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SUMMARY ― This paper explores Rosen’s (1974) suggestion that within the 

hedonic framework there are natural tendencies toward market segmentation. 

Taking housing markets as an example, we argue that in the presence of sorting of 

heterogeneous households, markets can become segmented. This results in the 

hedonic price line no longer being continuous or unique. We show that market 

segmentation can be estimated on the basis of an augmented hedonic model in 

which both marginal prices and housing attributes are separated by household 

characteristics into different classes. The classes can either be exogenously defined 

or endogenously determined based on an unsupervised machine learning algorithm 

or a latent class formulation. We illustrate the usefulness of these methods using 

American Housing Survey data for Louisville and show that there are distinct 

housing market segments within the Louisville metropolitan area based income, 

and family structure.  
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I. Introduction	

The price of a heterogeneous good is typically measured based on its characteristics. For 

example, a house with more square feet and a garden is worth more than a house that lacks 
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those attributes. A limitation of focusing only on housing attributes, a purely hedonic 

approach, is that the characteristics of the owner of the good are typically ignored. That is, 

in the hedonic theory as formally laid down by Rosen (1974), the hedonic price function is a 

reduced form equation which only depends on housing characteristics. The classical 

hedonic model has been convenient as no information on household characteristics is 

necessary to estimate it. Since then, there have been ample of studies which have used 

household characteristics in combination with the hedonic model to, for example, analyze 

bargaining power (i.e., Harding et al., 2003), to capture unobserved amenities (among 

others, Bourassa et al., 1999), and to identify housing demand/individual preferences (e.g. 

Ekeland et al., 2004).  

The aim of this paper is to use household information in combination with the hedonic 

model to delineate (housing) market segments. The main idea behind this traces back to a 

quote by Rosen (1974, p. 40) in which he notes that “… a clear consequence of the model is 

that there are natural tendencies towards market segmentation … segmented by distinct 

income and taste groups …”. The implications, however, for the hedonic model were not 

explored in further detail. This paper aims to fill this gap. 

Our contribution is twofold. First, using housing markets as an example, we redefine the 

hedonic price function to allow for secondhand markets in a novel way using an Edgeworth 

box. The standard hedonic approach is based on trade between consumers (households) 

and profit-maximizing firms. However, in many cases goods are sold via secondhand 

markets.1 Although the Edgeworth box is a standard tool in consumer theory, and the role of 

bargaining in secondhand markets has been explored in earlier work by Harding et al. 

(2003), the Edgeworth box has, to the best of our knowledge, not been applied to the 

hedonic model. The model we propose has several unique features in comparison to 

previous hedonic and housing market models. The hedonic model based on the Edgeworth 

box is characterized not by bid (buyer) and offer (seller) curves but by household 

endowment (wealth) and marginal willingness to pay curves: a	consumer	can	be	a	buyer	of	

some	housing	attributes,	but	a	 seller	of	others. In addition, the Edgeworth box allows for 

outcomes as a result of perfect competition as well as those based on bargaining. We thus 

consider our model to be a generalization of Harding et al. (2003). As the attributes of a 

heterogeneous good are typically not perfectly separable (i.e., they are sold in bundles) and 

it is, therefore, unlikely that markets will clear, we define equilibrium between multiple 

consumers by connecting several Edgeworth boxes, creating a trade	chain, and allowing 

households to buy the configuration of housing attributes they want using money (excess 

cash holdings) as an intermediary good.  

                                                            
1 Rosen (1974, p. 37) states that the ‘… possibilities for resale of used items in secondhand markets 
are ignored … by assuming that secondhand markets do not exist …’. Alternatively, Rosen (1974) 
argues that goods can be assumed to be pure consumption goods. 
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 The second contribution relates to the role heterogeneous households (preferences) play 

in determining market segmentation. In particular, assuming that different types of 

households sort themselves into different types of houses, we would expect marginal prices 

and quantities to be clustered by means of household characteristics. Conveniently, the fact 

that we center our attention on secondhand markets allows us to focus on the 

characteristics of the current owner of the house (household heterogeneity) only. We 

particularly show that in the presence of market segmentation the hedonic price function is 

no	longer	continuous	or	unique. There can either be gaps or overlaps in the hedonic price 

line. We propose three empirical approaches that incorporate both information on 

household and housing characteristics to estimate the clustering in marginal prices across 

groups: (1) an exogenous class model based on simple interaction terms between household 

and housing characteristics; (2) a two-step hybrid model that uses an unsupervised 

machine learning algorithm (k-means clustering) to cluster the data (backend) and the 

standard hedonic model to estimate marginal prices (frontend); and (3) a fully statistical 

latent class model that jointly determines marginal attribute prices and the probability that 

a house belongs to a particular class.  

Since our theoretical framework suggests that differences in marginal prices are in 

themselves not sufficient to identify market segments as differences in marginal prices can 

occur at different parts of the same hedonic price line, we need to additionally identify 

whether houses with the same attributes are traded for different marginal prices (overlap 

hedonic price lines) or there is a gap in the hedonic price line for at least some of the 

attributes.2 Because similarity is a matter of degree, we examine the overlap in the 

distributions of the housing variables across classes. We propose using the Bhattacharyya 

Coefficient (Bhattacharyya, 1943) – a measure not often used in economics but popular in 

pattern recognition – which estimates the exact degree of overlap between the distributions 

even if those distributions are not continuous, as is often the case in empirical work.  

 We estimate the models using the American Housing Survey (AHS) metropolitan public 

use file for the Louisville, KY-IN MSA for 2013. We use these particular data because we 

wanted to show that it is already possible to estimate these models using a single wave of a 

single MSA (i.e., with a moderate amount of observations). We propose using household 

income and family structure (the presence of children), two key determinants of housing 

choice, as clustering variables. 

The results show that with all of the three empirical approaches there is strong evidence 

that the marginal prices are separated in distinct market segments. In terms of model fit, 

each consecutive model improves upon the standard hedonic model. The naïve approach of 

creating exogenous classes, where classes are defined based on high or low income and 

                                                            
2 For example, the fact that a house with more square feet might be traded at a lower price per square 
foot is not sufficient to claim that this house belongs to a different market segment. 
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having children or not, already marginally increases the fit. The two-step hybrid model, 

which first clusters the sample based on housing and household characteristics, does not 

necessarily perform much better than the exogenous class model. However, the hybrid 

approach more soundly rejects the equality of marginal prices across clusters/classes and, 

thus, does a better job in finding those differences. Our preferred, three-class, latent class 

model shows an increase in the R-squared from 0.637 (standard hedonic model) to 0.782 

and the Akaike’s Information Criterion (AIC) is reduced by half. This supports our claim that 

household information can substantially improve the performance of the hedonic model. 

 Furthermore, the latent class estimates show that household income and having children 

determine their own separate and distinct classes. These results seem to support the 

hedonic model with exogenous separate classes instead of the hybrid model with joint 

classes. In terms of marginal prices, one particularly noteworthy difference is that those 

households with children seem to negatively value (-15.7 percent per floor level) living on a 

higher floor (proxy for living in a condominium) of a building while high income households 

seem to positively value (15.9 percent per floor level) the same attribute. Overall, the 

classical hedonic approach does not show a statistically significant effect for this variable, 

suggesting that the effect is averaged out. In addition, the results show that although the 

means of the housing attributes across classes are significantly different, there is a high 

degree of overlap in distributions (i.e., high Bhattacharyya Coefficient), which supports our 

claim that we identify separate and distinct market segments.  

This paper relates to several strands of literature. The hedonic model as laid down by 

Rosen (1974) is, admittedly, a relatively old model, but its importance is still acknowledged 

today. A search on Google Scholar shows that there were 16,400 hedonic studies in 

February 2017, most of them on housing and most of them empirical, and 17,300 a year 

later – a growth of about 5 percent. Given the still growing literature on this topic and the 

usefulness of the hedonic model for a variety of purposes, such as estimating the willingness 

to pay for schools (Black, 1999), the external effects of wind turbines (Gibbons, 2015) and 

power plants (Davis, 2011), and the fact that this study innovates on both a theoretical and 

empirical front, again emphasizes our particular contribution.  

That housing markets are segmented is long known. Schnare and Struyk (1976), for 

example, show that there are considerable differences in attribute prices in Boston using a 

very similar approach to the exogenous class method presented in this paper. Using 

hierarchical models, Goodman and Thibodeau (1998) find that the housing market in Dallas 

is segmented by the quality of public education. Alternatively, one particular recent and 

popular approach has been to define market segments using quantile regressions (e.g., 

McMillen, 2008). The quantile regression approach is a relatively agnostic approach since it 

creates market segments based on prices and hedonic characteristics alone but gives no 

guidance as to what is causing those differences in prices. Instead, using a seemingly 

unrelated regression methodology combined with principal component analysis and an 
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iterative hedonic model, Lipscomb and Farmer (2005) find evidence of market 

segmentation by showing that several distinct household types are living within the same 

neighborhoods. As mentioned, our paper adds to this literature by comparing several 

straightforward empirical approaches to link housing characteristics, household 

characteristics, and marginal prices.  

The paper further connects to literature on residential segregation and house prices, 

including some early hedonic work (e.g., Kain and Quigley, 1970) and a number of papers 

that use AHS data to explore black-white differences in marginal prices (for an overview, see 

Zabel, 2008). In addition, although in our opinion heavily underused, the latent class/finite 

mixture modelling has been applied to other problems, such as distinguishing between 

different classes of expenditures and use of health care (Deb and Holmes, 2000) or to 

separate wine prices into distinct classes based on variables like the wine’s score and years 

of aging (Caudill and Mixon, 2016). A closely related paper by Belasco et al. (2012) applies 

the latent class model to housing in Atlanta and shows that markets are separated by 

variables like education and age. Our paper provides theoretical justification for the use of 

the latent class model to price heterogeneous goods and thus further highlights its empirical 

potential. 

The remainder of this paper is organized as follows. Section II presents the hedonic 

theory and the resulting empirical methodology. Section III discusses the data used in this 

study. In Section IV, we present the results and Section V shows some limitations and 

provides suggestions for future research. Section VI concludes. 

 

II. Rosen’s	model,	heterogeneous	preferences,	and	market	segmentation		

This section first discusses the standard model of Rosen (1974). Subsequently, the 

equilibrium is redefined based on secondhand markets and a generalization towards 

multiple consumers is explored. Next, the role of market segmentation, including how to 

measure it empirically, is examined in more detail.3  
 

A. Rosen’s	model		

As in Rosen (1974), assume that the household’s consumer choice can be described by the 

household maximizing utility 𝑈ሺ𝑧, 𝑥; ∝௝) subject to the budget constraint 𝑚௝ ൌ 𝑥 ൅ 𝑃ሺ𝑧ሻ, 

with 𝑥 being the composite, non-housing, numeraire good, 𝑚௝ being income for household 

type j, and 𝑧 being a vector of 𝑘 housing characteristics ሼ𝑧ଵ, … , 𝑧௞ሽ. The parameter vector ∝௝ 

(heterogeneous preferences) governs the shape of the utility function and is specific to 

household type j. The function 𝑃ሺ. ሻ is the total price for housing with characteristics 𝑧 and 

                                                            
3 The theory in this paper has benefitted much from the work of Harding et al. (2003), Malpezzi 
(2003), Day (2001), Sheppard (1999), and Orford (1999), among others.  
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its shape is the result of 𝑝ሺ𝑧ሻ, which is a vector of 𝑘 marginal attribute price functions 

{𝑝ଵሺ𝑧ሻ, … , 𝑝௞ሺ𝑧ሻ} and 
డ௉ሺ௭ሻ

డ௭ೖ
ൌ 𝑝௞ሺ𝑧ሻ.  

The indifference curves underlying this consumption choice are given by 𝑥ሺ𝑧; 𝑢௝, ∝௝), 

where 𝑢௝ is a specific value of utility, and the slope of the indifference curves of a particular 

house characteristic is the marginal rate of substitution, 𝑀𝑅𝑆௭ೖ
ൌ െ𝑈௭ೖ

/𝑈௫. As is standard, 

utility is maximized when this rate equals െ𝑝௞ሺ𝑧ሻ for each 𝑧௞ . Defining a total bid 

𝜃 ൌ 𝑚௝ െ  𝑥ሺ𝑧; 𝑢௝, ∝௝) for a house with characteristics 𝑧 as the remaining money a household 

can spend on housing, keeping utility and income constant, we get to the bid function 

𝜃ሺ𝑧; 𝑢௝, 𝑚௝, ∝௝ሻ. The bid function is a monetary and inverted	version	of	the	indifference	curve 

as defined above and captures the maximum willingness to pay for a house with 

characteristics 𝑧. The slope for a particular house characteristic, 𝜃௭భ
ሺ𝑧; 𝑢௝, ∝௝ሻ, is thus 

𝑈௭ೖ
/𝑈௫ and the utility-maximizing values, 𝑥∗ and 𝑧∗, occur when the total price 𝑃ሺ𝑧∗ሻ = 

𝜃ሺ𝑧∗; 𝑢௝
∗, 𝑚௝, ∝௝ሻ, which is when 𝜃௭ೖ

൫𝑧∗; 𝑢௝
∗, ∝௝൯ ൌ 𝑝௞ሺ𝑧∗ሻ for all characteristics 𝑘.4 This is 

equivalent to the statement made before regarding utility maximization and the indifference 

curves. The benefit of using the bid function is that it intuitively characterizes the economic 

choice in terms of bids and prices.  

Figure 1 combines all of these elements in a single picture. We follow Rosen (1974) in 

showing a non-linear price function because it allows us to also depict the tangency 

conditions as stated above and it is also economically plausible (see Ekeland et al., 2004).5 

There are two (types of) consumers who consume different levels of 𝑧ଵ due to differences in 

income and preferences. So far, the formulation of the consumer’s choice is the same as in 

Rosen (1974) except for the fact that we immediately specify that utility, the bid function, 

and hence housing choice, are household specific (through ∝௝ and 𝑚௝ሻ. Consequently, if ∝௝ 

and 𝑚௝ are clustered, (marginal) bids (and hence attribute prices) are also clustered. This 

                                                            
4 In contrast to the total bid function, the marginal willingness to pay and hence the marginal attribute 
prices do not depend on income in this particular setup. This is because the bid function, for 
simplicity, is assumed to be linear in income (preferences are homothetic). This is not necessary. At a 
bare minimum the bid function (utility) needs to be defined in such a way (quasi-concave) that the 
utility maximization results in an optimum. The simplifying assumption we make implies that 
clustering of marginal prices is based only on preferences, not income, a distinction we will ignore in 
the rest of the paper.   
5 In line with Rosen (1974), if the housing good is divisible in its characteristics and the conditions are 
such that arbitrage takes place, the price function would be linear. That is, if we could combine two 
houses with two rooms into one house with four rooms or, alternatively, separate a house with four 
rooms into two houses with two rooms, arbitrage would ensure that the price of four rooms is double 
that of two rooms (ignoring potential conversion costs). The reverse is not necessarily true: a linear 
price function does not imply that housing is divisible and arbitrage takes place. A non-linear price 
function can occur due to, for example, economies of scale (see Harding et al., 2003). Also consistent 
with Rosen (1974), each additional unit of z1 has an increasingly higher price. It may well be the other 
way around (i.e., decreasing marginal attribute prices). Ultimately, the exact shape of the hedonic 
function is determined by the distribution of income and preferences and is mainly an empirical 
question. 
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will be convenient later on when we examine market segmentation and heterogeneity in 

household preferences in more detail. 

 

 

FIGURE 1—THE HEDONIC PRICE FUNCTION, BID FUNCTIONS, AND MARGINAL ATTRIBUTE PRICES 

Note:  This figure shows the standard utility maximizing solutions underlying the 

hedonic price function. Emphasis is placed on heterogeneous preferences. In 

Rosen (1974) profit maximizing firms determine the supply of housing.   

	

B. A	secondhand	market	

The hedonic model as defined by Rosen (1974) is based on the idea that profit-maximizing 

agents (whether they be firms or landlords) produce and sell heterogeneous goods to 

consumers. They do so based on their offer functions 𝜙ሺ. ሻ. Houses are sold at the points 

where bid and offer functions touch (see the dashed line in Figure 1). As is standard 

practice, general equilibrium – the vector of marginal attribute prices, optimal consumption, 

and thus the hedonic price line – occurs when aggregate demand equals aggregate supply.  

One particular problem, however, is that many heterogeneous goods, like housing or 

cars, are predominately sold in a secondhand market. Although Harding et al. (2003) 

examine this issue in great detail, we take a different approach and directly highlight the 

duality of the problem by representing buyers and sellers through an Edgeworth box 

(Figure 2). The Edgeworth box is a standard and intuitive tool for examining trade between 

consumers, but it has not yet been applied to the hedonic framework. In Figure 2, the choice 

of an additional consumer is depicted by a mirror opposite of Figure 1. To accommodate 

this, it is necessary to add a secondary y and x axis as it is not possible to directly replace the 

offer functions of firms with the bid functions of consumers. Again, as the bid functions are 



— 8 — 
 

inverted utility functions, not adding a secondary axis would be inconsistent with utility 

maximization.  

The seller in Figure 2 is not a profit-maximizing firm or landlord, but simply another 

consumer. For our purposes, this is convenient as we are no longer required to refer to both 

buyers and sellers (firms), but rather consumers	that	are	buyers	with	respect	to	some	aspects	

of	𝑧	and	are	sellers	with	respect	to	others. This is a distinct feature of the model that deviates 

from other hedonic and housing market models. In particular, in the model there is assumed 

to be a single willingness to pay function 𝜃ሺ𝑧; 𝑢௝, 𝑤௝, ∝௝ሻ for each consumer, which, 

depending on the original endowments, 𝑤௝, can either be a bid function or an offer function. 

The main empirical benefit of this approach is that we can, thus, focus on household 

characteristics and wealth/endowments (i.e., ignoring firm characteristics) to delineate 

market segments.   

 To further elaborate, let 𝑤௝ ൌ ሼ𝜃௝
௪, 𝑧ଵ,௝

௪ , … , 𝑧௞,௝
௪ ሽ be the initial endowment for consumer j. 

The endowment does not have to lie on the current hedonic price line as market conditions 

may well have changed over time. In Figure 2, the consumption choices of two consumers 

are depicted. The consumers start out at point A. The two indifference curves of consumers 

1 and 2 crossing at point A create an efficient lens in which both consumers can achieve a 

Pareto improvement by trading. That is, equilibrium is now defined not by production and 

consumption but by trade between consumers. Such trade only occurs if preferences have 

shifted away from current endowments. The contract curve characterizes all of the mutually 

beneficial trading possibilities at which the marginal rate of substitution, 𝑀𝑅𝑆௝ ൌ െ𝑈௭భ
/𝑈௫, 

between consumers is equal and given the appropriate feasibility constraints (i.e., total 

consumption equals total endowment of a characteristic). In a competitive equilibrium, the 

marginal price 𝑝ଵ
∗ of 𝑧ଵ as well as the final consumption choice (i.e., point B) for consumer j, 

𝑧௝
∗ ൌ ሼ𝑧ଵ,௝

∗ , … , 𝑧௞,௝
∗ ሽ  and 𝜃௝

∗ , will be directly determined by the initial allocation of 

endowments. In a non-competitive market and in line with Harding et al. (2003), the 

outcome is determined by bargaining (power). Hence, although the efficient lens in Figure 2 

resembles the figure depicted in Harding et al. (2003) it is a generalization in the sense that 

it comprises both competitive and non-competitive outcomes, it depicts initial endowments, 

and it contains a secondary y and x axis.   

In what follows, we will focus on the perfect competition case. In the example in Figure 2, 

consumer 1 decides to reduce 𝑧ଵ and does so by selling his house to consumer 2 for the price 

𝜃ଵ
௪  and buying the house of consumer 2 for 𝜃ଵ

∗ which results in a net transfer of money 

𝐶ଵ ൌ 𝜃ଵ
௪ െ 𝜃ଵ

∗. Consumer 1 could for example be an elderly person who wants a house with 

fewer square feet of living space. Consumer 2, on the other hand, wants a bigger house and 
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pays 𝐶ଶ ൌ ሺ𝜃ଶ
௪ െ 𝜃ଶ

∗ሻ to consumer 1. In equilibrium, 𝐶ଵ ൌ െ𝐶ଶ and consumers settle on a 

single marginal price 𝑝ଵ
∗  for 𝑧ଵ.6  

 
FIGURE 2—BUYERS AND SELLERS IN A SECONDHAND MARKET 

Note:  This figure shows the hedonic price function in an Edgeworth box as a 

result of matching between buyers and sellers in a secondhand market. 

 

C. Multiple	consumers,	multilateral	trade,	and	trade	chains	

In the case of multiple consumers, general equilibrium prices occur when aggregate demand 

equals aggregate endowment for each of the housing attributes ∑ 𝑧௞,௝
௪

௝ ൌ ∑ 𝑧௞,௝
∗

௝ , ∀𝑘, and 

there is no excess housing value in the economy ∑ 𝜃௝
௪

௝ ൌ ∑ 𝜃௝
∗

௝ , which is equivalent to 

saying that there are no excess cash holdings in the economy, ∑ 𝐶௝௝ ൌ 0.7 One particular 

issue is that the housing attributes are bundled and cannot be separated. That is, consumer 

1 needs to find someone (i.e., consumer 2) who would like to buy consumer 1’s house – a 

configuration of housing attributes consumer 2 might not entirely like – and trade houses at 

the prevailing market price. This makes it unlikely for markets to clear. One particular 

                                                            
6 This framework does not say anything about how households get matched or how long it takes 
(search time from the buyer’s point of view and time on the market from the seller’s point of view) to 
get matched. For more elaborate search and matching models see the classical model of Wheaton 
(1990). The model is also agnostic about the actual bidding process; there may be multiple bidders, 
but the actual trade occurs between one buyer and seller at the point where the willingness-to-pay 
curves touch. For a classical example including multiple bidders and the role of list prices, see 
Horowitz (1992). 
7 Interesting extensions would be that a consumer could consider to just own money (or borrow 
against the house) or to rent rather than owning a house, while possibly using the money toward a 
pension. This would imply the introduction of corner solutions and require modeling of tenure choice. 
We leave such considerations for future research.  
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solution is to allow for multilateral trade of bundles of housing characteristics and have 

households use money as an intermediary good to obtain the exact (configuration of) house 

they want. Figure 3 shows an example by connecting the consumption plots (i.e., Figure 1) of 

three consumers, in a different way than the Edgeworth box, creating a trade chain. To 

conserve space, the figure is rotated by 90 degrees. 

  
FIGURE 3—MULTIPLE CONSUMERS: A TRADE CHAIN 

Note:	This figure shows trade among three consumers in which each consumer moves 

from endowment point w to point A, B, or C, respectively. The horizontal axis contains 

the price and net cash that is paid or received by consumers. The vertical axis depicts 

a particular characteristic on which trade occurs. Some consumers are buyers, some 

are sellers. The figures are linked through the optimal point of a consumer (A, B, or C) 

and the endowment of the next consumer. In this example, consumer 1 buys the 

house of consumer 2, consumer 2 of consumer 3, and consumer 3 of consumer 1, 

creating a closed trade chain. 

 

Let 𝑧ଵ be the size of the house. Consumer 1 starts at the endowment point 𝑤ଵ and, due to 

a shift in preferences, decides to sell the house for 𝜃ଵ
௪ and to buy a smaller house for 𝜃ଵ

∗. This 

new optimum is depicted as point A in Figure 3. The net cash 𝐶ଵ received by consumer 1 is 

the difference between the selling price of the old house and the purchase price of the new 

one. The new house of consumer 1 is the old house of consumer 2, which is depicted by 

endowment point 𝑤ଶ. The value of the house of consumer 2 at this particular endowment 

point 𝜃ଶ
௪ is equivalent to the price 𝜃ଵ

∗ received from consumer 1. Consumer 2 wants a 

somewhat larger house, but not as large as the one that consumer 1 owns. Consumer 2 buys 

a new house at point B. Note that consumer 2’s net cash holdings/wealth (𝐶ଶ) is negative. 

This does not necessarily mean consumer 2 has to borrow money (i.e., there is no financial 

market in this framework), but that there is less to spend on other consumer goods 𝑥. 

Consumer 2 purchases a house from consumer 3. Consumer 3 also wants a bigger house and 

ends up buying the house of consumer 1. Consumer 3 ends up at point C. Conveniently, in 
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this example markets are cleared at a single marginal price 𝑝ଵ
∗ for housing attribute 𝑧ଵ. A 

more realistic assumption is that due to differences in the types of houses traded and 

heterogeneous preferences there are multiple market segments (prices) for 𝑧ଵ, an extension 

we will discuss in the next section.  

Trade in Figure 3 occurs only on the dimension of 𝑧ଵ. This is not necessary. Consumers 

can trade on multiple dimensions as long as the first order conditions stated before hold and 

markets for each of the attributes clear. An open question is how long the above-mentioned 

trade chains are and whether they are closed. Alternatively, open trade chains imply that 

markets do not clear and are in constant turmoil. This might be an alternative explanation, 

which we leave for future research, for multiple prices for the same housing attribute at the 

same point in time. Also, the degree of heterogeneity of the good may determine the number 

of consumers necessary for markets to clear. In thinly traded markets (i.e., at particular 

locations or particular points in time), some attributes (like square footage) might have a 

clearly defined price, while other attributes might not. 
 

 

FIGURE 4—MARKET SEGMENTATION: THREE TYPES OF CONSUMERS 

Note:  This figure shows three types of consumers (1,2,3) trading at points A, B, 

and D with other consumers j	 (dashed line willingness to pay curves). The 

consumers at points B and D are clearly trading in two segmented markets. The 

marginal prices at the same level of z1 are different. The hedonic price lines P and 

P’ are overlapping. The consumers at point A are also paying a different marginal 

price (point C) from the consumers at point B, but may well be trading at a 

different part of the same hedonic price line. This may still reflect different market 

segments if the hedonic price line is interrupted in between (gap).  
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D. Market	segmentation	

The fact that due to heterogeneity in preferences (∝௝) and income/wealth (𝑤௝) different 

households buy different houses is not particularly insightful. However, it becomes 

interesting, as mentioned by Rosen (1974), when housing markets are naturally segmented 

by income and taste groups. Such markets can exist when goods are not perfect substitutes 

(no perfect arbitrage), which is likely the case for heterogeneous goods, and there is 

demand and supply for the good in each segment. Figure 4 shows an example of segmented 

markets. We distinguish between two different cases: a case where the hedonic price lines 

are overlapping (point B versus D) and one where there is a gap in the hedonic price line 

(point A versus B). Both cases represent what we define to be market segmentation. 

To be specific, three types of consumers (1, 2, 3) are depicted in Figure 4. Assume that 

they sort themselves based on their preferences and wealth into particular types of houses 

and, as such, trade at equilibrium points A, B, and D. They have a different marginal 

willingness to pay 𝜃௭భ,௝
∗  and, consequently, are trading at different marginal prices 𝑝ଵ,௝

∗ . Note 

that we are now explicit about the fact that there are different types of consumers by adding 

the subscript j. The consumers at point B are trading 𝑧ଵ for marginal price 𝑝ଵ,ଶ
∗  , which is at 

the optimum exactly what they are willing to pay (𝜃௭భ,ଶ
∗ ). The total amount they will pay is 

again given by the bid function 𝜃ଶ, which at point B has the value 𝜃ଶ
∗. The hedonic price line 

is again defined as 𝑃ሺ𝑧ଵ, 𝑧ଶ
∗ … , 𝑧௞

∗ሻ. The consumers at point D, however, are trading at a 

different hedonic price line 𝑃′ሺ𝑧ଵ, 𝑧ଶ
∗ … , 𝑧௞

∗ሻ. Markets are segmented. They pay a different 

marginal price than the consumers at point B even	at	the same	level of 𝑧ଵ. In particular, the 

marginal price at point D is higher than at point B. Consumers at point D could for example 

be households with children who value an increase in square footage more than households 

without children who trade at point B. The third type of consumer trades at point A and 

possibly	at a different marginal price than consumers at point B, even if evaluated at the 

same level of 𝑧ଵ (point C). However, the consumers at point A may well be trading on the 

same hedonic price line as consumers at point B albeit at a different part of that line. That is, 

differences in marginal prices are not a necessary or sufficient condition to signal market 

segmentation. For that it is also important to look at which part of the hedonic price line 

(the level of 𝑧ଵሻ trade occurs. If there is a gap in the hedonic price line in between points A 

and B, even if marginal prices are the same at those points, we also argue that markets are 

segmented.  

Practically speaking, market segmentation is a matter of degree. To be concrete, let 

𝑆௝ሺ𝑧ଵ
∗, … , 𝑧௞

∗ሻ define the set of optimally chosen house characteristics for household type j. If 

consumers are trading at different marginal prices, there is evidence of market 

segmentation if at least some of the characteristics of the houses they buy overlap. That is, 

𝑆௝ ∪ 𝑆௜ is non-empty, where 𝑗 ് 𝑖. In addition, instead of trading at a particular point, as in 

Figure 4, consumer class j may be trading along a section of the hedonic price line. This is 
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particularly relevant for continuous characteristics, like square footage. In this case, 𝑆௝ 

captures multiple points for each characteristic k and the question is whether the 

distribution of trades of a particular characteristic overlap for consumer class j relative to 

consumer class i. That is, are houses with, for example, a similar size traded for different 

marginal prices? Alternatively, if the distributions do not, or to a low degree, overlap this is 

in line with the second case of market segmentation as defined above.  Market segmentation 

in the end is thus a reflection of both differences in (marginal) prices and quantities, 

resulting in a situation in which the hedonic price line is no long continuous and/or unique.8  

The situation depicted in Figure 4 is an example of market segmentation but it is not 

specific about why such market segmentation exists. Market segmentation is the result of 

imperfect arbitrage which can have several different sources. Two well-known sources are 

search (Kim, 1992) and transaction costs (Lundborg and Skedinger, 1999). Therefore, the 

variation in marginal prices should be less in liquid markets or in an environment with 

better, more symmetric, and frictionless information.9 Another source has to do with 

indivisibility of the housing good and product differentiation (for example in relation to 

zoning, see Henderson, 1985). Housing may be provided only in particular configurations, 

which impedes arbitrage and strengthens sorting outcomes. Therefore, we would expect 

that, for more homogeneous goods, like apartments, there should be less variation in 

marginal prices. Another important element of differentiation is housing quality. For 

example, a square foot in one house is not the same as a square foot in another, typically 

reflecting unobserved differences in housing quality (Epple et al., 2013). In what follows we 

will be rather agnostic about the underlying reasons for market segmentation. We will again 

touch upon this issue in the limitations and future research section of this paper.  

 

E. Application	to	the	hedonic	regression	model	

The previous section suggests that marginal attribute prices 𝑝௞,௝
∗  may be separated into j	

different household classes and that those classes might be consuming different amounts of 

housing attributes. We show several models in which classes are either exogenously (via 

interaction terms) or endogenously (unsupervised machine learning and latent class 

analysis) determined. Each method has its pros and cons. The interaction model is easy to 

apply by including interaction terms between house and household characteristics. The 

                                                            
8 A property can be traded for the same overall price but still belong to a different market segment 
because the underlying combinations of housing characteristics and marginal prices are, at least to 
some degree, different. Also, two houses can have the same characteristics but different marginal 
prices, and thus belong to different market segments, or houses can have the same marginal prices 
but different quantities that are being traded.  
9 For the bias in real estate valuation methods as a result of illiquidity, see Lin and Vandell (2007). For 
an example of the role of asymmetric information in commercial real estate, see Garmaise and 
Moskowitz (2004). Anenberg (2016) discusses the impact of information frictions on housing market 
dynamics.  
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classes are, however, exogenously determined by the researcher. Clear theoretical guidance 

is necessary to determine which interaction effects to look at.  

The hybrid machine learning (clustering) hedonic model determines the clusters 

directly, but why these clusters are formed is less clear and open to interpretation. House 

and household characteristics are combined to create clusters (and there is not necessarily a 

distinction between the two) and formally testing which household characteristics 

determine the different clusters is not possible in this approach. It is a mechanical approach 

that can easily incorporate many different house and household characteristics but gives no 

guidance as to what variables should be included. In addition, this method is also not 

particularly suited for dummy variables and the results depend on starting values, which 

implies the model needs to be run several times to show robustness.  

In contrast, the latent class model has an underlying statistical model determining class 

assignment based on household characteristics; it jointly estimates hedonic models for each 

class. The latent class model also allows us to formally test whether a particular class 

characteristic has a statistically significant effect on the probability of belonging to a class. 

The method itself is, however, rather complicated (joint estimation hedonic and 

multinomial logit model via maximum likelihood) and does not scale well with the number 

of parameters and size of the dataset (it may take a long time to estimate or the algorithm 

might not converge at all). The following paragraphs discuss the different methods in more 

detail. 

Let the heterogeneous preferences/income that separate households into J	 different 

classes be measured by household characteristics ℎ and a class j	be defined by a particular 

combination of those characteristics. Then, an augmented hedonic price function would be: 

 

(1)         log൫𝑃௝൯ ൌ ∑ ∑ 𝛽௞,௝𝑧௞,௝௞௝ ൅ 𝜀௝, 

 
where 𝑃௝ is the transaction price paid by a consumer in class j, 𝛽௞,௝ ൌ 𝑝௞,௝

∗  and captures the 

(average) marginal attribute prices for class j, and 𝜀௝ is the error term. Note that this 

equation is stacked over all observations/housing transactions i,	 with i	 =	 1,…,n. In 

comparison to the standard hedonic model, equation (1) has j	specific marginal prices for 

each house characteristic 𝑧௞. Naturally, each class j can also choose different amounts of the 

house characteristics (e.g. house size, number of rooms), 𝑧௞,௝ . When 𝛽௞,௝ ൌ 𝛽௞,௟ ൌ 𝛽௞ , 

something we will empirically test, equation (1) reduces to the standard hedonic model. 

Hence, we will start by estimating the standard hedonic model for benchmarking purposes 

and subsequently examine the class specific estimates. Using the standard hedonic model 

when equation (1) applies is not necessarily incorrect, but the coefficient estimates would 

just be measuring the average of the marginal attribute prices across classes. In this article, 

we are particularly interested in the variation around the average.  
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Equation (1) can be implemented by either estimating hedonic price functions for each of 

the j classes or by pooling across classes and adding j	binary class indicators and interaction 

terms between the house characteristics and binary class dummies.10 We will start with the 

latter approach. In particular, we begin with a model with exogenous classes (dummy 

variables) based on household income and family structure (i.e., having children) and add 

interaction terms between the hedonic characteristics and the class indicators.11 Standard 

F-tests on the interaction terms and comparing the adjusted R-squared with the standard 

hedonic model will help in determining whether this hedonic ‘interaction effect’ model is 

useful.  

The unsupervised machine learning approach that is applied is k-means cluster analysis. 

While supervised machine learning is based on the idea that the clusters are a priori labelled 

and the model is trained based on a training dataset such that it can deal with new data, the 

k-means approach just clusters the (unlabeled) data into different sets. In this paper, we 

create clusters combining information on house prices, house characteristics, and household 

characteristics (household income, having children). Let these variables (vector for each 

observation i)	be represented by 𝒅 ൌ 𝒅ଵ, … , 𝒅௡. The observations are clustered into sets, 

𝑪 ൌ  𝐶ଵ, … , 𝐶௃, by calculating the centroid 𝝁௝ of each cluster (we start with random clusters) 

and iteratively minimizing the within-cluster sum of squares (WSS), the Euclidean distance 

to the centroids, according to  

 

      ሺ2ሻ                                                        arg min
𝑪

෍ ෍ ฮ𝒅 െ 𝝁௝ฮ
ଶ

.
𝒅∈஼ೕ

௃

௝ୀଵ

 

 

The number of clusters itself is again exogenously fixed. However, there are several 

goodness of fit measures that can be used to determine the optimal number of clusters. In 

particular, we can look at the WSS, the log of this measure, the 𝜂ଶ ൌ 1 െ 𝑊𝑆𝑆ሺ𝑗ሻ/𝑊𝑆𝑆ሺ1ሻ 

which is a measure very similar to the R-squared, and the proportional reduction in error 

(PRE) (see Makles, 2012). Since the clustering outcome depends on the initialization, we run 

100 replications and calculate the average of the goodness of fit measures. Those measures 

are ordered by the number of classes and plotted in so-called scree plots. After having 

defined the optimal number of clusters, we use the result (clustering) with the highest  𝜂ଶ 

within the 100 replications to estimate a hedonic regression for each class. Although less 

                                                            
10 It is also possible to create continuous classes by interacting house characteristics with household 
characteristics directly. This would imply that there is a smooth transition in the marginal effects 
between classes. Although this might in some cases be true, the latent class model presented and 
estimated later typically shows that there is evidence for a few distinct classes. 
11 Our theoretical model suggests that we should use a measure of household wealth, which is not 
reported in the AHS. Instead, to simplify matters, we will use household income which is well known 
to be (highly) correlated with wealth. 
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efficient, this avoids a large number of interaction terms. While it is possible to estimate the 

equations separately, we added the parameters into a single vector and estimated the joint 

variance-covariance matrix (seemingly unrelated estimation, sandwich estimator). The 

coefficient estimates are the same as OLS, but the benefit of this approach is that it becomes 

easy to do cross-equation tests. In addition, although we will use distinct classes and the 

same hedonic functional form for each class, the variance-covariance matrix is robust to 

classes that are not strictly separate and even robust to different hedonic functional forms 

across classes. In comparison to a full-fledged (deterministic) machine learning model, the 

two-step hybrid approach still allows us to do standard hypothesis testing.  

In contrast to the two-step method, a more elegant approach is to use a latent class 

formulation.12 The general idea is that each observation is drawn from a population of j	

classes. Instead of the deterministic k-means approach, there is a probability 𝜋௝ that an 

observation i	belongs to a class j. The distribution of logሺ𝑃௜ሻ, 𝑔ሺ. ሻ, is a mixture of the latent 

class distribution 𝑓௝ሺ. ሻ according to: 

 

(3)       𝑔ሺlogሺ𝑃௜ሻ |𝝁, 𝝅ሻ ൌ ∑ 𝜋௝
ௗ೔ೕ𝑓௝൫logሺ𝑃௜ሻ ห𝜇௝൯ௗ೔ೕ

௝ ,  

where 𝜇௝ ൌ 𝜇൫𝑧௞,௝, 𝛽௝൯ and 𝑑௜௝ is a binary variable indicating if logሺ𝑃௜ሻ belongs to class j. 

Assuming that 𝜋௝ is distributed according to the multinomial logistic distribution, equation 

(3) can be estimated using maximum likelihood based on the Expectation Maximization 

(EM) algorithm.13  The output is a jointly estimated multinomial logit model (that 

determines the probability that an observation i belongs to class j) and a hedonic model for 

each class j.14 In our case, the probabilities are modeled as a function of household 

characteristics ℎ. We use log income and a dummy for having children. The number of 

classes is exogenously fixed, but it is possible to compare models with different classes and 

potentially different covariates using the standard Akaike’s Information Criterion (AIC). 

Goodness of fit can, among other things, be determined by examining the estimated 

posterior probabilities that an observation belongs to a class. In particular, the average 

should be close to one. Alternatively, a measure of entropy E௝ determines the distinctiveness 

of the latent classes:  

 

(4)         E௝ ൌ 1 െ
∑ ∑ ିగෝ೔ೕ௟௡గෝ೔ೕೕ೔

௡ ௟௡ ௃
, 

 
                                                            
12 A good reference is Cameron and Trivedi (2005). For an empirical application see Belasco et al. 
(2012). 
13 We will choose starting values in an informed manner using factor analysis.  
14 An equivalent two-step approach would be to determine the probabilities using the multinomial 
logit model and then to estimate hedonic regressions for each class with weights equal to the 
probabilities that an observation belongs to the relevant class. 
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where there are in total J classes, n observations, and 𝜋ො௜௝ now specifically recognizes that the 

posterior probabilities are specific to observation i. The entropy measure ranges between 

zero and one. A higher entropy measure indicates that the observations are better classified 

into the latent classes. 

Finally, of particular interest is the degree of overlap in the distribution of the housing 

characteristics across classes to measure market segmentation. A simple way is to examine 

the means and standard deviations of the house characteristics across classes. A paired t-

test (two cluster comparison) or F-test using ANOVA (Bonferroni multiple-comparison test) 

gives an indication of whether the means are statistically significantly different from each 

other (the distributions are distinct), while the standard deviation gives an indication of 

whether the distributions are still to a degree overlapping. The problem with this measure 

of overlap is that it is reliable only when the variables (for each of the classes) are normally 

distributed, which is rarely the case. An alternative is to look at the overlap in the min-max 

spread across classes. This, however, does not measure the actual area of the distributions 

that are overlapping. That is, if the tails of two distributions are overlapping, it does not 

necessarily imply that both distributions are overlapping as this depends on the joint 

number of observations that are overlapping. Measuring the actual number of observations 

that overlap is easy to do in case of a continuous distribution but variables are typically not 

continuously distributed. A measure that solves all of these aforementioned issues is the 

Bhattacharyya Coefficient (BC) which was developed by Bhattacharyya (1943): 

 

(5)          𝐵𝐶 ൌ ∑ 𝑞௠𝑙௠௠ , 

 

where the sample is split into m partitions and 𝑞௠ and 𝑙௠ are the proportion of members of 

each distribution that are part of the partition. A BC of one signals a perfect overlap in the 

distribution. A value of zero indicates that the distributions are disjoint. We would expect 

that, although there are distinct (statistically significant) differences in means, there is still a 

considerable degree of overlap between the distributions. Although the BC is an old 

measure and is particularly popular in pattern (image/speaker) recognition; it is not often 

used in economics. When there are more than two distributions, the average of the BC 

across all pairs of distributions can be used. The BC measure can be calculated per house 

characteristic. An overall measure is the average across house characteristics.  

  

III. Data	

The data are from the American Housing Survey (AHS) metropolitan public use file for the 

Louisville, KY-IN MSA for 2013. The MSA definition used for the 2013 survey includes four 

counties in Kentucky and two in Indiana. Information about location within the MSA in the 

public use file is limited to an indicator of whether the dwelling is within the central city 



— 18 — 
 

(Louisville). The survey defines the central city using its former boundaries, which were 

superseded when the City of Louisville merged with Jefferson County in 2003. 

The AHS gives detailed information for a sample of dwellings, including the owner’s 

estimate of the value of the house, which we will use as our main dependent variable, and 

characteristics of the structure and lot (if any).15 It also provides information about the 

occupants of the house, such as household income and characteristics of household 

members. Hence the data are particularly useful for the present study because they allow 

for both hedonic price analysis and for the definition of classes based on household 

attributes. We selected owner-occupied dwellings including both single-family houses and 

condominiums. Observations were deleted from the sample if the estimated house value 

was implausible or if values for key variables were missing. The final sample size is 1,636 

observations.  

 

TABLE 1—SUMMARY STATISTICS: HOUSE PRICES, HOUSE CHARACTERISTICS AND HOUSEHOLD 

CHARACTERISTICS, LOUISVILLE (2013)  

Variables  Mean  Std. Dev.  Min.  Max. 
Housing	variables		     

Sale price (expected, $) 196,125 147,843 10,000 1,120,000 

House size (sq. ft.) 2,212 1,334 99 7,235 

Lot size (sq. ft.) 72,678 182,894 1 956,923 

Age of structure (years) 40 24 0 94 

Number of bathrooms 2.30 1.02 1 8 

Number of rooms 6.64 1.76 2 13 

Garage 0.79 0.40 0 1 

Dishwasher 0.83 0.38 0 1 

Fireplace 0.51 0.50 0 1 

Floor 0.02 0.22 0 3 

Louisville (former city) 0.17 0.38 0 1 
	     

Clustering	variables	     

Children 0.31 0.46 0 1 

Household income ($) 80,319 62,546 1 456,869 

Number of observations 1,636 

Note: Based on the AHS Louisville KY-IN metropolitan area public use file for 
2013. Floor is the number of floors from the building main entrance to the unit, 
which is defined as zero for single-family houses and condominiums on the 
same floor as the main entrance. Children is a dummy variable for the 
presence of children under 18 in the household.	 

 
 

                                                            
15 We are well aware that the expected selling price is at best a crude proxy for transaction prices as it 
may reflect inaccuracy and strategic misreporting (for a discussion, see Choi and Painter, 2018).  
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Table 1 gives descriptive statistics for the AHS variables that we use for our empirical 

analyses. The average (expected) sale price is $196,000 against an average house size of 

2,200 square feet. About 17 percent of the observations are within the former City of 

Louisville boundaries. To illustrate the workings of the three different empirical approaches 

(see the previous section), the variables used to create classes/clusters are children and 

(log) household income (as a proxy for wealth). We will discuss several other potential class 

determinants in the limitations and future research section (Section V.). About 31 percent of 

the households in the sample have a child (under 18) and the average household income is 

$80,000.  
	

IV. 	Results	

This section discusses the results of the hedonic models extended based on household 

characteristics (children and income), per equation (1). We start by discussing the standard 

hedonic model and then we add exogenous classes (interaction effects). Subsequently, we 

show the results using endogenous clustering based on equation (2). We highlight the 

statistically significant differences in marginal prices, including the descriptive statistics 

(means) for the classes, leaving the detailed description of the class characteristics (mean 

comparison test, Bhattacharyya coefficient) for the final latent class specification as in 

equation (3).  		
	

A. Standard	hedonic	model	and	exogenous	classes	

Table 2, specification (1), shows the results of a standard hedonic model for the Louisville 

MSA using the 2013 data. The results are straightforward. An increase of 1 percent in house 

size increases house prices by 0.3 percent. An increase in 1 percent in lot size increases 

house prices by 1.9 percent. Building age has a negative effect on house prices, but at a 

diminishing rate. Each bathroom adds 16.7 percent to house prices and each room 4.1 

percent. A garage, dishwasher, and fireplace increase house prices by 13.1 percent, 27.8 

percent, and 12.3 percent, respectively. The large effect of a dishwasher on house prices 

suggests that, at least in this particular hedonic model, this variable might be proxying for 

unobserved housing quality. In the case of condominiums, the floor level is not statistically 

significant. The same applies to the Louisville city dummy. Apparently, there are not enough 

observations to accurately estimate the difference in house prices between the former 

Louisville city area and the rest of the MSA (the coefficient is, however, also particularly 

small). The adjusted R-squared indicates that this fairly simple model explains 63.7 percent 

of the variation in house prices.  

 Specification (2) contains the estimates for equation (1) using interaction terms with the 

children (under 18) dummy variable and, to keep in line with the idea of distinct separate 

classes, a dummy variable for above or below the median sample income of $61,000. The 

joint significance tests of the interaction effects with the children dummy and the high-

income dummy (F-statistics of 1.82 and 5.12, respectively) show that both sets of 
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interaction effects are jointly statistically significant. The marginal effects for the high-

income group and the group with children are also jointly statistically significantly different 

(F-statistic of 2.09). The F-statistics are, however, not particularly high, suggesting that we 

might not have chosen classes particularly well.  
 

TABLE 2—HEDONIC MODEL AND EXOGENOUS CLASSES, LOUISVILLE (2013) 
(Dependent	variable:	log	sale	price)	

  (1)  (2)  
  Hedonic  Exogenous classes F-stat. 
    Reference 

category 
Interaction 

children 
Interaction  

high income 
Ref. + child = 
Ref. + income 

House size (log)  0.309***  0.251*** -0.113* 0.184*** 10.72*** 
  (0.0383)  (0.0601) (0.0616) (0.0664)  
Lot size (log)  0.0185***  0.0192*** 0.00506 -0.000620  
  (0.00423)  (0.00643) (0.00921) (0.00796)  
Age of structure  -0.00675***  -0.00557** 0.00169 -0.00481  
  (0.00156)  (0.00273) (0.00291) (0.00310)  
Age of structure sq.  5.63e-05***  1.93e-05 -9.65e-06 9.69e-05*** 4.04** 
  (1.77e-05)  (2.84e-05) (3.37e-05) (3.53e-05)  
Number of bathrooms  0.167***  0.138*** 0.0429 0.0194  
  (0.0154)  (0.0284) (0.0294) (0.0308)  
Number of  rooms  0.0414***  0.0457*** 0.0120 -0.0225  
  (0.00815)  (0.0153) (0.0152) (0.0172)  
Garage  0.131***  0.148*** -0.0359 -0.0111  
  (0.0258)  (0.0420) (0.0461) (0.0489)  
Dishwasher  0.278***  0.303*** -0.0825 -0.0829  
  (0.0319)  (0.0444) (0.0597) (0.0608)  
Fireplace   0.122***  0.114*** 0.0840** -0.0185  
  (0.0222)  (0.0354) (0.0413) (0.0438)  
Floor  0.0347  -0.0448 0.00148 0.296**  
  (0.0695)  (0.0692) (0.123) (0.123)  
Louisville (former city)  0.0330  0.00749 0.163** -0.0367  
  (0.0377)  (0.0492) (0.0813) (0.0817)  
        
Joint sig. (F-stat.)     1.82** 5.12*** 1.95** 
Adj. R-squared  0.637  0.652  
Observations  1,636  1,636  
Note: Robust standard errors in parentheses. High income is defined as income above the sample 
median of $61,000. The exogenous class model also includes children and high income as 
separate variables. *, **, *** indicate 10%, 5%, 1% significance, respectively. 

 

Although the model shows quite a few economically sizable differences in marginal 

prices, only a few of those differences are actually individually statistically significant. 

Focusing on those differences, high income households pay 0.18 percent more per square 

foot (relative to the reference category). In contrast, households with children pay 0.11 

percent less. Households with children seem to particularly value a working fireplace. Being 

in a condominium (higher floor) is preferred by higher income households and households 

with children seem to pay a premium for housing within the former Louisville city limits. 

The adjusted R-squared of 65.2 percent suggests a fairly modest improvement in terms of fit 

relative to the standard hedonic model.  
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B. Classes	based	on	a	clustering	algorithm	

Figure 5 depicts the average goodness of fit measures (scree plots) for different numbers of 

clusters (or classes) based on 100 replications. We are looking for a kink in the scree plots 

as a signal to determine the number of clusters. Although not very distinct, there seems to 

be a kink at two classes. The PRE suggests that there is a 20 percent reduction in the WSS 

going from class 1 to class 2. In total there is a 30 percent reduction (𝜂ଶ) with three classes. 

Even though there is some indication that the model improves using four or even five 

clusters, we will show the results for the two-cluster and three-cluster models as these lead 

to the largest reduction in the WSS. Out of the 100 replications we took the two-cluster and 

three-cluster models with the highest 𝜂ଶ. Now we also report the descriptive statistics for 

the different classes, in Table 3. Table 4 contains the equation-by-equation regression 

results for these two different clustering models.  

Regarding the two-cluster model, Table 3 indicates that the second cluster, in 

comparison to cluster one, has relatively many households with children (42 percent), with 

relatively high average income ($111,076), living in relatively new and large houses (and 

not condominiums) with a relatively high price ($288,872) outside the former Louisville city 

limits. In comparison to the exogenous class model, the clustering model seems to suggest 

that income and children are correlated and jointly determine the classes. The regression  

estimates in Table 4, specification (3), shows that the equality of the hedonic coefficients 

between the two classes is now soundly rejected (χ2 of 99.48) even though again not many 

of the coefficients are individually significantly different from each other. For example, an 

increase of one percent in house size increases house value by 0.35 percent for cluster two 

but only by 0.23 percent for cluster one. In other words, cluster two households are buying 

houses which are larger and they are also, ceteris paribus, paying more per 

square foot. This difference in marginal prices is, although sizeable, not statistically 

significantly different, which most likely reflects the low number of observations used in 

this study. Statistically significant differences are that cluster two households pay less for 

living in condominiums (proxied by the floor variable) and pay more for living outside the 

former Louisville city area. Although most of the second cluster households do not live 

within the old Louisville city limits they do seem to be willing to pay an additional price of 

18.1 percent when living in the city in comparison to households in cluster one. The age of 

the structure decreases prices in both clusters but less so at higher ages for cluster two. The 

overall adjusted R-squared for this model is 0.65 which is actually very similar to the model 

with exogenous classes. This suggests that having the machine sort matters out does not, at 

least in this particular example and using this particular clustering method, lead to much 

gain.  
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FIGURE 5—SCREE PLOTS CLUSTERING MODELS 

Note: Based on 100 replications, this figure shows average goodness of fit measures 

for k number of classes. Panels A to D show the within sum of squares, the log of this 

measure, the η2 (R-squared type of measure), and the proportional reduction of error, 

respectively.   

 
TABLE 3—SUMMARY STATISTICS: MEANS PER CLUSTER, CLUSTERING MODEL, LOUISVILLE (2013)  

  (3)  (4) 
  Cluster 1 Cluster 2  Cluster1 Cluster 2 Cluster 3 

Sale price   125,189 288,872  112,063 181,041 413,745 
House size   1,535 3,098  1,448 2,089 4,148 
Lot size   52,074 99,617  33,306 89,207 101,612 
Age of structure  48 29  59 31 29 
Number of bathrooms  1.71 3.07  1.49 2.38 3.69 
Number of  rooms  5.69 7.87  5.59 6.53 9.11 
Garage  0.66 0.96  0.52 0.91 0.98 
Dishwasher  0.71 0.98  0.52 0.98 0.99 
Fireplace   0.24 0.87  0.15 0.62 0.93 
Floor  0.04 0.001  0.06 0.01 0.00 
Louisville (former city)  0.24 0.08  0.39 0.04 0.13 
Children  0.23 0.42  0.20 0.32 0.51 
Household income   56,795 111,076  55,716 71,289 158,290 
Observations  927 709  543 826 267 
Note: The averages are based on the clusters underlying the cluster models of 

specifications (3) and (4).  
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TABLE 4 —HEDONIC MODEL, CLASSES BASED ON CLUSTERING ALGORITHM, LOUISVILLE (2013) 
(Dependent	variable:	log	sale	price)	

  (3)   (4)    
  Two-cluster model F-stat.  Three-cluster model F-stat. 
  Cluster 1 Cluster 2 1 = 2  Cluster1 Cluster 2 Cluster 3 1 = 2 1 = 3   2 = 3 1=2=3 

House size (log)  0.234*** 0.345***   0.203*** 0.267*** 0.272***    8.73*** 
  (0.058) (0.046)   (0.076) (0.040) (0.074)     
Lot size (log)  0.0179*** 0.0167***   0.0188* 0.0189*** 0.00897     
  (0.0055) (0.0062)   (0.010) (0.0042) (0.011)     
Age of structure  -0.00635*** -0.00985***   -0.00286 -0.0102*** 0.00106   7.64***  
  (0.0022) (0.0022)   (0.0048) (0.0020) (0.0035)     
Age of structure sq.  0.0000513** 0.000115*** 2.86*  0.0000250 0.0000884*** -0.00000628   3.50*  
  (0.000023) (0.000029)   (0.000041) (0.000030) (0.000041)     
Number of bathrooms  0.124*** 0.165***   0.148*** 0.116*** 0.194***   6.17** 10.03***
  (0.025) (0.018)   (0.041) (0.018) (0.026)     
Number of rooms  0.0352** 0.0311***   0.0612*** 0.0238*** -0.00326     
  (0.016) (0.0092)   (0.022) (0.0091) (0.017)     
Garage  0.100*** 0.236**   0.107** 0.172*** -0.0321     
  (0.027) (0.092)   (0.042) (0.030) (0.27)     
Dishwasher  0.275*** 0.413***   0.314*** 0.231** 0.0488     
  (0.034) (0.12)   (0.042) (0.11) (0.044)     
Fireplace   0.0746** 0.117***   0.117* 0.120*** 0.0257     
  (0.033) (0.036)   (0.066) (0.022) (0.073)     
Floor  0.0502 -0.706*** 33.31***  0.0623 -0.0617 -     
  (0.073) (0.11)   (0.091) (0.099)      
Louisville (former city)  -0.0236 0.182*** 7.04***  -0.0726 0.112* 0.204** 5.74** 7.03***  10.29***
  (0.043) (0.064)   (0.046) (0.062) (0.093)     
             
Equality coef. (χ2)  99.48***   64.79***     
Adj. R-squared (per eq.)  0.298 0.568   0.252 0.343 0.341     
Adj. R-squared (overall)  0.650                                  0.662     
Observations  927 709   542 826 267     

Note: Robust standard errors in parentheses. The clusters are based on the k-means clustering method on house prices, house characteristics, 
household income, and whether there are children under 18 in the household. The hedonic coefficient estimates are the same as separate OLS 
estimates for the individual clusters, but the (co)variance matrix is different (jointly estimated, sandwich estimator). The adjusted R-squared is 
based on the regular OLS estimates. *, **, *** indicate 10%, 5%, 1% significance, respectively.  
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For the three-cluster model, cluster one has the lowest household incomes and house 

prices, while cluster three has the highest incomes and prices. Cluster three also has a high 

percentage of households with children (51 percent). A similar type of ordering as before 

applies with regard to many of the house characteristics with, for example, higher house and 

lot sizes in cluster three. However, cluster one now has the highest percentage of 

households living in Louisville city (39 percent). Instead, cluster two households are by all 

accounts an intermediate group with, for example, household income and the presence of 

children lying in between group one and three.  

Table 4, specification (4), again indicates some differences in the marginal attribute 

prices across clusters. However, the fact that the joint test of equality of the coefficients has 

a lower χ2 suggests that this model might be less appealing than the two-cluster model. Also, 

several of the individual coefficients are no longer statistically significant. Nevertheless, the 

adjusted R-squared statistic increases to 0.662 suggesting a better (linear) fit of the model. 

Some of the results are in line with the two-cluster model, but there are also some 

noticeable differences. In particular, the three-cluster model now suggests that the 

differences in the marginal prices of house size are jointly statistically significant with 

cluster three having the highest marginal price. In addition, a difference in the effect of age 

now occurs between clusters two and three. There also seem to be differences in the price 

paid per bathroom. Also, households in cluster three do not live in condominiums (i.e., this 

variable is omitted from the hedonic estimates). Finally, cluster two is already willing to pay 

a 11.2 percent premium for living in Louisville while cluster three households pay a 20.4 

percent premium.  

The results in this subsection again emphasize that separating hedonic models using 

housing and household characteristics can lead to a statistically significant improvement 

relative to the standard hedonic model. Relative to the exogenous class model, it also seems 

to better separate the data into different classes with the χ2 suggesting highly statistically 

significant differences, although the model does not necessarily perform better in terms of 

goodness of fit.  

One further issue with this type of hybrid hedonic, machine-learning model is that it is 

difficult, from an economic point of view, to explain the differences between the groups 

based on the household characteristics. The fact that households (with high income and 

children) in cluster three are willing to pay both for housing in the city and a large house 

seems to be a bit in contradiction to each other. Households with children should be willing 

to pay less for living in the city, while high income households are expected to pay more.16 

Also, we would expect some economically meaningful differences between groups regarding 

living in a condominium (floor variable). The weakness of the machine learning (clustering) 

                                                            
16 This argument might not necessarily apply to Louisville, which has attractive older neighborhoods 
within the former city limits that contain large, relatively expensive houses. 
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model in terms of economic interpretation stems from the fact that we can choose which 

variables to include in the clustering algorithm but we do not know how they contribute to 

the formation of classes (i.e., there is no underlying regression or classification model that 

we could test). This is exactly what the latent class model does allow for. 

 

C. A	latent	class	model	

Table 5 reports the descriptive statistics for the different classes. However, in comparison to 

Table 3, we now also add standard deviations and t-tests to compare group means. In 

addition, we report the Bhattacharya Coefficient to compare the overlap in distributions 

across classes as in equation (5). Table 6 contains the estimates for several latent class 

models in line with equation (3). In particular, we estimated a latent class model with two 

classes and one with three classes. The upper part of the table contains the hedonic 

estimate, while the lower part also shows the simultaneously estimated multinomial logit 

model with children and the logarithm of income as the independent variables. 

 Specification (5) is the two-class latent model. The equality of the coefficients across 

classes is rejected (χ2 of 187) even more strongly than with the cluster model. The AIC also 

suggests that this model is a substantial improvement over the single-class (standard 

hedonic) model.17 The decrease in AIC from the standard hedonic model to the two-class 

latent class model is 442. If anything, this suggests that the latent class model better fits the 

data than the standard hedonic model. This overall increase in fit is also evident by the 

increase in the adjusted R-squared to 0.735 which is higher than the standard hedonic 

model, exogenous class model, and cluster model.18 

The two-class model suggests that having children has a positive and statistically 

significant effect on the probability of belonging to class two (relative to class one). In 

particular, having children increases the log-odds ratio by 0.682. This is sizable against the 

average log odds of 1.749 (i.e., log(0.851/0.148)). The coefficient on income is positive but 

statistically insignificant. Based on the most likely class assignment, about 85 percent of the 

observations belong to class two. This suggests that the model performs well in assigning 

observations to classes. The entropy measure of 0.46, however, implies that the 

distinctiveness of the classes is not very high. In addition, Table 5 shows that, although 

many of the means of the house and household characteristics are statistically significantly 

different between classes, the means of two important variables, house size and price, are 

not significantly different. This is an indication that the two-class model might not be 

optimally assigning observations into different classes.  
                                                            
17 To give an indication of the order of magnitude, a decrease in the AIC of 50 already suggests that the 
model with the lower AIC is expሺ50/2ሻ ൌ 72 billion times as likely to minimize the information loss in 
comparison to the baseline model. The information loss measures the divergence in the probability 
distribution of the actual data generating process f and the model g we use to estimate it.  
18 We calculated the adjusted R-squared using the most likely latent class assignment and using a 
similar (interaction effect) methodology as the exogenous classes model. 
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TABLE 5 —SUMMARY STATISTICS: MEAN, STANDARD DEVIATION, AND OVERLAP PER CLUSTER, LATENT CLASS MODEL, LOUISVILLE (2013)  

  (5)   (6)  
  Class 1 Class 2    Class1 Class 2 Class 3   
  Mean (sd) Mean (sd) T-test Overlap  Mean (sd) Mean (sd) Mean (sd) F-test Overlap 

Sale price ($)   205,761 
(262,474) 

194,444 
(116,949) 

0.66 0.905  221,468 
(292,793) 

138,744 
(61,608 

234,090 
(152,277) 

87.25	 0.870 

House size (sq. ft.)   2,297 
(1,627) 

2,198 
(1,276) 

0.90 0.989  2,060 
(1429) 

2,036 
(1,209) 

2,357 
(1,389) 

11.71	 0.979 

Lot size (sq. ft.)  138,155 
(276,627) 

61,256 
(158,452) 

4.21	 0.980  158,910 
(302,670) 

52,240 
(150,122) 

76,745 
(181,770) 

16.62	 0.981 

Age of structure  54 
(27) 

38 
(23) 

8.78	 0.945  52  
(26) 

41 
(23) 

38 
(24) 

17.53	 0.964 

Number of bathrooms  2.14 
(1.11) 

2.33 
(1.00) 

‐2.51	 0.986  2.16  
(1.08) 

2.12 
(0.93) 

2.44 
(1.05) 

19.60	 0.983 

Number of  rooms  6.53 
(1.90) 

6.66 
(1.74) 

-1.00 0.983  6.20  
(1.73) 

6.44 
(1.64) 

6.84 
(1.82) 

13.33	 0.968 

Garage  0.74 
(0.44) 

0.80 
(0.40) 

‐2.25	 0.997  0.75 
(0.43) 

0.76 
(0.43) 

0.83 
(0.38) 

6.74	 0.997 

Dishwasher  0.65 
(0.48) 

0.86 
(0.35) 

‐6.32	 0.971  0.64 
(0.48) 

0.78 
(0.42) 

0.88 
(0.32) 

29.67	 0.978 

Fireplace   0.44 
(0.50) 

0.52 
(0.50) 

‐2.32	 0.998  0.45 
(0.50) 

0.45 
(0.50) 

0.57 
(0.50) 

11.30	 0.995 

Floor  0.07 
(0.39) 

0.02 
(0.17) 

1.93	 0.996  0.01 
(0.10) 

0.03 
(0.26) 

0.02 
(0.20) 

0.99 0.997 

Louisville (former city)  0.35 
(0.48) 

0.14 
(0.35) 

6.32	 0.971  0.35 
(0.48) 

0.17 
(0.37) 

0.16 
(0.36) 

12.82	 0.984 

Children  0.16 
(0.36) 

0.34 
(0.47) 

‐6.89	 0.977  0.11 
(0.31) 

0.45 
(0.50) 

0.24 
(0.43) 

51.06	 0.961 

Household income ($)   54,066 
(64,025) 

84,898 
(61,163) 

‐6.97	 0.929  48,766 
(54,780) 

54,143 
(42,179) 

103,287 
(66,271) 

157.85	 0.880 

Overlap, house char., average  - - - 0.975  - - - - 0.965 

Number of observations  243 1,393 - -  109 637 890 - - 

Note: The averages are based on the most likely assignment to a latent class of specification (5) and (6); see Table 6. The overlap is 
based on the Bhattacharyya Coefficient. For the three-cluster case the average of the coefficient of all pairs of distributions is shown 
based on separating the sample into ten bins.  The t-test column shows t-values based on a paired t-test of the means allowing for 
unequal variances. In the three-cluster model F-values are reported based on an ANOVA (Bonferroni multiple-comparison) test. The 
values are in italics if the differences are statistically significant at the 10 percent level or better.  

  



— 27 — 
 

TABLE 6 —LATENT CLASS HEDONIC MODEL, LOUISVILLE (2013) 
(Dependent	variable:	log	sale	price)	

  (5)   (6)  
	  Two-class model χ2  Three-class model χ2 
Hedonic	variables	  Class 1 Class 2 1 = 2  Class1 Class 2 Class 3 1 = 2 1 = 3 2 = 3 1=2=3 
House size (log)  0.271** 0.345***   0.335 0.169*** 0.411***   7.42*** 8.38** 
  (0.106) (0.0375)   (0.220) (0.0653) (0.0486)     
Lot size (log)  0.0456** 0.00967**   0.0649** 0.00702 0.0148*     
  (0.0232) (0.00481)   (0.0316) (0.0131) (0.00842)     
Age of structure  -0.00254 -0.0119***   -0.00714 -0.00436 -0.00995***     
  (0.00501) (0.00158)   (0.0116) (0.00313) (0.00215)     
Age of structure sq.  -2.89e-05 0.000136***   7.83***  7.82e-06 -3.52e-06 0.000122***   9.31*** 12.29*** 
  (4.78e-05) (2.32e-05)   (0.000114) (4.61e-05) (2.51e-05)     
Number of bathrooms  0.237*** 0.138***  2.97*  0.280*** 0.123*** 0.154***     
  (0.0488) (0.0179)   (0.0911) (0.0305) (0.0201)     
Number of  rooms  0.0394 0.0408***   0.0188 0.0460*** 0.0362***     
  (0.0291) (0.00830)   (0.0511) (0.0106) (0.0114)     
Garage  0.115 0.133***   0.121 0.0936** 0.132***     
  (0.0758) (0.0239)   (0.169) (0.0374) (0.0329)     
Dishwasher  0.368*** 0.138*** 4.10**  0.510*** 0.200*** 0.0999**  5.06***  7.07*** 
  (0.106) (0.0301)   (0.184) (0.0629) (0.0432)     
Fireplace   0.0506 0.158***   -0.0126 0.136*** 0.153***     
  (0.0703) (0.0200)   (0.137) (0.0407) (0.0298)     
Floor  -0.0274 0.0928   0.0934 -0.157*** 0.159**   10.45*** 10.73*** 
  (0.0908) (0.110)   (0.174) (0.0572) (0.0690)     
Louisville (former city)  -0.140 0.121*** 5.07**  -0.109 -0.0596 0.131***   9.85*** 9.91*** 
  (0.101) (0.0393)   (0.201) (0.0383) (0.0466)     
Multinomial	logit	variables	             
Children   0.682** 

(0.284) 
   1.353** 0.476     

     (0.573) (0.621)     
Household income (log)   0.493    0.125 1.183***     
   (0.401)    (0.113) (0.301)     
Log pseudo likelihood  -452.63   -364.32     
AIC (single class = 1,405)  963   819     
Adj. R-squared  0.735   0.782     
Average posterior prob.   0.849   0.716     
Entropy  0.455   0.428     
Equality coef. (χ2)  186.56***   211.31***     
Frequency, most likely class 243  

(14.8%) 
1,393 

(85.1%) 
  109 

(6.7%) 
637 

(38.9%) 
890 

(54.4%) 
    

Observations  1,636   1,636     
Note: Robust standard errors in parentheses. The clusters are based on the latent class (multinomial logit) model and simultaneously 
estimated with the hedonic models using the EM algorithm. The adjusted R-squared is based on the model estimated using the most likely 
class assignment as dummy variables using the same interaction effect methodology as in the exogenous classes model. *, **, *** indicate 10%, 
5%, 1% significance, respectively. 
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Nevertheless, there are quite a few differences in the marginal attribute prices of the 

hedonic model across the two classes. Focusing on those that are statistically significant, 

living within the former Louisville city boundaries adds a positive premium to house prices 

for class two and the building age-price profile is more curved for this class. This is similar 

to the previous cluster model. Class two households also seem to pay less for bathrooms and 

having a dishwasher. Class two contains households that have higher average income 

($85,000) and are more likely to have kids (34 percent), although these distinctions are less 

pronounced than in the two-cluster model. Again, from an economic point of view, it is 

difficult to distinguish whether the regression results are due to having children, high 

income, or a combination of both. 

Conceptually, the two-class model is similar to the two-cluster model since in both cases 

we use the children and household income variables jointly instead of separately (as in the 

exogenous class model). The benefit of the latent class model is that we can formally test 

whether the variables jointly or separately determine the classes. To do so, we estimate a 

three-class model. Table 6, Specification (6), shows the latent class estimates based on three 

classes where each class is determined by the children and household income variables. The 

results suggest that income and children are important determinants of the class 

probabilities, but separately (not jointly). In particular, having children has a positive effect 

on belonging to class two, while household income is an important determinant of the 

probability of being in class three.19 Having a child increases the log-odds ratio of belonging 

to class two by 1.353 against an average of 1.758, while each percent increase in household 

income increases the log-odds ratio of belonging to class three by 1.183, which is again 

sizable against the average log-odds ratio of 2.094. Indeed, Table 5 suggests that class two 

has a relatively high share of households with children (about 45 percent) and class three is 

dominated by households with high incomes (on average $103,000). Class one can be 

interpreted as a reference group.  

The regression estimates show that there are quite a few differences in the marginal 

prices across classes. These differences are again highly statistically significant (χ2 of 221). 

In comparison to the two-class model, the average posterior probabilities and entropy 

measure are lower. This is not surprising as it indicates that it is simply more difficult to 

separate the observations into three classes instead of two classes. The AIC of 818, however, 

suggests that this model is again an improvement over the two-class model as is also 

evident by the higher adjusted R-squared of 0.782. The high-income group (class three) is 

now represented by only 54 percent of the observations in comparison to 85 percent in the 

                                                            
19 An additional benefit of the latent class model is that it is possible to exclude the household income 
variable in the multinomial logit model of class two and the children variable in the model of class 
three (that is, to have separate determinants for each class). This leads to very similar hedonic latent 
class estimates (not reported).  
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two-class model. This is because the class with a high percentage of households with 

children (class two) is now no longer included in the same class.  

 According to the results in Table 6, class two households pay less per square foot in 

percentage terms (marginal price of 0.169), while class three household pay more (marginal 

price of 0.411). Again, this might reflect differences in quality and location of the house, but 

the fact remains that those differences are there. Interestingly, we find that high income 

households (class three) value the age of the building more as it is a highly statistically 

significant determinant while it does not affect prices in class one and two. There is also a 

strong exponential curvature in this effect. Each year of age decreases house prices by about 

1 percent and this effect becomes 0.1 percentage point smaller for each additional year. 

Note that this particular class (class three) also buys on average newer houses (see Table 5). 

Furthermore, Table 6, specification 6, suggests that marginal prices for dishwashers are also 

clustered per class with the highest marginal price for class one and the lowest for class 

three.  

One of the most convincing regression results is the effect of the floor level (proxy for 

living in a condominium). The high-income group (class three) values living on a high floor. 

For each unit increase in floor level, this group pays a 15.6 percent higher house price. In 

contrast, for households with children it is very inconvenient to live on a high floor. For this 

group every unit increase in floor level is associated with a discount of 15.7 percent. In the 

standard hedonic model this variable had no statistically significant effect (see Table 2), as 

only the average effect of this variable was measured. Similarly, high income households 

seem to value the city more (with a premium of 13.3 percent), while the effect is now 

negative, albeit not statistically significant, for families with children.  

Finally, we take a closer look at the descriptive statistics for the classes underlying the 

three-class model, see Table 5. The means of the housing characteristics are statistically 

significantly different across classes. This suggests that the classes are really separate 

classes and, in comparison to the two-class model, this now also applies to house prices and 

house size. The standard deviation and overlap measure between classes (Bhattacharyya 

Coefficient, see equation (5)), however, imply that the distributions across classes are to a 

substantial degree overlapping. For example, the average age of the property differs 

substantially, ranging from 52 years in class one to 38 years in class three. However, both lie 

within one standard deviation from each other and the overlap coefficient of 0.97 implies a 

high degree of overlap. This is suggestive of market segmentation: the marginal prices 

across classes are different, but the underlying house characteristics at which houses are 

traded are to a degree similar.  

Overall, these results suggest that: (1) the use of household information to separate the 

hedonic model into separate classes can increase the fit of the model substantially; (2) these 

classes reflect different market segments; and (3) the differences in marginal prices across 

classes have an economically meaningful interpretation. The latent (three-)class model 
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seems to be most useful in this regard and supports the idea of classes determined 

separately by either income or having children (relative to a benchmark class), which is in 

line with the exogenous (but naively specified) class model and in contrast to the hybrid 

model based on machine learning.  

   

V. Limitations	and	future	research	

This section provides several directions for future research. First, the hedonic model is a 

rather static framework. It does, for example, not directly allow for capital gains or life cycle 

considerations. A model that does incorporate such considerations is presented by Ortalo-

Magné and Rady (1999; 2006). They show that an increase in house prices increases 

demand and creates upward pressure on house prices higher up the property ladder. It 

would be particularly interesting to examine how such dynamic effects would change the 

hedonic equation. For example, McMillen (2008) shows that house price appreciation in 

Chicago for high-priced homes is not explained by structural characteristics or the location 

of the house (i.e., types of houses sold), but mainly as a result of changes in the hedonic 

(quantile) coefficients. How do such changes in coefficients relate to changes in market 

segments?  

 Second, although there are many possible extensions to the modeling framework in this 

paper, an obvious one is to allow for mismatch between housing and household attributes 

(see Glaeser and Luttmer, 2003). To examine this in more detail it would be necessary to use 

the panel data structure of the AHS separating the marginal prices over time. This would for 

example also allow for a longitudinal analysis of mismatch that could relate such mismatch 

to residential mobility. In particular, we would expect that an increase in mismatch 

increases the probability that a household moves. From a broader perspective, this is 

related to the concept of trade chains as discussed in the theory part of this paper. How do 

these trade chains extend over space and time? 

 Third, although we focused on two particular household characteristics, income and 

having children, there are potentially more variables that affect the class assignment of 

households. We started this study with a grid search to determine which variables might be 

important. The results showed that many of them – ranging from ethnicity to age, 

unemployment, and marital status – might separate marginal prices into distinct classes.20 

This relates to the broader question about the role of sorting within the hedonic model (see 

Yinger, 2015).21  Particularly, what are the different mechanisms behind sorting and how 

                                                            
20 Some of the individual characteristics used in this study may also proxy for bargaining power (see 
Harding et al., 2003). The point is that even in the absence of bargaining (i.e., in the perfect 
competition case) individual characteristics are expected to separate marginal prices into different 
classes. Further research should focus on how bargaining and market segmentation are interrelated.  
21 Yinger (2015) estimates amenity demand elasticities focusing on school quality and neighborhood 
ethnic composition and shows, within the hedonic framework, that these are the result of sorting. 
Although the framework provided in our paper is based on the idea that specific types of households 
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does this affect the hedonic equation? This requires the use of multiple types of data, not 

just the housing characteristics that usually accompany transactions data. How do we 

incorporate such multiple types of data within a single framework? Although it turns out 

that in our study the latent class model performs particularly well, more so than the hybrid 

machine learning hedonic model, it is evident that as datasets grow bigger new techniques 

are required. Machine learning might turn out to be particularly up to the task, although 

more benchmarking measures are still necessary. Machine learning is, to a degree, still seen 

as a black box approach (for a discussion see Hutson, 2018). In this study a simple clustering 

algorithm is used, but there are already more advanced methods available. It might for 

example be possible to use random forest techniques to better determine (optimize) the 

hedonic variable selection (Antipov and Pokryshevskaya, 2012; Yoo et al., 2012).  

 Fourth, more research is necessary about the role location plays in the hedonic model. 

On the one hand, location dummies are typically used to measure the effect of unobserved 

amenities since data to capture all different amenities in a neighborhood may be scarce. One 

location is not the same as another and this might be a broader reflection of the quality of 

the buildings and location. As such, there is a tendency in the hedonic literature to include 

ever more detailed location fixed effects. On the other hand, too detailed location fixed 

effects would account for normal variations within a market, and those variations are what 

we are particularly interested in. One empirical extension of the models estimated above, 

that mitigates this trade-off, is to add detailed neighborhood information (i.e., census data) 

to the hedonic model to better explain some of the variations we currently find in marginal 

prices within the market (Louisville MSA) that is investigated in this study. However, the 

broader question remains how exactly to define markets.22 There is a long-standing 

tradition of using a spatial definition of (housing) markets (see Muth, 1961; Bourassa et al., 

2003; Tu et al., 2007, amongst others). Reestimating the models for other MSAs would thus 

be useful. But do distinctly separate (sub)markets even exist, or are they all interconnected, 

and is it only physical distance which defines their boundaries? 

Finally, there is a long-standing literature on the use of household information to 

estimate individual housing demand curves and the identification problems associated with 

such estimation (Brown and Rosen, 1982; Ekeland et al., 2004). We find a strong association 

between average marginal implicit prices and household characteristics. From a causal 

perspective, however, implicit prices do not necessarily say something about the underlying 

willingness to pay functions of households as implicit prices are an equilibrium outcome. It 

                                                                                                                                                                          
sort themselves into specific types of houses, and we show a consistent way to estimate the resulting 
clustering in marginal prices, the model itself is agnostic about the exact process of sorting. 
22 In part, the answer to this question relates to the reasons why there are differences in marginal 
prices as discussed in the theory section of this paper. In particular, we argued that this is related to 
imperfect arbitrage as a result of financial frictions, indivisibility of the housing good, and incomplete 
information. Regarding the latter, we would for example expect that there is an impact of 
benchmarking platforms such as Zillow on the (marginal) price dispersion in the housing market.  
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is well known that other methods and/or additional information is necessary to estimate 

the household’s demand curve (individual preferences). Information on similar households 

across markets (Epple, 1987), information over time within a market (Arguea and Hsiao, 

1993), functional form restrictions (Quigley, 1982) or, alternatively, the better use of the 

non-linear functional form of the hedonic price function (Ekeland et al., 2004) have all been 

proposed to deal with the above identification problem. Although our results suggest that 

household information might not only have an indirect role in determining marginal 

attribute prices but may also be used directly in classifying different market segments, 

further research should focus on the clustering of preferences and its underlying causes. 

 

VI. Conclusion	and	discussion	

This paper has examined the role of heterogeneous households and market segmentation in 

a hedonic framework. Using housing as an example, we redefined the hedonic equilibrium 

allowing for a secondhand market using an Edgeworth box and with trades occurring based 

on a trade chain between consumers. Households exhibiting heterogeneous preferences 

sort themselves into particular types of houses. This leads marginal attribute prices to be 

clustered into separate classes. We demonstrated three empirical methods for using 

household information to estimate those classes in a hedonic model: an exogenous 

(interaction effects) class model, a hybrid machine learning hedonic model, and a latent 

class model. We estimated those models using the American Housing Survey (AHS) 

metropolitan public use file for the Louisville, KY-IN MSA for 2013. 

 The estimation results indicate that each of the three models is an improvement over the 

standard hedonic model in terms of model fit. Our final preferred specification of the latent 

class model consists of three classes, with having children and household income 

determining the class probabilities. We find that having children increases the log-odds 

ratio of belonging to class two by 1.353 (relative to the low income, low presence of 

children, reference class) against an average of 1.758. Similarly, an increase of one percent 

in household income increases the log-odds ratio to be part of class three by 1.183, which is 

again sizable relative to the average log-odds ratio of 2.094. In comparison with the 

standard (one class) hedonic model, we observe an increase in the adjusted R-squared from 

0.637 to 0.782 and a reduction by almost half of the AIC.  

We find that classes with higher income pay a premium for living in Louisville city and on 

higher floors (i.e., condominiums), and they pay more per square foot. In contrast, 

households with children pay a negative premium for living on a higher floor or in Louisville 

city and are willing to pay less per square foot. Although the average house characteristics 

are statistically significantly different across classes, and households within those classes 

seem to trade at a distinct set of marginal prices, the distributions are according to the 

Bhattacharyya Coefficient to a high degree overlapping. This is highly suggestive of market 
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segmentation in which (in some aspects) similar houses are traded for different marginal 

prices. 

These results indicate that household information should have a direct place in the 

hedonic equation. Household information can help to determine market segments and 

better predict house prices. One could, however, question the usefulness of our approach in 

case the standard hedonic model already explains 80, 90, or even more percent of the 

variation in house prices, as is not uncommon. The framework we propose is particularly 

useful when the focus is not on predicting house prices, per se, but in better understanding 

why marginal prices are different across submarkets. Our approach is also more in line with 

current professional practice in which (heterogeneous) goods are typically marketed (to 

target audiences) based on their physical attributes. A car may, for example, be classified as 

a typical family car because it has a large backseat area, considerable trunk, and the 

configuration of both areas can easily be amended to accommodate future changes in family 

composition. These cars are thus mainly bought by families and are traded at a distinct, but 

bounded, set of marginal prices. 
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