
China’s Housing Bubble, Infrastructure Investment,

and Economic Growth

Shenzhe Jiang, Jianjun Miao, and Yuzhe Zhang∗

December 18, 2019

Abstract

China’s housing prices have been growing rapidly over the past few decades, despite low
growth in rents. We study the impact of housing bubbles on China’s economy, based on the
understanding that local governments use land-sale revenue to fuel infrastructure investment.
We calibrate our model to the Chinese data over the period 2003-2013 and find that our cali-
brated model can match the declining capital return and GDP growth, the average housing price
growth, and the rising infrastructure to GDP ratio in the data. We conduct two counterfactual
experiments to estimate the impact of a bubble collapse and a property tax.

Keywords: Housing Bubble, Infrastructure, Economic Growth, Chinese Economy, Property
Tax.
JEL codes: O11, O16, O18, P24, R21, R31.

∗Jiang: Institute of New Structural Economics, Peking University, Beijing, China. Email: shenzhe-
jiang@nsd.pku.edu.cn. Miao: Department of Economics, Boston University, 270 Bay State Road, Boston, MA
02215, USA. Email: miaoj@bu.edu. Zhang: Department of Economics, Texas A&M University, College Station, TX,
77843. Email: zhangeager@tamu.edu. We thank Pedro Bento, Kaiji Chen, Li Gan, Dennis Jansen, Guoqiang Tian,
Anastasia Zervou, Sarah Zubairy, Xiaodong Zhu, and participants at the seminar in Texas A&M University and
several conferences for helpful comments.



1 Introduction

China implemented a series of market-oriented housing reforms in the 1990s. Since then, the Chinese

real estate market has experienced a dramatic and long-lasting boom. This boom has an important

impact on the Chinese macroeconomy. Based on annual data during the period 2003-2013, we find

the following stylized facts as detailed in Section 2:

• The growth rates of GDP were high on average (10%) and declined over time.

• The growth rates of housing prices were high on average (10%) and the growth rates of rents

were low on average (0.5%).

• The residential investment to GDP ratios were high on average (8.6%) and increased over

time.1

• The government land-sale revenue to GDP ratios increased over time.

• The infrastructure investment to GDP ratios increased over time.2

• The returns to capital were high on average (10%) and declined over time.

In this paper we propose a two-sector overlapping-generations (OLG) model to explain these

facts. The model features a housing sector that produces houses using land, capital, and labor as

inputs, and a nonhousing sector that produces a final nonhousing good using capital and labor as

inputs. There are two key ingredients in our model. First, rational expectations of lower returns

to capital in the long run can induce current generations of entrepreneurs to seek alternative stores

of value for their rapidly growing wealth. In a financially underdeveloped economy with a shortage

of financial assets, housing becomes a natural investment option for current entrepreneurs, who

rationally anticipate a strong demand for such assets by future generations. Speculation and low

growth rates of housing rents together sustain a self-fulfilling growing housing bubble.

Second, we incorporate China’s institutional feature of land policies. In China land is owned by

the state and local governments collect land-transferring fees through land sales. High land prices

associated with high housing prices generate a large revenue for local governments, and Chinese law

requires that a certain fraction of the land-sale revenue be used toward infrastructure investment.

Thus a housing bubble can lead to increased infrastructure investment, which in turn facilitates

production and raises nonhousing firms’ productivity. This crowding-in effect of a housing bubble

can raise GDP and economic growth.

1In contrast, the US average ratio was 4.2% and the highest was 6.7% according to the US quarterly data over
2003Q1-2013Q4.

2Based on the IMF Investment and Capital Stock data set, China had the highest ratio of the infrastructure stock
to the capital stock among the 15 largest economies in 2015.
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On the other hand, a housing bubble can harm economic growth, because of the resource real-

location effect and the traditional crowding-out effect on capital accumulation (Tirole (1985)). In

particular, purchases of the housing asset crowd out entrepreneurs’ resources for capital investment.

This crowding-out effect lowers GDP growth. Moreover, in our two-sector model, capital and la-

bor flow into the housing sector from the nonhousing sector in the wake of rising housing prices.

This resource reallocation effect lowers nonhousing sector output and raises residential investment.

When the housing sector accounts for a small share of the economy, a housing bubble causes GDP

to decline in the long run.

After using a simplified model to illustrate our story in Section 3, we calibrate an extended model

to confront the Chinese data during the period 2003-2013. We find that our quantitative model

can explain the stylized facts described earlier. We also conduct a growth accounting exercise to

understand how housing bubbles affect economic growth. We find that the decline of GDP growth

over 2003-2013 is due to the decline of nonhousing sector growth, which is driven mainly by the

decline of capital growth, as capital flows from the nonhousing sector into the bubbly housing

sector.

A standard model without housing bubbles has difficulty explaining the above stylized facts.

Such a model implies that the housing price and rents grow at the same rate in the long run, so

the model cannot generate a long-lasting boom of housing prices given the very low rent growth in

China. As a result, the standard model also has difficulty explaining the rapid growth of land-sale

revenue, residential investment, and infrastructure investment.

We next consider two counterfactual experiments. There have been substantial concerns in

China’s academic and policy circles that rising housing prices might have developed into a gigantic

housing bubble, which might eventually burst and damage China’s economy. To control housing

prices, the Chinese government has considered a property tax for more than a decade, but has not

implemented it so far. We use our calibrated model to answer two counterfactual questions: (1)

what would the consequence of a housing bubble crash be? and (2) how would adopting a property

tax affect the economy?

For the first question, we suppose that the housing bubble collapses in 2025, and then simulate

the equilibrium dynamics afterwards. Unsurprisingly, the market prices of all existing houses would

take a big hit. Since newly built houses enter GDP, China’s GDP growth rate would decrease from

5% to 2.6% in 2025. After a few years, GDP would gradually recover and rise above the level in the

case with no bubble collapse. The reason is that collapsed housing prices reduce the government’s

land-sale revenue, and consequently fewer resources are invested in infrastructure and housing

assets. With more capital invested in the nonhousing sector and with labor flowing back into

the nonhousing sector, increased output from this sector would make up for the lost value of new

houses.
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To answer the second question, we suppose that the Chinese government imposes a permanent

1.5% property tax on all homes starting in 2025 and uses the property tax revenue to finance infras-

tructure investment.3 This policy would immediately reduce the bubble size in 2025 because the

after-tax return of owning a home would be lower. GDP also would decline in 2025. However, after

30 years, GDP would be 18.5% higher due to higher accumulation of capital because entrepreneurs

would have invested more in capital and capital also would have flowed from the housing sector

into the nonhousing sector.

Related literature. Our paper is related to three strands of the literature and contributes to the

literature by providing the first quantitative study of the impact of Chinese housing bubbles on

infrastructure investment and economic growth.

First, our paper is related to the recent literature on housing bubbles (Arce and López-Salido

(2011), Zhao (2015), Chen and Wen (2017), and Dong et al. (2019)).4 Arce and López-Salido (2011)

and Zhao (2015) consider endowment economies in the OLG framework, while Dong et al. (2019)

introduce production in an infinite-horizon growth model. Our paper is most closely related to

Chen and Wen (2017) with three main differences. First, Chen and Wen (2017) do not distinguish

between land and housing and assume that they are a pure bubble asset without fundamentals. In

our model, housing firms use land as an input to produce houses, which pay rents so that houses

have fundamental value. Second, Chen and Wen (2017) only focus on the crowding-out effect of

the housing bubble as in Tirole (1985).5 They do not study the Chinese institutional feature that

the government uses land sales to finance infrastructure investment and the associated crowding-in

effect. Finally, Chen and Wen (2017) assume that housing supply is exogenously fixed, while we

explicitly model the endogenous supply in the housing sector as in Dong et al. (2019). Chen and

Wen (2017) consider two sectors with state-owned and private firms producing the same final good,

while we study two sectors with housing and nonhousing firms producing different products.

Our paper is also related to a second strand of literature that studies how asset bubbles crowd

in capital through the collateral channel as in Kiyotaki and Moore (1997), including Martin and

Ventura (2012), Farhi and Tirole (2012), Miao et al. (2015), Hirano and Yanagawa (2016), and Miao

and Wang (2014, 2018). In these papers bubbly assets can be used as collateral or simply raise net

worth. The bursting of a bubble tightens the firms’ credit constraints, forcing them to cut back

investment. Although the collateral channel of the housing bubble is essential in understanding the

impact of crashes in the 1989 Japanese housing market and in the 2007 U.S. housing market, its

3The average property tax rate in the US across all states is around 1.4%.
4There is also a literature that studies housing prices without bubbles using DSGE models. Important papers

include Davis and Heathcote (2005), Iacoviello (2005), Iacoviello and Neri (2010), and Liu et al. (2013), among others.
Our paper does not follow this approach.

5In an empirical study, Chen et al. (2017) find evidence that a higher land price crowds out firms’ investment
unrelated to acquiring commercial land.
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importance in China is still under debate.

In an empirical study, Wu et al. (2015) find that the collateral channel effect in China does not

exist either for firms overall or for private firms, while Chen et al. (2015) provide empirical evidence

that this effect is significant for private firms, but not significant for state-owned enterprises. As

Song et al. (2011) point out, most of private firms’ investment comes from self-financing and only

10% comes from bank loans. Since private firms’ investment accounted for around 25% of total

investment during the period 2006-2013, even if we assume that all loans to private firms require

residential housing as collateral, only 2.5% of total investment would be affected by the real estate

price through the collateral channel. This number can be smaller in the data because it is typically

small private firms that use housing as collateral. For all these reasons, neither Chen and Wen

(2017) nor our model considers the collateral channel of housing prices.

Miao and Wang (2014) study a two-sector infinite-horizon model of stock price bubbles based

on the collateral channel. They show that the emergence of a bubble in one sector may misallocate

resources and retard economic growth. They do not focus on housing bubbles and their quantitative

implications as we do in this paper.

Finally, our paper is related to a large literature on the role of government spending in economic

growth, e.g., Barro (1990), Baxter and King (1993), Glomm and Ravikumar (1994), and Bassetto

and Sargent (2006). As in the literature, efficiency in our model requires a good balance between

infrastructure investment and private capital investment. This literature does not study housing

bubbles and their impact on infrastructure investment. Our model also differs from this literature in

modeling the government budget constraint. While infrastructure is purely funded by tax revenue

in the literature, here it is also funded by the government sale of land to the housing sector.

Xiong (2019) uses a tournament model to show that Chinese local governments have a strong

incentive to invest in infrastructure. He does not study our central issue of housing bubbles. We

try to uncover local governments’ source of funding. In particular, we emphasize the channel of

the land-sale revenue, which accounts for more than half of local governments’ revenue and is the

collateral for more than half of their debt. Supporting our model, Mo (2018) finds evidence that

Chinese local governments tend to increase investment in infrastructure when holding a large share

of land-sale revenue in the total government revenue.

2 Stylized Facts

In this section we first describe some stylized facts based on China’s aggregate annual data over

2003-2013 and then provide empirical evidence that supports our model mechanism based on

China’s province-level data.
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2.1 Aggregate Evidence

As Wu et al. (2014), Chen and Wen (2017), and Fang et al. (2015) point out, the official national

housing price indices published by the Chinese government tend to underestimate housing price

growth due to measurement problems and the failure of controlling for housing quality. To correct

these issues, Wu et al. (2014) and Fang et al. (2015) propose new methods to construct Chinese

housing price indices. We adopt the data of Fang et al. (2015) because they cover 120 major cities

over 2003-2013, while the data of Wu et al. (2014) cover only 35 major cities over 2006-2010. As a

result, we focus all our (annual) data on the period over 2003-2013 and find the following stylized

facts (see Figure 1):

• High and declining GDP growth. The average growth rate of GDP was 10% based on the

data from the China Statistical Yearbook. The GDP growth rate decreased from more than

14% to 7% during the period 2003-2013.

• High growth rates of housing prices and low growth rates of rents. After adjusting for inflation,

we find that the average growth rate of real housing prices was 10%. By contrast, the average

growth rate of housing rents was only 0.5%. The housing rents correspond to the urban

household renting price indices taken from the National Bureau of Statistics of China (NBSC).

• Increasing residential investment to GDP ratios. The residential investment to GDP ratio

increased from 6% in 2003 to 11% in 2013 based on data from the NBSC. The average ratio

during this period was 8.6%.

• Increasing land-sale revenue to GDP ratios. The land-sale revenue data are taken from the

Finance Yearbook of China issued by the Chinese Ministry of Finance. The land-sale revenue

increased from 4% of GDP to 7% of GDP, and became the most important source of income

for Chinese local governments. The average ratio during the period 2003-2013 was 4.9%. The

land-sale revenue accounted for 25% of total fiscal income on average over 2003-2013, and the

share increased to more than 30% after 2009.

• Increasing infrastructure investment to GDP ratios. China does not directly report public in-

vestment data. Following Jin (2016) and Wu et al. (2019), we define infrastructure investment

as the total investment across four industries: (1) production and supply of electricity, gas,

and water; (2) transport, storage, and post; (3) information transmission, computer services,

and software (or telecommunications and other information transmission services); and (4)

management of water conservancy, environment and public facilities. The infrastructure in-

vestment to GDP ratio increased dramatically from 6.5% to 9.7% during the period 2003-2013

based on data from the NBSC. The average ratio during this period was 7.5%.
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• High average and declining capital returns. Bai et al. (2006) construct post-tax capital return

data for 1978-2005 and Bai and Zhang (2014) extend these data to 2013. Based on their data,

we find that the average capital return was 10% during the period 2003-2013. The capital

return dropped dramatically from 15% in 2003 to 5% in 2013.

[Insert Figure 1 Here.]

2.2 Cross-province Evidence

In this subsection we provide micro-level evidence to support our key model mechanism: high

housing price growth stimulates infrastructure investment, but crowds out capital investment and

labor in the nonhousing sector.

We adopt annual province-level data from the NBSC, which reports annual GDP, fixed asset

investment in different sectors, and average newly built housing prices for 31 provinces. Infrastruc-

ture investment is measured by the province-level fixed asset investment in infrastructure. Capital

investment is computed as the gross fixed asset investment minus infrastructure and residential

investments. Housing prices are deflated by the CPI, all investment data are deflated by the in-

vestment goods price index, and GDP is deflated by the GDP deflator. We use the population

working in the manufacturing sector as a proxy for employment (labor) in the nonhousing sector.

The labor data cover 2008-2015 and all other data cover 2003-2015.

The regressions are specified as follows:

yi,t = αi + γt + β0 ∗ growth hpi,t + β1 ∗ growth gdpi,t + εi,t,

where growth hpi,t is the growth rate of housing prices in province i at year t, growth gdpi,t is the

GDP growth rate in province i in year t, and αi and γt are province fixed effects and year fixed

effects. The variable yi,t represents the growth rates of infrastructure investment (growth infr),

capital investment (growth capital), and labor (growth labor), respectively. The regression results

are reported in Table 1.

We find that all slope coefficients of housing price growth are significant. The coefficient is

positive for infrastructure investment, but negative for capital investment and labor. These results

show that high price growth is associated with increased infrastructure investment growth, but

decreased capital investment growth and decreased labor growth in the nonhousing sector.

3 Basic Model

In this section we provide a small open economy two-sector OLG model of housing bubbles based

on Tirole (1985) and Chen and Wen (2017). We make the following simplifying assumptions to

illustrate the main model mechanism: (1) there is no population growth or technical progress; (2)
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Table 1: Cross-province panel regressions

(1) (2) (3)
VARIABLES growth infr growth capital growth labor

growth hp 0.0645∗ −0.1832∗∗∗ −0.0969∗∗

(0.032) (0.043) (0.037)
growth gdp 0.3278 1.2913∗∗∗ 0.1101

(0.288) (0.183) (0.195)
Observations 372 372 217
Adjusted R-squared 0.284 0.410 0.232
Province Yes Yes Yes
Year Yes Yes Yes

Note: Robust standard errors in parentheses ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

the housing asset does not pay any rents and therefore is a pure bubble; (3) capital depreciates

fully; and (4) the government runs a balanced budget. We will relax these assumptions in Section

4 to confront the data.

3.1 Households

As in Song et al. (2011) and Chen and Wen (2017), there are two types of households in our small

open economy: workers and entrepreneurs. They both live for two periods. Time runs forever and

is denoted by t = 0, 1, 2, · · · . At the initial time t = 0, there is an old worker who is endowed with

bonds b0, and there is an old entrepreneur who is endowed with k0 units of capital and h0 units

of a housing asset. In each period t ≥ 0, a young worker and a young entrepreneur are born to

replace the old. Each young worker supplies one unit of labor inelastically. After receiving their

wage income, young workers choose consumption and savings. Because they are assumed to be

out of the domestic capital and housing markets, they save only through risk-free bonds. The

optimization problem for a newborn worker of age 1 is given by

max log(cw1,t) + β log(cw2,t+1)

s.t. cw1,t + bt+1 = wt,

cw2,t+1 = Rfbt+1,

where cw1,t and cw2,t+1 are their consumption when young and old, β ∈ (0, 1) is the discount factor,

wt is the wage rate, bt+1 is the holding of the risk-free bond, and Rf is the exogenous interest rate

in the international financial market.

Entrepreneurs have the same preferences as workers. After inheriting an initial wealth level mt

from an old entrepreneur, a young entrepreneur of age 1 in period t can invest in both capital and
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housing to solve the following problem:

max log(ce1,t) + β log(ce2,t+1)

s.t. ce1,t + kt+1 +Qtht+1 = mt,

ce2,t+1 = Rt+1kt+1 +Qt+1(1− δh)ht+1,

where ce1,t and ce2,t+1 are their consumption when young and old, ht+1 ≥ 0 is their holdings of the

housing asset, Qt ≥ 0 is the price of housing, kt+1 ≥ 0 is their holdings of capital, Rt+1 is the

capital return between periods t and t+ 1, and δh is the depreciation rate of housing. In the simple

model housing is a pure bubble asset without any fundamentals and hence its fundamental value

is zero. Entrepreneurs trade houses for speculation. Assume that entrepreneurs cannot borrow

and Rf < Rt+1.6 Then entrepreneurs will not hold any bond in equilibrium. We will relax the

no-borrowing assumption in Section 4.

Since the utility function is logarithmic, the entrepreneur’s optimal saving is given by

kt+1 +Qtht+1 =
β

1 + β
mt. (1)

They will invest in both capital and housing only if the following no-arbitrage condition is satisfied:

Rt+1 =
Qt+1(1− δh)

Qt
for Qt > 0. (2)

That is, the returns on housing and capital are the same.

3.2 Nonhousing Sector

Each old entrepreneur owns a firm that produces the final consumption good using capital and

labor as inputs. After investment of kt+1 at time t, each old entrepreneur at t+ 1 receives output

given by

yt+1 ≡ Âθt+1k
α
t+1n

1−α
c,t+1, α ∈ (0, 1) ,

where kt+1 and nc,t+1 are the firm’s capital and labor, Ât+1 is the firm’s productivity, and θ > 0

is an elasticity parameter. Following Glomm and Ravikumar (1994), we assume that the firm’s

productivity depends on infrastructure in the following way:

Ât+1 ≡ At+1/(K
ρ
t+1N

1−ρ
c,t+1),

where At+1 is the aggregate infrastructure stock and ρ ∈ (0, 1) is a parameter. We normalize At+1

by aggregate capital Kt+1 and aggregate labor Nc,t+1 for two reasons. First, in many cases, such as

highways, utilities, and bridges, the productivity of infrastructure is indeed diluted by congestion

6We will verify this assumption in equilibrium. During the period 2003-2013, China’s average capital return was
above 10% while its deposit rate was around zero.
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when more people or firms use the same piece of infrastructure. Second, as Glomm and Ravikumar

(1994) point out, in a model with endogenous infrastructure, the steady-state or balanced-growth

path is not guaranteed if At+1 is not normalized.

The old entrepreneur in period t + 1 pays the government output tax at the rate τ , pays the

worker wt+1nc,t+1 as wage, and pays the young entrepreneur a fraction ψ of after-wage income

(1− τ)yt+1 − wt+1nc,t+1 as initial wealth, i.e.,

mt+1 = ψ ((1− τ)yt+1 − wt+1nc,t+1) . (3)

The remainder is Rt+1kt+1, which can be written as

Rt+1kt+1 ≡ max
nc,t+1

(1− ψ)
[
(1− τ)Âθt+1k

α
t+1n

1−α
c,t+1 − wt+1nc,t+1

]
.

We make the following assumption on parameters:

Assumption 1 α− ρθ > 0 and α+ (1− ρ)θ < 1.

The first inequality in this assumption guarantees the marginal return to capital is positive.

The second inequality guarantees the return on the whole reproducible part (infrastructure and

capital) is weakly decreasing.

Let

φt ≡
Qtht+1

kt+1 +Qtht+1

denote the fraction of housing investment in a young entrepreneur’s saving. By (1) and the definition

of mt, we can derive

kt+1 = (1− φt)
β

1 + β
mt = (1− φt)

β

1 + β
ψα(1− τ)yt. (4)

Clearly, the emergence of a housing bubble in the sense that Qt > 0 crowds out capital investment

as φt ∈ (0, 1) .

3.3 Housing Sector

There is a continuum of competitive firms producing houses using labor and land as inputs. We

do not consider capital input in the basic model for simplicity. We will relax this assumption in

our quantitative model of Section 4. Each housing firm purchases land from the government that

is the sole supplier at the price pLt at time t. Workers are freely mobile across the housing and

nonhousing sectors. Each housing firm sells newly built houses to entrepreneurs at the price Qt.

Its profit maximization problem is given by

max
lt,nh,t

Qtl
αl
t n

1−αl
h,t − pLtlt − wtnh,t,
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where αl ∈ (0, 1) is an elasticity parameter, and lt and nh,t are the demand for land and labor,

respectively.

Due to the constant-returns-to-scale technology, aggregation implies that total newly built

houses Yh,t satisfy

Yh,t = Lαlt N
1−αl
h,t ,

where Lt is the aggregate land supply set exogenously by the government and Nh,t is the aggregate

labor hired by the housing sector. The total housing stock Ht evolves according to

Ht+1 = (1− δh)Ht + Yh,t.

3.4 Government and Infrastructure

The government supplies Lt units of land to the market exogenously in period t. To guarantee

the existence of a bubbly steady state, we assume that limt→∞ Lt = L∗ > 0, where L∗ is the land

supply in the long run.

For simplicity suppose that the government runs a balanced budget without issuing bonds.

Its only spending is infrastructure investment. Thus the government infrastructure expenditure is

equal to its total revenue τYt + pLtLt, where Yt denotes aggregate final good output. The stock of

infrastructure evolves as

At+1 = (1− δa)At + τYt + pLtLt, (5)

where δa is the depreciation rate of infrastructure.

3.5 Resource Constraint

The budget constraints of workers imply

cw1,t + cw2,t + bt+1 = wt +Rfbt, (6)

where cw1,t + cw2,t is the sum of the consumption of old workers of generation-(t − 1) and young

workers of generation-t. In the domestic market the resource constraint is

At+1 − (1− δa)At + ce1,t + ce2,t +Kt+1 + wt = Yt. (7)

Because of constant-returns-to-scale technology, aggregate nonhousing output satisfies

Yt = ÂθtK
α
t N

1−α
c,t ,

where Nc,t = 1−Nh,t denotes aggregate labor in the nonhousing sector. In the simple model GDP

is defined as the sum of nonhousing output Yt and residential investment QtYh,t.

Summing up (6) and (7) yields

At+1 − (1− δa)At +Kt+1 + ce1,t + ce2,t + cw1,t + cw2,t + bt+1 −Rfbt = Yt. (8)
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On the left side of equation (8), At+1 − (1 − δa)At is the infrastructure investment, Kt+1 is the

private capital investment, bt+1−Rfbt is the surplus in the current account, and the rest is aggregate

consumption.

3.6 Equilibrium

The equilibrium of the economy is defined as follows.

Definition 1 An equilibrium is a sequence of prices {wt, Rt, Qt, pLt}∞t=0, savings {bt, kt, ht}∞t=0,

consumption {cw1,t, cw2,t+1, c
e
1,t, c

e
2,t+1}∞t=0, labor supply/demand {Nc,t, Nh,t}∞t=0, and infrastructure

{At}∞t=0 such that (i) workers and entrepreneurs maximize their lifetime utilities; (ii) firms maxi-

mize profits; (iii) the government budget constraint (5) is satisfied; and (iv) the labor, capital, land,

and housing markets clear.

In the rest of this paper, we call an equilibrium bubbleless if Qt = 0 for all t, and call an

equilibrium bubbly if Qt > 0 for all t. While the former equilibrium always exists, the latter

depends on parameters. In the bubbleless equilibrium, the housing price is zero and hence the land

price pLt is also zero. Thus the housing and land markets disappear. The government finances

infrastructure investment using output taxes only.

There are two steady states in our basic model: one is bubbleless and the other is bubbly. We

use a variable without a time subscript to denote its steady-state value and add superscript n or b

to denote its bubbleless or bubbly steady-state value, respectively. We first consider the bubbleless

steady state and show that

An = δ−1
a τY n, (9)

Kn =
β

1 + β
αψ(1− τ)Y n, (10)

where (9) follows from (5) with pnL = 0, and (10) follows from (4) with φn = 0. Moreover, the

bubbleless steady-state return on capital is equal to

Rn =
(1− ψ) (1− τ)αY n

Kn
=

(1− ψ)(1 + β)

ψβ
. (11)

Next we analyze the bubbly steady state in the following proposition. Its proof and the proofs

of other results in the paper are relegated to Appendix A.

Proposition 1 A unique bubbly steady state exists if

z ≡ (1− ψ)(1 + β)

(1− δh)ψβ
< 1. (12)

Moreover,

φb = 1− z, (13)

N b
c =

(1− φb)(1− α)(1− δh)

(1− φb)(1− α)(1− δh) + φbδh(1− αl)α(1− ψ)
, (14)
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Ab = δ−1
a αlδhφ

b β

1 + β
αψ(1− τ)Y b + δ−1

a τY b, (15)

Kb = (1− φb) β

1 + β
αψ(1− τ)Y b. (16)

The variable z defined in (12) is equal to the proportion of capital holdings in the entrepreneur’s

savings by (13). There are two senses in which condition z < 1 is needed for the existence of a

bubbly steady state. First, the bubble accounts for a fraction φb = 1 − z of the entrepreneur’s

saving. We need z < 1 to guarantee φb > 0. Second, it follows from (11) that condition (12)

requires that Rn < 1 − δh = Rb. Imposing an upper bound on the bubbleless steady-state capital

return is a standard assumption in the literature for a bubble to exist. As pointed out by Tirole

(1985), only if the bubbleless steady-state capital return is sufficiently low can a bubbly asset be

traded as an alternative channel to save. Our upper bound 1 − δh is less than the standard value

of 1 from the literature on bubbles, because the bubbly steady-state return on housing (which is

also equal to the capital return) is 1− δh due to housing depreciation by (2).

Equations (15) and (16) show that the bubbly steady-state levels of infrastructure and capital

are linear in output. Equation (15) shows that the bubbly steady-state infrastructure level is

financed by output taxes and the land-sale revenue generated by the housing bubble.

The following proposition characterizes the global equilibrium dynamics.

Proposition 2 Consider an economy with given initial condition {K0, A0, H0}. If z ≥ 1 where z

is given in (12), then no bubbly equilibrium exists. Otherwise, there is a unique Q̂0 > 0 such that

(i) if 0 < Q0 < Q̂0, then a bubbly equilibrium exists in which limt→∞Qt = 0;

(ii) if Q0 = Q̂0, then a bubbly equilibrium exists in which Qb ≡ limt→∞Qt > 0;

(iii) if Q0 > Q̂0, then no bubbly equilibrium exists.

To understand the intuition for Proposition 2, we explain how the long-run housing price,

limt→∞Qt, depends on the initial Q0. With a higher Q0, more private capital K1 is crowded out,

and capital return R1 becomes higher due to the diminishing marginal product of capital. The

no-arbitrage condition (2) then implies a higher growth rate Q1/Q0. Using this argument for all

the future dates, we conclude that higher Q0 raises the growth rate Qt+1/Qt for all t. If Q0 is

sufficiently high, then the housing price explodes and cannot be sustained in equilibrium. If Q0 is

sufficiently low, then the housing price declines to zero in the long run. There is a unique value

Q̂0 > 0 such that when Q0 = Q̂0, the housing price converges to a positive limit.

3.7 Inspecting the Mechanism

In Tirole (1985) and Chen and Wen (2017), a bubble crowds out private capital and lowers output

in the steady state. This is the traditional crowding-out effect of a bubble. In our model, however,
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a housing bubble also helps the government accumulate more infrastructure, thus raising the pro-

ductivity and production of the nonhousing sector. This is the crowding-in effect introduced in our

paper. Moreover, there is a factor reallocation effect in our model in that a housing bubble causes

labor to flow from the nonhousing sector into the housing sector. We study these three effects in

this subsection.

First we compare the steady-state infrastructure, capital, and output with and without a bubble.

Proposition 3 We have the following relationships in the bubbly and bubbleless steady states:

Kb

Kn
= (1− φb) Y

b

Y n
,

Ab

An
=

(
1 +

αlδhφ
bβαψ(1− τ)

(1 + β)τ

)
Y b

Y n
,

(
Y b

Y n

)1−α−(1−ρ)θ

=

(
1 +

αlδhφ
bβαψ(1− τ)

(1 + β)τ

)θ
(1− φb)α−ρθ(N b

c )1−α−(1−ρ)θ, (17)

where N b
c is given by (14).

From this proposition we can see that

Kb

Kn
<
Y b

Y n
<
Ab

An
.

Thus, it is possible that Y b > Y n, but Kb < Kn. That is, the crowding-out effect on capital is

dominated by the crowding-in effect on infrastructure. If the expression on the right-hand side of

(17) is greater than 1, then Y b > Y n. This expression gives the determinants of Y b/Y n.

Under Assumption 1, a higher θ strengthens the crowding-in effect because it increases the

sensitivity of output to infrastructure. The first term on the right-hand side of (17) captures the

impact of infrastructure funded by the land sale, while −φb in (1− φb)α−ρθ captures the crowding-

out effect on capital. The last term related to N b
c < 1 captures the reallocation effect on labor. If

there is no housing bubble in the basic model, we have N b
c = 1 because the housing sector does not

exist.

In general the above three effects are time varying along a transition path. The next two

numerical examples illustrate these time-varying effects by comparing equilibrium paths with and

without a bubble. Both paths start from the same initial condition (A0,K0), and the land supply

is fixed at L∗ in each period.

[Insert Figure 2 Here.]

In the first example, we set (A0,K0) = (An,Kn). Then the bubbleless equilibrium stays forever

in the bubbleless steady state. We choose parameter values such that Y b > Y n. The top six
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panels of Figure 2 present the transition dynamics. Panel A shows that bubbly output Y b
t in the

nonhousing sector is slightly lower at t = 0 due to the reallocation effect on labor, but eventually

higher than bubbleless output Y n. Panels B and C show residential investment (QtYh,t) and

GDP, respectively.7 Panels D, E, and F illustrate the crowding-in effect of the housing bubble on

infrastructure, the reallocation effect on labor, and the crowding-out effect on capital, respectively.

The crowding-out and reallocation effects dominate during the early stage of the transition. But

the crowding-in effect gradually catches up and eventually dominates.

In the second example, we set small initial values for A0 and K0, which are all smaller than the

bubbleless steady-state values. Choose parameter values such that Y b < Y n. The bottom six panels

of Figure 2 present the transition dynamics. We find that nonhousing output Y b
t in the bubbly

equilibrium is initially (t = 0) lower than Y n
t in the bubbleless equilibrium due to the reallocation

effect on labor. From t = 1 until t = 49, Y b
t is higher than Y n

t because the crowding-in effect on

infrastructure dominates the crowding-out effect on capital and the reallocation effect on labor.

But Y b
t is eventually lower than Y n

t in the long run as the crowding-in effect is dominated. Even

though the reallocation effect of a housing bubble raises residential investment, GDP is lower in

the bubbly steady state than in the bubbleless steady state because the housing sector accounts

for a small share of the economy.

To summarize, our basic model has illustrated the traditional crowding-out effect of a housing

bubble, the reallocation effect on labor, and a new crowding-in effect on infrastructure associated

with the land sale by the Chinese local governments. To quantify these effects on the macroeconomy,

we will calibrate our model in the next section.

4 Quantitative Analysis

To confront China’s data, we extend our basic model in several ways. In particular, we introduce

population growth and technology growth. We allow the housing asset to pay rents and thus its

fundamental value is nonzero. The presence of a bubble permits housing prices to grow much faster

than rents. We also introduce a stochastic housing bubble to conduct counterfactual experiments

(Weil (1987)). We then calibrate this extended model and analyze its quantitative predictions.

Appendix B presents the technical details for this model.

4.1 Stochastic Bubbles

Assume that all agents have common beliefs that the housing price is random and follows a two-

state Markov process. In the bubbly state the housing price contains a bubble component. The

bubble collapses with probability pt in period t ≥ 0. Unlike Weil (1987) we allow the bursting

7Notice that residential investment is zero in the bubbleless equilibrium of the basic model because Qt = 0 when
housing does not pay rents.

15



probability pt to vary over time. After the bubble collapses, the economy enters the fundamental

state and stays there forever. The housing bubble cannot reappear. Given rational expectations,

all equilibrium variables are stochastic and contingent on the state. There is no other shock in the

model. When necessary, we use a variable with superscript + (−) to denote its value in the bubbly

(fundamental) state.

Assume that both workers and entrepreneurs live for T > 2 years, and workers retire at age J .

The population of both workers and entrepreneurs grows at a constant rate gn. A newborn worker

of age 1 solves the following utility maximization problem:

max E

 T∑
j=1

βj−1 log(cwj )


s.t. cwj + bwj+1 =

{
w +Rfbwj , 1 ≤ j ≤ J ;

Rfbwj , J + 1 ≤ j ≤ T,
bw1 = 0, bwT+1 = 0,

where cwj is age-j worker’s consumption and bwj denotes bonds held at the beginning of age j. Here

the expectation is taken with respect to the probability distribution of the stochastic bubble. A

newborn worker does not have any asset so that bw1 = 0. They do not leave any debt/asset when

they die. After retirement, the worker has no labor income and accumulates wealth from savings

only. For simplicity, we have removed the time subscripts for all variables without risk of confusion.

A newborn entrepreneur in period t has initial endowment mt and chooses their lifetime con-

sumption and investment in bonds, capital, and housing. The endowment mt comes from a fraction

ψ of the firms’ after-tax profits. Housing delivers exogenous rents rt, which grow at the rate gr.

Since the rental market is underdeveloped in China, we do not endogenize rents for simplicity. The

entrepreneur’s utility maximization problem is given by

max E

 T∑
j=1

βj−1 log(cej)


s.t. Qhj+1 + kj+1 + cej + bej+1

=

{
m, j = 1;
Rkj + (Q(1− δh) + r)hj +Rfbej , 2 ≤ j ≤ T ;

(18)

bej+1 ≥ −ξkj+1,

k1 = be1 = h1 = hT+1 = kT+1 = beT+1 = 0,

where cej denotes an age-j entrepreneur’s consumption, and hj and kj are, respectively, their hold-

ings of housing and capital at beginning of age j. Again we have removed the time subscripts.

Notice that we allow entrepreneurs to save or borrow in the international financial market up to

some borrowing limit. An entrepreneur can borrow against at most a fraction ξ of their capital
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assets. We assume that entrepreneurs cannot use residential housing as collateral because such a

practice is uncommon in China (see Wu et al. (2015)).

We make three changes to the firms’ production technologies in the extended model. First,

we introduce labor-augmenting technology growth to match the Chinese economic growth. Let

the labor efficiency et = (1 + ge)
t grow exogenously at the rate ge. Second, we introduce capital

to the housing production function. Assume that both capital and labor are freely mobile across

the housing and nonhousing sectors. Third, we allow the land quality to decline over time at the

rate gl. The reason is that newly supplied land generally has a less preferred location (Davis and

Heathcote (2007) and Fang et al. (2015)). Real estate developers first build houses in cities and

then build houses outside cities over time during the Chinese urbanization process. The quality of

land in cities is better than that in rural areas as housing prices in cities are more expensive than

in rural areas (Fang et al. (2015)).

Formally, let the production function in the housing sector be given by

yh,t = ((1− gl)t lt)αl(kh,t)αk(etnh,t)
1−αl−αk ,

where lt denotes the land input and kh,t denotes the capital input in the housing sector.

Each entrepreneur after age 1 runs both a nonhousing firm and a housing firm, and maximizes

total profits:

Rtkt = max
nc,t,kc,t,nh,t,kh,t,lt

{
(1− ψ)

[
(1− τ)(Ât)

θ(kc,t)
α(etnc,t)

1−α − wtnc,t

+(1− τh)Qt((1− gl)t lt)αl(kh,t)αk(etnh,t)
1−αl−αk − wtnh,t − pLtlt

]
+(1− δk)kc,t + (1− δk)kh,t

}
s.t. kc,t + kh,t = kt,

where kt is total demand for capital across the two sectors, δk is the depreciation rate of capital,

and τh is the tax rate in the housing sector. Here productivity satisfies

Ât =
At

Kρ
c,t (etNc,t)

1−ρ ,

where Kc,t and Nc,t denote the aggregate capital stock and aggregate labor in the nonhousing

sector.

We allow the government to borrow at rate Rf in the extended model. Since more than half of

the local government debt in China uses the land-sale revenue as collateral, we assume the amount

of borrowing, Bg
t+1, is proportional to the land-sale revenue, i.e., Bg

t+1 = ξgpLtLt, where ξg > 0

is a parameter. The government uses debt, taxes, and land-sale revenue to finance infrastructure

investment At+1 − (1 − δa)At and non-infrastructure expenditure Gt. The government budget
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constraint is given by

At+1 − (1− δa)At +Gt +RfBg
t −B

g
t+1

= τ(Ât)
θ(Kc,t)

α(etNc,t)
1−α + τhQt

(
(1− gl)t Lt

)αl (Kh,t)
αk(etNh,t)

1−αl−αk + pLtLt, (19)

where Kh,t and Nh,t are the aggregate capital and labor in the housing sector.

GDP in this economy is the sum of aggregate nonhousing output Yt, residential investment (or

the value of aggregate housing output) QtYh,t, and aggregate rents rtHt:

Yt+QtYh,t+rtHt = (Ât)
θ(Kc,t)

α(etNc,t)
1−α+Qt((1− gl)t Lt)αl(Kh,t)

αk(etNh,t)
1−αl−αk+rtHt. (20)

4.2 No-Arbitrage Pricing Equation

To understand the dynamics of housing prices, it is important to derive the pricing equation for

the housing asset. When the economy is in the fundamental state in period t, it stays in this state

forever. Under binding collateral constraints (which happens when R−t+1 > Rf ), we can derive the

following no-arbitrage condition:

R̃−t+1 =
Q−t+1(1− δh) + rt+1

Q−t
, (21)

where the variable

R̃−t+1 ≡
R−t+1 − ξRf

1− ξ
is the effective capital return, which takes into account the impact of the collateral constraint.8

Equation (21) says that the housing return is equal to the effective capital return. Thus, in the

fundamental state, Q−t is equal to the fundamental value, i.e., the present discounted value of future

rents

Q−t =
∞∑

s=t+1

(1− δh)s−(t+1)rs∏s
i=t+1 R̃

−
i

.

Suppose that the economy is in the bubbly state in period t. Then the housing return is Rh+
t+1 ≡[

(1− δh)Q+
t+1 + rt+1

]
/Q+

t when the economy still stays in this state in period t+1. But the housing

return is Rh−t+1 ≡
[
(1− δh)Q−t+1 + rt+1

]
/Q+

t when the economy moves to the fundamental state in

period t + 1. Similarly, we can compute the effective capital returns under binding borrowing

constraints: R̃+
t+1 ≡

(
R+
t+1 − ξRf

)
/ (1− ξ). The no-arbitrage condition in period t is given by

(1− pt+1)u′(ce+j,t+1)Rh+
t+1 + pt+1u

′(ce−j,t+1)Rh−t+1

= (1− pt+1)u′(ce+j,t+1)R̃+
t+1 + pt+1u

′(ce−j,t+1)R̃−t+1, (22)

where ce−j,t+1 and ce+j,t+1 are age-j entrepreneur’s consumption at t+1 in the fundamental and bubbly

states, respectively. Equation (22) says that the expected utility-adjusted housing return is equal

to the expected utility-adjusted effective capital return as housing bubbles can collapse randomly.

8Substituting the binding collateral constraints into the budget constraint yields Q−t h
−
j+1,t+1 + (1 − ξ)k−j+1,t+1 +

ce−j,t = (R−t − ξRf )k−j,t +
(
Q−t (1 − δh) + rt

)
h−j,t, which gives the expression for the effective capital return R̃−t+1.
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Parameter Description

Rf = 1.003 Annual interest rate
gn = 0.005 Growth of population
gr = 0.005 Growth of rents
τ = 0.13 Tax rate in nonhousing sector
τh = 0.16 Tax rate in housing sector
αl = 0.56 Land income share in housing sector
αk = 0.24 Capital income share in housing sector
α = 0.54 Capital income share in nonhousing sector
θ = 0.1 Output elasticity of infrastructure
ρ = 0.5 Capital congestion elasticity
ζb = 0.46 Share of government expenditure in debt
κ = 0.53 Share of infrastructure investment in land-sale revenue
δh = 0.014 Housing depreciation rate
δk = 0.1 Capital depreciation rate
δa = 0.095 Infrastructure depreciation rate

Table 2: Parameters estimated outside the model

4.3 Calibration

To calibrate parameter values, we simulate our extended model based on the equilibrium paths

when the economy is always in the bubbly state. Suppose that the model economy starts in 2003

and one period in the model corresponds to one year. We focus on the sample period 2003-2013,

during which the national housing-price data are available in China (Fang et al. (2015)). Some

parameters are set exogenously, while the rest are estimated within the model.

We start by discussing parameters chosen exogenously as listed in Table 2. The interest rate

Rf is set as 1.003, matching the average one-year real deposit rate (Song et al. (2011)). Similar

to Song et al. (2011) and Chen and Wen (2017), agents enter the economy at age 22 and live for

T = 50 years, which is consistent with the average life expectancy of 71.4 years from the 2000

Chinese Population Census. Workers retire after working for 30 years. The population growth

rate is set to gn = 0.5%, the average population growth rate during the period 2003-2013 from

the National Bureau of Statistics of China (NBSC) data set. The growth rate of rents is set to

gr = 0.5%, the average growth rate of rents for 2003-2013 according to the NBSC data set. Tax

rates in the housing and nonhousing sectors are τh = 0.16 and τ = 0.13, according to Bai et al.

(2006).

We need to identify the housing sector in the data. In the model, QtYht and Yt represent

the value added of the housing and nonhousing sectors, respectively. In the data, we interpret

QtYht as aggregate residential investment, rtHt as the sum of imputed and market rents, and Yt

as the remainder in the Chinese GDP. Residential investment consists of land-sale revenue, capital

income, and labor income in the real estate sector. We set the share of land-sale revenue αl = 0.56
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to match the average ratio of the land-sale revenue to residential investment in the data. Following

a similar method in Davis and Heathcote (2005), we set the capital income share in the housing

sector αk = 0.24 using China’s input-output table.9

Similarly, we calibrate the capital income share in the nonhousing sector as α = 0.54. The

elasticity of infrastructure is set to θ = 0.1, which is estimated by Bom and Ligthart (2014). Since

our model result is insensitive to ρ, we simply set ρ = 0.5 (i.e., we assume capital and labor have

the same congestion effect). We set depreciation rates (δk, δa) = (0.10, 0.095) to follow Bai et al.

(2006) and Jin (2016), and set δh = 0.014 to match residential housing’s average lifespan of 70

years in China.

Now we choose the remaining parameter values within the model to match certain data moments

over the sample period 2003-2013 (see Table 3). We set β = 0.999 to match the average saving rate

of 48% in China, ψ = 0.42 to match the post-tax capital return of 15% in 2003, ξ = 0.17 to match

the average investment rate of 42%, and the growth rate of labor efficiency ge = 0.036 to match

the average GDP growth rate of 10% for 2003-2013. While the long-run GDP growth rate is equal

to (1 + gn) (1 + ge)− 1 = 4.1%, the average growth rate during the transition period can be much

higher.

Since we will conduct counterfactual experiments in Section 5, we need to calibrate land supply

Lt beyond the period 2003-2013. We choose Lt for 0 ≤ t ≤ 13 to match the land supply in 2003-

2016 taken from the China Land Statistical Yearbook. We normalize the land supply in 2003 to

1 so that L0 = 1. We do not have the land supply data starting from 2017. We assume that the

quantity of land supply since 2017 is a constant equal to the average land supply during the period

2003-2016. As pointed out by Davis and Heathcote (2007), to get constant-quality land supply,

the quantity of land supply needs to be adjusted by the quality. We assume that the labor quality

declines at the rate gl. We calibrate gl = 0.08 to match the average ratio of residential investment

to GDP for 2003-2013.

To study the impact of a bubble bursting, we introduce a stochastic bubble similar to Weil

(1987). Unlike Weil (1987), we assume that the probability of the bubble bursting is a time-varying

9We use capital income share in the construction sector to approximate αk in our model, as more than two-thirds
of production in China’s construction sector is housing construction. Unlike Davis and Heathcote (2005), we do not
consider manufacturing and services goods to produce new houses. We compute capital share in the construction
sector as follows. Although China’s input-output table reports capital share αi for the value added in each sector i,
we cannot use αconstr directly because construction also uses intermediate goods such as steel and glass. We define
capital share αk as

αk ≡
N∑
j=1

gconstr,jαj ,

where gconstr,j is value added of intermediate goods from sector j divided by the total output of the construction
sector. Third, we compute gconstr,j as follows. In the input-output table, X = AX + d, where X = [Xi] is the vector
of outputs for each sector, d = [di] is the vector of value added, and A is the direct consumption coefficient matrix.
Therefore, X = Bd, where B = (I − A)−1, and Xconstr is decomposed as Xconstr =

∑N
j=1 bconstr,jdj . Therefore,

gconstr,j =
bconstr,jdj
Xconstr

.
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Parameter Description Target

β = 0.999 Discount factor Average saving rate
ψ = 0.42 Wealth transfer share Capital return in 2003
ξ = 0.17 Leverage ratio of firm Average capital investment

to GDP ratio
ge = 0.036 Growth of labor efficiency Average GDP growth rate
gl = 0.08 Diminishing speed of land quality Average residential

investment to GDP ratio
p0 = 0.24 Probability of bubble burst in 2003 Average housing price growth

during 2003-2008
η = 0.095 Decay rate of burst probability Average housing price growth

during 2009-2013
ζy = 0.1 Government expenditure/GDP ratio Average infrastructure

investment to GDP ratio
ξg(t) = 2.37, if t < 7 Leverage ratio of government Average local government debt

to GDP ratio during 2003-2008
ξg(t) = 3, if t ≥ 7 Leverage ratio of government Average local government debt

to GDP ratio during 2009-2013
K0 = 1 Initial capital stock Output to capital ratio in 2003
A0 = 0.37 Initial infrastructure stock Infrastructure to capital ratio

in 2003
H0 = 0.15 Initial housing stock Housing stock to capital ratio

in 2003
r0 = 0.01 Initial rent Residential investment

to GDP ratio in 2003

Table 3: Parameters calibrated in the model
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function pt = p0 (1− η)t. Under our specification, the bursting probability declines to zero in the

long run. This can generate high housing price growth during the transition period for people to

hold the risky bubbly housing asset. Moreover, it also allows us to match the high capital return

in the data, as the capital return in the bubbly steady state is higher than in the bubbleless steady

state. We set (p0, η) = (0.24, 0.095) to match the average growth rates of housing prices during the

periods 2003-2008 and 2009-2013.

In Appendix B we show that, on the bubbly balanced growth path, the rent-to-housing price

ratio converges to zero, and the housing price and its bubble component grow at the same rate:(
(1 + ge)(1 + gn)

1− gl

)αl
− 1 = 7.2%,

which is higher than the long-run GDP growth rate of 4.1%, according to our calibration. Our

model also implies that the housing price can grow much faster during the transition period due to

the growing bubble. Time-varying bursting probabilities also cause high housing price growth, as

entrepreneurs require a high return to hold the risky housing asset.

The Chinese local government debt to GDP ratio increased over the period 2003-2013.10 In

particular, the average local government debt to GDP ratio increased from 9% before 2009 to 17%

after 2009. This is because, after the U.S. financial crisis in 2009, the Chinese central government

implemented a large economic stimulus package, the so-called Four Trillion Project. Over three-

fourths of the expenditure was financed by local government debt (Bai et al. (2016)). China

prohibited local governments from issuing bonds until this regulation was relaxed in 2009. This

policy change caused fast-growing local government debt, more than half of which was backed by

land-sale revenue. In our calibration, we set ξg = 2.37 before 2009 and ξg = 3 after 2009 to match

the average ratio of local government debt to GDP before and after 2009.

The government non-infrastructure expenditure Gt is financed through three sources: output,

government debt, and land-sale revenue. We specify the following rule:

Gt = ζyYt + ζb(B
g
t+1 −R

fBg
t ) + (1− κ)pLtLt.

Since 54% of local government debt was spent on infrastructure investment and the remainder was

spent on other expenditures as reported by the National Audit Office of China, we set ζb = 0.46.

Assume that only a fraction κ of the land-sale revenue is used to finance infrastructure investment

and the remaining fraction 1−κ is used to finance non-infrastructure expenditures. We set κ = 0.53

to match the average share of infrastructure investment in land-sale revenue in the data. To calibrate

ζy, we notice that an increase in ζy raises the non-infrastructure expenditure and thus reduces the

10Our local government debt data are from the Audit Report on National Government Debt 2011 and 2013 issued
by the National Audit Office of China (NAOC). The data only include the debt that local governments are guaranteed
to pay back, but exclude local governments’ contingent liability.
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infrastructure investment expenditure by the government budget constraint (19). Then we choose

ζy = 0.1 to match the average infrastructure investment to GDP ratio of 7.5%.

We set the initial condition in the model as follows. First, we normalize the initial population

and labor efficiency to 1. Second, we calibrate the initial (K0, A0, H0) to (1, 0.37, 0.15) to match

the capital-output ratio, the housing-capital ratio, and the infrastructure-capital ratio in 2003.11

Third, the initial housing rent is set to r0 = 0.01 to match the ratio (6.5%) of the residential

investment to GDP in 2003. We can then construct rents rt for t ≥ 1 using the average growth

rate gr of rents in the data. Notice that the official data for the growth rates of rents are available,

but the data for the level of rents are not. Finally, following Song et al. (2011), the initial wealth

distribution of entrepreneurs across various generations is set as the wealth distribution of workers

in the steady state.

4.4 Results

Figure 3 presents the data and results based on our calibrated model. While our model is targeted

to match either the average values for 2003-2013 or the initial values in 2003 in the data, our model

can match both the first moments and the dynamic patterns in the data fairly well due to our

model mechanism. In particular, the rapid rise of housing prices is associated with increases in the

infrastructure investment to GDP ratio, the land-sale revenue to GDP ratio, and the residential

investment to GDP ratio (see Panels D, E, and F). We leave the discussion of GDP growth to the

next subsection. Our model does not match the cyclicalities of the data shown in Figure 3. These

cyclicalities may be due to various business cycle shocks and uncertainties about China’s monetary,

fiscal, and housing market policies. Our model does not incorporate these features (except for the

risk of the bubble bursting) and hence it cannot match the cyclical pattern in the data.

[Insert Figure 3 Here.]

The increase of the residential investment to GDP ratio over time in the model (QtYh,t/GDPt)

is due to two effects: the rapid rise of housing prices Qt and the reallocation of capital and labor

to the housing sector. The reallocation effect causes Kh,t and Nh,t to rise such that Yh,t increases.

Since land-sale revenue pLtLt is equal to αl(1 − τh) (QtYh,t) due to the Cobb-Douglas production

function, land-sale revenue rises proportionally with residential investment in the model.

As land-sale revenue increases over time, the government can finance more infrastructure invest-

ment such that the infrastructure investment to GDP ratio rises over time as in the data. Notice

that infrastructure investment rises dramatically in 2009 both in the model and in the data. This

is due to the Four Trillion Project in 2009, when the Chinese local government used government

11Bai et al. (2006) show the capital-output ratio is 1.66 in 2003 and 13% of capital is residential housing. Jin (2016)
shows 25% of total capital is infrastructure in 2003. Note that capital in these studies refers to commercial capital,
infrastructure, and housing, while capital Kt in our paper is only commercial capital.
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debt backed by land-sale revenue to finance infrastructure investment. Our model captures this

event by raising the government leverage ratio ξg from 2.37 to 3 starting in 2009. We are able to

match the average ratio of local government debt to GDP during the period 2003-2013 (see Figure

4).

[Insert Figure 4 Here.]

While infrastructure raises productivity, the capital return is high and declines over time (see

Figure 3 Panel B). Recall that the capital return in our model satisfies

Rt = α(1− τ)(1− ψ)ÂθtK
α−1
c,t (etNc,t)

1−α + (1− δk).

The decline is due to the diminishing marginal product of capital during the transition period. This

effect dominates the increase in infrastructure as capital is accumulated over time.

Next we discuss housing prices presented in Figure 3 Panel C. Our model matches the growing

trend of China’s housing prices fairly well. Our simulated growth rate of housing prices drops from

12.9% in 2003 to 9% in 2013. This decrease is only half of the decrease in the capital return. While

the capital return follows a downward trend, the growth rates of housing prices are quite stable.

It seems puzzling that the growth rate of housing prices stays high on average, while the capital

return follows a fast downward trend. To understand the intuition, consider the no-arbitrage

equation (22) under risk-neutral utility and zero depreciation of housing (u′(c) ≡ 1 and δh = 0):

R̄t+1 =
rt+1

Q+
t

+
pt+1Q

−
t+1 + (1− pt+1)Q+

t+1

Q+
t

, (23)

where R̄t+1 denotes the (expected effective) capital return. That is, the expected capital return is

equal to the expected housing return, which in turn is equal to the sum of the rent-to-price ratio

and expected price appreciation. The rent-to-price ratio is relatively high initially in 2003 and the

size of the bubble is also small (i.e., Q−t+1 is close to Q+
t+1). Thus the housing price growth rate

Q+
t+1/Q

+
t is approximately equal to R̄t+1 − rt+1/Q

+
t , which is less than the capital return R̄t+1 in

the early years of the 2003-2013 period. As time goes by, both the housing price and the housing

bubble grow, but the rents grow at a much lower rate (about 0.5% on average in the data). The

rent-to-price ratio gradually declines to zero in the long run. Thus the fundamental value of housing

Q−t relative to the bubbly value Q+
t approaches zero. In this case, equation (23) implies that the

housing price growth rate Q+
t+1/Q

+
t approaches R̄t+1/ (1− pt+1), which is greater than the capital

return R̄t+1 for pt+1 > 0. This happens in the later years of the 2003-2013 period in our model.

Intuitively, to compensate for the risk of the bubble bursting, the growth rate of housing prices

when the bubble never bursts must be higher than the capital return (Weil (1987)).

To close this section, we argue that the land-sale revenue channel is essential for our analysis. To

see this, let us simply shut down the land-sale revenue channel by assuming that land-sale revenue
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is transferred to workers without recalibrating the model. We find that the average infrastructure

investment to GDP ratio is lowered by 5.7 percentage points, and the average GDP growth rate

is lowered by 1 percentage point, compared to our extended model. Moreover we cannot match

the increasing pattern of the infrastructure investment to GDP ratio in the data. If we further

recalibrate government spending Gt to match the average infrastructure investment to GDP ratio,

we still cannot match the upward trend of this ratio.

4.5 Growth Accounting

In this subsection we discuss GDP growth. Panel A of Figure 3 shows that our model can replicate

the average GDP growth rate of 10% for 2003-2013, as well as the drop from the highest growth

rate of 14% to 7% during this period. To understand this pattern, we conduct a growth accounting

exercise.

Recall that GDP is defined in equation (20). Then we can decompose GDP growth as

∆GDPt
GDPt

≈ Yt
GDPt

∆Yt
Yt

+
QtYh,t
GDPt

∆(QtYh,t)

QtYh,t
+

rtHt

GDPt

∆(rtHt)

rtHt
, (24)

where ∆Xt ≡ Xt+1 −Xt for any variable Xt. Our calibrated model shows that, during the period

2003-2013, the average growth rate of residential investment is 16.2% and the average residential

investment to GDP ratio is 8.6%, while the average nonhousing output growth rate is only 9.3%

and the average nonhousing output to GDP ratio is 90%. Thus the 10% average GDP growth

consists of 8.4% of nonhousing output growth and 1.4% of residential investment growth. Rents

contribute only 0.2% to GDP growth on average and thus will be ignored in our discussion.12

Since aggregate output in the nonhousing sector satisfies

Yt = AθtK
α−ρθ
c,t (etNc,t)

1−α−(1−ρ)θ ,

we can further decompose its growth into

∆Yt
Yt

≈ θ
∆At
At

+ (α− ρθ)∆Kc,t

Kc,t
+ (1− α− (1− ρ)θ)

∆et
et

+(1− α− (1− ρ)θ)
∆Nc,t

Nc,t
.

12Our model implied average rents to GDP ratio (rtHt/GDPt) is about 1.4%. This estimate is reasonable for two
reasons: First, total rents are counted as part of the value added in the real estate sector. Since the value added in the
real estate sector was 4.4% of GDP on average for the period 2003-2013, the rents to GDP ratio should be smaller than
4.4%. Second, Bai et al. (2006) estimate that (Kt +At +QtHt) /GDPt = 1.66 and QtHt/ (Kt +At +QtHt) = 13%
for 2003. Thus we have

rtHt
GDPt

=
rt
Qt

QtHt
Kt +At +QtHt

Kt +At +QtHt
GDPt

= 0.22
rt
Qt

for 2003. Since the rents to price ratio (rt/Qt) is around 3% to 10%, rtHt/GDPt is around 0.66% to 2.2% for 2003.
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Based on our calibrated model, we find that

9.3% ≈ 0.1 ∗ 10.7% + 0.49 ∗ 13.8% + 0.41 ∗ 3.6% + 0.41 ∗ 0.3%

≈ 1.1% + 6.7% + 1.5% + 0.1%.

Thus, to the 9.3% average nonhousing sector growth, infrastructure contributes 1.1%, capital 6.7%,

labor efficiency (technology) 1.5%, and labor 0.1%.

Similarly, we can decompose the residential investment growth into

∆(QtYh,t)

QtYh,t
≈ ∆Qt

Qt
+ αl

(
∆Lt
Lt
− gl

)
+ αk

∆Kh,t

Kh,t
+ (1− αl − αk)

∆et
et

+(1− αl − αk)
∆Nh,t

Nh,t
.

Our calibrated model shows that

16.2% ≈ 10.0% + 0.56 ∗ (−1.7%) + 0.24 ∗ 21% + 0.2 ∗ 3.6% + 0.2 ∗ 6.6%

≈ 10.0% + (−1%) + 5% + 0.7% + 1.3%.

Thus, to the 16.2% average housing sector growth, housing price contributes 10.0%, land −1%,

capital 5%, labor efficiency 0.7%, and labor 1.3%.

To see why GDP growth declined over 2003-2013 in the data, we separate the whole sample

into two periods: 2003-2008 and 2009-2013. Average GDP growth is 11.4% in the first period, and

8.6% in the second period. Using (24), we can decompose these growth rates into

11.4% ≈ 0.916 ∗ 10.9% + 0.072 ∗ 16.6% + 0.012 ∗ 21.2%

≈ 10% + 1.2% + 0.3%,

and

8.6% ≈ 0.882 ∗ 7.7% + 0.102 ∗ 15.9% + 0.016 ∗ 13.1%

≈ 6.8% + 1.6% + 0.2%.

This decomposition shows that the decline of GDP growth is attributed mainly to the decline of the

weighted average nonhousing sector growth from 10% to 6.8%, while the weighted average housing

sector growth increases from 1.2% to 1.6%.

Table 4 presents the decomposition in terms of factor inputs. We find that the decline of

the nonhousing sector growth is attributed mainly to the decline of capital growth from 17.5% to

10.1%, while infrastructure growth rises from 8.8% to 12.6%. Given the rapid rise of housing prices,

aggregate capital is crowded out so that capital growth in both housing and nonhousing sectors

declines. Capital is also reallocated from the nonhousing sector to the housing sector so that the

weight of housing output in GDP increases from 0.072 to 0.102. The increase in the weighted

average housing sector growth from 1.2% to 1.6% partially offsets the decline of GDP growth.
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Variable (%) ∆A/A ∆Kc/Kc ∆Nc/Nc ∆Q/Q ∆L/L− gl ∆Kh/Kh ∆Nh/Nh

2003-2008 8.8 17.5 0.3 11.0 -3.4 23.5 5.4
2009-2013 12.6 10.1 0.2 9.0 -0.3 18.4 7.8
2003-2013 10.7 13.8 0.3 10.0 -1.8 21.0 6.6

Table 4: Growth accounting based on the calibrated model.

5 Counterfactual Experiments

Due to the dramatic growth trend of housing prices, Chinese policymakers and academic researchers

are concerned that housing prices might contain a bubble. Thus they want to understand how

much the collapse of a bubble might damage the economy. Chinese leaders are also discussing the

potential benefit of implementing a property tax to control housing prices. In this section we use

our calibrated model to study the potential impact of the collapse of a housing bubble and the

impact of a property tax.

5.1 If the Bubble Bursts

Suppose that the economy stays in the bubbly state until the housing bubble bursts in 2025, then

stays in the fundamental state forever. Figure 5 Panel A plots the growth rates of housing prices

in the two economies: one with and one without the burst bubble. In the first case, immediately

after the burst, the growth rate of housing prices drops from 6.6% to −45.1%. In the next 30 years

on the transition path, it is 1.2% on average, much lower than the average growth rate of 5.3%

without the burst. This can be explained by the low rent growth rate of 0.5%. On a balanced

growth path in the fundamental state, the growth rate of the bubbleless housing price is equal to

the rent growth rate. Thus the average growth rate of the housing price is low during the transition

period.

[Insert Figure 5 Here.]

Figure 5 Panel B shows how the bubble burst would affect GDP. After the bubble bursts in

2025, the growth rate of GDP drops from 5% to 2.6%. This 2.6% GDP growth consists of a 6.8%

increase of output in the nonhousing sector and a 68.8% decrease in the housing sector. Nonhousing

output increases because capital and labor flow back from the housing sector into the nonhousing

sector, while housing output decreases because newly built houses lose value. Despite the large

drop of housing prices, its impact on GDP growth is relatively small because the housing sector

accounts for a small share of GDP in 2025. The rise of nonhousing output offsets the large decline

of housing output.

One year after the bubble bursts, however, the GDP growth rate is higher than in the case

when the bubble never bursts. In the next 30 years the average GDP growth rate after the burst
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is 0.8 percentage points higher. In the long run on the balanced growth path, GDP growth rates

in the two economies with and without a bubble are both equal to the sum of population growth

and technology growth. But the bursting of the housing bubble has a level effect. In particular,

in 2055, GDP and nonhousing output after the burst are 22.8% and 24.8% higher than in the case

without the burst.

GDP in 2055 is higher after the bubble bursts than it is without the burst due to the following

effects. After the burst of the bubble, infrastructure investment is reduced because land-sale revenue

has declined, but aggregate capital is unleashed: in the 2025-2055 period, the average growth rate

of infrastructure decreases from 3.2% to 3.1%, while the average growth rate of capital increases

from 4.2% to 6.1% (see Panels C and D of Figure 5). Moreover, capital and labor are reallocated

from the housing sector to the nonhousing sector. Since the nonhousing sector accounts for a much

larger share of the economy, the increased nonhousing output raises GDP.

5.2 Property Tax

The Chinese government has not adopted a comprehensive property tax so far. In this subsection

we estimate what would happen if the Chinese government initiated a permanent linear property

tax on the entire housing stock in 2025. In our benchmark, the tax rate is 1.5% and this tax policy is

unexpected by all agents in the model. Since Chinese policymakers have discussed that the property

tax revenue can be used to finance the local government spending on infrastructure investment, we

simply assume that all property tax revenue is used to finance infrastructure investment. We focus

on the equilibrium paths both before and after the tax policy when housing bubbles never burst.13

Figure 6 Panel A plots housing prices after the property tax is imposed. The property tax

generates a negative wealth effect, which reduces entrepreneurs’ housing demand. On impact, the

housing price drops by 30.8% and its growth rate in 2025 drops from 6.6% to −26.2%. From 2026

to 2055, the average growth rate of housing prices is higher by 0.5 percentage points than that

without the property tax. In the long run, the growth rate of housing prices with the property tax

is the same as that without it.

[Insert Figure 6 Here.]

In Figure 6 Panel B, we show how the property tax would change GDP. Based on our simulation,

after the property tax is imposed, GDP drops immediately by 1.6% compared with the case without

the property tax. This 1.6% GDP drop consists of a 6.3% increase of output in the nonhousing

sector and a 47.2% decrease in the housing sector. During the 2026-2055 period the average growth

rate of GDP increases from 4% to 4.8%. In 2055, 30 years after the property tax is started, GDP

and nonhousing output are 18.5% and 19.4%, respectively, higher than they would be without the

13Miao et al. (2015) show that, when the property tax rate is sufficiently high, a housing bubble can never emerge.
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property tax. The reason that the long-run GDP with the property tax is higher than that without

is due to the following three effects. First, the property tax encourages capital accumulation because

entrepreneurs invest less in housing assets. The average capital growth increases from 4.2% to 5%

(see Panel C of Figure 6). Second, the property tax also increases infrastructure accumulation as

we have assumed that the tax revenue is used to finance infrastructure investment. The average

infrastructure growth increases from 3.2% to 5.3% (see Panel D of Figure 6). Third, with the

decline of housing prices, more capital and labor are reallocated from the housing sector to the

nonhousing sector. The average proportions of capital and labor in the nonhousing sector both

increase by 0.7 percentage points.

5.3 Welfare Effects

In this subsection we study the welfare effects of the above two counterfactual experiments on both

workers and entrepreneurs alive in 2025. First, consider the impact of the bubble bursting in 2025,

presented in Panel A of Figure 7. We measure the welfare change as a percentage deviation in

lifetime consumption from the equilibrium in which the housing bubble never bursts.

[Insert Figure 7 Here.]

The oldest cohort living in 2025 enters the economy in 1976 at age 22 in the model. The bubble

bursting does not affect wages before 2025, but decreases the wage rate in 2025 because workers

flow into the nonhousing sector. The wage rate rises after 2025 because more resources are allocated

to capital accumulation such that the marginal product of labor rises. As a result, all workers born

before 1996 in our model do not experience welfare changes because these cohorts of workers retire

before the bubble bursts. Their lifetime income, which is the present value of wages, is unchanged.

Workers born in 1996 suffer a tiny welfare loss as their wages decline in 2025 only. Workers born

after 1996 experience welfare gains, because they enjoy an increase in the wage rate during their

working periods. The younger the workers are, the larger their welfare gains due to their ability to

work for a longer period of time.

By contrast, all entrepreneurs alive in 2025 suffer welfare losses. This is because of the perma-

nent loss of housing values and the decline of capital returns after the bubble bursts. The welfare

jump of the latest cohort in 2025 is because the newborn entrepreneurs in our model do not hold

any housing assets and start owning houses in subsequent years. Except for this cohort, the younger

the entrepreneurs are, the longer they face declining capital returns, and therefore the larger their

welfare losses.

There are two main differences between the welfare result of Chen and Wen (2017) and ours.

First, the wage rate declines in the year when the bubble bursts in our model due to the labor

reallocation effect, which is absent in Chen and Wen (2017). Second, the capital return in Chen
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Variable (%) Benchmark θ = 0.2 ρ = 0.75 ρ = 0.25 p∞ = 0.01

GDP growth 10.0 9.0 9.6 10.4 10.0
Housing price growth 10.0 8.9 9.7 10.3 9.6
Nonhousing sector growth 9.3 8.4 8.9 9.8 9.4
Housing sector growth 16.2 14.0 16.0 16.6 15.6
Capital growth 14.0 11.7 13.6 14.4 14.2
Infrastructure growth 10.7 9.7 10.6 10.8 10.5

Table 5: Sensitivity analysis.

and Wen (2017) is constant during the transition stage and the bubble burst lowers the capital

return only in the post-transition stage. By contrast, the capital return in our model immediately

drops so that the welfare losses of entrepreneurs predicted in our model are larger than in Chen

and Wen (2017).

Next we consider the welfare effects of the property tax, presented in Panel B of Figure 7. We

measure the welfare change as a percentage deviation in lifetime consumption from the equilibrium

without a property tax to the equilibrium with the property tax studied earlier. We find that the

result is similar to that discussed for the case of the burst bubble, except that the magnitude here

is smaller. The intuition is also similar.

6 Sensitivity Analysis

In this section we conduct a sensitivity analysis. Since infrastructure plays an important role in

our model, one may wonder whether our results are sensitive to changes in parameters such as the

productivity elasticity parameter θ and the congestion effect parameter ρ.

In our benchmark quantitative model we set the elasticity of infrastructure θ = 0.1 following

Bom and Ligthart (2014). Now we double the value of θ, holding all other parameter values

fixed, and report the results in Table 5 column 2. We find that the average growth rates for

2003-2013 of GDP, housing prices, nonhousing output, housing output, aggregate capital, and

infrastructure investment all decline with θ. The reason is that a higher value of θ increases not

only infrastructure productivity but also the congestion effect of capital and labor. Since capital

accumulation is the main driving force of Chinese GDP growth, the congestion effect dominates

the increase in infrastructure productivity, causing GDP growth to slow down. This in turn causes

all other growth rates reported in Table 5 column 2 to decline.

Next we report the sensitivity analysis of ρ in Table 5 columns 3 and 4, holding all other

parameter values fixed. Although we choose ρ = 0.5 in our benchmark model, our results are not

sensitive to this choice. In particular, GDP growth decreases slightly in Table 5 when ρ increases.

Higher ρ strengthens the congestion effect of capital, makes capital less productive, and drives down
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GDP growth. But higher ρ also weakens the congestion effect of labor, which partially offsets the

former negative effect.

Finally, to save computation time, we have assumed that the housing bubble will never burst

in the long run in our benchmark model. Here we assume that the bubble will eventually burst

with probability 1%, i.e., limt→∞ pt = p∞ = 0.01. Table 5 column 5 shows that average housing

price growth and housing sector growth decline slightly, compared to our benchmark calibration.

Average GDP growth, however, is unaffected because faster capital accumulation raises nonhousing

sector growth.

In all cases studied above, we have not recalibrated the model to match the same data moments

as in our benchmark model. When we recalibrate the model, we find that the new results are

almost identical to those in the benchmark.

7 Conclusion

In this paper we study the impact of Chinese housing bubbles on infrastructure investment and

economic growth in a two-sector OLG model. Our calibrated model can match the Chinese data

reasonably well. Our study makes three contributions. First, we identify a new crowding-in effect

of housing bubbles, by introducing a land-sale channel unique to the Chinese economy. With

this channel, our model can explain the boom of infrastructure investment in China. Second, we

quantify the effects of a bubble bursting and find that, although the crash represents a big negative

shock to investors’ wealth, the effect on China’s real GDP is relatively small due to the reallocation

effect on capital and labor. Third, imposing a property tax and using the tax revenue to finance

infrastructure investment can lower housing prices and reallocate resources from the housing sector

to the nonhousing sector, thereby raising the long-run GDP level.

We have not considered the collateral channel of housing prices in the nonhousing sector because

this channel seems weak in the Chinese data (Wu et al. (2015)). If nonhousing firms use houses

or land as collateral to borrow to finance capital investment, changes in housing prices can have a

large impact on nonhousing output and hence GDP (Kiyotaki and Moore (1997)). Given that small

firms are more likely to use houses as collateral and their investment accounts for a small share

of aggregate investment, we expect that incorporating the collateral channel would not change our

results significantly. Further study of this issue would be an interesting topic for future research.
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Arce, O. and D. López-Salido (2011). Housing Bubbles. American Economic Journal: Macroeco-

nomics 3, 212–241.

Bai, C.-E., C.-T. Hsieh, and Y. Qian (2006). The Return to Capital in China. Brookings Papers

on Economic Activity 37 (2), 61–102.

Bai, C.-E., C.-T. Hsieh, and Z. Song (2016). The Long Shadow of China’s Fiscal Expansion.

Brookings Papers on Economic Activity 47 (2), 129–181.

Bai, C.-E. and J. Zhang (2014). Return to Capital in China and its Determinants. World Econ-

omy 10.

Barro, R. (1990). Government Spending in a Simple Model of Endogenous Growth. Journal of

Political Economy 98 (5), 103–126.

Bassetto, M. and T. J. Sargent (2006). Politics and Efficiency of Separating Capital and Ordinary

Government Budgets. The Quarterly Journal of Economics 121 (4), 1167–1210.

Baxter, M. and R. King (1993). Fiscal Policy in General Equilibrium. American Economic Re-

view 83 (3), 315–34.

Bom, P. and J. Ligthart (2014). What Have We Learned from Three Decades of Research on The

Productivity of Public Capital? Journal of Economic Surveys 28 (5), 889–916.

Chen, K. and Y. Wen (2017). The Great Housing Boom of China. American Economic Journal:

Macroeconomics 9 (2), 73–114.

Chen, P., C. Wang, and Y. Liu (2015). Real Estate Prices and Firm Borrowings: Micro Evidence

from China. China Economic Review 36, 296 – 308.

Chen, T., L. X. Liu, W. Xiong, and L.-A. Zhou (2017). Real Estate Boom and Misallocation of

Capital in China. Working Paper .

Davis, M. and J. Heathcote (2007). The Price and Quantity of Residential Land in the United

States. Journal of Monetary Economics 54 (8), 2595–2620.

Davis, M. A. and J. Heathcote (2005). Housing and the Business Cycle. International Economic

Review 46 (6), 751–784.

Dong, F., J. Liu, Z. Xu, and B. Zhao (2019). Flight to Housing in China. working paper, Tsinghua

University .

32



Fang, H., Q. Gu, W. Xiong, and L.-A. Zhou (2015). Demystifying the Chinese Housing Boom.

In NBER Macroeconomics Annual 2015, Volume 30, pp. 105–166. National Bureau of Economic

Research, Inc.

Farhi, E. and J. Tirole (2012). Bubbly Liquidity. Review of Economic Studies 79 (2), 678–706.

Glomm, G. and B. Ravikumar (1994). Public Investment in Infrastructure in a Simple Growth

Model. Journal of Economic Dynamics and Control 18, 1173–1187.

Hirano, T. and N. Yanagawa (2016). Asset Bubbles, Endogenous Growth, and Financial Frictions.

Review of Economic Studies 84 (1), 406–443.

Iacoviello, M. (2005). House Prices, Borrowing Constraints and Monetary Policy in the Business

Cycle. American Economic Review 95 (3), 739–763.

Iacoviello, M. and S. Neri (2010). Housing Market Spillovers: Evidence from an Estimated DSGE

Model. American Economic Journal: Macroeconomics 2 (2), 125–164.

Jin, G. (2016). Infrastructure and Non-infrastructure Capital Stocks in China and Their Produc-

tivity: A New Estimate. Economic Research Journal (5), 41–56.

Kiyotaki, N. and J. Moore (1997). Credit Cycles. Journal of Political Economy 105 (2), 211–48.

Liu, Z., P. Wang, and T. Zha (2013). Land-price Dynamics and Macroeconomic Fluctuations.

Econometrica 81 (3), 1167–1184.

Martin, A. and J. Ventura (2012). Economic Growth with Bubbles. American Economic Re-

view 102 (6), 3033–58.

Miao, J. and P. Wang (2014). Sectoral Bubbles, Misallocation, and Endogenous Growth. Journal

of Mathematical Economics 53, 153–163.

Miao, J. and P. Wang (2018). Asset Bubbles and Credit Constraints. American Economic Re-

view 108 (9), 2590–2628.

Miao, J., P. Wang, and J. Zhou (2015). Asset bubbles, Collateral, and Policy analysis. Journal of

Monetary Economics 76 (S), 57–70.

Mo, J. (2018). Land Financing and Economic Growth: Evidence from Chinese Counties. China

Economic Review 50, 218–239.

Song, Z., K. Storesletten, and F. Zilibotti (2011). Growing Like China. American Economic

Review 101 (1), 196–233.

33



Tirole, J. (1985). Asset Bubbles and Overlapping Generations. Econometrica 53 (6), 1499–1528.

Weil, P. (1987). Confidence and the Real Value of Money in an Overlapping Generations Economy.

Quarter Journal of Economics 102 (1), 1–22.

Wu, G. L., Q. Feng, and Z. Wang (2019). Estimating Productivity of Public Infrastructure Invest-

ment. Working Paper, Nanyang Technological University .

Wu, J., Y. Deng, and H. Liu (2014). House Price Index Construction in the Nascent Housing

Market: The Case of China. Journal of Real Estate Finance and Economics 48 (3), 522–545.

Wu, J., J. Gyourko, and Y. Deng (2015). Real Estate Collateral Value and Investment: The Case

of China. Journal of Urban Economics 86, 43–53.

Xiong, W. (2019). The Mandarin Model of Growth. Working Paper, Princeton University .

Zhao, B. (2015). Rational Housing Bubbles. Economic Theory 60 (1), 141–201.

34



For Online Publication Appendix

A The Basic Model in Section 3

A. 1 Equilibrium Dynamics

The bubbly equilibrium of the basic model can be summarized by the following system of 12

nonlinear difference equations for t ≥ 0:

At+1 = (1− δa)At + τYt + pLtLt, (A.1)

Ht+1 = (1− δh)Ht + Yht, (A.2)

Kt+1 =
β

1 + β
Mt −QtHt+1, (A.3)

Rt+1 =
Qt+1(1− δh)

Qt
, (A.4)

Rt = α(1− τ)(1− ψ)
[
At/(K

ρ
tN

1−ρ
c,t )

]θ
Kα−1
t N1−α

c,t , (A.5)

wt = (1− α)(1− τ)
[
At/(K

ρ
tN

1−ρ
c,t )

]θ
Kα
t N
−α
c,t , (A.6)

wt = (1− αl)QtLαlt N
−αl
h,t , (A.7)

pLt = αlQtL
αl−1
t N1−αl

h,t , (A.8)

1 = Nc,t +Nh,t, (A.9)

Yt =
[
At/(K

ρ
tN

1−ρ
c,t )

]θ
Kα
t N

1−α
c,t , (A.10)

Yh,t = Lαlt N
1−αl
h,t , (A.11)

Mt = ψα(1− τ)Yt, (A.12)

for 12 sequences of aggregate variables

{Rt, wt, pLt, Nc,t, Nh,t, Yt, Yh,t,Mt,Kt, At, Ht, Qt}∞t=0.

The variables At, Kt, and Ht are predetermined and all other variables are nonpredetermined.

Equations (A.1)-(A.2) follow from the definitions of At+1 and Ht+1. Equation (A.3) defines the

capital holding of young entrepreneurs at t, where Mt given in (A.12) is the total initial endowment

of young entrepreneurs derived from (3). Equation (A.4) is the no-arbitrage condition. Equations

(A.5)-(A.8) are the firm’s first-order conditions with respect to kt, nc,t, nh,t, and lt, respectively.

Equation (A.9) is the labor market clearing condition. Equations (A.10) and (A.11) follow from

the definitions of Yt and Yh,t.

Our proofs actually rely on a two-variable system, simplified from the system (A.1)-(A.12). We

discuss this simplified system next.
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A. 2 Dynamics of (Ht,
Kt
Qt−1

) in a Simplified System

First, we show that Nh,t can be written as a decreasing function of Kt
Qt−1L

αl
t

, which is useful when

we study the equilibrium dynamics below.

Lemma 1 In any equilibrium, Nh,t = f
(

Kt
Qt−1L

αl
t

)
for t ≥ 1, where f(·) is a fixed strictly decreasing

function.

Proof: Equations (A.6) and (A.7) imply

(1− α)(1− τ)
[
At/(K

ρ
tN

1−ρ
c,t )

]θ
Kα
t N
−α
c,t = (1− αl)QtLαlt N

−αl
h,t . (A.13)

Substituting (A.5) into (A.13) and simplifying the latter equation, we have

Nαl
h,t

1−Nh,t
=

(1− αl)α(1− ψ)

(1− α) RtKt
QtL

αl
t

=
(1− αl)α(1− ψ)

(1− α)(1− δh) Kt
Qt−1L

αl
t

, (A.14)

where the second equality uses the no-arbitrage condition (A.4). Because
N
αl
h,t

1−Nh,t is strictly increasing

in Nh,t ∈ (0, 1), the above equation defines Nh,t ∈ (0, 1) as a strictly decreasing function of Kt
Qt−1L

αl
t

.

�

Second, we show that the equilibrium dynamics of (Ht,
Kt
Qt−1

) satisfy a system of two difference

equations for t ≥ 1:

Ht+1 = (1− δh)Ht + Lαlt f

(
Kt

Qt−1L
αl
t

)1−αl
, (A.15)

Kt+1

Qt
=

1

z

Kt

Qt−1
−Ht+1, (A.16)

where z is defined in (12) and f(·) is from Lemma 1.

Since (A.15) follows directly from Ht+1 = (1 − δh)Ht + Yh,t and Lemma 1, we shall focus our

discussion on (A.16). The initial wealth mt+1 of an entrepreneur born in t+ 1 satisfies

mt+1 = α(1− τ)ψÂθt+1K
α
t+1N

1−α
h,t+1 =

ψ

(1− ψ)
Rt+1Kt+1,

where the second equality uses (A.5). Therefore,

Kt+1

Qt
+Ht+1 =

Kt+1 +QtHt+1

Qt
=

β

(1 + β)

mt

Qt

=
ψβ

(1− ψ)(1 + β)

RtKt

Qt
=

(1− δh)ψβ

(1− ψ)(1 + β)

Kt

Qt−1
,

where the second equality uses (1) and the last equality follows from the no-arbitrage condition

(A.4).

In period t = 0, we have

R0 = α(1− τ)(1− ψ)
[
A0/(K

ρ
0N

1−ρ
c,0 )

]θ
Kα−1

0 N1−α
c,0 ,

and the last equality in (A.14) does not hold because (A.4) does not hold for R0. Using (A.13) for

t = 0 and Nc,0 +Nh,0 = 1, we can show that Q0 is a function of Nh,0.
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Proof of Proposition 1

First, we show (13). In a bubbly steady state, equations (A.15)-(A.16) become

Hb = (1− δh)Hb + (L∗)αl(N b
h)1−αl , (A.17)

Kb

Qb
+Hb =

Kb

Qb
/z, (A.18)

where N b
h = f

(
Kb

Qb(L∗)αl

)
. It follows from (A.18) that Hb = (1/z − 1)K

b

Qb
, which implies

φb =
HbQb

HbQb +Kb
= 1− z.

Second, we show (14). It follows from the definition of f(·) in Lemma 1 that

(N b
h)αl

N b
c

=
(1− αl)α(1− ψ)

(1− α)(1− δh) Kb

Qb(L∗)αl

,

which is rewritten as
Kb

Qb(L∗)αl(N b
h)1−αl

1−N b
c

N b
c

=
(1− αl)α(1− ψ)

(1− α)(1− δh)
.

Substituting
Kb

Qb
=

z

1− z
Hb =

z

(1− z)δh
(L∗)αl(N b

h)1−αl

into the above equation, we have

z

(1− z)δh
1−N b

c

N b
c

=
(1− αl)α(1− ψ)

(1− α)(1− δh)
,

which implies (14).

Third, we can derive that

pbLL
∗ = αlQ

b(L∗)αl(N b
h)1−αl = αlδhQ

bHb = αlδhφ
b β

1 + β
αψ(1− τ)Y b,

where the first equality follows from (A.8), the second from (A.17), and the last from (4). Then

equation (15) follows from the above equation and (5).

Finally, equation (16) follows from (4). Q.E.D.

Proof of Proposition 2

We will show that, for any given (K0, A0, H0), there exists a unique Q0 > 0 such that the system

(A.1)-(A.12) starting from (K0, A0, H0, Q0) converges to a bubbly steady state.14 For simplicity, we

first focus on the simplified system (A.15)-(A.16) for (Ht,
Kt
Qt−1

), and extend this system to period

14At the beginning of period 0, if (K0, A0, H0, Q0) are known, then (R0, w0, pL0, N10, N20, Y0, Yh0,M0) can be solved
as functions of (K0, A0, H0, Q0) from (A.5)-(A.12).
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t = 0 by introducing a variable Q−1. We show that there exists a unique Q−1 starting from which

the system (A.15)-(A.16) converges.

The proof consists of three steps. Step 1 discusses initial conditions from which the system

(A.15)-(A.16) will diverge. Step 2 shows that there exists a unique Q−1 from which the system

(A.15)-(A.16) converges to a steady state. Step 3 shows that this unique Q−1 implies a unique Q0.

Step 1. To simplify notation, we denote Kt
Qt−1

by Xt in the following proof. We introduce two

sets of initial conditions from which the system (A.15)-(A.16) will eventually diverge. In particular,

we define sets Ut and Lt as follows:

Ut ≡ {(H,X) : H ′(H,X,Lt) < H∗(Lt) and X ′(H,X,Lt) > X∗(Lt)},

Lt ≡ {(H,X) : H ′(H,X,Lt) > H∗(Lt) and X ′(H,X,Lt) < X∗(Lt)},

where (H∗(L), X∗(L)) denote the steady state when the land supply is always equal to L, and

Lt ≡ infs≥t Ls, Lt ≡ sups≥t Ls. Here H ′ and X ′ represent the right-hand sides of (A.15) and

(A.16),

H ′(H,X,L) ≡ (1− δh)H + Lαlf

(
X

Lαl

)1−αl
,

X ′(H,X,L) ≡ 1

z
X − (1− δh)H − Lαlf

(
X

Lαl

)1−αl
.

The divergence of Ut and Lt is verified in the following lemma.

Lemma 2 If (Ht, Xt) ∈ Ut, then lims→∞Xs =∞. If (Ht, Xt) ∈ Lt, then Xs < 0 for finite s.

Proof: Suppose (Ht, Xt) ∈ Ut. Because H ′ is increasing in L and X ′ is decreasing in L,

Ht+1 = H ′(Ht, Xt, Lt) ≤ H ′(Ht, Xt, Lt) < H∗(Lt),

Xt+1 = X ′(Ht, Xt, Lt) ≥ X ′(Ht, Xt, Lt) > X∗(Lt).

By induction, we can show that Hs < H∗(Lt) and Xs > X∗(Lt) for all s ≥ t + 1. It follows from

(A.16) that for all s ≥ t+ 1,

Xs+1 −X∗(Lt) =
Xs −X∗(Lt)

z
−Hs+1 +H∗(Lt) >

Xs −X∗(Lt)
z

,

which implies lims→∞Xs = ∞ since z < 1. Similarly, if (Xt, Ht) ∈ Lt, then by induction we can

show Xs < X∗(Lt) and Hs > H∗(Lt) for all s ≥ t+ 1. Moreover,

Xs+1 −X∗(Lt) <
Xs −X∗(Lt)

z
,

which implies Xs < 0 for finite s. �
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The following alternative definitions of Ut and Lt are used in the proof of Lemma 3 below. The

conditions H ′(H,X,Lt) < H∗(Lt) and X ′(H,X,Lt) > X∗(Lt) are, respectively,

H <
H∗(Lt)− L

αl
t f
(
X
L
αl
t

)1−αl

1− δh
, H <

X/z −X∗(Lt)− L
αl
t f
(
X
L
αl
t

)1−αl

1− δh
.

Therefore,

Ut ≡

(H,X) : H <
min{H∗(Lt), X/z −X∗(Lt)} − L

αl
t f
(
X
L
αl
t

)1−αl

1− δh

 .

Similarly,

Lt ≡

(H,X) : H >
max{H∗(Lt), X/z −X∗(Lt)} − Lαlt f

(
X
L
αl
t

)1−αl

1− δh

 .

Step 2. We show a unique X0 from which the system converges. Above X0, the system enters

Ut eventually. Below X0, the system enters Lt eventually.

Lemma 3 For any H0 > 0, there exists a unique X0 such that the system starting from (H0, X0)

converges to (H∗(L∗), X∗(L∗)), where L∗ is the land supply in the long run. The system starting

from X̃0 > X0 satisfies limt→∞ X̃t =∞, and that from X̃0 < X0 satisfies X̃t < 0 for some t > 0.

Proof: For any H0 > 0, define sets A and B as follows.

A ≡ {X0 : the system starting from (H0, X0) satisfies lim
t→∞

Xt =∞},

B ≡ {X0 : the system starting from (H0, X0) satisfies Xt < 0 for some t}.

First, both A and B are nonempty but A ∩ B = ∅. B 6= ∅ because if X0 is sufficiently small

then X1 = X0/z −H1 < X0/z − (1− δh)H0 < 0. To prove A 6= ∅, pick a sufficiently large Y such

that L
αl
0 f
(

Y
L
αl
0

)1−αl
< δH0. We show that limtXt = ∞ if X0 > max{Y, 2H0

1/z−1}. To show this, it

is sufficient to show Ht ≤ H0 and Xt >
1/z+1

2 Xt−1 for all t ≥ 1. If t = 1, then

H1 = (1− δh)H0 + Lαl0 f

(
X0

Lαl0

)1−αl
< (1− δh)H0 + Lαl0 f

(
Y

Lαl0

)1−αl
< H0,

X1 = X0/z −H1 > X0/z −H0 > X0/z −X0
1/z − 1

2
=

1/z + 1

2
X0.

By induction, suppose Hs ≤ H0 and Xs >
1/z+1

2 Xs−1 for all s ≤ t, then for t+ 1,

Ht+1 = (1− δh)Ht + Lαlt f

(
Xt

Lαlt

)1−αl
< (1− δh)H0 + Lαlt f

(
Y

Lαlt

)1−αl
< H0,

Xt+1 = Xt/z −Ht+1 > Xt/z −H0 > Xt/z −Xt
1/z − 1

2
=

1/z + 1

2
Xt.
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A∩B = ∅ because the system is terminated after Xt reaches negative values. So Xt cannot converge

to ∞ at the same time.

Second, both A and B are open. B is open because if Xt < 0 for some finite t, then con-

tinuity implies that Xt remains negative if there is a small change to X0. A is open because

if limt→∞Xt = ∞, then equation (A.15) and f(∞) = 0 imply limt→∞Ht = 0. Therefore,

Ht <
min{H∗(Lt),Xt/z−X∗(Lt)}−L

αl
t f

(
Xt

L
αl
t

)1−αl

1−δh for large t. It follows from (Ht, Xt) ∈ Ut and Lemma 2

that limt→∞Xt =∞.

Third, (0,∞)\(A∪B) is nonempty because (0,∞) is a connected set. Pick X0 ∈ (0,∞)\(A∪B)

and we show below that the system starting from (H0, X0) converges to (H∗(L∗), X∗(L∗)), that is,

for any ε > 0, there exists N such that (Ht, Xt) ∈ (H∗(L∗)−ε,H∗(L∗)+ε)×(X∗(L∗)−ε,X∗(L∗)+ε)

for all t ≥ N . We shall repeatedly use the fact that (Ht, Xt) /∈ Lt ∪ Ut for all t.

(i) We show that there exists a small ε2 ∈ (0, ε) such that t > 1/ε2 and Ht ∈ (H∗(L∗) −
ε2, H

∗(L∗) + ε2) imply (Ht+1, Xt+1) ∈ (H∗(L∗)− ε,H∗(L∗) + ε)× (X∗(L∗)− ε,X∗(L∗) + ε).

Because H ′(H,X,L) and X ′(H,X,L) are continuous functions, there exists ε3 > 0 such

that (H ′, X ′) ∈ (H∗(L∗) − ε,H∗(L∗) + ε) × (X∗(L∗) − ε,X∗(L∗) + ε) for all (H,X,L) ∈
(H∗(L∗)− ε3, H∗(L∗) + ε3)× (X∗(L∗)− ε3, X∗(L∗) + ε3)× (L∗ − ε3, L∗ + ε3). We can choose

a sufficiently small ε2 < ε3 such that Lt ∈ (L∗ − ε3, L∗ + ε3) for all t > 1/ε2. Because both

∂Lt and ∂Ut are upward sloping and continuous, we can also choose a sufficiently small ε2

such that Ht ∈ (H∗(L∗) − ε2, H
∗(L∗) + ε2) and (Ht, Xt) /∈ Lt ∪ Ut imply that (Ht, Xt) ∈

(H∗(L∗)− ε3, H∗(L∗) + ε3)× (X∗(L∗)− ε3, X∗(L∗) + ε3) for all t > 1/ε2.

(ii) We show that there exists a small ε4 > 0 such that t > 1/ε4 and Ht ≤ H∗(L∗) − ε2 imply

Ht+1 ∈ (Ht, H
∗(L∗) + ε2). To show Ht+1 > Ht, choose a sufficiently small ε4 such that for

t ≥ 1/ε4,

(a) Lαlt f
(
X∗(L∗)

L
αl
t

)1−αl
> δ(H∗(L∗)− ε2);

(b)
min{H∗(Lt),X∗(L∗)/z−X∗(Lt)}−L

αl
t f

(
X∗(L∗)
L
αl
t

)1−αl

1−δh > H∗(L∗)− ε2.

Then (Ht, Xt) /∈ Ut implies that

min {H∗(Lt), Xt/z −X∗(Lt)} − L
αl
t f
(
Xt
L
αl
t

)1−αl

1− δh
≤ Ht ≤ H∗(L∗)− ε2,

which, together with (b), implies Xt < X∗(L∗). It follows from (a) that

Lαlt f

(
Xt

Lαlt

)1−αl
≥ Lαlt f

(
X∗(L∗)

Lαlt

)1−αl
> δ(H∗(L∗)− ε2) ≥ δHt.
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Therefore, Ht+1 = (1− δh)Ht + Lαlt f
(
Xt
L
αl
t

)1−αl
> Ht. To show Ht+1 < H∗(L∗) + ε2, choose

a sufficiently small ε4 such that for t ≥ 1/ε4,

max
{
H∗(Lt), X

∗(L∗)/z −X∗(Lt)
}
− Lαlt f

(
X∗(L∗)

L
αl
t

)1−αl

1− δh
< H∗(L∗) + ε2.

By contradiction, suppose Ht+1 ≥ H∗(L∗) + ε2. Then Xt+1 = Xt/z − Ht+1 ≤ X∗(L∗)/z −
H∗(L∗)− ε2 < X∗(L∗), and

max
{
H∗(Lt+1), Xt+1/z −X∗(Lt+1)

}
− Lαlt+1f

(
Xt+1

L
αl
t+1

)1−αl

1− δh

≤
max

{
H∗(Lt+1), X∗(L∗)/z −X∗(Lt+1)

}
− Lαlt+1f

(
X∗(L∗)

L
αl
t+1

)1−αl

1− δh
< H∗(L∗) + ε2 ≤ Ht+1,

which contradicts the fact that (Ht+1, Xt+1) /∈ Lt.

(iii) Symmetrically, we show that there exists a small ε4 > 0 such that t > 1/ε4 and Ht ≥
H∗(L∗) + ε2 imply Ht+1 ∈ (H∗(L∗)− ε2, Ht). To show Ht+1 < Ht, choose a sufficiently small

ε4 such that for t ≥ 1/ε4,

(a) L
αl
t f
(
X∗(L∗)

L
αl
t

)1−αl
< δ(H∗(L∗) + ε2);

(b)
max{H∗(Lt),X∗(L∗)/z−X∗(Lt)}−Lαlt f

(
X∗(L∗)
L
αl
t

)1−αl

1−δh < H∗(L∗) + ε2.

Then (Ht, Xt) /∈ Lt implies that

max
{
H∗(Lt), Xt/z −X∗(Lt)

}
− Lαlt f

(
Xt
L
αl
t

)1−αl

1− δh
≥ Ht ≥ H∗(L∗) + ε2,

which, together with (b), implies Xt > X∗(L∗). It follows from (a) that

Lαlt f

(
Xt

Lαlt

)1−αl
≤ Lαlt f

(
X∗(L∗)

L
αl
t

)1−αl
< δ(H∗(L∗) + ε2) ≤ δHt.

Therefore, Ht+1 = (1− δh)Ht + Lαlt f
(
Xt
L
αl
t

)1−αl
< Ht. To show Ht+1 > H∗(L∗)− ε2, choose

a sufficiently small ε4 such that for t ≥ 1/ε4,

min {H∗(Lt), X∗(L∗)/z −X∗(Lt)} − L
αl
t f
(
X∗(L∗)

L
αl
t

)1−αl

1− δh
> H∗(L∗)− ε2.
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By contradiction, suppose Ht+1 ≤ H∗(L∗) − ε2. Then Xt+1 = Xt/z − Ht+1 ≥ X∗(L∗)/z −
H∗(L∗) + ε2 > X∗(L∗), and

min
{
H∗(Lt+1), Xt+1/z −X∗(Lt+1)

}
− Lαlt+1f

(
Xt+1

L
αl
t+1

)1−αl

1− δh

≥
min

{
H∗(Lt+1), X∗(L∗)/z −X∗(Lt+1)

}
− Lαlt+1f

(
X∗(L∗)

L
αl
t+1

)1−αl

1− δh
> H∗(L∗)− ε2 ≥ Ht+1,

which contradicts the fact that (Ht+1, Xt+1) /∈ Ut.

(iv) We show that set (H∗(L∗)−ε,H∗(L∗)+ε) is absorbing for t ≥ 1/ε4. Starting from (X∗(L∗)−
ε,X∗(L∗)− ε2] ∪ [X∗(L∗) + ε2, X

∗(L∗) + ε), the path monotonically converges to (X∗(L∗)−
ε2, X

∗(L∗) + ε2); starting from (X∗(L∗) − ε2, X
∗(L∗) + ε2), the path stays in (X∗(L∗) −

ε,X∗(L∗) + ε). Even if H0 /∈ (H∗(L∗) − ε,H∗(L∗) + ε), the path will enter (H∗(L∗) −
ε,H∗(L∗) + ε) and stay in it forever.

Fourth, if X̃0 > X0, then by induction we can show that H̃t < Ht and X̃t > Xt for all t ≥ 1.

Therefore,

X̃t+1 −Xt+1 = (X̃t −Xt)/z − (H̃t+1 −Xt+1) > (X̃t −Xt)/z,

which implies limt(X̃t −Xt) = ∞. Therefore, limt X̃t = ∞+X∗(L∗) = ∞. Similarly, if X̃0 < X0,

then we can show that H̃t > Ht and X̃t < Xt for all t ≥ 1. Therefore, limt X̃t = −∞. This step

also implies that X0 is unique. �

Step 3. We show that for any (A0, H0,K0), there exists a unique Q0 such that the system

(A.1)-(A.12) starting from (K0, A0, H0, Q0) converges to (H∗(L∗), X∗(L∗)). Lemma 3 shows that,

given H0, there exists a unique K0/Q−1 such that the system converges to (H∗(L∗), X∗(L∗)). There

is an increasing and one-to-one mapping between Q−1 and Q0. Equation (A.13) implies

Q0 =
(1− α)(1− τ)Aθ0K

α−θρ
0 (1−Nh,0)−α−θ(1−ρ)Nαl

h,0

(1− αl)Lαl0

.

Substituting Nh,0 = f
(

K0

Q−1L
αl
0

)
into the above yields

Q0 =
(1− α)(1− τ)Aθ0K

α−θρ
0 (1− f

(
K0

Q−1L
αl
0

)
)−α−θ(1−ρ)f

(
K0

Q−1L
αl
0

)αl
(1− αl)Lαl0

,

which is increasing in Q−1.

Suppose Q0 corresponds to the unique Q−1 in Lemma 3 from which the system (Ht, Xt) con-

verges to a steady state. If Q̃0 < Q0, then Q̃−1 < Q−1, which implies X̃0 = K0

Q̃−1
> K0

Q−1
= X0 and
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limt→∞ X̃t = ∞. This represents an equilibrium in which limt→∞ Q̃t = 0. However, if Q̃0 > Q0,

then Q̃−1 > Q−1 and X̃t < 0 for some t. Equilibrium does not exist in the latter case.

Proof of Proposition 3

If A and K are both linear functions of Y ,

A = λAY, (A.19)

K = λKY, (A.20)

it follows from (A.19), (A.20) and the production function Y = AθKα−ρθN
1−α−(1−ρ)θ
c that

Y =
(
λθAλ

α−ρθ
K N1−α−(1−ρ)θ

c

) 1
1−α−(1−ρ)θ

.

Therefore, (9), (10) and Nn
c = 1 in the bubbleless steady state imply

Y n =

(
(δ−1
a τ)θ(

β

1 + β
αψ(1− τ))α−ρθ

) 1
1−α−(1−ρ)θ

,

while (15) and (16) in the bubbly steady state imply

Y b =

(
(δ−1
a αlδhφ

b β

1 + β
αψ(1− τ) + δ−1

a τ)θ((1− φb) β

1 + β
αψ(1− τ))α−ρθ

(N b
c )1−α−(1−ρ)θ

) 1
1−α−(1−ρ)θ

.

These calculations show that Y b > Y n if and only if(
Y b

Y n

)1−α−(1−ρ)θ

=

(
1 +

αlδhφ
bβαψ(1− τ)

(1 + β)τ

)θ
(1− φb)α−ρθ(N b

c )1−α−(1−ρ)θ > 1.

The left-hand side of the above inequality is increasing in θ because 1 + αlδhφ
bβαψ(1−τ)

(1+β)τ > 1 and

N b
c < 1. The other two equations in the proposition follow from equations (10), (16), (9), and (15).

B The Extended Model in Section 4

B. 1 Decision Rules

We show two properties of the optimal consumption-savings allocation in the entrepreneurs’ prob-

lem. First, an age j ≥ 2 entrepreneur’s consumption cej,t in period t satisfies

cej,t =
1− β

1− βT−(j−1)

(
Rtkj,t + (Qt(1− δh) + rt)hj,t +Rfbej,t

)
. (B.1)

The newborn age 1 entrepreneur’s wealth is inherited from their parents. Then their consumption

is given by

ce1,t =
1− β

1− βT
mt. (B.2)
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Thus, consumption is a fixed fraction of an entrepreneur’s wealth in any period. This fraction

depends on the entrepreneur’s age, but not on their wealth level or the uncertainty in the rate of

return from capital and housing.

Second, all entrepreneurs make the same portfolio choice at time t regardless of age, that is,

hj+1,t+1/kj+1,t+1 is independent of j. These properties will simplify the calculation of equilibrium

allocations in the extended model.

The following two lemmas prove these properties. We need to use an age-j entrepreneur’s

budget constraints at time t, which are explicitly written as

Qthj+1,t+1 + kj+1,t+1 + cej,t + bej+1,t+1

=

{
mt, j = 1,
Rtkj,t + (Qt(1− δh) + rt)hj,t +Rfbej,t, 2 ≤ j ≤ T. (B.3)

Lemma 4 With logarithmic utility and Rt+1 > Rf , we have bej+1,t+1 = −ξkj+1,t+1 and equations

(B.1) and (B.2) hold.

Proof: We prove (B.1) by backward induction in j. If j = T , then 1−β
1−βT−(j−1) = 1 and an

entrepreneur in their last period of lifespan should obviously consume all the wealth.

Suppose (B.1) holds for j + 1, i.e.,

cej+1,t+1 =
1− β

1− βT−j
(
Rt+1kj+1,t+1 + (Qt+1(1− δh) + rt+1)hj+1,t+1 +Rfbej+1,t+1

)
=

1− β
1− βT−j

(
Rtkj,t + (Qt(1− δh) + rt)hj,t +Rfbej,t − cej,t

)
×

(R̃t+1(1− φj,t) +Rht+1φj,t),

where we have used (B.3),

φj,t =
Qthj+1,t+1

kj+1,t+1 +Qthj+1,t+1 + bej+1,t+1

=
Qthj+1,t+1

(1− ξ) kj+1,t+1 +Qthj+1,t+1
,

R̃t+1 ≡ Rt+1 − ξRf

1− ξ
, Rht+1 ≡

Qt+1(1− δh) + rt+1

Qt
,

and bej+1,t+1 = −ξkj+1,t+1. Notice that the borrowing constraint always binds when Rt+1 > Rf .

Substituting the above consumption equation into the entrepreneur’s Euler equation,

u′(cej,t) = βEt[u
′(cej+1,t+1)(R̃t+1(1− φj,t) +Rht+1φj,t)],

we have

1

cej,t
= βEt

 1

1−β
1−βT−j

(
Rtkj,t + (Qt(1− δh) + rt)hj,t +Rfbej,t − cej,t

)
 .

Solving the above equation for cej,t yields (B.1).

Finally for j = 1, the entrepreneur’s wealth is mt. We then obtain (B.2). �

44



Lemma 5 With logarithmic utility and Rt+1 > Rf , all entrepreneurs make the same portfolio

choice at time t regardless of age, i.e., φj,t is independent of j.

Proof: The no-arbitrage condition is

(1− pt+1)
u′(ce+j,t+1)

u′(ce−j,t+1)
Rh+
t+1 + pt+1R

h−
t+1 = (1− pt+1)

u′(ce+j,t+1)

u′(ce−j,t+1)
R̃+
t+1 + pt+1R̃

−
t+1.

It follows from Lemma 4 that
u′(ce+j,t+1)

u′(ce−j,t+1)
=

ce−j,t+1

ce+j,t+1

is equal to the wealth ratio between state − and

state +. Therefore

(1− pt+1)
(Rh−t+1φj,t + R̃−t+1(1− φj,t))
(Rh+

t+1φj,t + R̃+
t+1(1− φj,t))

Rh+
t+1 + pt+1R

h−
t+1

= (1− pt+1)
(Rh−t+1φj,t + R̃−t+1(1− φj,t))
(Rh+

t+1φj,t + R̃+
t+1(1− φj,t))

R̃+
t+1 + pt+1R̃

−
t+1. (B.4)

From the above equation, we can solve φj,t as

φj,t =
R̃−t+1R̃

+
t+1 − (1− pt+1)R̃−t+1R

h+
t+1 − ptR

h−
t+1R̃

+
t+1

Rh−t+1R
h+
t+1 + R̃−t+1R̃

+
t+1 −R

h−
t+1R̃

+
t+1 − R̃

−
t+1R

h+
t+1

.

Because the right-hand side of the above does not depend on j, entrepreneurs of different ages make

the same portfolio choice. �

Let (Kt(j), Ht(j))
T
j=1 denote the aggregate holdings of capital and houses at the beginning of

time t for ages j = 1, ..., T . Because Lemma 5 implies that Ht(j) = Kt(j)
Kt

Ht, we will include Kt, Ht,

and {Kt (j)}Tj=1 in our state variables but not {Ht (j)}Tj=1 since {Ht (j)}Tj=1 can be inferred from

the others.

B. 2 Bubbleless Equilibrium

The dynamic system for the bubbleless equilibrium in the extended model contains 3T+16 variables

Bg
t , At, Ht, Kt (j) , Be

t (j) , Kt, Zt, Zt (j) , Rt, wt, pLt, Kc,t, Kh,t, Nc,t, Nh,t, Yt, Yh,t, Mt, Qt, for

j = 1, ..., T , that satisfy the following system of 3T + 16 difference equations for t ≥ 0:

Bg
t+1 = ξgpLtLt, (B.5)

At+1 = (1− δa)At −Gt −RfBg
t + τYt + τhQtYht + pLtLt +Bg

t+1, (B.6)

Ht+1 = (1− δh)Ht + Yht, (B.7)

Kt+1 =
1

1− ξ
(Zt −QtHt+1), (B.8)

45



Kt(1) = 0, (B.9)

Kt+1(j + 1) = Kt+1
Zt(j)

Zt
, ∀j = 1, ..., T − 1, (B.10)

Be
t+1(j + 1) = −ξKt+1(j + 1), ∀j = 0, 1, ..., T − 1, (B.11)

Zt(1) =

(
1− 1− β

1− βT

)
Mt, (B.12)

Zt(j) =

[
1− 1− β

1− βT−(j−1)

]
×[

Kt(1− ξ)R̃t +Ht((1− δh)Qt + rt)
] Kt(j)

Kt
, ∀j = 2, ..., T, (B.13)

Zt =

T∑
j=1

Zt(j), (B.14)

Kt = Kc,t +Kh,t, (B.15)

Nt = Nc,t +Nh,t, (B.16)

Rt = α(1− τ)(1− ψ)ÂθtK
α−1
c,t (etNc,t)

1−α + (1− δk), (B.17)

Rt = αk(1− τh)(1− ψ)Qt ×

((1− gl)tLt)αlKαk−1
h,t (etNh,t)

1−αl−αk + (1− δk), (B.18)

wt = (1− α)(1− τ)ÂθtK
α
c,te

1−α
t N−αc,t , (B.19)

wt = (1− αl − αk)(1− τh)Qt ×

((1− gl)tLt)αlKαk
h,te

1−αl−αk
t N−αl−αkh,t , (B.20)

pLt = αl(1− τh)Qt(1− gl)tαlLαl−1
t Kαk

h,t(etNh,t)
1−αl−αk , (B.21)

Yt = ÂθtK
α
c,t(etNc,t)

1−α, (B.22)

Yh,t = ((1− gl)tLt)αlKαk
h,t(etNh,t)

1−αl−αk , (B.23)

Mt = ψ((1− τ)αYt + (1− τh)αkQtYh,t), (B.24)

R̃t+1 =
(1− δh)Qt+1 + rt+1

Qt
, (B.25)

where Ât and R̃t satisfy

Ât =
At

Kρ
c,t (etNc,t)

1−ρ , R̃t =
Rt − ξRf

1− ξ
.
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The workers’ decision problem is much simpler. For our small open economy, their consump-

tion/saving choices do not affect the above equilibrium system. Once obtaining a solution to the

above system, we can derive the consumption rules for entrepreneurs and workers. Here we omit

the details.

Equations (B.5)-(B.7) follow from the definitions of Bg
t+1, At+1, and Ht+1. Equation (B.8)

computes the aggregateKt+1, using the binding borrowing constraint of entrepreneurs. The variable

Zt denotes the aggregate wealth net of consumption across all entrepreneurs and Zt (j) denotes

the total after-consumption wealth of age-j entrepreneurs. Equation (B.9) says that a newborn

entrepreneur does not own capital. Equation (B.10) defines an age-(j + 1) entrepreneur’s capital

holding at t+ 1, whose age is j at period t. Here, Kt+1(j+1)
Zt(j)

= Kt+1

Zt
holds because Lemma 5 shows

that
Kt+1(j + 1)

Zt(j)
=

kj+1,t+1

kj+1,t+1 +Qthj+1,t+1 + bej+1,t+1

=
1− φj,t
1− ξ

is independent of j.

Equation (B.11) is the binding borrowing constraint of entrepreneurs. Equation (B.12) defines

newly born entrepreneurs’ wealth Zt (1) after consumption, where Mt given in (B.24) is their

total initial endowment. Equation (B.13) defines total age-j entrepreneurs’s wealth Zt (j) after

consumption, for j = 2, ..., T − 1, where we have used Lemma 5. Here (Kt(1 − ξ)R̃t + Ht((1 −
δh)Qt + rt)) is the total return from holding aggregate capital and houses, while Kt(j)

Kt
is the

fraction of cohort-j’s wealth in the total. Notice that Zt (T ) = 0 because an age-T entrepreneur

consumes all their wealth. Equations (B.14), (B.15), and (B.16) define the aggregates. The variable

Nt denotes the exogenous worker population.

Equations (B.17)-(B.21) are the firm’s first-order conditions with respect to kc,t, kh,t, nc,t,

nh,t, and lt, respectively. Equations (B.22)-(B.24) follow from the definitions of Yt, Yh,t, and Mt.

Equation (B.25) is the no-arbitrage condition. It shows that the initial fundamental housing value

satisfies

Q0 =

∞∑
s=1

(1− δh)s−1rs∏s
i=1 R̃i

.

The predetermined variables for the equilibrium system are A0, K0, H0, {K0 (j)}Tj=1 , and Bg
0 .

B. 2.1 Algorithm for Computing the Dynamics Given Q0

At the beginning of time 0, Bg
0 , A0, H0, K0, and {K0 (j)}Tj=1 are known. Given Q0, the dynamics

are computed as follows.

(i) Initialize t = 0. Given Bg
0 , A0, H0, K0, {K0 (j)}Tj=1 , and Q0, solve(

R0, w0, pL0,Kc,0,Kh,0, Nc,0, Nh,0, Y0, Yh,0,M0, Z0, {Z0 (j)}Tj=1

)
,
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by using equations (B.12)-(B.24) in the previous equilibrium system. The total numbers of

equations and unknowns are both T + 11.

(ii) Given Bg
t , At, Ht, Kt, {Kt (j)}Tj=1 , Qt, Rt, wt, pLt, Kct, Kht, Nct, Nht, Yt, Yht, Mt, Zt, and

{Zt (j)}Tj=1 ,

(a) solve (Bg
t+1, At+1, Ht+1,Kt+1, {Kt+1 (j)}Tj=1) by using (B.5)-(B.10). The total numbers

of equations and unknowns are both T + 4.

(b) given (Bg
t+1, At+1, Ht+1,Kt+1, {Kt+1 (j)}Tj=1), solve Rt+1, wt+1, pLt+1, Kc,t+1, Kh,t+1,

Nc,t+1, Nh,t+1, Yt+1, Yh,t+1,Mt+1, Zt+1, {Zt+1 (j)}Tj=1, Qt+1 by using time-(t+1) versions

of (B.12)-(B.25). The total numbers of equations and unknowns are both T + 12.

(iii) Set t = t+ 1 and go to step (ii).

B. 2.2 Algorithm for Computing Equilibrium

We use the shooting method. Set a large time horizon T̄ and use the bisection method to compute

Q0 such that the bubbleless equilibrium converges to the balanced growth path.

(i) Choose two initial values of Q0: (Qh0 , Q
l
0).

(ii) If |Qh0 −Ql0| < ε, then stop. Otherwise, define Q0 =
Qh0+Ql0

2 .

(iii) Given Bg
0 , A0, H0, K0, {K0 (j)}Tj=1 and Q0, solve the system dynamics by using the algorithm

in Section B. 2.1.

(a) If φt ≡ QtHt+1/Zt > 0 for all t = 0, 1, ..., T̄ , then set Qh0 = Q0 and go to step (ii).

(b) If φt < 0 for finite t (i.e., Qt becomes negative because the initial guess of Q0 is too low),

then set Ql0 = Q0 and go to step (ii).

(iv) Increase T̄ until the solution for Q0 does not change much. In this case φT̄ converges to zero.

B. 2.3 Bubbleless Balanced Growth

Notice that gr, ge, and gn are exogenous growth rates of rent, labor-augmented technology, and

population, respectively, and that gl is the exogenous declining rate of land quality. We use gx to

denote the growth rate of a variable xt. On a balanced growth path, we have

gA = gK = gKc = gBe = gZ = gY = gM = (1 + ge)(1 + gn)− 1, (B.26)

gw = ge, gNc = gn. (B.27)

Moreover, the capital return Rt, Ât, and R̃t are constant over time.
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It follows from equation (B.25) that the housing price Qt grows at the growth rate of rents, i.e.,

gQ = gr. By equation (B.18), we have

1 = (1 + gr) (1− gl)αl (1 + gKh)αk−1 [(1 + ge) (1 + gNh)]1−αk−αl .

By equation (B.20), we have

1 + gw = (1 + gr) (1− gl)αl (1 + gKh)αk (1 + ge)
1−αk−αl (1 + gNh)−αk−αl .

From the above two equations, we can solve for gKh and gNh :

gNh =
(1 + gr)

1
αl (1− gl)

1 + ge
− 1,

gKh = (1 + gr)
1
αl (1− gl)− 1.

Using the housing production function, we can derive

gYh = (1 + gr)
1
αl
−1

(1− gl)− 1.

Thus the growth rate of residential investment QtYht is given by

(1 + gr)
1
αl (1− gl)− 1.

By (B.7), gH = gYh . It follows from equations (B.5) and (B.21) that

gpL = gBg = (1 + gr)
1
αl (1− gl)−1.

By the labor market clearing condition,

1 =
Nct

Nt
+
Nht

Nt
.

For a bubbleless balanced growth path to exist, we must have gn ≥ gNh as gNc = gn, or

1 + gn ≥
(1 + gr)

1
αl (1− gl)

1 + ge
.

Under this condition, we deduce that the growth rate of the housing sector (or residential investment

QtYh,t) is lower than that of the nonhousing sector. Thus φt converges to zero as t→∞.

B. 3 Equilibrium with Stochastic Bubbles

Once the bubble bursts, it never reappears and the equilibrium system is the same as that in

Appendix B. 2. Before it bursts, the equilibrium system is also the same as in Appendix B. 2,

except for two changes. First, we add superscript + to all endogenous variables in equations (B.5)
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through (B.24) to indicate that these variables are in the bubbly state. Second, the no-arbitrage

equation (B.25) is replaced by the following equation:

(1− pt+1)
(Rh−t+1φ

+
t + R̃−t+1(1− φ+

t ))

(Rh+
t+1φ

+
t + R̃+

t+1(1− φ+
t ))

Rh+
t+1 + pt+1R

h−
t+1

= (1− pt+1)
(Rh−t+1φ

+
t + R̃−t+1(1− φ+

t ))

(Rh+
t+1φ

+
t + R̃+

t+1(1− φ+
t ))

R̃+
t+1 + pt+1R̃

−
t+1, (B.28)

where

Rh+
t+1 ≡

(1− δh)Q+
t+1 + rt+1

Q+
t

, Rh−t+1 ≡
(1− δh)Q−t+1 + rt+1

Q+
t

,

R̃+
t+1 ≡

R+
t+1 − ξRf

1− ξ
, R̃−t+1 ≡

R−t+1 − ξRf

1− ξ
, φ+

t ≡
Q+
t H

+
t+1

Z+
t

.

The new no-arbitrage equation (B.28) takes into account the stochastic bubble. The variable φ+
t

denotes the portfolio share of the housing investment, Rh+
t+1

(
Rh−t+1

)
is the housing return when the

bubble persists (bursts), and R̃+
t+1

(
R̃−t+1

)
is the effective capital return when the bubble persists

(bursts). When the bubble bursts, it will not reappear and Q−t+1 and R−t+1 represent the housing

price and capital return in the bubbleless equilibrium studied in Appendix B. 2. The solution

algorithm is similar to that described in Appendix B. 2 and is omitted here.

We now discuss the bubbly balanced growth path in the long run. According to our calibration,

the bubble will never burst in the long run as the bursting probability converges to zero, limt→∞ pt =

0. Thus equation (B.28) reduces to (B.25). On a bubbly balanced growth path, capital return Rt

and productivity Ât are constant over time. It follows from (B.25) that the housing growth rate is

higher than the rent growth rate and

R̃ =
R− ξRf

1− ξ
=

(1− δh)Qt+1

Qt
= (1− δh) (1 + gQ) . (B.29)

For a bubbly balanced growth path to exist, the growth rate of the housing sector must be the

same as that of the nonhousing sector. That is, the growth rate ofQtYht is equal to (1+ge)(1+gn)−1.

Following the same method as in Appendix B. 2, we can derive the growth rates

gA = gK = gKc = gKh = gBe = gZ = gY = gBg

= gM = gpL = (1 + ge)(1 + gn)− 1, (B.30)

gw = ge, gNc = gNh = gn (B.31)

gYh = (1− gl)αl((1 + ge)(1 + gn))1−αl − 1, (B.32)

gQ =

(
(1 + ge)(1 + gn)

1− gl

)αl
− 1. (B.33)

Again gH = gYh . It follows from (B.29) that the bubbly steady-state capital return is

R = (1− δh) (gQ + 1) (1− ξ) + ξRf .

50



We also have φt converges to a constant in (0, 1) as t→∞.
We need the condition

1 + gQ =

(
(1 + ge)(1 + gn)

1− gl

)αl
> 1 + gr.

We also need a condition that the bubbleless capital return is less than the economic growth rate

(1 + ge)(1 + gn), similar to that in the basic model of Section 3. Due to the complexity of the

extended model, we will not derive this condition here. We can easily verify it in our numerical

solutions.
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Figure 1: Stylized facts.
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Figure 3: Model results and comparison with the data.
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Figure 4: Government debt to GDP Ratio.
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Figure 5: Counterfactual experiment of a future bubble burst.
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Figure 6: Counterfactual experiment of a future property tax.
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Figure 7: Welfare effects.
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