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Abstract

Quantile Factor Models (QFM) represent a new class of factor models for high-dimensional

panel data. Unlike Approximate Factor Models (AFM), where only mean-shifting factors

can be extracted, QFM also allow to recover unobserved factors shifting other relevant parts

of the distributions of observed variables. A quantile regression approach, labeled Quan-

tile Factor Analysis (QFA), is proposed to consistently estimate all the quantile-dependent

factors and loadings. Their asymptotic distribution is then derived using a kernel-smoothed

version of the QFA estimators. Two consistent model selection criteria, based on information

criteria and rank minimization, are developed to determine the number of factors at each

quantile. Moreover, in contrast to the conditions required for the use of Principal Compo-

nents Analysis in AFM, QFA estimation remains valid even when the idiosyncratic errors

have heavy-tailed distributions. Three empirical applications (regarding climate, financial

and macroeconomic panel data) provide evidence that extra factors shifting quantiles other

than the means could be relevant in practice.
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1 Introduction

Following the key contributions by Ross (1976), Chamberlain and Rothschild (1983) and Con-

nor and Korajczyk (1986) to the theory of approximate factor models (AFM henceforth) in

the context of asset pricing, the analysis and applications of this class of models have prolif-

erated thereafter. As is well known, AFM imply that a panel Xit of N variables (units), each

with T observations, has a factor-structure representation given by: Xit = �0
ift + ✏it, where

�i = [�1i, ..,�ri]0 and ft = [f1t, .., frt]0 are r ⇥ 1 vectors of factor loadings and common factors,

respectively, with r ⌧ N , and ✏it are zero-mean weakly dependent idiosyncratic disturbances

which are uncorrelated with the factors.

The fact that it is easy to construct theories involving common factors, at least in a narrative

version, together with the availability of simple estimation procedures for AFM — being Prin-

cipal Components Analysis (PCA hereafter) the most popular, has led to their extensive use in

many fields of economics.1 More recently, a conventional characterization of cross-sectional de-

pendence among error terms in Panel Data has relied on the use of a finite number of unobserved

common factors. These originate from economy-wide shocks that a↵ect all units with di↵erent

intensities (loadings), in addition to idiosyncratic (individual-specific) disturbances. Interactive

fixed-e↵ects models can be easily estimated by PCA (see Bai 2009) or by common correlated

e↵ects (see Pesaran 2006), and there are even generalizations of these techniques dealing with

nonlinear panel single-index models (see Chen et al. 2018). Likewise, the surge of Big Data

technologies has made factor models a key tool in dimension reduction and predictive analytics

for very large datasets (see Diebold 2012 for a survey).

Our departure point in this paper is to notice that the standard regression interpretation

of a static AFM as a linear conditional mean model of Xit given ft, that is, E(Xit|ft) = �0
ift,

entails two possibly restrictive features. First, PCA does not capture hidden factors that may

shift characteristics (moments or quantiles) of the distribution of Xit other than the means.

Second, neither the loadings �i nor the factors ft are allowed to vary across the distributional

characteristics of each unit in the panel.

A simple way of illustrating the limitations of the conventional formulation of AFM is to

consider the factor structure in the following simple location-scale shift model: Xit = ↵if1t +

f2t✏it, with f1t 6= f2t (both are scalars), f2t > 0 and E(✏it) = 0, such that the first factor

(f1t) shifts location, whereas the second one (f2t) shifts scale2. This model can be rewritten in

quantile-regression (QR, hereafter) format as Xit = �0
i(⌧)ft + uit(⌧), with 0 < ⌧ < 1, �i(⌧) =

1See, inter alia, Bai and Ng (2008b) and Stock and Watson (2011). Early applications of AFM abound in
Aggregation Theory, Consumer Theory, Business Cycle Analysis, Finance, Monetary Economics, and Monitoring
and Forecasting, among others.

2This model is further discussed in subsection 2.2 below, alongside other illustrative models representing
potential factor structures of Xit.
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[↵i,Q✏(⌧)]0, ft = [f1t, f2t]0, uit(⌧) = f2t[✏it�Q✏(⌧)], where Q✏(⌧) represents the quantile function

of ✏it, and the conditional quantile Quit(⌧)[⌧ |ft] = 0.3 PCA will only extract the location-shifting

factor f1t in this model, but it will fail to capture the scale-shifting factor f2t and the quantile-

dependent loadings �i(⌧) in its QR representation. Also notice that, when the distribution

of ✏it is symmetric, then ft could be considered as being quantile dependent, i.e., ft(⌧), since

ft(⌧) = f1t for ⌧ = 0.5, and ft(⌧) = [f1t, f2t]0 for ⌧ 6= 0.5. Together with other examples

discussed in subsection 2.2 further below, this means that the general class of models to be

considered in the sequel would be one where the loadings, the factors and the number of factors

are all simultaneously allowed to be quantile-dependent objects, namely, �i(⌧), ft(⌧) 2 Rr(⌧) for

⌧ 2 (0, 1). In what follows, we denote this class of models as Quantile Factor Models (QFM,

hereafter), whose detailed definition is provided in Section 2 below.

That said, our goal in this paper is to develop a common factor methodology for QFM

which is flexible enough to capture those quantile-dependent objects which standard AFM tools

may be unable to recover. To do so, we analyze their estimation and inference, including the

selection of the number of factors at each quantile ⌧ . In a nutshell, QFM could be thought of

as capturing the same type of flexible generalization that QR techniques represent for linear

regression models.

To help understand how this new methodology works, we first propose an estimation ap-

proach for the quantile-dependent objects in QFM, labeled Quantile Factor Analysis (QFA,

henceforth). The QFA estimation procedure relies on the minimization of the standard check

function in QR (instead of the standard quadratic loss function used in AFM) to jointly esti-

mate the common factors ft(⌧) and the loadings �i(⌧) at a given quantile ⌧. However, since the

objective function for QFM is not convex in the relevant parameters, we introduce an iterative

QR algorithm that yields estimators of the quantile-dependent objects. We then derive their

average rates of convergence, and propose two consistent selection criteria, based on information

criteria and rank minimization, to choose the number of factors at each ⌧ . In addition, we

establish asymptotic normality for QFA estimators based on smoothed QR (see e.g., Horowitz

1998 and Galvao and Kato 2016). Lastly, our asymptotic results and the proposed selection

criteria provide guidance on how to discriminate between AFM and QFM structures.

The key contributions of our paper to the literature on FM can be summarized as follows:

1. We propose a new class of factor structures, QFM, provide an estimation method, QFA,

of the underlying quantile-dependents objects in QFM, and characterize the asymptotic

properties of such estimators. In particular, we show that the average convergence rates

of the QFA estimators are the same as the PCA estimators of Bai and Ng (2002), which

is a crucial result for showing the consistency of the two selection criteria used to estimate

the number of factors at each ⌧ . In addition, similar to Bai (2003), our QFA estimators

3Throughout the paper we use QW [⌧ |Z] to denote the conditional quantile of W given Z.
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based on smoothed QR are shown to converge at the parametric rates (
p
N and

p
T ) to

normal distributions.

2. The problems of incidental parameters and non-smooth object functions require innovative

strategies to derive all the above-mentioned results. This leads to the use in our proofs

of some novel techniques borrowed from the theory of empirical processes. Moreover, our

proof strategy can be easily extended to some other nonlinear factor models (e.g., probit

and logit factor models considered by Chen et al. 2018) with smooth object functions.

3. The QFA estimators inherit from QR certain robustness properties to the presence of

outliers and heavy-tailed distributions in the idiosyncratic component of a factor model

which render PCA invalid. In e↵ect, while PCA requires the idiosyncratic errors to have

eighth bounded moments, QFA only needs the existence and smoothness of the density

function. Thus, at ⌧ = 0.5, QFA can be viewed as a robust alternative to PCA.

4. The extra factors obtained by the QFA estimation procedure can be used to improve

the monitoring and forecasting performance of variables in a factor-augmented regression

setup, as well as to facilitate the factor identification process, depending on the application

at hand. For instance, in finance these “new” factors could be interpreted as volatility or

tail-risk factors driving assets returns; with income data, they could represent common

factors behind income inequality; and with climate data they could represent common

features behind global extreme temperatures at both tails of their distribution, etc.

Related literature

There is a recent literature that attempts to make the AFM setup more flexible. For example,

Su and Wang (2017) allow the factor loadings to be time varying, while Pelger and Xiong (2018)

allow them to be state dependent. Chen et al. (2009) provide a theory for nonlinear principal

components, where they suggest using sieve estimation to retrieve nonlinear factors. Finally,

Gorodnichenko and Ng (2017) propose an algorithm to estimate level and volatility factors

simultaneously. Di↵erent from these studies, our approach to modelling nonlinearities in factor

models is through the conditional quantiles of the observed variables.

There is also a growing literature on heterogeneous panel quantile models with factor struc-

tures, especially in financial economics. The main idea is that a few unobservable factors explain

co-movements of asset return distributions in a large range of asset returns observed at high fre-

quencies, as in stock markets. In parallel and independent research, we have recently come

across two related studies to ours which focus on similar issues.4 First, Ma et al. (2017) propose

estimation and inference procedures in semiparametric quantile factor models, in which factor

loadings/betas are smooth functions of a small number of observables under the assumption

that the included factors all have non zero mean. Then, sieve techniques are used to obtain

4We only became aware of these two papers after the working paper version of our study, referred to in the
sequel as Chen et al. (2017), had been submitted
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preliminary estimation of these functions for each time period; next the factor structure is im-

posed in a sequential fashion to estimate the factor returns by GLS under weak conditions on

cross-sectional and temporal dependence. We depart from these authors in that we do not need

to assume the loadings to depend on observables and, foremost, in that not only loadings but

also factors are quantile-dependent objects in our setup.

Second, in a closely related paper, Ando and Bai (2018) (AB 2018, hereafter) use a setup

similar to ours where the unobservable factor structure is also allowed to be quantile dependent.

They use Bayesian MCMC and frequentist estimation approaches, the latter building upon our

iterative procedure, as it is duly acknowledged in their paper. However, we di↵er from AB

(2018) in several respects which could make our QFA approach valuable: (i) our assumptions

are less restrictive, since we rely on properties of the density, as in QR, while AB (2018) needs

all the moments of the idiosyncratic errors to exist, (ii) the proofs of the main results are also

noticeably di↵erent since we believe that our proof strategy can solve some potential problems

appearing in theirs, (iii) our rank-minimization selection criterion to estimate the number of

factors is computationally more e�cient and exhibits a better finite-sample performance than

the information-criteria-based method considered by AB (2018).

Lastly, it is also worth highlighting that the illustrative location-scale shift model above,

where f1t 6= f2t, is behind a current line of research in asset pricing which has been coined

the “idiosyncratic volatility puzzle” by Ang et al. (2006). This approach focuses on the co-

movements in the idiosyncratic volatilities of a panel of asset returns, and basically consists of

applying PCA to the squared residuals, once the PCA mean-shifting factors have been removed

from the data (a procedure labeled PCA-SQ, hereafter).5 For example, this technique would fit

perfectly to the illustrative example discussed above. Yet, while the QFA estimation approach

is able to recover the whole factor structure for more general models than the previous one (see

subsection 2.2) or when the idiosyncratic errors lack bounded eighth moments, PCA-SQ fails to

do so. Hence, to the best of our knowledge, QFA becomes the first estimation procedure capable

of dealing with these issues.

Structure of the Paper. The rest of the paper is organized as follows. Section 2 defines QFM

and provides a list of simple illustrative examples where the new QFM methodology applies. In

Section 3, we present the QFA estimator and its computational algorithm, establish the average

rates of convergence of all the quantile-dependent objects, and propose two consistent selection

criteria to choose the number of factors at each quantile, which help when discriminating between

AFM and QFM. Section 4 introduces a kernel-smoothed version of the QFA estimators to

derive their asymptotic distributions. Section 5 contains some Monte Carlo simulation results

to evaluate the performance in finite samples of our estimation procedures relative to other

5See, e.g., Barigozzi and Hallin 2016, Herskovic et al. 2016 and Renault et al. 2017. Notice that the volatility
co-movement does not arise from omitted factors in the AFM but from assuming a genuine factor structure in
the idiosyncratic volatility processes.

4



alternative approaches under di↵erent assumptions about the idiosyncratic error terms. Section

6 considers several empirical applications using three large panel datasets, where we document

the relevance of factors shifting other moments of the distributions of the data rather than just

their means. Finally, Section 7 concludes and suggests several avenues for further research.

Proofs of the main results are collected in the online appendix.

Notations: We use k · k to denote the Frobenius norm. For a matrix A with real eigenvalues,

let ⇢j(A) denote the jth largest eigenvalue. Following Van der Vaart and Wellner (1996), the

symbol . means “left side bounded by a positive constant times the right side” (the symbol &
is defined similarly), and D(·, g,G) denotes the packing number of space G endowed with metric

g.

2 The Model and Some Examples

This section starts by introducing the main definitions to be used throughout the paper. Next,

we show how to derive the QFM representation of several illustrative DGPs exhibiting di↵erent

factor structures.

2.1 Quantile Factor Models

Suppose that the observed variable Xit, with i = 1, .., N and t = 1, ..., T , has the following QFM

structure:

Xit = �0
i(⌧)ft(⌧) + uit(⌧), for ⌧ 2 (0, 1), (1)

where the common factors ft(⌧) is a r(⌧)⇥ 1 vector of unobservable random variables, �i(⌧) is

a r(⌧)⇥ 1 vector of fixed factor loadings, and the idiosyncratic error uit(⌧) is assumed to satisfy

the following quantile restriction:

P [uit(⌧)  0|ft(⌧)] = ⌧.

Alternatively, (1) implies that

QXit [⌧ |ft(⌧)] = �0
i(⌧)ft(⌧),

where the factors, the loadings, and the number of factors are all allowed to be quantile-

dependent.
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2.2 Examples

In this section we provide a few illustrative examples of QFMs derived from di↵erent specifi-

cations of location-scale shift models and related ones. By means of these simple illustrations,

the objective is to show that there are instances where the standard AFM methodology fails to

capture the full factor structure and therefore requires the use of our alternative QFM approach.

Example 1. Location-shift model. Xit = ↵if1t + ✏it, where {✏it} are zero-mean i.i.d errors

independent of f1t with cumulative distribution function (CDF) F✏. Let Q✏(⌧) = F�1
✏ (⌧) =

inf{c : F✏(c)  ⌧} be the quantile function of ✏it. Moreover, assume that the median of ✏it is

0, i.e., Q✏(0.5) = 0, then this simple model has a QFM representation (1) by defining �i(⌧) =

[Q✏(⌧),↵i]0, ft(⌧) = [1, f1t]0 for ⌧ 6= 0.5, and �i(⌧) = ↵i, ft(⌧) = f1t for ⌧ = 0.5. However, note

that the standard estimation method (PCA) for this AFM may not be consistent if the distribution

of ✏it has heavy tails. For example, Assumption C of Bai and Ng (2002) requires E[✏8it] < 1,

which is not satisfied if, e.g. ✏it follows the standard Cauchy or some Pareto distributions .

Example 2. Location-scale shift model (same sign-restricted factor). Xit = ↵if1t +

f1t✏it, where f1t > 0 for all t and {✏it} are defined as in Example 1. This model has a QFM

representation (1) by defining �i(⌧) = Q✏(⌧)+↵i and ft(⌧) = f1t for all ⌧ , such that the loadings

of the factor f1t are the only quantile-dependent objects.

Example 3. Location-scale shift model (di↵erent factors). Xit = ↵0
if1t + (⌘0if2t)✏it,

where {✏it} are defined as in Example 1, ↵i, f1t 2 Rr1, ⌘i, f2t 2 Rr2, and ⌘0if2t > 0, such that

fjt (j = 1, 2) are vectors of rj factors. When f1t and f2t do not share common elements, this

model has a QFM representation (1) with �i(⌧) = [↵0
i, ⌘

0
iQ✏(⌧)]0, ft(⌧) = [f 0

1t, f
0
2t]

0 for ⌧ 6= 0.5,

and �i(⌧) = ↵i, ft(⌧) = f1t for ⌧ = 0.5.

Example 4. Location-scale shift model with two idiosyncratic errors. Xit = ↵if1t +

f2t✏it + f3teit, where ✏it and eit are two independent normal random variables with variances �2
✏

and �2
e . This model is observationally equivalent to Xit = ↵if1t +

p

f2
2t�

2
✏ + f2

3t�
2
e · vit where vit

follows a standard normal distribution. Thus, it has a QFM representation (1) with �i(⌧) =

[↵i,��1(⌧)]0, ft(⌧) = [f1t,
p

f2
2t�

2
✏ + f2

3t�
2
e ]

0 for ⌧ 6= 0.5, and �i(⌧) = ↵i, ft(⌧) = f1t for ⌧ = 0.5,

where ��1 is the quantile function of the standard normal distribution.

Example 5. Location-scale shift model with an idiosyncratic error and its cube. Xit =

↵if1t+f2t✏it+cif3t✏3it, where ✏it is a standard normal random variable. Let f2t, f3t, ci be positive,

then Xit has an equivalent representation in form of (1) with �i(⌧) = [↵i,��1(⌧), ci��1(⌧)3]0,

ft(⌧) = [f1t, f2t, f3t]0 for ⌧ 6= 0.5, and �i(⌧) = ↵i, ft(⌧) = f1t for ⌧ = 0.5. In particular, if

ci = 1 for all i and noticing that the mapping ⌧ 7! ��1(⌧)3 is strictly increasing, then we have

for ⌧ 6= 0.5, QXit [⌧ |ft(⌧)] = ↵if1t + ��1(⌧) · [f2t + f3t��1(⌧)2], so that there exists a QFM

representation (1) with �i(⌧) = [↵i,��1(⌧)]0 and ft(⌧) = [f1t, f2t + f3t��1(⌧)2]0 for ⌧ 6= 0.5.
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Notice that in this case, the second factor in ft(⌧), f2t + f3t��1(⌧)2, is quantile dependent even

for ⌧ 6= 0.5.

Not surprisingly, PCA only works in Example 1, which corresponds to an AFM, when the

idiosyncratic errors satisfy certain moment conditions. In all the remaining cases, PCA will only

yield consistent estimates of the location-shift factors; however, it will fail to capture those extra

factors which shift quantiles other than the means (Examples 3, 4 and 5) and, even if it extracts

all relevant factors, it will miss their corresponding quantile-varying loadings (Example 2). In

the sequel, we will therefore propose QFA as a new estimation procedure to estimate both sets

of quantile-dependent objects in QFM.

3 Estimators and Their Asymptotic Properties

To simplify the notations, we suppress hereafter the dependence of ft(⌧),�i(⌧), r(⌧) and uit(⌧)

on ⌧ , so that the QFM in (1) is rewritten as:

Xit = �0
ift + uit, P [uit  0|ft] = ⌧, (2)

where �i, ft 2 Rr. Suppose that we have a sample of observations {Xit} generated by (2) for

i = 1, . . . , N, and t = 1, . . . , T , where the realized values of {ft} are {f0t} and the true values of

{�i} are {�0i}. We take a fixed-e↵ects approach by treating {�0i} and {f0t} as parameters to

be estimated. In Section 3.1, we consider the estimation of {�0i} and {f0t} while r is assumed

to be known. Section 3.2 deals with the estimation of r for each quantile. Finally, in Section 3.3

we discuss how to discriminate between AFM and QFM based the estimated number of mean

and quantile factors.

3.1 Estimating Factors and Loadings

It is well known in the literature on factor models that {�0i} and {f0t} cannot be separately

identified without imposing normalizations (see Bai and Ng 2002). Without loss of generality,

we choose the following normalizations:

1

T

T
X

t=1

ftf
0
t = Ir,

1

N

N
X

i=1

�i�
0
i is diagonal with non-increasing diagonal elements. (3)

Let M = (N + T )r, ✓ = (�0
1, . . . ,�

0
N , f 0

1, . . . , f
0
T )

0, and ✓0 = (�0
01, . . . ,�

0
0N , f 0

01, . . . , f
0
0T )

0

denotes the vector of true parameters, where we also suppress the dependence of ✓ and ✓0 on M
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to save notation. Let A,F ⇢ Rr and define:

⇥M =
�

✓ 2 RM : �i 2 A, ft 2 F for all i, t, {�i} and {ft} satisfy the normalizations in (3)
 

.

Further, define:

MNT (✓) =
1

NT

N
X

i=1

T
X

t=1

⇢⌧ (Xit � �0
ift)

where ⇢⌧ (u) = (⌧ � 1{u  0})u is the check function. The QFA estimator of ✓0 is defined as:

✓̂ = (�̂0
1, . . . , �̂

0
N , f̂ 0

1, . . . , f̂
0
T )

0 = argmin
✓2⇥M

MNT (✓).

It is obvious that the way in which our estimator is related to the PCA estimator studied by

Bai and Ng (2002) and Bai (2003) is analogous to how standard least-squares regressions are

related to QR. However, unlike Bai (2003)’s PCA estimator, our estimator ✓̂ does not yield an

analytical closed form. This makes it di�cult not only to find a computational algorithm that

would yield the estimator, but also the analysis of its asymptotic properties. In the sequel, we

introduce a computational algorithm called iterative quantile regression (IQR, hereafter) that

can e↵ectively find the stationary points of the object function. In parallel, Theorem 1 shows

that ✓̂ achieves the same convergence rate as the PCA estimators for AFM.

To describe the algorithm, let ⇤ = (�1, . . . ,�N )0, F = (f1, . . . , fT )0, and define the following

averages:

Mi,T (�, F ) =
1

T

T
X

t=1

⇢⌧ (Xit � �0ft) and Mt,N (⇤, f) =
1

N

N
X

i=1

⇢⌧ (Xit � �0
if).

Note that we have MNT (✓) = N�1PN
i=1Mi,T (�i, F ) = T�1PT

t=1Mt,N (⇤, ft). The main dif-

ficulty in finding the global minimum of MNT is that this object function is not convex in ✓.

However, for given F , Mi,T (�, F ) happens to be convex in � for each i and likewise, for given

⇤, Mt,N (⇤, f) is convex in f for each t. Thus, both optimization problems can be e�ciently

solved by various linear programming methods (see Chapter 6 of Koenker 2005). Based on this

observation, we propose the following iterative procedure:

Iterative quantile regression (IQR):

Step 1: Choose random starting parameters: F (0).

Step 2: Given F (l�1), choose �(l�1)
i = argmin�Mi,T (�, F (l�1)) for i = 1, . . . , N ; given ⇤(l�1),

choose f (l)
t = argminf Mt,N (⇤(l�1), f) for t = 1, . . . , T .

Step 3: For l = 1, . . . , L, iterate the second step until MNT (✓(L)) is close to MNT (✓(L�1)), where

✓(l) = (vech(⇤(l))0, vech(F (l))0)0.

Step 4: Normalize ⇤(L) and F (L) so that they satisfy the normalizations in (3).
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To see the connection between the IQR algorithm and the PCA estimator proposed by

Bai (2003), suppose that r = 1, and replace the check function in the IQR algorithm by the

least-squares loss function. Then, it is easy to show that the second step of the algorithm

above yields ⇤(l�1) = (X 0F (l�1))/kF (l�1)k2 and F (l) = (X⇤(l�1))/k⇤(l�1)k2 = XX 0F (l�1)/Cl�1,

where X is the T ⇥ N matrix with elements {Xit}, and Cl = kF (l)k2 · k⇤(l)k2. Thus, the

iterative procedure is equivalent to the well-known power method of Hotelling (1933); after

normalizations, the sequence F (0), F (1), . . . will converge to the eigenvector associated with the

largest eigenvalue of XX 0, as in the PCA estimator of Bai (2003). Therefore, the IQR algorithm,

and its corresponding QFA estimator, can be viewed as an extension of PCA to QFM using QR

tools.

Similar algorithms have been proposed in the machine learning literature to reduce the

dimensions for binary data, where the check function is replaced by some smooth nonlinear link

functions, e.g., Collins et al. (2002). However, unlike PCA, whether such methods guarantee

finding the global minimum remains an open question. Nonetheless, in all of our Monte Carlo

simulations we found that the QFA estimators of the factors using the IQR algorithm always

converge to the space of the true factors, which is somewhat reassuring in this respect.

To prove the consistency of the QFA estimator ✓̂, we make the following assumptions:

Assumption 1. (i) A and F are compact sets and ✓0 2 ⇥M . In particular, N�1PN
i=1 �0i�0

0i =

diag(�N1, . . . ,�Nr) with �N1 � �N2 · · · � �Nr, and �Nj ! �j as N ! 1 for j = 1, . . . , r with

1 > �1 > �2 · · · > �r > 0.

(ii) Let fit denote the density function of uit given {f0t}. There exists f > 0 such that for any

compact set C ⇢ R and any u 2 C, fit(u) � f for all i, t.

(iii) Given {f0t}, uit is independent of ujs for any i 6= j or s 6= t.

Write ⇤̂ = (�̂1, . . . , �̂N )0, ⇤0 = (�01, . . . ,�0N )0, F̂ = (f̂1, . . . , f̂T )0, F0 = (f01, . . . , f0T )0, and

let LNT = min{
p
N,

p
T}. The following theorem provides the average rate of convergence of ⇤̂

and F̂ .

Theorem 1. Under Assumption 1, as N,T ! 1, we have

k⇤̂� ⇤0k/
p
N = OP (1/LNT ) and kF̂ � F0k/

p
T = OP (1/LNT ).

Remark 1.1: Since our proof strategy is substantially di↵erent from the one in Bai and Ng

(2002), we briefly sketch the main ideas underlying our proof here. To facilitate the discussion,

for any ✓a, ✓b 2 ⇥M define the semimetric d by:

d(✓a, ✓b) =

v

u

u

t

1

NT

N
X

i=1

T
X

t=1

(�0
aifat � �0

bifbt)
2 =

1p
NT

�

�⇤aF
0
a � ⇤bF

0
b

�

� ,
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and let

M̄NT (✓) =
1

NT

N
X

i=1

T
X

t=1

E[⇢⌧ (Xit � �0
ift)].

The semimetric d plays an important role in our asymptotic analysis. We first show that

d(✓̂, ✓0) = oP (1). Next, it can be shown that:

M̄NT (✓̂)� M̄NT (✓0) & d2(✓̂, ✓0), (4)

and that for su�ciently small � > 0,

E
"

sup
✓2⇥M (�)

�

�MNT (✓)� M̄NT (✓)�MNT (✓0) + M̄NT (✓0)
�

�

#

. �

LNT
, (5)

where ⇥M (�) = {✓ 2 ⇥M : d(✓, ✓0)  �}. Intuitively, the above two inequalities and d(✓̂, ✓0) =

oP (1) imply that d2(✓̂, ✓0) . d(✓̂, ✓0)/LNT , or d(✓̂, ✓0) . L�1
NT . Then, the desired results follow

from the fact that k⇤̂� ⇤0k/
p
N + kF̂ � F0k/

p
T . d(✓̂, ✓0).

Inequality (4) follows easily from a Taylor expansion of M̄NT (✓̂) around ✓0 and Assumption

1(ii). It is worth stressing that the proof of (5) requires the chaining argument which is commonly

used in the theory of empirical processes. In particular, using Hoe↵ding’s inequality and the

fact that |⇢⌧ (u)� ⇢⌧ (v)|  2|u� v|, it can be shown that, for any given ✓a, ✓b 2 ⇥M ,

P
hp

NT
�

�MNT (✓a)� M̄NT (✓a)�MNT (✓b) + M̄NT (✓b)
�

� � c
i

 e
� c2

Kd2(✓a,✓b) (6)

for some constant K. Then, along the lines of Theorem 2.2.4 of Van der Vaart and Wellner

(1996), it follows that the left-hand side of (5) is bounded by
R �
0

p

logD(✏, d,⇥M (�))d✏/
p
NT .

Finally, for su�ciently small �, the semimetric d is shown to be equivalent to the Euclidean

norm in RM , thus we can prove that
R �
0

p

logD(✏, d,⇥M (�))d✏ . �
p
M , from which inequality

(5) follows.

Remark 1.2: Compared to Bai and Ng (2002), notice that we do not require any moment of

uit to be finite. Thus, for the canonical factor models (e.g., Example 1) where the idiosyncratic

errors have median equal to zero, our estimator for the case ⌧ = 0.5 can be interpreted as a least

absolute deviation (LAD) estimator which is robust to heavy tails and outliers. In Section 5, we

will illustrate the robustness of the LAD estimator, relative to the PCA estimator, by means of

Monte Carlo simulations.

Remark 1.3: If the true parameters do not satisfy the normalizations (3), they can still be

in the space ⇥M after some normalizations. Let HNT be a r ⇥ r invertible matrix and define

f̄0t = H 0
NT f0t, �̄0i = (HNT )�1�0i. Note that �0

0if0t = �̄0
0if̄0t. For {f̄0t} and {�̄0i} to satisfy the

10



normalizations (3), we require:

1

T

T
X

t=1

f̄0tf̄
0
0t = H 0

NT⌃T,FHNT = Ir and
1

N

N
X

i=1

�̄0i�̄
0
0i = (HNT )

�1⌃N,⇤(H
0
NT )

�1 = DN

where ⌃T,F = T�1PT
t=1 f0tf

0
0t, ⌃N,⇤ = 1

N

PN
i=1 �0i�0

0i, and DN is a diagonal matrix with non-

increasing diagonal elements. The above equalities imply that:

⌃1/2
T,F⌃N,⇤⌃

1/2
T,F · ⌃1/2

T,FHNT = ⌃1/2
T,FHNT · DN .

Thus, the rotation matrix HNT can be chosen as ⌃�1/2
T,F �NT , where �NT is the matrix of eigen-

vectors of ⌃1/2
T,F⌃N,⇤⌃

1/2
T,F . As a result, Theorem 1 can be stated as follows:

k⇤̂� ⇤0(H
0
NT )

�1k/
p
N = OP (1/LNT ) and kF̂ � F0HNT k/

p
T = OP (1/LNT ).

Note that the rotation matrix HNT is slightly di↵erent from the rotation matrix of Bai (2003),

but they converge to the same limit as N,T ! 1 (see Remark 4.3 below).

Remark 1.4: Compared to Bai and Ng (2002), our Assumption 1(iii) is admittedly strong.

However, note that this assumption is made conditional on {f0t}, so cross-sectional dependence

of uit due to the common factors is still allowed for. Moreover, the independence assumption is

only used to establish the sub-Gaussian inequality (6). Thus, Assumption 1(iii) can be relaxed

as long as the sub-Gaussian inequality holds.6

3.2 Selecting the Number of Factors

In the previous section, we assumed the number of quantile-dependent factors r(⌧) to be known

at each ⌧ . In this subsection we propose two di↵erent procedures to select the correct number

of factors at each quantile with probability approaching one. The first one selects the model by

rank minimization while the second one uses information criteria (IC). As before, the dependence

of the quantile-dependent objects on ⌧ , including r(⌧), is ignored in the sequel.

3.2.1 Model Selection by Rank Minimization

Let k be a positive integer larger than r, and Ak and Fk be compact subsets of Rk. In par-

ticular, let us assume that [�0
0i 01⇥(k�r)]

0 2 Ak for all i. Let �k
i , f

k
t 2 Rk for all i, t and write

✓k = (�k0
1 , . . . ,�

k0
N , fk0

1 , . . . , fk0
T )0, ⇤k = (�k

1, . . . ,�
k
N )0, F k = (fk

1 , . . . , f
k
T )

0. Consider the following

6See van de Geer (2002) for the properties of Hoe↵ding inequalities for martingales.
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normalizations:

1

T

T
X

t=1

fk
t f

k0
t = Ik,

1

N

N
X

i=1

�k
i �

k0
i is diagonal with non-increasing diagonal elements. (7)

Define ⇥k = {✓k : �k
i 2 Ak, fk

t 2 Fk, and �k
i , f

k
t satisfy (7)}, and

✓̂k = (�̂k0
1 , . . . , �̂

k0
N , f̂k0

1 , . . . , f̂k0
T )0 = argmin

✓k2⇥k

1

NT

N
X

i=1

T
X

t=1

⇢⌧ (Xit � �k0
i f

k
t ).

Moreover, define ⇤̂k = (�̂k
1, . . . , �̂

k
N )0 and write

(⇤̂k)0⇤̂k/N = diag
⇣

�̂k
N,1, . . . , �̂

k
N,k

⌘

.

The first estimator of the number of factors r is defined as:

r̂rank =
k
X

j=1

1{�̂k
N,j > PNT },

where PNT is a sequence that goes to 0 as N,T ! 1. In other words, r̂rank is equal to the

number of diagonal elements of (⇤̂k)0⇤̂k/N that are larger than the threshold PNT . We call

r̂rank the rank-minimization estimator because, as discussed below in Remark 2.1, it can be

interpreted as a rank estimator of (⇤̂k)0⇤̂k/N .

It can be shown that:

Theorem 2. Under Assumption 1, P [r̂rank = r] ! 1 as N,T ! 1 if k > r, PNT ! 0 and

PNTL2
NT ! 1.

Remark 2.1: In the proof of Theorem 2, we show that for k > r, it holds that

�

�

�

F̂ k,r � F0

�

�

�

/
p
T = OP (1/LNT ) and

�

�

�

⇤̂k � ⇤⇤
0

�

�

�

/
p
N = OP (1/LNT ),

where F̂ k,r is the first r columns of F̂ k and ⇤⇤
0 = [⇤0,0N⇥(k�r)]. It then follows from Assumption

1 that �̂k
N,j

p! �j > 0 for j = 1, . . . , r and �̂k
N,j = N�1PN

i=1

⇣

�̂k
ji

⌘2
= OP (1/L2

NT ) for j =

r + 1, . . . , k. Thus, the first r diagonal components of (⇤̂k)0⇤̂k/N converge in probability to

positive constants while the remaining diagonal components are all OP (1/L2
NT ). In other words,

(⇤̂k)0⇤̂k/N converges to a matrix with rank r, and PNT can be viewed as a cuto↵ value to choose

the asymptotic rank of (⇤̂k)0⇤̂k/N .
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3.2.2 Model Selection by Information Criteria

The second estimator of r is similar to the IC-based estimator of Bai and Ng (2002). Let l

denote a positive integer smaller than or equal to k, and let Al and F l be compact subsets of

Rl. In particular, for l > r, assume that [�0
0i 01⇥(l�r)]

0 2 Al for all i. Moreover, we can define

⇥l, ✓̂l, f̂ l
t , �̂

l
i, F̂

l and ⇤̂l in a similar fashion.

Define the IC-based estimator of r as follows:

r̂IC = argmin
1lk

h

MNT (✓̂
l) + l · PNT

i

.

We can show that:

Theorem 3. Suppose Assumption 1 holds, and assume that there exists f̄ > 0 such that for any

compact set C ⇢ R and any u 2 C, fit(u)  f̄ for all i, t. Then P [r̂IC = r] ! 1 as N,T ! 1 if

k > r, PNT ! 0 and PNTL2
NT ! 1.

Remark 3.1: A similar result is also obtained by AB (2018), but the di↵erence with ours is that

we only need the density function of the idiosyncratic errors to be uniformly bounded above and

below, while AB (2018) requires all the moments of the errors to be bounded. This di↵erence

is crucial since the robustness of our estimators against heavy tails and outliers becomes their

main advantage relative to PCA estimators. The reason why we can obtain the same result here

with less restrictions is that our proof is based on the innovative argument discussed in Remark

1.1 and the average convergence rate of the estimators, while the proof of AB (2018) depends

on the uniform convergence rate of the estimators.

Remark 3.2: Note that, for AFM, the rank-minimization estimator and the IC-based estimator

of r are equivalent. To see this, let X denote the T ⇥ N matrix of observed variables, and let

F̌ l, ⇤̌l denote the matrices of PCA estimators of Bai and Ng (2002) when the estimated number

of factors is l. Then Bai and Ng (2002)’s estimator of r can be written as:

r̂ = argmin
1lk

Ŝ(l) where Ŝ(l) = (NT )�1
�

�

�

X � F̌ l⇤̌l0
�

�

�

2
+ l · PNT ,

k > r, and PNT is defined as in Theorem 2 above. Since F̌ l/
p
T are the l eigenvectors of

XX 0/(NT ) associated with the largest l eigenvalues and ⇤̌l = X 0F̌ l/T , we have that:

(NT )�1
�

�

�

X � F̌ l⇤̌l0
�

�

�

2
= Tr[XX 0/(NT )]�Tr

h

F̌ l0/
p
T (XX 0/(NT ))F̌ l/

p
T
i

=
T
X

j=l+1

⇢j
�

XX 0/(NT )
�

.

13



Therefore, Ŝ(l)� Ŝ(l � 1) = PNT � ⇢l (XX 0/(NT )), and Ŝ(l) is minimized at r̂ if

⇢r̂
�

XX 0/(NT )
�

> PNT and ⇢r̂+1

�

XX 0/(NT )
�

 PNT .

That is, r̂ is chosen as the number of eigenvalues of XX 0/(NT ) that are larger than PNT .

Further, let ⇢1(X) � . . . � ⇢k(X) be the k largest eigenvalues of XX 0/(NT ), then it is easy to

see that:

diag (⇢1(X), . . . , ⇢k(X)) = F̌ k0/
p
T (XX 0/(NT ))F̌ k/

p
T = ⇤̌k0⇤̌k/N.

Therefore, Bai and Ng (2002)’s estimator of r is equivalent to the number of diagonal elements

in ⇤̌k0⇤̌k/N that are larger than PNT — which is equivalent to the rank-minimization estimator

that we defined above. However, due to the di↵erences of the object functions, such equivalence

does not exist in QFM.

Remark 3.3: The choice of PNT for r̂rank and r̂IC can be di↵erent in practice. In particular, it

can di↵er from those penalties used by Bai and Ng (2002). AB (2018) choose

PNT = log

✓

NT

N + T

◆

· N + T

NT

for r̂IC, similar to ICp1 of Bai and Ng (2002). However, as shown in AB’s (2018) simulation

results, this choice does not perform very well even for N,T as large as 300.

Remark 3.4: Even though r̂rank and r̂IC are both consistent estimators of r, the computational

cost of r̂rank is much lower than that of r̂IC, because for r̂rank we only estimate the model once,

while for r̂IC we need to estimate the model k times. Thus, in the simulations we will focus on

r̂rank, and we refer to AB (2018) for the corresponding simulation results of r̂IC. We find that

the choice

PNT = �̂k
N,1 ·

✓

1

L2
NT

◆1/3

for r̂rank works fairly well as long as min{N,T} is 100. This is also the value used in all of our

simulations and applications.

3.3 Discriminating between AFM and QFM

The asymptotic results above guarantee that the QFA approach for QFM is not simply overfitting

the data by estimating more spurious factors. Hence, it provides a sensible alternative procedure

to PCA for estimation of factor structures. As a result, a relevant issue in practice is whether

di↵erences between the estimated number of QFA and PCA factors can help discriminating

between AFM and QFM structures.

14



Before addressing this issue, however, it is worth highlighting that such a comparison does

not provide a formal test of AFM vs. QFM. In e↵ect, using the analogy of OLS regressions

vs. QR, finding that the QR estimated coe�cients vary across the conditional quantiles of

the dependent variable does not imply that the OLS results are invalid. As it is well known,

this is because OLS estimation focuses on the average response of the dependent variable to a

change in an explanatory variable, whereas QR looks at how such a response varies throughout

of the distribution of the dependent variable. Thus, since these two estimation procedures have

di↵erent goals (modelling conditional means and conditional quantiles), the only valid claim one

can make is that is that QR provides larger information insofar as the estimates di↵er across

quantiles.

In the FM model literature, AFM is not tested in a formal way. It is instead selected by

some consistent selection criteria: there is an AFM insofar 0 < r ⌧ N , and then the chosen

factors and loadings are estimated by PCA (or other similar estimation procedures). Following

the same reasoning, selection between AFM and QFM relies on the comparison of the number

of estimated factors by PCA and QFA, which for convenience we label r̂PCA and r̂QFA(⌧),

respectively, in the sequel.

Then, according to the number of factors estimated by each procedure, the following two

cases could be distinguished:

(I) If r̂QFA(⌧) > r̂PCA for some ⌧s, this ensures the existence of extra factors, so that the

QFA estimation approach is needed to extract them. Example 3 in subsection 2.2 above provides

a simple illustration of such a case. The IC-based selection criteria of Bai and Ng (2002) will

choose r1 PCA factors, while our two consistent selection criteria will select r1+ r2 QFA factors

(except at ⌧ = 0.5 where they will choose r1). Similar arguments apply to Examples 4 and 5

above.7

(II) If r̂QFA(⌧)  r̂PCA for all ⌧s, there could still exist some extra factors which di↵er from

the mean-shifting factors detected by PCA. This could happen if the loadings of some extra

factors are zero or small for certain ⌧s. In such instances, QFA will find it di�cult to detect

them in finite samples, resembling the issues raised by Onatski (2012) about the role of weak

factors in AFM. A potential illustration, which is not listed in subsection 2.2 above, could be

the following QFM structure: Xit = �1i(⌧)f1t + �2i(⌧)f2t + uit(⌧), where f1t is a mean-shifting

factor, and f2t only a↵ects the upper and lower quantiles but not the mean of Xit, i.e., �2i(⌧) = 0

for ⌧ 2 [✏, 1 � ✏]. If �1i(⌧) is close to zero for ⌧ 2 (0, ✏) [ (1 � ✏, 1), so that f1t is a weak factor

in those parts of the distribution where f2t hits, then QFA will only capture f2t but not f1t at

the upper and lower quantiles, while PCA will only capture f1t but not f2t. In this example,

7 Within this category, one could also include the standard FM in Example 1, since the number of QFA factors
at all ⌧s (except ⌧ = 0.5) would exceed the number of PCA factors by exactly one factor, namely, a unit vector.
Thus, QFA will easily detect this case because one of the two selected factors will be highly correlated with the
PCA factor, while the other factor will be constant over time.
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it becomes evident that, despite yielding the same number of PCA and QFA factors at all ⌧s,

the factors are not the same. That would not hold in Example 2 of subsection 2.2, where

PCA and QFA select the same number of factors (equal to 1) and the selected factor by each

estimation method happens to be identical (f1t). Thus, whenever the di↵erence between r̂QFA

and r̂PCA falls into this range, our suggestion to check if PCA captures all the factors in the

QFM representation (like in Example 2) relies on computing correlations between the estimated

QFA factors at di↵erent ⌧s and the PCA factors. If these correlations are high, this will be an

indication that PCA extracts all the relevant factors in the QFM representation, while if they

are low for some ⌧s, this will be signaling that PCA fails to do so.

This discrimination strategy between AFM and QFM will be subject to further discussion

in Section 6 below when we apply it to interpret results in our empirical applications.

4 Estimators Based on Smoothed Quantile Regressions

The asymptotic distribution of the QFA estimator ✓̂ is di�cult to derive due to the non-

smoothness of the check function and the problem of incidental parameters. As in the asymptotic

analysis of standard QR, one can expand the expected score function (which is smooth and con-

tinuously di↵erentiable) and obtain a stochastic expansion for �̂i � �0i; yet the following term

appears in the expansion:

1

T

T
X

t=1

n⇣

1{Xit  �̂0
if̂t}� E[1{Xit  �̂0

if̂t}]
⌘

f̂t �
�

1{Xit  �0
0if0t}� ⌧

�

f0t
o

. (8)

AB (2018) claim that the above term is oP (1/T 1/2), based on the results that maxiN k�̂i��0ik =

oP (1) and maxtT kf̂t�f0tk = oP (1). However, we suspect that this claim may not hold. To see

this, let and �̌i and f̌t be the PCA estimators in a AFM. In the stochastic expansion of �̌i��0i,

the analogous term to (8) happens to be:

1

T

T
X

t=1

✏it(f̌t � f0t),

where ✏it is the idiosyncratic error in the AFM. Note that, based on maxtT kf̌t � f0tk = oP (1),

one can only show that:

�

�

�

�

�

1

T

T
X

t=1

✏it(f̌t � f0t)

�

�

�

�

�



v

u

u

t

1

T

T
X

t=1

✏2it ·

v

u

u

t

1

T

T
X

t=1

kf̌t � f0t)k2 = oP (1).
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Instead, one has to use the stochastic expansion of f̌t�f0t to show that T�1PT
t=1 ✏it(f̌t�f0t) =

1/L2
NT (see the proof of Lemma B.1 of Bai 2003). Likewise, to show that (8) is oP (1/T 1/2),

and therefore that this term does not a↵ect the asymptotic distribution of �̂i, establishing the

convergence rate of f̂t � f0t is not enough. As a result, the stochastic expansion of f̂t � f0t

is needed. However, due the non-smoothness of the indicator functions, it is not clear how to

explore the stochastic expansion of f̂t � f0t in (8).

To overcome the problem discussed above, we proceed to define a new estimator of ✓0,

denoted as ✓̃, based on the following smoothed quantile regressions (SQR):

✓̃ = (�̃0
1, . . . , �̃

0
N , f̃ 0

1, . . . , f̃
0
T )

0 = argmin
✓2⇥M

SNT (✓),

where

SNT (✓) =
1

NT

N
X

i=1

T
X

t=1



⌧ �K

✓

Xit � �0
ift

h

◆�

(Xit � �0
ift),

K(z) = 1�
R z
�1 k(z)dz, k(z) is a continuous function with support [�1, 1], and h is a bandwidth

parameter that goes to 0 as N,T diverge.

Define

�i = lim
T!1

1

T

T
X

t=1

fit(0)f0tf
0
0t and  t = lim

N!1

1

N

N
X

i=1

fit(0)�0i�
0
0i

for all i, t. We impose the following assumptions:

Assumption 2. (i) �i > 0 and  t > 0 for all i, t.

(ii) �0i is an interior point of A and f0t is an interior point of F for all i, t.

(iii) k(z) is symmetric around 0 and twice continuously di↵erentiable. For m � 8,
R 1
�1 k(z)dz =

1,
R 1
�1 z

jk(z)dz = 0 for j = 1, . . . ,m� 1 and
R 1
�1 z

mk(z)dz 6= 0.

(iv) fit is m+2 times continuously di↵erentiable. Let f(j)it (u) = (@/@u)jfit(u) for j = 1, . . . ,m+2.

There exists �1 < l < l̄ < 1, such that for any compact set C ⇢ R and any u 2 C, we have

l  f(j)it (u)  l̄ and f  fit(u)  l̄ for j = 1, . . . ,m+ 2 and for all i, t.

(v) As N,T ! 1, N / T , h / T�c and m�1 < c < 1/6.

Then, we can show that:

Theorem 4. Under Assumptions 1 and 2,

p
T (�̃i � �0i)

d! N (0, ⌧(1� ⌧)��2
i ) and

p
N(f̃t � f0t)

d! N (0, ⌧(1� ⌧) �1
t ⌃⇤ 

�1
t )

for each i and t, where ⌃⇤ = diag(�1, . . . ,�r).
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Remark 4.1: Similar to the proof of Theorem 1, we can show that

k⇤̃� ⇤0k/
p
N = OP (1/LNT ) +OP (h

m/2) and kF̃ � F0k/
p
T = OP (1/LNT ) +OP (h

m/2),

where the extra OP (hm/2) term is due the approximation bias of the smoothed check function.

However, Assumption 2(v) implies that 1/LNT >> hm/2, and then it follows that average

convergence rates of ⇤̃ and F̃ are both LNT .

Remark 4.2: Similar to Theorems 1 and 2 of Bai (2003), we show that the new estimator

is free of incidental-parameter biases. That is, the asymptotic distribution of �̃i is the same

as if we would observe {f0t}, and likewise the asymptotic distribution of f̃t is the same as

if {�0i} were observed. The proof of this result is not trivial. To see why this is the case,

first define %(u) = [⌧ � K(u/h)]u and Si,T (�, F ) = T�1PT
t=1 %(Xit � �0ft), then we can write

�̃i = argmin�2A Si,T (�, F̃ ). Expanding @Si,T (�̃i, F̃ )/@� around (�0i, F0) yields

 

1

T

T
X

t=1

%(2)(uit)f0tf
0
0t

!

(�̃i � �0i) ⇡
1

T

T
X

t=1

%(1)(uit)f0t +
1

T

T
X

t=1

⇢(1)(uit)(f̃t � f0t)

� 1

T

T
X

t=1

⇢(2)(uit)f0t�
0
0i(f̃t � f0t), (9)

where %(j)(u) = (@/@u)j%(u). The key step is to show that the last two terms on the right-hand

side of the above equation are oP (1/
p
T ). This is relatively easier for the PCA estimator of Bai

(2003), since (f̃t � f0t) has an analytical form (e.g., equation A.1 of Bai 2003). In our case, we

would need a similar expansion as (9) to obtain an approximate expression for (f̃t�f0t), but this

expression depends on (�̃i��0i) due to the nature of factor models. Similar to Chen et al. (2018),

this problem can be partly solved by showing that the expected Hessian matrix is asymptotically

block-diagonal (see Lemma 11 in the Appendix). However, the proof of Chen et al. (2018) is

only applicable to a special infeasible normalization, namely
PN

i=1 �0i�i =
PT

t=1 f0tf
0
t , while

our proof of Lemma 11 allows for normalization (3) and can be generalized to any of the other

normalizations considered by Bai and Ng (2013) that uniquely pin down the rotation matrix.

Remark 4.3: As discussed in Remark 1.3, if the true parameters do not satisfy the normaliza-

tions (3), the results of Theorem 3 can be stated as

p
T
⇣

�̃i �H�1
NT�0i

⌘

d! N
�

0, ⌧(1� ⌧)H�1��1
i ⌃F�

�1
i (H 0�1

�

,

p
N
⇣

f̃t �H 0
NT f0t

⌘

d! N
�

0, ⌧(1� ⌧)H 0 �1
t ⌃⇤ 

�1
t H

�

,

where ⌃F = limT!1⌃T,F , ⌃⇤ = limN!1⌃N,⇤,H = ⌃�1/2
F �, and � is the matrix of eigenvectors

of ⌃1/2
F ⌃⇤⌃

1/2
F .
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Remark 4.4: A restrictive DGP within class (1) would be a QFM where the PCA factors

coincide with the quantile factors and only the factor loadings are quantile dependent. The

representation for such restricted subset of QFM is as follows:

Xit = �0
i(⌧)ft + uit(⌧), for ⌧ 2 (0, 1). (10)

As a result, the main objects of interest are the common factors and the quantile-varying

loadings. Notice that, if the factors ft were to be observed, using standard QR of Xit on ft

would lead to consistent and asymptotically normally distributed estimators of �i(⌧) for each

i and ⌧ 2 T . However, since ft are not observable, a feasible two-stage approach is to first

estimate the factors by PCA, denoted as f̂PCA
t , and next run QR of Xit on f̂PCA

t to obtain

estimates of �i(⌧) as follows:

�̂i(⌧) = argmin
�

T�1
T
X

t=1

⇢⌧ (Xit � �0f̂PCA
t ). (11)

As explained in Chen et al. (2017), unlike the QFA estimators, this two-stage procedure

requires moments of the idiosyncratic term uit to be bounded in order to apply PCA in the first

stage (see Remark 1.2). However, an interesting result (see Chen et al. 2017, Theorem 2) is that

the standard conditions on the relative asymptotics of N and T allowing for the estimated factors

to be treated as known do not hold when applying this two-stage estimation approach. In e↵ect,

while these conditions are T 1/2/N ! 0 for linear factor-augmented regressions (see Bai and Ng

2006) and T 5/8/N ! 0 for nonlinear factor-augmented regressions (Bai and Ng 2008a), lack of

smoothness in the object (check) function at the second stage requires the stronger condition

T 5/4/N ! 0. Moreover, Theorem 3 in Chen et al. (2017) shows how to run inference on the

quantile-varying loadings (e.g., testing the null that they are constant across all quantiles or a

subset of them).

5 Finite Sample Simulations

In this section we report the results from several Monte Carlo simulations regarding the perfor-

mance of our proposed QFM methodology in finite samples. In particular, we focus on three

relevant issues: (i) how well does our preferred estimator of the number of factors perform rela-

tive to other selection criteria when the distribution of the idiosyncratic error terms in an AFM

exhibits heavy tails, (ii) how well do PCA and QFA estimate the true factors under the previous

circumstances, and (iii) how robust is the QFA estimation procedure when the errors terms are

serially and cross-sectionally correlated, instead of being independent.
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5.1 Estimation of AFM: Heavy-tailed idiosyncratic error terms

As pointed out in Remark 1.2, our estimator for AFM at ⌧ = 0.5 can be viewed as a robust

alternative to the PCA estimators that are commonly used in practice. This is because the

consistency of our estimators does not require the moments of the idiosyncratic errors to exist.

For the same reason, our estimator of the number of factors should also be more robust to

outliers and heavy tails than the IC-based method of Bai and Ng (2002). In this subsection we

confirm the above claims by means of simulations.

We consider the following DGP:

Xit =
3
X

j=1

�jifjt + uit,

where f1t = 0.2f1,t�1 + ✏1t, f2t = 0.5f2,t�1 + ✏2t, f3t = 0.8f3,t�1 + ✏3t, �ji, ✏jt are all independent

draws from N (0, 1), and uit are independent draws from the standard Cauchy distribution.

We consider four estimators of the number of factors r: two estimators based on PCp1, ICp1

of Bai and Ng (2002), the eigenvalue-ratio estimator of Ahn and Horenstein (2013) and our

rank-minimization estimator discussed in subsection 3.2, having chosen

PNT = �̂k
N,1 ·

✓

1

L2
NT

◆1/3

.

We set k = 8 for all four estimators, and consider N,T 2 {50, 100, 200}.

Table 1 reports the following fractions:

[proportion of r̂ < 3 , proportion of r̂ = 3 , proportion of r̂ > 3 ]

for each estimator having run 1000 replications.

It becomes evident from the results in Table 1 that the IC-based estimators of Bai and Ng

(2002) almost always overestimate the number factors, and that the eigenvalue-ratio estimator of

Ahn and Horenstein (2013) tends to underestimate the number of factors but to a lesser extent

than what the IC estimators overestimate them. By contrast, our rank-minimization estimator

chooses accurately the right number of factors as long as min{N,T} � 100.

Next, to compare the PCA and QFA estimators of the common factors in the previous DGP,

we assume that r = 3 is known. We first get the PCA estimators F̂PCA, and then obtain the

QFA estimator F̂QFA using the IQR algorithm. Next, we regress each of the true factors on

F̂PCA and F̂QFA separately, and report the average R2 from 1000 replications in Table 2 as

an indicator of how well the space of the true factors is spanned by the estimated factors. As

shown in the first three columns of Table 2, while the PCA estimators are not very successful
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in capturing the true common factors, our QFA estimators approximate them very well, even

when N,T are not too large.

As discussed earlier, the overall findings reported in Tables 1 and 2 are in line with our

theoretical results. They provide strong evidence of the substantial gains that can be achieved

by using QFA rather than PCA in those cases where the idiosyncratic error terms in AFM

exhibit heavy tails and outliers.

5.2 Estimation of QFM: Heavy-tailed and non-independent error terms

In this subsection we consider the following DGP:

Xit = �1if1t + �2if2t + (�3if3t) · eit,

where f1t = 0.8f1,t�1 + ✏1t, f2t = 0.5f2,t�1 + ✏2t, f3t = |gt|, �1i,�2i, ✏1t, ✏2t, gt are all independent

draws from N (0, 1), and �3i are independent draws from U [1, 2]. Following Bai and Ng (2002),

the following specification for eit is used:

eit = � ei,t�1 + vit + ⇢ ·
i+J
X

j=i�J,j 6=i

vjt,

where vit are independent draws from N (0, 1) except in the second case below. The autoregres-

sive coe�cient � captures the serial correlations of eit, while the parameters ⇢ and J capture

the cross-sectional correlations of eit. We consider four cases:

Case 1: Independent errors: � = 0 and ⇢ = 0,

Case 2: Independent errors with heavy tails: � = ⇢ = 0, and vit ⇠ i.i.d Student(3).

Case 3: Serially Correlated Errors: � = 0.2 and ⇢ = 0.

Case 4: Serially and Cross-Sectionally Correlated Errors: � = 0.2 and ⇢ = 0.2, and J = 3.

For each of the previous cases and each ⌧ 2 {0.25, 0.5, 0.75}, we first estimate r̂ using our

rank-minimization estimator, having set k and PNT as described in the previous subsection.

Second, we estimate r̂ factors by means of the QFA estimation approach, which we denote

as F̂ r̂
QFA. Finally, we regress each of the true factors on F̂ r̂

QFA and calculate the R2s. This

procedure is repeated 1000 times and for each ⌧ , we report the averages of r̂ and the R2s among

these 1000 replications.

The results for Case 1 and Case 2 (where this time the heavy tails are captured by a Stu-

dent(3) rather than by a Cauchy distribution) are reported in Tables 3 and 4, respectively, for

N,T 2 {50, 100, 200}. Notice that for ⌧ = 0.25, 0.75, we have r(⌧) = 3 while, for ⌧ = 0.5, we get

r(⌧) = 2, since the factor f3t does not a↵ect the median of Xit. It can be observed that both our

rank-minimization selection criterion and the QFA estimators perform very well in choosing the
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true number of QFA factors and in estimating them. It should be noticed that at ⌧ = 0.25, 0.75

the estimation of the scale factor f3t is not as good as the mean factors f1t, f2t for small N and

T . However, such di↵erences vanish as N and T increase.

The results for Case 3 and Case 4 are in turn reported in Tables 5 and 6, respectively. It

can be inspected that, even when the independence assumption is violated in these DGPs, the

QFA estimation approach still performs satisfactorily. Thus, despite adopting independence in

Assumption 1 (iii) for tractability in the proofs (see Remark 1.4), it seems that QFA estimation

still works properly when the errors terms are allowed to exhibit mild serial and cross-sectional

correlations.

6 Empirical Applications

In this section we illustrate the use of the QFA estimation approach in practice by considering

three empirical applications that involve macroeconomic, financial, and climate change data:

1. The first dataset (SW for short) corresponds to an updated version of the popular panel of

macroeconomic indicators which has been used by Stock and Watson to construct leading

indicators for the US economy. This dataset can be downloaded from Mark Watson’s

website. SW consists of 167 quarterly macro-variables from 1959 to 2014 (N = 167, T =

221). These variable are transformed into stationary series before estimating the factors

(see Stock and Watson 2016 for the details of this dataset).

2. The second dataset (Climate for short) consists of the annual changes of temperature from

338 stations from 1916 to 2016 (N = 338, T = 100) drawn from the Climate Research Unit

(CRU) at the University of East Anglia, where information about global temperatures

across di↵erent stations in the Northern and Southern Hemisphere is provided.

3. The third dataset (MF for short) contains the monthly returns of 2378 mutual funds from

2000 to 2014 (N = 2378, T = 180), obtained from the Center of Research for Security

Prices (CRSP).

First, we set the number of PCA estimated factors in the SW dataset to be equal to 3

since this is the conventional number of factors found in the macroeconomic literature (typically

capturing variability in TFP, monetary and fiscal variables). In contrast, for the Climate and

MF datasets, which have been less explored in the AFM literature, we use the eigenvalue-ratio

estimator of Ahn and Horenstein (2013) which selects 2 and 3 PCA factors, respectively; 8 next,

we estimate the number of quantile-dependent factors using our rank-minimization estimator at

⌧ = 0.1, 0.25, 0.5, 0.75, 0.9.

8We also applied the IC-based method of Bai and Ng (2002), but it was found that this selection procedure
always chooses the maximum number of factors (8) for all the three datasets. For this reason, we only report the
results of the eigenvalue-ratio estimator, whose finite-sample performance has been shown by Ahn and Horenstein
(2013) to be more satisfactory than those of the IC-based methods and related selection rules.
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The results of the previous exercise are reported in Table 7. Two di↵erent sets of findings

stand out. On the one hand, there are two datasets where the estimated number of PCA and

QFA factors across quantiles is quite similar or even identical. The first one is the SW dataset,

where the estimated number of QFA factors using our rank-minimization estimator never di↵ers

from the estimated number of PCA factors (3) by more than one factor; for example, at ⌧ = 0.10

and 0.9, the chosen number of QFA factors is 2 while it is 4 at ⌧ = 0.75. In line with the discussion

in subsection 3.3, our interpretation of these results is that some of the four selected quantile-

varying factors may be relevant at ⌧ = 0.75, while they may be weak at the other two quantiles.

The second one in this category is the MF dataset, where we find an even stronger degree of

similarity between the number of QFA and PCA factors: for all considered ⌧s, they are always

identical (3).

On the other hand, the evidence for the Climate dataset is rather di↵erent. In e↵ect, with

the exception of two tails of the distribution (⌧ = 0.1 and 0.9), where the estimated number of

QFA factors equals the number of PCA factors (2), the selected number of QFA factors at the

remaining quantiles (5 or 6) is much larger.

Thus, in line with the discussion in subsection 3.3, the previous findings for the Climate

dataset strongly indicate that PCA fails to capture all relevant factors in the QFM representa-

tion, implying that the QFA estimation approach is required to extract them. Regarding the SW

and MF datasets, it was also argued in subsection 3.3 that equality (or similarity) of the number

of PCA and QFA factors at all considered ⌧s does not necessarily imply that PCA captures all

relevant factors. To check this, we examine the size of the correlation of each QFA factor at

each ⌧ with the set of estimated PCA factors. If these correlations are high, this would indicate

that the QFA factors only capture the PCA factors, with no other extra factors being relevant.

Conversely, if the correlations are low at some ⌧ , this will indicate the presence of some extra

factor at such a ⌧ that PCA is unable to uncover.

Following this strategy, Table 8 shows the results of of comparing F̂FQA with the PCA factors

(denoted as F̂PCA).9 For each ⌧ , we regress each element of F̂QFA on F̂PCA, and report the

R2s of these regressions. The main finding is that most of these R2s are close to 1 (which is

not surprising since mean-shifting factors a↵ect most of the quantiles) but with a few noticeable

exceptions: (i) the first QFA factor of SW at ⌧ = 0.9, (ii) the two QFA factors of Climate at

⌧ = 0.1 and 0.9, and (iii) the third QFA factor of MF at ⌧ = 0.1 and 0.25. These exceptions

indicate that, besides the mean-shifting factors, the QFA estimation procedure is able to uncover

other quantile-dependent factors which could provide extra information about the distributional

characteristics of the data.

Finally, we further investigate the origins of these extra QFA factors so as to improve their

9As in Table 7, we estimate 3, 2 and 3 mean factors for SW, Climate and MF, respectively, whereas the number
of QFA factors for each quantile ⌧ also correspond to the figures displayed in Table 7.
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interpretation. We do this by comparing them to the volatility factors obtained by the PCA-SQ

procedure, denoted as ˆV F 2. The insight for this comparison can be provided by Example 3

above, where the extra QFA factors happen to be volatility factors and hence should be highly

correlated. Furthermore, in a similar fashion, we also construct skewness factors and kurtosis

factors by applying PCA to the third and fourth powers of the residuals obtained after removing

the PCA factors from the data, which we denote as ˆV F 3 and ˆV F 4, respectively. Table 9 reports

the R2s of regressing ˆV F j on F̂QFA for j = 2, 3, 4 at di↵erent ⌧s. The results for the SW dataset

are somewhat mixed. As can be observed in the first three rows of this Table, the explanatory

power of the volatility, skewness and kurtosis factors over the QFA factors is fairly moderate.

This evidence, together with the strong correlations between the PCA and QFA factors reported

in Table 8, seems to point out that the three selected PCA factors play a dominant role in the

QFM structure. Yet, in view of the slightly higher correlations (R2s close to or above 0.6) of

the QFA factors with ˆV F 2 at the lower and upper quantiles, one cannot rule out that extra

factors related to volatility may still be relevant. By contrast, for Climate and MF, the evidence

is much clearer: the skewness factor is highly correlated with the estimated QFA factors at

most ⌧s, whereas the volatility and kurtosis factors are not correlated at all with them. This

finding points to the existence of common factors related to symmetry in the distribution of

the variables included in these two datasets, which are properly captured by means of the QFA

estimation procedure but omitted when applying PCA.

Interestingly, the evidence for the MF dataset is in line with the results by Andersen et al.

(2018) who report the existence of tail factors in the distribution of asset returns which, for

our specific dataset, we interpret as being closely related to changes in skewness. Likewise, the

evidence for the Climate dataset is also in line with the results obtained by Gadea and Gonzalo

(2019). Using the same dataset we use here (but di↵erent quantile techniques), these authors

find that global warming over the last century seems to be due to a di↵erent behaviour in the

lower tail than in the central and upper tails of the distribution of global temperatures. This

finding points to a change in the skewness of such a distribution, in agreement with the nature

of the extra QFA factors found for this dataset.

7 Conclusions

Approximate Factor Models (AFM) have become a leading methodology for the joint modelling

of large number of economic time series with the big improvements in data collection and infor-

mation technologies. This first generation of AFM was designed to reduce the dimensionality of

big datasets by finding those common components which, by shifting the means of the observed

variables with di↵erent intensities, are able to capture a large fraction of the data co-movements.

However, one could envisage the existence of other common factors that do not (or not only)
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shift the means but also a↵ect other distributional characteristics (volatility, higher moments,

extreme values, etc.). This calls for a second generation of factor models.

Inspired by the generalization of linear regressions to quantile regressions (QR), this paper

proposes Quantile Factor Models (QFM) as a new class of factor models. In QFM, both factors

and loadings are allowed to be quantile-dependent objects. These extra factors could be useful

for identification purposes, for instance mean-shifting factors vs. volatility/skewness/kurtosis

factors, as well as for forecasting purposes in factor-augmented regressions and FAVAR setups.

Using tools in the interface of QR, Principal Component Analysis (PCA) and the theory of

empirical processes, we propose a novel estimation procedure, labelled Quantile Factor Analysis

(QFA), that yields consistent and asymptotically normal estimators of factors and loadings at

each quantile. An important advantage of QFA is that it is able to extract simultaneously all

mean-shifting and extra factors determining the factor structure of QFM, in contrast to PCA

which can only extract mean-shifting factors. In addition, we propose two selection criteria to

estimate consistently the number of factors at each quantile. Finally, another interesting result

is that QFA estimators remain valid when the idiosyncratic error terms in AFM exhibit heavy

tails and outliers, which is a case where PCA is rendered invalid.

The previous theoretical findings receive support in finite samples from a range of Monte

Carlo simulations. Furthermore, it is shown in these simulations that QFA estimation per-

forms well when we depart from some of simplifying assumptions used in the theory section for

tractability (like, e.g., independence of the idiosyncratic errors). Lastly, our empirical applica-

tions to three large panel datasets of financial, macro and climate variables provide evidence

that some these extra factors may be highly relevant in practice.

Any time a novel methodology is proposed, new research issues emerge for future investi-

gation. Among the ones which have been left out of this paper (some are part of our current

research agenda), four topics stand out as important:

• Factor augmented regressions and FAVAR: In relation to this topic, it would also be

interesting to check the contributions of the extra factors in forecasting and monitoring

(see, e.g., Stock and Watson 2002 for this type of analysis). This is an issue of high interest

for applied researchers, especially with the surge of Big Data technologies. For example,

one could analyze the role of the extra factors in the estimation and shock identification

in FAVAR. Recent developments in quantile VAR estimation, as in White et al. (2015)

provide useful tools in addressing these issues.

• Relaxing the independence assumptions: in view of the simulation results in Tables 5 and

6, we conjecture that the main theoretical results of our paper continue to hold when

the error terms in QFM are allowed to have weak cross-sectional and serial dependence.

Providing a formal justification for this conjecture remains high in our research agenda.

As discussed in Remark 1.4, the goal here is to provide more general conditions on uit
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under which the sub-Gaussian type inequalities still hold.

• Dynamic QFM: Although our methodology admits factors to exhibit dependence, provided

Assumption 2(i) holds, a pending issue is how to extend our results for static QFM to

dynamic QFM, where the set of quantile-dependent objects include lagged factors (see

Forni et al. 2000 and Stock and Watson 2011). Since our main aim in this paper has been

to introduce the new class of QFM and their basic properties, for the sake of brevity, we

have focused on static QFM, leaving this topic for further investigation.

• Economic interpretation of QFA factors in empirical applications: given the evidence that

extra factors could be relevant in practice, another interesting issue is how to interpret

them in di↵erent economic and financial contexts. Once the econometric techniques to

detect and estimate extra factors in QFM have been established, attempts to provide new

economic insights for these objects would help enrich the economic theory underlying this

type of factor structures.
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A Tables and Figures

Table 1: AFM with Cauchy-distributed Error Terms: Number of Factors

N T PCp1 of BN ICp1 of BN Eigenvalue Ratio Rank Estimator
50 50 [0.0, 0.0, 100] [0.1, 0.2, 99.7] [74.6, 10.5, 14.9] [43.2, 32.5, 24.3]
50 100 [0.0, 0.0, 100] [0.0, 0.2, 99.8] [75.8, 9.9, 14.3] [37.7, 54.9, 7.4]
50 200 [0.0, 0.0, 100] [0.0, 0.1, 99.9] [74.0, 11.3, 14.7] [46.3, 48.1.0, 5.6]
100 50 [0.0, 0.0, 100] [0.0, 0.0, 100] [76.3, 9.7, 14.0] [39.1, 52.0, 8.9]
100 100 [0.0, 0.0, 100] [0.0, 0.0, 100] [75.2, 9.5, 15.3] [8.9, 90.3, 0.9]
100 200 [0.0, 0.0, 100] [0.0, 0.0, 100] [74.1, 11.3, 14.6] [7.4, 92.2, 0.4]
200 50 [0.0, 0.0, 100] [0.0, 0.0, 100] [75.7, 11.4, 12.9] [41.0, 55.2, 3.8]
200 100 [0.0, 0.0, 100] [0.0, 0.0, 100] [74.0, 11.7, 14.3] [7.1, 92.6, 0.3]
200 200 [0.0, 0.0, 100] [0.0, 0.0, 100] [72.4, 11.3, 16.3] [0.0, 100, 0.0]

Note: The DGP considered in this Table: Xit =
P3

j=1 �jifjt + uit, where
f1t = 0.2f1,t�1 + ✏1t, f2t = 0.5f2,t�1 + ✏2t, f3t = 0.8f3,t�1 + ✏3t, �ji, ✏jt ⇠
i.i.d N (0, 1), uit ⇠ i.i.d Cauchy(0, 1). For each estimation method, we reported
[proportion of r̂ < 3 , proportion of r̂ = 3 , proportion of r̂ > 3 ] from 1000 replications.

Table 2: AFM with Cauchy-distributed Error Terms: Estimation of Factors

N T f1t,F̂PCA f2t,F̂PCA f3t,F̂PCA f1t,F̂QFA f2t,F̂QFA f3t,F̂QFA

50 50 0.062 0.063 0.067 0.914 0.919 0.964
50 100 0.030 0.030 0.031 0.927 0.942 0.970
50 200 0.015 0.015 0.015 0.932 0.945 0.972
100 50 0.062 0.062 0.061 0.963 0.971 0.985
100 100 0.030 0.030 0.031 0.969 0.975 0.988
100 200 0.015 0.015 0.015 0.971 0.977 0.988
200 50 0.061 0.060 0.059 0.982 0.986 0.993
200 100 0.029 0.030 0.031 0.986 0.989 0.994
200 200 0.015 0.014 0.015 0.987 0.989 0.995

Note: The DGP considered in this Table is: Xit =
P3

j=1 �jifjt + uit, where f1t =
0.2f1,t�1 + ✏1t, f2t = 0.5f2,t�1 + ✏2t, f3t = 0.8f3,t�1 + ✏3t, �ji, ✏jt ⇠ i.i.d N (0, 1), uit ⇠
i.i.d Cauchy(0, 1). For each estimation method, we report the average R2 in the regression
of (each of) the true factors on the estimated factors by PCA and QFA.
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Table 3: Estimation of QFM: Independent Error Terms

⌧ = 0.25 ⌧ = 0.5 ⌧ = 0.75
N T r̂rank f1t f2t f3t r̂rank f1t f2t f3t r̂rank f1t f2t f3t
50 50 2.21 0.866 0.721 0.339 1.91 0.956 0.808 0.013 2.23 0.926 0.738 0.334
50 100 2.42 0.943 0.758 0.483 1.88 0.968 0.839 0.003 2.38 0.946 0.708 0.463
50 200 2.43 0.933 0.703 0.485 1.88 0.971 0.842 0.001 2.40 0.951 0.698 0.445
100 50 2.14 0.944 0.681 0.337 1.80 0.980 0.786 0.014 2.13 0.948 0.694 0.357
100 100 2.71 0.977 0.898 0.688 1.98 0.985 0.954 0.001 2.72 0.968 0.890 0.707
100 200 2.82 0.983 0.904 0.757 1.99 0.987 0.966 0.003 2.86 0.982 0.908 0.793
200 50 2.35 0.970 0.826 0.490 1.87 0.989 0.867 0.008 2.29 0.973 0.745 0.489
200 100 2.80 0.990 0.934 0.782 2.00 0.993 0.987 0.001 2.81 0.990 0.977 0.772
200 200 2.99 0.992 0.986 0.940 2.00 0.994 0.988 0.000 2.99 0.992 0.986 0.935

Note: The DGP considered in this Table is: Xit = �1if1t + �2if2t + (�3if3t) · eit, f1t = 0.8f1,t�1 + ✏1t, f2t =
0.5f2,t�1 + ✏2t, f3t = |gt|, �1i,�2i, ✏1t, ✏2t, gt ⇠ i.i.d N (0, 1), and �3i ⇠ i.i.d U [1, 2]. eit = �ei,t�1 + vit + ⇢ ·
Pi+J

j=i�J,j 6=i vjt, vit ⇠ i.i.d N (0, 1), � = ⇢ = 0. For each ⌧ , the first column reports the average of r̂rank from 1000

replications, the second to the fourth columns report the average R2 in the regression of (each of) the true factors
on the QFA factors F̂ r̂

QFA, obtained from the IQR algorithm.

Table 4: Estimation of QFM: Independent Error Terms with Heavy Tails

⌧ = 0.25 ⌧ = 0.5 ⌧ = 0.75
N T r̂rank f1t f2t f3t r̂rank f1t f2t f3t r̂rank f1t f2t f3t
50 50 2.81 0.911 0.727 0.585 2.38 0.954 0.827 0.031 2.95 0.925 0.711 0.617
50 100 2.79 0.934 0.782 0.621 2.03 0.963 0.885 0.005 2.79 0.933 0.783 0.658
50 200 2.82 0.942 0.811 0.680 1.91 0.966 0.855 0.000 2.76 0.943 0.790 0.648
100 50 3.20 0.962 0.851 0.737 2.67 0.977 0.907 0.076 3.07 0.942 0.828 0.682
100 100 3.06 0.972 0.897 0.840 2.21 0.983 0.939 0.018 3.06 0.974 0.931 0.801
100 200 3.00 0.974 0.944 0.867 1.99 0.983 0.958 0.000 2.98 0.974 0.943 0.860
200 50 3.24 0.971 0.839 0.753 2.82 0.984 0.903 0.106 3.31 0.970 0.858 0.773
200 100 3.10 0.985 0.937 0.897 2.31 0.991 0.975 0.018 3.09 0.987 0.949 0.883
200 200 3.02 0.989 0.977 0.932 2.07 0.992 0.985 0.005 3.02 0.988 0.978 0.933

Note: The DGP considered in this Table is: Xit = �1if1t + �2if2t + (�3if3t) · eit, f1t = 0.8f1,t�1 + ✏1t, f2t =
0.5f2,t�1 + ✏2t, f3t = |gt|, �1i,�2i, ✏1t, ✏2t, gt ⇠ i.i.d N (0, 1), and �3i ⇠ i.i.d U [1, 2]. eit = �ei,t�1 + vit + ⇢ ·
Pi+J

j=i�J,j 6=i vjt, vit ⇠ i.i.d Student(3), � = ⇢ = 0. For each ⌧ , the first column reports the average of r̂rank from

1000 replications, the second to the fourth columns report the averages of R2 in the regression of (each of) the
true factors on the QFA factors F̂ r̂

QFA, obtained from the IQR algorithm.
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Table 5: Estimation of QFM: Serially Correlated Error Terms

⌧ = 0.25 ⌧ = 0.5 ⌧ = 0.75
N T r̂rank f1t f2t f3t r̂rank f1t f2t f3t r̂rank f1t f2t f3t
50 50 2.31 0.900 0.698 0.400 1.97 0.961 0.805 0.023 2.32 0.924 0.705 0.416
50 100 2.40 0.927 0.722 0.475 1.91 0.968 0.863 0.005 2.38 0.940 0.709 0.453
50 200 2.66 0.956 0.841 0.586 1.95 0.970 0.904 0.000 2.70 0.948 0.824 0.628
100 50 2.33 0.945 0.736 0.479 1.91 0.980 0.857 0.005 2.32 0.942 0.737 0.478
100 100 2.72 0.978 0.863 0.704 1.98 0.985 0.957 0.000 2.72 0.978 0.895 0.690
100 200 2.87 0.983 0.924 0.801 1.98 0.987 0.955 0.000 2.88 0.965 0.948 0.805
200 50 2.35 0.974 0.724 0.540 1.92 0.989 0.859 0.021 2.40 0.963 0.758 0.531
200 100 2.75 0.987 0.929 0.734 1.98 0.993 0.960 0.000 2.76 0.990 0.912 0.760
200 200 2.98 0.993 0.984 0.927 2.00 0.994 0.987 0.000 2.99 0.992 0.975 0.942

Note: The DGP considered in this Table is: Xit = �1if1t + �2if2t + (�3if3t) · eit, f1t = 0.8f1,t�1 + ✏1t, f2t =
0.5f2,t�1 + ✏2t, f3t = |gt|, �1i,�2i, ✏1t, ✏2t, gt ⇠ i.i.d N (0, 1), and �3i ⇠ i.i.d U [1, 2]. eit = � ⇤ ei,t�1 + vit + ⇢ ·
Pi+J

j=i�J,j 6=i vjt, vit ⇠ i.i.d N (0, 1), � = 0.2, ⇢ = 0. For each ⌧ , the first column reports the average of r̂rank from

1000 replications, the second to the fourth columns report the average R2 in the regression of (each of) the true
factors on the QFA factors F̂ r̂

QFA, obtained from the IQR algorithm.

Table 6: Estimation of QFM: Serially and Cross-Sectionally Correlated Error Terms

⌧ = 0.25 ⌧ = 0.5 ⌧ = 0.75
N T r̂rank f1t f2t f3t r̂rank f1t f2t f3t r̂rank f1t f2t f3t
50 50 2.54 0.926 0.705 0.409 2.16 0.952 0.808 0.029 2.53 0.921 0.700 0.423
50 100 2.49 0.941 0.703 0.397 1.95 0.959 0.845 0.001 2.50 0.934 0.723 0.423
50 200 2.66 0.945 0.803 0.460 1.97 0.963 0.881 0.000 2.64 0.939 0.756 0.471
100 50 2.52 0.942 0.780 0.495 2.02 0.977 0.820 0.021 2.41 0.946 0.744 0.472
100 100 2.91 0.976 0.896 0.697 2.06 0.981 0.945 0.006 2.87 0.977 0.893 0.686
100 200 2.90 0.979 0.924 0.702 2.01 0.983 0.966 0.000 2.92 0.980 0.933 0.713
200 50 2.47 0.967 0.732 0.569 2.05 0.987 0.870 0.032 2.52 0.969 0.785 0.576
200 100 2.88 0.989 0.913 0.802 2.00 0.991 0.982 0.000 2.89 0.989 0.938 0.788
200 200 3.00 0.990 0.982 0.866 2.00 0.992 0.983 0.000 3.00 0.990 0.981 0.866

Note: The DGP considered in this Table is: Xit = �1if1t + �2if2t + (�3if3t) · eit, f1t = 0.8f1,t�1 + ✏1t, f2t =
0.5f2,t�1 + ✏2t, f3t = |gt|, �1i,�2i, ✏1t, ✏2t, gt ⇠ i.i.d N (0, 1), and �3i ⇠ i.i.d U [1, 2]. eit = �ei,t�1 + vit + ⇢ ·
Pi+J

j=i�J,j 6=i vjt, vit ⇠ i.i.d N (0, 1), � = ⇢ = 0.2 and J = 3. For each ⌧ , the first column reports the average of

r̂rank from 1000 replications, the second to the fourth columns report the average R2 in the regression of (each of)
the true factors on the QFA factors F̂ r̂

QFA, obtained from the IQR algorithm.
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Table 7: Empirical Applications: Number of Factors

SW Climate MF
(N,T ) (167,221) (338,100) (2378,180)

No. of PCA factors 3 2 3
r̂rank ⌧ = 0.1 2 2 3
r̂rank ⌧ = 0.25 3 6 3
r̂rank ⌧ = 0.5 3 6 3
r̂rank ⌧ = 0.75 4 5 3
r̂rank ⌧ = 0.9 2 2 3

Note: This table provides the estimated numbers of PCA factors
using the eigenvalue-ratio estimator, and the estimated numbers
of QFA factors at ⌧ 2 {0.1, 0.25, 0.5, 0.75, 0.9} using the rank-
minimization estimator.

Table 8: Empirical Applications: Comparison of F̂FQR with F̂PCA

Dataset F̂QFA,1 F̂QFA,2 F̂QFA,3 F̂QFA,4 F̂QFA,5 F̂QFA,6

⌧ = 0.1 SW 0.745 0.850
⌧ = 0.25 SW 0.949 0.750 0.880
⌧ = 0.5 SW 0.990 0.907 0.942
⌧ = 0.75 SW 0.892 0.850 0.899 0.359
⌧ = 0.9 SW 0.135 0.919
⌧ = 0.1 Climate 0.581 0.010
⌧ = 0.25 Climate 0.955 0.955 0.000 0.544 0.031 0.000
⌧ = 0.5 Climate 0.989 0.984 0.000 0.000 0.000 0.000
⌧ = 0.75 Climate 0.882 0.961 0.313 0.000 0.153
⌧ = 0.9 Climate 0.619 0.834
⌧ = 0.1 MF 0.939 0.887 0.117
⌧ = 0.25 MF 0.980 0.983 0.038
⌧ = 0.5 MF 0.996 0.982 0.994
⌧ = 0.75 MF 0.965 0.967 0.943
⌧ = 0.9 MF 0.871 0.917 0.919

Note: This table reports the R2 of regressing each element of F̂QFA on F̂PCA. For

F̂QFA and F̂PCA, the numbers of estimated factors is obtained from Table 7.
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Table 9: Empirical Applications: Comparison of F̂QFA with
ˆV F 2, ˆV F 3, ˆV F 4.

SW ⌧ = 0.1 ⌧ = 0.25 ⌧ = 0.5 ⌧ = 0.75 ⌧ = 0.9
ˆV F 2 0.647 0.505 0.366 0.370 0.567
ˆV F 3 0.469 0.502 0.378 0.423 0.346
ˆV F 4 0.477 0.419 0.253 0.222 0.367

Climate ⌧ = 0.1 ⌧ = 0.25 ⌧ = 0.5 ⌧ = 0.75 ⌧ = 0.9
ˆV F 2 0.114 0.070 0.048 0.094 0.142
ˆV F 3 0.567 0.731 0.806 0.717 0.530
ˆV F 4 0.047 0.059 0.031 0.069 0.108
MF ⌧ = 0.1 ⌧ = 0.25 ⌧ = 0.5 ⌧ = 0.75 ⌧ = 0.9
ˆV F 2 0.178 0.076 0.112 0.151 0.213
ˆV F 3 0.814 0.862 0.888 0.884 0.857
ˆV F 4 0.198 0.085 0.047 0.055 0.107

Note: This table reports the R2 of regressing ˆV F j on F̂QFA for

j = 2, 3, 4. For F̂QFA, the numbers of estimated factors is obtained

from Table 7. ˆV F 2, ˆV F 3 and ˆV F 4 are the estimated volatility factor,
skewness factor and kurtosis factor using the PCA-SQ approach and
its extension to the cubes and fourth power of the residuals, respec-
tively.
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A Proofs of the Main Results

Definitions and Notations: Throughout the appendix, K
1

,K
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, . . . ,K
18

denote some positive constants

that do not depend on N,T . For any random variable Y , define the Orlicz norm kY k
 

as:

kY k
 

= inf {C > 0 : E (|Y |/C)  1} ,

where  is a nondecreasing, convex function with  (0) = 0. In particular, when  (x) = ex
2 �1, the norm

is written as kY k
 2 . We use k · k, k · k

S

and k · k
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to denote the Frobenius norm, the spectral norm,

and the max norm for matrices, respectively. Notice that, when considering vectors, k ·k is the Euclidean

norm. For a matrix A with real eigenvalues, let ⇢
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(A) denote the j-th largest eigenvalue. Following

Van der Vaart and Wellner (1996), the symbol . means “left side bounded by a positive constant times

the right side” (the symbol & is defined similarly), and D(·, g,G) and C(·, g,G) denote the packing and

covering numbers of space G endowed with metric g.
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/✏)r(N+T ) di↵erent values, and d(✓⇤, ✓
0

)  2K
1

, it follows from

Lemma 2.2.2 of Van der Vaart and Wellner (1996) that

E


sup
✓2⇥

M

|W
NT

(✓⇤)|
�

.
p

log(K
1

/✏)
p

r(N + T )/
p
NT .

p

log(K
1

/✏)/L
NT

. (A.4)
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Finally, from (A.3) and (A.4)

E


sup
✓2⇥

M

|W
NT

(✓)|
�

 E


sup
✓2⇥

M

|W
NT

(✓⇤)|
�

+ E


sup
✓2⇥

M

|W
NT

(✓)�W
NT

(✓⇤)|
�

.
p

log(K
1

/✏)/L
NT

+ ✏.

Then (A.2) is satisfied since ✏ is arbitrary. This concludes the proof.

Define ⇥M (�) = {✓ 2 ⇥M : d(✓, ✓
0

)  �}.

Lemma 2. Under Assumption 1, for su�ciently small � > 0,

k⇤� ⇤
0

k/
p
N + kF � F

0

k/
p
T  K

3

�

for any ✓ 2 ⇥M (�).

Proof. Since F 0F/T = F 0
0

F
0

/T = I
r

, and k⇤
0

k/pN  K
4

by Assumption 1(i),

k⇤� ⇤
0

k/
p
N = k(⇤� ⇤

0

)F 0k/
p
NT = k⇤F 0 � ⇤

0

F 0
0

+ ⇤
0

F 0
0

� ⇤
0

F 0k/
p
NT

 k⇤F 0 � ⇤
0

F 0
0

k/
p
NT + k⇤

0

k/
p
N · kF � F

0

k/
p
T

 d(✓, ✓
0

) +K
4

kF � F
0

k/
p
T .

Thus, for ✓ 2 ⇥M (�),

k⇤� ⇤
0

k/
p
N + kF � F

0

k/
p
T  � + (1 +K

4

)kF � F
0

k/
p
T . (A.5)

Next,

kF � F
0

k/
p
T  kF

0

� F (F 0F
0

/T )k/
p
T + kF (F 0F

0

/T )� Fk/
p
T

= kM
F

F
0

k/
p
T + k(F 0F

0

/T )� I
r

k, (A.6)

where P
A

= A(A0A)�1A0 and M
A

= I� P
A

.

Third,

1p
NT

k(⇤F 0 � ⇤
0

F 0
0

)M
F

k 
q

rank[(⇤F 0 � ⇤
0

F 0
0

)M
F

] · kM
F

k
S

· k⇤F 0 � ⇤
0

F 0
0

k
S

/
p
NT

. k⇤F 0 � ⇤
0

F 0
0

k/
p
NT, (A.7)

and since

k(⇤F 0 � ⇤
0

F 0
0

)M
F

k/
p
NT = k⇤

0

F 0
0

M
F

k/
p
NT =

q

Tr [(⇤0
0

⇤
0

/N) · (F 0
0

M
F

F
0

/T )]

� p
�
Nr

q

Tr (F 0
0

M
F

F
0

/T ) =
p
�
Nr

kM
F

F
0

k/
p
T , (A.8)
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it follows from (A.7) and (A.8) that

kM
F

F
0

k/
p
T .

r

1

�
Nr

d(✓, ✓
0

). (A.9)

Similarly, it can be shown that

kM
F0Fk/

p
T .

s

1

⇢
min

(⇤0⇤/N)
d(✓, ✓

0

), (A.10)

where ⇢
min

denotes the minimum eigenvalue.

Fourth,
1p
NT

k(⇤F 0 � ⇤
0

F 0
0

)P
F

k  1p
NT

k⇤F 0 � ⇤
0

F 0
0

k · kP
F

k =
p
rd(✓, ✓

0

),

so
1p
NT

k(⇤F 0 � ⇤
0

F 0
0

)P
F

k =
1p
N

k⇤� ⇤
0

(F 0
0

F/T )k  p
rd(✓, ✓

0

). (A.11)

Similarly, we can show that
1p
N

k⇤
0

� ⇤(F 0F
0

/T )k  p
rd(✓, ✓

0

). (A.12)

Next, define R
T

= F 0F
0

/T . Note that FR
T

= FF 0F
0

/T = P
F

F
0

. Then,

I
r

= F 0
0

F
0

/T = R0
T

(F 0F/T )R
T

+ (F 0
0

F
0

/T � R0
T

(F 0F/T )R
T

) = R0
T

R
T

+ F 0
0

M
F

F
0

/T, (A.13)

and

⇤0
0

⇤
0

/N = R0
T

(⇤0⇤/N)R
T

+ (⇤0
0

⇤
0

/N �R0
T

(⇤0⇤/N)R
T

)

= R0
T

(⇤0⇤/N)R
T

+ ⇤0
0

(⇤
0

� ⇤R
T

)/N + (⇤
0

� ⇤R
T

)0⇤R
T

/N. (A.14)

Similarly,

I
r

= R
T

R0
T

+ F 0M
F0F/T. (A.15)

From (A.14),

⇤0
0

⇤
0

/N = R0
T

(⇤0⇤/N)(R0
T

)�1R0
T

R
T

+ ⇤0
0

(⇤
0

� ⇤R
T

)/N + (⇤
0

� ⇤R
T

)0⇤R
T

/N

= R0
T

(⇤0⇤/N)(R0
T

)�1 +R0
T

(⇤0⇤/N)(R0
T

)�1(R0
T

R
T

� I
r

) + ⇤0
0

(⇤
0

� ⇤R
T

)/N + (⇤
0

� ⇤R
T

)0⇤R
T

/N,

and it follows from the above equation and (A.13) that

(⇤0
0

⇤
0

/N +D
NT

)R0
T

= R0
T

(⇤0⇤/N), (A.16)

where

D
NT

= R0
T

(⇤0⇤/N)(R0
T

)�1F 0
0

M
F

F
0

/T � ⇤0
0

(⇤
0

� ⇤R
T

)/N � (⇤
0

� ⇤R
T

)0⇤R
T

/N.

From (A.9) and (A.12) we have that kD
NT

k . d(✓, ✓
0

). By matrix perturbation theory, when d(✓, ✓
0

) is

4



su�ciently small, we have

|⇢
min

[⇤0⇤/N ]� ⇢
min

[⇤0
0

⇤
0

/N ]| . d(✓, ✓
0

), (A.17)

kR0
T

V
T

� I
r

k . d(✓, ✓
0

), (A.18)

where V
T

= diag
�

(R
T,1

R0
T,1

)�1/2, . . . , (R
T,r

R0
T,r

)�1/2

�

, and R0
T,j

is the jth column of R0
T

.

(A.10) and (A.17) imply that

kM
F0Fk/

p
T . d(✓, ✓

0

). (A.19)

Note that by the triangular inequality, it holds that

kR0
T

� I
r

k  kR0
T

V
T

� I
r

k+ kR0
T

V
T

�R0
T

k  kR0
T

V
T

� I
r

k+ kR
T

k · kV
T

� I
r

k. (A.20)

From (A.15) and (A.19),

kV
T

� I
r

k  kR
T

R0
T

� I
r

k . d2(✓, ✓
0

). (A.21)

It then follows from (A.18) (A.20) and (A.21) that for small enough d(✓, ✓
0

),

kR
T

� I
r

k . d(✓, ✓
0

). (A.22)

Finally, it is obtained from (A.6) (A.9) and (A.22) that for su�ciently small d(✓, ✓
0

)

kF � F
0

k/
p
T . d(✓, ✓

0

). (A.23)

Then the desired result follows from (A.5) and (A.23).

Lemma 3. Under Assumption 1, for su�ciently small �,

E
"

sup
✓2⇥

M
(�)

|W
NT

(✓)|
#

. �

L
NT

.

Proof. In the proof of Lemma 1 we have shown that

�

�

�

p
NT |W

NT

(✓
a

)�W
NT

(✓
b

)|
�

�

�

 2

. d(✓
a

, ✓
b

), (A.24)

and therefore
�

�

�

p
NTW

NT

(✓)
�

�

�

 2

. d(✓, ✓
0

).

Construct nested sets ⇥M

1

(�) ⇢ ⇥M

2

(�) . . . ⇢ ⇥M (�) such that each ⇥M

j

(�) is a maximal set of points

such that d(✓
a

, ✓
b

) > �/2j for every ✓
a

6= ✓
b

in ⇥M

j

(�). In particular, let ⇥M

0

(�) = {✓
0

}.
For each point ✓ in ⇥M

j+1

(�), let ✓⇤ be a point in ⇥M

j

(�) such that d(✓, ✓⇤)  �/2j . It then follows by

the triangle inequality that

max
⇥

M
j+1(�)

|W
NT

(✓)|  max
⇥

M
j+1(�)

|W
NT

(✓⇤)|+ max
⇥

M
j+1(�)

|W
NT

(✓)�W
NT

(✓⇤)| . (A.25)
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Note that

max
⇥

M
j+1(�)

|W
NT

(✓⇤)|  max
⇥

M
j (�)

|W
NT

(✓)| ,

and taking kk
 2 norm on both sides of (A.25) gives

�

�

�

�

�

max
⇥

M
j+1(�)

p
NT |W

NT

(✓)|
�

�

�

�

�

 2


�

�

�

�

�

max
⇥

M
j (�)

p
NT |W

NT

(✓)|
�

�

�

�

�

 2

+

�

�

�

�

�

max
⇥

M
j+1(�)

p
NT |W

NT

(✓)�W
NT

(✓⇤)|
�

�

�

�

�

 2

.

Let m
j

= #⇥M

j

, the number of points in ⇥M

j

. The second term on the RHS of the last inequality,

according to Lemma 2.2.2 of Van der Vaart and Wellner (1996), is bounded by

K
5

q

log(1 +m
j+1

) · max
⇥

M
j+1(�)

�

�

�

p
NT |W

NT

(✓)�W
NT

(✓⇤)|
�

�

�

 2

,

which according to (A.24) is bounded by �/2j ·plog(1 +m
j+1

) multiplied by a positive constant. Thus

we have
�

�

�

�

�

max
⇥

M
j+1(�)

p
NT |W

NT

(✓)|
�

�

�

�

�

 2


�

�

�

�

�

max
⇥

M
j (�)

p
NT |W

NT

(✓)|
�

�

�

�

�

 2

+K
6

�/2j ·
q

log(1 +m
j+1

),

which implies that for J > 1,

�

�

�

�

�

max
⇥

M
J+1(�)

p
NT |W

NT

(✓)|
�

�

�

�

�

 2

 K
6

J

X

j=1

�/2j ·
q

log(1 +m
j+1

).

Let J ! 1, the above inequality gives

�

�

�

�

�

sup
⇥

M
(�)

p
NT |W

NT

(✓)|
�

�

�

�

�

 2

.
1
X

j=1

�/2j ·
q

log(m
j+1

). (A.26)

Note that m
j+1

 D(�/2j+1, d,⇥M (�)), which is the packing number of ⇥M (�). Further note that

�/2j ·
q

log (D(�/2j+1, d,⇥M (�))) .
Z

�/2

j+1

�/2

j+2

q

log (D(✏, d,⇥M (�)))d✏.

It follows from the above inequality that the RHS of (A.26) is bounded by
R

�

0

p

logD(✏, d,⇥M (�)), and

we finally have

E
"

sup
⇥

M
(�)

p
NT |W

NT

(✓)|
#

.
�

�

�

�

�

sup
⇥

M
(�)

p
NT |W

NT

(✓)|
�

�

�

�

�

 2

.
Z

�

0

q

logD(✏, d,⇥M (�))d✏.

Then, it remains to show that

Z

�

0

q

logD(✏, d,⇥M (�))d✏ = O(
p
N + T �). (A.27)
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To prove (A.27), first note that for any ✓ 2 ⇥M ,

d(✓, ✓
0

) =
1p
NT

k⇤F 0 � ⇤0
0

F 0
0

k =
1p
NT

k⇤F 0 � ⇤
0

F 0 + ⇤
0

F 0 � ⇤0
0

F 0
0

k

 1p
N

k⇤� ⇤
0

k+ k⇤
0

kp
N

· kF � F
0

kp
T

 K
7

✓k⇤� ⇤
0

kp
N

+
kF � F

0

kp
T

◆

,

where K
7

� 1. Now define

d⇤(✓, ✓
0

) = 2K
7

s

P

N

i=1

P

r

j=1

(�
ij

� �
0,ij

)2

N
+

P

T

t=1

P

r

j=1

(f
tj

� f
0,tj

)2

T
.

Since
p
a+ b  p

a+
p
b  2

p
a+ b, d(✓, ✓

0

)  d⇤(✓, ✓
0

), and by Lemma 2, ✓ 2 ⇥M (�) implies d⇤(✓, ✓
0

) 
K

8

d(✓, ✓
0

) with K
8

= 2K
7

⇤K
3

. Thus ⇥M (�) ⇢ ⇥M⇤(�), where ⇥M⇤(�) = {✓ 2 ⇥M : d⇤(✓, ✓
0

)  K
8

�}.
It then follows that

D(✏, d,⇥M (�))  D(✏, d⇤,⇥M⇤(�))  C(✏/2, d⇤,⇥M⇤(�)). (A.28)

Next, we calculate an upper bound for C(✏/2, d⇤,⇥M⇤(�)). Let ⌘ = ✏/2, and ✓⇤
1

, . . . , ✓⇤
J

be a largest set

in ⇥M⇤(�) such that d⇤(✓⇤
j

, ✓⇤
l

) > ⌘ for any j 6= l. Define B(✓, c) = {� 2 ⇥M : d⇤(�, ✓)  c}. Then,

the balls B(✓⇤
1

, ⌘), . . . , B(✓⇤
J

, ⌘) cover ⇥M⇤(�), and thus C(✏/2, d⇤,⇥M⇤(�))  J . Moreover, the balls

B(✓⇤
1

, ⌘/4), . . . , B(✓⇤
J

, ⌘/4) are disjoint and

[J

j=1

B(✓⇤
j

, ⌘/4) ⇢ ⇥M⇤(� + ⌘/4).

Note that the volume of a ball defined by the metric d⇤ with radius c is the volume of an ellipsoid, which

is equal to h
M

· cM , where h
M

is a constant that depends on N,T and r, but not on c. Therefore,

J · h
M

· (⌘/4)M  h
M

· (K
8

� + ⌘/4)M ,

which implies

J 
✓

4K
8

� + ⌘

⌘

◆

M

=

✓

8K
8

� + ✏

✏

◆

M


✓

K
9

�

✏

◆

M

(A.29)

for ✏  �, where K
9

= 8K
8

+ 1. Then from (A.28) and (A.29)

Z

�

0

q

logD(✏, d,⇥M (�))d✏ 
Z

�

0

q

logC(✏, d⇤,⇥M⇤(�))d✏ 
p

(N + T )r

Z

�

0

p

log(K
9

�/✏)d✏.

It is easy to show that
R

�

0

p

log(K
9

�/✏)d✏ = O(�) and thus (A.27) is satisfied. This concludes the proof

of Lemma 3.

Proof of Theorem 1:

Proof. The parameter space ⇥M can be partitioned into shells S
j

= {✓ 2 ⇥M : 2j�1 < L
NT

· d(✓, ✓
0

) 
2j}. If L

NT

·d(✓̂, ✓
0

) is larger than 2V for a given integer V , then ✓̂ is in one of the shells S
j

with j � V . In

7



that case the infimum of the map ✓ 7! M
NT

(✓)�M
NT

(✓
0

) over this shell is nonpositive by the definition

of ✓̂. Conclude that, for every ⌘ > 0,

P
h

L
NT

· d(✓̂, ✓
0

) > 2V
i


X

j�V,2

j⌘LNT

P



inf
✓2Sj

(M
NT

(✓)�M
NT

(✓
0

))  0

�

+ P [d(✓̂, ✓
0

) � ⌘].

For arbitrarily small ⌘ > 0, the second probability on the RHS of the above equation converges to 0 as

N,T ! 1 by Lemma 1.

Next, note that by (A.1), for each ✓ in S
j

,

�[M̄
NT

(✓)� M̄
NT

(✓
0

)] . �d2
NT

(✓, ✓
0

)  �22j�2

L2

NT

.

Thus, inf
✓2Sj (MNT

(✓)�M
NT

(✓
0

))  0 implies that

inf
✓2Sj

W
NT

(✓)  �22j�2

L2

NT

,

and therefore

X

j�V,2

j⌘LNT

P



inf
✓2Sj

(M
NT

(✓)�M
NT

(✓
0

))  0

�


X

j�V,2

j⌘LNT

P

"

sup
✓2Sj

|W
NT

(✓)| � 22j�2

L2

NT

#

.

By Lemma 3 and Markov’s inequality, we have

P

"

sup
✓2Sj

|W
NT

(✓)| � 22j�2

L2

NT

#

 L2

NT

22j�2

· E
"

sup
✓2Sj

|W
NT

(✓)|
#

. L2

NT

22j
· 2j

L2

NT

= 2�j ,

which implies that

X

j�V,2

j⌘LNT

P



inf
✓2Sj

(M
NT

(✓)�M
NT

(✓
0

))  0

�

.
X

j�V

2�j .

The RHS of the previous expression convergences to 0 as V ! 1, implying that L
NT

· d(✓̂, ✓
0

) = O
P

(1),

or d(✓̂, ✓
0

) = O
P

(1/L
NT

). The desired result then follows from Lemma 2.

A.2 Proof of Theorem 2

For su�ciently small �, define ⇥k(�) = {✓k 2 ⇥k : d(✓k, ✓
0

)  �}. Let F k,r denote the first r columns of

F k, and let F k,�r denote the remaining k � r columns of F k. ⇤k,r and ⇤k,�r are defined similarly.

Lemma 4. Suppose that Assumption 1 holds and r < k < 1. Then for any ✓k 2 ⇥k(�) and su�ciently

8



small �,

kF k,r � F
0

k/
p
T . �, k⇤k,r � ⇤

0

k/
p
N . �, k⇤k,�rk/

p
N . �.

Proof. First, similar to (A.9) and (A.10), it can be shown that for any ✓k 2 ⇥k(�),

kM
F

kF
0

k/
p
T = kF

0

� F k(F k

0
F
0

/T )k/
p
T 

r

2k

�
Nr

· d(✓k, ✓
0

), (A.30)

q

Tr [(⇤k

0⇤k/N) · (F k

0M
F0F

k/T )] 
p
2k · d(✓k, ✓

0

). (A.31)

Similar to (A.11) and (A.12) we can show that

1p
N

k⇤k � ⇤
0

(F 0
0

F k/T )k 
p
kd(✓, ✓

0

),
1p
N

k⇤
0

� ⇤k(F k

0
F
0

/T )k  p
rd(✓, ✓

0

). (A.32)

With a little abuse of notation, define R
T

= F k

0
F
0

/T . From the above inequalities, we have

k(⇤k)0⇤k/N �R
T

(⇤0
0

⇤
0

/N)R0
T

k 
✓k⇤

0

R0
T

kp
N

+
k⇤kkp

N

◆

· k⇤
k � ⇤

0

R0
T

kp
N

. d(✓, ✓
0

). (A.33)

Note that the matrix R
T

(⇤0
0

⇤
0

/N)R0
T

has rank less or equal to r. Thus, for small enough �, according

to the matrix perturbation theory,

⇢
r+j

�

(⇤k)0⇤k/N
�� ⇢

r+j

(R
T

(⇤0
0

⇤
0

/N)R0
T

) = �k

N,r+j

. d(✓k, ✓
0

) for 1  j  k � r, (A.34)

where (⇤k)0⇤k/N = diag
⇣

�k

N,1

, . . . ,�k

N,k

⌘

.

Define Rr

T

= F k,r

0
F
0

/T and R�r

T

= (F k,�r)0F
0

/T , then R
T

= (Rr

0

T

, R�r

0

T

)0. It then follows from

(A.33) and (A.34) that kR�r

T

(⇤0
0

⇤
0

/N)R�r

0

T

k . d(✓, ✓
0

), which in turn implies that

kR�r

T

k2 . kR�r

T

k2
max

. d(✓k, ✓
0

). (A.35)

Next, we can write

I
r

= F 0
0

F
0

/T = R0
T

R
T

+ F 0
0

F
0

/T � R0
T

(F k

0
F k/T )R

T

= Rr

0

T

Rr

T

+ R�r

0

T

R�r

T

+
F 0
0p
T

· F0

� F kR
Tp

T
.

⇤0
0

⇤
0

/N = R0
T

(⇤k

0
⇤k/N)R

T

+ ⇤0
0

⇤
0

/N �R0
T

(⇤k

0
⇤k/N)R

T

= Rr

0

T

�

diag(�k

N,1

, . . . ,�k

N,r

)
�

Rr

T

+R�r

0

T

�

diag(�k

N,r+1

, . . . ,�k

N,k

)
�

R�r

T

+ ⇤0
0

(⇤
0

� ⇤kR
T

)/N + (⇤
0

� ⇤kR
T

)0⇤R
T

/N.

Then, similar to (A.16), we can write

(⇤0
0

⇤
0

/N +D
NT

)Rr

0

T

= Rr

0

T

�

diag(�k

N,1

, . . . ,�k

N,r

)
�

, (A.36)

9



where

D
NT

= R�r

0

T

R�r

T

+
F 0
0p
T

· F0

� F kR
Tp

T
�R�r

0

T

�

diag(�k

N,r+1

, . . . ,�k

N,k

)
�

R�r

T

� ⇤0
0

(⇤
0

� ⇤kR
T

)/N � (⇤
0

� ⇤kR
T

)0⇤R
T

/N,

and it follows from (A.30) to (A.35) that kD
NT

k . d(✓k, ✓
0

). Therefore, similar to the proof of Lemma

2, we have

kRr

T

� I
r

k . d(✓k, ✓
0

) and k�k

N,j

� �
N,j

k . d(✓k, ✓
0

) for j = 1, . . . , r, (A.37)

and it can be shown that

kF k,r � F
0

k/
p
T . d(✓k, ✓

0

), k⇤k,r � ⇤
0

k/
p
N . d(✓k, ✓

0

). (A.38)

From (A.38),

kR�r

T

k = kF k,�r

0
F
0

/Tk = kF k,�r

0
(F

0

� F k,r)/Tk  kF k,�r

0kp
T

· kF0

� F k,rkp
T

. d(✓k, ✓
0

). (A.39)

Then from (A.32) and (A.39)

k⇤k,�rk/
p
N  k⇤k,�r � ⇤

0

R�r

0

T

k/
p
N + k⇤

0

R�r

0

T

k/
p
N . d(✓k, ✓

0

). (A.40)

Therefore, the desired results follow from (A.38) and (A.40).

Write

M
NT

(✓k) =
1

NT

N

X

i=1

T

X

t=1

⇢
⌧

(X
it

� �k
0

i

fk

t

), M̄
NT

(✓k) =
1

NT

N

X

i=1

T

X

t=1

E[⇢
⌧

(X
it

� �k
0

i

fk

t

)],

W
NT

(✓k) = M
NT

(✓k)� M̄
NT

(✓k)� �M
NT

(✓
0

)� M̄
NT

(✓
0

)
�

.

Lemma 5. Suppose that Assumption 1 holds and r < k < 1. For su�ciently small �, we have:

E
"

sup
✓

k2⇥

k
(�)

�

�W
NT

(✓k)
�

�

#

. �

L
NT

.

Proof. Similar to the proof of Lemma 3, we can show that

E
"

sup
⇥

k
(�)

p
NT

�

�W
NT

(✓k)
�

�

#

.
Z

�

0

q

logD(✏, d,⇥k(�))d✏. (A.41)

Thus, it remains to prove that

Z

�

0

q

logD(✏, d,⇥k(�))d✏ = O((N + T )�). (A.42)
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To show (A.42), note that according to the previous lemma, d(✓k, ✓
0

)  � implies that

kF k,r � F
0

k/
p
T + k⇤k,r � ⇤

0

k/
p
N + k⇤k,�rk/

p
N  K

10

�.

Moreover, we have for some K
11

> 0,

kF k,r�F
0

k/
p
T+k⇤k,r�⇤

0

k/
p
N+k⇤k,�rk/

p
N � K

11

r

kF k,r � F
0

k2
T

+
k⇤k,r � ⇤

0

k2
N

+
k⇤k,�rk2

N
.

Thus, the set ⇥k(�) is contained in ⇥k⇤⇤(�) where

⇥k⇤⇤(�) =

(

✓k 2 ⇥k :

r

kF k,r � F
0

k2
T

+
k⇤k,r � ⇤

0

k2
N

+
k⇤k,�rk2

N
 K

12

�,
kF k,�rkp

T
 K

13

)

.

In addition, similar to the proof of Lemma 3, we can show that for ✓k
a

, ✓k
b

2 ⇥k(�), d(✓k
a

, ✓k
b

)  d⇤⇤(✓k
a

, ✓k
b

),

where

d⇤⇤(✓k
a

, ✓k
b

) = K
14

s

kF k,r

a

� F k,r

b

k2
T

+
k⇤k,r

a

� ⇤k,r

b

k2 + k⇤k,�r

a

� ⇤k,�r

b

k2
N

+K
15

� · kF
k,�r

a

� F k,�r

b

kp
T

.

Then, we have D(✏, d,⇥k(�))  D(✏, d⇤⇤,⇥k⇤⇤(�)).

Next, we calculate D(✏, d⇤⇤,⇥k⇤⇤(�)). Let (F k,r

1

,⇤k

1

), . . . , (F k,r

m(✏)

,⇤k

m(✏)

) be a maximal set of points in

⇥k⇤⇤(�) such that

s

kF k,r

p

� F k,r

q

k2
T

+
k⇤k,r

p

� ⇤k,r

q

k2
N

+
k⇤k,�r

p

� ⇤k,�r

q

k2
N

> ✏/(2K
14

)

for any p, q  m(✏) and p 6= q. Similar to the proof of Lemma 3, we can show that m(✏) = (K
16

�/✏)Tr+Nk.

Let F k,�r

1

, . . . , F k,�r

n(✏)

be a maximal set of points in ⇥k⇤⇤(�) such that

kF k,�r

p

� F k,�r

q

kp
T

> ✏/(2K
15

�)

for any p, q  n(✏) and p 6= q. Then similarly it can be shown that n(✏) = (K
17

�/✏)T (k�r). Therefore, for

any ✓k 2 ⇥k⇤⇤(�), we can find p⇤  m(✏) and q⇤  n(✏) such that

s

kF k,r � F k,r

p

⇤ k2
T

+
k⇤k,r � ⇤k,r

p

⇤ k2
N

+
k⇤k,�r � ⇤k,�r

p

⇤ k2
N

 ✏/(2K
14

),
kF k,�r � F k,�r

q

⇤ kp
T

 ✏/(2K
15

�).

Let ✓k⇤ consist of F k,r

p

⇤ , F k,�r

q

⇤ ,⇤k,r

p

⇤ and ⇤k,�r

p

⇤ . Then it follows by the definition of d⇤⇤ that d⇤⇤(✓k, ✓k⇤)  ✏.

As ✓k varies in ⇥k⇤⇤(�), the number of possible choices for ✓k⇤ is bounded bym(✏)·n(✏) = (K
18

�/✏)(T+N)k.

This means that

D(✏, d,⇥k(�))  D(✏, d⇤⇤,⇥k⇤⇤(�))  (K
18

�/✏)(T+N)k. (A.43)

Finally, (A.42) is easily obtained from (A.43) and the desired result follows.
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Proof of Theorem 2:

Proof. First, similar to the proof of Lemma 1, we can show that d(✓̂k, ✓
0

) = o
P

(1). Second, similar to

the proof of Theorem 1, it follows from the previous lemma that

d(✓̂k, ✓
0

) = O
P

(L�1

NT

). (A.44)

Next, from (A.37), (A.40) and Assumption 1

|�̂k

N,j

� �
j

| = o
P

(1) for j = 1, . . . , r, (A.45)

and
k

X

j=r+1

�̂k

N,j

= k⇤̂k,�rk2/N  d(✓̂k, ✓
0

)2 = O
P

(L�2

NT

). (A.46)

Thus, by (A.45) and (A.46), we have

P [r̂
rank

6= r] = P [r̂
rank

< r] + P [r̂
rank

> r]  P [�̂k

N,r

 P
NT

] + P [�̂k

N,r+1

> P
NT

] = o(1). (A.47)

Then it follows that P [r̂
rank

= r] ! 1.

A.3 Proof of Theorem 3

Proof. Following the proof of Bai and Ng (2002), it su�ces to show that for some C > 0,

M
NT

(✓̂l)�M
NT

(✓̂r) > C + o
P

(1) for l < r, (A.48)

and

M
NT

(✓̂l)�M
NT

(✓̂r) = o
P

(1/L2

NT

) for l > r. (A.49)

Adding and subtracting terms we can write

M
NT

(✓̂l)�M
NT

(✓̂r) =
⇣

M
NT

(✓̂l)� M̄
NT

(✓̂l)�M
NT

(✓
0

) + M̄
NT

(✓
0

)
⌘

�
⇣

M
NT

(✓̂r)� M̄
NT

(✓̂r)�M
NT

(✓
0

) + M̄
NT

(✓
0

)
⌘

+ M̄
NT

(✓̂l)� M̄
NT

(✓̂r). (A.50)

Case 1: Consider l < r.

Let K denote a generic positive constant. Similar to the proof of Lemma 1, it can be shown that the

first two terms on the RHS of (A.50) are both o
P

(1), and for the last term we have M̄
NT

(✓̂l)�M̄
NT

(✓̂r) �
Kd2(✓̂l, ✓̂r) + o

P

(1). Next, similar to (A.9) we can show that kM
ˆ

F

l F̂ rk/pT . d(✓̂l, ✓̂r). It then follows

that

M̄
NT

(✓̂l)� M̄
NT

(✓̂r) � KkM
ˆ

F

l F̂
rk2/T + o

P

(1). (A.51)

Note that

kM
ˆ

F

l F̂
rk2/T = Trace

h

I
r

� F̂ r

0
F̂ lF̂ l

0
F̂ r/T 2

i

� ⇢
max

h

I
r

� F̂ r

0
F̂ lF̂ l

0
F̂ r/T 2

i

. (A.52)
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By Lemma A.5 of Ahn and Horenstein (2013),

⇢
max

h

I
r

� F̂ r

0
F̂ lF̂ l

0
F̂ r/T 2

i

+ ⇢
min

h

F̂ r

0
F̂ lF̂ l

0
F̂ r/T 2

i

� ⇢
min

[I
r

] . (A.53)

Since F̂ r

0
F̂ lF̂ l

0
F̂ r is a r⇥r symmetric matrix with rank less or equal to l, we have ⇢

min

h

F̂ r

0
F̂ lF̂ l

0
F̂ r/T 2

i

=

0, and the above inequality implies that

⇢
max

h

I
r

� F̂ r

0
F̂ lF̂ l

0
F̂ r/T 2

i

� 1. (A.54)

Thus, (A.48) follows from (A.50) to (A.54).

Case 2: Now consider l > r.

First, similar to the proof of Theorem 2, it can be shown that for su�ciently small �,

E
"

sup
d(✓

l
,✓0)�

�

�M
NT

(✓l)� M̄
NT

(✓l)�M
NT

(✓
0

) + M̄
NT

(✓
0

)
�

�

#

. �

L
NT

,

and d(✓̂l, ✓
0

) = O
P

(1/L
NT

). It then follows that

M
NT

(✓̂l)� M̄
NT

(✓̂l)�M
NT

(✓
0

) + M̄
NT

(✓
0

) = O
P

(1/L2

NT

). (A.55)

Second, similar to the proof of Lemma 3 and Theorem 1 we can show that

M
NT

(✓̂r)� M̄
NT

(✓̂r)�M
NT

(✓
0

) + M̄
NT

(✓
0

) = O
P

(1/L2

NT

). (A.56)

Finally, consider M̄
NT

(✓̂l)� M̄
NT

(✓̂r). We can write

M̄
NT

(✓̂l)� M̄
NT

(✓̂r) = M̄
NT

(✓̂l)� M̄
NT

(✓
0

)�
⇣

M̄
NT

(✓̂r)� M̄
NT

(✓
0

)
⌘

.

Similarly to the proof of Lemma 1, we can show that

M̄
NT

(✓̂l)� M̄
NT

(✓
0

) . d2(✓̂l, ✓
0

) and M̄
NT

(✓̂r)� M̄
NT

(✓
0

) . d2(✓̂r, ✓
0

).

It then follows from d(✓̂l, ✓
0

) = O
P

(1/L
NT

) and d(✓̂r, ✓
0

) = O
P

(1/L
NT

) that

M̄
NT

(✓̂l)� M̄
NT

(✓̂r) = O
P

(1/L2

NT

). (A.57)

Thus, (A.49) follows from (A.50), (A.55), (A.56) and (A.57). Then, this concludes the proof.
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A.4 Proof of Theorem 4

We only prove the asymptotic distribution of �̃
i

since the proof for f̃
t

is symmetric. Define %(u) =

[⌧ �K(u/h)]u, then we can write

S
NT

(✓) =
1

NT

N

X

i=1

T

X

t=1

%(X
it

� �0
i

f
t

).

Let %(j)(u) = (@/@u)j%(u) for j = 1, 2, 3. For fixed �
i

, f
t

, define

%̄(X
it

� �0
i

f
t

) = E [%(X
it

� �0
i

f
t

)] , %̄(j)(X
it

� �0
i

f
t

) = E
h

%(j)(X
it

� �0
i

f
t

)
i

for j = 1, 2, 3.

When the functions defined above are evaluated at the true parameters, we suppress their arguments to

further simplify the notations. For example, %
it

= %(X
it

��0
0i

f
0t

), %̄
it

= %̄(X
it

��0
0i

f
0t

). Moreover, define

S̄
NT

(✓) =
1

NT

N

X

i=1

T

X

t=1

%̄(X
it

� �0
i

f
t

),

U
NT

(✓) = S
NT

(✓)� S̄
NT

(✓)� (S
NT

(✓
0

)� S̄
NT

(✓
0

)).

Using Ō(1) to denote a sequence that is uniformly (over i and t) bounded.

Lemma 6. Under Assumptions 1 and 2,

(i) There exists a constant C̄ > 0 such that hj�1|%(j)(u)|  C̄ for j = 1, 2, 3.

(ii) %̄
(1)

it

= Ō(hm), %̄(2)(X
it

��0
i

f
t

) = f
it

(�0
i

f
t

��0
0i

f
0t

)+Ō(hm), and %̄(3)(X
it

��0
i

f
t

) = f(1)
it

(�0
i

f
t

��0
0i

f
0t

)+

Ō(hm).

(iii) E(%(1)
it

)2 = ⌧(1� ⌧) + Ō(h), and h · E
h

(%(2)
it

)2
i

= Ō(1).

Proof. The proof is similar to the standard calculations of the means of kernel density estimators, and

it is omitted here to save space. Similar results can be found in Horowitz (1998) and Galvao and Kato

(2016).

Lemma 7. Under Assumptions 1 and 2, d(✓̃, ✓
0

) = o
P

(1) as N,T ! 1 and h ! 0.

Proof. By definition we have S
NT

(✓̃)  S
NT

(✓
0

). Adding and subtracting terms and using (A.1) we have

d2(✓̃, ✓
0

) . M̄
NT

(✓̃)� M̄
NT

(✓
0

)  M
NT

(✓̃)� S
NT

(✓̃) + S
NT

(✓
0

)�M
NT

(✓
0

)+

M̄
NT

(✓̃)�M
NT

(✓̃) +M
NT

(✓
0

)� M̄
NT

(✓
0

).

It follows that

d2(✓̃, ✓
0

) . sup
✓2⇥

M

|M
NT

(✓)� S
NT

(✓)|+ sup
✓2⇥

M

|W
NT

(✓)| .

It is easy to see that the first term on the RHS of the above inequality is O(h), and the second term is

o
P

(1) as proved in Lemma 1. Then the desired result follows.
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Lemma 8. Under Assumptions 1 and 2, d(✓̃, ✓
0

) = O
P

(1/L
NT

) as N,T ! 1.

Proof. First, since %(1)(u) is uniformly bounded, we have |%(X
it

� c
1

) � %(X
it

� c
2

)| . |c
1

� c
2

|. Then

similar to the proof of Lemma 3 it can be shown that

E
"

sup
✓2⇥

M
(�)

|U
NT

(✓)|
#

. �

L
NT

. (A.58)

Similar to the proof Theorem 1, the parameter space ⇥M can be partitioned into shells S
j

= {✓ 2
⇥M : 2j�1 < L

NT

· d(✓, ✓
0

)  2j}. Concluding that, for a given integer V and for every ⌘ > 0,

P
h

L
NT

· d(✓̃, ✓
0

) > 2V
i


X

j�V,2

j⌘LNT

P



inf
✓2Sj

(S
NT

(✓)� S
NT

(✓
0

))  0

�

+ P [d(✓̃, ✓
0

) � ⌘].

For arbitrarily small ⌘ > 0, the second probability on the RHS of the above equation converges to 0 as

N,T ! 1 by Lemma 7.

Next, expanding S
NT

(✓) around ✓
0

and taking expectations

S̄
NT

(✓)� S̄
NT

(✓
0

) =
1

NT

N

X

i=1

T

X

t=1

%̄
(1)

it

· (�0
i

f
t

� �0
0i

f
0t

) +
1

NT

N

X

i=1

T

X

t=1

%̄(2)(c⇤
it

) · (�0
i

f
t

� �0
0i

f
0t

)2,

where c⇤
it

lies between �0
i

f
t

and �0
0i

f
0t

. Then, it follows from Lemma 6 and Assumption 2 that

S̄
NT

(✓)� S̄
NT

(✓
0

) � O(hm) + f · d2(✓, ✓
0

).

Thus, for each ✓ in S
j

we have

�[S̄
NT

(✓)� S̄
NT

(✓
0

)]  �f · d2
NT

(✓, ✓
0

) +O(hm)  �f · 2
2j�2

L2

NT

+O(hm).

Therefore, inf
✓2Sj (SNT

(✓)� S
NT

(✓
0

))  0 implies that

inf
✓2Sj

U
NT

(✓)  �f · 2
2j�2

L2

NT

+O(hm),

and it follows that

X

j�V,2

j⌘LNT

P



inf
✓2Sj

(S
NT

(✓)� S
NT

(✓
0

))  0

�


X

j�V,2

j⌘LNT

P

"

sup
✓2Sj

|U
NT

(✓)| � f · 2
2j�2

L2

NT

+O(hm)

#

.

By (A.58) and Markov’s inequality,

P

"

sup
✓2Sj

|U
NT

(✓)| � f · 2
2j�2

L2

NT

+O(hm)

#

. 2j

22j +O(L2

NT

· hm)
.
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By Assumption 2, O(L2

NT

· hm) = o(1). Thus, the above inequality implies that

X

j�V,2

j⌘LNT

P



inf
✓2Sj

(M
NT

(✓)�M
NT

(✓
0

))  0

�

.
X

j�V

2�j .

The RHS of the previous expression convergences to 0 as V ! 1, implying that L
NT

· d(✓̃, ✓
0

) = O
P

(1),

or d(✓̃, ✓
0

) = O
P

(1/L
NT

).

Define:

S
i,T

(�, F ) =
1

T

T

X

t=1

%(X
it

� �0f
t

), S̄
i,T

(�, F ) =
1

T

T

X

t=1

%̄(X
it

� �0f
t

),

and

M
i,T

(�, F ) =
1

T

T

X

t=1

⇢
⌧

(X
it

� �0f
t

), M̄
i,T

(�, F ) =
1

T

T

X

t=1

E⇢
⌧

(X
it

� �0f
t

).

Lemma 9. Under Assumptions 1 and 2, k�̃
i

� �
0i

k = o
P

(1) for each i.

Proof. Note that

�̃
i

= argmin
�2A

S
i,T

(�, F̃ ).

First, we show that

sup
�2A

|S
i,T

(�, F̃ )� M̄
i,T

(�, F
0

)| = o
P

(1). (A.59)

Adding and subtracting terms we have

S
i,T

(�, F̃ )�M̄
i,T

(�, F
0

) = S
i,T

(�, F̃ )�M
i,T

(�, F̃ )+M
i,T

(�, F̃ )�M
i,T

(�, F
0

)+M
i,T

(�, F
0

)�M̄
i,T

(�, F
0

).

Then,

sup
�2A

|S
i,T

(�, F̃ )� M̄
i,T

(�, F
0

)|  sup
�2A

|S
i,T

(�, F̃ )�M
i,T

(�, F̃ )|+

sup
�2A

|M
i,T

(�, F̃ )�M
i,T

(�, F
0

)|+ sup
�2A

|M
i,T

(�, F
0

)� M̄
i,T

(�, F
0

)|.

It is easy to show that

sup
�2A

|S
i,T

(�, F̃ )�M
i,T

(�, F̃ )| . h,

sup
�2A

|M
i,T

(�, F̃ )�M
i,T

(�, F
0

)| . sup
�2A

k�k · 1
T

T

X

t=1

kf̃
t

� f
0t

k . kF̃ � F
0

k/
p
T = O

P

(1/L
NT

),

sup
�2A

|M
i,T

(�, F
0

)� M̄
i,T

(�, F
0

)| = sup
�2A

�

�

�

�

�

1

T

T

X

t=1

[⇢
⌧

(X
it

� �0f
0t

)� E⇢
⌧

(X
it

� �0f
0t

)]

�

�

�

�

�

= o
P

(1).

Then (A.59) follows as h ! 0.
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Second, it can be shown that for any ✏ > 0, and B
i

(✏) = {� 2 A : k�� �
0i

k  ✏},

inf
�2B

C
i (✏)

M̄
i,T

(�, F
0

)� M̄
i,T

(�
0i

, F
0

) > 0, (A.60)

e.g., the proof of Proposition 3.1 of Galvao and Kato (2016).

Finally, given (A.59) and (A.60), the consistency of �̃
i

follows from a standard proof for the consistency

of M-estimators (see Theorem 2.1 of Newey and McFadden 1994).

Lemma 10. Under Assumptions 1 and 2, k�̃
i

� �
0i

k = O
P

�

T�1/2h�1

�

for each i.

Proof. For any fixed �
i

2 A and f
t

2 F , expanding %(1)(X
it

� �0
i

f
t

)f
t

gives

%(1)(X
it

� �0
i

f
t

)f
t

=%(1)(X
it

� �0
0i

f
t

)f
t

� %(2)(X
it

� �0
0i

f
t

)f
t

f 0
t

· (�
i

� �
0i

) + 0.5%(3)(X
it

� �⇤
0

i

f
t

)f
t

[(�
i

� �
0i

)0f
t

]2

=%(1)
it

f
0t

+ %(1)(X
it

� �0
0i

f⇤
t

)(f
t

� f
0t

)� %(2)(X
it

� �0
0i

f⇤
t

)f⇤
t

�0
0i

(f
t

� f
0t

)� %
(2)

it

f
t

f 0
t

· (�
i

� �
0i

)

+ %(3)(X
it

� �0
0i

f⇤
t

)f
t

f 0
t

· (�
i

� �
0i

)�0
0i

(f
t

� f
0t

) + 0.5%(3)(X
it

� �⇤
0

i

f
t

)f
t

[(�
i

� �
0i

)0f
t

]2,

where �⇤
i

lies between �
i

and �
0i

and f⇤
t

lies between f
t

and f
0t

. Taking expectations of both sides of

the above equation, and setting �
i

= �̃
i

, f
t

= f̃
t

, it follows from Lemma 4 that:

1

T

T

X

t=1

%̄(1)(X
it

� �̃0
i

f̃
t

)f̃
t

=
1

T

T

X

t=1

%̄
(1)

it

f
0t

�
 

1

T

T

X

t=1

%̄
(2)

it

f̃
t

f̃ 0
t

!

(�̃
i

� �
0i

)

+O
P

⇣

T�1/2kF̃ � F
0

k
⌘

+O
P

(k�̃
i

� �
0i

k) ·O
P

⇣

T�1/2kF̃ � F
0

k
⌘

+O
P

(k�̃
i

� �
0i

k2).

Lemma 6, Lemma 8 and Assumption 2 imply that:

1

T

T

X

t=1

%̄
(2)

it

f̃
t

f̃ 0
t

=
1

T

T

X

t=1

%̄
(2)

it

f
0t

f
0t

+ o
P

(1) = �
i

+ o
P

(1).

Then, from Lemma 6, Lemma 8 and Lemma 9 we get

�
i

(�̃
i

� �
0i

) + o
P

(k�̃
i

� �
0i

k) = O(hm) +O
P

(1/L
NT

)� 1

T

T

X

t=1

%̄(1)(X
it

� �̃0
i

f̃
t

)f̃
t

. (A.61)

Note that we can write

1

T

T

X

t=1

%̄(1)(X
it

� �̃0
i

f̃
t

)f̃
t

= � 1

T

T

X

t=1

%̃
(1)

it

f
0t

� 1

T

T

X

t=1

h

%̃(1)(X
it

� �̃0
i

f̃
t

)f̃
t

� %̃
(1)

it

f
0t

i

= � 1

T

T

X

t=1

%̃
(1)

it

f
0t

� 1

T

T

X

t=1

h

%̃(1)(X
it

� �̃0
i

f̃
t

)f̃
t

� %̃(1)(X
it

� �̃0
i

f
0t

)f
0t

i

� 1

T

T

X

t=1

h

%̃(1)(X
it

� �̃0
i

f
0t

)� %̃
(1)

it

i

f
0t

.
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The first term on the RHS of the above equation is O
P

(T�1/2) by Lemma 6 and Lyapunov’s CLT. For

the second term on the right of the above equation, we have

1

T

T

X

t=1

h

%̃(1)(X
it

� �̃0
i

f̃
t

)f̃
t

� %̃(1)(X
it

� �̃0
i

f
0t

)f
0t

i

=

1

T

T

X

t=1

%̃(1)(X
it

� �̃0
i

f⇤
t

)(f̃
t

� f
0t

)� 1

T

T

X

t=1

%̃(2)(X
it

� �̃0
i

f⇤
t

)f⇤
t

�̃0
i

(f̃
t

� f
0t

), (A.62)

where f⇤
t

lies between f̃
t

and f
0t

. The first term on the right of (A.62) is O
P

(1/L
NT

) because %(1) is

uniformly bounded and T�1

P

T

t=1

kf̃
t

� f
0t

k = O
P

(1/L
NT

) by Lemma 8. Similarly, the second term on

the RHS of (A.62) is O
P

(1/(L
NT

h)) because h%(2)(u) is uniformly bounded. Finally, we can show that

(see, e.g., Lemma B.2 of Galvao and Kato 2016)

1

T

T

X

t=1

h

%̃(1)(X
it

� �̃0
i

f
0t

)� %̃
(1)

it

i

f
0t

= O
P

(k�̃
i

� �
0i

k) ·O
P

(1/
p
Th) = o

P

(k�̃
i

� �
0i

k).

Combining the above results we have

1

T

T

X

t=1

%̄(1)(X
it

� �̃0
i

f̃
t

)f̃
t

= O
P

✓

1

L
NT

h

◆

+ o
P

(k�̃
i

� �
0i

k), (A.63)

and the desired result follows from (A.61), (A.63) and Assumption 2.

To derive the asymptotic distribution of �̃
i

, it is essential to obtain the stochastic expansion of f̃
t

.

Define

P
NT

(✓) = b

2

4

1

2N

r

X

p=1

r

X

q>p

 

N

X

i=1

�
ip

�
iq

!

2

+
1

2T

r

X

p=1

r

X

q>p

 

T

X

t=1

f
tp

f
tq

!

2

+
1

8T

r

X

k=1

 

T

X

t=1

f2

tk

� T

!

2

3

5

for some b > 0. Define

S⇤(✓) =
h

. . . ,� 1p
NT

T

X

t=1

%̄(1)(X
it

� �0
i

f
t

)f 0
t

, . . .

| {z }

1⇥Nr

, . . . ,� 1p
NT

N

X

i=1

%̄(1)(X
it

� �0
i

f
t

)�0
i

, . . .

| {z }

1⇥Tr

i

.

S(✓) = S⇤(✓) + @P
NT

(✓)/@✓, H(✓) = @S⇤(✓)/@✓0 + @2P
NT

(✓)/@✓@✓0,

and let H = H(✓
0

). Expanding S(✓̃) around S(✓
0

) gives:

S(✓̃) = S(✓
0

) +H · (✓̃ � ✓
0

) + 0.5R(✓̃), (A.64)

where

R(✓̃) =

0

@

M

X

j=1

@H(✓⇤)/@✓
j

· (✓̃
j

� ✓
0j

)

1

A (✓̃ � ✓
0

),
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and ✓⇤ lies between ✓̃ and ✓
0

.

Further, define

H
d

=

 

H⇤

d

0

0 HF

d

!

, H⇤

d

=

p
Tp
N

diag [�
T,1

, . . . ,�
T,i

, . . . ,�
T,N

] , HF

d

=

p
Np
T

diag [ 
N,1

, . . . , 
N,t

, . . . , 
N,T

] .

where

�
T,i

=
1

T

T

X

t=1

%̄
(2)

it

f
0t

f 0
0t

,  
N,t

=
1

N

N

X

i=1

%̄
(2)

it

�
0i

�0
0i

.

The following lemma is important for the stochastic expansion of f̃
t

.

Lemma 11. Under Assumptions 1 and 2, the matrix H is invertible and kH�1 �H�1

d

k
max

= O(1/T ).

Proof. To simplify the notations, we consider the case r = 2, but the proof can be easily generalized to

the case r > 2. Note that �
0i

= (�
0i,1

,�
0i,2

)0 and f
0t

= (f
0t,1

, f
0t,2

)0.

First, define

�0
1

= [0
1⇥2N

, (f
01,1

, 0), . . . , (f
0t,1

, 0), . . . , (f
0T,1

, 0)] /
p
T ,

�0
2

= [0
1⇥2N

, (0, f
01,2

), . . . , (0, f
0t,2

), . . . , (0, f
0T,2

)] /
p
T ,

�0
3

= [0
1⇥2N

, (f
01,2

, f
01,1

), . . . , (f
0t,2

, f
0t,1

), . . . , (f
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0T,1
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p
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�0
4
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,�
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), . . . , (�
0i,2

,�
0i,1

), . . . , (�
0N,2

,�
0N,1

),0
1⇥2T

] /
p
N,

and note that @2P
NT

(✓
0

)/@✓@✓0 = b
⇣

P

4

k=1

�
k

�0
k

⌘

.

Second, define

!0
1

=
h
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, 0)/
p
N, . . . , (�
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p
N

| {z }

!

0
1⇤

, (�f
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p
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p
T
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!

0
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i

,

!0
2

=
h
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p
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)/
p
N

| {z }

!

0
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01,2

)/
p
T , . . . , (0,�f
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)/
p
T
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!

0
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i

,

!0
3

=
h

(�
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, 0)/
p
N, . . . , (�

0N,2

, 0)/
p
N

| {z }

!

0
3⇤

, (0,�f
01,1

)/
p
T , . . . , (0,�f

0T,1

)/
p
T

| {z }

!

0
3F

i

,

!0
4

=
h
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)/
p
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)/
p
N

| {z }

!

0
4⇤

, (�f
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p
T , . . . , (�f
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!

0
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i

,

and ! = [!
1

,!
2

,!
3

,!
4

]. It is easy to check that !0
p

!
q

= 0 for p 6= q. Moreover, we have

!!0 =
4

X

k=1

!
k

!0
k

=

 

P

4

k=1

!
k⇤

!0
k⇤

�(NT )�1/2{f
0t

�0
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}
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f 0
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}
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P
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!
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!0
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!

, (A.65)

where {f
0t

�0
0i

}
iN,tT

denotes a 2N ⇥ 2T matrix whose {i, t}th block is f
0t

�0
0i

. Further, it is easy to see
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that under our normalizations,

!0! =

0

B

B

B

@

�
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+ 1 0 0 0

0 �
N2

+ 1 0 0

0 0 �
N2
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0 0 0 �
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1

C

C

C

A

.

Next, we project �
k

onto !, and write �
k
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k

+ ⇣
k

for k = 1, . . . , 4, where �
k
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k

. In
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=
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=
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. It is easy to show that there exists ⇢ > 0 such that ⇢
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N

) > ⇢ for all large

N as long as �
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� �
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is bounded below by a positive constant for all large N , which is true under our

assumption that �
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! �
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! �
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, and �
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> �
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. It then follows that
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. (A.66)

Now let b = min{f, b⇢}. Then it follows from (A.66) that:
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0
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Moreover, we can write
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Note that by our assumptions there exists a constant c > 0 such that:
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From (A.65) we have
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For the last term we have for N,T large enough,
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Finally, write H = H
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Inequality (A.70) implies that (see Lemma 2 of Chen et al. 2018)
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Next, let R(✓̃)
j
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1
For example, Zit =

¯OP (1) means that maxiN,tT kZitk = OP (1)
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Lemma 12. Let c
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First, by Lyapunov’s CLT, it is easy to see that the first three terms on the right of (A.77) are all

O
P

(1/
p
NT ).
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Next, it follows from Lemma 8, (A.74), (A.75) and Assumption 2 that the last four terms on the right

of (65) are all O
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). Finally, we will show that the remaining three terms on the right of (A.77)
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(1/(Th)), and then the desired result follows.
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It then follows from (A.78) and Lemma 8 that V
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P

(1/(Th)), e.g., the fifth

term on the right of (A.77) is O
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(1/(Th)). Similar results can be obtained for the fourth and sixth terms

on the right of (A.77), and the thus the desired result follows.

24



Lemma 13. Under Assumptions 1 and 2, for each i we have
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The same bound for the seventh term on the RHS of (A.79) can be obtained using the same argument.
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Proof. From the expansion in the proof of Lemma 10,

�
T,i

(�̃
i

� �
0i

) = � 1

T

T

X

t=1

%̄(1)(X
it

� �̃0
i

f̃
t

)f̃
t

+
1

T

T

X

t=1

%̄
(1)

it

f
0t

+
1

T

T

X

t=1

%̄
(1)

it

(f̃
t

� f
0t

)

� 1

T

T

X

t=1

%̄
(2)

it

f
0t

(f̃
t

� f
0t

)0�
0i

+O
P

⇣

T�1kF̃ � F
0

k2
⌘

+ o
P

(k�̃
i

� �
0i

k).

It then follows from Lemma 6, Lemma 8 and Lemma 12 that

�
T,i

(�̃
i

� �
0i

) = � 1

T

T

X

t=1

%̄(1)(X
it

� �̃0
i

f̃
t

)f̃
t

+O(hm) +O
P

✓

1

Th

◆

+ o
P

(k�̃
i

� �
0i

k).

26



Note that

� 1

T

T

X

t=1

%̄(1)(X
it

� �̃0
i

f̃
t

)f̃
t

=
1

T

T

X

t=1

%̃(1)(X
it

� �̃0
i

f̃
t

)f̃
t

=
1

T

T

X

t=1

%̃
(1)

it

f̃
t

� 1

T

T

X

t=1

%̃
(2)

it

· (�̃0
i

f̃
t

� �0
0i

f
0t

)f̃
t

+ 0.5
1

T

T

X

t=1

%̃
(3)

it

(⇤)(�̃0
i

f̃
t

� �0
0i

f
0t

)2f̃
t

,

where %̃(3)
it

(⇤) = %̃
(3)

it

(c⇤
it

) and c⇤
it

is between �0
0i

f
0t

and �̃0
i

f̃
t

.

First, by Lemma 13 we have

1

T

T

X

t=1

%̃
(1)

it

f̃
t

=
1

T

T

X

t=1

%̃
(1)

it

f
0t

+
1

T

T

X

t=1

%̃
(1)

it

(f̃
t

� f
0t

) =
1

T

T

X

t=1

%̃
(1)

it

f
0t

+O
P

✓

1

Th

◆

.

Second,

1

T

T

X

t=1

%̃
(2)

it

· (�̃0
i

f̃
t

� �0
0i

f
0t

)f̃
t

=
1

T

T

X

t=1

%̃
(2)

it

f̃
t

· (f̃
t

� f
0t

)0�̃
i

+
1

T

T

X

t=1

%̃
(2)

it

f̃
t

f 0
0t

· (�̃
i

� �
0i

)

=
1

T

T

X

t=1

%̃
(2)

it

f
0t

· (f̃
t

� f
0t

)0�̃
i

+
1

T

T

X

t=1

%̃
(2)

it

(f̃
t

� f
0t

) · (f̃
t

� f
0t

)0�̃
i

+
1

T

T

X

t=1

%̃
(2)

it

f
0t

f 0
0t

· (�̃
i

� �
0i

)

+
1

T

T

X

t=1

%̃
(2)

it

(f̃
t

� f
0t

)f 0
0t

· (�̃
i

� �
0i

). (A.80)

It then follows from Lemma 8 that the second term on the RHS of (A.80) is O
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Next, it is also easy to show that
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Therefore, from Lemma 6, Lemma 8 and Lemma 10 we have
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Finally, combining all the results above we get
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and from Lemma 6 it is easy to show that:
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Since our assumption implies that
p
Th2 ! 1 and

p
Thm ! 0, the desired results follow from (A.82)

and (A.83).
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