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Abstract

We develop a new extreme value theory for panel data and use it to construct

asymptotically valid confidence intervals (CIs) for conditional tail features such as

conditional extreme quantile and conditional tail index. As a by-product, we also

construct CIs for tail features of the coeffi cients in the random coeffi cient regression

model. The new CIs are robustly valid without parametric assumptions and have

excellent small sample coverage and length properties. Applying the proposed method,

we study the tail risk of the monthly U.S. stock returns and find that (i) the left tail

features of stock returns and those of the Fama-French regression residuals heavily

depend on other stock characteristics such as stock size; and (ii) the alpha’s and beta’s

are strongly heterogeneous across stocks in the Fama-French regression. These findings

suggest that the Fama-French model is insuffi cient to characterize the tail behavior of

stock returns.
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1 Introduction

Tail risk and extreme events are important research topics in economics and finance. In

many applications, the features of interest are conditional tail properties such as conditional

tail index and conditional extreme quantile. This article provides a new method to construct

confidence intervals for these features. The main advantage of the new method is its robust-

ness against flexible distributional assumptions. In particular, it allows all of the location,

scale, and shape to nonparametrically depend on the covariates.

Compared with unconditional tail features, the conditional tail counterparts are much

more diffi cult to study. This is because conditional tails depend on both marginal distri-

butions and their joint behavior. Although the marginal ones can be generally assumed

to be Pareto near the tails, the joint has to be fully nonparametric and is hard to study

given very limited tail observations. To model a covariate-dependent yet tractable tail, the

seminal paper by Chernozhukov (2005) extends the quantile regression (QR) estimator of

Koenker and Bassett (1978) from mid-sample to tails, called the extremal quantile regression

(EQR). Chernozhukov and Fernández-Val (2011) further investigate the EQR to construct

confidence intervals (CIs) based on subsampling.

The EQR approach assumes that the conditional extreme quantile can be well approxi-

mated by a parametric location-scale shift model. More specifically, suppose we have inde-

pendently and identically distributed (i.i.d.) observations {Yi, Xi} for i = 1, . . . , n and are

interested in the τ -th quantile of Y given X = x, denoted as QY |X=x (τ). The EQR approach

assumes that when τ is close to 1,

QY |X=x (τ) ∼ µ (x) + σ (x) (1− τ)−ξ (1)

for some parametric functions µ (x) and σ (x), which respectively capture the location and

the scale. The element (1−τ)−ξ can be treated as the quantile function of a standard Pareto

distribution, that is,

P (Y > y) ∼ y−1/ξ, (2)

where 1/ξ is the Pareto exponent and ξ is called the tail index. This single parameter

captures the tail shape in the way that a larger ξ implies a heavier tail. The assumption of

the model (1) simplifies the conditional tail distribution so that the covariate X only affects

the location and scale, but not the shape.1 This is satisfied if X and Y are jointly normal

1Wang and Li (2013) formally establish that the location-shift model assumption is equivalent to assuming

ξ remains constant across x.
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Figure 1: Plot of the 0.9 Quantile of Y Conditional on X = x from Three Distributions

Note: This figure plots QY |X=x(0.9) for x ∈ [0, 1] where Y and X are distributed as follows: (i) joint

normal with zero means, unit variances, and 0.5 correlation; (ii), joint student’s t with degree of freedom 3,

zero mean, unit variances, and correlation 0.5; and (iii) X is standard normal and Y |X ∼Pa(ξ(x)), that is,

P(Y > y|X = x) = 1− y−1/ξ(x) with ξ(x) = x.

but violated by many other joint distributions. In contrast to mid-sample features, such a

violation may lead to a substantial misspecification bias in studying tail ones.

To have a better sense of the misspecification, Figure 1 plots the 90% conditional quantiles

of Y given X = x ∈ [0, 1], for three commonly used joint distributions. First, the blue curve

depicts the standard joint normal distribution with correlation 0.5, so that QY |X=x (τ) is

always linear in x. Condition (1) is satisfied in this case. Second, the red curve depicts the

joint student’s t distribution with 3 degrees of freedom (d.f.), zero means, unit variances, and

0.5 covariance. Conditional on X = x, the distribution of Y is still student’s t but with the

mean and the variance depending on x in a highly nonlinear way. The upward slope in the tail

reflects this feature. Condition (1) then leads to some bias if µ(x) and σ(x) are misspecified.

Third, the yellow curve depicts the distribution where the conditional distribution of Y given

X = x is Pareto with exponent 1/x. The conditional quantile (1− τ)−x is highly nonlinear

in x, and hence approximating such a nonlinear tail feature with the linear location-scale

shift model (1) induces a large misspecification bias.

The misspecification error is not only a theoretical but also an empirical concern in

important situations. First, conditional value-at-risk (VaR) is a risk measure commonly

used in financial management, insurance, and actuarial science. Estimation and inference
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are studied by Chernozhukov and Umantsev (2001) and Engle and Manganelli (2004), among

many others. Recently Adrian and Brunnermeier (2016) propose a new measure for systemic

risk, ∆-CoVar, defined as the difference between two conditional VaRs. The tail shape

governs the third- and higher-order moments of the portfolio return, which typically depend

on other economic factors, say business cycle. But this is excluded by the location-scale

model (1). Second, Kelly and Jiang (2014) find that extreme event risk affects asset pricing

in the U.S. stock market. The distribution of stock returns is approximately Pareto in

the tail with a time-varying and stock-specific shape parameter. In particular, the shape

parameter measures tail risk and varies with other stock characteristics such as stock size. We

empirically examine this point in Section 5. Third, top wealth inequality is an active research

question in macro finance literature (see, for example, Piketty and Saez (2003), Gabaix,

Lasry, Lions, and Moll (2016), and Jones and Kim (2018)). Tail of the wealth distribution

is well documented as Pareto, and the exponent is in general a function of fundamentals

in general equilibrium models. For example, Beare and Toda (2017) derive a formula for

the Pareto exponent and comparative statics results, and Toda (2019) applies that formula

in a general equilibrium context. Finally, how infant’s birthweight depends on mother’s

demographics and maternal behavior is an important question in health economics.2 See

Abrevaya (2001), Koenker and Hallock (2001), and Chernozhukov and Fernández-Val (2011).

Other economic problems about conditional tail features can be found in the comprehensive

review by Chernozhukov, Fernández-Val, and Kaji (2017).

To solve the misspecification issue, there have been some suggestions in the literature on

relaxing the local-scale specification (1). To our best knowledge, they all focus on estimation

(as opposed to inference) and can be roughly categorized into two classes. The first class

maintains some parametric form but relaxes the location-shift model to allow for some non-

linearity. They are more flexible but still suffer from misspecification biases. In particular,

Wang and Tsai (2009) assume ξ(x) equals to exp(xᵀθ0) for some unknown parameter θ0,

and Wang and Li (2013) assume that the Box-Cox transformed Y has a linear conditional

quantile in X. The second class is fully nonparametric and constructs some local smooth es-

timators, including, for example Beirlant, Joossens, and Segers (2004), Gardes, Girard, and

Lekina (2010), Gardes, Guillou, and Schorgen (2012), Daouia, Gardes, and Girard (2013),

and Martins-Filho, Yao, and Torero (2018). These approaches depend heavily on the richness

of the data in the target neighborhood and hence require very large samples.

2We also find that mother’s net birthweight affects the tail shape of the baby’s birthweight in a nonlinear

way, which is not reported because of space limit.
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In this article, we focus on statistical inference instead of estimation, and provide CIs of

conditional tail features that have good coverage and length properties in relatively small

samples. In addition, we consider repeated cross-sectional or panel data instead of cross-

sectional random samples. The main idea is very intuitive: take one particular observation

from each time series and collect them into a cross-sectional sample. Suppose we have panel

data of Y and X for many individuals and many time periods, and are interested in some

tail feature of the conditional distribution of Y given X = x0, denoted FY |X=x0 . If for

every individual, there exists some time period in which X takes x0, we can simply collect

the associated Y ’s and form a cross-sectional sample from FY |X=x0 . Since this is infeasible

when X is continuous, we instead collect from each individual’s time series, the induced Y

associated with the X that is the nearest neighbor (NN) to x0. These induced Y ’s are now

approximately stemming from FY |X=x0 , and the large (respectively, small) order statistics

from them can be used for inference about the right (respectively, left) tail of FY |X=x0 . For

multi-dimensional covariates, this is done by defining the NN measured by a certain choice

of metric, such as the L2-norm. If a linear regression model is appropriate, the NN can also

be defined using the linear index.

The above approximation is formalized by establishing a new extreme value (EV) theory.

The proof is based on the large n and large T asymptotics, where n and T denote the

sample sizes in cross-sectional and time dimensions, respectively. A large T guarantees the

NN is close enough to the query point x0, and a large n provides enough observations from

the tail. Given the new EV theory, we show how existing suggestions on inference about

unconditional tail properties can be applied using the induced Y ’s as input. In particular,

we consider both the fixed-k asymptotic inference proposed by Müller and Wang (2017) and

the methods developed by Hill (1975) and Smith (1987), which are two leading examples in

the numerous increasing-k asymptotic methods. The number k denotes how many largest

(smallest) observations are used to approximate the tail. The fixed-k approach is more

suitable for a moderate n, say 200, while the increasing-k ones have computational advantage

when n is much larger.

In summary, the main idea is a combination of the NN in the time dimension and the

EV theory in the cross-sectional dimension. This approach only requires some smoothness

condition on the joint distribution and hence is much more flexible than existing methods.

A natural question is how much effi ciency we lose by using only one out of T observations

in each time series. It turns out that if the tail shape depends on the covariate highly

nonlinearly, the new NN method dominates existing methods in both coverage and length
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when T is only moderately large, say 50. When T is very large, say 500, the new CIs also

deliver comparable lengths to the kernel regression method with the optimal bandwidth. See

the Monte Carlo results in Section 4 for more details.

As a by-product, we also study the tail features of the coeffi cients in a random coeffi cient

regression model. In particular, suppose Yit and Xit are generated from the model Yit =

αi +Xᵀ
itβi + uit, where (αi, β

ᵀ
i )
ᵀ is a random vector drawn from some unknown distribution.

We first construct the least squares estimators of αi and βi using the i-th time series for

all i and collect the largest order statistics from these estimates. Then we show that the

estimation error is negligible under the large n and large T framework, and hence the largest

(smallest) order statistics among these estimates again satisfy the desired EV theory, which

further supports the application of the fixed-k CIs for the tail features of αi and βi. This

complements the existing literature focusing on the mid-sample properties of heterogeneous

effects (e.g., Hsiao and Pesaran (2004) and Wooldridge (2005)).

Applying the proposed methods, we study the tail features of the U.S. monthly stock

returns and find strong tail dependence and heterogeneity. In particular, we first construct

robust CIs of the conditional extreme quantiles given different stock sizes. The CIs exclude

the quantile regression estimators, suggesting that the location-scale model (1) might suf-

fer from some misspecification error. Second, we implement the Fama-French three factor

regression model and construct the robust CIs of the extreme quantiles of the regression co-

effi cients, namely, the alpha’s and beta’s. The CIs for the left and right extreme quantiles are

far from overlapping, which implies that the alpha’s and beta’s are strongly heterogeneous

across stocks.

The rest of the paper is organized as follows. Section 2 reviews the classic EV theory for

unconditional features, establishes a new one for conditional features, which formalizes the

NN approximation, and extends the study to the random coeffi cient regression model. In

light of the main results from Section 2, Section 3 illustrates how to construct new CIs based

on the NN and existing approaches for unconditional tail problems. Section 4 implements

an extensive Monte Carlo study, which shows that the new CIs have excellent small sample

coverage and length properties for moderately large sample sizes. Section 5 applies the new

method to the U.S. monthly stock returns. Section 6 concludes with proofs and omitted

details collected in the Appendix.

Notation Let
p→ denote convergence in probability and d→ denote convergence in distri-

bution as n, T →∞. Let 1[A] denote the indicator function of a generic event A. Let ||B||
denote the Euclidean norm of a vector or matrix B, and let C denote a generic constant
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whose value may change across lines. Let Bδ(x) denote a generic open ball centered at x

with radius δ.

2 Main result

We start with reviewing the classic unconditional EV theory in Section 2.1, and then establish

a conditional one in the Section 2.2. Finally in Section 2.3, we extend the analysis to the

random coeffi cient regression model.

2.1 Review of the unconditional EV theory

Consider a random sample Y1, Y2, ..., Yn from some population with cumulative distribution

function (CDF) FY . Denote the marginal quantile function as QY (τ) = inf{y : FY (y) ≥ τ}
for some τ ∈ [0, 1]. Let Y(1:n) ≥ Y(2:n) ≥ . . . ≥ Y(n:n) denote the order statistics, so that Y(1:n)

is the sample maximum. From now on, we consider the right tail and suppress ":n" in the

subscript for notational ease.

The fundamental result in EV theory is developed by Fisher and Tippett (1928) and

Gnedenko (1943), stating that if there exist sequences an and bn such that

Y(1) − bn
an

d→ V1 as n→∞ (3)

for some nondegenerate random variable V1, then the distribution of V1 is, up to location

and scale normalization, the generalized EV distribution with the CDF

Gξ(v) =

{
exp(−(1 + ξv)−1/ξ), 1 + ξv ≥ 0, for ξ 6= 0

exp(−e−v), v ∈ R, ξ = 0
(4)

where ξ ∈ R is the tail index.
EV theory holds if and only if FY is within the domain of attraction (DOA) ofGξ, denoted

as FY ∈ D (Gξ). This is a very mild assumption as it is satisfied by most commonly used

distributions. In particular, the positive ξ case covers the distributions with a Pareto-type

tail such as Pareto, student’s t, and F. The case with ξ = 0 covers the distributions with

finite moments of any order. Leading examples are normal and log-normal. The case with

a negative ξ covers the distributions with a bounded right end-point, that is, QY (1) < ∞.
See Chapter 1 in de Haan and Ferreira (2007) for a complete review.
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Without loss of generality, assume that any location and scale normalization of V1 is

subsumed in an and bn, so that the CDF of V1 is equal to Gξ. It is well known (see, for

instance, Theorem 3.5 of Coles (2001)) that if (3) holds, then EV theory also holds jointly

for the first k order statistics: 
Y(1)−bn
an
...

Y(k)−bn
an

 d→ V =

 V1

...

Vk

 (5)

for any fixed k, where the joint probability density function (PDF) of V is given by

fV|ξ(v1, . . . , vk) = Gξ(vk)
k∏
i=1

gξ(vi)/Gξ(vi) (6)

for vk ≤ vk−1 ≤ . . . ≤ v1 with gξ(v) = ∂Gξ(v)/∂v, and zero otherwise. Note that the

constants an and bn depend on ξ and are diffi cult to estimate. For example, an is nξ if FY is

standard Pareto. Since a small estimation error in ξ is amplified by the n-power, inference

relying on a good estimate of ξ and the scale usually requires a large k and a even larger

sample size n.

The Gξ(vk) term in (6) suggests that the largest k order statistics are not asymptotically

independent, given any fixed k. In contrast, this term is negligible if k increases with n, and

then V can be considered as independent draws from the generalized Pareto distribution

(GPD) (see Section 3.2 for details).

Based on EV theory, tail features such as extreme quantile can be expressed as known

functions of ξ. The inference problem is asymptotically equivalent to the parametric one in

which we have k observations drawn from the EV distribution or the GPD and aim for CIs

of a function of the single parameter ξ. There have been numerous suggestions on estimation

and inference along this line. Depending on whether the asymptotic embedding assumes a

fixed or increasing k, we refer to them as the fixed-k or increasing-k approaches, respectively.

We discuss them in Sections 3.1 and 3.2. Now, we proceed to study conditional tails and

establish a new EV theory with panel data.
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2.2 The conditional EV theory

We now present the main result of this paper in this subsection. Let X denote a dim(X)×1

vector of continuous random variables with uniformly positive joint PDF.3 The objects of

interest are the tail features of the conditional distribution FY |X=x (·) = P(Y ≤ ·|X = x).

To fix idea, we focus on the conditional extreme quantile of Y given X taking the value x0,

that is, QY |X=x0 (τ) for some pre-specified x0 ∈ Rdim(X) and some τ close to 1.

In contrast to the unconditional case, observations from the conditional CDF are not

available in a cross-sectional dataset. We overcome this issue by using panel data. Consider

a balanced4 panel dataset {Yit, Xit}i=1:n,t=1:T that is i.i.d. across i and strictly stationary and

weakly dependent across t. Our approach is implemented by the following three steps.

Step 1 Collect, for each i, the induced Y associated with the NN of {Xit}Tt=1 to x0, where

the NN is measured by the Euclidean distance ||Xit − x0||. Denote them as {Yi,[x0]}ni=1.

Step 2 Take the largest k order statistics from {Yi,[x]}ni=1 and denote them as

Y = (Y(1),[x0], Y(2),[x0], ..., Y(k),[x0])
ᵀ, (7)

where Y(1),[x0] ≥ Y(2),[x0] ≥ . . . ≥ Y(n),[x0] are the order statistics of {Yi,[x0]}ni=1.

Step 3 UseY as input to apply either the fixed-k or the increasing-k approaches to inference
reviewed in Section 3.

The main result of this article is summarized in Theorem 1 below, which states that Y

defined (7) satisfies a similar convergence as in (5). The key idea is heuristically illustrated

by the following derivation. For each i, denote the NN among {Xit}Tt=1 to x0 as Xi,(x0). Then

for any y ∈ R,

P
(
Yi,[x0] ≤ y

)
= EXi,(x0)

[
P
(
Yi,[x0] ≤ y|Xi,(x0)

)]
= EXi,(x0)

[
FY |X=Xi,(x0)

(y)
]
(by strict stationarity)

= FY |X=x0 (y) + EXi,(x0)

[
∂FY |X=x (y)

∂xᵀ

∣∣∣∣
x=ẋi

(Xi,(x0) − x0)

]
(by mean value expansion)

3If X contains discrete components, our method is readily applicable by considering the subsample that

these discrete variables take their discrete query values.
4This is only for notational ease. The new approach is valid as long as T is large for all i.
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→ FY |X=x0 (y) as T →∞,

where ẋi lies on the segment connecting Xi,(x0) and x0. The first equation is by the definition

of conditional expectation. The second one is established as Theorem 2.1 in Yang (1977) in

the i.i.d. case. It also holds under much more general dependence conditions as long as strict

stationarity is maintained. The third equation is valid if the conditional CDF is smooth.

The last convergence holds if the NN converges to its query point x0 and if the CDF is

smooth again with bounded derivatives.

The above derivation states that the collection of the induced order statistics Y associated

with the NN to x0 can be treated as approximately stemming from the true conditional CDF

FY |X=x0 asymptotically. Thus the largest (cross-sectional) order statistics Y can be treated

as draws from the tail of FY |X=x0 . Given the assumption about the maximum domain

of attraction, the problem reduces back to its unconditional analogue and hence existing

suggestions on unconditional tail problems become applicable. Note that the normalizing

constants an and bn now depend on ξ(x) evaluated at x = x0.

A formal establishment requires the following conditions.

Condition 1.1 (Yi1, X
ᵀ
i1)ᵀ, . . . , (YiT , X

ᵀ
iT )ᵀ are i.i.d. across i. (Yit, X

ᵀ
it)
ᵀ for each t = 1, . . . , T

is strictly stationary and β-mixing with the mixing coeffi cient satisfying β (t) =

O(t−2−ε) for some ε > 0. In addition, fX(x) is uniformly continuously differentiable

and bounded away from 0 in an open ball centered at x0.

Condition 1.1 requires the data to be independent across i and weakly dependent across

t. In addition, it also requires the density of X to be positive in an open neighborhood

around the query point x0. This condition is suffi cient to establish that the NN converges to

the query point x0 almost surely at some power rate. For readability, we formalize this result

in Lemma 1 in Appendix A.1. Note that we intentionally choose only one NN to allow for

weak dependence across t. If data are independent across both i and t, more than one NNs

can potentially be chosen to enlarge the effective sample. We leave this for future research.

Condition 1.2 FY |X=x0 ∈ D
(
Gξ(x0)

)
with ξ(x0) ≥ 0.

This condition requires that the underlying conditional distribution is in the domain

of attraction of the generalized EV distribution. This is a mild condition as it is satisfied

by many commonly used joint distributions. In particular, it generalizes the conditional

location-scale shift model (1) by allowing µ(x), σ(x), and ξ(x) to be all unknown (but smooth)
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functions of x. The condition on a non-negative ξ(x0) is for illustrational ease since the Y

in most applications involving tail features has an unbounded support.5 To illustrate the

mildness of this condition, we discuss the following three examples. In particular, Condition

1.2 is satisfied in all three of them but the location-scale model assumption (1) is not.

Example 1 (Joint Normal) Suppose (Y,X) are joint normal with zero means, unit vari-

ances, and correlation ρ. Then Y given X = x is normal with mean ρx, and variance

1 − ρ2. The conditional tail index is ξ(x) = 0 for all x ∈ R. The conditional quan-
tile is QY |X=x (τ) = ρx +

√
1− ρ2Φ−1 (τ), where Φ−1 (·) is the quantile function of

the standard normal distribution. Thus the location-scale model assumption (1) is

satisfied.

Example 2 (Joint Student’s t) Suppose (Y,X) are jointly student’s t distributed with

d.f. v, zero means, unit variances, and correlation ρ 6= 0. Then Y given X = x is

student’s t distributed with d.f. v+ 1, mean ρx, and variance (1− ρ2)(v+ x2)/(v+ 1).

The conditional tail index is ξ(x) = 1/(v + 1) for all x ∈ R.6 The conditional quantile
is QY |X=x (τ) = ρx+

√
(1− ρ2)(v + x2)/(v + 1)Qt(v)(τ), where Qt(v)(·) is the quantile

function of the standard student’s t distribution with d.f. v. This specification satisfies

the location-scale shift model (1) but the scale function is highly nonlinear in x.

Example 3 (Conditional Pareto) SupposeX is half-normal with positive support and Y

given X = x is the Pareto distribution such that P(Y ≤ y|X = x) = 1− (y+ 1)−1/x for

y ≥ 0 and any x > 0. Then the conditional tail index is ξ(x) = x and the conditional

quantile is QY |X=x (τ) = −1 + (1− τ)−x, which violates the location-scale shift model

(1).

Let y0 denote the end-point of the conditional CDF, that is, y0 = QY |X=x0 (1) ≤ ∞.
The next assumption is a high level regularity condition on the tail of the conditional CDF,

whose primitive conditions are discussed in Appendix A.1.

Condition 1.3 fY |X=x(y) is uniformly bounded and continuously differentiable

in x and y. In addition, for any fixed y > 0 with un = any + bn → y0,

and any open ball BηT (x0) centered at x0 with radius ηT ≡ O(T−η)

5The derivation for the ξ(x0) < 0 case requires additional assumptions on the relative magnitudes of T

and n, and is suppressed for illustrational ease.
6See Ding (2016) for the exact expression for the PDF.
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for some η > 0, limun→y0 supx∈BηT (x0) T
−η
∣∣∣∣∣∣∂FY |X=x(un)/∂x

1−FY |X=x0 (un)

∣∣∣∣∣∣ = 0 and

limun→y0 supx∈BηT (x0) T
−η
∣∣∣∣∣∣∂fY |X=x(un)/∂x

fY |X=x0 (un)

∣∣∣∣∣∣ = 0 as n→∞ and T →∞.

Condition 1.3 requires that the derivatives of the conditional CDF and PDF are smooth

and decay quickly. This is a mild condition again, which is satisfied by the above examples

by straightforward calculation. We give details in Appendix A.1.

Condition 1.4 n→∞, T →∞, and T/n→ λ for some λ ∈ (0,∞).

Condition 1.4 requires both n and T to be large. A large n guarantees that the error due

to the EV approximation is negligible, and a large T controls the distance between the NN

and the query point. The parameter λ can be any positive constant, and hence T can be

much smaller than n.

Given the above conditions, we establish the following theorem that formalizes the idea

of treating the induced Y ’s as draws from the true conditional distribution.

Theorem 1 Under Conditions 1.1-1.4, there exist sequences of constants an > 0 and bn
depending on x0 such that

Y − bn
an

d→ V (8)

where Y is defined in (7) and V is jointly EV distributed with PDF (6) and ξ = ξ(x0).

Theorem 1 is the main result of this paper. It allows us to apply the existing approaches

to inference about unconditional tail features for the purpose of inference about conditional

tail features. In light of the convergence (8),Y can be simply treated as input for the existing

approaches. See Section 3 for details. On the one hand, the new method is robust against

the misspecification mentioned in the introduction since no functional form is imposed. On

the other hand, the limit observation V has a known PDF, which renders an effi ciency gain

compared with the fully nonparametric methods. This feature is demonstrated in Section 4

by Monte Carlo experiments. Before that, we apply our proof strategy for the main result to

a widely studied case: the random coeffi cient regression model in the following subsection.

2.3 Extension to the random coeffi cient regression model

Consider the following panel data model

Yit = αi +Xᵀ
itβi + uit, (9)
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where (αi, β
ᵀ
i )
ᵀ denotes the random coeffi cients and uit the error term. This setup covers the

classic panel regression model with fixed effects in which βi = β0 for all i (cf. Chapter 10 of

Wooldridge (2002)). As long as Conditions 1.1-1.4 are satisfied, the previously introduced

methods naturally apply here. In addition, the parametric assumption (9) allows us to

conduct inference about the tail features of αi and βi, which we illustrate now.

Let (α̂i, β̂
ᵀ
i )
ᵀ be the OLS estimator by regressing Yit on (1, Xᵀ

it)
ᵀ using the time series

associated with the i-th individual. Collect {(α̂i, β̂
ᵀ
i )
ᵀ}ni=1 and sort each series of estimates

descendingly. Then we define

A = (α̂(1), ..., α̂(k))
ᵀ,

that is, the largest k order statistics of {α̂i}, and

B = (β̂j,(1), ..., β̂j,(k))
ᵀ,

that is, the largest k order statistics of the j-th components of {β̂i}ni=1. Without loss of

generality, we focus on the first component of βi and suppress the subscript j.

The following conditions are imposed for the convergence of A and B.

Condition 2.1 (αi, β
ᵀ
i , uit, X

ᵀ
it)
ᵀ are i.i.d. across i and strictly stationary and weakly depen-

dent across t;

Condition 2.2 Fα ∈ D
(
Gξα

)
and Fβ ∈ D

(
Gξβ

)
with ξα ≥ 0 and ξβ ≥ 0;

Condition 2.3 supi ||β̂i − βi|| = op(1), supi |ūi| = op(1), and supi
∣∣∣∣X̄i

∣∣∣∣ = Op(1), where

X̄i = T−1
∑T

t=1
Xit and ūi = T−1

∑T

t=1
uit. In addition, if ξω = 0, supi ||β̂i −

βi||/fω (Qω(1− 1/n)) = op(1) and supi |ūi| /fω (Qω(1− 1/n)) = op(1) for ω = α or β,

where Qω(·) and fω(·) denote the quantile function and the PDF of ω, respectively.

Conditions 2.1-2.3 are again mild. In particular, Condition 2.1 is similar to Condition

1.1. Since the objective of interest is the unconditional tail features of αi and βi, we do not

need the NN condition on the covariate. The dependence structure is left unspecified as long

as it is suffi cient for Condition 2.3. Condition 2.2 assumes the distributions of αi and βi
are respectively in the domain of attraction of Gξα and Gξβ with non-negative tail indices.

Condition 2.3 requires the estimator β̂i to be consistent for all i and the moments of sample

averages of uit and Xit across t are bounded. If the tail index is zero, these bounds need to

be stronger to accommodate the fact that an → 0.7

7Straightforward calculation yields that normal distribution satisifies Condition 2.3, if supi ||β̂i −
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Corollary 1 Under Conditions 2.1-2.3, there exist sequences of constants an > 0 and bn
that depend on ξα or ξβ such that

A− bn(ξα)

an(ξα)

d→ V(ξα)

and
B− bn(ξβ)

an(ξβ)

d→ V(ξβ),

where V(·) are jointly EV distributed with PDF (6) and tail index ξα or ξβ.

Under Conditions 2.1-2.3, Corollary 1 establishes the desired convergence of the largest

order statistics among {α̂i} and {β̂i}. Thus, we can apply the methods reviewed in the
following section to conduct inference about the tail features of αi and βi.

3 Construction of CIs for conditional tail features

Our main result presented in the previous section formalizes the NN approximation in the

panel data setup. This NN approach facilitates application of existing methods of uncon-

ditional tail inference for the purpose of inference about conditional tails. In this section,

we illustrate how existing inference approaches can be applied for construction of CIs for

conditional tail features in light of our NN approximation result. We consider two types of

approaches, which are based on either the fixed-k asymptotics (Section 3.1) or the increasing-

k asymptotics (Section 3.2).

3.1 The fixed-k approaches

We first consider the fixed-k approaches proposed by Müller and Wang (2017) and Wang

and Xiao (2019). The major advantage of these approaches is their excellent performance in

coverage probability and length given relatively small sample sizes, say n = 200. Literally,

the fixed-k approaches rely on the asymptotic embedding that the largest k observations

converge in distribution to the joint EV distributed vector V. If the tail feature under

investigation is also asymptotically equivalent to some known function of ξ, we essentially

βi|| = Op(T
−ε) and supi |ūi| = Op(T

−ε) for some ε > 0 and if n/T → λ for some λ ∈ (0,∞). This is

seen by 1/fα (Qα (1 − 1/n)) ≤ O(log(n)) when fα and Qα are standard normal PDF and quantile functions,

respectively (cf. Example 1.1.7 in de Haan and Ferreira (2007)).
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end up with a straightforward parametric problem: construction of CIs for a function of ξ

with one draw from V whose PDF is characterized only by ξ.

Suppose we have the dataset as in Section 2.2 and aim for a 1−α CI for the conditional
extreme quantile QY |X=x0(τ) for τ close to 1. To be precise, we rewrite τ as 1−h/n for some
h > 0 as similarly considered in Chernozhukov (2005) and Chernozhukov and Fernández-Val

(2011). This setup means that the extreme quantile is of the same order of the sample

maximum from n random draws from the true conditional CDF FY |X=x0 . Such an extreme

quantile is too far in the tail for the normal approximation to perform well.

Following Steps 1-3 in Section 2.2, the effective data becomesY as in (7) and the objective

is to construct a confidence set S(Y) ⊂ R such that P(QY |X=x0(τ) ∈ S(Y)) ≥ 1−α, at least
as n→∞ and T →∞. In particular, EV theory suggests that

QY |X=x0(1− h/n)− bn
an

→ q(ξ, h) ≡
{

h−ξ−1
ξ

if ξ 6= 0

− log(h) if ξ = 0

where we suppress x0 in ξ for notational ease. Note that q(ξ, h) is the exp(h) quantile of V1.

The normalizing constants an and bn also implicitly depend on ξ and hence are unknown.

Since they are shared by both Y and QY |X=x0(1 − h/n), we can impose location and scale

equivariance on the CI to cancel them out. Specifically, we impose that for any constants

a > 0 and b, S(aY + b) = aS(Y) + b, where aS(Y) + b = {y : (y − b)/a ∈ S(Y)}. Under
this equivariance constraint, we can write

P(QY |X=x0(1− h/n) ∈ S(Y))

= P
(
QY |X=x0(1− h/n)− Y(k),[x0]

Y(1),[x0] − Y(k),[x0]

∈ S
(

Y − Y(k),[x0]

Y(1),[x0] − Y(k),[x0]

))
→ Pξ (Y ∗ ∈ S(V∗)) ,

where we introduce the self-normalized statistics

Y ∗ =
q(ξ, h)− Vk
V1 − Vk

V∗ =

(
V1 − Vk
V1 − Vk

,
V2 − Vk
V1 − Vk

, ...,
Vk − Vk
V1 − Vk

)
,

and highlight with the subscript ξ that the densities of Y ∗ and V∗ now depend solely on ξ.

They can be computed by using (5), (6), and change of variables.

Given only a finite number of observations, a consistent estimation of ξ is out of the

question. Instead of imposing the correct size control for the true ξ, we impose it for all the
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values of ξ that are empirically relevant. In this sense the fixed-k approach is conservative

but more robust to misspecification, especially when the sample size is not large enough

to support a precise estimation of ξ. Let Ξ ⊂ R be the set of tail indices for which we

impose the asymptotically correct coverage.8 The asymptotic problem then is to construct

a location and scale equivariant S that satisfies

Pξ (Y ∗ ∈ S(V∗)) ≥ 1− α for all ξ ∈ Ξ, (10)

since any S that satisfies (10) also satisfies lim infn→∞,T→∞ P(QY |X=x0(1 − h/n) ∈
S(Y)) ≥ 1 − α under (8) and the continuous mapping theorem. Among all solutions to this
problem, we choose the optimal one that minimizes the weighted average expected length

criterion ∫
Eξ[lgth(S(V))]dW (ξ), (11)

whereW is a positive measure with support on Ξ,9 and lgth(A) =
∫
1[y ∈ A]dy for any Borel

set A ⊂ R. The equivariance of S further implies Eξ[lgth(S(V))] = Eξ[(V1−Vk) lgth(S(V∗))].

Thus the program of minimizing (11) subject to (10) among all equivariant sets S asymp-

totically becomes
minS(·)

∫
Ξ
Eξ[(V1 − Vk) lgth(S(V∗))]dW (ξ)

s.t. Pξ(Y ∗ ∈ S(V∗)) ≥ 1− α for all ξ ∈ Ξ.
(12)

Note that the above expectation and probability are w.r.t. the distribution of Y ∗ and V∗.

This distribution depends on ξ(x) evaluated at x0. Solution to problem (12) is numerically

calculated with the corresponding MATLAB program provided on the author’s website. The

computation cost is only several seconds using a modern PC.

In addition to the conditional extreme quantile, we can also construct a fixed-k CI for

the conditional tail index ξ(x0). Consider the testing problem

H0 : ξ(x0) = ξ0 against

H1 : ξ(x0) ∈ Ξ\{ξ0}.

With some weighting function W again, the likelihood ratio test is constructed as

ϕ(v∗) = 1

[∫
Ξ
fV∗|ξ(v

∗)dW (ξ)

fV∗|ξ0(v
∗)

> cv(α;ξ0)

]
, (13)

8We use Ξ = [−1/2, 1/2] for inference about conditional extreme quantiles in later applications, which

covers all the distributions with finite variance. This range can be easily extended.
9We use the uniform weight in later sections.
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where 1[·] is the indicator function, and cv(α;ξ0) denotes the critical value that depends on

the significance level α and the null value ξ0. The CI for ξ is then obtained by inverting this

test. Theorem 1 and the continuous mapping theorem again yield that the test (13) and the

corresponding CI are asymptotically valid.

Other tail related quantities such as the conditional tail expectation are also covered as

long as they can be expressed as functions of the conditional tail index.

3.2 The increasing-k approaches

If the cross-sectional sample size n is large enough, we can choose a large k and switch to

the approaches based on the increasing-k asymptotics (see de Haan and Ferreira (2007) for

an overview). In particular, we consider two popular methods developed respectively by

Hill (1975) and Smith (1987), and show that they are applicable with Y being the input

if k is large. Application of other methods is also possible but requires a method-specific

consideration.

For the unconditional distribution, Pickands (1975) states that if FY ∈ D(Gξ), the gen-

eralized Pareto distribution is a good approximation of the tail of FY in the sense that

lim
vn→∞

sup
0<y<∞

∣∣∣∣FY (y + vn)− FY (vn)

1− FY (vn)
− FGP(y; ξ, σ)

∣∣∣∣ = 0, (14)

where vn denotes the cutoff of tail and

FGP(y; ξ, σ) =

{
1− (1 + ξy/σ)−1/ξ if ξ 6= 0

1− exp(y/σ) if ξ = 0.

The cutoff vn determines the number of tail observations k in the way that Y(k),[x0] ≥ vn and

Y(k+1),[x0] < vn. Thus, there is little difference in choosing vn to determine k or the other

way.

Given the choice of vn (and accordingly k), Hill’s estimator can be constructed in the

panel framework as

ξ̂H =
1

k

k∑
i=1

(log Y(i),[x0] − log vn).

As an alternative, Smith (1987) suggests fitting the differences between the largest k

observations and the cutoff vn to FGP(y; ξ, σ) and constructing the maximum likelihood

estimator of ξ and σ. In particular, this estimator can be implemented as

(ξ̂ML, σ̂ML) = arg max
ξ∈Ξ,σ∈R+

k∑
i=1

log(fGP(Y(i),[x0] − vn; ξ, σ)) (15)
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where fGP(y; ξ, σ) = ∂FGP(y; ξ, σ)/∂y.

Both Hill’s and Smith’s estimators are root-k consistent and asymptotically normal,

provided that vn grows at a certain rate. Since Hill’s estimator is only defined for positive

tail indices, we restrict ξ(x0) to be positive. For notational ease, we write γ(x) = 1/ξ(x) and

γ̃(x) = 1/ξ̃(x). The following additional conditions are imposed.

Condition 3.1 1 − FY |X=x(y) = c(x)y−γ(x)(1 + d(x)y−γ̃(x) + r(x, y)) uniformly as y →∞
where c(·) > 0 and d(·) are continuously differentiable functions and uniformly bounded
between 0 and ∞, γ(·) > 0 and γ̃(·) > 0 are continuously differentiable functions, and

r(x, y) is continuously differentiable with bounded derivatives w.r.t. both x and y and

satisfies lim supy→∞ supx∈Bδ(x0) |r(x, y)/y−γ̃(x)| = 0 for some δ.

Condition 3.2
√
kγ̃(x0)d(x0)v

−γ̃(x0)
n / (γ (x0) + γ̃ (x0)) → µ(x0) for some constant µ(x0) ∈

R.

Condition 3.1 is a second order condition on the GPD approximation. In particular, the

conditional CDF is approximated by a GPD in the first order, and the parameter ξ̃ governs

the approximation bias. This condition is commonly assumed to study unconditional tail

problems (see, for example, Hall (1982), Smith (1987), and Chernozhukov (2005)). Condition

3.2 specifies the choice of the tail cutoff that leads to a non-degenerate asymptotic bias in the

tail index estimator (cf. eq. (3.3) in Smith (1987)). This is seen in the following proposition.

Proposition 1 Suppose Conditions 1.1, 1.4, 3.1 and 3.2 hold with ξ(x0) > 0. Then

√
k(ξ̂H − ξ)

d→N
(
µH , ξ

2
)
,

and √
k(ξ̂ML − ξ)

d→N
(
µML, (1 + ξ)2

)
where

µH = −µξ

µML = −µ(1 + ξ)ξ(1− γ̃)

1 + ξ − ξγ̃

and (ξ, µ, γ̃) are evaluated at x0.

Proposition 1 derives the asymptotic distributions of Hill’s and Smith’s estimators, which

are identical to those established in Goldie and Smith (1987) and Smith (1987), respectively.
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The bias terms are diffi cult to estimate since they involve the second order parameters µ(x0)

and γ̃(x0). A feasible CI for ξ(x0) is then constructed by choosing k of a smaller order than

specified in Condition 3.2 so that the bias is asymptotically zero (cf. Theorem 2 in Hall

(1982)). This is similar to the undersmoothing choice of the bandwidth in kernel estimation.

The CIs are obtained accordingly by plugging in the tail index estimate for the variance.

4 Monte Carlo results

In this section we run Monte Carlo experiments to examine the small sample performance of

the new approach. Section 4.1 considers the simple panel data {Yit, Xit} without any fixed
effect. In Section 4.2, we compare the effi ciency of the new approach with a kernel estimator,

which essentially uses more than one NNs. In Sections 4.3, we impose the linear regression

setup (9) with classic individual fixed effects or random coeffi cients. Finally in Section 4.4,

we present the results on inference about the conditional tail index.

4.1 Conditional extreme quantile

We continue to consider the three examples in Section 2.2 as the data generating processes

(DGPs). In all experiments, data are i.i.d. across i. The dependence structure across t is as

follows.

1. Joint Normal Xit = ρXit−1 + uit with uit ∼iid N (0, 1− ρ2) and Xi1 ∼ N (0, 1). Yit =

rxyXit +
√

1− r2
xyvit where vit ∼iid N (0, 1) and independent of uit. Set ρ = 0.5 and

rxy = 0.5.

2. Joint Student’s t (Xit, Yit) is i.i.d. across t and distributed as tv(µ,Σ) with v = 3,

µ = [0, 0]ᵀ, and Σ = [1, 0.5; 0.5, 1].

3. Conditional Pareto Xit = ρXit−1 +uit with uit ∼iid N (0, (1− ρ2)) and Xi1 ∼ N (0, 1).

Yit|Xit = x ∼ Pa(ξ(x)), that is, P(Yit ≤ y|Xit = x) = 1 − y−1/ξ(x) for y ≥ 1 where

ξ (x) = x+ 0.5.

We construct CIs for QY |X=x0 (1− h/n) with x0 = 0 and 1.65 (the 50% and 95% quantiles

of X, respectively) and h = 1 and 5. The sample sizes n and T are either 200 or 500, with

smaller combinations exercised in later experiments.
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We compare three approaches: (i) the fixed-k approach (fixed-k) introduced in Section

2.2, (ii) quantile regression (QR), and (iii) bootstrapping the empirical quantile (Boot). More

specifically, we produce the fixed-k CI using k = 20 in most cases if not specially noted. The

space of ξ is restricted as [−1/2, 1/2] in this and the following two sections where we target

quantile. For the QR approach, we run a quantile regression of Yit on Xit and a constant at

the τ quantile for each i . The conditional quantile is estimated at β̂0i +x0β̂1i where β̂0i and

β̂1i are the coeffi cient estimates using the i-th individual’s observations. The CI is simply the

2.5% and 97.5% quantiles of these n estimates. The bootstrap CI is based on bootstrapping

the empirical τ quantile in {Yi,[x0]}ni=1. The bootstrap size is 200.

Tables 1-3 depict the coverage probabilities (Cov) and the average lengths (Lgth) of the

above three methods based on 500 simulation draws. The fixed-k approach performs very

well in both coverage and length in all specifications. Regarding the QR method, since the

conditional quantile is a linear function of X in the first DGP but not in the other two, the

CIs based on QR perform well in the first DGP but deliver substantial undercoverage and

longer length in the other two due to misspecification. The bootstrap approach is robust

to misspecification but requires the asymptotic normal approximation, which performs well

only in the mid-sample. This is why the bootstrap intervals exhibit more undercoverage for

h = 1 than 5.

We end this subsection with a remark about the choice of k. A larger k leads to more tail

observations and hence shorter confidence intervals, but is subject to a larger approximation

bias due to including too many mid-sample data. This bias and variance trade off indicates

that the choice of k is diffi cult, especially when n is only moderate. It is actually impossible

to choose a uniformly best k allowing the underlying CDF to be flexible (see Theorem 1 of

Müller and Wang (2017)). The CDFs in our Monte Carlo are all well behaved so that a k

as large as 40% of the sample size performs well. This is seen in Table 3, which reports the

numbers for k = 20 and 50.

4.2 Comparison to kernel smoothing

The new approach takes only one NN in each time series, which raises the question of

effi ciency loss. We answer this by comparing the fixed-k approach with the kernel smoothing

method proposed by Gardes, Girard, and Lekina (2010). In particular, we first pool the panel

data into a cross-sectional sample. Suppose the object of interest is still QY |X=x0(τ). We

follow Gardes, Girard, and Lekina (2010) to pick the bin BbnT (x0) centered at x0 with a

bandwidth bnT . Since there is no theoretical justification for the optimal choice of bnT , we
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Table 1: Finite sample performance of inference about conditional extreme quantile, no
model specification

n 200 (97.5% quantile) 500 (99% quantile)
T 200 500 200 500

Cov Lgth Cov Lgth Cov Lgth Cov Lgth
Joint Normal

fixed-k 0.97 0.63 0.96 0.66 0.95 0.56 0.96 0.56
QR 1.00 0.63 1.00 0.41 1.00 0.89 1.00 0.56
Boot 0.97 0.64 0.91 0.61 0.88 0.58 0.95 0.55

Joint Student’s t
fixed-k 0.96 1.35 0.96 1.47 0.95 1.62 0.94 1.63
QR 0.95 2.20 0.00 1.31 1.00 4.76 0.01 2.87
Boot 0.91 1.36 0.95 1.34 0.89 1.51 0.94 1.68

Conditional Pareto
fixed-k 0.96 7.65 0.97 7.14 0.98 15.8 0.97 11.6
QR 0.00 >103 0.00 >103 0.00 >103 0.00 >103

Boot 0.93 8.30 0.93 7.80 0.94 15.3 0.90 12.7

Note: Entries are coverages and lengths of the CIs for QY |X=0(1−5/n). See the main text for the description
of the three approaches and the data generating processes. Confidence level is 5%. Based on 500 simulation
draws.

Table 2: Finite sample performance of inference about conditional extreme quantile, no
model specification

n 200 (97.5% quantile) 500 (99% quantile)
T 200 500 200 500

Cov Lgth Cov Lgth Cov Lgth Cov Lgth
Joint Normal

fixed-k 0.96 0.65 0.96 0.65 0.95 0.57 0.94 0.57
QR 1.00 1.28 1.00 0.80 1.00 1.81 1.00 1.13
BEQ 0.93 0.63 0.92 0.64 0.92 0.55 0.91 0.56

Joint Student’s t
fixed-k 0.97 2.42 0.95 2.36 0.97 2.88 0.97 2.77
QR 1.00 3.53 1.00 2.26 1.00 6.23 1.00 3.94
BEQ 0.94 2.31 0.93 2.25 0.93 2.83 0.95 2.72

Conditional Pareto
fixed-k 0.95 9.30 0.97 7.45 0.84 16.3 0.94 12.5
QR 0.00 >103 0.00 >103 0.00 >103 0.00 >103

BEQ 0.95 12.5 0.96 8.91 0.80 26.8 0.93 15.2

Note: Entries are coverages and lengths of the CIs for QY |X=1.65(1 − 5/n). See the main text for the
description of the three approaches and the data generating processes. Confidence level is 5%. Based on 500
simulation draws.

21



Table 3: Finite sample performance of inference about conditional extreme quantile, no
model specification

n 200 (99.5% quantile) 500 (99.8% quantile)
T 200 500 200 500

Cov Lgth Cov Lgth Cov Lgth Cov Lgth
Joint Normal

fixed-k(k=20) 0.95 1.82 0.96 1.83 0.97 1.69 0.96 1.70
QR 1.00 1.19 1.00 0.75 1.00 1.18 1.00 1.07
BEQ 0.63 0.62 0.64 0.59 0.64 0.57 0.65 0.59

Joint Student’s t
fixed-k(k=20) 0.96 4.71 0.96 4.69 0.96 5.62 0.97 5.61
fixed-k(k=50) 0.94 3.91 0.92 3.90 0.95 4.85 0.92 4.73
QR 1.00 8.51 0.68 5.51 1.00 8.47 1.00 11.5
BEQ 0.62 2.01 0.60 2.02 0.63 2.57 0.61 2.56

Conditional Pareto
fixed-k(k=20) 0.98 27.6 0.98 26.1 0.94 48.1 0.97 40.5
QR 0.00 >103 0.00 >103 0.00 >103 0.00 >103

BEQ 0.71 25.9 0.63 30.4 0.78 76.2 0.77 43.9

Note: Entries are coverages and lengths of the CIs for QY |X=0(1−1/n). See the main text for the description
of the three approaches and the data generating processes. Confidence level is 5%. Based on 500 simulation
draws.

take the rule-of-thumb choice c(nT )−1/5 with different values of the constant c. Now a certain

choice of bnT leads to a certain collection of Y ′s whose paired X ′s are in the bin BbnT (x0).

Order these induced Y ′s descendingly into {Y(1) ≥ Y(2) ≥ ... ≥ Y(m)} where m denotes the

local sample size determined by the bandwidth. Such local sample size is approximately

nTbn in the kernel smoothing (as opposed to n in our new approach).

Given the induced Y ’s, the conditional quantile is estimated as Q̂Y |X=x0(τ) = Y(b(1−τ)mc),

that is, the b(1− τ)mc-th largest order statistics in the induced Y ’s where b(1− τ)mc de-
notes the integer part of (1− τ)m. Gardes, Girard, and Lekina (2010) show that under

m(1− τ)→∞ and some other regularity conditions,√
m(1− τ)

(
Q̂Y |X=x0(τ)

QY |X=x0(τ)
− 1

)
d→ N (0, 1/ξ2

0(x0)).

Then the CI of QY |X=x0(τ) is constructed by the delta method and plugging in some consis-

tent estimator of ξ0. One choice they propose is the Hill-type estimator

1/ξ̂ =
1

k − 1

k−1∑
i=1

i log(Y(i)/Y(i+1)) (16)

for some choice of k < m.

For comparison, we implement the fixed-k approach by using the panel data and the

above kernel estimator by pooling the data. In particular, we implement the conditional

22



Table 4: Finite sample performance of inference about conditional extreme quantile, com-
parison with kernel method

T 50 100 200 500
Cov Lgth Cov Lgth Cov Lgth Cov Lgth

fixed-k 0.97 21.1 0.97 19.8 0.97 16.8 0.98 15.3
NP(c=0.1) 0.91 50.1 0.89 30.0 0.94 24.4 0.93 14.6
NP(c=0.25) 0.94 33.1 0.96 19.0 0.93 13.3 0.96 9.15
NP(c=0.5) 0.93 17.1 0.94 12.7 0.93 9.28 0.95 6.36
NP(c=1) 0.93 13.9 0.90 9.84 0.89 7.14 0.88 4.77
NP(c=2) 0.37 15.6 0.24 10.1 0.14 6.86 0.11 4.18

Note: Entries are coverages and lengths of the CIs for QY |X=0(1− 1/n) under the conditional Pareto DGP.
See the main text for the description of the two approaches and details of the DGP. Confidence level is 5%.
Based on 500 simulation draws.

Pareto DGP in the previous experiment with n = 200 and T ranging from 50 to 500. For

the fixed-k CI, we set k = 50. For the kernel method, we implement c ∈ {0.1, 0.25, 0.5, 1, 2}
and set k (in the Hill-type index estimator (16)) as the largest integer less than or equal to

m/4.

Table 4 presents the coverage and the length of the fixed-k and the kernel CIs. Several

interesting observations are made. First, the kernel approach is sensitive to the choice of the

bandwidth. In particular, a correct coverage relies on a narrow window of the bandwidth

choice. A larger choice can lead to a substantial undercoverage since the smoothing bias

dominates quickly in the tail. Second, when T is only moderately large (say 25 and 50),

the fixed-k CIs are much shorter than the kernel one and both of them have good coverage

properties. This is because the fully nonparametric method ignores the domain of attraction

information, which is utilized by the fixed-k method. Third, when T is very large, say 500,

choosing only one NN does incur an effi ciency loss as we compare the length between the

fixed-k and the kernel CIs. But such loss is approximately in a factor of 2 or 3 instead of

T 1/2. This means a general covariate-dependent tail is very diffi cult to estimate in a fully

nonparametric way.

In Table 5, we consider a two-dimensional standard normal X and generate Yit by

Yit|Xit = x ∼ ±Pa(ξ(x)) with ξ(x1, x2) = x1 +x2 +0.5. The kernel method is illustrated with

c ∈ {0.5, 1, 2, 4}. All other choices of both methods remain unchanged as in Table 4. The
results clearly suggest that the fixed-k method together with the NN choice dominates the

kernel method in both coverage probabilities and length. In particular, the kernel method

may suffer from the curse of dimensionality as the dimension of X increases.

As a final remark of this subsection, we also implement the standard kernel weighted
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Table 5: Finite sample performance of inference about conditional extreme quantile, com-
parison with kernel method, two-dimensional X

T 50 100 200 500
Cov Lgth Cov Lgth Cov Lgth Cov Lgth

fixed-k 0.96 21.0 0.97 17.2 0.96 16.5 0.96 16.3
NP(c=0.5) 0.56 65.8 0.73 60.6 0.73 54.3 0.81 53.8
NP(c=1) 0.83 75.0 0.80 60.8 0.93 60.9 0.91 32.0
NP(c=2) 0.96 66.1 1.00 36.0 0.97 25.2 0.97 16.5
NP(c=4) 0.74 54.5 0.47 35.4 0.23 22.8 0.16 13.2

Note: Entries are coverages and lengths of the CIs for QY |X=0(1− 1/n) under the conditional Pareto DGP.
See the main text for the description of the two approaches and details of the DGP. Confidence level is 5%.
Based on 500 simulation draws.

quantile regression method designed for the mid-sample quantiles (cf. Chapter 10 of Li and

Racine (2007)). Given a large T , the target 1− 1/n conditional quantile is relatively in the

mid-sample after pooling the panel data into a cross-sectional one, and hence the confidence

interval based on asymptotic normality might work. However, unreported Monte Carlo

simulations show that this method works only if T is substantially, say 5 times, larger than

n. In our experiments, it is strictly dominated by the method proposed by Gardes, Girard,

and Lekina (2010).

4.3 Conditional extreme quantile in linear model

In this section, we first consider the linear regression model Yit = αi + Xitβ0 + uit and

assume data are i.i.d. across i. For the time series dependence, we set αi = T−1
∑T

t=1
Xit

and Xit = ρXit−1 + eit with eit ∼iid N (0, (1− ρ2)) and Xi0 ∼ N (0, 1). The distribution of

uit conditional on Xit = x is as follows.

1. Conditional Normal uit|Xit = x ∼ N (0, 1 + x2).

2. Conditional Student’s t uit|Xit = x ∼ t (2 + |x|).

3. Conditional Pareto uit|Xit = x ∼ ±Pa(ξ(x)), that is, P(uit ≤ y|Xit = x) = 1/2 + (1−
(1+y)−1/ξ(x))/2 for y ≥ 0, and P(uit ≤ y|Xit = x) = (−y + 1)−1/ξ(x) /2 for y ≤ 0 where

ξ (x) = x+ 0.5.

We use the same three approaches as in the Section 4.1 to construct CIs for the condi-

tional extreme quantile QYit|Xit=x0 (τ) = Qεit|Xit=x0 (τ) + x0β0, where εit denotes αi + uit. In
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Table 6: Finite sample performance of inference about conditional extreme quantile, non-
dynamic model with random effects

n 200 (99.5% quantile) 100 (99% quantile)
T 200 500 25 50

Cov Lgth Cov Lgth Cov Lgth Cov Lgth
Conditional Normal

fixed-k w. LS 0.94 2.23 0.93 2.13 0.80 2.85 0.88 2.34
fixed-k w/o LS 0.93 2.22 0.92 2.14 0.53 3.17 0.76 2.62
QR 0.00 3.04 0.00 2.19 1.00 3.10 1.00 2.96
Boot 0.73 0.77 0.67 0.71 0.73 1.11 0.81 0.92

Conditional Student’s t
fixed-k w. LS 0.95 15.3 0.94 15.5 0.93 10.0 0.96 10.4
fixed-k w/o LS 0.95 15.3 0.94 15.5 0.91 10.0 0.93 10.3
QR 1.00 26.5 1.00 7.98 0.99 11.0 1.00 15.0
Boot 0.56 11.5 0.60 11.0 0.47 6.32 0.51 6.01

Conditional Pareto
fixed-k w. LS 0.00 16.2 0.00 5.90 0.02 59.6 0.01 58.1
fixed-k w/o LS 0.97 18.8 0.97 16.9 0.95 16.0 0.96 15.4
QR 0.00 >103 0.00 >103 1.00 >103 1.00 >103

Boot 0.71 16.2 0.67 16.8 0.76 313 0.78 31.4

Note: Entries are coverages and lengths of the CIs for QY |X=0(1−1/n). See the main text for the description
of different approaches and the data generating processes. Confidence level is 5%. Based on 500 simulation
draws.

particular, the fixed-k approach is conducted in two ways: with or without using the stan-

dard within least squares estimator of β0. For the former (fixed-k w.LS), we first estimate

β0 using the standard within estimator β̂ and back out ε̂it = Yit−Xitβ̂. Then we implement

the steps in Section 2.2 to construct the CIs for the conditional quantile of εit. The CIs for

QYit|Xit=x0 (τ) are obtained by adding back x0β̂. For the one ignoring the linear regression

structure (fixed-k w/o LS), we directly use Yit and Xit and apply Steps 1-3 in Section 2.2.

Table 6 presents the results for n ∈ {100, 200} and T ∈ {25, 50, 200, 500}. Several inter-
esting observations can be found. First, the error in the conditional t and conditional Pareto

models does not have a finite variance when x0 is 0, and hence the LS estimator of β0 be-

haves poorly. This leads to a poor performance of the fixed-k approach if the linear regression

model is utilized. This problem can be solved by using the least absolute deviation (LAD)

estimator as shown in unreported results. In comparison, the fixed-k CIs without using the

linear regression model always perform well given a large enough sample size. Second, the

QR approach still suffers from undercoverage in all three specifications since the normal and

the student’s t DGPs have nonlinear heteroskedasticity and the conditional Pareto DGP

violates the constant tail shape condition. Finally, the bootstrap method performs poorly if

the extreme quantile under investigation is too far in the tail.
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Table 7: Finite sample performance of inference about large quantiles of the random coeffi -
cients

n 200 500 (99% quantile)
T 10 20 10 20

Cov Lgth Cov Lgth Cov Lgth Cov Lgth
CIs for Qα(1− 5/n)

fixed-k 0.92 0.77 0.95 0.76 0.92 0.69 0.93 0.67
QR 0.84 1.13 0.90 1.07 0.88 2.96 0.94 2.94
Boot 0.89 0.81 0.93 0.76 0.81 0.70 0.91 0.69

CIs for Qβ(1− 5/n)
fixed-k 0.91 0.81 0.96 0.76 0.86 0.69 0.96 0.67
QR 0.81 1.15 0.88 1.08 0.88 3.21 0.94 2.83
Boot 0.85 0.82 0.92 0.76 0.78 0.73 0.91 0.68

CIs for Qα(1− 1/n)
fixed-k 0.91 2.32 0.93 2.13 0.87 2.10 0.94 1.96
QR 0.89 1.45 0.91 1.42 0.89 1.33 0.88 1.29
Boot 0.57 0.52 0.58 0.51 0.57 0.47 0.54 0.47

CIs for Qβ(1− 1/n)
fixed-k 0.88 2.32 0.94 2.28 0.85 2.16 0.93 1.93
QR 0.90 1.52 0.91 1.52 0.86 1.41 0.88 1.29
Boot 0.57 0.55 0.58 0.54 0.55 0.51 0.58 0.45

Note: The entries are coverage and length of the confidence intervals based on (i) the fixed-k approach using
the largest k=20 estimated coeffi cients, (ii) empirical quantile of the estimated coeffi cients with asymptotic
normal approximation, and (iii) empirical quantile function of the estimated coeffi cients and bootstrap. Data
are generated from Yit = αi + Xitβi + uit where (αi, βi, Xit, uit)

ᵀ ∼iid N (0, I4). The target is the 1-h/n
quantile of αi and βi with h = 1 and 5, corresponding to 97.5%, 98%, 99%, and 99.8% quantiles given
n = 200 and 500, respectively. Confidence level is 5%. Based on 500 simulation draws.

In Table 7, we study the CIs for high quantiles of αi and βi with data generated from

Yit = αi + Xitβi + uit where (αi, βi, Xit, uit)
ᵀ ∼iid N (0, I4). The i.i.d. condition is across

both i and t in this setting. In particular, we first estimate αi and βi by regressing Yit on

(1, Xit)
ᵀ with T observations from individual i. Then we collect the estimators α̂i and β̂i for

all i and sort them descendingly to apply the fixed-k, QR, and bootstrap methods. The QR

estimator is simply the empirical quantile among the estimators, whose asymptotic variance

is estimated by the standard kernel density estimator with the rule-of-thumb bandwidth.

The results suggest that the fixed-k approach with NN dominates the other two in both

coverage and length, especially when the sample size is only moderate.

4.4 Conditional tail index

The last experiment examines the CIs of the conditional tail index. We consider the following

three DGPs.

1. Joint Student’s t (Xit, Yit) is i.i.d. across i and t and is distributed as tv(µ,Σ) with
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v = 2, µ = [0, 0]ᵀ, and Σ = [1, 0.5; 0.5, 1].

2. Conditional Pareto Xit = ρXit−1 + uit with uit ∼ N (0, (1 − ρ2)) and

i.i.d. across i and t, and Xi1 ∼ N (0, 1). Yit|Xit = x ∼ Pa(1/ξ(x)), that is,

P(Yit ≤ y|Xit = x) = 1 − y−1/ξ(x) for y ≥ 1. Set ξ (x) = x − x0 + 0.5.

3. Independent F Xit = ρXit−1 + uit with uit ∼ N (0, (1− ρ2)) and Xi1 ∼ N (0, 1). Yit is

F(4,4) and independent of Xit. Yit and uit are both i.i.d. across i and t.

The normal distribution is replaced with independent F(4,4), so that the true conditional

tail index is 0.5 in all three designs when conditioned onX = x0. We set Ξ = [0, 1] since Hill’s

estimator is only defined for positive tail indices. Table 8 reports the coverage and length

of the fixed-k CI (fixed-k) based on inverting (13) and that based on Hill’s estimator (Hill)

and the maximum likelihood estimator (MLE) as described in Section 3.2. We set x0 = 1.65,

ρ = 0.5 and n = T = 1000, and choose k ∈ {20, 50, 100, 200}. This is to make sure k is

small relatively to n but still large enough for the increasing-k asymptotic approximation.

As expected from the theoretical derivation, the fixed-k CIs deliver excellent coverage and

length when k is small. As k grows, the MLE gradually performs better. A heuristic rule-

of-thumb for choosing the MLE instead of the fixed-k CI is based on whether k is over 100

or not, provided n is substantially larger. Note that Hill’s estimator is not location invariant

and thus heavily relies on the Pareto tail approximation. This is why it has short length and

precise coverage when the underlying distribution is exactly Pareto, but has large extents of

undercoverage when the DGP is student’s t or F.

5 Empirical application to US stock returns

Tail risk in stock returns has been an important topic in finance. See Backus, Chernov, and

Martin (2011) and Bollerslev and Todorov (2011) among many others. Due to limited obser-

vations, tail features are usually diffi cult to study if using time series data only. Motivated

by this issue, Kelly and Jiang (2014) use panel data on stock returns and assume the left tail

of the i-th stock at period t has a time varying tail index ξit = λt/ai. The λt term captures

the dynamics that are shared by all assets and ai measures the stock specific tail risk. We

relax such ratio structure by considering a covariate-dependent tail index. In particular, we

consider the stock size as the covariate.

We follow the convention to use monthly returns of NYSE/AMEX/NASDAQ stocks with

share codes 10 and 11. To obtain a large T , we only use the stocks that are traded for more
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Table 8: Small sample performance for inference about the conditional tail index
k 20 50 100 200

Cov Lgth Cov Lgth Cov Lgth Cov Lgth
Conditional Student’s t

fixed-k 0.97 0.76 0.96 0.69 0.92 0.53 0.81 0.37
Hill 0.88 0.41 0.83 0.26 0.86 0.18 0.96 0.14
MLE 0.76 0.80 0.86 0.69 0.86 0.55 0.75 0.38

Conditional Pareto
fixed-k 0.95 0.75 0.94 0.68 0.90 0.54 0.88 0.39
Hill 0.96 0.48 0.95 0.30 0.93 0.21 0.94 0.14
MLE 0.81 1.00 0.90 0.79 0.94 0.59 0.95 0.42

Independent F
fixed-k 0.96 0.75 0.94 0.69 0.92 0.54 0.94 0.39
Hill 0.97 0.49 0.94 0.31 0.63 0.24 0.02 0.19
MLE 0.77 0.79 0.90 0.70 0.92 0.56 0.94 0.41

Note: Entries are coverages and lengths of CIs on the tail index of the underlying conditional distribution,
based on the largest k order statistics. See the main text for a description of the three approaches and the
DGPs. Confidence level is 5%. Based on 500 Monte Carlo simulations.

than 120 months. This leads to an unbalanced panel dataset with n = 1744 and T ranging

from 121 to 1104. Given such a large n, we apply the MLE (15) with k = 349 (20% of n) and

the corresponding CIs based on its asymptotic normality. Top panels in Figure 2 plot the

estimated left and right conditional tail indices of stock returns given stock size equal to its

τx unconditional quantile with τx ∈ [0.05, 0.95]. Lower panels plot the same estimates and

CIs based on the residuals of the Fama-French three-factor regression (see eq.(17) below).

The results suggest that large stocks tend to exhibit heavier left tails, but such relation is

weak for the right tail. This result is coherent with that of Chen, Hong, and Stein (2001),

who use linear regression to find such pattern.

Next, we examine the conditional extreme quantiles. The first two rows in Figure 3

plot the QR estimates and the fixed-k CIs of the τ conditional quantiles of stock returns

conditional on the τx quantile of the stock size. In particular, we present the results for

τx ∈ {0.05, 0.5, 0.95} and τ = h/n and 1− h/n for {1, 2, ..., 10}. The QR estimate is based
on running quantile regression of the stock return on a constant and the stock size. The

fixed-k CIs are based on k = 100. This is set for good coverage but possibly conservative

length. The figure shows that the QR estimates are outside the fixed-k CIs for the left tail,

but not for the right one, indicating that the left conditional extreme quantiles are highly

nonlinear in the covariate but the right ones are close to be linear.

Finally, we examine whether a Fama-French three factor regression can fully explain the

tail behavior (cf. Fama and French (1993)). In particular, we run the regression

Rit −RFt = αi + βi(RMt −RFt) + siSMBt + hiHMLt + eit, (17)
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Figure 2: Plots of the QR estimates and the fixed-k CIs of the conditional tail indices of

stock returns and the Fama-French residuals given different stock sizes

Note: This figure plots the QR estimates (solid line) and 95% fixed-k CIs (dash line) of the left and right
conditional tail indices of the stock returns (upper row) or the residuals from the Fama-French 3 factors
regression (lower row). See the main context for details of these two approaches. Data are available from

http://www.crsp.com.
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where (Rit, RMt, RFt)
ᵀ denote the monthly returns of the i-th stock, market, and risk free

asset, respectively, and SMBt and HMLt are the other two factors (cf. eq(4) in Fama and

French (2015)). The coeffi cients (αi, βi, si, hi)
ᵀ are potentially varying across stocks. Lower

two rows in Figure 3 plot the QR estimates and the fixed-k CIs of the τ conditional quantiles

of the regression residuals in (17) conditional on different stock sizes. Similarly to the stock

returns, the residuals still exhibit some tail dependence on the stock size, suggesting that

the Fama-French factors are still insuffi cient to characterize the tail features as opposed to

their success in fitting the mean. In Figure 4, we use the method introduced in Section 2.3 to

construct the 95% fixed-k CIs of the extreme quantiles of the random coeffi cients (βi, si, hi)
ᵀ,

using the same dataset and tuning parameters as for the conditional quantiles. These figures

clearly suggest that the factor coeffi cients are substantially varying across stocks, so that it

might be misleading to consider them as fixed constants.

6 Concluding remarks

This paper develops a new framework on inference about conditional tail features using

panel data. The key insight is that the induced order statistics in each time series can

be treated as approximately stemming from the true conditional distribution, and the large

order statistics among these induced values can then be used to study the conditional tail. By

focusing on the induced order statistics, we essentially reduce the conditional tail problem

into an unconditional one, so that existing approaches about unconditional tail features

become applicable. Monte Carlo simulations show that the new method delivers excellent

small sample performance in terms of coverage probability and length.

The new method is substantially more flexible than the extremal quantile regression

because the latter assumes that the conditional extreme quantile is a parametric location-

shift model, which is an empirical concern in some applications. If a linear regression model

is imposed, the new method is easily combined with any existing consistent estimator of the

structural parameter and applies to the tail features of the random coeffi cients.

If a large cross-sectional sample is available, the econometrician can first randomly de-

compose the sample into a panel/repeated cross-sectional dataset and then apply the new

method to the generated panel data.
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Figure 3: Plots of the QR estimates and the fixed-k CIs of the conditional quantiles of stock

returns and the Fama-French residuals given different stock sizes

Note: This figure plots the QR estimates (solid line) and the 95% fixed-k CIs (dash line) of the right
(1− h/n) and left (h/n) conditional quantiles of the stock returns (upper two rows) or residuals from the
Fama-French 3 factors regression (lower two rows), where n = 1744 and h ∈ {1, . . . , 10}. See the main
context for details of these two approaches. Data are available from http://www.crsp.com.
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Figure 4: Plots of the fixed-k CIs of quantiles of the Fama-French factor coeffi cients

Note: This figure plots the 95% fixed-k CIs of the right (1− h/n) and left (h/n) unconditional quantiles of
the three coeffi cients in the Fama-French 3 factors regression, where n = 1744 and h ∈ {1, . . . , 10}. Data
are available from http://www.crsp.com.

A Appendix

A.1 Omitted details and primitive conditions in Section 2

This section provides more details about important implications of Condition 1.1 and primitive

suffi cient conditions for Condition 1.3. We first establish a lemma about the convergence of the

NN using Condition 1.1. The proof is collected in the next subsection.

Lemma 1 Under Condition 1.1, for each i and for some η > 0,∣∣∣∣Xi,(x0) − x0

∣∣∣∣ = oa.s.(T
−η) and (18)

E
[∣∣∣∣Xi,(x0) − x0

∣∣∣∣] = O
(
T−1/2

)
. (19)

Next, we provide primitive conditions for Condition 1.3. The following conditions are suffi cient.

Recall that y0 denotes the right end-point sup{y, FY |X=x0(y) < 1}. The notation is simpler if we
use the following notations: γ(·) = 1/ξ(·), gi denotes the the partial derivative of a generic function
g(·, ·) w.r.t. the i-th element, and gij the i,j-th cross derivative.

Condition B Xit has a compact support. FY |X=x(y) satisfies either (i) ξ(x) > 0 and

1− FY |X=x(y) = c(x)y−γ(x)(1 + d(x)(y)−γ̃(x) + r(x, y))

where c(·) > 0 and d(·) are uniformly bounded between 0 and ∞ and continuously differ-

entiable with uniformly bounded derivatives, γ(·) > 0 and γ̃(·) > 0 are continuously differ-

entiable functions, and r(x, y) is continuously differentiable with bounded derivatives w.r.t.

both x and y, and satisfies for some δ > 0

lim sup
y→y0

sup
x∈Bδ(x0)∩{(x:ξ(x)>0}

∣∣∣r(x, y)/y−γ̃(x)
∣∣∣ → 0,
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lim sup
y→y0

sup
x∈(Bδ(x0)∩{x:ξ(x)>0}

∣∣∣r2(x, y)/(y−γ̃(x)−1)
∣∣∣ → 0,

lim sup
y→y0

sup
x∈Bδ(x0)∩{(x:ξ(x)>0}

∣∣∣r1(x, y)/y−γ̃(x)
∣∣∣ → 0,

lim sup
y→y0

sup
(Bδ(x0)∩{x:ξ(x)>0}

∣∣∣r21(x, y)/(y−γ̃(x)−1)
∣∣∣ → 0;

or (ii) ξ(x) = 0 and

fY |X=x(y) = c(x)yc̃(x) exp(−d(x)d̃(y))(1 + r(x, y)),

where c(·) > 0 and d(·) > 0 are some continuously differential functions that are uniformly

bounded between 0 and ∞, c̃(·) is continuously differentiable and uniformly bounded by
−1 and ∞, and d̃(y) is continuously differentiable and satisfies C1(log y)2 ≤ d̃(y) ≤ C2y

C3

for some constants 0 ≤ C1, C2, C3 < ∞. The remainder r(x, y) is uniformly bounded and

continuously differentiable w.r.t. both arguments with bounded derivatives, and satisfies that

for some δ > 0

lim sup
y→y0

sup
x∈Bδ(x0)∩{x:ξ(x)=0}

|max{r1(x, y), r2(x, y), r21(x, y)}| → 0.

Condition B assumes that the error of approximating the true CDF with a generalized Pareto

distribution consists of the leading terms 1+d(x)(y)−γ̃(x) and c(x)yc̃(x) exp(−d(x)d̃(y)), respectively

in the two cases with ξ(x) > 0 and ξ(x) = 0 and the remainder r(x, y). Case (i) covers regularly

varying tails, and are imposed by Smith (1982) to study unconditional problems. See also Hall

(1982) and Smith (1987). Case (ii) covers slowly varying tails, including Gaussian (c̃(x) = 0 and

d̃(y) = y2), lognormal (c̃(x) = − 1 and d̃(y) = (log y)2), and the exponential family (c̃(x) = 0 and

d̃(y) = y). See, for example, Chapter B in de Haan and Ferreira (2007). Compared with those

literature, we require a stronger version that the derivatives of r(x, y) are uniformly bounded. This

is to guarantee that the tail of fY |X=x0 is also uniformly bounded. The compact support of X is

imposed to simplify the proof (cf.Wang and Li (2013)). The following lemma establishes Condition

1.3 using Conditions 1.4 and B. Its proof is collected at the very end of this article.

Lemma 2 If Condition 1.4 and Condition B hold, then Condition 1.3 holds, i.e., for un = any + bn

with any fixed y > 0, as n→∞ and T →∞
(a) limun→y0 supx∈BηT (x0)

∣∣∣∣∣∣∂FY |X=x(un)/∂x

1−FY |X=x0 (un)

∣∣∣∣∣∣ = 0,

(b) limun→y0 supx∈BηT (x0)

∣∣∣∣∣∣∂fY |X=x(un)/∂x

fY |X=x(un)

∣∣∣∣∣∣ = 0.

To give a better sense of Condition B, we now show that it is satisfied by the three examples

introduced in Section 2.2.
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First consider the joint normal distribution. Condition B.(ii) is satisfied by setting c(x) =√
2π(1− ρ2), d(x) = 1, d̃(y) = y2/(2(1− ρ2)), and r(x, y) = exp(2ρx/y+ ρ2x2/y2)− 1. Second, for

the conditional student’s t distribution, Ding (2016) derives that the conditional PDF of Y given

X = x is

fY |X=x(y) =
C

σ(x)

(
1 +

(y − ρx)2

(v + 1)σ(x)2

)− v+2
2

for some constant C depending on v only and σ(x) =
√

(1− ρ2)(v + x2)/(v + 1). Then Condition

B.(i) holds with γ(x) = 1/(v + 1), c(x) ∝ σ(x)v+1, d(x) ∝ ρx, γ̃(x) = 1, and r(x, y) = O(y−2) for

any x ∈ R. Finally, for the conditional Pareto distribution, Taylor expansion yields

1− FY |X=x(y) = y−1/x(1 + 1/y)−1/x

= y−1/x(1− 1

xy
+O(

1

y2
)).

Thus Condition B.(i) holds with c(x) = 1, γ(x) = 1/x, d(x) = −1/x, γ̃(x) = 1, and r(x, y) = O(y−2)

for x bounded below from 0.

A.2 Proofs

Proof of Theorem 1 By Corollary 1.2.4 and Remark 1.2.7 in de Haan and Fer-

reira (2007), the constants an and bn can be chosen as follows. If ξ(x0) > 0,

we choose an(ξ(x0)) = QY |X=x0(1 − 1/n) and bn(ξ(x0)) = 0. If ξ(x0) = 0, we choose

an(ξ(x0)) = 1/(nfY |X=x0(bn(x0))) and bn(ξ(x0)) = QY |X=x0(1 − 1/n). By construction, these con-

stants satisfy that 1 − FY |X=x0(an(ξ(x0))y + bn(ξ(x0))) = O(n−1) for any fixed y > 0 in both cases

(cf. Chapter 1.1.2 in de Haan and Ferreira (2007)).

Now we prove Theorem 1 using the above introduced constants. We suppress ξ(x0) in an (·)
and bn (·) and consider k = 1 first. By strict stationarity across t (Condition 1.1), we have that for

any generic argument v,

P
(
Yi,[x0] ≤ v

)
= EXi,(x0)

[
P
(
Yi,[x0] ≤ v|Xi,(x0)

)]
= EXi,(x0)

[
FY |X=Xi,(x0)

(v)
]
. (20)

Thus,

P
(
Y(1),[x0] ≤ any + bn

)
= FnYi,[x0]

(any + bn) (by i.i.d. across i)

= FnY |X=x0
(any + bn)

(
P
(
Yi,[x0] ≤ any + bn

)
FY |X=x0 (any + bn)

)n
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= FnY |X=x0
(any + bn)

EXi,(x0)
[
FY |X=Xi,(x0)

(any + bn)
]

FY |X=x0 (any + bn)

n

(by (20))

= FnY |X=x0
(any + bn)

1 +
EXi,(x0)

[
FY |X=Xi,(x0)

(any + bn)
]
− FY |X=x0 (any + bn)

FY |X=x0 (any + bn)

n

≡ An (y)

(
1 +

Bn,T (y)

FY |X=x0 (any + bn)

)n
.

By the standard EV theory and Condition 1.2, An (y) → Gξ (y) as n → ∞. Regarding Bn,T (y),

we derive that, for some ẋi between Xi,(x0) and x0 for each i, some open ball BηT (x0) centered at

x0 with radius ηT = O (T−η), and some constant 0 < C <∞,

|Bn,T (y)|

=(1) E
[
∂

∂x
FY |X=x (any + bn) |x=ẋi

(
Xi,(x0) − x0

)]
≤(2) CT

−η sup
x∈BT−η (x0)

∣∣∣∣∣∣∣∣ ∂∂xFY |X=x (any + bn)

∣∣∣∣∣∣∣∣
≤(3) CT

−ηn−1 sup
x∈BT−η (x0)

∣∣∣∣∣
∣∣∣∣∣ ∂
∂xFY |X=x (any + bn)

1− FY |X=x0(any + bn)

∣∣∣∣∣
∣∣∣∣∣

=(4) o(n
−1),

where equality(1) is by the mean value expansion; inequality(2) follows from that Xi,(x0) ∈ BηT (x0)

almost surely (Lemma 1); inequality(3) is by the fact that 1 − FY |X=x0(any + bn) = O(1/n) and

equality(4) is given by Conditions 1.3-1.4. Hence given any + bn → y0 and using Lemma 8.4.1 in

Arnold, Balakrishnan, and Nagaraja (1992), we have(
1 +

Bn,T (y)

FY |X=x0 (any + bn)

)n
≤

(
1 +

o
(
n−1

)
FY |X=x0 (any + bn)

)n
→ 1.

The proof for k = 1 is then complete by the continuous mapping theorem.

Generalization to k > 1 is as follows. Consider y1 > y2 > · · · > yk. Chapter 8.4 in Arnold,

Balakrishnan, and Nagaraja (1992) gives that

P
(
Y(1),[x0] ≤ any1 + bn, ..., Y(k),[x0] ≤ anyk + bn

)
= Fn−kYi,[x0]

(anyk + bn)
k∏
r=1

(n− r + 1) anfYi,[x0] (anyr + bn) (by i.i.d. across i)

=

[
Fn−kY |X=x0

(anyk + bn)
k∏
r=1

(n− r + 1) anfY |X=x0 (anyr + bn)

]
×
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(P (Yi,[x0] ≤ anyk + bn
)

FY |X=x0 (anyk + bn)

)n−k
k∏
r=1

fYi,[x0] (anyr + bn)

fY |X=x0 (anyr + bn)


≡ Ãn × B̃nT .

The convergence that Ãn → Gξ (yk)
∏k
r=1{gξ (yr) /Gξ (yk)} is established by Theorem 8.4.2

in Arnold, Balakrishnan, and Nagaraja (1992). It now remains to show B̃nT → 1. First,

(P
(
Yi,[x0] ≤ anyk + bn

)
/FY |X=x0 (anyk + bn))n−k → 1 is shown by the same argument as above

in the k = 1 case. Second, for any v

fYi,[x0] (v)

fY |X=x0 (v)
=

∂P(Yi,[x0]≤v)
∂v

fY |X=x0 (v)

=

∂
∂vEXi,(x0)

[
FY |X=Xi,(x0)

(v)
]

fY |X=x0 (v)
(by (20))

=
∂
∂v

∫
FY |X=x (v) fXi,(x0) (x) dx

fY |X=x0 (v)

=

∫
∂
∂vFY |X=x (v) fXi,(x0) (x) dx

fY |X=x0 (v)
(by Leibniz’s rule)

=
EXi,(x0)

[
fY |X=Xi,(x0)

(v)
]

fY |X=x0 (v)
,

where applying Leibniz’s rule is permitted by the assumption (Condition 1.3) that fY |X=x (v) is

uniformly continuous in x and v. Then similarly as bounding Bn,T above, we use the mean value

expansion under Condition 1.3, Lemma 1, and Conditions 1.3-1.4 to derive that for any r ∈ {1, ..., k}
and some constant 0 < C <∞,∣∣∣∣∣ fYi,[x0] (anyr + bn)

fY |X=x0 (anyr + bn)
− 1

∣∣∣∣∣
=

∣∣∣∣∣∣
EXi,(x0)

[
fY |X=Xi,(x0)

(v)− fY |X=x0 (anyr + bn)
]

fY |X=x0 (anyr + bn)

∣∣∣∣∣∣
≤ sup

x∈BηT (x0)

∣∣∣∣∣∣∣∣∂fY |X=x (anyr + bn) /∂x

fY |X=x0 (anyr + bn)

∣∣∣∣∣∣∣∣E [∣∣∣∣Xi,(x0) − x0

∣∣∣∣]
≤ o(1)×O

(
T−η

)
= o(1).

�
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Proof of Corollary 1 By Corollary 1.2.4 and Remark 1.2.7 in de Haan and Ferreira (2007),

the constants an and bn can be chosen as follows. We introduce the case for α only, and the

choice for β follows identically. If ξα > 0, we choose an(ξα) = Qα(1 − 1/n) and bn(ξα) = 0, where

recall Qα(·) denotes the quantile function of αi. If ξα = 0, we choose an(ξα) = 1/(nfα(bn(ξα))) and

bn(ξα) = Qα(1 − 1/n), where recall fα(·) denotes the PDF of αi. By construction, these constants
satisfy that 1 − Fα(an(ξα)y + bn(ξα)) = O(n−1) for any fixed y > 0 in both cases (cf. Chapter 1.1.2

in de Haan and Ferreira (2007)).

We first establish the convergence of A. By the standard EV theory, Condition 2.1 (αi is i.i.d.)

and Condition 2.2 (Fα ∈ D
(
Gξα

)
) imply(

α(1) − bn(ξα)

an(ξα)
, ...,

α(k) − bn(ξα)

an(ξα)

)ᵀ
d→ V (ξα) , (21)

where V(ξα) is jointly EV distributed with tail index ξα.

Let I = (I1, . . . , Ik) ∈ {1, . . . , T}k be the k random indices such that α(j) = αIj , j = 1, . . . , k,

and let Î be the corresponding indices such that α̂(j) = α̂Îj . Then the convergence of A follows

from (21) once we establish |α̂Îj − αIj | = op(an (ξα)) for j = 1, . . . , k. We consider k = 1 for

simplicity and the argument for a general k is very similar. Denote εi ≡ α̂i − αi.
Consider the case with ξα > 0. The part in Condition 2.3 for ξα > 0 yields that

sup
i
|εi| = sup

i

∣∣∣X̄ᵀ
i

(
βi − β̂i

)
+ ūi

∣∣∣
≤ sup

i

∣∣∣∣X̄i

∣∣∣∣ sup
i

∣∣∣∣∣∣βi − β̂i∣∣∣∣∣∣+ sup
i
|ūi|

= op(1).

Given this, we have that, on one hand, α̂Î = maxi{αi + εi} ≤ αI + supi |εi| = αI + op(1); and on

the other hand, α̂Î = maxi{αi + εi} ≥ maxi{αi + mini{εi}} ≥ αI + mini{εi} ≥ αI − supi |εi| = αI − op(1).

Therefore,
∣∣α̂Î − αI ∣∣ ≤ op(1) = op(an (ξα)) since an(ξα)→∞.

Consider the case with ξα = 0. Corollary 1.2.4 in de Haan and Ferreira (2007) implies that

an (ξα) = fα (Qα(1− 1/n)). Thus, the part in Condition 2.3 for ξα = 0 implies that

1

an (ξα)
sup
i
|εi| ≤

supi
∣∣∣∣X̄i

∣∣∣∣ supi

∣∣∣∣∣∣βi − β̂i∣∣∣∣∣∣+ supi |ūi|
fα (Qα(1− 1/n))

= op(1).

Then the same argument as above yields that
∣∣α̂Î − αI ∣∣ ≤ Op (supi |εi|) = op(an (ξα)).

Now we establish the convergence of B. Recall that we focus on, without loss of generality, the

first component of βi, so that (β(1), ..., β(k))
ᵀ denote the largest k elements in the first components

of {βi}ni=1. Conditions 2.1 and 2.2 imply that(
β(1) − bn

(
ξβ
)

an
(
ξβ
) , ...,

β(k) − bn
(
ξβ
)

an
(
ξβ
) )ᵀ

d→ V
(
ξβ
)
.
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Condition 2.3 and the similar argument for A complete the proof. �

Proof of Proposition 1 To derive the asymptotic distributions of Hill’s and Smith’s estima-

tors, we use Theorem 4.3.1 in Goldie and Smith (1987) and Proposition 3.1 in Smith (1987). Both

results require P
(
Yi,[x0] ≤ y

)
to satisfy their SR2 condition (cf. pp.1179 in Smith (1987)), which

we establish now. Since our Condition 3.1 implies that FY |X=x0 satisfies this SR2 condition with

φ(vn) = v
−γ̃(x0)
n (cf. pp.1181 in Smith (1987)), it then suffi ces to show that for any y,∣∣∣∣∣1− P

(
Yi,[x0] ≤ yvn

)
1− P

(
Yi,[x0] ≤ vn

) − 1− FY |X=x0(yvn)

1− FY |X=x0(vn)

∣∣∣∣∣
≤

∣∣∣∣∣P
(
Yi,[x0] ≤ yvn

)
− FY |X=x0(yvn)

1− P
(
Yi,[x0] ≤ vn

) ∣∣∣∣∣
+

∣∣∣∣∣P
(
Yi,[x0] ≤ vn

)
− FY |X=x0(vn)

1− P
(
Yi,[x0] ≤ vn

) ∣∣∣∣∣×
∣∣∣∣1− FY |X=x0(yvn)

1− FY |X=x0(vn)

∣∣∣∣ (22)

≤ o(φ (vn)).

We show the first item in (22) is uniform o(φ(vn)). The second one follows similarly since Condition

3.1 implies (1− FY |X=x0(yvn))/(1− FY |X=x0(vn)) = 1 +O(φ(vn)).

First, the argument in pp.1181 in Smith (1987) and Condition 3.2 yield that vn =

O
(
n1/(γ(x0)+2γ̃(x0))

)
. Then by Conditions 3.1 and 1.4, we derive that for some constant C > 0

sup
x∈BηT (x0)

∣∣∣∣∣∣∣∣∂FY |X=x(vn)/∂x

1− FY |X=x(vn)

∣∣∣∣∣∣∣∣
≤ sup

x∈BηT (x0)

∥∥∥∥c1(x)

c(x)
− log (vn) γ1(x) + Cd1(x)v−γ̃(x)

n

−Cd(x)v−γ̃(x)
n γ̃1(x) log(vn) + Cr1(x, vn)

∥∥∥
= O(log vn) = O (log n) (23)

and

sup
x∈BηT (x0)

∣∣∣∣ 1− FY |X=x(vn)

1− FY |X=x0(vn)

∣∣∣∣ = sup
x∈BηT (x0)

v−γ(x)+γ(x0)
n T−η log vn

= O
(
exp

(
T−η log vn

)
T−η log vn

)
= O

(
n−η log n

)
. (24)

Finally, apply the mean value expansion, Lemma 1, Condition 1.4, and (23)-(24) to obtain that for

any y > 0 ∣∣∣∣∣P
(
Yi,[x0] ≤ yvn

)
− FY |X=x0(yvn)

1− P
(
Yi,[x0] ≤ vn

) ∣∣∣∣∣
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=

∣∣∣∣∣∣
EXi,(x0)

[
FY |X=Xi,(x0)

(yvn)− FY |X=x0(yvn)
]

1− EXi,(x0)
[
FY |X=Xi,(x0)

(vn)
]

∣∣∣∣∣∣
≤ CE

[∣∣∣∣Xi,(x0) − x0

∣∣∣∣] supx∈BηT (x0)

∣∣∣∣ ∂
∂xFY |X=x(yvn)

∣∣∣∣
1− FY |X=x0(vn) +O(T−1/2v

−γ(x0)
n log vn)

= O(T−1/2T−η (log n)2)

= o(φ(vn)),

which establishes the SR2 condition. Given this SR2 condition and the fact that our Condition 3.2

is suffi cient for eq.(4.3.3) in Goldie and Smith (1987) and eq.(3.2) in Smith (1987), the arguments in

Theorem 4.3.1 in Goldie and Smith (1987) and Proposition 3.1 in Smith (1987) hold and complete

the proof. �

Proof of Lemma 1 We first prove (18). The subscript i is suppressed for notional ease. Define

Dt = ||Xt − x0|| for t ∈ {1, . . . , T}, which is still strictly stationary and β-mixing. By Berbee’s
lemma (enlarging the probability space as necessary), the process {Dt} can be coupled with a
process {D∗t } that satisfies the following three properties: (i) Zi ≡ {D(i−1)×qT+1, . . . , Di×qT } and
Z∗i ≡ {D∗(i−1)×qT+1, . . . , D

∗
i×qT } are identically distributed for all i ∈ {1, . . . , kT }, where Z

∗
i is the

same decomposition of {D∗t } as Zi and kT × qT = T ; (ii) P (Z∗i 6= Zi) ≤ β(qT ) for all i ∈ {1, . . . , kT };
and (iii) {Z∗1 , Z∗3 , . . .} are independent and {Z∗2 , Z∗4 , . . .} are independent (cf. Lemma 2.1 in Berbee
(1987) and Proposition 2 in Doukhan, Massart, and Rio (1995)). Suppose kT is an even integer for

simplicity and define U∗i as i.i.d. standard uniform random variable. Then these properties yield

that

P
(

min
t∈{1,...,T}

{Dt} > εT−η
)

= P
(

min
t∈{1,...,T}

{Dt} > εT−η, {Dt}Tt=1 = {D∗t }Tt=1

)
+ P

(
min

t∈{1,...,T}
{Dt} > εT−η, {Dt}Tt=1 6= {D∗t }Tt=1

)
≤(1) P

(
min

t∈{2qT ,4qT ...,kT qT }
{D∗t } > εT−η

)
+ P

(
{Dt}Tt=1 6= {D∗t }Tt=1

)
≤(2) P

(
min

i∈{1,2,...,kT /2}
{U∗i } > FD

(
εT−η

))
+ P

(
{Dt}Tt=1 6= {D∗t }Tt=1

)
≤(3) (1− CT−η)kT /2 + kTβ (qT ) ,

where inequality(1) follows by considering the first elements in all even blocks, which are indepen-

dent by property(iii) above, inequality(2) follows from the CDF transformation, and inequality(3)

follows from the CDF of the standard uniform distribution and properties (ii) and (iii) above.
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Choosing kT as the largest even integer no larger than 2T 1/3 and using Condition 1.1 again

yield that

∞∑
T=1

P
(

min
t∈{1,...,T}

{Dt} > εT−η
)

≤
∞∑
T=1

(1− cT−η)T 1/3 +
∞∑
T=1

T 1/3O
(
T−4/3−2ε

)
< ∞ for any η ∈ (0, 1/3).

Then T η
∣∣∣∣X(x0) − x0

∣∣∣∣ = oa.s.(1) is implied by Borel Cantelli Lemma. The

convergence of
∑∞

T=1
(1 − cT−η)T

1/3
is checked by the ratio test that

limT→∞(1 − c (T + 1)−η)(T+1)1/3/(1 − cT−η)T 1/3 < 1. Thus, (18) holds with any η ∈ (0, 1/3).

Now we prove (19). Perform the same coupling argument as above and consider the minimum

value within each block Zi (and Z∗i ), denoted min{Zi} (and min{Z∗i }). Let ET denote the event
that {Dt}Tt=1 = {D∗t }Tt=1. The above three properties and (18) yield that for some constant C > 0,

E[
∣∣∣∣X(x0) − x0

∣∣∣∣]
= E

[
min

t∈{1,...,T}
{Dt}1[ET ]

]
+ E

[
min

t∈{1,...,T}
{Dt}1[EcT ]

]
≤(1) E

[
min

i∈{2,4,...,kT }
{min{Zi}}1[ET ]

]
+ CT−ηE [1[EcT ]]

≤(2) E
[

min
i∈{2,4,...,kT }

{min{Z∗i }}
]

+ CT−ηkTβ (qT )

≤(3) E
[

min
i∈{2,4,...,kT }

{D∗i×qT }
]

+ CT−ηkTβ (qT ) ,

where inequality(1) follows from considering even blocks only and (18), inequality(2) follows from

property(ii) above, and inequality(3) follows from the fact that min{Z∗i } ≤ D∗i×qT (the minimum

value within the block Z∗i is less than or equal to the last element in that block).

The second term in the last step above is o(T−1/2) by setting qT = kT equal to the largest even

integer no larger than T 1/2. Regarding the first item above, notice that mini∈{1,...,kT }{D∗i×qT } is the
sample minimum of kT /2 random samples from some CDF FD (·), which has the bounded lower
end-point 0. Condition 1.1 implies that FD (·) is continuously differentiable and monotonically
increasing in a neighborhood of zero. Then we have

E
[

min
i∈{2,4,...,kT }

{D∗i×qT }
]

= E
[
F−1
D

(
min

i∈{2,4,...,kT }
{U∗i }

)]
=(1) E

[(
1/fD

(
F−1
D (u̇)

))
min

i∈{2,4,...,kT }
{U∗i }

]
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≤(2) CE
[

min
i∈{2,4,...,kT }

{U∗i }
]

=(3) O(k−1
T ),

where equality(1) follows from mean value expansion with some u̇ between 0 and

mini∈{2,4,...,kT }{U∗i }, inequality(2) follows from the fact that fD (·) is uniformly bounded away
from 0 in a neighborhood of zero, which is implied by Condition 1.1 again, and equality(3) follows

from Theorem 5.3.1 in de Haan and Ferreira (2007) since U∗i is i.i.d. standard uniform distribution

with the tail index −1. So (19) is established by setting kT equal to the largest even integer no

larger than T 1/2 again. �

Proof of Lemma 2 The proof is different for ξ(x0) > or = 0. We first consider the positive

ξ(x0) case. Recall that BηT (x0) denotes an open ball centered at x0 with radius ηT = T−η, where

η is determined in Lemma 1. For (a), infx∈BηT (x0) ξ(x) > 0 if T is large enough. This is feasible

given the continuity of ξ(·). Then by the chain rule and the condition (Condition B.(i)) that

1− FY |X=x(y) = c(x)y−γ(x)(1 + d(x)(y)−γ̃(x) + r(x, y)), (25)

we have

∂FY |X=x (y) /∂x

1− FY |X=x (y)

=
c1(x)

c(x)
− γ1(x) log y +

d1(x)y−γ̃(x)

1 + d(x)(y)−γ̃(x) + r(x, y)

− d(x)y−γ̃(x)γ̃1(x) log y

1 + d(x)(y)−γ̃(x) + r(x, y)
+

r1(x, y)

1 + d(x)(y)−γ̃(x) + r(x, y)
.

Recall that

un = any + bn

= O(QY |X=x0(1 − 1/n))

= O(nξ(x0)) (26)

(cf. Corollary 1.2.4 and Remark 1.2.11 in de Haan and Ferreira (2007)). Then after applying the

triangle inequality and the smoothness and boundedness of c(·), d(·), and γ(·) (Condition B.(i)),
we have that for some constant C > 0,

sup
x∈BηT (x0)

∣∣∣∣∣∣∣∣∂FY |X=x (un) /∂x

1− FY |X=x (un)

∣∣∣∣∣∣∣∣ (27)

≤ sup
x∈BηT (x0)

∥∥∥∥c1(x)

c(x)
− log (un) γ1(x) + Cd1(x)(un)−γ̃(x)
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−Cd(x)u−γ̃(x)
n γ̃(x) log(un) + Cr1(x, un)

∥∥∥
= O(log(un)) (by Condition B.(i))

= O(log n). (by (26))

By (25) again, we have

sup
x∈BηT (x0)

∣∣∣∣ 1− FY |X=x (un)

1− FY |X=x0(un)

∣∣∣∣ (28)

≤ sup
x∈BηT (x0)

∣∣∣u−γ(x)+γ(x0)
n

∣∣∣ sup
x∈BηT (x0)

∣∣∣∣ c(x)

c(x0)

∣∣∣∣ sup
x∈BηT (x0)

∣∣∣∣∣ 1 + d(x)(y)−γ̃(x) + r(x, un)

1 + d(x0)(y)−γ̃(x0) + r(x0, un)

∣∣∣∣∣
≤ C exp

(
sup

x∈BηT (x0)
log
(
u−γ(x)+γ(x0)
n

))
(by Condition B.(i))

= C exp
(
O(T−η log (un))

)
= C exp(O(T−η log n) (by (26))

= O(1). (by Condition 1.4)

Then part (a) follows by combining (27) and (28) and using O(T−η)×O(log n) = o(1) by Condition

1.4 again.

For (b), Condition B.(i) implies that

fY |X=x (y) = −c(x)γ(x)(y)−γ(x)−1(1 + d(x)(y)−γ̃(x) + r(x, y)) (29)

+c(x)(y)−γ(x)(−d(x)y−γ̃(x)−1γ̃(x) + r2(x, y)).

A similar argument as above with Conditions B.(i) and 1.4 yields

sup
x∈BηT (x0)

∣∣∣∣∣∣∣∣∂fY |X=x (un) /∂x

fY |X=x (un)

∣∣∣∣∣∣∣∣ ≤ O(log(un)) = O(log n)

and

sup
x∈BηT (x0)

∣∣∣∣∣∣∣∣ fY |X=x (un)

fY |X=x0 (un)

∣∣∣∣∣∣∣∣ ≤ C exp

(
sup

x∈BηT (x0)
log
(
u−γ(x)+γ(x0)
n

))
= O(1),

which yield part (b) by using Condition 1.4 again.

Now it remains to prove (a) and (b) for ξ(x0) = 0. Note that un = O
(
QY |X=x0(1− 1/n)

)
,

which is at most of the order exp(Φ−1(1 − 1/n)) = exp(
√

2 log n) by the condition C1(log y)2 ≤
d̃(y) ≤ C2y

C3 .
For (a), we decompose BηT (x0) into BηT (x0) ∩ {x : ξ(x) > 0} and BηT (x0) ∩ {x : ξ(x) = 0},

and then

sup
x∈BηT (x0)

∣∣∣∣∣∣∣∣∂FY |X=x (un) /∂x

1− FY |X=x0 (un)

∣∣∣∣∣∣∣∣
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≤ max

{
sup

x∈BηT (x0)∩{x:ξ(x)>0}

∣∣∣∣∣∣∣∣∂FY |X=x (un) /∂x

1− FY |X=x0 (un)

∣∣∣∣∣∣∣∣ , sup
x∈BηT (x0)∩{x:ξ(x)=0}

∣∣∣∣∣∣∣∣∂FY |X=x (un) /∂x

1− FY |X=x0 (un)

∣∣∣∣∣∣∣∣
}
.(30)

For the first item in (30), Conditions 1.1 and B.(i) imply that ∂FY |X=x(un)/∂x = O(u
−γ(x)
n log un)

and γ(x) = 1/ξ(x) = O
(
1/ξ′(ẋ)T η

)
≥ O(T η) where ẋ is within BηT (x0). Thus, Condition 1.4 and

the fact that 1− FY |X=x0 (un) = O(n−1) yield that for any x ∈ BηT (x0) ∩ {x : ξ(x) > 0},∣∣∣∣∣∣∣∣∂FY |X=x (un) /∂x

1− FY |X=x0 (un)

∣∣∣∣∣∣∣∣
= O

(
n× u−γ(x)

n log un

)
= O (exp (log n− γ(x) log un + log (log un)))

≤ O(exp (log n− T η log un + log (log un)))

= o(1).

For the second term in (30), apply Leibniz’s rule and Condition B.(ii) to obtain

sup
x∈BηT (x0)∩{x:ξ(x)=0}

∣∣∣∣∣∣∣∣∂FY |X=x (un) /∂x

1− FY |X=x0 (un)

∣∣∣∣∣∣∣∣
≤ sup

x∈BηT (x0)∩{x:ξ(x)=0}
Cn

∫ y0

un

yC3fY |X=x(y)dy

≤ Cn

∫ y0

un

yC3+C̄T exp(−DT (log y)2)dy (31)

= Cn

∫ y0

log un

exp(−DT s
2 + (C3 + C̄T + 1)s)ds (by change of variables)

= O(1),

where we denote C̄T = supx∈BηT (x0) c̃(x) <∞ and DT = infx∈BηT (x0) d(x) > 0, and the last equa-

tion follows from that un is at most of the order exp(
√

2 log n) and the fact that the 1 − 1/n quantile

of a normal distribution is O(
√

log(n)).
For (b), we similarly derive

sup
x∈BηT (x0)

∣∣∣∣∣∣∣∣∂fY |X=x (un) /∂x

fY |X=x0 (un)

∣∣∣∣∣∣∣∣ ≤ max

{
sup

x∈BδT (x0)∩{x:ξ(x)>0}

∣∣∣∣∣∣∣∣∂fY |X=x (un) /∂x

fY |X=x0 (un)

∣∣∣∣∣∣∣∣ ,
sup

x∈BδT (x0)∩{x:ξ(x)=0}

∣∣∣∣∣∣∣∣∂fY |X=x (un) /∂x

fY |X=x0 (un)

∣∣∣∣∣∣∣∣
}
.

Using (29) and Condition B.(i), we have
∣∣∣∣∂fY |X=x (un) /∂x

∣∣∣∣ = O
(
u
−γ(x)−1
n γ (x)

)
+ O

(
u
−γ(x)
n

)
when ξ(x) > 0. By Condition B.(ii) and under ξ(x0) = 0, we have

1/fY |X=x0(un) ≤ Cun exp
(
D̄TC2u

C3
n

)
where we denote D̄T = supx∈BηT (x0) d(x) > 0. Thus
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for any x ∈ BδT (x0) ∩ {x : ξ(x) > 0},∣∣∣∣∣∣∣∣∂fY |X=x (un) /∂x

fY |X=x0 (un)

∣∣∣∣∣∣∣∣
≤ Cun exp

(
D̄TC2u

C3
n

) (
u−γ(x)−1
n γ (x) + u−γ(x)

n

)
= Cun exp

(
D̄TC2u

C3
n − (γ (x) + 1) log (un) + log γ (x)

)
+unC exp

(
D̄TC2u

C3
n − γ (x) log (un)

)
≤ Cun exp

(
D̄TC2u

C3
n − T−η log (un) + log γ (x)

)
= o(1),

where the last line follows from Condition 1.4 and the fact that un is at most of the order

exp(
√

2 log n).

The second term is bounded by

sup
x∈BηT (x0)

∣∣∣∣∣∣∣∣c1(x)

c(x)
+

1

un
c̃1(x) + d1(x)d̃(un) +

r1(x, un)

1 + r(x, un)

∣∣∣∣∣∣∣∣
≤ O(uC3n ) ≤ O((log(n))C3/2).

Thus (b) for ξ(x0) = 0 is established. �
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