived for ana-
lytical convenience consisting of the function which would be produced using
interpolated approximate inputs g̃⇤

j

and applying the node functions up to node
p`, replacing the exact integrals with quadrature. This latter object need not
be computed in reality, but provides a book-keeping tool to keep track of the
numerical error introduced and propagated through each step of the algorithm.

Lemma 7. Under Conditions (3), (4), and (5) (i)-(iii), defining 8`, 8p` =

1 . . . 2d
2

+ o
`

, n⇤p`

= g⇤
j(p

`

)

, �!n ⇤p`

=

�!̃
g ⇤

j(p

`

)

, and ñ⇤p`

= g̃⇤
j(p

`

)

, and for p` >

2d
2

+ o
`

defining n⇤p`

and �!n ⇤p`

inductively along the computational graph as
np

`

({n⇤p}
p2par(p

`

)

), �!n p

`

({�!n ⇤p}
p2par(p

`

)

), respectively, and ñ⇤p`

as

fp

`

(s
[p

`

I

]

, {ñ⇤p
(s

[p]

)}
p2par(p

`

)

)

when the linear component corresponding to p` is I, and

K

[p`
b

]
X

i=1

⇡
[p

`

b

]

i

kp
`

(s
[p

`

a

],i

)fp

`

(s
[p

`

I

],i

, {ñ⇤p
(s

[p],i

)}
p2par(p

`

)

)

when the component is an integral operator, then
(i) 8`, 8p` n⇤p` 2 G[p

`

].
(ii) Assume also (5) (iv)-(vi). For any `, 8p`, define the variable 1

p

` := 0

if the node p` > 2d
2

+ o` and has the identity map for linear component, and
1 otherwise, let dp(p`) be the set of directed paths terminating in node p`, and
8j 2 dp(p`), 8p 2 j, let desc(p, j) be the set of edges (a, b) from a node a to a
node b downstream of node p in path j, and define ↵p,j

= ⇧

(a,b)2desc(p,j)

↵b(a). For

convenience, abuse notation to define ⇣p
`

(K
p

`) = ⇣ [p
`

b

]

(K
[p

`

b

]

) if p` > 2d
2

+ o`

(and as defined in (5) (vi) otherwise). It is the case that
�

�

�

ñ⇤p` � n⇤p`

�

�

�

1
 �p

`

:= C(⇣p
`

(K
p

`)1

p

`+

X

j2dp(p

`

)

X

p2j

(⇣p(e)(K
p(e)

)1

p

)

↵

p,j

) (27)

�

�

�

�

�

�

K[p`]
X

k=1

(M
[p

`

]

�!n ⇤p`

)

k

�
k

� n⇤p`

�

�

�

�

�

�

1

 C(⇣ [p
`

]

(K
[p

`

]

) + (⇣p
`

(K
p

`)1

p

` + (28)

X

j2dp(p

`

)

X

p2j

(⇣p(e)(K
p(e)

)1

p

)

↵

p,j

))
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where C are constants not depending on K and p(e) indexes the node corre-
sponding to the origin of directed edge e and p(e) indexes the set of arguments
to be integrated over in that node.

Remark 8. Note that because the computational graph has finite cardinality, the
number of directed paths terminating in any given node is finite, so these sums
are also bounded. The constant term in each inequality depends on the node,
and in particular on the set of directed paths leading to it and their regularity.
In practice, the constant in the latter inequality will be larger than that in the
former, though I do not make this explicit. In general, the bound will be driven
by the worst case rate (⇣pn

(e)

(K
[p

n

(e)]

))

↵

p,j among any set of edges.
Given convergence of the approximate steady state values around which the

operators are differentiated, convergence of the functional derivatives and, in
consequence, of the approximate solutions follows from an analogous inductive
argument under similar conditions, viz Condition (6). The following lemma
demonstrates that Algorithm (1) converges, and defines the convergence rates
in terms of model primitives.

Lemma 9. Let the model of interest satisfy conditions (3), (4), (5), and (6)(i)-
(iv). Defining 8`, 8p` = 1 . . . 2d

2

+o
`

, for all j = 1 . . . 2d
2

+o`, np

`

1

j

= 1{p` = j},
and ñp

`

1

j

= 1{p` = j}, and for p` > 2d
2

+ o
`

defining np

`

m

j

inductively along

the computational graph for all q 2 q
j

(p`), for all m0 2 Mq

j

as np

`

m

j

:=

R
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`
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[p

`

a

]

)

@
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q
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`
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[p

`

I

]
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(s
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m

0
j

]

, s0
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m

0
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]

)ds
([p

`

b
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m

0
ej

])[[p

`
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]

when the linear component corresponding to p` is an integral operator, and
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`

m

j
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@
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q
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`
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[p

`

I

]
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(s

[p]
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`

)
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0
j
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[q

m

0
j

]
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m

0
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]

) when the com-

ponent is I and np

`

j

=

P

m2M

p

`

j

np

`

m

j

. Similarly, for p` > 2d
2

+ o
`

, for all

q 2 q
j

(p`), for all m0 2 Mq

j

define inductively ñp

`

m

j

for m = m(q,m0
) as

K

([p`
b

]\[qm
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dj

]
X
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⇡
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`

b

]\[q
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i
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m

0
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0
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)

when the linear component corresponding to p` is an integral operator, and

@

dnq
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) · ñqm

0
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, s0
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when the component is I. As before, define ñp

`

j

=

P

m2M

p

`

j

ñp

`

m

j

For any `, 8p`, define the variable 1

p

` := 0 if the node p` > 2d
2

+ o` and
has the identity map for linear component, and 1 otherwise. Let dp(j, p`,m)

be the multiset of pairs (p,m0
) corresponding to terms npm

0
j

along any directed
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path originating in node j and terminating in term np

`

m

j

defined by iterating the
(unique) inverse map of m(q,m0

) back to node j. It is the case that 8`, 8p`,
8j = 1 . . . 2d

2

+ o`, 8m 2 Mp

`

j

�

�

�

ñ
p

`

m(q,m

0
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j

� n
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0
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�
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implying that
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) (29)

where C is a constant not depending on K.
Assume also conditions (6)(v)-(vi). 8` = 1 . . . d

2

, if ` satisfies Condition
(4)(b)(ii), 8j = 1 . . . 2d
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and if ` satisfies Condition (4)(b)(i), 8j = 1 . . . 2d
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)) (31)

where C are constants not depending on K.

The above result ensures that the approximated functional derivatives of an
equilibrium system constructed by Algorithm (1) are such that any component
of the functional derivative which takes the form of a kernel integral operator
is represented by an approximate kernel function which converges uniformly.
The setup of the algorithm also ensures that any component of the functional
derivative which takes the form of an identity operator is represented as an
identity matrix. An application of Young’s inequality leads to the immediate
corollary that the derivative approximation converges in operator norm at the
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same rate. This is a key condition needed for the rational expectations solution
of the linearized system to likewise converge in operator norm, supposing that
conditions described in Childers [2018] which ensure global existence, unique-
ness, and continuity of this solution also hold.

Theorem 10. Assume the conditions of Lemma (9). In addition assume the full
system satisfies Condition (2) in Childers [2018]. Then Algorithm (1) produces
approximate policy operators ˜hK

x

, g̃K
x

which satisfy the conditions of Childers
[2018] Theorem 1 and so satisfies, for HK

= ⇥
j21...d

x

Sp ⌦
z2[j]

�

z

, and ✏
K

=

max

`21...d2,j=1...2d2

✏
(`,j)

K

, 9 ¯K such that for all K � ¯K

sup

kfkHK

=1

�

�

�

(

˜hK

x

� h
x

)(f)
�

�

�

 O(✏
K

)

sup

kfkHK

=1

�

�

(g̃K
x

� g
x

)(f)
�

�  O(✏
K

)

Remark 11. The constant in these bounds is in principle dependent on the
number of variables d

2

, with worst case dependence O(d2
2

✏
K

), though this may
be pessimistic in the case of block-wise sparsity. The restriction to space HK

arises because the algorithm computes only components in the span of the basis
representation. One may construct an approximation to the solution operators
on the orthogonal span of this space by the analytical procedure described in
Childers [2018] if desired, though this does not change predictions for any inputs
in space HK . Regarding Condition (2) in Childers [2018], asymptotic diagonality
is fulfilled by any model satisfying the conditions of Lemma (9). The other
conditions, which rule out roots of unity and ensure existence, uniqueness, and
continuity of local solutions, are global properties of the entire system and may
not be verified solely from the properties of the constituent functions. These
conditions constitute generalizations of the eigenvalue conditions of Blanchard
and Kahn [1980], and so may be violated in models which do not satisfy stability
or uniqueness properties, for example, monetary models under passive policy.
See Childers [2018] for a discussion of sufficient conditions and potential for
verifiability of these requirements.

4 Examples and Results
The algorithm and guarantees in the previous section present general purpose
methodology for setting up and solving a rational expectations model with vari-
ables which may be functions but in particular applications, the conditions must
be verified and decisions made regarding choice of tuning parameters including
choice of interpolation method and number K of grid points to use in each
dimension. In this section, I move back to the specialized but still broadly ap-
plicable setup of Section (2.1) to describe how the algorithm can be implemented
and conditions verified in models of this more limited class, and provide an il-
lustration via the Huggett-style model of Section (2.2). In any particular case,
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the properties of the algorithm may depend on details of the setup and even
particular parameter values at which the model is evaluated. For example, the
conditions of Theorem (10) which ensure that an accurate approximation of the
linearized first order conditions also ensures an accurate solution of the model
as a whole depend on conditions analogous to the Blanchard and Kahn [1980]
eigenvalue conditions for existence and uniqueness of a locally stable solution,
which may depend on parameters of both exogenous and endogenous processes.

Conditional on a model with solution which is well defined and stable, the
properties of the method depend primarily on the suitability of the function
approximation method used for representing the functions which constitute the
model. Appendix (A) collects a large set of pairs of function classes and inter-
polation methods and provides results which can be used to bound the ⇣ and ⇣

d

terms in the bounds from Lemmas (7) and (9) which determine this rate. These
are mainly collected from the literature on function approximation but with a
few new results. These are summarized in Table (1), with precise definitions
of each method and class and statement of convergence theorems provided in
Appendix (A).

A summary of the theoretical and numerical results over a selection of models
is that in cases where these functions are highly regular, the algorithm appears
to exhibit strong performance with only moderately fine discretization, in both
theory and practice. Tensor product Chebyshev polynomial and spline methods
perform well in cases of moderate regularity, and Chebyshev methods perform
especially well in cases of high regularity such as analytic functions. In high
dimensions, additional gains can be obtained through the use of sparse grid
methods. In cases where the functions are irregular, much finer discretization
appear to be necessary for reasonable performance. This is reflected in the the-
ory for nonsmooth or discontinuous functions, in which cases local methods such
as histograms or wavelets may be required or at least superior to smooth meth-
ods like polynomials, which can exhibit unavoidable approximation errors, as
demonstrated by the well known Gibbs phenomenon which leads to approxima-
tion artifacts in discontinuous functions. In cases in which the functions possess
many derivatives but high curvature and narrow support, performance also ap-
pears poor until a very fine discretization is used. This would likely be reflected
more precisely by quantifying the constant terms in front of the rates of con-
vergence, suggesting that the rates of convergence should be seen to reflect an
asymptotic regime, which in some cases may occur at a degree of approximation
which is beyond that which is computationally practical in some applications.
Whether this reflects an impassible difficulty specific to particular models or
could be resolved using alternative methods appears to be open. While lower
bounds for the constituent function approximation problems are often available
which suggest that each step may be near optimal, for procedures such as this
which compose many applications of function approximation, it may be the case
that not all steps need to be performed as described to obtain a valid final result.

The case in which some of the functions contain discontinuities, including
in the Huggett model of section (2.2) merits additional caution. In many such
cases, no feasible sup norm consistent interpolation method may exist, and so
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a modified version of Lemmas (7) and (9) must be used instead, with bounds
identical in form but with convergence in slightly different (weaker) norms. Two
approaches are provided, both based on histogram representations: one which
only works with a limited class of discontinuous functions but results in solution
operators which converge in the same sense as in Theorem (10), and another
which allows a broader set of possible discontinuities, but provides weaker guar-
antees for the solution operators. In both cases, the procedure actually imple-
mented is exactly that of Algorithm (1) using evenly spaced histograms as the
interpolation approach: it is only the analysis and guarantees which differ. The
latter approach is the one which must be used in the model of Section (2.2),
theoretical and numerical results for which are given in the section (4.2).

4.1 Application to Canonical Model
While the algorithm and results provided were designed with the general struc-
ture of the canonical class of heterogeneous agent models of Section (2.1) in
mind, many features of the method extend beyond what is necessary in order
to accommodate basic examples from this class. In basic versions of this model,
only very shallow paths with no more than two or three iterated nodes are re-
quired, with few intersecting structures. Simple modifications can feasibly lead
to arbitrary depth or complexity. For example, utility functions can contain a
neural network of arbitrary depth over some possibly infinite dimensional in-
put; nested CES and nested logit preferences (using an ex ante value function)
present simple special cases of this construction. Neural network constructions
can similarly be used inside transition function Q to represent a variety of dy-
namic patterns, so long as invertibility is maintained, or inside market clearing
conditions or dynamics of exogenous variables. The feasibility of such extensions
follows straightforwardly from the conditions of the method and may lead to
novel model structures, or at least additional flexibility within existing models.

Conversely, with the standard class, some implementation details must be
specialized in order to ensure validity of the procedure. In particular, the form
of the equilibrium conditions, which result in a linearized system with formulas
expressed in Appendix (B.1), imposes certain choices regarding the representa-
tions chosen, the upshot of which is that the interpolation matrices M

[j]

must
be chosen in a particular way. The variables, f

X

(.) and Lf
X

(.), which represent
the cross-sectional density of idiosyncratic state X

i

can be represented using
whichever interpolation scheme is appropriate to the smoothness properties of
the model, but it is important that normalization is imposed so that pertur-
bations of densities integrate to 0, as implemented, e.g., by Algorithm (3). In
addition to aiding interpretation of perturbations as densities, this removes a
redundant equation from the linearized system. As any correctly specified Kol-
mogorov Forward equation will ensure densities remain normalized, the action
on the basis function corresponding to a constant function will be to keep it
constant. This results in a spurious generalized eigenvalue equal to 1 (or, de-
pending on the approximation used, approximately equal to 1), which may be
recognized by a linear rational expectations solver as a violation of the required
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Table 1: Basis Functions, Function Spaces, and Convergence Rates
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eigenvalue conditions for uniqueness. As this variation has no physical meaning,
it can and should be removed by normalization.

Another issue which may sometimes occur when implementing a heteroge-
neous agents model which may require attention is the presence of “redundant”
variables, and particularly, the use of both a value function and a policy function
as state variables when the decision rule may be described in full by either one
individually. This creates multiple issues. The simplest, and least worrisome,
is that if one variable can be solved out of the system as a function of another,
the size of the derivative matrices might be reduced, improving the speed of
the algorithm. This provides sufficient justification for reducing the Bellman
equation and first order conditions to just an Euler equation, or, in those cases
where the policy can be solved for explicitly, just a Bellman equation. The
second and more serious issue is that the presence of both equations can cause
violation of Condition (4)(b) which restricts the classes of maps present in each
equilibrium condition. The issue is that the Bellman equation (6) has deriva-
tives with respect to both V

t

and g
t

(X, ✏) which are not compact operators, and
so one can not divide through to produce an equation defined only in terms of
identity and kernel integral operators. A straightforward resolution of this is to
solve out explicitly to remove one of these as a state variable, and define the
other as a function of this chosen state. An alternative resolution, which has
the advantages of requiring no additional symbolic calculations and being appli-
cable in models where no closed form representation is even feasible, is to solve
implicitly. Luckily, this can be done using a standard application of Algorithm
(1), with a particular choice of interpolation matrix M for variable g(X, ✏). A
similar issue can arise also within the first order conditions determining g(X, ✏)
when some choice variables Y

it

correspond to “static” intratemporal decisions
which are not directly influenced by expected future payoffs. These can often
be solved out of the system as explicit functions of current period variables,
but even when this is not feasible, can also be solved out implicitly in standard
application of Algorithm (1).

The idea behind the approach is that so long as the conditions of the algo-
rithm apply to a version of the model in which the function g

t

(X, ✏) has been
solved out, any procedure which results in a numerically equivalent answer will
inherit the same guarantees. One can then exploit the fact that, because one
seeks only a first order solution, even when no closed form solution exists to
solve out a redundant variable, one only needs to find the first order Taylor
expansion of this formula, which can be calculated by the implicit function the-
orem applied to the first order conditions. As a result, one can replace g

t

(X, ✏)
by its Taylor expansion in any place it occurs in the other equilibrium condi-
tions before linearizing and obtain a set of derivatives identical to those obtained
by using an explicit solution rather than just the first derivative thereof. This
approach can be implemented explicitly by first linearizing the first order condi-
tion equation (7) and solving for g

t

(X, ✏), then replacing g
t

(X, ✏) in all the other
equations with this linearized solution.10 This requires an additional analytical

10The author thanks Keshav Dogra for suggesting this approach in a related context.
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step, but removes a variable and an equation from the system and so might
improve computational speed. Alternately, one can achieve numerically equiv-
alent results without adding a step to the algorithm, by leaving g

t

(X, ✏) in as a
state variable, in which case the substitutions are performed automatically. The
one issue which must be addressed is ensuring that the post processing which
maps function values at grid points to coefficients properly handles these sub-
stitutions. Under reasonable conditions, this can be achieved by using for this
variable the same grid points as used for the approximation of the value func-
tion V

t

(X, ✏), but using an identity matrix in place of the interpolation matrix
M and the matrix ⇧�1 in parts of the algorithm where these would be applied
to the function g

t

(X, ✏). This ensures that the resulting solution is the same
as the one that would be obtained by solving out explicitly for g

t

(X, ✏), with
no unnecessary applications of an interpolation matrix. The resulting solution
will express g

t

(X, ✏) as a function of predetermined variables, expressed as a
set of grid points. To recover the coefficients, one can multiply ex post by the
interpolation matrix M used for the value function.

The following set of conditions describe a set of sufficient conditions under
which the application of Algorithm (1) to the model of Section (2.1), with
particular choice of interpolation schemes, results in a consistent procedure.

Condition 12. (i) Let equilibrium conditions be defined by equations (6),
(7), (10), (11), (13), and (15) with predetermined state variables Lf

X,t

(X
it

),
Lg

t

(X
it

, ✏
it

), LP
t

, P
2t

in H
x

= L2

0

(X )⇥L2

(X⇥✏)⇥H
P

⇥H
P2 and jump variables

f
X,t

(X
it

), g
t

(X
it

, ✏
it

), P
1t

, and V
t

(X
it

, ✏
it

) in H
y

= L2

0

(X )⇥L2

(X ⇥ ✏)⇥H
P1 ⇥

L2

(X ⇥ ✏), where X ⇥ ✏ are bounded subsets of Rn

x ,Rn

✏ . Let u(Y
i

, X
i

, P, ✏
i

) be
twice continuously differentiable with 1-Hölder second derivatives, and strictly
concave in Y

i

. Let the functional derivative of first order condition equation (7)
possess bounded inverse for all (X

it

, ✏
it

).11 Let (P
1

, P
2

) 2 H
P1⇥H

P2 where each
space is a Cartesian product of Euclidean space and or functions over (spaces
isomorphic to) X or ✏. Let u(.), f

✏

(.), and Q(.) depend either only on a fi-
nite dimensional subvector of P

t

and/or P
t+1

, or, if P
t

is function valued, let
all paths through these functions contain an integral operator with bounded 1-
Hölder kernel function. Let f

U

, d

dU

f
U

, f
✏

, and Q�1

y,x

(.), and their derivatives and
the determinants thereof be 1-Hölder in their arguments. Let market clearing
function F (f

X,t

(X
it

), g
t

(X
it

, ✏
it

), P
t

) on its own satisfy Condition (4)(b)12 and
be composed of functions which are 1�Hölder in all arguments.

(ii) Let (T X
K

x

,MX
K

x

,�
K

x

(X)) be a linear order K
x

interpolation scheme
over X sup norm accurate at rate ⇣

K

x

over 1�Hölder functions on X . Let
(T ✏

K

✏

,M ✏

K

✏

,�
K

✏

(✏)) be an order K
✏

interpolation scheme over ✏ sup norm ac-
curate at rate ⇣

K

✏

over 1�Hölder functions on ✏, and let the tensor product
(T X

K

x

⌦ T ✏

K

✏

,MX
K

x

⌦M ✏

K

✏

,�
K

x

(X)⌦�
K

✏

(✏)) be an order K
✏

⇥K
x

interpolation
scheme over X ⇥ ✏ which is sup norm accurate at rate ⇣

K

✏

⇥K

x

over 1�Hölder
11See appendix (B.1) for formula: this derivative is a multiplication operator, so this is

equivalent to assuming the function is bounded away from 0.
12This can be weakened to the condition that after replacing g

t

(X, ✏) by the solution of first
order condition equation (7), F satisfies this condition.
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functions on X ⇥ ✏ . Let the tensor product of this scheme be sup norm accu-
rate at rate ⇣

K

2
✏

⇥K

2
x

. Let the corresponding interpolation schemes over H
P1 and

H
P2 be of dimensions K

P1 and K
P2 respectively, and let them and tensor prod-

ucts thereof with the previous schemes be sup norm consistent over 1-Hölder
functions over the corresponding spaces at rates ⇣

K

P1⇥K

x

⇥K

✏

, ⇣
K

P2⇥K

x

⇥K

✏

,
⇣
K

P1⇥K

P1
, ⇣

K

P2⇥K

P2
, ⇣

K

P1⇥K

x

, ⇣
K

P2⇥K

x

. Denote the maximum of these rates
as ⇣

P

. Let in all cases the quadrature scheme used be the exact quadrature
scheme associated with the interpolation scheme.

(iii) Let a steady state of the model exist and be 1-Hölder, with steady state
values of functions in x, y at grid points of the schemes from condition (ii)
calculated by any procedure, with sup norm error ⇣

K

.

The above conditions are fairly mild, but do impose a few restrictions.
Smoothness conditions rule out models with kinks or discontinuities, includ-
ing the Huggett model example. Stronger conditions than these could be im-
posed to achieve correspondingly faster rates; the choice of Hölder conditions is
mainly for simplicity, as it is the simplest condition under which one need not
consider the topology of the computational graph when calculating the rate of
convergence, and also ensures that all of the various function classes described
in Conditions (5) and (6) can be taken to be the class of Hölder functions, which
satisfies all the required conditions. Strong concavity and nonnegativity condi-
tions ensure that first order conditions are necessary and sufficient for unique
interior solutions; relaxing these conditions may introduce multiplicity or cor-
ner solutions, which must be dealt with by other methods. The conditions on
the market clearing conditions are left abstract as these may take many forms.
In cases in which these variables are finite dimensional and affected only by
weighted averages of individual states or actions, as is typical of general equilib-
rium or mean field interactions, these conditions are always satisfied. In cases
where the aggregate states are themselves functions, as in general equilibrium
models with a continuum of goods (for example, trade models where goods are
indexed by location), these conditions might in principle rule out certain forms
of purely local interactions, but appear to be satisfied by a broad variety of
standard models.

The condition on the interpolation schemes is weak, satisfied by a broad
variety of tensor product schemes including splines, wavelets, Chebyshev poly-
nomials, histograms, and so on. The steady state condition does not appear
particularly onerous so long as such a state exists, noting that fixed points gen-
erally preserve the Hölder property, but verifying a rate of convergence may
depend on fine details of the model and steady state solution algorithm which
are left unspecified here and so this is left as a high level condition. In prac-
tice, a procedure such as the iterative algorithm introduced in Huggett [1993]
is recommended.

Theorem 13. Let a model satisfy condition (12)(i). Apply Algorithm (1) to
this model, using interpolation schemes and the corresponding exact quadrature
weights satisfying condition (12)(ii) over all variables with the following changes:
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In step (5), M
[j]

= MX
K

x

⌦ M ✏

K

✏

should be replaced by I
K

✏

⇥K

x

and ⇧[j] by
I
K

✏

⇥K

x

in the columns j corresponding to g(X, ✏) or Lg(X, ✏), and M
[`

o

]

=

MX
K

x

⌦ M ✏

K

✏

replaced by I
K

✏

⇥K

x

in the first order condition equations (7).
g
t

(X
it

, ✏
it

) should be counted as an input argument in Bellman equation (6)
(explicitly: it should be premultiplied by M

[`

o

]

= MX
K

x

⌦M ✏

K

✏

).13
Let K

[x]

= K
x

� 1 +K
x

⇥K
✏

+K
P1 + 2K

P2 , K[y]

= K
x

� 1 +K
x

⇥K
✏
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be the number of grid points used for predetermined and jump
variables, respectively.

Define V
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2 RK[x]⇥K[x] as the block diagonal matrix with MX
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In Step (6), pre- and post- multiply the matrices hK
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and V
[y]
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before constructing maps ˜hK

x

, g̃K
x

.
In addition assume the full system satisfies Condition (2) in Childers [2018].

Then this modified version of Algorithm (1) produces approximate policy opera-
tors ˜hK

x

, g̃K
x

which satisfy, for HK[x]
= Sp �
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Remark. This result says that so long as the variable g(X, ✏) is represented
using grid points rather then function interpolation, one can apply the baseline
solution method, ignoring the fact that Condition (4)(b) fails in the setup of the
model, because the results are numerically equivalent to those that would be
obtained by solving to remove g(X, ✏) and Lg(X, ✏) from the system. The only
change to be made is that, because these variables are represented by grid points,
to recover their behavior as well, they must be transformed to coefficients by
interpolation, which will recover the relationship that could have been found by
applying the implicit function theorem to the first order conditions. If behavior
of g

t

(X, ✏) is not desired, the modification of step (6) is not needed; one could
simply remove the associated rows and columns from the solutions and use the
standard representation for the remaining variables.

4.2 Huggett Model Theory and Results
The consumption savings model from Section (2.2) while a special case of the
general class, presents some additional challenges. The most important of these

13In case market clearing equation (10) satisfies the weaker condition of footnote (12), if
there exists a sub equation in which the derivative with respect to g(X, ✏) is a multiplication
operator, it should also be treated as an input argument.
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is the presence of a kink in, and so nondifferentiability in the derivative of, the
consumption policy rule as a function of wealth at a point which is determined
in equilibrium, which prevents the possibility of use of an interpolation method
which converges uniformly over its domain. This does not prevent the use of
Algorithm (1) to construct a valid solution, but does require a slightly modified
analysis, which produces weaker guarantees. So long as one is willing to replace
an approximation guarantee which holds uniformly over all square integrable
functions with one which holds only over Hölder continuous functions, certain
classes of interpolation method can continue to produce consistent results. In
particular, a simple piecewise constant histogram interpolation over a uniformly
spaced grid exhibits robustness to discontinuities in unknown locations, with
only minor changes in coefficients in response to stretching or compression.14
Applying this modified criterion, the following guarantee can be provided.

Lemma 14. Let Algorithm (1) be applied to the model of Section (2.2), with
distributions g() and q() each chosen to be at least twice differentiable over
bounded support, using a tensor product histogram interpolation scheme with K
evenly spaced grid points per dimension.

Assume the steady state is computed by a method such that the value of the
steady state functions on this grid converges at rate O(K�1

) uniformly over
all grid points, and either the steady state parameterized expectation function
˜`⇤(w

i

) is monotone over the grid or that the convergence rate is o(K�1

).
Assume also that the full system satisfies Condition (2) in Childers [2018].
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Further, impulse response functions satisfy
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Proof. See Appendix.

This rate results from the histogram approximation error in uniform norm
for piecewise smooth functions with known jumps, which allows application of
the bounds of Theorem (10), along with an additional loss due to possible ap-
proximation error in the location of the discontinuities, which can be bounded

14Strictly, this basis exhibits a form of “local diffeomorphism invariance,” in the sense of
Bruna and Mallat [2013], Grohs et al. [2018]. See Appendix Section (A.3).
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due to local diffeomorphism invariance for appropriately smooth inputs, pro-
vided that the steady state approximation satisfies the required conditions and
so ensures that the location of the discontinuity is approximated with sufficient
accuracy. Because of the need to perform this transformation, the resulting
rate is slower than standard function approximation rates for histograms, and
applies only over input functions which are sufficiently smooth. Nevertheless,
the method is consistent, and numerical results suggest that when using a fine
enough grid to locate the discontinuity with sufficient precision, the resulting
solutions appear sensible.

In what follows, I display numerical results obtained from applying the
method, including steady state values and impulse response functions over 10
periods to 1 unit shocks to ✏z and ✏�. The model parameters chosen for the
evaluation are chosen only to be illustrative. In all figures and calculations, I
set a = �0.55, � = 2, q(z) =

z̄�z
2I exp(

�1

1�(�1.0+

2
z̄�z (z�z))2 ) on z 2 [z, z̄] and

0 elsewhere, where I = 0.443993816237631 is a constant ensuring that q is a
valid density, z̄ = 2, and z = 0. I set g(s) as a truncated log normal, with
mean parameter 0, variance parameter 1, and lower and upper bounds 0.5 and
3.5 respectively. For the aggregate shock to income, I set persistence ⇢

z

= 0.9.
The shock to �

t

has persistence ⇢
�

= 0.5, and enters into the distribution g(s)
by multiplying the variance factor by exp(�

t

). Graphs are calculated using
K = 150 evenly spaced grid points over interval [�0.5, 20.5]. Figure (1) displays
steady state cash on hand distribution m⇤

(w) and consumption policy function
c(w, `⇤(w), R⇤

). Figure (2) displays impulse responses to a 1 unit shock to ✏z,
the aggregate income. This shock raises consumption for consumers at all levels
of the wealth distribution, though the effect is largest for those with wealth
just above the level of the borrowing constraint. In equilibrium, the temporary
increase in income results in greater demand for savings and so a decline in the
market clearing interest rate. The effect on the cross-sectional distribution of
wealth is multimodal, increasing the prevalence of high and low wealth while
reducing the prevalence of wealth at intermediate levels. Figure (3) displays
the impulse response to an anticipated shock to the variance parameter of the
truncated log normal distribution. Note that such a shock is not a pure mean
preserving spread, due to the parameterization, and raises both mean and vari-
ance of the income distribution. On impact, this shock raises the consumption
of the borrowing constrained, who anticipate higher income (as the truncation
point is unchanged), and slightly lowers that of the unconstrained, with net
result an increase in demand for savings which lowers the interest rate. In one
period, when the change in the income distribution is realized, consumption falls
at all wealth levels, though more for the unconstrained, and demand for savings
falls, raising the interest rate above the steady state level. The distributional
result of this set of changes is to shift the wealth distribution left, reducing the
mass of high wealth and raising the mass of low wealth consumers.
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Figure 1: Huggett Model: Steady State

5 Conclusion
Bringing together models of dynamic heterogeneous individual level microeco-
nomic behavior and aggregate macroeconomic variability is a challenge that has
admitted substantial interest and computational effort. However, unlike the
case of dynamic macroeconomic models with limited heterogeneity, for which
there exist modular, general purpose modeling frameworks with rigorous com-
putational guarantees [Fernández-villaverde et al., 2016], methods for heteroge-
neous agent models, which must handle endogenously varying function valued
variables, have tended to be supported mainly by intuition and numerical exper-
iments, or have guarantees provided only in highly restricted model classes. In
this work, I have taken steps to provide a modular, extensible framework which
nests versions of a broad cross section of dynamic heterogeneous agent models
and which possess computational guarantees which should permit extension and
experimentation to incorporate novel mechanisms and empirical contexts in a
common computational environment. This framework specializes the existing
approach of combining perturbation and projection methods to solve heteroge-
neous agent models to a class of models built from a small set of linear and
pointwise nonlinear building blocks and shows how to combine these in a way
which can generate standard models and many extensions thereof, and how to
apply automated methods to reliably produce a linearized solution.

While the broad outlines of this method are similar to existing approaches,
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Figure 2: Impulse response to ✏z shock
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Figure 3: Impulse response to ✏� shock
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the details of the analysis provided here suggest details can matter substantially
for the kinds of guarantees which can be provided. Models with derivatives
which are built out of kernel integral operators that approximate the kernel
functions by accurate interpolation methods can produce matrix representa-
tions with very strong approximation guarantees, while models outside of this
class present substantial challenges, remaining outside of the reach of available
analyses. In this work, it was demonstrated how models in this tractable class
can be built and extended in great generality, and how existing models can be
transformed to fit in the class through proper construction of equilibrium con-
ditions and choice of variables. By showing how the form and approximation
guarantees can be preserved under composition via computational graphs, it is
possible to build models of a high degree of complexity and continue to ensure
their membership in a tractable class and so preserve the computational guar-
antees. This is demonstrated in the general class of heterogeneous agent models
of Arellano and Bonhomme [2016] and in the special case of a version of the
consumption-savings model of Huggett [1993], but the tools are applicable in a
much broader variety of cases, and it is hoped that this generality will promote
new uses of heterogeneous agent models to explore novel aspects of consumer,
firm, geographic, and other forms of microeconomic heterogeneity.

While the method provided greatly enhances the generality of the classes of
models which can be reliably evaluated, there are noteworthy limitations that
suggest cases in which alternative methods might be preferred. The ability to
ensure strong guarantees for models built out of kernel operators need not imply
that models which do not take this structure cannot enjoy strong or superior
performance using alternative methods. Heterogeneous agent models in contin-
uous time defined in terms of differential equations do not fit in this class, but a
perturbation approach to these models, as in Ahn et al. [2017], may continue to
enjoy similar guarantees based on the well developed convergence theory for nu-
merical approximation of differential equations. In discrete time, perturbation
methods which do not explicitly transform the model representation to ensure
tractable structure, such as those of Reiter [2009] and Winberry [2016] may
nevertheless exhibit strong and generalizable performance. Given the broad ap-
plicability of these methods in practice, it is hoped that the analysis provided
here might also provide a foundation upon which to validate or enhance the
performance of these less structured methods.
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A Bases and Function Spaces: Choices and Guar-
antees

As described, the approximation algorithm introduced here can be implemented
over a wide variety of models, using a wide variety of interpolation schemes us-
ing a variety of classes of basis functions. Which interpolation method is chosen
can be based on a combination of ease of implementation, speed, and accuracy
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over the types of functions which compose the model to be solved. Properties
required of such a method are that it have a representation as an interpolation
scheme implementable by a matrix transform and that it be sup norm accu-
rate over the classes of functions in the model.15 Accuracy of the algorithm
for a given number of basis functions (or, equivalently, number of basis func-
tions needed for a given desired accuracy) is determined by the precise rates
of convergence of the function approximation in sup norm. Additional desir-
able features are the preservation of these accuracy properties with respect to
tensor products and over marginals of multivariate functions. These properties
are satisfied by a large set of popular approximation methods and their tensor
products over many reasonable function classes. In this appendix, for conve-
nience, I collect a variety of popular methods and associated function classes
and present their convergence properties. These include, among others, Cheby-
shev polynomials, histograms, splines, wavelets, and sparse grid (e.g. Smolyak)
interpolation schemes. I also discuss specialized methods for functions with dis-
continuities, which require delicate modification to the general framework. The
list is by no means exhaustive, but should cover many of the most commonly
used methods and models. As some of these classes of basis functions, including
Chebyshev polynomials and splines, at least in their default implementations,
are not orthonormal with respect to the standard L2 inner product, I overview
approaches for orthonormalization, as well as for restricting to functions which
integrate to 0, which is needed for arguments which are probability densities, in
subsection (A.1).

A note should be made regarding some (possibly conspicuous) omissions.
The requirement for sup norm accuracy generally omits models whose definition
contains unbounded functions. Much of the approximation literature, especially
for function classes allowing non-uniform regularity such as Sobolev and Besov
classes and Reproducing Kernel Hilbert Spaces (see, e.g., Adams and Fournier
[2003], Johnstone [2015], and Berlinet and Thomas-Agnan [2004], respectively),
works in L2 norm for reasons of tradition and convenience, but for the meth-
ods presented here this is not enough to ensure consistency. In some cases this
omission is a technicality and stronger results may be shown (see e.g. Bach
[2017] for (some) Sobolev classes), but in other cases the absence of uniform
regularity permits unbounded functions which in general do not admit uniform
approximation. The requirement that the interpolation scheme have represen-
tation as a matrix also rules out a variety of modern approaches which ensure
higher accuracy over certain function classes, including thresholding and (penal-
ized) nonlinear optimization approaches popular for wavelet or neural network
function representations or adapive grid interpolation methods [Brumm and
Scheidegger, 2017]. This is inherent to the use of a linearized method and so
cannot be avoided. However, these methods may be used for computation of ap-
proximate steady states, and partial adaptation can be achieved in some cases:
see the section on discontinuous functions. Finally, the requirement that input

15This can be relaxed very slightly, at the cost of somewhat weaker conclusions: see Sub-
section (A.3)
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and output function spaces be isomorphic (needed for a numerical solution to
exist at all) and that function classes and interpolation schemes be preserved
under marginalization (needed for automatic construction of derivatives) re-
quires a tensor product approach to multivariate function representation in any
case where the model calls for integrating over only a subset of arguments of
a function. This rules out default implementations of a variety of asymmetric
multivariate approaches such as sparse grid interpolation [Judd et al., 2014] or
2D wavelet thresholding (Mallat [2008], Beylkin et al. [1991]), though symmetric
tensor product versions of these methods can be applied to subsets of arguments
which are not separated by marginalization.

A.1 Orthonormalization and regularization
One difficulty with approximating a linear operator using an interpolation scheme
is that for many interpolation methods with desirable accuracy properties, the
basis set �

K

is not necessarily an orthonormal basis with respect to the L2

[S]
inner product hf(s), g(s)i = RS f(s)g(s)ds. For example, while interpolation at
the Chebyshev nodes is near-optimal for certain classes of smooth functions,
the Chebyshev polynomials are orthogonal only with respect to a weighted in-
ner product hf(s), g(s)i

w(s)

=

R

S f(s)g(s) 1p
1�s

2 ds. Similarly, while B-splines
are convenient for representing a piecewise polynomial interpolation, they are
also not orthogonal. To build a matrix representation of an integral kernel op-
erator by approximating it using coefficients with respect to an orthonormal
basis, one simply needs to transform the coefficients of the kernel with respect
to a non-orthogonal set of functions into an equivalent representation using an
orthonormal basis. While computationally efficient methods are available to per-
form this transformation for, e.g., Chebyshev polynomial bases (see Townsend
et al. [2016]), which are recommended in practice in those cases, for convenience
in the case of more general interpolation schemes, I provide a simple procedure,
based on Cholesky decomposition, for constructing a map to coefficients of a
basis for the span of �

K

orthogonal with respect to a given inner product h, i.
This procedure may be used whenever it is possible to calculate inner products
in closed form, but there is no known representation of the functions �

K

in
terms of coordinates with respect to some known basis set (in which case one
could merely apply the QR algorithm to these coordinates).

In essence, what this procedure does is define a matrix representation U of
the existing functions �

K

and then performs Gram-Schmidt orthogonalization
of this matrix, by the QR algorithm. The overhead of this method is moderate:
Cholesky factorization is of roughly cubic complexity in K. Building the Gram
matrix requires the ability to compute inner products, which are often available
in closed form for many useful function classes, but finding this form will de-
pend on the class. Most importantly, however, once K and �

K

are fixed, this
operation may be performed independently of the parameters of the model, so
in an estimation setting or other application involving recomputing the model,
this procedure only needs to be performed once.
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Algorithm 2 Orthonormalization
Input: K linearly independent functions �

K

= {�
k

}K
k=1

, inner product h, i
Output: Functions  

K

= { 
k

}K
k=1

orthonormal w.r.t. h, i and linear map J
K

such that ˆf
K

(s) =
P

K

k=1

ˆf
k

�
k

(s) =
P

K

k=1

(J
K

ˆf)
k

 
k

(s), i.e., J
K

maps �
K

coef-
ficients to  

K

coefficients

1. Build Gram matrix G: [G]

i,j

= h�
i

,�
j

i
2. Cholesky decompose G: U⇤U = chol(G)

3. Construct new basis functions: X = U�1,  
k

(s) =
P

K

j=1

X
jk

�
j

(s)

4. Construct transform to new basis: J
K

= U

Lemma 15. Given K linearly independent functions �
K

= {�
k

}K
k=1

and inner
product h, i Algorithm (2) produces an orthonormal basis  

K

= { 
k

}K
k=1

and a
linear map J

K

such that ˆf
K

(s) =
P

K

k=1

ˆf
k

�
k

(s) =
P

K

k=1

(J
K

ˆf)
k

 
k

(s) for any
ˆf .

Proof. To see that  
K

are orthonormal with respect to inner product h, i, note
that

h 
k

, 
l

i =

*

K

X

i=1

X
ik

�
i

(s),

K

X

j=1

X
jl

�
j

(s)

+

=

K

X

i=1

K

X

j=1

X
ik

X
jl

h�
i

,�
j

i = X⇤
k

GX
l

= (UX
k

)

⇤
(UX

l

)

As a result, the Gram matrix of  
K

is equal to X⇤U⇤UX = U�1⇤U⇤UU�1

=

I, and so the basis  
K

is orthonormal, as claimed.
To see that J

K

gives the desired map between coefficients, note that
P

K

k=1

(J
K

X
i

)

k

 
k

(s) =

 
i

(s) =
P

K

j=1

X
ji

�
j

(s) for all i.

In a model which contains state variables which are densities, for example
variables f

X

and Lf
X

in the model of section (2.1), interpolation may require
an additional step. In addition to square integrability, required for all function
valued variables, densities are restricted to be non-negative and integrate to 1.
There are at least two ways to handle this restriction. One approach analogous
to log linearization, is to use the unnormalized log density l

X

(X
i

) as the state
variable and replace f

X

(X
i

) by exp(l

X

(X

i

))R
exp(l

X

(X

i

))dX

i

which maintains nonnegativity
and normalization by construction; see Seo [2017] and the discussion thereof in
Childers [2018]. Alternately, one may continue to use f

X

(X
i

) as the variable,
but restrict to to perturbations in the space L2

0

(X ) of functions which integrate
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Algorithm 3 Normalization of densities
Input: {T

K

,M
K

,�
K

} be an interpolation scheme over functions on S, with �
K

orthonormal (without loss of generality).
Output: Interpolation scheme {T

K

, S
K

M
K

, 
K

} with orthonormal functions
 

K

= { 
k

}K�1

k=1

orthogonal to constant function. K � 1 ⇥ K linear map S
K

such that such that given ˆf
K

(s) =
P

K

k=1

ˆf
k

�
k

(s),
P

K�1

k=1

(S
K

ˆf)
k

 
k

(s) is the  
K

representation of the projection of ˆf
K

onto the orthogonal complement of the
constant function.

1. If the constant function f(s) = 1 is in Span �
K

, let v
1

be the coefficient
representation of f(s).

(a) Else, use v
1

= M
K

�!
1 , where �!

1 is a K ⇥ 1 vector of all 1s.

2. Define P as the K⇥K matrix with first column equal to v
1

, and all other
entries [P ]

ij

= 1{i = j} , i.e., the K � 1⇥K � 1 identity matrix.

3. Q
K

R
K

= qr(P ) Orthonormalize P by applying QR algorithm.

4. Let  
k�1

=

P

K

i=1

[Q
K

]

ik

�
i

for k = 2 . . .K

5. Let S
K

= (Q
K

[1 : K; 2 : K])

>

to 0 in order to maintain normalization.16 This restriction can be implemented
numerically by interpolating onto a set of basis functions which always integrate
to 0. This is achievable by a simple modification of an interpolation approach
which maps to functions in L2, by orthogonalizing the basis with respect to the
constant function. Algorithm (3) provides a generic construction.

By applying the above method, one can construct an interpolation matrix
S
K

M
K

which always interpolates to functions which integrate to (approxi-
mately) 0. If the original functions are not orthonormal, one can orthonor-
malize by Algorithm (2) and use matrix S

K

J
K

M
K

. In cases where the constant
function is within the span of the first K functions, this procedure simply orthog-
onalizes with respect to this function and removes the function corresponding
to the constant function. For orthogonal polynomials, the constant function is
already a basis function, and so the approach consists of first applying standard
polynomial interpolation, then removing the first basis function. In cases like
splines or histograms, where the constant function lies in the span but is not a
basis function itself, one applies interpolation then maps to modified versions
which have been transformed to integrate to 0. In cases where the constant
function is not in the exact span, one induces additional approximation error,
but this error is asymptotically of no greater order than

�

�

�

M
K

�!
1 � 1

�

�

�

1
, the in-

16This approach maintains non-negativity only for small enough perturbations, requiring a
slight reinterpretation of the approximation guarantee: see Childers [2018]
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terpolation error in the constant function.17 For the algorithms provided, it can
be shown that the error induced by this approximation will be of lower order
and so will not contribute to any of the asymptotic results.

A.2 Function Classes

Chebyshev Polynomials
Chebyshev polynomials provide a good default basis choice for models defined
over a bounded interval. They have nearly optimal accuracy properties for
representing many common classes of smooth or very smooth functions, are
computationally attractive due to fast algorithms for interpolation, integration,
and other tasks, and are convenient due to the widespread availability of software
implementations. Regarding choice of basis functions for numerical solution of
functional equations, Boyd [2000] suggests the following “moral principle”:
(i) When in doubt, use Chebyshev polynomials unless the solution is spatially
periodic, in which case an ordinary Fourier series is better.
(ii) Unless you’re sure another set of basis functions is better, use Chebyshev
polynomials.
(iii) Unless you’re really, really sure that another set of basis functions is better,
use Chebyshev polynomials.

Accordingly, Chebyshev polynomials are recommended as a first choice for
models defined in terms of smooth functions. That being said, particular fea-
tures of a problem in which Chebyshev polynomials are a more apt choice in-
clude highly spatially regular functions, low dimensionality, and bounded and
rectangular support, and other choices may be necessary or desirable in their
absence. Even within the class of polynomial representations, they may yield
suboptimal approximations relative to other choices of projection or interpola-
tion, and for finitely differentiable functions slightly better rates may be achieved
by wavelets or sometimes splines. However, economic models are often highly
regular or even analytic, in which case polynomials, unlike splines or wavelets,
achieve exponential convergence rates, and even within the class of finitely dif-
ferentiable functions, the accuracy cost of Chebyshev polynomials is suboptimal
by a logarithmic factor at most (see, e.g. Trefethen [2013, Ch. 7] for a detailed
discussion), for which one gains substantially faster algorithms with reliable
existing implementations.

Formally, a Chebyshev interpolation scheme may be described as follows

Definition 16. A Chebyshev interpolation scheme of order K is a tuple {T
K

,M
K

,�
K

}
consisting of a sequence of point sets T

K

= {s
k

}K
k=1

2 [�1, 1] where s
k

are the
Chebyshev points of the second kind18 s

k

= � cos((k � 1)⇡/(K � 1)), linear
17Formally, let P

K

be the orthogonal projection onto �

K

and P?
1 the projection onto the

orthogonal complement of 1 (i..e. P?
1
f = f(s) � R

f(s)ds). Then a small amount of algebra

shows
��S

K

P
K

+ (I � P
K

)� P?
1

��
op

 O(

���M
K

�!
1 � 1

���
L

2
)  O(

���M
K

�!
1 � 1

���
1
).

18The Chebyshev points of the second kind are used for interpolation of Chebyshev poly-
nomials of the first kind. This (slightly confusing) terminology is entirely standard in this
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interpolation maps M
K

2 RK⇥K given by the discrete cosine transform of type
I, and basis functions �

K

= {�
k

(s)}K
k=1

given by the Chebyshev polynomials
(of the first kind), defined as �

k

(s) = cos((K � 1) cos

�1

(s)).

Note. There are many other equivalent definitions of Chebyshev polynomials
which may be more efficient to compute. Similarly, although the interpolation
map can be represented as a matrix, it is often more convenient to apply the
Fast Fourier Transform to compute it. However, for the purpose of Algorithm
(1), the explicit matrix construction is needed. In cases where one does not
desire to include the boundary in the set of interpolating points, one can use
instead the Chebyshev points of the first kind, with essentially similar results.
Note that the Chebyshev polynomials do not form an orthonormal basis of
L2

[�1, 1], and are instead orthogonal with respect to the weighting function
w(s) = 1p

1�s

2 . To construct an orthonormal basis with respect to an unweighted
inner product, the polynomials need to be transformed from the Chebyshev basis
to the Legendre basis via a linear transform J

K

. While this could be done using
the Gram-Schmidt procedure in algorithm (2), more efficient algorithms already
exist for this special case: see Townsend et al. [2016] and its implementation
in the software Chebfun [Driscoll et al., 2014]. Regarding the exact quadrature
scheme associated with this interpolation scheme, this is precisely Clenshaw-
Curtis quadrature, for which accuracy guarantees and fast algorithms for weight
construction are already well established: see, e.g. Trefethen [2013, Ch. 19].

The sup norm accuracy of univariate Chebyshev interpolation is extremely
well-studied. Typical result is given by Trefethen [2013, Theorem 7.2], quoted
below (with changes to notation) for convenience.

Theorem. Trefethen [2013, Thm. 7.2] Let f and its derivatives through f (v�1)

be absolutely continuous on [−1, 1] and suppose the ⌫th derivative f (⌫) is of
bounded variation V . Then for any K � v � 1, its Chebyshev interpolant p

K

satisfies

kf � p
K

k1  4V

⇡v(K + 1� v)v

The hypothesis of bounded variation can be weakened slightly to the as-
sumption that f (v�1) is Lipschitz continuous, in which case the interpolation
has accuracy of order O(K�v

logK) (as follows from the remarks following
Theorem 7.2 and the Lebesgue constant bound in Trefethen [2013, Thm. 15.3]).
This latter bound is classical, while the former may provide tighter results in
the common case where the lack of differentiability arises from a small set of
kink points.

In cases where infinite numbers of derivatives exist, these polynomial rates
can be improved to exponential. Theorem 8.2 in Trefethen presents the bound
4M⇢

�(K+1)

⇢�1

, where |f(s)|  M and ⇢ > 1 is the radius of the Bernstein ellipse over
which the function can be analytically continued. In practice, this means that if
the function is bounded and analytic over [�1, 1], the interpolation accuracy is

literature.
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exponential, with rate depending on the size of the region in the complex plane
over which the function is analytic.

Multivariate Polynomial Interpolation

In the case of multivariate functions, there are a number of ways to extend
Chebyshev interpolation, with tradeoffs in computational and approximation
properties depending on the dimension, the class of functions one desires to
approximate, and potentially the algorithm used. The simplest and most gen-
eral multivariate interpolation method based on the Chebyshev polynomials
is to take the tensor product of univariate schemes. Tensor product Cheby-
shev interpolation achieves achieves sup norm accuracy over classes of finitely
differentiable functions comparable to the sum of the univariate rates. If all
dimensions are comparable, this results in convergence rates in terms of total
number of function evaluations which slow down exponentially with dimension,
the well-known curse of dimensionality. Mason (1980, Theorem 4.1) provides
precise convergence rates, summarized below.

Lemma. Let {K
z

}d
z=1

be cardinalities of the interpolation set over [�1, 1]d for
Tensor product Chebyshev interpolation scheme Q

d

:= {⇥
z=1...d

T
K

z

,⌦
z=1...d

M
K

z

,⌦
z=1...d

�

K

z

}.
Let F↵

= {f [�1, 1]d ! R : !
z

(t) := sup

|s
z

�s

⇤
z

|t

|f(s
1,

. . . , s
z

, . . . s
d

)� f(s
1,

. . . , s⇤
z

, . . . s
d

)| 
c
z

t�↵

z for some ↵
z

> 0, c
z

< 1 } be a class of multivariate functions. Then Q
d

is sup norm accurate over F↵ at rate O((

2

⇡

)

d

Q

d

z=1

logK
z

·Pd

z=1

!
z

(

1

K

z

+2

)).

A straightforward extension of the proof to the case of analytic functions
would replace !

z

with an exponentially declining bound.
While unrestricted tensor product bases may be simple to implement, they

do not in general result in efficient polynomial approximation for common mul-
tivariate function classes. One choice that has recently attracted particular
attention in computational economics is interpolation via sparse Smolyak grids,
which may be constructed from a carefully chosen nested subset of the tensor
product of Chebyshev points. As demonstrated in Barthelmann et al. [2000],
Smolyak interpolation leads to substantially milder dependence on the dimen-
sion than unrestricted tensor product methods while still achieving fast (albeit
not quite rate optimal) convergence for appropriately smooth functions, and for
this reason is commonly used in problems requiring approximation of moder-
ately high-dimensional (d ⇡ 10 � 20) functions: see [Brumm and Scheidegger,
2017, Judd et al., 2014]. In particular, Barthelmann et al. [2000] provide guar-
antees for the class F k

d

:= {f : [�1, 1]d ! R : Djf continuous if j
i

 k for all i}
of functions whose derivatives up to a multi-index of order k in all entries are
continuous equipped with norm kfk

F

k

d

= max{��Djf
�

�

: j 2 Nd

0

, j
i

 k}.
One difficulty with such schemes for algorithms of this type is that input

and output functions must be represented symmetrically, necessitating tensor
product representations over at least a subset of dimensions. In order to use
a Smolyak approximation method, one would need to use tensor products of
Smolyak approximations across different dimensions, reducing the efficiency
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gains achievable. In moderate to high dimensions this may still represent a
preferable option.

Histograms
Histogram approximation may be the simplest approximation scheme: up to
rescaling, it is equivalent to pure discretization, and so provides a theoretical
foundation for discretization approaches. While on a theoretical level, it can
be treated as simply a special case of wavelet approximation using the scaling
functions for Haar wavelets and a one-point quadrature scheme, this method
achieves accuracy over a non-periodic domain without special boundary adjust-
ments, and so is simpler to implement in this case.

Definition. A histogram approximation is an interpolation scheme (T
K

,�
K

,M
K

)

over domain normalizable to S = [0, 1) ⇢ R such that T
K

= {k� 1
2

K

}K
k=1

,
�

K

= {�
k

(s)}K
k=1

, �
k

(s) :=
p
K1{s 2 [

k�1

K

, k

K

)} and M
K

=

1p
K

I
K

, the K ⇥K

identity matrix divided by
p
K.

Remark. �
K

can easily be seen to be orthonormal with respect to the inner
product on L2

[0, 1) by the disjoint supports and the
p
K normalization. The

above defines a centered approximation mapping the midpoint of each interval
to the associated basis function. One could just as easily use the left or right
endpoints (or any other location within the interval) if desired: this will not
affect the rate of convergence for approximation of smooth functions, though it
may affect constants, or lead to different results in the presence of discontinuities.
It is traditional in the wavelet literature to restrict K to an integer power of 2,
but this is not needed here; in this interpretation, note that �

K

correspond to
the rescaled scaling functions of the Haar basis at level L = log

2

K: see Nickl
[2013].

Lemma 17. Let F = ⇤

↵

([0, 1)d) , a class of Hölder continuous function f on
[0, 1)d with Hölder exponent ↵. Let Q

d

= {⇥
z2{1...d}Tz,⌦z2{1...d}�z

,⌦
z2{1...d}Mz

}
be the dth order tensor product of identical histogram approximations of order
K

z

, with total cardinality K = Kd

z

. Then Q
d

is sup norm accurate over class
F at rate ✏

K

= O(d
min{↵,1}

2 K
�min{↵,1}

d

).

Remark. This approximation rate should be compared to the rate for wavelet
approximations with higher order regularity properties, which achieve accuracy
O(K�↵

d

), which is an improvement if the function has more than 1 deriva-
tive, and identical otherwise. This result is based on local approximation of
the function over the finite support of the basis functions, as is standard for
wavelet representations, but due to the absence of vanishing moments, cannot
take advantage of higher order Taylor expansions regardless of the number of
derivatives.
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Wavelets
Wavelets are a class of basis functions designed to have desirable computational
and approximation-theoretic properties by trading off spatial and frequency do-
main localization. They perform especially well in cases where the functions of
interest are of intermediate regularity, with a finite number of derivatives, or
have fine spatially localized features. Examples of this sort arise in geostatis-
tical models and (less frequently used in economics) real world audio or image
data. Coiflet wavelets were designed by Ingrid Daubechies to satisfy a number
of additional properties that make them an ideal basis for numerical approxi-
mation of integral equations. Most notably, this includes the use of compactly
supported scaling functions with vanishing moments. This permits the use of a
one point quadrature scheme which allows the use of a rescaled identity matrix
as interpolating transform while maintaining optimal approximation rates for
smooth functions. Over a more limited range of regularity scales, these prop-
erties also apply to Daubechies wavelets [Gopinath and Burrus, 1992], which
also benefit from improved constant factors. The main disadvantage is that
these rates apply only over periodic function classes. When performing linear
interpolation, it suffices to construct a representation in terms of the scaling
functions corresponding to the wavelet class at the finest scale; this permits,
as in the histogram case, the use of discretized function values as arguments.
However, accuracy guarantees are substantially stronger when the functions are
appropriately smooth. The following guarantees are repurposed from Childers
[2018].

Definition. Linear wavelet scaling function interpolation an interpolation scheme
(T

K

,�
K

,M
K

) over domain normalizable to S = [0, 1) ⇢ R such that T
K

=

{t
k

}K
k=1

= {k� 1
2

K

}K
k=1

, �
K

= {�
k

(s)}K
k=1

, and �
k

(s) =

p
K�(K(s � t

k

� c)) is
a scaling function with s vanishing moments rescaled and recentered to scale
1

K

, where c is a constant corresponding to the center of mass of the particular
wavelet19 and M

K

=

1p
K

I
K

, the K ⇥K identity matrix divided by
p
K.

Lemma. Let F = ⇤

↵

per

([0, 1)d) , a class of periodic Hölder continuous function f
on [0, 1)d with Hölder exponent ↵. Let Q

d

= {⇥
z2{1...d}Tz,⌦z2{1...d}�z

,⌦
z2{1...d}Mz

}
be the dth order tensor product of identical wavelet scaling function approxima-
tions of order K

z

with s vanishing moments, with total cardinality K = Kd

z

.
Then Q

d

is sup norm accurate over class F at rate ✏
K

= O(K
�min{↵,s}

d

)

Remark. The number of vanishing moments of the scaling function determines
the maximum degree of regularity of function at which wavelet approximation
achieves optimal accuracy. Coiflets define a family of different scaling functions
of increasing regularity, so one can define a Coiflet scaling function with s van-
ishing moments for any positive integer s. Daubechies wavelets likewise define
a family, for which s = 2 holds for all orders in the family from db2 on (i.e.,

19See Beylkin et al. [1991] for this value for Coiflets, and Gopinath and Burrus [1992] for
this value for Daubechies wavelets.
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for all Daubechies wavelets except the Haar wavelet, which is equivalent to the
histogram estimator, with guarantees as above) [Gopinath and Burrus, 1992].

The requirement of periodicity is important for these rates, limiting the
class of applications to which they apply. If one is willing to abandon the exact
identity transform in favor of a “preconditioning matrix” which takes the form
of the identity away from the edge of the domain, the requirement of periodicity
can in principle be resolved through the use of boundary Coiflets [Johnstone and
Silverman, 2004], which maintain the same accuracy properties with a slightly
modified matrix transform M

K

. However, the existence of such a basis was
demonstrated non-constructively, so implementation remains impractical. More
complicated multi-point quadrature schemes may also be possible, at higher
computational cost. Mirroring may be used as an extension instead of periodic
extension to preserve continuity, albeit rarely does this preserve differentiability.
For the case of wavelet methods applied to discontinuous functions (as might
occur if periodicity fails), see the section on discontinuous functions below. In
these cases, wavelets are still useful, but optimal accuracy might not be achieved
except through the use of nonlinear methods.

Splines (Tensor Product and Sparse Grid)
I consider multivariate piecewise polynomial (spline) interpolation using both an
unrestricted tensor product basis and a novel basis consisting of a tensor product
of interpolations calculated over a sparse grid. Notation and definitions follow
Bungartz and Griebel [2004], henceforth BG: see that paper for definitions of all
terms. The accuracy of these approximations is calculated for the function class
u 2 X1,p+1

0

([0, 1]d), the space of functions in Cp+1

([0, 1]d) with compact sup-
port and with kD↵uk1 < 1 for any multi-index ↵ with |↵|1  p+1, associated
with seminorm |u|

p+1,1 = kD↵uk1 for ↵
j

= p + 1 for j = 1 . . . d. While BG
allow splines of different order in different dimensions, and the analysis could
be extended to that case, for simplicity I consider splines of order p in all di-
rections (ie, if p = 2, the functions are piecewise quadratic). The interpolation
of u may be represented in terms of the hierarchical Lagrange decomposition
specified in that paper, which represents u 2 X1,p+1

0

([0, 1]d) by the decompo-
sition into layers of interpolation over finer and finer grids u(x) =

P

`

u
(p)

`

(x),
u
(p)

`

(x) =
P

i2I
`

v
(p)

`,i

�
(p)

`,i

(x) where �(p)
`,i

is a tensor product of polynomials up to
order p (see BG for exact definition) over a bounded support of size 2 · 2�` in
each dimension centered on a subset of the grid points x

`,i

:= i ·2�`, 0  i  2

`,
corresponding to indices i 2 I

`

:= {i 2 Nd

: 1  i  2l � 1 i
j

odd 81  j  d}
and v

(p)

`,i

are the coefficient values of these basis functions.

Lemma 18. Let u 2 X1,p+1

0

([0, 1]d) and let up,1
n

be the tensor product (hi-
erarchical Lagrange) interpolation of order p of u constructed from values at
(2

n � 1)

d grid points with rectangular mesh size 2

�n. Then ku� up,1
n

k1 
d( 0.5585

2

p+1�1

)

dc(p)|u|
p+1,1(2

p+1

)

�n where c(p) = (

2

p·(p+1)/2

(p+1)!

)

d and so with N func-
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tion evaluations, sup norm error is bounded by ✏
K

= d( 0.5585

2

p+1�1

)

dc(p)|u|
p+1,1N� p+1

d ,
or, equivalently, ✏ error requires O(✏�

d

p+1
) operations.

Remark. The proof of this result essentially copies the proof of Lemma 3.5 in
BG which proves this result for p = 1. Despite the restricted function class
here, tensor product approximation has complexity identical (up to constants)
to tensor product wavelet approximation for Hölder-smooth functions with the
same number of derivatives in each direction, even though it assumes stronger
restrictions on the cross-derivatives. As a result, for this function class an
unrestricted tensor product approximation is clearly suboptimal.

In general, for higher dimensions, for this function class, performance im-
provements can be achieved by choosing a space other than an unrestricted
tensor product space. Intuitively, the cross partial derivatives are smooth up to
a high order, so interactions can be approximated well with fewer basis func-
tions. It is therefore economical to approximate using a relatively larger number
of functions in each direction, but omit the product of higher order functions,
which will be small. For the purpose of operator approximation, tensor products
of the bases defining the input functions and the output functions are still useful,
as they allow exact representation of the identity over a projected space, but for
input spaces which are themselves multidimensional, it is possible and desirable
to construct these spaces using sparse approximations. For input spaces of di-
mension 2 or greater (and so operators with kernels of dimension 4 or greater),
substantial savings may be achieved by using a construction which takes the
tensor product of two identical sparse grid representations.

Following on BG, who note that an optimal (with respect to sup norm)
sparse grid interpolation of u 2 X1,p+1

0

([0, 1]d) has hierarchical basis represen-
tation up,1

n

=

P

|`|1n+d�1

u
(p)

`

, in contrast with an unrestricted tensor product
interpolation which has representation up,1

n

=

P

|`|1n

u
(p)

`

, for d even, if I split
the multi-index evenly into dimensions ` = (`d1 , `d2

), d = d
1

+ d
2

, d
1

= d
2

, an
interpolation based on the tensor product of piecewise polynomials of order p
over identical sparse grids over [0, 1]d1 and [0, 1]d2 will have hierarchical basis
representation u

p,{1,1}
n

=

P

max{|`d1 |1,|`d2 |1}n+

d

2�1

u
(p)

`

. By adapting the proof
of Theorem 3.8 and Lemma 4.7 in BG to this case, it is possible to construct
sup norm bounds on the approximation accuracy of this scheme.

Lemma 19. u 2 X1,p+1

0

([0, 1]d) and let up,{1,1}
n

be the tensor product over d
1

and d
2

of sparse grid (hierarchical Lagrange) interpolations of order p of u con-
structed as in BG with minimum rectangular mesh size 2

�n. Then
�

�

�

u� u
p,{1,1}
n

�

�

�

1
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0.5585dc(p)|u|
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P

d�1

k=0

✓

n+ d+ i� 1

d� 1

◆

=

n

d�1

(d�1)!

+O(nd�2

), and so with N function

evaluations, sup norm error is bounded by ✏
N

= O(N�(p+1)/2 |log
2

N |(p+2)(

d

2�1)

),
or, equivalently, ✏ error requires O(✏

�2
p+1 |log

2

✏| (p+2)(d�2)
p+1

) operations.
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Remark. As can be seen from the exponents, when d = 2, the order bounds
achieved here are identical to those in the previous case, as they should be since
the schemes are identical in that case. For larger d, substantial savings are
achieved: the bound goes from requiring a number of operations for fixed error
level depending on N to an exponent in d to a number only taking logN to an
exponent in d, which is characteristic of sparse grids methods. In comparison
to the results in BG, which allow sparsification in all dimensions, the tensor
product of sparse grids construction achieves slower rates: order N�(p+1)/2

instead of order N�(p+1) up to logarithmic terms. This is equivalent to the loss
of a tensor product scheme in 2 dimensions relative to a sparse grid method:
however, as dimension grows, the difference does not get worse. This is as should
be expected, as additional dimensions beyond the second incorporate sparse
construction. While the main reason for requiring identical grids in input and
output variables in this fashion is to permit representation of input and output
functions with identical accuracy, one may conjecture that this construction,
which incorporates more grid points along the interaction of input and output
variables, but fewer within the class, may also achieve comparable rates for a
less restricted function class, with fewer cross-partial derivatives across input
and output spaces, analogous to the way full tensor product methods attain
optimal rates for Hölder classes, but such an extension will not be pursued here.

Combining these results, tensor product sparse grid spline interpolation up to

level n forms an interpolation scheme with K =

p
N =

P

n�1

i=0

2

i ·
✓

d� 1 + i
d� 1

◆

points, with T
K

= {(x
`

d1
,i

, x
`

d2
,j

) : i 2 I
`

d1 , j 2 I
`

d2 , for |`d1 |
1

 n + d
1

�
1, |`d2 |

1

 n + d
2

� 1} the points, M
K

the hierarchical Lagrangian interpola-
tion defined in BG section 4.2, and �

K

= {�(p)
`

d1
,i

(s)�
(p)

`

d2
,j

(t) : i 2 I
`

d1 , j 2
I
`

d2 , for |`d1 |
1

 n + d
1

� 1, |`d2 |
1

 n + d
2

� 1} with sup norm accuracy for
class X1,p+1

0

([0, 1]d) at rate ⇣
K

= O(K�(p+1) |log
2

K|(p+2)(

d

2�1)

).
The above results can be extended beyond the spaces X1,p+1

0

([0, 1]d) with
known values on the boundary (normalized without loss of generality to 0) to
the slightly larger class X1,p+1

([0, 1]d) with unrestricted boundary values, at
the cost of introducing interpolation points at the boundaries. For unrestricted
tensor products, this results in a change from (2

n � 1)

d grid points to (2

n

+1)

d

grid points, changing constants but leaving asymptotic order the same. For
sparse grids, on the boundary one may use the grid points corresponding to a
sparse grid of the same order but of dimension corresponding to the dimension
of the boundary. Following BG (3.77) and Lemma 3.6, this adds

s(d) =

d

X

j=0

✓

d
j

◆

2

d�j

2

n

(

nj�1

(j � 1)!

+O(nj�2

))

additional grid points for a grid of order n in dimension d, so for a tensor product
of such grids as in Lemma (19), (s(d

2

))

2 grid points are added. This again does
not affect the rate, but increases the constant exponentially in dimension, so
such methods are often impractical in moderate dimensions, as demonstrated in
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Klimke and Wohlmuth [2005]. It is therefore suggested that the scheme without
boundary points may be used even in the absence of fixed boundary conditions,
provided that internal points may be accurately extrapolated to the edges of
the state space. For many economic applications, in which the object of interest
is an integral equation, this may be a reasonable assumption. An exception is
in hard constraints at known locations, for which it is generally crucial to use a
piecewise approximation with break at the location of the constraint.

More generally, at the interpolation stage, it may be preferable to use adap-
tive sparse grids, in which the hierarchical surpluses are computed sequentially
along a tree until a desired error tolerance is reached. While this method can
produce substantial savings in many practical problems [Brumm and Scheideg-
ger, 2017], existing adaptive schemes would require modification in order to
preserve tensor product structure, and to work inside of estimation procedures
where functions may need to be approximated across different parameter values,
and so a complete analysis of such methods is left as a promising extension.

A.3 Discontinuous Functions
In some cases, notably in the presence of hard borrowing constraints which re-
sult in equilibrium conditions which are not continuously differentiable and so
are functions with discontinuities in the derivatives, none of the above function
classes or interpolation methods ensures uniform convergence. In the case with
a finite set of discontinuities with location which is known exactly and regular-
ity over the regions between the discontinuities, there is a very simple solution.
Simply apply sup norm accurate approximation methods for regular functions
piecewise over each region of regularity. The approximation rate is then the
minimum of the approximation rate in each region. In the one-dimensional
case, these regions are intervals and so any of the above methods and guar-
antees may be used without modification. In the multidimensional case this
may result in non-rectangular domains: in these cases, approaches based on
piecewise polynomials (referred to as Finite Element Methods in the differential
equations literature) and certain classes of wavelets [Mallat, 2008] exist which
provide similar guarantees.

The case where the location of a discontinuity is not known exactly presents
a greater challenge, in that, in general, sup norm error of a magnitude compa-
rable in size to the jump may be difficult or impossible to avoid. In these cases,
convergence guarantees are still feasible but cannot be based on sup norm accu-
racy and so require another approach. In what follows I introduce two related
but distinct methods for handling this kind of discontinuity, with advantages
and disadvantages of each. The first takes advantage of the fact that the bound
on convergence rates in terms of uniform convergence of kernel functions is not
quite tight: there exist nontrivial classes of functions with discontinuities and
associated approximation schemes which do not converge uniformly but do con-
verge in a sense which is sufficient to guarantee convergence of operator norms
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of functional derivatives and so operator norm convergence of a solution. The
disadvantage of such an approach is that the types of discontinuities which can
be handled by this method are limited, ruling out a variety of models of practi-
cal interest, including, notably, the Huggett model introduced here as they have
been set up. For this reason, I also propose an alternate approach, which can
handle a broader variety of models, at the cost of only ensuring convergence of
a solution in a weaker sense, with uniformity not over the full class of square
integrable input functions but only over a subclass of smooth input functions.
The idea behind this approach is that one can compute an approximation of the
derivatives as if using a basis in which the location of the discontinuity is known
exactly, so long as one only attempts to evaluate the results using functions for
which approximation in a known basis provides an accurate approximation with
respect to the one in which the location is known.

Relaxing uniform convergence

Although convenient for analysis, sup norm convergence is a sufficient rather
than a necessary condition for convergence of the functional derivatives in op-
erator norm, and can be weakened slightly. To be precise, Young’s inequality
(Johnstone [2015] Thm. C.26), which provides an upper bound on the operator
norm error of an approximated integral operator in terms of the approximation
of the corresponding kernel function, does not require uniform convergence of
the kernel, but can be weakened to depend on slightly less restrictive set of
norms.

Definition. Consider a function f(x, y) X ⇥Y ✓ Rd

x ⇥Rd

y . Define the norms
kf(x, y)k

1/1 := ess. sup

y

R |f(x, y)| dx and kf(x, y)k1/1

:= ess. sup

x

R |f(x, y)| dy
where dx and dy refer to Lebesgue measure over Rd

x and Rd

y , respectively.

Using this notation, if the operator is of the form
R

K(x, y)[.]dy over bounded
subsets of Rd and the approximation is

R

ˆK(x, y)[.]dy, a refined version of
Young’s inequality bounds the operator norm error (with respect to inputs in
L2

(dy)) by

M
1
2
1

M
1
2
2
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�

�

�

ˆK(x, y)�K(x, y)
�

�

�

1
2

1/1

�

�

�

ˆK(x, y)�K(x, y)
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�

�

1
2

1/1

(32)

 C
�

�

�

ˆK(x, y)�K(x, y)
�

�

�

1

If M
1

or M
2

can be shown to converge directly, sup norm convergence can be
dispensed with. This quantity can be controlled for some but not all functions
with discontinuities using appropriate classes of interpolation map. For this
task, for any p < 1, convergence in Lp is not sufficient (ruling out direct
application of much of the numerical analysis literature based on these norms),
but the gap between convergence of M

1
2
1

M
1
2
2

and of
�

�

�

ˆK(x, y)�K(x, y)
�

�

�

1
can

be decisive in some cases, as the following example demonstrates.
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Example. Consider kernel function K(x, y) = 1{x � y} over [0, 1]2. Then an
evenly spaced histogram approximation using K grid points in each dimension
will not converge in sup norm due to the discontinuity along the line segment
x = y which ensures that some cells will overlap the discontinuity, resulting in
an error of constant order. In this case, however, M

1

and M
2

can be shown to
converge at rate 1

K

as the measure of the region along which pointwise error
does not go to 0 is of this order for every x and y.

This simple example can be extended to much broader classes of functions
with similar discontinuities, and particularly so for approximation methods
which are local and so constrain the region over which pointwise error occurs
to a shrinking subspace. For example, the class of cartoon functions [Donoho,
2001] and basis function classes like curvelets [Donoho and Candès, 2005] were
specifically designed for representation of functions with discontinuities which
are “not too complicated” in a formal sense.

To demonstrate that the procedure defined in Algorithm (1) can accommo-
date this class, I propose a modified set of conditions and modify the convergence
bounds of Lemma (9) accordingly. This will require construction of bounds on
the k.k

1/1 and k.k1/1

norm approximation errors of the node functions in cases
where sup norm accuracy may not be achievable.

As errors are propagated along the nodes of the computational graph defined
by the model, this is achieved by replacing the uniform approximation error
bounds on the intermediate nodes with bounds over a norm which requires
uniformity only over the subset of arguments where this is required for k.k1/1

or k.k
1/1 norms over the final nodes. To that end, define the following set

of function norms, in terms of the sets of arguments defined for each node in
Condition (6). I will call an interpolation scheme {T

K

,M
K

,�
K

} accurate in
norm k.k
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at rate ✏
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will be used to
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norm. The idea behind these objects is that uniformity is
relaxed to average case convergence with respect to those arguments for which
uniform convergence is not required. These are the intermediate variables s
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which will be integrated out by the final node and when controlling the k.k
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control. To ensure that these errors can be controlled, I consider a
modified set of conditions which ensure appropriate bounds: replacing Condition
(6), with a modified condition (6’):
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These conditions essentially weaken uniform conditions to conditions that
may only be uniform in one dimension; for example, the first condition is still
satisfied under Hölder continuity, but may also be valid for maps with forms like
1{n(s) > s} which may be discontinuous but may only have large error over a
region of decreasing mass, resulting in error which decays for at least one of the
norms. Replacing the uniform norm in the appropriate places with the more
refined norms above, operator norm bounds for the accuracy of the solution can
be achieved which take the same form, mutatis mutandis, as those based on
uniform approximation of the functions. These are expressed in the following
modified versions of Lemma (9) and Theorem (10).

Lemma. (9’) Let the model of interest satisfy conditions (17), (18), (19), and
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(33)
where C is a constant not depending on K.
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where C are constants not depending on K.

Remark. For the purposes of this analysis, I have assumed that uniform approx-
imation conditions for the steady state as guaranteed, for example, by Lemma
(7), are still satisfied here even though that condition may not be satisfied for
the model’s derivatives. This is reasonable in cases in which, for example, the
model equations are differentiable but with derivatives which are not continu-
ous, as in the Huggett model with hard borrowing constraint, which implies a
kinked policy function in steady state. In this case, uniformity may be achiev-
able for the steady state but not for the derivatives of the model at the steady
state. Analysis of the proof suggests that in the case where the steady state
nodes converge at rate �p only in L1 norm, the same bounds would apply except
with ↵

p(q)

d

replaced by min{↵p(q)

d

, 1}. As it is not needed for the example, the
full analysis, which would require a reformulation of Lemma (7), is not pursued
here.
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A modified version of Theorem (10) bounds the error in the operator norm
implied by the algorithm in terms of the bounds from Lemma (A.3) and the
more refined Young’s inequality bound.

Theorem. (10’) Assume the conditions of Lemma (A.3). In addition assume
the full system satisfies Condition (2) in Childers [2018]. Then Algorithm (1)
produces approximate policy operators ˜hK

x

, g̃K
x

which satisfy the conditions of
Childers [2018] Theorem 1 and so satisfies, for HK

= ⇥
j21...d

x

Sp ⌦
z2[j]

�

z

, and

✏
K

= max

`21...d2,j=1...2d2

(✏
(`,j)

K,a

)

1
2
(✏

(`,j)

K,b

)

1
2

sup

kfkHK
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�

�

�

(

˜hK

x

� h
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)f
�

�

�

 O(✏
K

)

sup

kfkHK

=1

�

�

(g̃K
x

� g
x

)f
�

�  O(✏
K

)

Proof of Theorem (10’)

Proof. Identical to proof of Theorem (10) , except using the bounds from Lemma
(9’) and inequality (32) in place of the bound from Lemma (9) and the sup norm
form of Young’s inequality.

Remark. In some cases, it will not be possible to ensure that ✏(`,j)
Kb

and ✏(`,j)
Ka

both
converge to 0. Fortunately this is not needed here: so long as one converges and
the other is bounded, one still obtains operator norm convergence. This is pre-
cisely the motivating case for this theorem, as in the presence of a discontinuity
aligned with the axis of an input or output argument, uniform convergence over
that argument cannot in general be achieved, but average convergence can. This
permits either the k.k

1/1 norm of the error to converge or the k.k1/1

norm,
but not both.

Given this more refined bound, it is possible to demonstrate the consistency
of the solution algorithm using certain classes of interpolation method even
for models with discontinuities which do not permit uniform approximations.
However, because uniformity is required along at least one dimension, special
care is needed regarding the orientation of discontinuities when demonstrating
convergence or lack thereof. As a result, membership in standard function
classes, like Bounded Variation functions, piecewise regular functions (Mallat
[2008] Ch 9), or their multivariate generalization, cartoon functions [Donoho,
2001], may not be sufficient provide control of convergence rates. Fortunately,
modified versions of these classes may be defined which do ensure accurate
interpolation with respect to k.k

1/1 or k.k1/1

norm.
Below I define a class, modified from the class of cartoon functions defined

in Definition 1 in Grohs et al. [2018], which allows discontinuities of the type en-
countered in practice and allows sharp approximation guarantees. These classes
are motivated by models with borrowing or other constraints, which can in-
duce lack of differentiability with respect to some arguments and discontinuity
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with respect to others in derivatives, due to the possibility that constrained and
unconstrained states induce discontinuously different responses. Given appro-
priate regularity conditions on the shape of these discontinuities and functions
which are sufficiently regular elsewhere, local approximation methods like his-
tograms and wavelets can confine the influence of these discontinuities to small
enough sets to permit uniform and average approximation with respect to the
appropriate arguments.

Definition 20. A function f(x, y) X ⇥Y ✓ Rd

x ⇥Rd

y is in class PR↵,N

1,0

(X ,Y)

if it satisfies
(i) f(x, .) is uniformly piecewise regular in y. Defining N + 1 functions

{f
n

(., .)}N
n=0

, and N sets {B
n

}N
n=1

, I may write f(., .) = f
0

(., .)+
P

N

n=1

1

B

n

f
n

(., .),
where {f

n

(x, .)}N
n=0

are uniformly ↵�Hölder in y, i.e. 8n, sup
x

kf
n

(x, .)k
⇤

↵

< C

and B
n

✓ Y are compact domains with boundary @B
n

which is a compact
topologically embedded C2 hypersurface of Rd

y without boundary.
(ii) 8y 2 Y, f(., y) is absolutely continuous on X and @

dx

f(., y) is uniformly
piecewise regular in x, where @

dx

f(., y) is taken in the sense of a weak derivative.
I say f(x, y) 2 PR↵,N

0,1

(X ,Y) if the above conditions are satisfied with x and
y reversed.

I say f(x, y) 2 PR↵,N

0,0

(X ,Y) if f(x, .) is uniformly piecewise regular in y
and f(., y) is uniformly piecewise regular in x.

Remark. These classes differ from the class of cartoon functions in a few notable
ways. The major one is that the sets whose boundaries define the regions of
discontinuities or kink points of the function are restricted to lie entirely in X or
Y, aligning them with the axes. This is not because discontinuities across these
arguments cannot be handled, but because approximation accuracy in norms
relevant to the method used here depends on the alignment of the discontinuity.
I ask for at least one (weak) derivative with respect to those dimensions for which
uniform convergence is needed, and so restrict discontinuities in that direction to
the first derivative, while in directions for which average convergence is needed
only, discontinuities of forms amenable to local approximation methods can be
handled.20 A minor difference is that a Hölder condition is imposed on the
component functions rather than a continuous differentiability assumption: in
the case where d

y

= 1, this ensures that the marginal functions are piecewise
regular in the sense of Mallat [2008] Theorem 9.12 and generally allows adapting
the method of proof from that case.

20Handling discontinuities not aligned with axes presents no trouble. Given functions
{f

n

(., .)}N0
n=N+1 in ⇤

↵

(X ⇥ Y) and sets {B
n

}N0
n=N+1 B

n

✓ X ⇥ Y with boundary @B
n

a
C2 hypersurface in Rd

x ⇥ Rd

y such that max{ sup
x2X

µ
x

@B
n

, sup
y2Y

µ
y

@B
n

} = 0 where µ
x

and µ
y

are the marginal measure over Y conditioning on x and X conditioning on y, respectively, one
could add

P
N

0
n=N+1 1Bn

f
n

(., .) to f 2 PR↵,N

1,0 (X ,Y) or f 2 PR↵,N

0,1 (X ,Y) without affect-
ing convergence rates of wavelet projection or thresholding approximations. Since this adds
cumbersome notation and is not needed for the example problems, the matter is not pursued
further.
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Interpolation methods which ensure consistency over discontinuous functions
are necessarily more restricted than those which do not. For polynomial inter-
polation at Chebyshev points of functions with finite sets of discontinuities,
Campiti et al. [2012] show pointwise convergence at all points of continuity and
uniform convergence over compact sets not containing discontinuities, but this
does not seem to suffice to ensure norm convergence. In contrast, wavelet ap-
proximation is well known to ensure convergence in L2 (and so also L1) over
bounded variation classes (see, e.g. Mallat [2008], Johnstone [2015] Ch. 9).
Extending these results to k.k

1/1 convergence over PR↵,N

0,1

(X ,Y) and k.k1/1

convergence over PR↵,N

1,0

(X ,Y) requires some modification, but is achievable in
certain cases. Notably, it can be shown for histogram approximation, which is
equivalent to a low order Daubechies wavelet interpolation. With some work, it
can also be extended to higher order wavelets.

Lemma 21. Let d = d
x

+ d
y

Q = {⇥
z2{1,...d}Tz,⌦z2{1,...d}�z

,⌦
z2{1,...d}Mz

}
be the dth order tensor product of identical histogram approximations of order
K

z

, with total cardinality K = Kd

z

.
(i) Let F = PR↵,N

1,0

([0, 1)dx , [0, 1)dy

) for ↵ > 1

2

. Then Q is accurate with
respect to norm k.k1/1

over class F at rate ✏
K

= O(K�min{↵,1}
d

), and with
respect to norm k.k

1/1 over class F at rate ✏
K

= O(1) (i.e., error is bounded
but need not converge).

(ii) Let F = PR↵,N

0,1

([0, 1)dx , [0, 1)dy

) for ↵ > 1

2

. Then Q is accurate with
respect to norm k.k1/1

over class F at rate ✏
K

= O(1), and with respect to

norm k.k
1/1 over class F at rate ✏

K

= O(K�min{↵,1}
d

).

Remark. In the case where a final node nP

`

j

2 PR↵,N

1,0

([0, 1), [0, 1)) or PR↵,N

1,0

([0, 1), [0, 1))
with ↵ � 1, these rates, along with Theorem (A.3), imply that operator norm
error of the solution algorithm is (at best) O(K� 1

4
). This contrasts with a bound

of O(K� 1
2
) in the case of histograms for two-dimensional functions which are

Lipschitz, by Lemma (17).

Alternate approach to discontinuities: restricted input classes

For functions with certain types of discontinuities, no known set of basis func-
tions can ensure convergence of functional derivatives, even with respect to
weaker norms which only require uniformity over a subset of input dimensions.
A motivating example for this difficulty is the Euler equation in the Huggett
model with hard borrowing constraints; because consumption today as a func-
tion of cash on hand today and consumption tomorrow as a function of cash
on hand tomorrow both have derivatives which are discontinuous in their argu-
ments, and both enter into the same equation, this kernel function of this equa-
tion cannot be approximated uniformly with respect to either using a known set
of basis functions. Fortunately, this does not rule out that uniform approxima-
tion can be achieved using an unknown set of basis functions. Surprisingly, this
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can be sufficient to ensure approximate solutions which converge to the truth,
albeit over a more restricted class of inputs than previously discussed meth-
ods. The logic is that so long as the unknown basis can itself be approximated,
one can compose the approximate solution with respect to the unknown basis,
which converges due to uniformity, with an approximation of that basis, which
converges at least over a limited class of inputs.

The idea behind constructing an unknown basis which ensures operator norm
convergence of the functional derivatives of the equilibrium conditions and can
itself be approximated with known functions is that the source of failure of
uniform convergence is the presence of a discontinuity at a location which is only
known approximately over a function which is piecewise smooth. If the location
were known exactly, one could construct a set of basis functions with support
covering the piecewise smooth regions which would produce an interpolation
map which converges uniformly. With an approximately known location of the
discontinuity, one can construct a representation approximately of this form,
which differs from the unknown representation by a continuous deformation,
which becomes closer and closer to an identity map as the approximation of
the discontinuity becomes more accurate. Essentially, a regular histogram can
be “stretched” or “squeezed” slightly so that the border of the bins aligns with
the discontinuity. As a result, when applying the representation of the solution
in terms of coefficients with respect to the unknown basis to the coefficients
of a function with respect to the known basis, the approximation error can be
controlled so long as the coefficients with respect to the basis functions which
are used do not vary too much in response to small deformations. This property
of small response to deformations is not one which applies to all possible bases
or all possible input functions to which the solution may be applied, but it is
possible to define such classes. These results are related to and inspired by the
property of deformation invariance described in Bruna and Mallat [2013] and
Grohs et al. [2018], though the use here applies a modified definition from the
version described there in order to suit the features of the application.

To introduce these ideas, I introduce them concretely using a particular
class of functions and interpolation schemes, based on histogram approximations
adapted to the location of discontinuities.

Condition 22. Let F := {f 2 PR↵,N

0,0

(X ,Y) : {B
i

}Nx

i=1

= {B⇤
i

}Nx

i=1

✓ X , {B
i

}Nx

+N

y

i=N

x

+1

=

{B⇤
i

}Nx

+N

y

i=N

x

+1

✓ Y} be a set of piecewise regular functions with a fixed set of re-
gions over which the functions are piecewise smooth (corresponding to locations
defined in steady state). Let Q

d

x
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z2{1...d
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}Tz,⌦z2{1...d
x

}�z

,⌦
z2{1...d
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}Mz

}
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d
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z2{1...d

y

}Tz,⌦z2{1...d
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}�z

,⌦
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}Mz

} be tensor product his-
togram approximations of order K

x

:= Kd

x

z

and K
y

:= K
d

y

z

over X and Y,
respectively. Suppose there exist isomorphisms (continuous transforms with
continuous inverses) ⌧K

x

: X ! X and ⌧K
y

: Y ! Y such that
(i) (a) 8i = 1 . . . N

x

[
{k: x

k

2B

i

\⇥
z2{1...d

x

}Tz

}
{z = ⌧K

x

(x) : x 2 support �
k

(.)} =

B
i

and 8i = N
x

+1 . . . N
y

[
{k: y

k

2B

i

\⇥
z2{1...d

y

}Tz

}
{⌧K

y

(y) : y 2 support �
k

(.)} =
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B
i

(b) 8i = 1 . . . N
x

, {@B
i

\ ⇥
z2{1...d

x

}Tz} = ; and 8i = N
x

+ 1 . . . N
x

+ N
y

,
{@B
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\ ⇥
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}Tz} = ;
(ii) max{��⌧K
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(y)� y
�

�

1 ,
�

�⌧K
x

(x)� x
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�

1}  CK�1

z

for some universal con-
stant C

(iii) (a) ⌧K
x

(x) and ⌧K
y

(y) and their inverses ⌧�1,K

x

(z) and ⌧�1,K

y

(w) are
weakly differentiable, with Jacobians @
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⌧�1,K

x

(z) and @

dw

⌧�1,K
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x
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��1
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R
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k

(.)}
�
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@

dw
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(⌧K
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(w))
��1

dw
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x

k

1/K
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� 1 = O(
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)

(b) Let
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⌧�1,K
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(⌧K
y
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��1

�

�

�

L

2
(Y)


C for some constant independent of K.

Condition 22(i)(a) says that the transformations map the hypercube defining
the support of each single histogram bin to a region contained entirely within
the set B

i

which contains the point whose value is interpolated to that bin, and
that the set of these these transformed hypercubes forms a partition of the set
B

i

, for each region B
i

. Effectively, this ensures that the transformed supports
form a new partition of the sets X and Y with boundaries which exactly coincide
with the locations of discontinuities, and that the new partition keeps the points
to be interpolated on the same side of the boundary as their original location.
Condition 22(i)(b) asks that the discontinuities are in “generic position” relative
to the grid points, not intersecting them; as the discontinuities are of positive
codimension, this will be satisfied for almost any choice of grid. It might fail,
for example, if the discontinuities are located at rational points, but this can
generally be solved by increasing K by an appropriate amount. Alternately,
if the ratio is genuinely small, the discontinuity may be approximated exactly
using finite regular grids and a transformation is not needed; as the transform
is an analytical rather than computational device, this need not be known ex
ante, and the stronger of the two sets of guarantees will hold.

This partition will be used to create a new (infeasible) interpolation scheme
which permits uniform convergence. Conditions 22(ii) and (iii) impose addi-
tional regularity on the mapping creating this partition which ensures that the
new bins remain close enough in location and volume, respectively, to the uni-
formly spaced rectangular bins, where the location measure is absolute and
the volume measure is relative to the volume of a histogram bin. Condi-
tion 22 (iii)(a) bounds the total change in volume over each bin; condition
22 (iii)(b) bounds the norm of the distortion globally over the full space. Both
are implied by the stronger conditions that

�

�

det

@

dz

⌧�1,K

x

(⌧K
x

(z))� 1

�

�

1 and
�

�

det

@

dw

⌧�1,K

y

(⌧K
y

(w))� 1

�

�

1 are each O(

1

K

z

). This latter condition is closer to
the definition of a “small” deformation in Bruna and Mallat [2013] and Grohs
et al. [2018], and may be convenient to verify in practice, but is not necessary
for the results here.

While not needed for computations, and indeed not possible to compute,
it is worth describing transformations which satisfy this condition, in order
to demonstrate that such transformations exist and illustrate their properties.
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Consider a function f(x, y) 2 PR↵,4

0,0

([0, 1], [0, 1]) with a discontinuity in x at
a point c and likewise in y. For an evenly spaced histogram representation of
order K, so long as condition 22(i)(b) holds, c will fall in some bin k⇤, without
loss of generality to the left of its center. I can construct a transform with the
desired properties by defining the function
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x x  k
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K

This can be seen to satisfy 22(ii) and (iii). Further, multidimensional tensor
product versions of this construction can handle discontinuities which lie along
straight lines with respect to each dimension. For discontinuities which do
not lie along straight lines (as occurs for example in models with borrowing
constraints in a single variable which depend on another, as in the version of the
Huggett model with persistent income), somewhat more complicated structures
may be needed. However, due to the limited volume of the boundaries of the
discontinuities (see Grohs et al. [2018]), they will overlap at most a fraction 1

K

z

of histogram bins, so, for large enough K, a transformation exists which moves
each point no more than the diameter of a single bin, and spreads the change in
volume over an entire region B

i

, thus satisfying the displacement and volume
conditions. For multidimensional piecewise regular functions with boundaries
with non-zero curvature, transformations can be defined which shrink or stretch
the edges of hypercubes intersecting the boundary towards or away from the
interior of a smooth region by an amount less than the diameter of a hypercube
and so of the specified order, though the formulas are less tractable.

Given a transformation that satisfies the above conditions, it is possible
to construct an orthonormal basis with desirable approximation properties by
forming histograms with bins defined by the transform of the support of the
regularly spaced bins. Furthermore, the two histogram representations will be
“close enough together” that only minimal approximation error is incurred if one
uses the same coefficients in one as in the other.

Definition 23. Let F ⇢ PR↵,N

0,0

(X ,Y) be a set of functions, Q
d

x

, and Q
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a set of histogram interpolation schemes and ⌧K
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, ⌧K
y

be a set of transforma-
tions, all satisfying Condition 22. A transformed histogram approximation is a
pair of interpolation schemes ˜Q
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In words, this says that the transformed basis that is used retains the same
evenly spaced interpolation points and evenly scaled interpolation maps as the
standard histogram representation, but defines the bins over the transformation
of the hypercubes. Note also that, in order to ensure that the basis functions
represent an orthonormal basis, the indicator functions have been scaled by the
square root of their volume.

A straightforward modification of the sup norm convergence results for his-
tograms over Hölder continuous functions shows that a transformed histogram
approximation is sup norm accurate over piecewise regular functions, with a
slightly slower rate of convergence, arising from the fact that the unknown
rescaling of the basis functions induces an error in the interpolation approxima-
tion which is of the order of the square root of the relative difference in volume of
the original and transformed histogram bins. While this error is unfortunate, it
is also incurred directly in the function representation for any input, so appears
to be unavoidable, at least when using this class of approximations.21

Lemma 24. Let F ⇢ PR↵,N

0,0

(X ,Y) be a set of functions, Q
d

x

, and Q
d

y

be a set
of histogram interpolation schemes and ⌧K

x

, ⌧K
y

be a set of transformations, all
satisfying Condition 22, and let ˜Q

d

x
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d
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be a tensor product of transformed
histogram approximations. Then ˜Q

d

x
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d

y

is sup norm accurate over F at rate
O(K

�min{↵, 12}
z

).

Proof. See appendix.

Using a transformed histogram representation, one can apply the algorithm
exactly as described to a model defined in terms of functions with derivatives
which are piecewise regular and generate a set of numerical solutions which
converges to the truth at rates determined by the topological structure of the
model and the sup norm rates for each subcomponent, by verifying the condi-
tions of Lemma 9 or (9’). To see this, simply note that these algorithms never
require evaluating the basis functions themselves, only the functions defining
the equilibrium conditions of the model. The algorithm produces a set of ma-
trices which represent a map defined over the coefficients of the transformed
histogram representation of the input and output functions. However, unlike

21These results do suggest a possible way to improve the accuracy of the approximation
beyond using more grid points; if one can apply numerical break finding schemes in steady
state which locate the discontinuity with a higher order of accuracy than the distance between
grid points, then the error from this term could be reduced. With a histogram approach, a
method of locating discontinuities with error of order 1

K

2
z

along with an adaptively chosen set

of grid points could improve convergence rates to O(K
�min{↵,1}
z

), the same rate achievable
with known discontinuity locations, albeit with convergence over a smaller class of functions.
Whether further improvements could be possible using higher order wavelets with hard thresh-
olding is an interesting avenue for future research.
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for the other classes I have described, such a coefficient representation cannot
be used directly, as the coefficients with respect to the transformed histogram
basis of any function of interest are not known or calculable exactly.

Fortunately, a restricted set of functions can be approximated by simply
using the coefficients with respect to a regular histogram representation; apply-
ing the reverse approximation to the output yields a mapping which is defined
entirely in terms of computable quantities, and which inherits the accuracy
guarantees accruing to the representation in terms of unknown basis functions.
Precisely, define the following bound for any map defined in terms of the trans-
formed histogram basis.

Lemma 25. Assume the conditions of Lemma (24). Let ZK 2 RK
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Proof. See appendix.

The rate of convergence here reflects the error induced by representing func-
tions with respect to the “wrong” basis. It is important that an L2 norm be
used, as transformation in general cannot ensure L1 convergence, which is pre-
cisely the reason for which the transformed basis is used to ensure operator
norm convergence, which requires convergence of functions in a stronger sense.
This lemma can be used to show convergence of representations of the solution
operators h

x

, g
x

, and also impulse response functions and also derivatives of
equilibrium conditions, if these need to be evaluated directly. More precisely

Corollary 26. Let (˜hK
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) be a set of matrix representations of policy oper-
ators produced by applying Algorithm (1) using a tensor product histogram repre-
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approximation satisfying the conditions of Lemma (24). Then for ↵ � 1

2

, there
exists ¯K such that for any K > ¯K

sup

{f2⇤

↵

: kfkH
X

=1}

�

�

�

�

�

�

K

x

X

i=1

K

y

X

j=1

h

˜hK

x

i

ij

h'
j

(x), f(.)i'
i

(x)� h
x

[f(.)]

�

�

�

�

�

�

H
X

 ✏
K

+CK
� 1

2
z

sup

{f2⇤

↵

: kfkH
X

=1}

�

�

�

�

�

�

K

x

X

i=1

K

y

X

j=1

⇥

g̃K
x

⇤

ij

h'
j

(x), f(.)i'
i

(y)� g
x

[f(.)]

�

�

�

�

�

�

H
Y

 ✏
K

+CK
� 1

2
z

81



Further, for any integer m � 1, for any K > ¯K, the numerical impulse
response functions derived from above solutions satisfy
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where the constant factor does not depend on K or m, i.e., the convergence
is uniform over the length of the impulse response.

Proof. See appendix.

Remark. The first claim follows by verification of conditions of Lemma (25), plus
a bound on the direct error from using a transformed histogram representation
of f . The second follows from the first and repeated application of the triangle
inequality, where uniformity holds because impulse responses to stable models
decay geometrically to 0. A separate convergence result for impulse response
functions is needed because the output of a policy operator applied to a Hölder
smooth function need not itself be Hölder smooth.

Under mild conditions on the functions defining the equilibrium conditions
of the model and its derivatives, such as that they form functions in spaces
PR↵,N

0,0

for ↵ � 1

2

and that each node is Hölder continuous with respect to par-
ent nodes with exponent at least 1, the term ✏

K

in the above corollary will also
be of order K

� 1
2

z

, making this the rate for the model as a whole. For example,
if, as in the Huggett models with i.i.d. income, the kernel functions defining
the model are 2�dimensional, an order K histogram representation will have
a convergence rate of O(K� 1

4
). For versions of these models where income is

persistent and so the dimension rises to 4 and so K = K4

z

, this rate slows to
O(K� 1

8
). This compares to rates of O(K� 1

2
) and O(K� 1

4
) for the infeasible

version of a histogram representation, when the location of any discontinuity is
known. In this infeasible case, when the regularity ↵ of the continuous com-
ponents of the functions is higher than 1

2

, even faster rates are possible using
bases other than histograms. These improvements suggest at least two possible
avenues for improvement: use of methods which locate discontinuities more pre-
cisely, and use of bases adapted to higher levels of regularity. As rates for the
current method may be prohibitively slow in some applications requiring many
evaluations or high precision, these represent important practical directions for
future work.
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B Additional Technical Results
The equivalence between certain methods based on discretization followed by
differentiation and others based on differentiation then discretization arises due
to conditions which ensure the equivalency of different approaches in terms of
the resulting solution. In this appendix, I present a set of generic high level
equivalency results, which may then be used to show equivalency of particular
methods.

Lemma 27. Let F (.) : H
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! H
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be an operator between two separable Hilbert
spaces, equipped with complete orthonormal bases {�
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g⇤, converges to the (i, j)th entry of the matrix representation of the functional
derivative ⇡K2F
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where the first line holds by linearity of inner products and boundedness of
the functional derivatives, the second line holds by the chain rule for Fréchet
derivatives, and the final line by the assumption of continuous differentiability
and the fact that

�

�g⇤ � ⇡K1g⇤
�

�

H1
! 0 by completeness of the basis.

In words, what this result says is that rather than calculating functional
derivatives and then projecting them onto the span of a set of basis functions,
I can instead first represent the inputs and outputs in terms of their basis func-
tion coefficients and then take the derivatives of the output coefficients, which
are scalars, with respect to the input coefficients, which are also scalars, and
produce the same matrix, at least asymptotically. The assumption of contin-
uous differentiability and the asymptotic nature of the result arise only from
the fact that the derivative need not be taken at the exact steady state, but
can instead be taken at an approximation thereof. This is not truly unique
to the scalar derivative case, and such an assumption would also be needed

22Continuity is assumed to hold on the space of functions H1 ! L(H1 ! H2): i.e., conver-
gence in H1 implies convergence in operator norm of the derivative.
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even with directly calculated functional derivatives whenever the steady state
is approximated numerically.

Constructing projections of functional derivatives in this way allows replac-
ing steps 2 and 4 in Algorithm 1 of Childers [2018] with a single automated
procedure. When used in this way, one must still be sure that the conditions for
validity of this algorithm hold: in particular, it must be the case that the func-
tional derivatives satisfy the condition of separability into identity and compact
components. This separation is also necessary for the construction of the ana-
lytical correction term derived from the identity component. When automating
the model linearization and approximation process, there are two ways to han-
dle this term. First, one can simply ignore it, and construct only the approx-
imation using the projected derivatives, calculated automatically. While the
solution generated by such a process is no longer consistent in uniform norm,
it is consistent over the class of inputs which lie in the span of the projected
space: for example, for an approximation based on K polynomials, the error
bound in Childers [2018] Theorem 1 applies uniformly over all input functions
which are Kth order polynomials of norm 1 or less. Second, to construct the
correction term, it suffices to construct only the identity component of the func-
tional derivatives, which can be done without analytical knowledge of the other
components of the functional derivatives, which may be handled completely au-
tomatically. Identifying the identity component is in general not challenging,
and I will provide a scheme for doing so in a particular but fairly general class
of models to which the procedure applies. Once it is identified, the correction
term can be constructed in the usual manner without needing any knowledge
of the functional derivatives of the other components.

While the above result permits the use of standard scalar differentiation
methods to produce the projected functional derivatives used in the solution
algorithm of Childers [2018], it is only useful in practice when the action of
the nonlinear operator on the input basis functions and the basis coefficients of
the output function can be calculated or approximated in a way which ensures
that each scalar function has derivatives which can be calculated by standard
automatic differentiation software. In most cases of practical interest, as inner
products define integrals which rarely have simple closed form representations,
these functions must be approximated numerically.

Additional Invariances

Here I provide a useful generic invariance result for the solutions provided by a
rational expectations algorithm. The solution is invariant to left multiplication
by invertible transformations of the matrices representing the derivatives of the
equilibrium conditions. In other words, a change of basis leads to the same
solution, expressed in the new basis. For right multiplication, the solutions
differ, but in a way which can be resolved by multiplying the solutions by the
appropriate inverse transformations; in other words, a change of basis for the
derivatives produces only the equivalent change of basis for the solutions, and
no other change.
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Lemma 28. Transformation invariance. Let (B,A) be a (K
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Proof. Follows from straightforward linear algebra. See Appendix.

This lemma is useful whenever a particular choice of representation has de-
sirable computational properties. In particular, when a basis can be (approxi-
mately) represented in terms of pointwise evaluations, it permits the use of these
evaluations instead of the basis function coefficients as the state variables in the
solution algorithm, and so, with appropriate transformations ex post, permits
use of pointwise derivatives rather than functional derivatives.

B.1 Functional Derivatives of Canonical Heterogeneous
Agent Model

Recall that predetermined state variables are Lf
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and jump variables are f
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The derivatives of the equilibrium conditions are as follows.
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C Proofs

C.1 Proofs of Claims from Main Text
Proof. of Lemma (7)

Statement (i) follows from 5(iii) and (ii), and the fact that each node is
defined iteratively by composing the listed operators. For each `, inequality
(27) in statement (ii) can be shown by induction along the graph, from input
nodes 1 . . . 2d

2

+o
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to output node P `. Input nodes ñ⇤p`
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tion 5(i). The last line follows from the inductive hypothesis and the inequality
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fact that the quadrature is exact over the interpolation method and that the
integral is bounded by the sup norm of the integrand by the boundedness of
the support S

[p

`

b

]

. Line 3 follows from the triangle inequality. The first term in
the final line uses that kp

`

(s
[p

`

a

]i

)fp

`

(s
[p

`

I

]i

, {ñ⇤p
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{ñ⇤p`

(s
[p

`

]i

)}K[p`]

i=1

)

k

�
k

� n⇤p`

�

�

�

�

�

�

1


�

�

�

�

�

�

K[p`]
X

k=1

(M
[p

`

]
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`

]

and 5(vi).

Proof. of Lemma (9)
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Here, the second inequality holds by the inductive hypothesis and condition
(6)(ii) and (iii) to ensure that exact and approximate derivatives lie in bound-
edness of classes for all p`, and condition (6)(i), and the third by Lemma (7).

In the case where node p` has an integral operator for a linear component,
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where the first inequality follows from assumption (6)(iii) and (iv), the sec-
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, the third by the inductive
hypothesis and assumptions (6)(i), (ii), and (iii), and the fourth by Lemma (7).
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by the triangle inequality, and the fourth by assumption (6) (v) and inequality
(29) applied to the derivative of node P ` with respect to input j.
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`
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1

p
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m2M
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q2par(p)

(�p)↵
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))

where the first equality follows from the above discussion, the first inequality
by the triangle inequality, the second inequality by assumption (6) (vi) and
using that ñP

`

j(out)

and nP

`

j(out)

are bounded below, and the last by inequality
(29) applied to the derivative of node P ` with respect to inputs j and j(out)
respectively.

Proof. of Theorem (10)
For each equilibrium condition `, the functional derivative of F` with respect

to g
j

for j = 1 . . . 2d
2

is the sum of 2 components, a derivative with respect to
g
j

as an input variable and as an output variable. Under Conditions (3) and (4)
(b)(ii), the functional derivative with respect to g

j

as an input, corresponding to
nodes p` = j 2 1 . . . 2d

2

takes the form of a compact integral operator with kernel
function nP

`

j (where compactness holds because sup norm approximability of
the kernel function by a countable basis, which holds by Conditions (5) and (6),
implies operator norm approximability by a finite matrix by Young’s inequality,
which implies compactness). The functional derivative with respect to g

j

as an
output, corresponding to the nodes p` 2 [2d

2

+ 1, 2d
2

+ o`] such that j = j(p`),
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takes the form of a scalar multiple of the identity. Since the functional derivative
is a sum of these two components, each row ` of this form is consistent with
asymptotic diagonality. For rows ` satisfying condition (4) (b)(i), the same
holds subsequent to division by nP

`

2d2+1

, a fixed nonlinear function.
Given this form, Algorithm (1) constructs an approximation (

˜BK , ˜AK

) of
functional derivatives (B,A) of equilibrium conditions F such that the inte-
gral operator components on each block (`, j) have kernel which is approxi-
mated in sup norm using a set of basis functions on HK at rate ✏

(`,j)

K

, and
so converges in operator norm by Young’s inequality and the boundedness of
domain also at rate ✏(`,j)

K

, and the identity components on this block are ap-
proximated by an identity matrix on HK , giving a representation (

˜BK , ˜AK

) =

(

˜B
C

K

, ˜AK

C

) + (BK

I

, AK

I

) in terms of integral and identity components. By
Lemma (9) and by bounding the operator norm of the approximation errors
in (

�

�

�

˜BK

C

�BK

C

�

�

�

op

,
�

�

�

˜AK

C

�AK

C

�

�

�

op

) by the sum of the operator norm of the er-

rors on each block max(

�

�

�

˜BK

C

�BK

C

�

�

�

op

,
�

�

�

˜AK

C

�AK

C

�

�

�

op

)  P

`,j

✏
(`,j)

K

 d2
2

✏
K

.

As a result, by Theorem 1 of Childers [2018],

sup

kfkH
x

=1

�

�

�

(

˜hK

x

+ hK?
x

� h
x

)f
�

�

�

 O(d2
2

✏
K

)

sup

kfkH
x

=1

�

�

(g̃K
x

+ gK?
x

� g
x

)f
�

�  O(d2
2

✏
K

)

By orthogonality, for any f 2 HK

˜hK

x

f = (

˜hK

x

+ hK?
x

)f and g̃K
x

f = (g̃K
x

+

gK?
x

)f , and so the claim of the theorem follows.

Proof. of Theorem (13). First, it is demonstrated that the proposed modifi-
cation of Algorithm (1) produces numerically equivalent results to application
of the algorithm to a model with g and Lg solved out, then the conditions of
Theorem (10) are verified for this model.

Applying the implicit function theorem to first order conditions equation (7)
(represented as F (j)), with derivatives expressed in Section (B.1), obtain Taylor
expansion

g
t

(X, ✏) ⇡ g⇤(X, ✏) + (

@

dg
t

(X, ✏)
F (j)

)

�1

✓

@

dP
t

F (j)

[P
t

� P ⇤
] +

@

dV
t+1

F (j)

[V
t+1

(.)� V ⇤
] +

@

dP
t+1

F (j)

[P
t+1

� P ⇤
]

◆

By Condition (12)(i), ( @

dg

t

(X,✏)

F (2)

)

�1 exists and is a bounded multiplica-
tion operator, and and each summand is a compact operator (either an in-
tegral operator or over finite dimensional inputs). Consider the model de-
fined by replacing g

t

(X, ✏) with this Taylor expansion wherever g
t

(X, ✏) ap-
pears and removing equation (7). By the chain rule, for any differentiable F ,
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the derivative of F (g(V, P, P 0
)) with respect to (V, P, P 0

) at the steady state is
@

dg

F (g(V ⇤, P ⇤, P ⇤
))

@g

d(V,P,P

0
)

[(V, P, P 0
) � (V ⇤, P ⇤, P ⇤

)], the same as the deriva-
tive of F (g(V ⇤, P ⇤, P ⇤

)+

@g

d(V,P,P

0
)

[(V, P, P 0
)�(V ⇤, P ⇤, P ⇤

)]), so this substitution
produces derivatives identical to those produced by solving for g explicitly.

By the choice of I
K

✏

⇥K

x

in place of MX
K

x

⌦M ✏

K

✏

in the numerical derivative of
equation (7) and in columns j corresponding to g(X, ✏) or Lg(X, ✏) in step (5) of
the algorithm, and treating g

t

as an input variable in equation (6), the linearized
model produced by applying Algorithm (1) to the model with g

t

(.) substituted
out is numerically identical to that produced by applying the proposed modified
version of Algorithm (1), then solving linearized equation (7) for g

t

to obtain vec-
tor dg(X,✏)

d(P,V

0
,P

0
)

:= (

@

dg

t

(X,✏)

˜F (j)

)

�1

⇣

@

dP

t

˜F (j)

⇧

�1

[P ]

M⇤
[P ]

@

dV

t+1

˜F (j)

⇧

�1

[V ]

M⇤
[V ]

@

dP

t+1

˜F (j)

⇧

�1

[P ]

M⇤
[P ]

⌘

and multiplying the derivative with respect to g(X, ✏) in all equations by this so-
lution and adding to the corresponding blocks. One may then apply the identity
Lg0 = g to solve out Lg from all equations.

Due to the above equivalence and applying numerical equivalence result from
lemma (28), application of the linear rational expectations solution algorithm
will produce matrices hK

x

, gK
x

with subcomponents hK

x(�j)

, gK
x(�j)

correspond-
ing to deleting the rows and columns corresponding to Lg and g identical to
those of the solved out model. The row of gK

x

corresponding to output g(X, ✏)
and the row of hK

x

corresponding to output Lg0 are both then given by vec-
tor postmultiplying dg(X,✏)

d(P,V

0
,P

0
)

by the subcomponents of gK
x(�j)

, hK

x(�j)

, and
gK
x(�j)

hK

x(�j)

producing outputs P
1t

, P
t+1

, and V
t+1

. The columns of hK

x

and
gK
x

corresponding to input Lg are 0.
Supposing that the solved out model satisfies the conditions of Theorem (10)

˜hK

x(�j)

, g̃K
x(�j)

converge in operator norm, at rate O(max{⇣
K

2
✏

⇥K

2
x

, ⇣
K

, ⇣
P

}).
By equivalent calculations to those for ˜hK

x(�j)

, g̃K
x(�j)

, (MX
K

x

⌦M ✏

K

✏

)

dg(X,✏)

d(P,V

0
,P

0
)

converges in operator norm at rate O(max{⇣
K

2
✏

⇥K

2
x

, ⇣
K

, ⇣
P

}), and so the compo-
sition with ˜hK

x(�j)

, g̃K
x(�j)

does as well. Therefore, the modified step (6) produces
operators with the claimed convergence rates.

I now verify the conditions of Theorem (10) for ˜hK

x(�j)

, g̃K
x(�j)

.
First, the model with transformations takes the structure defined in Condi-

tion (3), with all maps taking the structure of integral operators and nonlinear
transforms using state variables which are functions on subsets of Rd, with X ,
with by the structure of the equations and Condition (12).

Condition (4)(i) is satisfied as all constituent functions are bounded, mea-
surable (by continuity), differentiable, and Hölder continuous in their arguments
(with ↵p � 1) by Condition (12).

Condition (4)(ii) is satisfied for all equations after the substitution out of
g(X, ✏), with part (i) satisfied by all equations except the lag definition equations
(13), which satisfy part (ii) instead.

Condition (5) (i)-(iii) are satisfied with all function classes G chosen to be
1-Hölder functions due to the Hölder conditions of Condition (12) and the fact
that this property is preserved by composition, addition, multiplication, division
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when bounded away from 0, and marginalization to sub-arguments. Parts (iv)
and (v) hold by Condition (12)(ii) on the interpolation and the choice of 1-
Hölder functions as the class ˆG. Part (vi) holds by Condition (12)(ii) and (iii),
with rates given by the steady state assumption and rates of tensor product
interpolation schemes over each corresponding function class, the slowest of
which will be of the order of ⇣

K

2
✏

⇥K

2
x

or ⇣
P

.
Condition (6) holds with all function classes G

d

and ˆG
d

chosen to be 1-Hölder
functions due to the Hölder conditions on derivatives of Condition (12) the com-
position properties of Hölder functions, and the properties of the interpolation
scheme, noting that for bounded functions the rate of interpolation error ⇣p

`

jm

dk

is bounded by the order of the rate of sup norm error. Rates of convergence are
in all cases those for 1-Holder functions of the corresponding dimensions. Part
(vi) holds vacuously.

As a result of the above the conditions of lemmas (7) and (9) hold, with
rates on the order of O(max{⇣

K

2
✏

⇥K

2
x

, ⇣
K

, ⇣
P

}) for each equation, and so the
system of functional derivatives can be assured to converge in operator norm at
this rate. The above arguments demonstrate that the conditions of lemmas (7)
and (9) apply also to (MX

K

x

⌦M ✏

K

✏

)

dg(X,✏)

d(P,V

0
,P

0
)

, so this also converges in operator
norm at the same or better rates.

The conditions of Theorem (10) hold by the operator norm convergence of
the derivatives and by the assumption that the existence and continuity condi-
tions of Childers [2018] hold, so the approximate linearized solution using the
transformed variables also converges at the rate O(max{⇣

K

2
✏

⇥K

2
x

, ⇣
K

, ⇣
P

}). To-
gether with the numerical equivalence to the modified model, this proves the
result.

Proof. of Lemma (14). The first part of this proceeds by first verifying the con-
ditions of Theorem (10) for the proposed model using a transformed histogram
representation via the results of Lemma (24), then applying Corollary (26) to
derive bounds for the representation in terms of the evenly spaced histogram
representation.

First, condition (3) representation can be seen by inspection to hold for the
system of equations defining the model. Condition (4)(a) can be seen to hold
by noting that all functions defining each equilibrium condition are Hölder of
order at least 1 (noting that the pointwise max function is 1-Lipschitz, and the
CRRA function and its derivative are uniformly infinitely differentiable over any
neighborhood not containing zero). Condition (4)(b)(ii) is seen to hold for all
equations except for Euler equation, for which condition (4)(b)(i) holds.

For the choice of function spaces and interpolation scheme, while evenly
spaced histograms would be sufficient to show the convergence of the steady
state in sup norm, it will be necessary for the next step to demonstrate con-
vergence with respect to a particular choice of transformed histogram represen-
tation. The derivative of map c(w, `(w), R) with respect to `(.) at `⇤(w), R⇤ is
1{`⇤(w)� 1

� > w� a
R

⇤ }·[.]. Because `⇤(w)�1/� can be shown to be a strictly mono-
tone function, there exists a unique value w⇤ such that `⇤(w⇤

)

� 1
�

= w⇤� a
R

⇤ . By
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the assumed uniform convergence of ˜`⇤(w) and ˜R⇤ at rate O(K�1

) and either
the monotonicity or an o(K�1

) convergence rate, for large enough K there exists
a w̃⇤ such that `⇤(w

i

)

� 1
� > w

i

� a
R

⇤ for all w
i

> w̃⇤ and the reverse holds for all
w

i

< w̃⇤, and w̃⇤�w⇤
= O(K�1

). There therefore exists a transformation ⌧K(w)
satisfying condition (22), constructed by stretching the areas above and below
w̃⇤ to reach w⇤, and so the corresponding transformed histogram representation
of the steady state satisfies 1{`⇤(w)� 1

� > w � a
R

⇤ } = 1{˜`⇤(w)� 1
� > w � a

˜

R

⇤ }.
Let this be the approximation scheme used in verifying conditions (5) and (6) .

Condition (5)(i) may be seen to hold by the Hölder continuity of all nodes.
Define PR↵,N

1,1

(X ) as the class of functions f(x) : X ⇢ Rd ! R with weak
partial derivatives @

dx

i

f(x) 8i = 1 . . . d uniformly piecewise regular with expo-
nent ↵, in the sense of definition (20), and for all argument sets [p] define the
class G[p]

:= PR1,N

1,1

(S
[p]

) of functions with derivatives which are piecewise reg-
ular with Hölder exponent 1 in all arguments. By the corresponding properties
for Hölder continuous functions, the class PR1,N

1,1

(X ) can be seen to be stable
under addition, composition, multiplication, and, if the numerator is bounded
away from 0, division, and so condition (5)(ii) on stability of class membership
also holds for classes G[p]. Condition (5)(iii) that the steady state functions
are members of this class may be verified using known properties of the steady
state of consumption savings models with borrowing constraints and incomplete
markets; see, e.g. Ljungqvist and Sargent [2012, Ch 17], Carroll and Kimball
[1996], Carroll [2004]. In particular, these imply that the steady state wealth
distribution has bounded support, and that the consumption function is con-
cave, and so, on this support, bounded, and so by the law of motion for cash on
hand and the bounded support of the income shock, the distribution of cash on
hand has finite support. The consumption function can be shown to be piece-
wise twice differentiable and so a member of PR1,N

1,1

on its support. Because
the distribution g is smooth, the Kolmogorov forward equation maps any dis-
tribution m

t

(.) to a distribution with smooth density m
t+1

(.) and so the steady
state must also be smooth. Lm⇤

= m⇤ and L`⇤ = `⇤ in steady state, and so all
input functions satisfy the desired regularity conditions. Using the transformed
histogram interpolation, condition (5)(iv) holds by the preservation of classes
G[p] under summation and marginalization. Condition (5)(v)(i) and (ii) ask for
rate of convergence for interpolation and quadrature over these function classes:
by Lemma (24) and the fact that PR1,N

1,1

contains PR1,N

0,0

, the sup norm conver-
gence rate for transformed histogram interpolation of a function in dimension
d must be ⇣

K

= O(K� 1
2d
). Condition (5)(v) holds by the assumption on the

convergence rate of the steady state with rate O(K�1

).
As a result, the conditions of Lemma (7) hold and steady state nodes all

converge at rate O(K� 1
2
).

Condition (6) holds due to a set of considerations similar to those above for
condition (5), except this time applied to the derivatives rather than the values of
the functions defining the equilibrium conditions. Condition (6)(i) requires some
special consideration; for all nodes except that corresponding to the mappings
c(w, `(.), R), this bound holds by Hölder continuity. For the nodes c(w, `(.), R),
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the derivatives with respect to ` and R are �1

�

1{`⇤(w)� 1
� > w� a

R

⇤ }`⇤(w)� 1
�

�1

[.]

and �1{`⇤(w)� 1
� > w � a

R

⇤ } a
R

⇤2 [.] respectively, which are not Hölder with re-
spect to arbitrary changes in `⇤,R⇤. However, in the proof of Lemma (9), this
condition is only used to bound the sup norm difference between these deriva-
tives and the versions using the approximate steady state values �1

�

1{˜`⇤(w)� 1
� >

w� a
˜

R

⇤ }˜`⇤(w)�
1
�

�1

[.] and �1{˜`⇤(w)� 1
� > w� a

˜

R

⇤ } a
˜

R

⇤2 [.], which by construction
of the transformed histogram representation does converge in sup norm because
the indicator function is calculated exactly. Conditions (6) (ii) through (vi) hold
using as function classes piecewise regular functions with piecewise Hölder ex-
ponent at least 1 for all arguments and transformed histogram representations
for all interpolation and quadrature, using the composition properties of these
classes (noting that discontinuities are always located at fixed location w⇤). For
part (vi), note that the derivative of the Euler equation with respect to `(.)
is the only equation satisfying Condition (4)(b)(i). Boundedness away from 0
is satisfied by the fact that the steady state consumption function is always
nonzero and monotone and so is the expected marginal utility of wealth. Di-
viding through by this derivative produces a derivative with respect to `

t+1

(w)
which is a kernel integral operator in class PR1,4

0,0

, due to the presence of dis-
continuities with respect to w and w0, and so transformed histograms converge
at rate O(K� 1

4
) on this term. All other derivatives also lie in subsets of this

class and so converge at least this quickly. As a result, by Lemma (9) with the
specified modification holds and the functional derivatives of the model converge
at rate O(K� 1

4
), and by the assumptions on the properties of the model as a

whole, the solution operators converge by the result of Theorem (10).
Finally, the claimed result holds for the representation of the solution opera-

tors constructed by Algorithm (1) and the corresponding impulse response func-
tions, using regularly spaced histograms, by application of Corollary (26).

C.2 Proofs of Claims from Appendices
Proof of Lemma (17)

Proof. Let f(x
1

, . . . , x
d

) 2 F , Letting i be a multi-index, [~f ]
i

=

1p
K

f(s
i1 , si2,, . . . , sid)

and '
i

(x
1

, . . . , x
d

) =

Q

z=1...d

�
i

z

(x
z

). ˆf =

P

K1

i1=1

. . .
P

K

d

i

d

=1

[

~f ]
i

'
i

(.) is the his-

togram approximation of f . The sup norm accuracy of this approximation is
given by

sup

s2[0,1)

d

�

�

�

ˆf(s)� f(s)
�

�

�

 sup

s2[0,1)

d

�

�

�

�

�

ˆf(s)�
K1
X

i1=1

. . .

K

d

X

i

d

=1

hf,'
i

i'
i

(.)

�

�

�

�

�

+ sup

s2[0,1)

d

�

�

�

�

�

K1
X

i1=1

. . .

K

d

X

i

d

=1

hf,'
i

i'
i

(.)� f

�

�

�

�

�

= (I) + (II)

where (I) is the quadrature error and (II) is the projection error.
In one dimension, the bound on (II) is given explicitly in Nickl (2013) Propo-

sitions 7.iii and 9.iii, and is in this case O(

1

K

z

). Applying the method of proof
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provided there in the multidimensional case, I have, for any s 2 [0, 1)d with
index j corresponding to the (unique) basis function at which '

j

(s) 6= 0

�

�

�

�

�

K1
X

i1=1

. . .

K

d

X

i

d

=1

hf,'
i

i'
i

(s)� f(s)

�

�

�

�

�

= |hf,'
j

i'
j

(s)� f(s)|

=

p
K

Z

'
j

(y)(f(y)� f(s))dy

=

p
K

Z

'
j

(s+ u)(f(s+ u)� f(s))du


p
K

Z

|'
j

(s+ u)| |f(s+ u)� f(s))| du

 sup

u2[

�1
2K

z

,

1
2K

z

)

d

|f(s+ u)� f(s))|
p
K

Z

|'
j

(s+ u)| du

= sup

u2[

�1
2K

z

,

1
2K

z

)

d

|f(s+ u)� f(s))|

 L(

p
d

2K
z

)

min{↵,1}
= O(d

min{↵,1}
2 K

�min{↵,1}
d

)

where the first line follows from disjoint support, the second from the integral
of '

j

, the third by a change of variables, the sixth again by the integral of '
j

, and
the last by the Hölder condition, where L is the Lipschitz constant and I used
that the maximum distance between two points in a hypercube of dimension d
with sides of length c is c

p
d.

Using the finite support of the basis and the fact that the functions are
piecewise constant, obtain
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This is exactly controlled by the first line of the bound for (II) shown above
for the particular subset of points on the grid, and so is likewise bounded by
L

p
d

2K

z

L(
p
d

2K

z

)

min{↵,1}.
Combining the bounds for (I) and (II) gives the result.

Proof of Lemma (18)

Proof. By definition of the tensor product interpolation and the bound (4.26)
in BG on the sup norm of each layer, for sufficiently large nso that the order of
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the polynomials is constant on all neglected terms,
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) function evaluations are needed to construct the tensor product
interpolation, so n = O(

log2 K
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Proof of Lemma (19)

Proof. By the layerwise representation of u and bound (4.26) in BG, and the
finiteness of the set of terms of order less than p
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Elementary but tedious combinatorics shows that
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Proof of Lemma (9’)

Proof. I apply the same inductive argument as in Lemma (9), with respect to
the new set of norms. I show only the case for norms of type a, as the case for
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norms of type bis entirely symmetric. For each `, for each j = 1 . . . 2d
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the proof of inequality (33) can be performed inductively along the directed
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The justifications for these steps are identical to those in Lemma (9) except
that in the first inequality I use that kf(.)g(.)k
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kg(.)k1 by the
definition of this norm and and in the second inequality I use that all functions
and their approximations are assumed bounded, and that the k.k
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norm is
bounded using Hölder continuity, the triangle inequality, commutativity of the
supremum with respect to monotonic functions, and finite support.

In the case where node p` has an integral operator for a linear component,
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where the analysis is equivalent to that in Lemma (9) with modifications as
above, except that in the first inequality I have applied condition ??(iv)(c).
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p

`

m(q,m

0
)

j

2 ˆG[p

`m

j

];[p

`m

ej

]

d

in either of the above cases, so the inductive

108



hypothesis holds and the claim is true for all p`. Symmetric computations prove
an identical bound for norm k.k

p

`

j

,b

.
Next, note that by the construction of the graph, the final node for each `
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�

�

�

�

�

�

K[`o]
X

k=1

K[j]
X

i=1

(M
[`

o

]

F`�!
g

j

(in)

(⇧

[j]

)

�1M⇤
[j]

)

ik

�
i

�
k

� nP

`

j

�

�

�

�

�

�

1/1

=

�

�

�

�

�

�

K[`o]
X

k=1

K[j]
X

i=1

((M
[`

o

]

⌦M
[j]

){{ñP
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� ñP

`

j

�

�

�

�

�

�

1/1

+

�

�

�

ñP
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and in the case where ` satisfies condition (4)(b)(i)
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as before, symmetric bounds apply for the k.k1/1

norm.

Proof of Lemma (21)

Proof. Let f(x
1

, . . . , x
d

x

, y
1

, . . . , y
d

y

) 2 PR↵,N

0,1

(X ,Y), Letting i and j be multi-
indices, K

x
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x
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y
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K
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i1 , . . . , xi

d

x

, y
j1 , . . . , yjd

y

)

and '
i

(x) =
Q

z=1...d

x

�
i

z

(x
z

), '
j

(y) =
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is the histogram approximation of f . The k.k
1/1 norm accuracy of this approx-

imation is given by

�
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�
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+

�
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1/1
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where (a) is the error in y and (b) is the error in approximation of x. Let (I)
refer to the set of scaling functions '

i

(x) whose domain intersects with @B
n

for
some n, and (II) refer to the set of “interior” scaling functions which do not
intersect any of these boundaries. By disjoint support of the scaling functions,
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obtain
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�
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�
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for some C. As outside of these boundary regions, f(x, y) is ↵-Hölder in x
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of Lemma (17) imply
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To bound (a), apply the steps of Lemma (17) to obtain the bound, for some
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�

�
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Combining terms, obtain bound
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its approximation are bounded over a bounded domain.
The results for f 2 PR↵,N
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Proof. of Lemma (24). Follows closely the proof of Lemma (17), with a small
number of additional steps. Let f(x
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where (I) is the quadrature error and (II) is the projection error.
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Where the second and sixth lines follow by the normalization of '
j

from
Condition 22(iii), and the last by applying the definition of piecewise regular
functions and by Condition 22(i)(a), in the region over which the difference is
taken, f is uniformly ↵-Hölder in arguments x and y, and by condition 22(ii)
the maximum distance between two points in the set {u
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the same rate, and so the approximation scheme is sup norm accurate at rate
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Proof. of Lemma (25).
By the triangle inequality sup

{f2⇤

↵

y

: kfk
L

2(Y)=1}

�

�

�

P

K

x

i=1

P

K

y

j=1

ZK

ij

h�
j

(y), f(.)i�
i

(x)� Z[f(.)]
�

�

�

L

2
(X )


�

�

�

�

�

�

K

x

X

i=1

K

y

X

j=1

ZK

ij

D

˜�
j

(y), [.]
E

˜�
i

(x)� Z[.]

�

�

�

�

�

�

op

+

sup

{f2⇤

↵

y

: kfk
L

2(Y)=1}

�

�

�

�

�

�

K

x

X

i=1

K

y

X

j=1

ZK

ij

h�
j

(y), f(.)i�
i

(x)�
K

x

X

i=1

K

y

X

j=1

ZK

ij

D

˜�
j

(y), f(.)
E

˜�
i

(x)

�

�

�

�

�

�

L

2
(X )

 ✏
K

+ (A)

113



and

(A) = sup

{f2⇤

↵

y

: kfk
L

2(Y)=1}

�

�

�

�

�

�

K

x

X

i=1

K

y

X

j=1

ZK

ij

⇣

h�
j

(y), f(.)i�
i

(x)�
D

˜�
j

(y), f(.)
E

˜�
i

(x)
⌘

�

�

�

�

�

�

L

2
(X )

 sup

{f2⇤

↵

y

: kfk
L

2(Y)=1}

�

�

�

�

�

�

K

x

X

i=1

K

y

X

j=1

ZK

ij

D

˜�
j

(y), f(.)
E⇣

�
i

(x)� ˜�
i

(x)
⌘

�

�

�

�

�

�

L

2
(X )

+

sup

{f2⇤

↵

y

: kfk
L

2(Y)=1}

�

�

�

�

�

�

K

x

X

i=1

K

y

X

j=1

ZK

ij

�
i

(x)
D

�
j

(y)� ˜�
j

(y), f(.)
E

�

�

�

�

�

�

L

2
(X )

= (A1) + (A2)

Using the fact that projections are isometries in L2 and defining {e
j

}Ky

j=1

as
the canonical basis vectors in Euclidean space, (A2) has upper bound

�

�ZK

�

�

op

· sup

{f2⇤

↵

y

: kfk
L

2(Y)=1}

�

�

�

�

�

�

K

y

X

j=1

D

�
j

(y)� ˜�
j

(y), f(.)
E

e
j

�

�

�

�

�

�

2

For any f in {f 2 ⇤↵

y

: kfk
L

2
(Y)

= 1}

�

�

�

�

�

�

K

y

X

j=1

D

�
j

(y)� ˜�
j

(y), f(.)
E

e
j

�

�

�

�

�

�

2

=

0

@

K

y

X

j=1

✓

Z

(�
j

(y)� ˜�
j

(y))f(y)dy

◆

2

1

A

1
2


0

@

K

y

X

j=1

✓

Z

�
j

(y)(f(y)� f(⌧K
y

(y)))dy

◆

2

1

A

1
2

+

0

@

K

y

X

j=1

✓

Z

�
j

(y)f(⌧K
y

(y))dy �
Z

˜�
j

(y)f(y)dy

◆

2

1

A

1
2

= (A2a) + (A2b)

I have that

(A2a)  C k⌧(y)� yk↵y

1
 CK�↵

y

z

for some C, using the Hölder condition on f(.), the fact that projection is
an isometry and sup norm dominates L2 norm, and Condition 22(ii).

114



(A2b) =

0

@

K

y

X

j=1

✓

K
d

y

2
z

Z

1{u 2 supp �
j

(.)}f(⌧K
y

(u))du� (cy
j

)

� 1
2

Z

1{⌧�1,K

y

(y) 2 supp �
j

(.)}f(y)dy
◆

2

1

A

1
2

=

0

@

K

y

X

j=1

✓

K
d

y

2
z

Z

1{u 2 supp �
j

(.)}f(⌧K
y

(u))du�

(cy
j

)

� 1
2

Z

1{u 2 supp �
j

(.)}f(⌧K
y

(u)))

✓

det

@

du
⌧�1,K

y

(⌧K
y

(u))

◆�1

du

!

2

1

A

1
2

=

0

@

K

y

X

j=1

 

Z

1{u 2 supp �
j

(.)}f(⌧K
y

(u))

 

K
d

y

2
z

� (cy
j

)

� 1
2

✓

det

@

du
⌧�1,K

y

(⌧K
y

(u))

◆�1

!

du

!

2

1

A

1
2


0

@

K

y

X

j=1

✓

Z

1{u 2 supp �
j

(.)}f(⌧K
y

(u))2du

◆

1

A

1
2

·

0

@

K

y

X

j=1

0

@

Z

1{u 2 supp �
j

(.)}
 

K
d

y

2
z

� (cy
j

)

� 1
2

✓

det

@

du
⌧�1,K

y

(⌧K
y

(u))

◆�1

!

2

du

1

A

1

A

1
2

=

✓

Z

f(⌧K
y

(u))2du

◆

1
2

max

j

�

�

�

�

K
d

y

2
z

� (cy
j

)

� 1
2

�

�

�

�

 

Z

✓

det

@

du
⌧�1,K

y

(⌧K
y

(u))

◆�2

du

!

1
2

 Cmax

j

�

�

�

�

K
d

y

2
z

� (cy
j

)

� 1
2

�

�

�

�

= O(K
� 1

2
z

)

where the second line follows by a change of variables, the fourth by Cauchy-
Schwarz (applied twice, once for the integral and once for the sum), the fifth
by Condition 22(iii)(b), the boundedness of f(.), and the last by Condition
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Combining all terms yields the result.

Proof. of Corollary (26).
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applying the triangle inequality repeatedly
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with constant that does not depend on K or m, as claimed.
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Proof of Lemma (28)
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Proof. First I show left multiplication by an invertible matrix leaves the solu-
tion unchanged, then show right multiplication acts only as a change of ba-
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