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Abstract

We propose a unified set of distance-based performance metrics that address the power
problems inherent in traditional measures for asset-pricing tests. From a Bayesian
perspective, the distance metrics coherently incorporate both pricing errors and their
standard errors. Measured in units of return, the metrics have an economic interpre-
tation as the minimum cost of holding a dogmatic belief in a model. Our metrics
identify the six-factor model of Fama and French (2018), the q5 model of Hou, Mo,
Xue, and Zhang (2018), and the Stambaugh and Yuan (2017) model as the top per-
formers whose performance is economically indistinguishable. By contrast, the GRS
and average-alpha-based statistics often lead to counter-intuitive rankings.
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1. Introduction

Asset-pricing models are designed to explain excess returns of a universe of left-hand-side

(LHS) assets using a small set of right-hand-side (RHS) factors. A variety of multifactor

models have been proposed, and models that produce low pricing errors (alphas) with high

estimation precision are deemed successful. However, the low-alpha criterion does not always

go hand in hand with the high-precision standard in the existing performance metrics, giving

rise to what is known as the “power problem” that have long plagued asset-pricing tests.

Barillas and Shanken (2018) point out that a relatively large p-value for a ratio-based

statistic may tell us more about the imprecision in estimating a particular model’s alphas

than about the pricing ability of the model. Therefore, the lack-of-power problem (under-

rejection) afflicts asset-pricing tests of the null hypothesis (of no pricing error), when the

performance of asset-pricing models is evaluated based on the t-statistic for an individual

asset or the F -statistic of Gibbons, Ross, and Shanken (1989) (GRS -statistic or GRS hence-

forth) for a group of assets. For example, Fama and French (2012, 2016a) report that GRS

cannot reject global models in pricing regional stock returns such as in Japan. Similarly,

Cochrane (2005) and De Moore, Dhaene, and Sercu (2015) caution against blowing up the

residual covariance matrix, which causes a poor model to pass the statistical test.

The power problem also occurs when a ratio-based metric such as GRS rejects a model

although its pricing errors are economically insignificant but their standard errors are small

(too much power or over-rejection). For example, the three- and five-factor models of Fama

and French (1993, 2015) produce an average pricing error of less than 0.10% per month for

a wide range of test assets, but they are still rejected by GRS.

Consequently, most empirical studies rely on summary statistics of alphas jointly with

the GRS -statistic to judge model performance. Alpha-based statistics, especially the mean

absolute pricing error (or alpha) (MAE ), are routinely reported as the main comparative

results (e.g., Fama and French (2015, 2016a, 2016b), Hou, Xue, and Zhang (2015), Hou,

Mo, Xue, and Zhang (2018), and Stambaugh and Yu (2017)), and the model with the
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lowest MAE is considered the best one. However, comparing models based on MAE is

neither theoretically founded, nor does it consider the degree of estimation precision for

model choices.1 In particular, when GRS and MAE produce contradicting rankings (as

commonly observed in the literature), which criterion should we use and what are the causes

of the ranking inconsistency? To what extent does the power problem or ignoring estimation

precision lead to sub-optimal model choices?

Given the above questions, the main objective of this study is to develop a unified set of

performance metrics that are theoretically motivated and provide Bayesian interpretations

for comparing the performance of asset-pricing models as well as assessing the value of specific

factors in the models. Our Bayesian metrics are in contrast to the frequentist ratio-based

(t- and F -) statistics. Specifically, a frequentist investor views the pricing error as a true

(deterministic) but unknown parameter (α), and the measurement error (ε) prevents him

from observing the true value of it, so that the estimated alpha is α̂ = α+ε and its estimation

error is σ̂α. The lack-of-power problem, thus, arises because of large α̂ but even larger σ̂α.

The too-much-power problem arises because of small (economically insignificant) α̂ but even

smaller σ̂α. In contrast, a Bayesian investor views the sample of data as given for updating

her subjective beliefs about a model’s mispricing, characterized by a posterior distribution

of the alpha, αpost ∼ N(α̃, σ̃2
α), given the prior distribution, αpre ∼ N(0, σ2

α), characterized

by prior estimation uncertainty, σα. The posterior estimates of the mean, α̃, and the stadard

deviation, σ̃α, measure the expected value of mispricing and the estimation uncertainty (or

imprecision), respectively.

This probabilistic view of the mispricing parameters for a Bayesian investor makes it

possible to define performance metrics that measure the “distance” between two posterior

distributions with different degrees of prior estimation uncertainty, σα. Specifically, when a

Bayesian investor holds a dogmatic belief in a model a priori (i.e., σα = 0), her posterior

1Barillas and Shanken (2017) show examples in which evaluating the performance of models based on
alpha-based statistics leads to inconsistent model rankings. However, they do not provide any guidance for
the ad hoc practice or a solution to the problem.
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estimate of the alpha shrinks to the model-implied value of zero with no uncertainty (αpost ∼

N(0, 02)) . At the other extreme, when the investor is completely skeptical about the model

(i.e., σα = ∞), the posterior estimates of the alpha and its estimation uncertainty conform to

their OLS sample estimates (αpost ∼ N(α̂, σ̂2
α)). We define a distance-based metric, average

distance (AD), that measures the cost of moving the mass of N(0, 02) to N(α̂, σ̂2
α) or vice

versa.2 Intuitively, a Bayesian investor views model performance as the gap between her

subjective belief (i.e., model-implied distribution) and the objective reality (i.e., data-based

distribution). Differently put, the distance metrics can be viewed as the minimum cost of

holding a dogmatic belief in the model. To evaluate the performance of models, therefore, a

Bayesian investor simply ranks models based on the size of the distance and then identifies

the one with the shortest distance as the best model.

More specifically, the distance (AD) between the two distributions is defined using an L2

norm. For normal distributions, this leads to AD being defined to be the square root of the

sum of the average of squared alphas (α̂2
i ) and the average of squared standard errors (σ̂2

αi
).

AD is analogous to GRS in that both summarize the overall performance of the model in

a single measure. However, unlike the ratio-based GRS -statistic, AD (measured in units of

return) is derived as a sum. In contrast to a frequentist investor who prefers a low ratio of

the alpha estimate to its sampling error, a Bayesian investor views both large dispersion of

the alpha and high estimation uncertainty as bad news.

AD is also akin to MAE in that it measures the average performance of a model. However,

MAE is problematic in two aspects: (i) it weighs pricing errors with different magnitudes

equally; and (ii) it also ignores the degree of estimation precision. In contrast to MAE, the

AD metric heavily penalizes extreme pricing errors, choosing models that produce smaller

dispersion of alpha estimates and higher estimation precision.

We also define a metric, marginal distance (di), to be the square root of the sum of

2The distance-based metrics that we propose are derived from the concept of the Wasserstein distance in
the optimal transport theory (see Villani (2003, 2009)), and applied in economics and finance by Galichon
(2016, 2017).
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squared alpha (α̂2
i ) and squared standard error (σ̂2

αi
) for asset i. Thus, di measures asset i’s

contribution to AD and can be used to identify ‘troublesome’ assets that most contribute to

AD. In that sense, di for a Bayesian investor is analogous to the ti-statistic for a frequentist

investor. As before, ti is a ratio-based statistic while di is based on a sum.

We note that AD can be used not only for pair-wise comparisons but also for simultane-

ously comparing a set of different models. These models may be nested or non-nested. By

contrast, GRS can be used to compare only nested models in a frequentist setting. Moreover,

it is not obvious how to account for estimation errors in inputs when comparing non-nested

models.3 Finally, as explained in more detail below, GRS -implied Sharpe ratio comparisons

are suitable for the RHS approach to testing asset-pricing models, but the problem of the

LHS approach for non-nested models has not been explored in the literature. These issues

can be easily addressed in our Bayesian framework of the distance-based metrics, which can

handle the LHS approach to testing nested or non-nested models.

In the empirical part of the paper, we evaluate asset-pricing models using AD as well as

other performance measures often used in the literature on comparing models and choosing

factors. We rank ten prominent asset-pricing models, which we classify into the following

four categories: (1) A single-factor model: CAPM; (2) The Fama-French (FF) models: the

three-factor FF3 model of Fama and French (1993), the five-factor FF5 model of Fama and

French (2015), the six-factor FF6 model that uses FF5 along with the momentum factor

(UMD), and the six-factor BKRS model of Barillas, Kan, Robotti, and Shanken (2019); (3)

The q models: the four-factor q4 model of Hou, Xue, and Zhang (2015) and the five-factor

q5 model of Hou, Mo, Xue, and Zhang (2018); and (4) Other models: the Bayes-factor BS

model of Barillas and Shanken (2018), the mispricing factor SY model of Stambaugh and

Yu (2017), and the behavioral DHS model of Daniel, Hirshleifer, and Sun (2018).

We perform our analyses for a variety of test assets. In particular, we use returns on

decile and high-minus-low (H−L) portfolios formed by sorting on (1) 150 pooled portfolios

3Fama and French (2018) use a bootstrap analysis to account for estimation errors. Barillas, Kan, Robotti,
and Shanken (2017) derive asymptotic results for comparing Sharpe ratios from non-nested models.
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sorted on 15 different anomaly variables, constructed by Fama and French (2015); and (2)

300 pooled portfolios sorted on 30 anomaly variables, formed by Hou, Mo, Xue, and Zhang

(2018). Lastly, to get around the potential biases associated with choosing test assets, we

also use 85 H−L portfolio returns as test assets following Green, Hand, and Zhang (2017).

Our sample period is from January 1972 to December 2015 (528 months) for the most part.

Leaving the details to the main text, we find that, with this universe of test assets, AD

identifies FF6, q5, and SY as the top three models. This ranking is in contrast to that

generated by GRS or MAE, which often leads to counter-intuitive results. In particular,

AD ranks FF6 highest among the ten models across different sets of test assets (except for

Hou, Mo, Xue, and Zhang’s (2018) H−L portfolios). However, using the GRS -statistic, a

frequentist investor typically picks q5 as the top model, since it produces the lowest ratio.

The q5 model is ranked highest not because of its best pricing ability but because of its

higher estimation imprecision (causing lower power in GRS ). Intuitively, this means that in

cases where the two models produce the same level of pricing errors, FF6 estimates alphas

more precisely than q5. In general, however, the top three models produce the AD-statistics

relatively close to each other.

Given that investors may not use any model as a dogma, nor do they consider the model

as completely useless, we next allow investors to have positive values in prior estimation

uncertainty (i.e., 0 < σα < ∞). For a given model, AD monotonically decreases as σα

increases, reflecting the shrinkage effect of the posterior estimates. Using this property, we

define a concept of ‘distance equivalence,’ which states that a Bayesian investor is indifferent

between two models if their respective AD values (potentially calculated at different levels

of prior uncertainty) are the same. We examine the distance-equivalent relations among the

ten models using the 85 H−L portfolios. We find that q5 and SY at σα = 2% are distance-

equivalent to FF6 at σα = 0. This means that if a Bayesian investor chooses q5 or SY as an

alternative model over FF6 as the benchmark model, she is willing to accept prior estimation

uncertainty in mispricing of ±4% per year. σα = 2% is a modest level of prior uncertainty,

5



according to Pástor and Stambaugh (2000). We thus infer that the performance difference

among FF6, q5, and SY is economically insignificant.

We also find that FF5 at σα = 4% is distance-equivalent to FF6 at σα = 0, implying

that a Bayesian investor choosing FF5 over FF6 must accept prior mispricing of as much

as ±8%. This suggests that UMD is an important factor for the FF models. Furthermore,

q4 at σα = 4% is distance-equivalent to q5 at σα = 0, indicating that adding the expected

growth factor (EG) to q4 is economically warranted. The key advantage of adding EG is to

make q5 generate lower pricing errors; however, the downside is that q5 estimates alphas less

precisely. Nonetheless, the benefit of smaller pricing errors appears to dominate the adverse

effect of lower estimation precision for the q5 model.

The concept of distance equivalence also allows us to evaluate the economic value of

individual factors and their combinations for any model. We do so by excluding some factors

from a model and computing the AD-statistics of the parsimonious model (that deletes the

factor(s)). We do this exercise for the top three benchmark models (FF6, q5, SY) using the 85

H−L portfolios as test assets. We find that MKT is the single most important factor for both

FF6 and q5, consistent with one of the key findings in Harvey and Liu (2018). Interestingly,

we also find that the EG factor exerts a strong effect, making the role of other factors in the

q5 model useless or redundant: i.e., the model without IA and/or ROE produces an even

lower AD-statistic than the benchmark q5 model does. Thus, the new model excluding both

IA and ROE from q5 (with only the MKT, ME, and EG factors) performs best among the

set of q models (although the advantage of the parsimonious model measured by AD does

not always extend to the cases where different sets of portfolios are used as test assets).

Our paper builds upon the Bayesian setting of Pástor and Stambaugh (2000), and shares

the same prior specifications as their study. However, our paper differs from theirs in its

objectives. The utility-based metrics of their study are designed to examine the impact of

varying degree of prior beliefs on portfolio choices, but not to choose one asset-pricing model

over another. Our distance-based metrics can be used not only to measure the performance
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of an asset-pricing model, but also to compare and rank different models (both nested and

non-nested) or to evaluate the value of factors in them.

In this regard, our paper shares the same purpose as Barillas and Shanken (2018). But it

is different in the methodology. First, Barillas and Shanken use the Bayes factor to compute

the posterior model probabilities and then choose the best set of factors. However, our

distance-based metrics are cost measures (in units of return), carrying intuitive economic

interpretations that are easy to communicate. Second, Barillas and Shanken (2018) belongs

to the RHS approach based on spanning regressions of the candidate factors, whereas ours

is the LHS approach designed to identify the model that best prices the universes of test

assets. Motivated by Fama (1998), the RHS approach runs spanning regressions to evaluate

the marginal effects of factors or their potential redundancy, and it often uses the GRS -

statistic for inferences. This approach has been advocated by Barillas and Shanken (2017,

2018) and recently used in Fama and French (2018). However, Harvey and Liu (2018) argue

that the RHS approach leads to poor results when the number of assets is large, in which case

the power problem of GRS is severe. We stay agnostic on which approach is better for testing

asset-pricing models and contribute only to the literature that uses the LHS approach.4

In terms of choosing the best models, our paper shares the same purpose as Ahmed, Bu,

and Tsvetanov (2019) who rely on the traditional statistical methods. Our paper differs

from theirs in that we propose a set of novel metrics to address the power problems inherent

in traditional measures. Our distinct finding is that, despite their motivational and statis-

tical differences, FF6 (empirical-based), q5 (theory-based), and SY (behavioral-based) are

economically indistinguishable as the top three models.

Our Bayesian solution to the power problems inherent in the existing metrics is surpris-

ingly simple. In its frequentist-equivalent form, the OLS estimates of pricing errors and

their standard errors from time-series regressions are the only required inputs to construct

4The LHS approach is still dominant in testing asset pricing models. For examplee, see Daniel, Hirshleifer,
and Sun (2018), Fama and French (2015, 2016a, 2016b), Harvey and Liu (2018), Hou, Xue, and Zhang (2015),
Hou, Mo, Xue, and Zhang (2018), and Stambaugh and Yuan (2017), among others.
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the distance-based metrics: that is, at no more cost than constructing the GRS -statistic.

The only difference is how to view pricing errors and their standard errors. Instead of taking

a ratio, a Bayesian investor uses the square-root of the sum of the two.

2. Analytical Framework

We start with the following thought experiment to distinguish the Bayesian view from the

frequentist view on asset-pricing tests, motivating the rationale for the distance metrics.

Consider a frequentist investor evaluating two models with a test asset. From OLS

regressions, Model A generates α̂A
i = 5% and σ̂A

αi
= 0% per year, and Model B generates α̂B

i =

5% and σ̂B
αi

= 5% per year. Assuming both alpha estimates follow a normal distribution, the

sampling theory suggests that Model A estimates the alpha precisely at 5% with no sampling

error, while Model B does so within the sampling error ranging from −10% to 10% at the

95% confidence level. Using the ratio-based metric (ti), the frequentist investor would reject

Model A (i.e., t = ∞) and choose Model B (i.e., t = 1) unequivocally.5

However, a rational investor may not consider Model B universally better, because there

is roughly a one-third chance that α̂B
i is outside a one-standard-error range (α̂B

i < 0%

or α̂B
i > 10%), a 5% chance that α̂B

i is outside a two-standard-error range (α̂B
i < −5% or

α̂B
i > 15%), and the sampling error can be arbitrarily large with positive probabilities. Thus,

a natural question is: how do we compare Model A that is precisely wrong with Model B

that is imprecisely wrong? The existing ratio-based statistics (ti for an individual asset and

GRS for a group of assets) do not provide a satisfactory answer to this question.

Now consider a Bayesian investor viewing model performance as the shortest ‘distance’

between the model-implied posterior distribution N(0, 02) (when she holds dogmatic prior

belief in the model) and the data-based posterior distribution (when she holds complete

skepticism in the model). Economically, the distance is the minimum cost (price to pay)

5A frequentist would choose Model B over Model A, even if α̂A
i = 0.1% per year (economically insignificant,

but still t = ∞ with σ̂A
αi

= 0%) and α̂B
i = 9% per year (economically significant, but still t < 2 with

σ̂A
αi

= 5%). This represents over-rejection of Model A and under-rejection of Model B.
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to change one’s dogmatic belief in a model to a complete disbelief in it; or intuitively, it

is the minimum cost of holding a dogmatic belief in the model. For Model A, getting the

distance between N(0, 02) and N(5%, 02) requires only a mean shift of the mass of 5%, so

that the transport cost is exactly 5%. For Model B, the distance is the minimum cost of

moving the mass of N(5%, 5%2) to N(0, 02), which involves both a mean shift from 5%

to zero and a variance reduction to zero. The minimum cost for this transport is simply
√

5%2 + 5%2 ≈ 7.07% by our L2-norm definition of distance (to be derived below). Because

she incurs a higher cost for moving the mass in Model B than in Model A, the Bayesian

investor chooses Model A over Model B.

As such, our distance-based metrics summarize both the magnitude of alpha estimates

and the estimation imprecision into an intuitive cost measure, favoring models that produce

small alphas that are estimated more precisely. The rest of this section formalizes this

intuition.

2.1. The Bayesian Setup

Following Pástor (2000) and Pástor and Stambaugh (2000), we assume that an investor has

T observations on n assets. Let R is a T × n matrix of asset returns in excess of risk free

rate, and X = [ιT F ] is a T × (k + 1) matrix, where the first column (ιT ) is a T × 1 vector of

ones and the remaining k columns (F ) contain a T × k matrix of factor returns. Consider a

multivariate regression of R on X:

R = XB + U, vec(U) ∼ N (0, Σ⊗ IT ) , (1)

where B =

α′

β′

 is a (k+1)×n matrix in which the first row is a 1×n vector of alphas, and

the second row contains a k × n matrix of factor loadings, and IT is an identity matrix of

rank T . Also, vec(·) denotes an operator that stacks the columns of a matrix into a vector,

and ⊗ is the Kronecker product. The rows of the disturbance matrix U are assumed to be
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serially uncorrelated and homoscedastic with an n × n covariance matrix Σ. The setup of

equation (1) is the classic multivariate regression model considered by Zellner (1971) and

applied by Pástor and Stambaugh in traditional portfolio problems.

An investor’s prior belief about α and β is given by the following multivariate normal

distribution:

p(B|Σ) ∼ N


α′

0

β′
0

 ,

σ2
α(Σ/s2) 0

0 Ψ


 . (2)

In general, α0, which is the n × 1 prior mean of α, can take any non-zero values to reflect

the investor’s proprietary views on the level of mispricing for the set of returns on the LHS

assets used for the regression in equation (1). If the prior mean of alphas is centered at zero

(α0 = 0: no mispricing in the model), then σα represents the investor’s prior beliefs about

the degree of estimation uncertainty. When σα = 0, the investor has dogmatic beliefs in the

model, so mispricing is completely ruled out. When σα = ∞, the investor regards the model

as useless and relies solely on the data to detect the level of mispricing of a given model.

Between these two extreme views, σα can take a range of values to express the investor’s

prior beliefs in the model.

Note that in equation (2) the prior uncertainty of α′
0, σ2

α(Σ/s2), is proportional to the

residual covariance matrix, Σ, to reflect the fact that very large mispricing opportunities are

improbable.6 s2 is a scalar whose value is set equal to the average of the diagonal elements of

the sample estimate of Σ to make Σ/s2 invariant to scaling. Finally, the prior distribution of

factor loadings is also typically centered at zero (β0 = 0), with a diagonal covariance matrix,

Ψ, whose elements take very large values so that the prior distribution for factor loadings is

non-informative.

The prior distribution of Σ is typically specified as an inverted-Wishart distribution with

6Pástor (2000) and Pástor and Stambaugh (2000) provide a detailed discussion for this prior specification.
Barillas and Shanken (2018) also use this prior and regard k = σ2

α/s2 as the information ratio. He (2007)
interprets σα as the active risk budget assigned to asset managers based on investment policies.
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degree of freedom υ0 = n + 2 :

p(Σ) ∼ IW (H0, υ0) ∝ |Σ|−
υ0+n+1

2 exp

{
−1

2
Tr
(
H0Σ

−1
)}

, (3)

where the scaling matrix is H0 = E[Σ] = s2In and Tr(·) is the trace operator.

The prior distributions in equations (2) and (3) are combined with the likelihood function

of equation (1) to derive the posterior estimates of regression parameters. In particular, for

our choice of α0 = 0 and β0 = 0, the posterior means of α and β have a simple and intuitive

form (tildes are used to denote the posterior means of the parameters):

B̃ =

α̃′

β̃′

 = (V −1
0 + X ′X)−1X ′R, (4)

where V −1
0 =

s2/σ2
α 0

0 0

 is a (k + 1) × (k + 1) matrix. The posterior variance of alpha,

Ṽα = Var [α|R,F ], is taken from the (n, n) upper left block of the n(k +1)×n(k +1) matrix,

Ṽα ⊗ Σ̃, defined in Appendix A.

The shrinkage effect for α̃ is readily seen in equation (4). For σα = ∞ (complete disbe-

liefs), B̃ = (X ′X)−1X ′R reduces to the OLS estimates of α and β, which are based solely on

the sample (data) information. For σα = 0 (dogmatic beliefs), β̃ stays as the OLS estimates

but α̃ reduces to the theoretical value of zero. For any other value of σα between 0 and ∞,

α̃ is a weighted average of zero and the OLS estimates, with the respective weights being de-

termined by the relative confidence in the prior beliefs (captured by V −1
0 ) and in the sample

of data (captured by X ′X).

For an asset-pricing model, its mispricing is characterized by its posterior distribution

of the alpha, p(α|R,F, σα), with the value of σα pre-specified from 0 (exact pricing by the

model) to ∞ (uselessness of the model) to reflect varying degrees of prior confidence in the

model. Thus, model performance is formulated as the problem of comparing two posterior
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distributions of the alpha. The optimal transport theory presented below provides useful

metrics that measure the shortest distance between two probability distributions.

2.2. The Optimal Transport Theory and the Wasserstein Distance

Our distance metrics are based on the optimal transport theory rooted in mathematics (Vil-

lani (2003, 2009)) with rich applications in economics (Galichon (2016)) and econometrics

(Galichon (2017)). The classic problem (Monge (1781)) is to find the shortest distance or

the minimum cost to move the mass of one probability distribution to another. This is

accomplished by defining a quadratic Wasserstein distance between two probability distribu-

tions. This distance measure has an economic interpretation as the minimum expected cost

of transporting the mass of one distribution to another distribution. In general, there exists

no closed-form formula for this distance measure for general probability distributions. For-

tunately, when the two distributions are Gaussian, a closed-form formula for the Wasserstein

distance has an analytical form.

Relegating the details to Appendix B, we present only the definition here. Let PI and

PII be Gaussian measures on Rn with finite second moments such that PI ∼ N(αI , VI) and

PII ∼ N(αII , VII), where αI and αII are two n × 1 vectors of mean, and VI and VII are

two n × n symmetric, positive-definite covariance matrices. Then, the L2-norm quadratic

Wasserstein distance (WD2) between PI and PII is given by

WD2 =
√
||αII − αI ||2 + ||VII − VI ||

||VII − VI || = Tr
(
VI + VII − 2(V

1/2
I VIIV

1/2
I )

1/2
)

, (5)

where ||αII − αI || is the Euclidean 2-norm of the mean difference vector, ||VII − VI || is

the distance between the two covariance matrices, and V 1/2 is the square-root of the co-

variance matrix such that V = V 1/2V 1/2.7 To use this distance measure in our Bayesian

7For symmetric and positive-definite V matrix, V 1/2 is unique, symmetric, and positive-definite.
V 1/2 is computed using the Schur algorithm (Deadman, Higham, and Ralha (2013)). Python library
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setting, the first two moments, (αI , VI) of PI and (αII , VII) of PII , are replaced with their

model-generated posterior estimates of the alpha and its variance, (α̃I , ṼαI
) and (α̃II , ṼαII

),

respectively, where I and II represent two distinct distribution specifications about prior

mispricing uncertainty (σα) for a given asset-pricing model.

In particular, let prior specification I be set as σα = 0 (complete confidence in the

model’s pricing ability); under such dogmatic beliefs, there is no mispricing uncertainty

and hence the posterior estimate of the alpha shrinks to its theoretical value of zero: i.e.,

both α̃I and ṼI are zero. On the other hand, let prior specification II be set as σα = ∞

(complete skepticism about the model’s pricing ability), in which case the posterior estimates

(α̃II , ṼαII
) shrink to their sample estimates based entirely on the sample of data. Given such

prior specifications, the quadratic distance metric reduces to WD2 =

√
||α̃II ||2 + Tr

(
ṼαII

)
.

Note that equation (5) was derived under the assumption of normality. However, under the

special case of prior specification I with σα = 0, the expression for WD2 is valid under an

arbitrary posterior distribution for alpha. This is because, under the L2-norm, the distance

measure is simply (square root of) the average of squared alphas, which is equal to the sum

of square of the average alpha and the variance of alpha (E(X2) = E(X)2 + V(X)).

2.3. The Distance Metrics

Given the non-informativeness in prior specification II, the posterior estimates α̃II and ṼαII

are identical to the maximum-likelihood estimates of the alpha, α̂, and its covariance matrix,

V̂α, respectively. Using these facts and WD2 above, we define three types of distance-based

metrics, Total Distance (TD), Average Distance (AD) and Marginal Distance (di), as follows:

TD =

√∑n

i=1
(α̂2

i + σ̂2
αi

)

AD =

√∑n

i=1
(α̂2

i + σ̂2
αi

)
/

n ≡
√

MSEα̂ + MSEσ̂α

di =
√

α̂2
i + σ̂2

αi
, (6)

‘scipy.linalg.sqrtm()’ implements this algorithm.
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where n is the number of LHS test assets, σ̂αi
= V̂

1/2
α (i, i) is the posterior estimate of the

standard error of the alpha, α̂i, for asset i (same as the standard error of α̂i), MSEα̂ is the

average squared intercept, and MSEσ̂α is the average squared standard error of the intercept.

The Bayesian interpretations of the above metrics are as follows. TD is the minimum

total cost of transporting the mass of the model-implied distribution (complete confidence

in the model) to the data-based distribution (complete skepticism about the model), or the

shortest total distance between the model-implied distribution and the data-based distribu-

tion. Similarly, AD is the shortest average distance between the model-implied distribution

and the data-based distribution; differently put, AD is the minimum average cost of holding

a dogmatic belief in the model.8 Finally, di is the marginal contribution of asset i to TD or

AD ; equivalently, di is the marginal cost of holding a dogmatic belief in the model.

A Comparison of AD with GRS

AD is akin to the frequentist GRS F -statistic, α̂′Σ̂−1α̂.9 Both AD and GRS summarize

the overall performance of a given model by a single measure that carries economic interpre-

tations. Specifically, the core of the GRS -statistic is the difference between the maximum

squared Sharpe ratio of both factors and assets, Sh2(F, R), and that of the factors alone,

Sh2(F ). Somewhat similarly, AD has a Bayesian interpretation as the minimum average

cost of holding dogmatic beliefs in the model.

Despite their identical estimates of α and V , however, there is a key difference between the

frequentist interpretation of GRS and the Bayesian interpretation of AD. The GRS -statistic

is the ratio of the sum of squared alphas to the covariance matrix of alpha estimates. Ignor-

ing the correlations, the GRS statistic can be viewed as MSEα̂/MSEσ̂α . The frequentist

interpretation of the reciprocal of this ratio is best illustrated by Fama and French (2016b,

p. 78) “. . . high values of MSEσ̂α/MSEα̂ are good news: they say that much of the dis-

8The Wasserstein distance defined in equation (5) depends on the number of test assets, and thus we may
not compare the performance across different models when the universes of test assets are different. The AD
metric solves this issue as it describes the same properties in terms of average (rather than total) distance.

9In the AD formula in equation (6), the covariance terms do not appear (i.e., all the elements of the
covariance matrix are zero) given the assumption of a dogmatic belief (σα = 0) in a model. However, when
we assume σα > 0 in Section 6, the covariance matrix has non-zero values.
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persion of the intercept estimates is due to sampling error rather than to dispersion of the

true intercepts.” Thus, a frequentist views a model that produces a higher ratio, or a lower

GRS -statistic, as a better model.10 The Bayesian interpretation views both large alphas and

large standard errors as bad news, because they together contribute to enlarging the total

(or average) distance. Our distance-based measures effectively resolve this power problem

by requiring that a good model have both α̂ and σ̂α be small.

A Comparison of AD with MAE

AD is also somewhat similar to MAEα̂ =
∑n

i=1 |α̂i|
/
n. But the inequality below gives

the comparative statics for the performance-related metrics:

AD > RMSEα̂ ≥ MAEα̂ (7)

The first strict inequality follows from the notion that any model is an incomplete description

of cross-sectional expected returns (e.g., Fama and French (2015)), because RMSEσ̂α is

strictly positive (i.e., alpha estimates are imprecise). The second inequity is a standard

statistical property of RMSE, and the equality holds if and only if the assets have identical

values of pricing errors. Also, the wider the dispersion of pricing errors, the larger the gap

between RMSEα̂ and MAEα̂.

To illustrate the distinction between RMSE and MAE, suppose that two different models

(A and B) are compared on two test assets: pricing errors produced by Model A are 0.15%

and 0.17% per month, and those produced by Model B are 0.05% and 0.25% per month.

If ranked by MAE, Model B is better since MAE(α̂B) = 0.15% < MAE(α̂A) = 0.16%.

However, if ranked by RMSE, Model A is better since RMSE(α̂A) = 0.16% < RMSE(α̂B) =

0.18%. This example illustrates a notable property of the RMSE criterion: it gives higher

weights to large pricing errors. As a result, the RMSE criterion views models that produce

10The GRS -statistic suffers from an additional problem – the inverse of the covariance matrix Σ may cause
the statistic to be large, leading to rejections of models that may have small values of MSEα̂. Relatedly,
the weighting scheme in α̂′Σ̂−1α̂ typically have extreme long and short positions that may not reflect the
relative importance of factors (Fama and French (2018) and Harvey and Liu (2018)).
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extreme alphas as particularly undesirable, penalizing those models more heavily than the

MAE criterion.

As a more realistic example, consider a model that produces low alphas for most of

assets but extreme alphas for just a few assets (e.g., the Fama and French (2015) 5-factor

model for most anomaly portfolios vs. the momentum portfolio). This model’s RMSEα̂ is

dominated by the few extreme alphas. Therefore, the RMSEα̂ criterion would rank this

model lower than its competitors that produce a higher MAEα̂ but fewer extreme alphas.

Note further that the RMSEα̂ properties equally apply to RMSEσ̂α , which penalizes low-

precision models, especially those that produce extreme standard errors. By contrast, MAEα̂

does not consider estimation precision of the model at all, assigning equal weights to different

size of pricing errors.

Given the fact that AD accounts for the number of assets and incorporates both compo-

nents (MSEα̂ and MSEσ̂α) in assessing performance, we use AD as our primary distance-

based metric for ranking different asset-pricing models. As illustrated above, AD tends to

favor models that produce: (1) low pricing errors; (2) lower standard errors of them (i.e.,

high estimation precision); and (3) fewer extreme pricing errors and their standard errors.

A Comparison of di with ti

di is equivalent to the t-statistic (ti = α̂i/σ̂αi
) for testing the statistical significance of a

pricing error for asset i. While di and ti use the same inputs, they are quite different in the

ways of computations and interpretations. The t-statistic is a ratio-based measure, favoring

models that produce smaller values: from a frequentist perspective, a small t-statistic means

that the estimate of a pricing error (alpha) is insignificantly different from zero relative to its

sampling error (standard error of the alpha). However, an insignificant t-statistic may not

be attributable to a small estimate of the alpha, but instead to an inflated standard error,

resulting in high estimation imprecision for individual assets. By contrast, the Bayesian

investor views di as asset i’s marginal contribution to the total (or average) cost of holding

complete confidence in a given model that prices the universe of assets. Both large pricing

16



error and large standard error are bad news for the model. Therefore, di is useful for singling

out such individual assets that most contribute to the total distance.

In Table 1, we summarize the comparisons of the performance metrics: AD, GRS, and

MAEα̂. Based on the comparisons and hypothetical examples, we have identified the power

problem inherent in the ratio-based GRS - and t-statistics. In addition, the mean absolute

alpha (MAEα̂) often causes a problem since it gives equal weights to extreme pricing errors

and completely ignores the degree of estimation precision in asset-pricing models. To what

extent are these problems observed in data, leading to inconsistency in model rankings? How

does the model ranking based on the distance-based metrics compare to that based on GRS

or MAEα̂? What are the advantages or problems of asset-pricing models commonly used in

the literature? These are the empirical issues that we try to explore in the sections below.

3. Factors, Test Assets, and Performance Metrics

3.1. Models and Factors

We limit our comparative analyses to ten prominent asset-pricing models (and 17 different

factors). The ten models are categorized into four groups, with their corresponding factors

shown in the parentheses, as follows:

Single-Factor Model q Models

CAPM (MKT ) q4 (MKT, ME, IA, ROE )

FF Models q5 (MKT, ME, IA, ROE, EG)

FF3 (MKT, SMB, HML) Other Models

FF5 (MKT, SMB, HML, RMW, CMA) BS (MKT, SMB, HMLm, IA, ROE, UMD)

FF6 (MKT, SMB, HML, RMW, CMA, UMD) SY (MKT, SMB, MGMT, PERF )

BKRS (MKT, SMB, HMLm, RMWCP, CMA, DHS (MKT, FIN, PEAD)
UMD)

We only briefly describes the above models and factors, since they are often used in

the asset-pricing literature. To gauge the performance of a basic single-factor model, we

include CAPM, which uses the market factor (MKT ) only. FF3 and FF5 are the Fama
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and French (1993, 2015) three- and five-factor models, the latter of which employs the

profitability (RMW ) and investment (CMA) factors. FF6, used in Fama and French (2018),

adds Carhart’s (1997) UMD factor to the FF5 model. As one of the FF-model group, BKRS

is the six-factor model of Barillas, Kan, Robotti, and Shanken (2019), which is a variant

of FF6 in two ways. First, it uses a monthly updated value factor (HMLm) proposed by

Asness and Frazzini (2013), instead of the usual HML. Second, BKRS also uses a cash-based

profitability factor (RMWCP), replacing the original (accrual-based) operating profitability

factor (RMW ) used in FF6.

There are two models in the q-group. q4 is Hou, Xue, and Zhang’s (2015) q-factor model

consisting of four factors, three of which are the size (ME ), investment-to-asset (IA), and

profitability (ROE ) factors. Hou, Mo, Xue, and Zhang (2018) add the expected growth

factor (EG), which results in the q5 model.

Among the ‘Other’ group, BS is the Barillas and Shanken (2018) model, a mixture of

FF6 and q4. SY is the four-factor model of Stambaugh and Yuan (2017) that employs two

mispricing factors, management (MGMT ) and performance (PERF ), in addition to MKT

and SMB. Finally, DHS is a three-factor model that contains two behavioral factors related

to financing (FIN ) and post-earnings-announcement drift (PEAD), suggested by Daniel,

Hirshleifer, and Sun (2018).

Data on the above factors are obtained from the authors’ websites (or, in some cases,

directly from the authors). The sample period is from January 1972 to December 2015

spanning 528 months, during which period most of the 17 factors are available, except for

the DHS model whose factors are available from January 1972 to December 2014.

3.2. Test Assets

We first use the returns on the 25 (5×5) portfolios sorted on firm size (Size) and momentum

(MOM) to illustrate the power problems in the two traditional performance metrics. Next,

we choose two broader sets of decile portfolios used in recent asset-pricing studies: (1) 150
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pooled portfolios sorted on 15 different anomaly variables, constructed by Fama and French

(2015); and (2) 300 pooled portfolios sorted on 30 anomaly variables formed by Hou, Mo,

Xue, and Zhang (2018). The returns on the 25 Size-MOM portfolios and the 150 pooled

decile portfolios are available from the Kenneth French’s website. The returns on the 300

portfolios are obtained from Lu Zhang.

Studies often use all sets of returns (in excess of the risk-free rate) on the portfolios

formed by sorting on various anomaly variables, or only the H−L returns computed using

the above sets of anomaly-sorted portfolios. Accordingly, we also test the performance of the

ten models using only the 15 and 30 H−L returns computed using the above two different

universes of pooled decile portfolios.

Lastly, to get around the potential biases associated with choosing test assets, we also

use 85 H−L portfolio returns as test assets following Green, Hand, and Zhang (2017). These

portfolios are constructed by a third party independent of the authors of the FF- and q-

models. These data are also used in Abhyankar, Filippou, Garcia-Ares, and Haykir (2018).

We obtain these data from Ilias Filippou; these data are available from January 1980 to

December 2015. The definitions of the 15, 30, and 85 sorting variables used to construct the

test assets are briefly summarized in Appendix C. For further details on the construction of

these portfolios, refer to Fama and French (2015), Hou, Mo, Xue, and Zhang (2018), and

Green, Hand, and Zhang (2017).

3.3. Performance Metrics

For each LHS portfolio, we try to explain its average excess return (or, in the case of long-

short portfolio, just the return), r̄i, by the factors (F ) of each model by running a time-series

regression:

rit = αi + β′
iFt + εit. (8)
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Using estimates of alpha (α̂i) and its standard error (σ̂αi
), we compute the distance-based

metrics (AD and di), as well as the following metrics:

RMSEα̂ =

√∑n

i=1
α̂2

i

/
n

RMSEσ̂α =

√∑n

i=1
σ̂2

αi

/
n

MAEα̂ =
∑n

i=1
|α̂i|
/

n

MARr̄ =
∑n

i=1
|r̄i|
/

n

GRS = ((T − n− k)/n)×
(
1 + Sh2(F )

)−1 × α̂′Σ̂−1α̂ , (9)

where T is the number of observations (months), n is the number of assets (i.e., portfolios),

k is the number of factors, Sh2(F ) is the squared Sharpe ratio for the factors, (Sh(F) is

calculated as F̄ ′Σ̂−1
F F̄ , where F̄ is a k × 1 vector of the mean returns on the factors and

Σ̂F is the k × k variance-covariance matrix of the factor returns), and Σ̂ is the maximum

likelihood estimate of the residual covariance matrix.

RMSEα̂ and RMSEσ̂α are the two components in AD ≡
√

MSEα̂ + MSEσ̂α , and help

us understand the contribution of pricing error and its estimation uncertainty in the overall

distance score.11 The remaining metrics are used often in the literature (e.g., in Fama and

French (2015, 2016a, 2016b), Hou, Mo, Xue, and Zhang (2018), and Stambaugh and Yu

(2017)). MSEσ̂α/MSEα̂ measures the contribution of mispricing uncertainty relative to

the dispersion of pricing errors. MAEα̂ is the mean absolute pricing error. MAEα̂/MARr̄

measures the proportion of unexplained average returns. AR2 measures the cross-sectional

average of R2s from time-series regressions with individual assets (portfolios).12

11RMSEα̂ gives the same model rankings as the proportion of variances in the LHS expected returns not
explained by a model, i.e., Aα2

i /Ar̄2
i in Fama and French (2016).

12Other reported statistics include: the number of significant alphas based on t-statistics (Hou, Xue, and
Zhang (2015), and Hou, Mo, Xue, and Zhang (2018)), the number of rejections by the GRS test (Hou,
Xue, and Zhang (2015), and Hou, Mo, Xue, and Zhang (2018)), the number of anomalies for which a
model produces the smallest absolute alpha (Stambaugh and Yu (2017)), the average absolute t-statistic
(Stambaugh and Yu (2017)), and the maximum squared Sharpe ratio for factors and alphas (Fama and
French (2018)).
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4. An Illustrative Example Using Size-MOM Portfolios

We use a set of 25 (5×5) portfolios formed by sorting on firm size (Size) and momentum

(MOM) as test assets to illustrate how the power problem afflicts traditional performance

metrics and how the distance metrics effectively address the problem.

4.1. Performance Metrics for Individual Portfolios

Table 2 reports the posterior estimates of alphas (α̂i), their standard errors (σ̂αi
), as well

as t-statistics (ti), and the marginal distances (di) computed with non-informative priors,

generated using the 25 Size-MOM portfolios as test assets. In the table, we compare two

models: FF6 (in Panel A) vs. q5 (in Panel B). Reported in the lower part of each panel are

various performance metrics for joint tests, which allow us to compare across the two models.

We find that GRS ranks q5 higher than FF6. However, MAEα̂ reverses this ranking. The

distance-based metric AD produces a ranking similar to that by MAEα̂: i.e., both metrics

rank FF6 higher than q5. We examine in more detail why the power problem of GRS and

the ignorance of the power problem by MAEα̂ lead to counter-intuitive rankings and how

the distance-based metrics address the problems.

We start by looking at estimates of alphas (α̂i) reported in the first five columns in

Table 2. Panel A shows that FF6 produces economically significant pricing errors in (1,1)

(small/loser), (1,5) (small/winner), and (2,5) portfolios with respective alpha estimates of

−0.24%, 0.39%, and 0.24%. MAEα̂ is 0.110% and RMSEα̂ is 0.143% (RMSEα̂ ≥ MAEα̂ in

inequality (7)). Pricing errors for the q5 model are economically significant for (1,4), (1,5),

and (2,5) portfolios with magnitudes of 0.24%, 0.44%, and 0.31%, respectively. As a result,

both MAEα̂ and RMSEα̂ are higher for q5 model than those for FF6 model. This is not

surprising as the q5 model does not explicitly include a momentum factor.

The second block of columns in Table 2 reports the standard errors of alphas (σ̂αi
), whose

dispersion is summarized by RMSEσ̂α . This statistic is 0.079% and 0.122% for the FF6 and
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the q5 model, respectively, indicating that the q5 model estimates alphas more imprecisely

than the FF6 model. The t-statistics (ti) reported in the next five columns of Table 2 show

that the null hypothesis of no pricing error is rejected at 5% in seven (four) cases out of 25

for the FF6 (q5) model. More rejections for q5 than those for FF6 potentially indicate a ‘lack

of power’ or ‘under-rejection’ in the t-test for individual assets for the q5 model.

We further investigate the issue of low power by using the (1, 5) portfolio to illustrate

the problem of the t-statistic. We find that its t-statistic at 4.46 in Panel A is much larger

than 3.65 in Panel B (the t-statistic rejects FF6 more strongly than it does q5). This is not

because its pricing error for the test asset in Panel A is larger than that in Panel B (α̂ is

0.39% for FF6 versus 0.44% for q5), but because the estimation error of the alpha estimate

is smaller for FF6 than that for q5 (σ̂α is 0.09% for FF6 and 0.12% for q5). Given that q5

produces a larger alpha that is estimated more imprecisely, a Bayesian performance metric

ranks q5 lower than FF6 for the (1,5) portfolio as a test asset, but the frequentist t-statistic

does the opposite. As another example, α̂ is 0.16% for both models for the (3,5) portfolio.

However, greater estimation uncertainty in the q5 model than that in the FF6 model makes

the q5 model not reject the null hypothesis of a zero alpha while the FF6 model rejects it.

As for the joint tests, the GRS -statistic of 2.99 (2.64) for FF6 (q5) suggest that q5 is

rejected less strongly than FF6. The stronger rejection of FF6 is a potential symptom of

‘too much power’ or ‘over-rejection,’ which is part of the power problem inherent in the GRS -

statistic. The stronger rejection of the FF6 model is also counter-intuitive, in the sense that

FF6 produces, on average, smaller alphas with higher estimation precision than does q5.

The distance-based metrics (di for individual assets and AD for a universe of assets)

effectively address the power problem (both too much power and lack of power) inherent in

the t- and GRS -statistics by coherently incorporating the effects of pricing errors and their

standard errors. Among the 25 individual assets, the three that marginally contribute the

most to AD for FF6 in Panel A are d(1,5)= 0.40%, d(1,1)= 0.26%, and d(2,5)= 0.25%. The

three equivalents for q5 in Panel B are d(1,5)= 0.45%, d(3,1)= 0.37%, and d(4,1)= 0.34%.
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To gauge the overall performance, we find that the average cost of moving the mass of

the model-implied alpha distribution to the data-based distribution (measured by AD) for

FF6 at 0.164% is smaller than that for q5 at 0.211%. Therefore, FF6 is ranked higher than

q5, when assessed by the AD metric, which makes a Bayesian investor prefer FF6 to q5. To

sum up, the distance-based metrics consider the dispersion of pricing errors (RMSEα̂) and

their estimation precision (RMSEσ̂α) together, effectively solving the power problem of GRS

and the ignorance of the power problem by MAEα̂.

4.2. A Geometric View of the Average Distance (AD)

The above situation can be presented by a geometric view of the average distance (AD) in

Figure 1, which plots the pricing errors (α̂i) on the X-axis and their standard errors (σ̂αi
)

on the Y-axis generated by the above two models (FF6 in Panel A and q5 in Panel B) with

the 25 Size-MOM portfolios as test assets. The 25 diamond-shaped dots in each panel of

are the (α̂i, σ̂αi
) pairs obtained from the two models. In each panel, AD is measured by the

length of the arrow connecting from the origin (a round dot) to the other round dot. The

half circle has a radius of 0.2% (per month) as a benchmark, which translates into 2.4% per

annum, considered economically significant (Fama and French (1993, 1996)). The geometric

view allows us to visualize how the dispersion of both alphas and their standard errors is

summarized in the AD metric.

The plot for FF6 in Panel A shows that the 25 dots are horizontally more dispersed than

vertically. The dots located outside of the half circle are the most troublesome portfolios that

contribute the most to AD. Reading the plot for q5 in Panel B, we see that its dots are more

dispersed horizontally than those for FF6 in Panel A. Moreover, the 25 dots are conspicuously

more dispersed along the Y-axis than those for FF6, with many of them hovering above

0.1% and some reaching up to 0.2%. This confirms that the q5 model estimates alphas more

imprecisely than FF6, potentially causing the lack of power in GRS for q5. As a result,

the arrow for q5 in Panel B reaches beyond the half circle, whereas that for FF6 in Panel
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A is within it, suggesting that the AD value (0.164% from Panel A in Table 2) for FF6 is

economically insignificant. In essence, the AD metric ranks FF6 higher than q5.

4.3. Performance of All the Ten Models

Table 3 reports the performance-related statistics (for joint-tests) generated by all of the

ten asset-pricing models described in Subsection 3.1 for the 25 Size-MOM portfolios used in

Table 2. The first three columns contain AD and its components (RMSEα̂ and RMSEσ̂α).

The last five columns show the traditional performance metrics described in Subsection 3.3.

The average distance (AD) can be used to compare asset-pricing performance across

different models and rank them. In the second column, we find that AD identifies FF6, BS,

BKRS, and SY as the top four models in that order (AD = 0.164%, 0.184%, 0.196%, and

0.197%, respectively), with the minimum average cost of holding a dogmatic belief in these

models being economically insignificant, given the benchmark of 0.2% per month. We find

poor performance of FF5 and especially FF3, which is even worse than CAPM. This strongly

suggests that the UMD factor is important for the FF models. AR2 also ranks FF6, BS,

and BKRS highly. The DHS model performs poorly, regardless of whichever metric is used,

most likely because it fails to explain the returns on the momentum portfolios.

Of more interest is how GRS and MAEα̂ assess the models. We find again that the two

metrics rank the ten models differently from what AD does, which is often inconsistent and

counter-intuitive. Specifically, the GRS statistic ranks SY (2.58), q5 (2.64), and q4 (2.84)

as the top three models, all of which are strongly rejected at the 1% level. On the other

hand, MAEα̂ ranks FF6 (0.110%), q4 (0.118%), and SY (0.122%) as the top three models,

similarly to what the MAEα̂/MARr̄ criterion does (0.39 for FF6, 0.42 for q4, and 0.44 for

SY). We attribute the contradictory rankings produced by GRS and MAEα̂ to the power

problem (in GRS ) as well as the way of weighting pricing errors and treating the extent of

estimation precision (in MAEα̂).

To examine further the above two issues in the GRS and MAEα̂ metrics, we notice
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that the top three models ranked by GRS tend to have larger estimation uncertainty (or

imprecision) measured by RMSEσ̂α : 0.106% for SY, 0.122% for q5, and 0.112% for q4. This

causes the ratio-based GRS statistic to be smaller for these models, inducing the lack of

power. The lack of power in GRS for these models can also be seen in MSEσ̂α/MSEα̂ in

the fourth column. Indeed, these three models have the largest values among all the ten

models (0.41 for SY, 0.44 for q4, and 0.50 for q5), which suggests that much of the dispersion

of alpha estimates is due to estimation imprecision, resulting in lower GRS statistics. By

contrast, the values of MSEσ̂α/MSEα̂ for the other seven models are far below 0.35.

As for the ranking produced by MAEα̂, recall that this criterion ignores the information

on the extent of estimation precision. This makes BS ranked lower than q4 and SY, despite

the fact that the BS model estimates alphas more precisely than the two models (RMSEσ̂α =

0.082% for BS vs. 0.112% for q4 and 0.106% for SY). Second, as discussed before, MAEα̂

treats all pricing errors equally whereas RMSEα̂ places higher weights on extreme values.

The consequence is apparent from the fact that although the values of MAEα̂ for q5 and q4

are smaller, the levels of RMSEα̂ for them are larger than FF6 or BS, because q5 and q4

produce more extreme alphas than FF6 or BS.

5. Performance with Broader Sets of Test Assets

We now compare the performance of all the ten models by using a much broader sets of LHS

assets formed by sorting on a wide range of anomaly variables. We rank the models by the

performance metrics, thereby identifying the top performers, and interpret the implications.

5.1. Performance with Decile Portfolios

5.1.1. Fama and French’s (2015) 150 Decile Portfolios

Panel A in Table 4 reports the results with a pooled set of decile portfolios formed by sorting

on 15 different variables (150 portfolios in total). With these 150 portfolios, AD identifies
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FF6 (0.138%), BKRS (0.146%), and SY (0.152%) as the top three models, while GRS picks

SY (1.55), FF6 (1.87), and FF5 (1.88).

From a Bayesian perspective, it is counter-intuitive that SY is chosen as the best model

by GRS, given that SY has higher dispersion of alphas (RMSEα̂): 0.123% for SY compared

to 0.114% for FF6. SY also estimates alphas less precisely (RMSEσ̂α = 0.089% for SY vs.

0.078% for FF6). It is even more surprising that GRS identifies FF5 as one of the top three,

despite its high dispersion of alphas (RMSEα̂ = 0.150%). AD ranks FF5 (0.171%) only

sixth behind the two q models. Among the 15 sets of decile portfolios, we find that the only

troublesome set of assets for FF5 is the one sorted on momentum (MOM). In unreported

results, we find that without the MOM-sorted decile portfolios, AD ranks FF5 third among

the ten models, close to BKRS.

The above experiments have two implications for asset-pricing studies. First, given the

failure of the FF3 and FF5 in explaining momentum as well as the RMSE property of

heavily penalizing models that produce extreme alphas, it is necessary to add UMD. This

dramatically improves the performance of the FF models by reducing the momentum-induced

pricing errors. Second, adding UMD also helps the FF models better explain other anomalies

than momentum. Therefore, UMD is an essential factor for the FF models.

5.1.2. Hou, Mo, Xue, and Zhang’s (2018) 300 Decile Portfolios

In Panel B of Table 4, we report the results with the pooled set of decile portfolios formed

by sorting on 30 anomaly variables (300 portfolios in total) used in Hou, Mo, Xue, and

Zhang (2018). With this set of LHS assets, AD chooses SY (0.154%), FF6 (0.155%), and q5

(0.156%) as the top three models, with their statistics being very close to each other. MAEα̂

also picks the same set as the top three performers in slightly different order: SY (0.093%),

q5 (0.095%), and FF6 (0.099%).

GRS identifies SY (1.57) and q5 (1.59) as the top two performers, similarly to the picks

by MAEα̂. However, its next pick is BKRS (1.60), which is not reasonable from a Bayesian
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perspective. Given the larger mispricing dispersion and higher estimation uncertainty for

BKRS (RMSEα̂ = 0.141% and RMSEσ̂α = 0.095%) relative to those for FF6 (RMSEα̂ =

0.129% and RMSEσ̂α = 0.086%), a Bayesian investor should prefer FF6 to BKRS.

A similar logic applies to the DHS model: GRS ranks DHS (1.62) higher than FF6 (1.80),

although DHS produces both higher RMSEα̂ and RMSEσ̂α than FF6. Overall, SY, FF6,

and q5 are the top three performers, producing quite close statistics in AD and MAEα̂, when

tested with this set of 300 decile portfolios.

5.2. Performance with H−L Portfolios

Although asset-pricing models should leave no pricing errors for all portfolios, the literature

often focuses only on the long-short H−L portfolios computed using the highest and the

lowest anomaly portfolios (e.g., Hou, Xue, and Zhang (2015); Hou, Mo, Xue, and Zhang

(2018)). One advantage of using this subset of portfolios is that they generate a large cross-

sectional variation in returns. In contrast, the average returns across different portfolios (e.g.,

decile four vs. decile five) in the universe of assets may be very similar. Second, the extreme

portfolios (and the long-short portfolio) are more interesting because these are the portfolios

where the asset-pricing models may have the biggest problem. In frequentist terms, long-

short portfolios are more powerful tests than the decile portfolios of asset pricing models. For

a Bayesian, H−L portfolios might be the ones that move the priors the most. Accordingly,

in this subsection, we use three sets of H−L portfolios.

5.2.1. Fama and French’s (2015) 15 H−L Portfolios

Panel A in Table 5 contains the performance-related statistics with 15 H−L portfolio returns

computed from the 150 decile portfolios used in Panel A of Table 4. As expected, we find

that the averages of estimated alphas are much larger than the corresponding values reported

in Panel A of Table 4. This is turn causes the key metrics of interest (e.g., AD, GRS, and

MAEα̂) to have larger variation in their statistics across different models. The statistics in
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Panel A show that the metrics identify three different sets as top three in different order.

GRS ’s top picks are (i) q5 (1.58), (ii) SY (1.75), and (iii) q4 (1.92). MAEα̂ chooses (i)

q5 (0.149%), (ii) SY (0.157%), and (iii) FF6 (0.160%). However, the AD metric ranks

differently: (i) FF6 (0.260%), (ii) SY (0.285%), and (iii) q5 (0.288%).

q5 has the lowest value of MAEα̂ (0.149%) and RMSEα̂ (0.211%). However, it has one

of the highest estimation imprecision that is 6 bps higher than that for FF6 (RMSEσ̂α =

0.196% for q5 vs. 0.144% for FF6). As a result, it has the highest value of MSEσ̂α/MSEα̂

among the ten models at 0.86. From a Bayesian view, this close-to-one ratio is a typical

symptom of low power in GRS for q5. The low power of q5 is shown not just by the high

level in RMSEσ̃α but also by the low level (0.44) in its AR2: 16% lower than that of FF6

(0.60). As a result, the GRS metric (which favors high sampling errors) ranks q5 higher than

AD does. The MAEα̂ metric also ranks q5 as the highest as this metric does not utilize the

information on estimation precision at all.

For the remaining models, AD puts q4 as a close fourth to q5, given its higher dispersion

of alphas (RMSEα̂ = 0.227%) but lower estimation uncertainty (RMSEσ̂α = 0.179%). The

next two models in AD ’s ranking list are BS and BKRS, whose level in RMSEα̂ is high

(above 0.26%). As one would expect, the poor performance of FF5 stems from its failure to

explain the H−L returns on momentum portfolio. Unreported results show that the H−L

momentum portfolio produces the largest marginal distance for FF5 (its di is as large as

1.39%), which is almost entirely due to its sheer size of alpha (1.35%). We again observe

that DHS performs better than only CAPM and FF3.

5.2.2. Hou, Mo, Xue, and Zhang’s (2018) 30 H−L Portfolios

In Panel B of Table 5, we report the performance statistics with the 30 H−L portfolio returns

computed using the 300 decile portfolios used in Panel B of Table 4. For these portfolios,

q5 beats all the other nine models by a wide margin when assessed by AD as well as the

other four metrics (RMSEα̂, GRS, MAEα̂, and MAEα̂/MAEr̄). In particular, its MAEα̂ of
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0.137% is almost 10 bps lower than that for its closest competitor, SY (0.227%). Moreover,

the GRS -statistic of 1.48 suggests that q5 is the only model that cannot be rejected even at

the 10% level, whereas almost all the others are rejected at 1% level. In terms of the distance

measure, AD of 0.279% for q5 is lower by 7 bps than the value for its closest competitor

(0.352% for SY) and by 9 bps lower than that for the third best model (0.366% for FF6).

Despite the top performance of q5 when assessed by the six metrics with these 30 H−L

portfolios, it should be noted that the q5 model has high estimation uncertainty (RMSEσ̂α =

0.184%) (which causes lower power for GRS ) than its two closest competitors (RMSEσ̂α =

0.174% for SY and 0.150% for FF6). However, q5’s lower pricing errors appear to more than

offset the adverse effect of its high estimation uncertainty.

For a visual inspection, in Figure 2, we plot the (α̂i, σ̂αi
) pairs generated by the q5, FF6,

and SY models for the 30 H−L portfolio. In the figure, the half-circle is drawn with a radius

of 0.4% (vis-à-vis 0.2% in Figure 1), given that the H−L returns are harder to explain by the

models (hence generating much larger alphas on average). We first observe that alphas are

positively skewed for the three models, especially FF6 whose alphas are all above −0.1% in

Panel A. The plot for SY in Panel C is similar, although more dispersed horizontally. Second,

the vertical distribution of the dots exhibits the degree of estimation precision, which affects

the power of GRS. As seen in Panel B, the dots for q5 are vertically more dispersed than those

for FF6. Third, q5 has the shortest arrow: a geometric presentation of its outperformance.

Finally, the slope of the arrow is steeper for q5 than for FF6 or SY, suggesting that estimation

imprecision contributes more to AD for q5 than for the other two models.

5.2.3. Green, Hand, and Zhang’s (2017) 85 H−L Portfolios

There is an interesting ‘home-bias’ in the results so far. Using Fama and French’s (2015)

portfolios, FF6 performs the best (Panels A in Tables 4 and 5). Using Hou, Mo, Xue, and

Zhang’s (2018) portfolios, especially their H−L portfolios, q5 performs the best (Panel B

in Table 5). Although FF6, q5, and SY are the close competitors, the above finding makes
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us wonder how the three models perform when we use a different universe of portfolios

constructed by a third party. Therefore, we repeat our tests with a set of 85 H−L returns

computed using the 776 portfolios formed by Green, Hand, and Zhang (2017).13 Using this

independent set of LHS assets may alleviate potential biases associated with the issues of

selecting test assets.

Panel C in Table 5 contains the statistics for these 85 H−L portfolios. The top three

models chosen by GRS are q5 (1.47), BKRS (1.54), and SY (1.62), whereas those by MAEα̂

are q5 (0.220%), FF6 (0.225%), and SY (0.227%). By contrast, the AD metric ranks differ-

ently: (i) FF6 (0.339%), (ii) q5 (0.348%), and (iii) SY (0.354%). Again, the reasons for GRS

and MAEα̂ picking q5 as the top performer are: (a) the q5 model produces lower alphas but

estimates them most imprecisely (note the highest RMSEσ̂α of 0.207%), making GRS reject

the model less often; and (b) MAEα̂ does not take estimation uncertainty into account.

To get a sense of how the three models perform in the individual portfolios, we present

a graphic view of the 85 (α̂i, σ̂αi
) pairs in Figure 3. Looking horizontally, we find in Panel

A that alphas generated by FF6 are more widely spread (from −0.73% to 0.80%) than

those generated by q5 (from −0.77% to 0.70%) as well as those generated by SY (from

−0.75% to 0.62%). Vertically, however, FF6 has the smallest dispersion of standard errors

(most of the time below 0.3%). This is distinguishable from the plot for q5, whose dots in

Panel B are vertically more scattered at a higher level on average than those for FF6. The

vertical dispersion for SY in Panel C is somewhere in between FF6 and q5. Consequently, we

again observe a typical feature of q5: it has the steepest arrow, meaning that its estimation

uncertainty contributes the most to AD among the three models.

To summarize, AD consistently identifies FF6, q5, and SY as the top three models when

tested with different universes of LHS assets. We reemphasize the importance of the UMD

factor for the FF-model group; adding UMD not only alleviates the momentum-induced

pricing errors but also improves the explanatory power for the FF models. One advantage

13Some portfolios formed based on their sorting variables are excluded, because they are not available for
the full sample period (1980:01-2015:12).
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of the q5 model is that it produces lower pricing errors. However, the main issue of this

model lies in its highest estimation uncertainty. Small alphas estimates, coupled with low

estimation precision, often make q5 identified as one of the top three by the traditional

metrics such as GRS and MAE. From a Bayesian perspective, however, the performance of

q5 is compromised by its high estimation imprecision. Among the ‘Other’ group, SY stands

out consistently as one of the top performers across different sets of test assets.

6. Bayesian Assessment of Choosing Alternative Models

In the previous section, we have compared models using our proposed metrics (AD and

di), which measure the distances between the purely model-based distribution (complete

confidence in a model: σα = 0) and the purely data-based distribution (complete skepticism

about a model: σα = ∞). This Bayesian approach is akin to the frequentist approach of

testing the null hypothesis of zero alphas. However, it is reasonable to assume that investors

generally have some degree of skepticism (σα > 0) about any model a priori. As Pástor

(2000) and Barillas and Shanken (2018) note, investors neither use a model as a dogma, nor

do they regard the model as completely useless. Therefore, we now allow investors to have

varying degrees of prior estimation uncertainty (i.e., 0 < σα < ∞) about the models.

6.1. Prior Estimation Uncertainty

For σα ∈ (0, ∞), the posterior distribution of mispricing is centered around a non-zero mean

with a non-zero covariance matrix: i.e., p (α|R, σα) ∼ N(α̃, Ṽ ), where α̃ and Ṽ are the poste-

rior estimates of the mean and variance for the distribution with prior specification σα > 0.

The exact expressions for these posterior estimates are given in equation (4) and Appendix

A. Using equation (5) the distance metric between the posterior distribution N(α̃, Ṽ ) (im-

plied by prior with 0 < σα < ∞) and the posterior distribution N(α̂, Σ̂) (implied by prior
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with σα = ∞) is then given by:

MSEα̃−α̂ =
∑n

i=1
(α̃i − α̂i)

2
/

n

MSEṼ−Σ̂ = ||Ṽ − Σ̂||
/

n = Tr
(
Ṽ + Σ̂− 2(Ṽ

1/2Σ̂Ṽ
1/2)

1/2
)/

n

AD =
√

MSEα̃−α̂ + MSEṼ−Σ̂ (10)

From this Bayesian perspective, by fixing σα at a positive value for the prior distribution,

AD is now interpreted as the minimum average cost of holding some degree of skepticism

(as opposed to a dogmatic belief) about a model; intuitively, this is the price to pay for

changing one’s somewhat skeptical view about a model to a complete disbelief in the model.

As an investor departs from her dogmatic belief and increases the degree of doubt on the

validity of the model, the mispricing distribution under her skeptical view becomes closer to

the data-based distribution (N(α̃, Ṽ ) → N(α̂, Σ̂)). For example, when σα increases from a

small value to a very large one, the posterior estimate of the alpha (α̃) also moves from a

value close to zero toward its OLS estimate (α̂). Thus, AD decreases monotonically as σα

increases. Intuitively, this means that the higher the prior degree of skepticism in the model,

the lower the cost to change one’s belief to accept the data-based distribution.

For each model, we gradually increase σα starting from 0% up to 10%. In specifying

the range and assessing the economic magnitude of σα, we use the average return volatility

of the LHS assets as a guideline, following Pástor and Stambaugh (2000, p. 353). In this

setup, σα = 2% is a modest degree of prior estimation uncertainty, and σα > 2% represents

a significant degree of it.

Figure 4 plots the AD values (the Y-axis) generated by the 10 models with the set of

the 85 H−L portfolios used in Panel C of Table 5, as σα (the X-axis) increases from 0% to

10%. In the figure, each line represents the changes in AD for a given model as σα increases.

From the top, the lines are aligned in order of CAPM, FF3, BS, DHS, q4, FF5, BKRS, SY,

q5, and FF6, suggesting that FF6 is the best model. The lines are monotonically decreasing
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in a non-linear and non-parallel fashion. The spread between the top and bottom values on

a given line is the gap between AD at σα = 0% (a dogmatic belief) and that at σα = 10%

(a high level of disbelief), reflecting the shrinkage effect of the posterior estimates. As the

skepticism about a model continues to grow to a complete disbelief (σα = ∞), each model’s

AD is zero, and all the lines eventually converge to the same point on the X-axis. Among the

10 models, FF5 and FF6 tend to shrink faster than the other models: the FF5 line intersects

the BKRS line at around σα = 7%, and the FF6 line exhibits a discernibly wider gap from

the q5 line after σα = 4%.

Table 6 reports the values in AD and its two RMSE components using the same 85

H−L portfolios as test assets, as σα increases from 2% to 10% in Panels B to F with a

2% increment across the panels. Panel A reproduces the benchmark values from Table 5.

Table 6 and Figure 4 jointly provide a comprehensive picture about the shrinkage effect of

AD, allowing our Bayesian assessment for model comparisons as detailed below.

6.2. The Distance-Equivalence Measure For Choosing Models

A question that we like to answer in this and next subsections is: if an investor chooses

an alternative model ‘A’ over the benchmark ‘B’, how much prior estimation uncertainty

in mispricing should she accept? Or conversely, by choosing the benchmark model over an

alternative, by how much does her prior concern about mispricing alleviate? To answer the

above questions, we introduce a concept of ‘distance equivalence’ as follows.

Distance Equivalence: By the monotonically decreasing property of the AD metric, there

exists a unique and positive σ∗α for Model A such that AD (Model A, prior σ∗α > 0) =

AD (Model B, prior σα = 0). With such a value of σ∗α, it is defined that “Model A with

σα = σ∗α is distance-equivalent to Model B with σα = 0.”

Being ‘distance-equivalent’ above means that a Bayesian investor is indifferent between

holding a skeptical view about an alternative model (Model A) and holding a dogmatic belief
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in the benchmark model (Model B). Thus, if the investor chooses the alternative (A) over the

benchmark (B), σ∗α for Model A is the level of prior estimation uncertainty she must accept.

The concept of distance equivalence is easy to understand graphically with Figure 4. For

example, at σα = 6% the vertical value (AD) of the BS model (the solid line with triangles)

is 0.385% in the figure. This is very close to the vertical value (AD = 0.380%) of the DHS

model (the dotted line with circles) at σα = 0%. Therefore, BS with σα = 6% (= σ∗α) is

(approximately) distance-equivalent to DHS at σα = 0%. Here, σ∗α = 6% is the level of prior

estimation uncertainty that makes the two models (BS and DHS) distance-equivalent.14

Panel B of Table 6 reports the results with σα = 2%, for which the posterior distribution

of the alpha is only moderately closer to the data-based distribution (σα = ∞). To apply

the distance-equivalence concept, we identify models whose AD values shown in Panel B

(σα = 2%) are close (within a 0.5 bps range) to the AD value of any of the ten benchmark

models shown in Panel A (σα = 0%). For instance, q5’s AD of 0.334% in Panel B is close to

FF6’s AD of 0.339% in Panel A. Graphically in Figure 4, the line connecting AD = 0.334%

of q5 (the dashed line with squares) at σα = 2% to AD = 0.339% of FF6 (the dashed line)

at σα = 0% is approximately horizontal. This means that a Bayesian investor is indifferent

between holding a modestly skeptical view (σα = 2%) about the q5 model and holding a

dogmatic belief in the FF6 model. That is, if the investor chooses q5 (the alternative) over

FF6 (the benchmark), her prior belief (at the 95% confidence interval) is that an annualized

pricing error of about ±4% (= ±2 × σα) is acceptable to her. Or conversely, her choice of

FF6 over q5 alleviates her prior concern about mispricing by ±4% per year.

Similarly, the SY model at σα = 2% (AD = 0.341% in Panel B of Table 6) is also distance-

equivalent to holding a dogmatic belief in FF6. By choosing SY over FF6, a Bayesian

investor is willing to accept prior mispricing of about ±4% per year. Since Pástor and

Stambaugh (2000) regard σα = 2% as a modest level of prior uncertainty, we infer that

14The concept of distance equivalence is defined using an equality in the level of AD. However, when σα

is discretized with a 2% increment, we consider Models A and B are approximately distance-equivalent if
|AD (Model A, prior σA

α > 0)−AD (Model B, prior σB
α = 0)| ≤ 0.5 bps.
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the performance difference among the top three models (FF6, q5, and SY) identified by the

distance-equivalence concept is economically insignificant.

Panel C of Table 6 shows the results with σα = 4%. At this (larger) level of prior

estimation uncertainty, BKRS (AD = 0.336%) and FF5 (AD = 0.340%) are distance-

equivalent to FF6 (AD = 0.339% in Panel A), meaning that a Bayesian investor choosing

BKRS or FF5 over FF6 must accept prior uncertainty in mispricing of as much as ±8% per

year. This in turn has two important implications: (1) UMD is a crucial factor for the FF

models; (2) changing the factor composition (HML to HMLm; and RMW to RMWCP) in

BKRS does not help much to improve the performance of the FF models.

At σα = 4%, q4 (AD = 0.345%) and DHS (AD = 0.350%) are also distance-equivalent

to q5 (AD = 0.348% in Panel A), suggesting that adding the EG factor to q4 is important

for q5. In addition, at σα = 4%, and even at σα = 6% in Panel D of Table 6, the AD levels

for BS, FF3 and CAPM are well above the AD levels for the other seven models at σα = 0%

(i.e., the seven points lying on the Y-axis) in Figure 4. This indicates that much higher

levels of prior estimation uncertainty in mispricing (σα) are required for these three models

to be distance-equivalent to the seven models.

We see in Panel E of Table 6 that at σα = 8%, BS (AD = 0.355%) is distance-equivalent

to SY (AD = 0.354% in Panel A), and so is FF3 (AD = 0.375%) to FF5 (AD = 0.372% in

Panel A). For a Bayesian investor, choosing SY over BS, or FF5 over FF3, relieves her prior

concern about mispricing of as much as ±16% per year. Such a magnitude is economically

too large to be ignored, and it signifies the failure of BS and FF3.15 Finally, we find in Panel

F of Table 6 that at σα = 10%, CAPM (AD = 0.458%) is roughly distance-equivalent to

FF3 (AD = 0.465% in Panel A), implying an outright failure of CAPM.

15It is surprising that the BS model, which has the highest posterior probabilities by the Bayes-factor
measure, does not perform well in pricing the test assets. It is apparent in Figure 4 that the BS line is
positioned below the lines of only CAPM and FF3, but far above the lines of the other seven models.
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6.3. Values of Individual Factors in the Benchmark Models

Given the AD metric and the concept of distance equivalence, we have shown above that we

can easily assess the economic costs of choosing alternative models across both nested (e.g.,

FF5 vs. FF6) and non-nested (e.g., q5 vs. FF6) models. In this subsection, we use the same

methodology to evaluate the economic values of individual factors and their combinations

in each of the top three benchmark models (FF6, q5, SY) using the 85 H−L portfolios as

test assets. We do so by excluding some factors from a model and computing the AD-

statistics of the parsimonious model (that deletes the factor(s)). If an excluded factor(s) is

indeed important, the AD of the simpler model should be significantly larger than that of

the benchmark model. To assess the economic values of the excluded factors, we compute

the level of prior estimation uncertainty, σα = σ∗α > 0, that makes the parsimonious model

and the (full) benchmark model distance-equivalent. By focusing on the marginal effects of

specific factors, our analyses in the nested-model setting can offer further insights into the

relative importance of those factors in each of the top three benchmark models.

Table 7 reports the values in AD and the levels of prior estimation uncertainty (σ∗α

in square brackets) that makes the two (parsimonious and benchmark) models distance-

equivalent for each combination of factors excluded from the three benchmark models: FF6

in Panel A, q5 in Panel B, and SY in Panel C. The diagonal entries in each panel contain the

values of AD and σ∗α when the corresponding (one) factor is excluded from the full model.

The set of excluded factors below the diagonal consists of the diagonal factor plus all the

factors up to that row. For example, the (6, 2) entry in Panel A, the (5, 2) entry in Panel

B, and the (4, 2) entry in Panel C exclude all factors except for the MKT factor (meaning

that these entries correspond to the CAPM model). Similarly, the model in the (6, 4) entry

in Panel A is FF3, and that in the (6, 6) entry in Panel A is FF5.

The (1, 1) entry in Panel A shows that when MKT is excluded from FF6, the simpler

model (consisting of SMB, HML, CMA, RMW, and UMD) produces AD = 0.415%, which

is higher than that of FF6 whose AD = 0.339% (see Panel A of Table 6). This implies that
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the marginal value of MKT measured by AD is 0.415% − 0.339% = 0.076%. It also shows

that an investor needs to hold a strong disbelief (at σα = 7.1%) in the parsimonious model

(that excludes MKT from FF6) for her to be indifferent between the two models: differently

put, adding MKT to FF5 mitigates her prior mispricing concern by ±14.2% annually. In

addition, the values in the diagonal grids in Panel A show that prior uncertainties (σ∗α) of

most factors are larger than 2%, except for HML whose σ∗α is economically insignificant at

1.5%. This in turn suggests that from a Bayesian view HML is a redundant factor (Fama

and French (2015)). Among the other factors, we emphasize our earlier finding that the

UMD factor is an important addition to the FF models. Excluding UMD from the FF6

model as shown in the (6, 6) entry in Panel A is equivalent to accepting a prior mispricing

uncertainty of ±8.2% per year, which is too large for a Bayesian investor to ignore.

By examining the diagonal values in each of the first two panels of Table 7, we find that

MKT is the single most important factor for both FF6 and q5, which is consistent with one

of the key findings of Harvey and Liu (2018). Thus, even though the results in the previous

subsection imply that the CAPM model is resoundingly dominated when assessed by the

AD metric, MKT remains as the most important factor in the two benchmark asset-pricing

models (FF6 and q5).

The result for q5 in Panel B of Table 7 shows that adding the expected growth factor

(EG) to q4 is economically warranted. In the (5, 5) entry, we find that the AD of the

parsimonious model (that excludes EG) is 0.376%, which is 0.028% higher than the AD of

the full q5 model (0.348% in Panel A of Table 6). The prior uncertainty of σ∗α = 3.7% that

makes the two models distance-equivalent is economically significant. As shown in Table 5,

the key advantage of adding EG is that it further reduces the size of pricing errors, making

q5 as one of the top performers, given its lowest levels in MAEα̂ and RMSEα̂ when tested

with all the three sets of (H−L) portfolios. However, it should be cautioned that adding EG

to the q4 model is not without a cost. We observe in Table 5 that q5 generates higher values

in RMSEσ̂α than q4 across the three sets of test assets. While this is good news for the GRS
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and MAE metrics, the distance-based metrics inherently recognize the trade-off between

lower alpha estimates and higher estimation uncertainty for the q5 model. Nonetheless, we

find that by adding the EG factor to the q4 model, the smaller pricing errors for q5 more

than offset the unfavorable effect of its higher estimation uncertainty.

Furthermore, we find that adding EG makes the role of other factors in q5 useless or

redundant. For instance, the (3, 3) entry in Panel B shows that the AD of a model that

excludes IA is 0.324%. In the (4, 3) entry, the AD of a model that excludes both IA and ROE

is 0.322%. Interestingly, the ADs of the above two parsimonious models are even smaller

than the AD of the benchmark q5 model (0.348%). This suggests that IA and/or ROE may

be redundant in the q5 model. The negative sign of σα in the two diagonal grids in Panel B

also indicates that excluding IA (ROE ) from the q5 model rather reduces the prior concern

of mispricing by ±6.6% (±4.2%). In addition, AD = 0.324% in the (3, 3) entry suggests

that excluding IA from q5 makes the parsimonious model (with the MKT, ME, ROE, and

EG factors) outperform the FF6 model (whose AD = 0.339%).

The (4, 3) entry in Panel B also shows that excluding both IA and ROE makes the parsi-

monious three-factor model (with MKT, ME, and EG) perform best among the models with

different factor combinations in Panel B, with its AD being at only 0.322%.16 In unreported

results, we find that the lowest value of its AD is a result of its much lower RMSEα̂ (0.227%

vs. 0.279% for the q5 model), although its RMSEσ̂α is slightly higher (0.228% vs. 0.207%

for the q5 model).17 These findings suggest that more efforts are warranted in designing

multi-factor models that most improve the pricing performance.

Finally, as to the SY model in Panel C, the values in the diagonal grids implies that all

the four factors in the model play economically significant roles, with the most important

factor being MGMT.

16Adding more factors does not necessarily improve model performance. In unreported results, we find
that a model that has ten factors (MKT, SMB, HML, UMD, RMW, CMA, HLMm, ME, IA, and ROE ) does
not outperform FF6. As another example, removing HMLm from the BS model improves the performance
of that model to be closer to that of FF6.

17We note however that the improvements in AD of the parsimonious models (relative to the full q5 model)
do not always extend to the cases where we analyze with other test assets used in this paper.
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Note in each panel that the entry in the last row and the first column corresponds to a

model that excludes all the factors in each of the three models; in this case, data-based alpha

estimates are simply the mean returns of the 85 H−L portfolios, and the residual covariance

matrix is simply the covariance matrix of the H−L portfolio returns. We find in the (6, 1)

entry of Panel A that, with AD = 0.423% and σα = 9.2%, such a näıve zero-factor model

outperforms prominent models shown in the same panel such as FF3 (AD = 0.465%) in the

(6, 4) entry, CAPM (AD = 0.576%) in the (6, 2) entry, as well as the model with only the

MKT and SMB factors (AD = 0.581%) in the (6, 3) entry.

7. Conclusion

In evaluating asset-pricing performance via ratio-based statistics, a model with high estima-

tion precision may have small p-values, and is thus statistically rejected even if it produces

economically insignificant pricing errors (alphas). Conversely, a model with a big covariance

matrix of residual returns may produce large p-values, and thus pass the statistical test even

with economically significant alphas. This nature of the power problem in statistical tests

has long been recognized since Fama and French (1993). The power problem makes compar-

ing p-values across different models problematic and the results difficult to interpret (Harvey

(2017)). As a compromise, most empirical studies rely on various alpha-based statistics (e.g.,

MAE, which ignores the extent of estimation precision), jointly with the p-values of the GRS

test. However, the GRS and average-alpha-based statistics often lead to contradicting and

counter-intuitive model choices.

We adopt a Bayesian approach to address the above challenges in asset-pricing studies.

A Bayesian investor views the mispricing parameter as a posterior distribution, updating

her subjective belief with the data. From this probabilistic view, we define the distance

between two posterior distributions, and propose distance-based metrics derived from the

optimal transport theory. The distance is interpreted as the minimum cost of holding a
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dogmatic belief in a specific model (as a benchmark). Furthermore, when an investor chooses

an alternative model over the benchmark, we can also quantify her prior uncertainty in

mispricing (or economic price) using the concept of distance equivalence.

Our results show that the AD metric consistently identifies FF6, q5, and SY as the top

three models, whose performance differences are economically insignificant. We also find

that a Bayesian investor choosing FF5 over FF6, or choosing q4 over q5, must accept prior

uncertainty in mispricing that is economically too large to ignore. This in turn suggests

that the momentum factor (UMD) is essential for the success of FF6 (and the other FF

models). Similarly, adding the expected growth factor (EG) to the q4 model is economically

warranted. The main advantage of adding EG is that it helps the q5 model significantly

reduce its pricing errors, although the q5 model estimates them less precisely than does the

q4 model. Overall, however, the benefit of smaller pricing errors for the q5 model dominates

the adverse effect of its lower estimation precision.

Using the AD metric together with the notion of distance equivalence, we can assess the

values of individual factors or their combinations in the three best-performing models. The

results show that HML tends to be a redundant factor in FF6, whereas MKT is the single

most important factor in the FF6 and q5 models. We also find that MGMT plays the most

important role in the SY model. In addition, the EG factor exerts strong influence in q5,

making some of the other four factors become useless in the model. This suggests that the

model could be more parsimonious and thus there is room for improving upon q5.

Our distance-based metrics along with Bayesian interpretations complement the frequen-

tist approach, which is dominant in asset-pricing tests. The AD metric (as well as TD when

the number of test assets are the same) provides a useful diagnostic tool, and di can further

help identify troublesome assets in the investment universe. Our distance-based metrics may

be jointly used in asset-pricing tests and model comparisons.
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Appendices

A. Posterior Estimates of the Model Parameters

To derive the posterior estimates of the model parameters for the multivariate regression in
equation (1), we can express the likelihood function of the model as:

p(R|B, Σ) ∝ |Σ|−
T
2 exp

{
−1

2
Tr(R−XB)′(R−XB)Σ−1

}
∝ |Σ|−

T
2 exp

{
−1

2
Tr
(
S + (B − B̂)′X ′X(B − B̂)

)
Σ−1

}
, (A1)

where S = (R −XB̂)′(R −XB̂), B̂ = (X ′X)−1X ′R and Tr(.) is the trace operator. Also,
the prior distribution of model parameters is: p(B, Σ) = p(B|Σ)p(Σ), where

p(B|Σ) ∼ N(B0, Σ⊗ V0) ∝ |Σ|−
k+1
2 exp

{
−1

2
Tr(B −B0)

′V −1
0 (B −B0)Σ

−1

}
, (A2)

where V −1
0 =

[
s2/σ2

α 0
0 0

]
is a (k + 1)× (k + 1) matrix whose (1,1) element is s2/σ2

α and all

other elements are zero; and

p(Σ) ∼ IW (H0, υ0) ∝ |Σ|−
υ0+n+1

2 exp

{
−1

2
Tr(H0Σ

−1)

}
(A3)

is an inverted-Wishart distribution with degree of freedom υ0 = n + 2, so that the scaling

matrix is H0 = E[Σ] = s2(υ0−n−1)
υ0−n−1

In = s2In.
Combining the prior distribution (A2) and (A3) with the likelihood function (A1) gives

the following posterior distribution:

p(B, Σ|R) = p(R|B, Σ)p(B|Σ)p(Σ) ∝ |Σ|−
T+k+1+υ0+n+1

2 exp

{
−1

2
Tr
(
H0 + S

+(B − B̂)′X ′X(B − B̂) + (B −B0)
′V −1

0 (B −B0)
)

Σ−1
}

. (A4)

Completing the squares on B and collecting the remaining terms in (·) yields:

H0 +S +(B− B̂)′X ′X(B− B̂)+ (B−B0)
′V −1

0 (B−B0) = (B− B̃)′Ṽ −1(B− B̃)+ H̃, (A5)

where B̃ = (V −1
0 +X ′X)−1(V −1

0 B0 +X ′R), Ṽ = (V −1
0 +X ′X)−1, and H̃ = H0 +B′

0V
−1
0 B0 +

S + B̂′X ′XB̂ − B̃′Ṽ −1B̃.
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The posterior distribution (A4) can be separated into two known distributions:

p(B, Σ|R) = p(B|Σ, R)× p(Σ|R) ∝

|Σ|−
k+1
2 exp

{
−1

2
Tr(B − B̃)′Ṽ −1(B − B̃)Σ−1

}
︸ ︷︷ ︸

N(B̃,Σ⊗Ṽ )

× |Σ|−
T+υ0+n+1

2 exp

{
−1

2
TrH̃Σ−1

}
︸ ︷︷ ︸

IW (H̃,υ̃)

. (A6)

In words, p(B|Σ, R) is normally distributed with posterior mean B̃ and posterior variance
Σ ⊗ Ṽ , and p(Σ|R) is inverted-Wishart distributed with degree of freedom υ̃ = T + υ0 and
scaling matrix H̃. Denote the posterior estimate of the residual covariance matrix by Σ̃
which, from the properties of the Wishart distribution (Zellner (1971)), is given by:

Σ̃ = E[Σ|R] =
H̃

υ̃ − n− 1
=

H̃

T + 1
. (A7)

From (A6) and (A7), the posterior distribution of the alpha is normal with its posterior mean
α̃′ = E[α|R,F ] taken from the first row of B̃ and its posterior variance Ṽα = Var[α|R,F ]
taken from the (n, n) upper left block of Ṽ ⊗ Σ̃.

With dogmatic beliefs in an asset-pricing model, mispricing is ruled out by setting the
prior alpha uncertainty at zero (i.e., σα = 0), so that both α̃ and Ṽα are zero. That is,
p(α|R,F, σα = 0) ∼ N(0, 0). At the other end of the spectrum, σα = ∞, in which case
investors are completely skeptical about the model, so that the posterior mean α̃ and Ṽα of
the alpha conform to the sampling theory results, which are:

p(α|R,F, σα = ∞) ∼ N

(
R̄− β̂F̄ ,

(
1 + F̄ ′Ω̂F̄

) Σ̂

T

)
, (A8)

where R̄ is an n× 1 vector of the sample mean of LHS excess returns, F̄ is a k× 1 vector of
the sample mean of factor returns, β̂ = (F ′F )−1F ′R is the n × k matrix of OLS estimates
of the factor loadings, Ω̂ is the k × k sample covariance matrix of factor returns, and Σ̂ =
(H0 + S)/(T + 1) is the n× n residual covariance matrix of LHS returns estimated from the
sample that dominates its non-informative prior, H0.
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B. Wasserstein Distance

Following Villani (2009, Definition 6.1), the Wasserstein distance between two probability
distributions is defined as follows.18

Definition: Let (S, d) be a Polish metric space. Assume that two probability measures PI

and PII on S are continuous and have finite moments of order p ∈ [1,∞]. The Wasserstein
distance between PI and PII is defined as

WDp(PI , PII) =

[
inf

∫
S

dp(x, y)dπ(x, y)

]1/p

= inf{[E (d(X, Y )p)]
1/p, law(X) = PI and law(Y ) = PII}, (B1)

where the infimum is taken over all π(x, y) in Π(PI , PII), which is the set of joint probability
measures on random variables X×Y with marginals PI on X and PII on Y. Especially, with
p = 2, the quadratic Wasserstein distance is defined as:

WD2(PI , PII) = inf(Eπ||X − Y ||2)1/2, (B2)

where the infimum is taken over all the transport plans π(x, y) in Π(PI , PII), with the
marginal distribution of PI on X and PII on Y.

Given the definition of WD2, the following theoretical properties are shown in the optimal
transport literature:

(1) There exists a unique solution to the optimal transport problem of moving the mass of
distribution PI to distribution PII . The one-to-one mapping is known as the optimal
transport plan y = T(x), where x ∼ PI is mapped to y ∼ PII via T(x).

(2) Under the optimal transport plan, random vectors X ∼ PI and Y ∼ PII are maximally
correlated with each other.

The above descriptions are standard results in the optimal transport theory (Villani,
2003, 2009). The quadratic Wasserstein distance, WD2, has an economic interpretation
as the minimum expected cost of transporting the mass of distribution PI to distribution
PII . In general, there exists no closed-form formula for WD2 or T (x) for general probability
distributions. Fortunately, when PI and PII are Gaussian, closed-form formula for WD2 and
T (x) can be derived, with the key results being summarized in the following theorem.

Theorem: Let PI and PII be Gaussian measures on Rn with finite second moments such
that PI ∼ N(αI , VI) and PII ∼ N(αII , VII), where αI and αII are two n×1 vectors of mean,
and VI and VII are two n × n symmetric, positive-definite covariance matrices. Then, the
quadratic Wasserstein distance (WD2) between PI and PII is given by

WD2 =
√
||αII − αI ||2 + ||VII − VI ||

||VII − VI || = Tr
(
VI + VII − 2(V

1/2
I VIIV

1/2
I )

1/2
)

, (B3)

18The Wasserstein distance is also known as the Monge-Kantorovich distance.
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where ||αII − αI || is the Euclidean 2-norm of the mean difference vector; ||VII − VI || is the
distance between the two covariance matrices; Tr(·) is the trace operator; and V 1/2 is the
square-root of the covariance matrix V such that V = V 1/2V 1/2.

Proof: Given the two normally distributed random vectors, X ∼ N(αI , VI) and Y ∼
N(αII , VII), in Rn, let the two demeaned random vectors be X = X − αI and Y = Y − αII .
The squared quadratic Wasserstein distance is defined by WD2

2 ≡ E[||Y − X||2] = ||αII −
αI ||2 +E[||Y −X||2]. For expositional convenience, denote ||VII −VI || ≡ E[||Y −X||2]. Then
we have:

WD2 =
√
||αII − αI ||2 + ||VII − VI ||. (B4)

For a closed-form expression of the distance under Gaussian measures, we need to show that:

||VII − VI || = Tr
(
VI + VII − 2(V

1/2
I VIIV

1/2
I )

1/2
)

. (B5)

For the augmented random vector (X, Y ) in R2n, denote its covariance matrix by

Ψ =

[
VI C
C ′ VII

]
. (B6)

Then, ||VII−VI || = Tr(VI +VII−2C), and the infimum of ||VII−VI || is to find C = E[X Y ′] so
that X and Y are maximally correlated, subject to the constraint that Ψ is a positive-definite
covariance matrix. Thus, the optimization problem becomes:

max
C

Tr(C) (B7)

s.t. VI − CV −1
II C ′ > 0, (B8)

where (B8) is the Schur complement constraint. The solution of (B7) subject to (B8) leads
to (B5). The detailed proof is given by Dawson and Landau (1982) and Givens and Shortt
(1984), who also term WD2 as the Fréchet distance.

Equation (B5) can also be derived from the optimal transport mapping (Knott and Smith
(1984) and Olkin and Pukelsheim (1982)). To check that the optimal transport plan maps
N(αI , VI) to N(αII , VII), for the zero-mean random vector X ∼ N(0, VI), let Y = TIX,
where the optimal mapping matrix TI is given by

TI = V
−1/2
I (V

1/2
I VIIV

1/2
I )

1/2V
−1/2
I . (B9)

Given Y = TIX and equation (B9), we have

E[Y Y ′] = TIE[X X ′]T ′
I = V

−1/2
I (V

1/2
I VIIV

1/2
I )

1/2V
−1/2
I VIV

−1/2
I (V

1/2
I VIIV

1/2
I )

1/2V
−1/2
I

= V
−1/2
I (V

1/2
I VIIV

1/2
I )

1/2(V
1/2
I VIIV

1/2
I )

1/2V
−1/2
I = V

−1/2
I (V

1/2
I VIIV

1/2
I )V

−1/2
I

= VII . (B10)

In the univariate case where VI = σ2
I and VII = σ2

II are scalers, the optimal mapping matrix
simplifies to a scaler TI = σ−1

I (σIσ
2
IIσI)

1/2σ−1
I = σII/σI . Then σ2

II = (TIσI)
2 is easily verified.
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To check that TI is indeed optimal, we have:

E[||Y −X||2] = E[||X||2] + E[||Y ||2]− 2E[〈X, Y 〉] = Tr(VI) + Tr(VII)− 2E[〈X, TIX〉]
= Tr(VI) + Tr(VII)− 2Tr(VITI)

= Tr(VI) + Tr(VII)− 2Tr
(
(V

1/2
I VIIV

1/2
I )

1/2
)

= Tr
(
VI + VII − 2(V

1/2
I VIIV

1/2
I )

1/2
)
. (B11)

The second last equality is obtained by the cyclic property of the trace operator. The
converse optimal transport mapping can also be derived. Let X = TIIY , where the optimal

mapping matrix TII is given by TII = V
−1/2
II (V

1/2
II VIV

1/2
II )1/2V

−1/2
II . It is easy to verify that

TII = T−1
I .

Note that, given the non-informativeness in prior specification II, the posterior estimates
α̃II and ṼαII

are identical to the maximum-likelihood estimates of the alpha, α̂, and its

covariance matrix, V̂α, respectively. Hence, WD2 =
√
||α̃II ||2 + Tr(ṼαII

) shown in Subsection

2.2. has its frequentist-equivalent form as

TD =

√
||α̂||2 + Tr(V̂α) , (B12)

which is intuitively interpretable as follows.
TD is the square-root of two sum-of-squared components. The first component, ||α̂||2 or

||α̃||2 (the sample and posterior estimates can be used interchangeably, because of the non-
informativeness in its prior specification), is the sum of squared alphas of the LHS returns
in asset-pricing tests. The second component, Tr(V̂α) or Tr(Ṽα), is the sum of variances of
alpha estimates for individual assets. Note that the two components in equation (B12) is

sum-of-squared terms, ||α̃||2 =
∑n

i=1 α̃2
i and Tr(Ṽ ) =

∑n
i=1 σ̃2

αi
, where σ̃αi

= Ṽ
1/2
α (i, i) is the

posterior estimate of the standard error of the alpha for asset i. More intuitively, we can
express TD as

TD =

√∑n

i=1

(
α̃2

i + σ̃2
αi

)
. (B13)

To compare the performance across different models when the universes of assets are
different, we divide the two components in equation (B13) by n, resulting in the average
distance (AD) defined as follows:

AD =

√∑n

i=1
(α̃2

i + σ̃2
αi

)/n . (B14)

With only one LHS asset (n = 1) (asset i), the marginal distance (di) is given by:

di =
√

α̃2
i + σ̃2

αi
. (B15)
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C. Test Assets

Fama and French (2015) Hou, Xue, and Zhang (2018)
1. ME: market capitalization 1. Sue1: Earnings surprise (1-month holding period)
2. BM: book-to-market ratio 2. R66: Price momentum (6-month prior returns, 6-month holding period)
3. OP: operating profitability 3. Im1: Industry momentum (1-month holding period)
4. INV: investment ratio 4. ε66: Six-month residual momentum (6-month holding period)
5. EP: earnings-to-price 5. Sim1: Supplier industries momentum (1-month holding period)
6. CFP: Cash flow-to-price 6. Cim1: Customer industries momentum (1-month holding period)
7. DP: dividend yield 7. Bm: Book-to-market equity
8. MOM: momentum 8. Em: Enterprise multiple
9. STR: short-term reversal 9. Sp: Sales-to-price

10. LTR: long-term reversal 10. Ir: Intangible return
11. AC: accruals 11. Vhp: Intrinsic value-to-market
12. NI: net share issues 12. Dur: Equity duration
13. Beta: market beta 13. I/A: Investment-to-assets
14. VAR: return variance 14. Ig: Investment growth
15. RVAR: residual variance 15. Ivc: Inventory changes

16. Nsi: Net stock issues
17. Cei: Composite equity issuance
18. Oa: Operating accruals
19. Roe1: Return on equity (1-month holding period)
20. dRoe1: Change in Roe (1-month holding period)
21. Gpa: Gross profits-to-assets
22. Opa: Operating profits-to-assets
23. Cop: Cash-based operating profitability
24. Oca: Organizational capital/assets
25. Ol: Operating leverage
26. R1

a: 12-month-lagged return

27. R
[2,5]
a : Years 2-5 lagged returns (annual)

28. R
[2,5]
n : Years 2-5 lagged returns (non-annual)

29. Dtv12: Dollar trading volume (12-month holding period)
30. Isff1: Idiosyncratic skewness per the FF 3-factor model

(1-month holding period)
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Green, Hand, and Zhang (2017)
1. absacc: Absolute accruals 44. mom1m: 1-month momentum
2. acc: Working capital accruals 45. mom36m: 36-month momentum
3. aeavol: Abnormal earnings announcement volume 46. ms: Financial statement score
4. age: # years since first Compustat coverage 47. mve: Size
5. agr: Asset growth 48. mve ia: Industry-adjusted size
6. baspread: Bid-ask spread 49. nincr: Number of earnings increases
7. beta: Beta 50. operprof: Operating profitability
8. bm: Book-to-market 51. orgcap: Organizational capital
9. bm ia: Industry-adjusted book-to-market 52. pchcapx ia: Industry adjusted % change in capital expenditures

10. cash: Cash holdings 53. pchcurrat: % change in current ratio
11. cashdebt: Cash flow-to-debt 54. pchdepr: % change in depreciation
12. cashpr: Cash productivity 55. pchgm pchsale: % change in gross margin − % change in sales
13. cfp: Cash flow-to-price ratio 56. pchsale pchinvt: % change in sales − % change in inventory
14. cfp ia: Industry-adjusted cash flow-to-price ratio 57. pchsale pchrect: % change in sales − % change in A/R
15. chatoia: Industry-adjusted change in asset turnover 58. pchsale pchxsga: % change in sales − % change in SG&A
16. chcsho: Change in shares outstanding 59. pchsaleinv: % change sales-to-inventory
17. chempia: Industry-adjusted change in employees 60. pctacc: Percent accruals
18. chinv: Change in inventory 61. pricedelay: Price delay
19. chmom: Change in 6-month momentum 62. ps: Financial statements score
20. chpmia: Industry-adjusted change in profit margin 63. rd: R&D increase
21. chtx: Change in tax expense 64. rd mve: R&D-to-market capitalization
22. cinvest: Corporate investment 65. rd sale: R&D-to-sales
23. convind: Convertible debt indicator 66. retvol: Return volatility
24. currat: Current ratio 67. roaq: Return on assets
25. depr: Depreciation-to-PP&E 68. roavol: Earnings volatility
26. divi: Dividend initiation 69. roeq: Return on equity
27. divo: Dividend omission 70. roic: Return on invested capital
28. dy: Dividend-to-price 71. rsup: Revenue surprise
29. ear: Earnings announcement return 72. salecash: Sales-to-cash
30. egr: Growth in common shareholder equity 73. saleinv: Sales-to-inventory
31. ep: Earnings-to-price 74. salerec: Sales to receivables
32. gma: Gross profitability 75. sgr: Sales growth
33. grCAPX: Growth in capital expenditures 76. sin: Sin stocks
34. grltnoa: Growth in long term net operating assets 77. sp: Sales-to-price
35. herf: Industry sales concentration 78. std dolvol: Volatility of liquidity (dollar trading volume)
36. hire: Employee growth rate 79. std turn: Volatility of liquidity (share turnover)
37. idiovol: Idiosyncratic return volatility 80. stdcf: Cash flow volatility
38. ill: Illiquidity 81. sue: Unexpected quarterly earnings
39. indmom: Industry momentum 82. tang: Debt capacity-to-firm tangibility
40. invest: Capital expenditures and inventory 83. tb: Tax income-to-book income
41. IPO: New equity issue 84. turn: Share turnover
42. lev: Leverage 85. zerotrade: Zero trading days
43. mom12m: 12-month momentum
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Pástor, Ľuboš, and Robert F. Stambaugh, 2000, Comparing Asset Pricing Models: An
Investment Perspective, Journal of Financial Economics 56, 335–381.

Shanken, Jay, and Guofu Zhou, 2007, Estimating and Testing Beta Pricing Models: Alter-
native Methods and Their Performance in Simulations, Journal of Financial Economics
84, 40–86.

Stambaugh, Robert F., and Yu Yuan, 2017, Mispricing Factors, Review of Financial Studies
30, 1270–1315.

Villani, Cédric, 2003, Topics in Optimal Transportation, American Mathematical Society.

Villani, Cédric, 2009, Optimal Transport: Old and New, Springer, Berlin.

Zellner, Arnold, 1971, An Introduction to Bayesian Inference in Econometrics, Wiley, New
York.

50



Figure 1: A Geometric View of the Average Distance (AD) with 25 Size-MOM
Portfolios: FF6 vs. q5

This figure plots the pricing errors (alpha) (α̂i on the X-axis) and their standard errors (stderr)
(σ̂αi on the Y-axis) generated by two asset-pricing models with the 25 portfolios sorted on firm size
(Size) and momentum (MOM) over the sample period of 1972:01-2015:12. Panels A and B show
the plots generated by FF6 and q5, respectively. In each panel, AD is measured by the length of
the arrow connecting from the origin (indicated by a round dot) to the other round dot. The half
circle has a radius of 0.2% per month as a benchmark.
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Figure 2: A Geometric View of the Average Distance (AD) with Hou, Mo,
Xue, and Zhang’s (2018) 30 H−L Portfolios: FF6 vs. q5 vs. SY

This figure plots the pricing errors (alpha) (α̂i on the X-axis) and their standard errors (stderr) (σ̂αi

on the Y-axis) generated by the three asset-pricing models with 30 H−L portfolios computed from
300 decile portfolios of Hou, Mo, Xue, and Zhang (2018) over the sample period of 1972:01-2015:12.
Panels A to C show the plots generated by FF6, q5, and SY, respectively. In each panel, AD is
measured by the length of the arrow connecting from the origin (a round dot) to the other round
dot. The half circle has a radius of 0.4% per month as a benchmark.
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Figure 3: A Geometric View of the Average Distance (AD) with Green, Hand,
and Zhang’s (2017) 85 H−L Portfolios: FF6 vs. q5 vs. SY

This figure plots the pricing errors (alpha) (α̂i on the X-axis) and their standard errors (stderr) (σ̂αi

on the Y-axis) generated by the three asset-pricing models with 85 H-L portfolios computed from
776 decile portfolios of Green, Hand, and Zhang (2017) over the sample period of 1972:01-2015:12.
Panels A to C show the plots generated by FF6, q5, and SY, respectively. In each panel, AD is
measured by the length of the arrow connecting from the origin (a round dot) to the other round
dot. The half circle has a radius of 0.4% per month as a benchmark.
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Figure 4: The Average Distance (AD) under Varying Degrees of Prior
Estimation Uncertainty

This figure plots the average distance (AD) (on the Y-axis) generated by the 10 asset-pricing models
with a set of 85 H−L portfolio returns, when the models have varying degrees of prior estimation
uncertainty (i.e., as σα increases from 0% to 10% on the X-axis). The 85 H−L returns are computed
using the 776 portfolios from by Green, Hand, and Zhang (2017) as in Table 6 as well as Panel C
in Table 5. The sample period is 1980:01-2015:12.
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Table 1: Comparison of Performance Metrics: Distance-Based Metrics,
GRS-Statistic and Mean Absolute Pricing Error (MAE)

This table compares the performance metrics for asset-pricing tests. AD and di are the average
distance and the marginal distance, respectively. GRS is the F -statistic of Gibbons, Ross, and
Shanken (1989) for a joint test of the zero-alpha restriction in time-series regressions. MAEα̂ is
the mean absolute intercept (alpha) from the time-series regressions. Sh2(F ) is the squared Sharpe
ratio for the factors F .

Item / Metric Distance-Based Metrics GRS MAE

Definition AD =
√∑n

i=1

(
α̂2

i + σ̂2
αi

) /
n if

σα = 0 in prior specification
GRS = c · α̂′Σ̂−1α̂ where c is a
constant

MAEα̂ =∑n
i=1 |α̂i|

/
n

Marginal contri-
bution of asset i

di =
√

α̂2
i + σ̂2

αi
if σα = 0 in prior

specification
ti = α̂i/σ̂αi |α̂i|

Measurement
unit

Return in % F - or t-statistic Return in %

Mispricing
parameter

(Bayesian view) The alpha is ran-
dom, data are given for updat-
ing the posterior distribution of
alphas; performance is distance-
based; small alpha and high esti-
mation precision are preferred

(Frequentist view) The alpha is
fixed, data are random; relies on
sampling theory to derive test
statistics; performance is ratio-
based; a lower ratio of alpha es-
timates to sampling errors is pre-
ferred

Simple statisti-
cal artifact re-
gardless of the
view

Theoretical mo-
tivation

Bayesian method (Pástor and
Stambaugh (2000)); Optimal
transport theory (Villani (2003))

Sampling theory of multivariate
statistics (Gibbons, Ross, and
Shanken (1989))

Ad-hoc statisti-
cal measure

Economic inter-
pretation

The minimum cost of holding
dogmatic beliefs in the model

The difference between the
Sh2(R,F ) and Sh2(F ); tests if
factors span the mean-variance-
efficient tangency portfolio

No theory or ex-
planation

How to treat
pricing errors
(Alphas)

RMSEα̂ =
√∑n

i=1 α̂2
i

/
n if σα =

0 in prior specification; consider
large pricing errors highly un-
desirable, and heavily penalizes
models that produce extreme al-
phas

Squared alphas are weighted by
the inverse of covariance matrix
of alphas, so large (α̂i/σ̂αi)

2 dom-
inate the F -statistic; this creates
too much power for the GRS test
to reject any pricing model for a
large cross-section of assets

Different magni-
tude of pricing
errors is treated
equally

How to treat es-
timation preci-
sion

RMSEσ̂α =
√∑n

i=1 σ̂2
αi

/
n if

σα = 0 in prior specification; con-
siders large standard errors of al-
phas highly undesirable, and pe-
nalizes models of low estimation
precision

Models with large sampling er-
rors tend to produce smaller
F -statistics and p-values; this
causes too small power for GRS,
rejecting bad models less often

Not considered

Characteristics
of good models

Low dispersion of alphas; high es-
timation precision; i.e., smaller
(also fewer extreme) pricing er-
rors and low standard errors

Low dispersion of alphas; large
sampling errors (i.e., larger stan-
dard errors of alphas)

Small size of al-
phas
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Table 3: Performance of the Ten Models Using 25 Size-MOM Portfolios
This table reports the performance-related statistics generated by ten asset-pricing models with the
25 portfolios formed by sorting on firm size (Size) and momentum (MOM). The details on portfolio
construction are available from Kenneth French’s website. α̂i and σ̂αi are the posterior estimates
of a pricing error and its standard error for asset i with non-informative priors. Further details on
the models and the definitions of the factors are provided in the text. The performance metrics
are defined in equations (6) and (9). The sample period is from 1972:01 to 2015:12 (528 months)
(except for the DHS model whose factors are available from 1972:01 to 2014:12).

Model AD RMSEα̂ RMSEσ̂α

MSEσ̂α
MSEα̂

GRS MAEα̂
MAEα̂
MARr̄

AR2

CAPM 0.427 0.402 0.142 0.12 4.60 0.331 1.18 0.73
FF Models

FF3 0.450 0.436 0.111 0.06 4.49 0.338 1.21 0.84
FF5 0.359 0.342 0.112 0.10 3.63 0.275 0.98 0.85
FF6 0.164 0.143 0.079 0.30 2.99 0.110 0.39 0.92
BKRS 0.196 0.175 0.089 0.26 3.42 0.135 0.48 0.91

q Models
q4 0.202 0.168 0.112 0.44 2.84 0.118 0.42 0.85
q5 0.211 0.172 0.122 0.50 2.64 0.134 0.48 0.85

Other Models
BS 0.184 0.164 0.082 0.25 3.18 0.143 0.51 0.92
SY 0.197 0.166 0.106 0.41 2.58 0.122 0.44 0.87
DHS 0.434 0.410 0.142 0.12 4.23 0.335 1.23 0.74

57



Table 4: Performance of the Ten Models Using Decile Portfolios
This table reports the performance-related statistics generated by the ten asset-pricing models
using two large sets of decile portfolios as test assets. The test assets in Panel A are a pooled set
of decile portfolios sorted on 15 different anomaly variables (150 portfolios in total) from Fama
and French (2015). The test assets in Panel B are a pooled set of decile portfolios sorted on 30
anomaly variables (300 portfolios in total) from Hou, Mo, Xue, and Zhang (2018). Further details
on the models and the definitions of the factors are provided in the text. The performance metrics
are defined in equations (6) and (9). The sample period is from 1972:01 to 2015:12 (528 months),
except for the DHS model whose factors are available from 1972:01 to 2014:12.

Model AD RMSEα̂ RMSEσ̂α

MSEσ̂α
MSEα̂

GRS MAEα̂
MAEα̂
MARr̄

AR2

Panel A: Fama and French’s (2015) 150 Portfolios

CAPM 0.248 0.228 0.097 0.18 2.12 0.167 1.48 0.83
FF Models

FF3 0.219 0.202 0.083 0.17 2.03 0.119 1.06 0.87
FF5 0.171 0.150 0.082 0.30 1.88 0.103 0.92 0.88
FF6 0.138 0.114 0.078 0.47 1.87 0.087 0.77 0.89
BKRS 0.146 0.115 0.089 0.59 1.89 0.092 0.82 0.88

q Models
q4 0.156 0.129 0.088 0.47 2.11 0.101 0.90 0.87
q5 0.163 0.132 0.096 0.54 1.92 0.110 0.98 0.87

Other Models
BS 0.184 0.164 0.083 0.26 2.15 0.135 1.20 0.89
SY 0.152 0.123 0.089 0.53 1.55 0.097 0.86 0.87
DHS 0.214 0.193 0.093 0.23 2.14 0.137 1.19 0.85

Panel B: Hou, Mo, Xue, and Zhang’s (2018) 300 Portfolios

CAPM 0.230 0.210 0.093 0.20 2.00 0.165 1.26 0.83
FF Models

FF3 0.208 0.189 0.087 0.21 1.91 0.141 1.08 0.85
FF5 0.180 0.158 0.087 0.30 1.85 0.117 0.89 0.86
FF6 0.155 0.129 0.086 0.44 1.80 0.099 0.76 0.86
BKRS 0.170 0.141 0.095 0.46 1.60 0.114 0.87 0.86

q Models
q4 0.171 0.145 0.092 0.40 1.80 0.112 0.86 0.85
q5 0.156 0.119 0.100 0.70 1.59 0.095 0.73 0.85

Other Models
BS 0.190 0.167 0.091 0.29 1.82 0.130 0.99 0.86
SY 0.154 0.122 0.094 0.60 1.57 0.093 0.71 0.85
DHS 0.184 0.153 0.102 0.45 1.62 0.113 0.84 0.84
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Table 5: Performance of the Ten Models Using H−L Portfolios
This table reports the performance-related statistics generated by the ten asset-pricing models
using three sets of H−L portfolios as test assets. The test assets used in Panel A are 15 H−L
portfolios from 150 decile portfolios of Fama and French (2015), those in Panel B are 30 H−L
portfolios from 300 decile portfolios of Hou, Mo, Xue, and Zhang (2018), and those in Panel C are
85 H−L portfolios from 776 portfolios of Green, Hand, and Zhang (2017). Further details on the
models and the definitions of the factors are provided in the text. The performance metrics are
defined in equations (6) and (9). The sample period for Panels A and B is from 1972:01 to 2015:12
(528 months), except for the DHS model whose factors are available from 1972:01 to 2014:12. The
sample period for Panel C is from 1980:01 to 2015:12 (432 months), except for the DHS model
whose factors are available from 1980:01 to 2014:12.

Model AD RMSEα̂ RMSEσ̂α

MSEσ̂α
MSEα̂

GRS MAEα̂
MAEα̂
MARr̄

AR2

Panel A: Fama and French’s (2015) 15 H−L Portfolios

CAPM 0.741 0.710 0.212 0.09 5.90 0.603 1.37 0.13
FF Models

FF3 0.681 0.660 0.169 0.07 5.16 0.458 1.04 0.46
FF5 0.462 0.432 0.164 0.14 3.12 0.267 0.61 0.53
FF6 0.260 0.216 0.144 0.44 2.13 0.160 0.36 0.60
BKRS 0.320 0.273 0.167 0.37 3.34 0.227 0.52 0.55

q Models
q4 0.289 0.227 0.179 0.63 1.92 0.177 0.40 0.44
q5 0.288 0.211 0.196 0.86 1.58 0.149 0.34 0.44

Other Models
BS 0.308 0.265 0.157 0.35 2.85 0.217 0.49 0.55
SY 0.285 0.223 0.177 0.64 1.75 0.157 0.36 0.46
DHS 0.478 0.427 0.214 0.25 2.91 0.335 0.71 0.29

Panel B: Hou, Mo, Xue, and Zhang’s (2018) 30 H−L Portfolios

CAPM 0.652 0.626 0.184 0.09 5.80 0.600 4.39 0.04
FF Models

FF3 0.628 0.607 0.162 0.07 5.26 0.501 3.67 0.26
FF5 0.502 0.476 0.159 0.11 4.01 0.374 2.74 0.33
FF6 0.366 0.334 0.150 0.20 3.44 0.250 1.83 0.40
BKRS 0.378 0.338 0.169 0.25 2.53 0.282 2.07 0.36

q Models
q4 0.384 0.345 0.170 0.24 3.51 0.264 1.93 0.28
q5 0.279 0.210 0.184 0.77 1.48 0.137 1.00 0.30

Other Models
BS 0.409 0.376 0.159 0.18 3.98 0.304 2.23 0.38
SY 0.352 0.306 0.174 0.32 2.86 0.227 1.66 0.27
DHS 0.367 0.310 0.196 0.40 2.92 0.260 2.05 0.15
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Model AD RMSEα̂ RMSEσ̂α

MSEσ̂α
MSEα̂

GRS MAEα̂
MAEα̂
MARr̄

AR2

Panel C: Green, Hand, and Zhang’s (2017) 85 H−L portfolios

CAPM 0.576 0.533 0.217 0.17 2.29 0.424 1.48 0.10
FF Models

FF3 0.465 0.427 0.184 0.19 2.27 0.331 1.15 0.31
FF5 0.372 0.327 0.177 0.29 1.87 0.243 0.85 0.39
FF6 0.339 0.293 0.172 0.34 1.77 0.225 0.78 0.41
BKRS 0.366 0.308 0.199 0.42 1.54 0.232 0.81 0.36

q Models
q4 0.376 0.322 0.194 0.36 1.99 0.242 0.84 0.33
q5 0.348 0.279 0.207 0.55 1.47 0.220 0.77 0.34

Other Models
BS 0.442 0.403 0.182 0.20 2.16 0.299 1.04 0.39
SY 0.354 0.290 0.202 0.48 1.62 0.227 0.79 0.31
DHS 0.380 0.315 0.211 0.45 1.93 0.249 0.85 0.26
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Table 7: Values of Individual Factors and their Combinations in the Three
Benchmark Models

This table reports the values in AD and the levels of prior estimation uncertainty (σα = σ∗α) (in
square brackets) that makes the two (parsimonious and benchmark) models distance-equivalent
when each combination of factors are excluded from the three (full) benchmark models (FF6 in
Panel A, q5 in Panel B, and SY in Panel C). The test assets used in the table are the set of 85
H−L portfolio returns, which are computed using the 776 portfolios from Green, Hand, and Zhang
(2017). AD is the average distance computed based on equation (6) under a dogmatic prior belief
(σα = 0) in the model that excludes some of the factors from the benchmark model. The value in
the square bracket represents the prior uncertainty in mispricing that an investor must accept when
she chooses the model that excludes some factors from the respective benchmark model (instead of
choosing the benchmark model itself). The diagonal grids in each panel contain the values of AD
and σ∗α when the corresponding (one) factor is excluded from the full model. The set of excluded
factors below the diagonal grids consists of the diagonal factor plus all the factors up to that row.
The sample period is from 1980:01 to 2015:12.

Panel A: FF6

MKT SMB HML RMW CMA UMD

MKT 0.415
[7.1%]

SMB 0.481 0.359
[10.7%] [2.8%]

HML 0.504 0.373 0.349
[12.0%] [4.2%] [1.5%]

RMW 0.372 0.404 0.393 0.380
[4.3%] [7.2%] [6.0%] [4.8%]

CMA 0.393 0.571 0.565 0.387 0.355
[6.5%] [16.7%] [15.3%] [5.4%] [2.3%]

UMD 0.423 0.576 0.581 0.465 0.414 0.372
[9.2%] [17.1%] [16.1%] [10.2%] [7.2%] [4.1%]

Panel B: q5

MKT ME IA ROE EG

MKT 0.555
[14.7%]

ME 0.741 0.481
[21.6%] [11.9%]

IA 0.683 0.410 0.324
[21.5%] [7.3%] [−3.3%]

ROE 0.689 0.412 0.322 0.333
[22.3%] [7.5%] [−3.6%] [−2.1%]

EG 0.423 0.571 0.595 0.427 0.376
[9.2%] [16.3%] [16.4%] [8.0%] [3.7%]
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Panel C: SY

MKT SMB MGMT PERF

MKT 0.453
[9.1%]

SMB 0.556 0.398
[14.3%] [5.4%]

MGMT 0.371 0.545 0.617
[2.5%] [14.9%] [17.1%]

PERF 0.423 0.576 0.659 0.439
[9.2%] [16.2%] [18.6%] [8.5%]
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