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Abstract

Regardless of whether the CAPM is rejected for valid reasons or by mistake, a single
long-short portfolio will always explain, together with the market, 100% of the cross-
sectional variation in returns. Yet, this portfolio, which we coin the “Low-Minus-High
(LMH) portfolio,” need not proxy for fundamental risk. We show theoretically how factors
based on valuation ratios (e.g, book-to-market), or on investment rates, can be proxies
for the LMH portfolio. More generally, the empiricist can uncover an infinity of proxies
for the LMH portfolio, thus unleashing the factor zoo.
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“We really don’t know whether to believe the theory or the data... In the light of

the uncertainty about the reasons for the difference between the theory and the

data, the safest course may be to assume that the theory is correct.”

. — Black and Scholes (1974, p. 405)

1 Introduction

Perhaps the most tested hypothesis in empirical asset pricing is the linear relation between

expected returns and betas—the main prediction of the Capital Asset Pricing Model. Tests

of this relation led first to its partial empirical validation,1 then to its repeated demise.2 Not

only returns and betas are not related as the CAPM predicts, but empiricists have also un-

covered a “zoo” of anomalies—hundreds of factors now explain the cross section of returns3,

so many that the empirical asset pricing field is drowning in anomalies.

Although the interpretation of this vast number of anomalies is debated in the literature,

everyone agrees that they are clear evidence against the CAPM—“the CAPM is dead in its

tracks” (Fama and French, 2004, p. 36). But before we adopt this general view too heartily,

we should consider first what the CAPM rejection means. Suppose we reject the CAPM, then

what is the alternative hypothesis? We argue that when the CAPM is rejected—for valid rea-

son(s) or by mistake—there will always be a long-short portfolio (i.e., a factor) that explains,

together with the market, the cross-section of returns. This portfolio will become empiricist’s

strongest ally against the CAPM: even when this portfolio has no economic meaning, the em-

piricist will always fail to reject the alternative hypothesis of a two-factor model of returns.

This portfolio has the potential to cause great confusion—any observable variable (macroe-

conomic factor, or firm characteristic) that covaries with it becomes a contender to join the

zoo. Empiricists may thus uncover an infinity of anomalies, forever “adding epicycles.”

We base our theoretical argument on a counterexample to prove that finding priced fac-

tors other than the market does not necessarily imply that the CAPM fails. Our starting

point is an equilibrium model in which the CAPM holds—in the words of Fischer Black and

Myron Scholes, we “assume that the theory is correct” (Black and Scholes, 1974, p. 405).

In this equilibrium model, investors trade based on private and public information and, on

aggregate, hold the market portfolio. The empiricist, who does not observe the information

of investors, mis-measures betas and rejects the CAPM (Andrei, Cujean, and Wilson, 2018).

Thus, our counterexample builds on the premise that the CAPM is rejected by mistake.

1Blume and Friend (1973), Fama and MacBeth (1973).
2Reinganum (1981), Lakonishok and Shapiro (1986), Fama and French (1992, 1993). See Fama and French

(2004) for a comprehensive review.
3Harvey, Liu, and Zhu (2016), Hou, Xue, and Zhang (2018).
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In this equilibrium model, an empiricist can build a long-short portfolio that, together

with the market, explains 100% of the cross-sectional variation of returns. This portfolio

represents the difference between the full-sample mean-variance efficient portfolio with the

highest Sharpe ratio (i.e., the tangency portfolio) and the market portfolio. For the empiricist

who observes data ex-post, this long-short portfolio represents a way to improve efficiency of

the market portfolio: assets with positive weights in this portfolio are under-invested (cheap)

and assets with negative weights are over-invested (expensive). Hence, we call the difference

between the tangency and the market portfolios the Low-Minus-High (LMH) portfolio.

Using the market and the LMH portfolio, the empiricist fails to reject a two-factor model

of returns. Of course, one can always find a tangency portfolio that generates exact linearity

between betas and expected returns in-sample (Roll, 1977). Should we build the LMH port-

folio ex-post, it would tautologically benefit from this perfect hindsight. However, the role

of the equilibrium model is to identify ex-ante variables that covary with the LMH portfolio.

We show that observable characteristics, such as market-to-book ratios or investment rates,

are good proxies for the LMH portfolio. For the empiricist, firms with low market-to-book ra-

tios or firms with low investment rates command a positive risk premium, in addition to the

premium earned from exposure to the market alone. Yet, in the model there is no economic

reason for firms with low market-to-book ratio or low investment rates to appear relatively

riskier than the CAPM predicts. Rather, as opposed to being priced factors in the model,

market-to-book ratio and corporate investment are instruments for beta mis-measurement.

More broadly, an empiricist who performs a Principal Component Analysis of the LMH port-

folio will find as many principal components as there are factors driving payoffs in the model.

The myriad of “factors” the empiricist may uncover thus promptly turns into a factor zoo.

This counterexample illustrates how the hunt for new factors may constitute a method-

ological trap. We do not debate the importance of these factors, nor do we contest their high

risk-adjusted returns. Rather, we, as many others, question their interpretation. In our sim-

ple counterexample, factors instrument for beta mis-measurement, thus luring empiricists

into believing that these factors are priced. In other words, because CAPM mispricing is

possibly spurious, this approach of looking for factors may be one of looking for instruments.

And because this approach will always lead to the discovery of new factors—economically

meaningful or not—it will never explain why asset-pricing models fail.

We provide an empirical illustration of our theoretical argument, in a set of portfolios

that has become the “playing field” of empirical asset pricing: the 25 size and book/market

sorted portfolios (Fama and French, 1993). The spectacular failure of the CAPM in this set of

portfolios is now a textbook example (e.g., Cochrane, 2009; Campbell, 2017); one can perhaps

regard this 5×5 portfolio space as the coffin of the CAPM.
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In this portfolio space, we build a long-short portfolio that, together with the market, ex-

plains 89% of the cross-sectional variation of returns (in comparison, the Fama and French

(1993) three-factor model explains 63% of the variation, whereas the Fama and French

(2015) five-factor model explains 73%). This portfolio is the empirical counterpart of the

LMH portfolio that we constructed in our theoretical exercise.

As we previously emphasized, in any sample of returns, one can always find a tangency

portfolio that generates exact linearity between betas and expected returns (Roll, 1977); the

LMH portfolio, which is built based on the tangency portfolio, will tautologically benefit from

this perfect hindsight. In our example, however, we build the LMH portfolio the same way

any other risk factor is commonly built, with data that are available only at the time of

portfolio formation. Yet, we show that none of the five risk factors from Fama and French

(2015) or the momentum factor from Carhart (1997) can explain the returns of the LMH

portfolio: its alpha is above 1% per month, independently of the factors used as control

variables. Instead, the alphas of existing factors mostly disappear when we regress their

returns on the returns of the LMH portfolio. Furthermore, the LMH portfolio commands a

positive and strongly statistically significant risk premium, alone or when controlling for the

market and/or any other factor(s). And, as our theory predicts, the LMH portfolio is strongly

positively correlated with the value and investment factors. Finally, the LMH portfolio has

significant explanatory power in other portfolio sorts (e.g., sorts based on past returns).

Have we found, yet again, a better factor, a mighty inhabitant of the zoo? According

to our theory—No. While the LMH portfolio does capture risk, its economic interpretation

remains elusive. Because we observe realized betas, as opposed to ex-ante measures of betas,

we do not know the origin of the CAPM rejection, and the LMH portfolio is not helpful in

this matter. Instead, the LMH portfolio only captures what we do not observe.

A large and growing empirical literature attempts to tame the factor zoo.4 Our approach

is theoretical, and, unfortunately, results in a theory of the factor zoo. Roll (1977) has argued

that the CAPM will perhaps never be tested. Berk (1995) has argued that the size anomaly

cannot be regarded as evidence against any asset pricing theory.5 We argue that anomalies

in general should not be regarded as evidence against the CAPM, because they do not reveal

the true cause of the CAPM rejection. We conclude that, upon rejection of the CAPM, the

factor zoo is ineluctable.
4Barillas and Shanken (2018), Bryzgalova (2015), Chen and Zimmermann (2018), Chinco, Neuhierl, and

Weber (2019), Chordia, Goyal, and Saretto (2017), Engelberg, McLean, and Pontiff (2018), Feng, Giglio, and
Xiu (2019), Giglio and Xiu (2018), Giglio, Liao, and Xiu (2018), Harvey and Liu (2018), Kan and Zhang (1999),
Lewellen, Nagel, and Shanken (2010), Linnainmaa and Roberts (2018), McLean and Pontiff (2016), Harvey
(2017), Harvey et al. (2016), Hou et al. (2018), Romano and Wolf (2005), Smith (2018), Yan and Zheng (2017).

5See also Ferson, Sarkissian, and Simin (1999), MacKinlay and Pástor (2000).
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2 The Low-Minus-High Portfolio and the Factor Zoo

In this section we characterize the factor zoo in an equilibrium model. We build a model

in which a true CAPM relationship holds for investors, but fails for the empiricist (Andrei

et al., 2018). In the model, although there is no economic reason for firms’ characteristics

(e.g., market-to-book ratios, or investment rates) to be priced, the empiricist concludes that

these characteristics yield an additional risk premium beyond what the CAPM can justify,

and consequently fails to reject a multifactor model of returns. We show that rejecting the

CAPM leaves the empiricist lost in the factor zoo. We use the simplest possible model to

make these points; in Section 2.4, we discuss our modeling assumptions.

Consider a one-period economy in which the market consists of one risk-free asset with

gross return normalized to 1 and N firms indexed by n = 1, ..., N. We assume the value of

assets in place to be the same for all firms, and denote this value by K . Firms are hetero-

geneous with respect to the productivity of their assets. Specifically, firm productivities are

unobservable at time 0 and have a single-factor structure:

Z̃ =


φ1

φ2
...

φN

 (F + F̃)+


ε̃1

ε̃2
...

ε̃N

≡Φ(F + F̃)+ ε̃. (1)

The common productivity shock F̃ and each firm-specific shock ε̃n are independently nor-

mally distributed with means 0 and precisions τF and τε. Without loss of generality, we

assume that the cross-sectional average of firms’ loadings on the common productivity shock

is positive: Φ̄≡ N−1 ∑N
n=1φn > 0. The final values of firms depend on their assets in place and

their productivities:

D̃ = K Z̃. (2)

We assume that N claims on these final values (one for each firm) are traded in finan-

cial markets. The economy is populated by a continuum of investors indexed by i ∈ [0,1],

who choose their portfolio at time 0 and derive utility from terminal wealth with constant

absolute risk aversion coefficient γ:

max
ωi

E[−e−γWi |Fi]

s.t. Wi =Wi,0R f +ω′
i(D̃−PR f ),

(3)
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where Wi,0 is investor i’ initial wealth, ωi is investor i’s portfolio (in units of assets), R f ≥ 1 is

the gross interest rate, P is the vector of equilibrium prices, and Fi is investor i’s information

set that we describe in more details below. Without loss of generality, we fix Wi,0 = 0 and

R f = 1. Finally, we define excess returns as Re ≡ D̃−PR f .

Investors know the structure of realized payoffs in Eqs. (1)-(2), but do not observe the

common productivity shock F̃ and firms’ specific productivity shocks ε̃. Each investor i forms

expectations about F̃ based on both a private signal Ṽi = F̃+ ṽi and a public signal G̃ = F̃+ ṽ.

The signal noises ṽ and ṽi ⊥ ṽ, ∀i, are unbiased and independently normally distributed

with precisions τG and τv, respectively. These signals, together with the vector of prices,

account for the information set of investor i, Fi = {Ṽi,G̃,P}.

Conditional on Fi, each investor builds expectations about excess returns for all firms.

Defining µi ≡ E[Re|Fi] as the vector of expected returns and Σ ≡ Var[Re|Fi] as the condi-

tional covariance matrix of returns (which is identical across investors), investor i’s optimal

portfolio choice is

ωi = 1
γ
Σ−1µi. (4)

The total supply of shares is noisy and unobservable (Grossman and Stiglitz, 1980). It

equals M+ m̃, where we denote by M the unconditional market portfolio and by m̃ the noise

in supplies. The unconditional market portfolio M is a vector with strictly positive values

that sum up to one, M = [M1 ... MN]′, whereas m̃ is a vector whose elements are normally

and independently distributed with precision τm. Noise in supply, which may result from

trading for liquidity needs and/or for non-informational reasons, prevents the price from

revealing F̃ (Grossman and Stiglitz, 1980); it also prevents agents from refusing to trade

(Milgrom and Stokey, 1982). Market clearing yields∫
i
ωidi = M+ m̃. (5)

Proposition 1 characterizes equilibrium prices in this economy.

Proposition 1. There exists a partially revealing rational expectations equilibrium in which
the vector of market-to-book ratios, P/K , is given by

P
K

=ΦF +ξ0M+αF̃ + gG̃+ξm̃, (6)
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where the coefficients ξ0 (N ×N), α (N ×1), g (N ×1), and ξ (N ×N) solve

ξ0 =−γΣ
K

, α=Φτ−τF −τG

τ
, g =ΦτG

τ
, ξ=−γK +p

τmτP

τ
ΦΦ′− γK

τε
IN , (7)

τP represents an endogenous scalar linked to price informativeness, τ ≡ Var−1[F̃|Fi] is a
scalar identified as the unique positive solution to a cubic equation, and IN is the identity
matrix of dimension N ×N.

Proof. See Appendix A.1.

The equilibrium market-to-book ratios reflect both the information of market partici-

pants, F̃ and G̃, but also their liquidity needs m̃. Let the average agent be the fictitious

investor who holds the average beliefs µ̄= ∫
iµidi and Σ=Var[Re|Fi]. Eqs. (4)-(5) imply

µ̄= γΣ(M+ m̃), (8)

which represents the expected rate of return that every particular asset must pay for in-

vestors to be willing to hold the supplies of the N assets. Eq. (8) also implies that, based

on information available in the market, returns are predictable (Ferson and Harvey, 1991;

Pesaran and Timmermann, 1995; Cochrane, 2007). A more general form of Eq. (8), in which

γ and Σ are time-varying, has been derived by Jensen (1972), and further studied by Boller-

slev, Engle, and Wooldridge (1988).6 In the context of our model, the variation in expected

returns is driven exclusively by changes in the vector m̃.

Eq. (8) implies a conditional CAPM. Furthermore, because in our setup γ and Σ are

constant, an unconditional CAPM relation holds, as shown in the following Corollary.

Corollary 1.1. In this economy, an unconditional CAPM relation holds:

µ= ΣM
σ2

M
µM =βµM , (9)

where µ ≡ E[µ̄], σ2
M ≡ M′ΣM is the variance of excess returns for the market portfolio, and

µM ≡ M′µ is the unconditional expected excess return on the market.

Proof. Take unconditional expectation of Eq. (8) to obtain µ= γΣM. Multiplication with M′

yields µM = γσ2
M . Divide µ= γΣM by µM = γσ2

M to obtain (9).

For the average agent to obtain the unconditional CAPM, she only needs to know the

exact composition of the unconditional market portfolio M. The vector β, as measured under
6Eq. (8), common in noisy rational expectation models (Admati, 1985), is a special case of the ICAPM

without hedging terms (Merton, 1973), or of a standard intertemporal asset pricing model (Campbell, 1993).
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the beliefs of the average agent and based on the market portfolio M, represents the true
betas in this economy. An equivalent way of stating Corollary 1.1 is that the unconditional

market portfolio M is mean-variance efficient and thus commands the highest Sharpe ratio

in the economy (Roll, 1977), as the following Corollary shows.

Corollary 1.2. Based on the observation available in the market, the Sharpe ratio of the
market portfolio M reaches its maximum attainable level in the economy:

µM

σM
=

√
µ′Σ−1µ. (10)

Proof. The proof follows from efficient set mathematics. Define B ≡ 1′Σ−1µ, C ≡ µ′Σ−1µ,

where 1 is a vector of ones of conformable dimension. The tangency (market) portfolio has

an expected excess return of µM = C/B and a variance of excess returns of σ2
M = C/B2. Thus,

µM /σM =p
C, which yields (10).

The empiricist observes realized returns—as opposed to expected returns—on all assets

and on the market portfolio M. The law of iterated expectations implies that the empiricist

correctly measures µ and µM . But, because empiricist’s information set is different than any

individual investor’s information set, the law of total variance implies that the covariance

matrix of excess returns of the empiricist, Σ̂ ≡ Cov[Re], differs from Σ. As a result, the

empiricist rejects the CAPM, as the following Corollary demonstrates.

Corollary 1.3. Under the information set of the empiricist, the unconditional market portfo-
lio is not mean-variance efficient:

µM

σ̂M
<

√
µ′Σ̂−1µ, (11)

where Σ̂ is the unconditional covariance matrix of realized excess returns and σ̂M ≡
√

M′Σ̂M
is the volatility of excess returns of the market. Thus, the empiricist rejects the CAPM.

Proof. See Appendix A.2.

Empiricist’s rejection of the CAPM—despite using the correct market portfolio M—can

be understood in two ways. From an econometric perspective, the empiricist uses realized

returns for the test, as opposed to expected returns, which introduces an error-in-variable

bias. This error-in-variable bias distorts empiricist’s beta estimates, causing the CAPM to

look “flat” (Andrei et al., 2018). Another way to understand the CAPM rejection is from

the mean-variance perspective: for the empiricist, all assets have the correct unconditional

expected returns, but display systemtically larger unconditional variance (due to variation
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in expected returns, which the empiricist does not observe). Hence, all assets—including the

market—in the mean-variance space move to the right. But, since Corollary 1.3 implies that

the market portfolio cannot possibly be the tangency portfolio, the market portfolio in the

eyes of the empiricist moves inside the mean-variance frontier.

Two sources of variation together lead the empircist to reject the CAPM. First, there

is aggregate (time-series) variation in average expected returns µ̄. The empiricist, who ob-

serves realized returns but does not observe µ̄, can compute realized beta but cannot com-

pute ex-ante measures of beta. Second, there is cross-sectional variation in expected returns

across agents, µi. Even if the empiricist observed µ̄, there would still be variation in ex-

pectations across investors. Because the empiricist does not observe investors’ individual

information, she does not observe cross-sectional variation either (see also Section 2.4). An-

drei et al. (2018) show that cross-sectional variation, independently of time-series variation,

generates substantial distortion in the unconditional CAPM relation.

Corollary 1.3 implies that, for the empiricist, there exists a tangency portfolio T 6= M,

which, based on observed realized returns, is mean-variance efficient (i.e., the portfolio with

the maximum attainable Sharpe ratio). Assume now that the empiricist constructs a portfo-

lio based on deviations between T and M:7

∆= T −M. (12)

Since both T and M sum up to one, ∆ sums up to zero and is therefore a long-short port-

folio. For an empiricist who observes data ex-post, ∆ represents a way to improve efficiency

of the market portfolio (with perfect hindsight). Assets with positive weights in this portfo-

lio (∆+ assets) are under-invested; assets with negative weights in this portfolio (∆− assets)

are over-invested. Since under-invested assets appear relatively cheaper than over-invested

assets, the portfolio ∆ is a Low-Minus-High (LMH) portfolio.

The following Proposition shows that the LMH portfolio, together with the market, ex-

plains 100% of the cross-sectional variation in realized excess returns.

Proposition 2. For the empiricist, the portfolio T = Σ̂−1µ/B̂, where B̂ ≡ 1′ Σ̂−1µ, is ex-post
efficient (Roll, 1977). Since T 6= M (from Corollary 1.3), the empiricist can define ∆ ≡ T −M
and write the expected returns on all assets as

µ= µTσ̂
2
M

σ̂2
T

β̂+ µTσ̂
2
∆

σ̂2
T

β̂∆, (13)

where µT ≡µ′T, σ̂2
T ≡ T ′Σ̂T, σ̂2

∆ ≡∆′Σ̂∆, β̂≡ Σ̂M/σ̂2
M , and β̂∆ ≡ Σ̂∆/σ̂2

∆.

7The portfolio T likely involves short positions, but this does not change the argument.
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Proof. Since the portfolio T is ex-post efficient, efficient set mathematics imply

µ= µT

σ̂2
T
Σ̂T. (14)

Replacing T = M+∆ and using the definitions of β̂ and β̂∆ yields (13).

The set of market betas that the empiricist computes, β̂, are based on the covariance

matrix of realized excess returns Σ̂ and thus differ from the set of true betas, which are based

on Σ. Hence, upon rejecting the CAPM, Proposition 2 implies that the empiricist can always

build two sets of betas, one with respect to the market portfolio and one with respect to the

LMH portfolio that together explain ex-post 100% of cross-sectional variation in returns. In

other words, since for the empiricist beta does not capture all the risk, a second factor picks

up the associated mispricing, i.e., the remaining variation. When the empiricist rejects the

CAPM, there will always be a portfolio ∆ that, when added as a second factor, helps explain

the entire cross-sectional variation in excess returns.

Recall that there always exists a portfolio that is ex-post efficient (Roll, 1977). In this

one-period model, the LMH portfolio can only be constructed ex-post. As a result, it will be

tautologically true that adding LMH formed ex-post to the CAPM relation produces an R2

of 1, which is the result of Proposition 2. In contrast, in our subsequent empirical exercise

we will form LMH ex-ante, and this tautological result will thus fail. The theoretical merit

of forming LMH ex-post (Proposition 2) is that we can identify factors observable ex-ante

that are proxies for the LMH portfolio. In this simplest version of the model, we can quickly

identify two such factors.

2.1 The Value Factor

We will now provide a theoretical link between the LMH portfolio and the High-Minus-Low

(HML, or value) factor. We directly state this result in the following Proposition.

Proposition 3. In this economy, the cross-sectional variation in excess returns is entirely
explained by empiricist’s betas together with the vector of market-to-book ratios, E[P]/K :

µ=λ1β̂+λ2
E[P]

K
, with λ1 > 0 and λ2 < 0. (15)

Proof. See Appendix A.3.

Proposition 3 follows from that empiricist’s betas capture only partially variations in

returns generated by exposure to the common factor F̃. The remaining variation is captured
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by the vector of sensitivities Φ. Since firms’ productivities are driven by one factor only in

the model (in other words, the covariance matrix of returns has a strong factor structure),

in equilibrium the vector Φ correlates perfectly with the vector of market-to-book ratios,

E[P]/K . It follows that E[P]/K is a characteristic that proxies perfectly for Φ.

The negative sign of λ2 admits the following interpretation. Firms with low market-to-

book ratios (value firms) have higher expected excess returns after controlling for market

beta. Because we have not assumed ex-ante that these firms are inherently riskier, in this

economy a value premium cannot possibly be reward for fundamental risk. Rather, the

value premium simply reflects mis-measurement in beta estimates. Similarly, that value

firms command a risk premium that is not explained by exposure to the market cannot be

regarded as evidence against the CAPM. Corollary 1.1 shows that a true CAPM holds in

this economy. Yet, because the empiricist conducts inference under a coarser information set

than investors, mis-measurement in betas not only leads to the rejection of the CAPM, but

also to the creation of a value factor.

In light of this result, it is perhaps tempting to refute the validity of the value factor as

a determinant of returns. But, as our model shows, it is certainly true that the value factor

does capture risk. What we question is its interpretation as a risk factor, as well as its use

against the CAPM. After all, Proposition 3 shows that in this model (with one common factor

driving payoffs) the value factor explains all the remaining variation not captured by em-

piricist’s betas. From a pragmatic perspective, having found an instrument that improves

cross-sectional fit may be good enough. From a theoretical perspective, however, all empiri-

cal attempts at interpreting value as a risk factor will be subject to the tautological result of

Proposition 2, and hence inconclusive.

That the value factor captures all the remaining variation depends entirely on our as-

sumption of a single common productivity factor F̃. We analyze the case of multiple pro-

ductivity factors in Section 2.3, and show that the value factor captures only partially the

remaining risk—even adopting a pragmatic perspective, the value factor is not a panacea.

Furthermore, according to our model, the data should exhibit a positive relation between the

returns of the LMH portfolio and the returns of the value factor, at least in portfolio spaces

that indeed have a strong factor structure (e.g., Fama and French, 1993). We turn to this

empirical implication in Section 3.

2.2 The Investment Factor

The q theory of investment (Jorgenson, 1963; Tobin, 1969; Lucas and Prescott, 1971; Hayashi,

1982) predicts a strong relationship between firms’ market values and their investment

rates. Because firms’ valuations are driven by expectations of their future cash-flows, high
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valuations must indicate profitable opportunities and therefore highly-valued firms should

invest more aggressively. Recent data lend support for this positive relationship (Andrei,

Mann, and Moyen, 2018).

This theoretical link between the valuation ratio and the investment rate, in conjunction

with our previous result that the LMH portfolio is a good proxy for the value factor (and

a perfect proxy when payoffs are driven by a single common factor), suggest that factors

built based on firms’ investment rates must be related with the LMH portfolio. One such

factor is the investment factor, whose returns represent the difference between the returns

on diversified portfolios of the stocks of low and high investment firms. Fama and French

(2015) and Hou, Xue, and Zhang (2015) document that the investment factor explains a

substantial amount of variation in the cross section of returns.

In this section, we provide a theoretical link between the LMH portfolio and the invest-

ment factor. Our argument is heuristic, in that we consider a minimal extension of our

setup in which market equilibrium is reached as in Proposition 1, but we incorporate firms’

decision to invest. More precisely, let the ex-post profit of a firm n be

Πn = [
φn(F + F̃)+ ε̃n

]
(K + In)− In − a

2

(
In

K

)2
K , (16)

where In represents the investment decision of firm n. The last term represents adjustment

costs, which are strictly convex (a > 0) and linear homogeneous in I and K (Hayashi, 1982).

We assume that the firms-specific component, ε̃n, is perfectly observed by the insider of

the firm (hereafter “the manager”). Furthermore, the manager observes a private signal

about F̃, Vm = F̃+vm, where vm ∼ N(0,1/τv,m). Because this signal is imperfect, the manager

also uses public prices to learn about F̃, as investors do. Maximization of (16) yields the

optimal investment decision

I∗n
K

=−1
a
+ 1

a
(
φnE[F + F̃|Fm]+ ε̃n

)
, (17)

where Fm is the information set of the manager. This yields a direct relationship between

the investment rate of firm n and the beliefs of the manager. Taking unconditional expecta-

tion and writing this relationship for all N firms yields

E[I∗]
K

=−1
a
+ 1

a
ΦF. (18)

Eq. (18) provides a direct link between firms’ average investment rates and firms’ expo-

sure to the common factor. Let us assume, for the sake of the argument, that equilibrium
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prices preserve the form given in Proposition 1.8 The following Proposition, then, draws

directly from Proposition 3 and Eq. (18).

Proposition 4. In this economy, the cross-sectional variation in excess returns is entirely
explained by firms’ betas together with the vector of investment ratios, E[I∗]/K :

µ= η0 +η1β+η2
E[I∗]

K
, with η0 < 0, η1 > 0 and η2 < 0. (19)

Proof. See Appendix A.4

Firms with low investment rates (conservative firms) have higher returns after control-

ling for market beta. The q theory of investment implies that these firms also have low

valuations, which, in the context of our model, means low market-to-book ratios. Because

these firms earn a positive risk premium after controlling for their market beta (Proposition

3), the investment factor must command a positive risk premium, hence η2 < 0.

We conclude that firms with lower investment rates earn a risk premium beyond the

premium required by their exposure to the market. Our model therefore predicts a positive

relationship between the returns of the LMH portfolio and the returns of the investment

factor, a prediction that we will confirm empirically in Section 3. However, the conclusion

from the previous section still holds—that low investment firms command a risk premium

that is not explained by exposure to the market cannot be regarded as evidence against the

CAPM. Since a true CAPM holds in this economy (Corollary 1.1), the investment premium

reflects mis-measurement in beta estimates.

2.3 The Factor Zoo

In the previous sections, we have shown how three factors (LMH, the value factor, and the

investment factor) can account separately for the mispricing the empiricist perceives. Beta

mis-measurement creates the illusion that factors other than the market are asset-pricing

relevant. The empiricist can find several such factors, even if in our theoretical model asset

payoffs are driven by a single common factor F̃. We now allow payoffs to be driven by J >
8We do not revisit here the equilibrium of Proposition 1. Because the manager has information about

F̃ and ε̃n, the investment decision (17) is public information from which investors can learn. This would
require the addition of N public signals to the learning problem of each agent. Furthermore, the optimal
investment decision will introduce quadratic terms in the firms’ final payoffs, which breaks the linearity of the
CARA-normal setup. Overcoming this technical issue would require a different model (Albagli, Hellwig, and
Tsyvinski, 2011a,b; David, Hopenhayn, and Venkateswaran, 2016), which is beyond the scope of our paper.
Alternatively, one can focus on first-order terms in firms’ payoffs (Bai, Philippon, and Savov, 2016), which
would preserve the linearity of the model.
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1 common factors. Although the unconditional CAPM still holds, the empiricist may now

uncover a myriad of factors, thus unleashing the factor zoo.

To link the LMH portfolio to the factor zoo, recall that there always exists a portfolio

that is ex-post efficient (Roll, 1977). A restatement of this observation is that adding LMH

formed ex-post to the CAPM relation always produces an R2 of 1. But then the J additional

factors can be identified as principal components of LMH formed ex-post. We now examine

this idea in the context of a model with J factors driving payoffs.

Denote a vector of J ≤ N independent factors by F̃≡ [F1+F̃1 F2+F̃2 . . . FJ+F̃J]′. Let this

vector be normally distributed with mean F ≡ [F1 F2 . . .FJ]′ and covariance matrix τ−1
F IJ .

Let the vectors of realized asset payoffs have the structure:

D̃ = K(ΦF̃+ ε̃), (20)

where we decompose the matrix of loadings as Φ ≡ [Φ1 Φ2 . . . ΦJ]. That is, the vector Φ j

contains the loadings of each stock on the j−th factor. Defining F̃ ≡ [F̃1 F̃2 . . . F̃J]′, each

investor i observes a vector of private signals about the J factors,

Ṽi = F̃ + ṽi, ṽi ∼ N
(
0,τ−1

v IJ
)
, (21)

as well as a common public signal,

G̃ = F̃ + ṽ, ṽ ∼ N
(
0,τ−1

G IJ
)
. (22)

Other than allowing multiple factors to affect payoffs, we keep the structure of the model

unchanged. Proposition 5 characterizes equilibrium prices in this economy.

Proposition 5. There exists a partially revealing rational expectations equilibrium in which
the vector of market-to-bood ratios is given by

P
K

=ΦF −γΣ
K

M+αF̃ +ΦτGτ
−1G̃+ξm̃, (23)

where the coefficients α (N × J), and ξ (N ×N) solve

α=Φτ−1(τ−τF IJ −τG IJ), ξ=−pτmΦτ
−1τ′PΦ

′−γK
(
Φτ−1Φ′+τ−1

ε IN
)
, (24)

and the J× J matrix τ≡Var−1[F̃|Fi] denotes total precision on the vector of J factors:

τ≡ (τF +τv +τG)IJ +τPΦ
′ΦτP , (25)
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where the J× J matrix τP solves the matrix equation:

Φ′ΦτP =p
τm

τv

γK
(
IJ −(IJ +τετ−1Φ′Φ)−1) . (26)

Proof. See Appendix A.5.

Importantly, in the presence of multiple factors the CAPM still holds from the perspective

of the average investor (see Corollary 1.1 for a proof). We proceed directly with empiricist’s

perception of the CAPM, which we characterize below.

Proposition 6. (Factor Zoo) In the eyes of the empiricist, expected returns satisfy the equi-
librium relation:

µ= σ̂2
M

σ2
M

(
1+ γ2K2

τmτε

)−1

β̂µM︸ ︷︷ ︸
distorted CAPM relation

− γτmτε

γ2K2 +τmτε

J∑
k=1

(
J∑

j=1
φ̄ j ck j

)
Φk︸ ︷︷ ︸

Factor Zoo

, (27)

where φ̄ j ≡Φ′
jM denotes the average loading on factor j and the coefficients c jk are defined

in the appendix. In this context, the betas on the LMH portfolio satisfies the relation:

β̂∆ = σ̂2
T

µTσ̂
2
∆

γτmτε

γ2K2 +τmτε

J∑
k=1

B̂k

(
J∑

j=1
φ̄ j ck j

)
Σ̂

(
M− Σ̂−1Φk/B̂k

)
, (28)

where B̂k ≡Φ′
kΣ̂

−1 1N and thus Σ̂−1Φk/B̂k is the efficient portfolio fully invested in Factor k.

Proof. See Appendix A.6.

Eq. (27) shows how beta mis-measurement opens the gate to the factor zoo. Although

none of the J factors is relevant for asset-pricing tests—the CAPM holds—the empiricist

concludes that all J factors should be added to the (distorted) CAPM relation (this is the

best possible scenario, where the empiricist would observe Φ j, ∀ j). In other words, although

some factors may appear more relevant than others, they each separately increase the R2 of

the relation. In fact, if we added them all, the fit would be perfect.

What each factor does is to correct the market portfolio to bring it closer to the empiri-

cist’s perceived tangency portfolio. Eq. (28) shows how. Recall that the LMH portfolio, ∆,

represents the gap between the market portfolio and the perceived tangency portfolio. If

these two portfolios coincided, the CAPM would no longer be rejected. Suppose the em-

piricist has successfully identified the J factors driving payoffs. Based on mean-variance

analysis, she could form J efficient portfolios, each fully invested in each factor. Formally,

the mathematics of the efficient frontier imply that the efficient portfolio invested in the j-th
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factor would take the form, Σ̂−1Φ j/B̂ j. The portfolio LMH compares each of these efficient

portfolios to the market portfolio (the term in bracket in Eq. 28) and weighs the difference

between the two according to the importance of each factor j (i.e., its average loading φ̄ j).

It is worth mentioning that the LMH portfolio takes us to the empirical tangency port-

folio in one step. However, adding one factor after another would get us gradually toward

the tangency portfolio. The issue with this partial approach is that it creates an omitted

variable bias, for there remains unexplained variation that would be certainly captured by

the remaining factors. These factors act as omitted variables and distort the risk-premium

estimates. We will elaborate on this issue in Section 3.

Using the vectors Φ j as factors is only one way for the empiricist to account for the

CAPM mispricing. An alternative is to turn to firm characteristics. In this case, none of the

characteristics alone can account for all the missing factors. That is, Propositions 3 and 4 do

not hold: because the matrixΦ has now several columns, the value factor and the investment

factor are not proportional to the “Factor Zoo” term in Eq. (27). Proposition 7 provides the

proof of this result for the value factor.

Proposition 7. The market-to-book ratio alone in the factor zoo (or any other firm charac-
teristic that does not span the zoo entirely) is no longer sufficient to account for the CAPM
mispricing. The empiricist now finds that J other factors (one of which is redundant), beyond
the market and market-to-book ratio, explain cross-sectional variation in excess returns:

µ=λ1β̂+λ2
E[P]

K
+

J∑
k=1

λk+2Φk. (29)

Proof. See Appendix A.7.

Proposition 7 shows that the statistical significance of a given firm characteristic is di-

luted away in the factor zoo. Furthermore, as soon as more than a single factor drives asset

payoffs, the sign of the loading λ2 on the market-to-book ratio becomes arbitrary, in contrast

to the result of Proposition 3. In other words, anything goes—the empiricist may find in-

finitely many combinations of factors that help improve the fit of asset-pricing relationships,

and the sign of the loading on a given factor may switch depending on the combination of

factors she has selected. The framework of Proposition 6, therefore, creates a fertile playing

field for empirical asset pricing.

2.4 Discussion of Assumptions

No financial theory is a perfect representation of reality, and ours is no exception. We have

made several simplifying assumptions, which have allowed us to tell a cautionary tale on
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the merits of multifactor models of returns. We now discuss how some of these assumptions

can be relaxed.

First, our static model offers the convenience of a closed form solution in Proposition 1.

But the same results will hold in a dynamic model, at the expense of losing some tractability.

Specifically, in a dynamic model with overlapping generations (Spiegel, 1998; Watanabe,

2008), Eq. (8) becomes ∫
i
Ei

t[R
e
t+1]di = γΣ(M+ m̃t). (30)

As in the static model, this equation shows that expected returns vary both over time and

cross-sectionally among agents. This variation in expected returns once again distorts the

view of the empiricist, who can write, as in Proposition 2, a two-factor model of returns

(although a true unconditional CAPM continues to hold). The dynamic model offers the

potential benefit of time variation in γ and/or Σ, which will further distort empiricist’s view

through well-known conditional effects (Jagannathan and Wang, 1998).9

Second, we do not impose in our baseline model any assumptions of the vector of uncon-

ditional market weights, M, except that all its components are strictly positive. Assuming

a link between M and the vector of sensitivities Φ offers new insights. One can show that

in an economy where small firms tend to have high exposure to F̃, the empiricist observes

a negative alpha for small-growth firms—a puzzling observation, according to Fama and

French (1993, 1996, 2015). In more extreme cases, the empiricist can observe a downward

sloping Security Market Line (see also Andrei et al., 2018).

Third, the information structure of our baseline model is stylized, but any information

structure ultimately boils down to the equilibrium condition (8). This condition leads to the

CAPM rejection and to the two-factor model of Proposition 2. With a general information

structure, however, the task of interpreting the LMH portfolio and linking it to firm charac-

teristics becomes more difficult, as we have shown in Section 2.3.

Fourth, it is not crucial for our argument that the empiricist knows less or more than

investors. What matters is that the empiricist has a different information set; this is what

leads to the CAPM rejection. For instance, in our baseline model, let us assume that the

empiricist knows the average expected excess returns on all assets, µ̄. Because prices are

only imperfect aggregators of information, individual agents cannot possibly know µ̄. Thus,

neither the empiricist nor individual agents knows more than the other. The law of total

9Hasler and Martineau (2019a,b) provide recent evidence for the conditional relationship (30). See also
Boguth, Carlson, Fisher, and Simutin (2011).
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covariance from the perspective of the empiricist writes:

Σ̂=Σ+Var[µ̄]+ K2τv

τ2 ΦΦ′, (31)

where the last term is the disagreement matrix (Banerjee, 2010). Unless the empiricist

observes the subjective beliefs of individual investors, this term is unobservable, and the

CAPM is rejected. Moreover, even if the empiricist could observe returns in continuous

time—arguably a difficult task—the last term in Eq. (31) does not vanish.

3 Empirical Illustration

We have shown theoretically that the empiricist can always build a two-factor model that

explains 100% of the cross section of realized excess returns. The CAPM rejection is a suf-

ficient condition for this result. Although we have started from the premise that the CAPM

is rejected by mistake, this condition is not necessary; regardless of the reason for which the

CAPM is rejected, the empiricist fails to reject a two-factor model of returns.

The tautological nature of this result is a shaky base for empirical asset pricing. Any

multi-factor model that is used to explain the cross section of returns may come uncomfort-

ably close to this tautology. In this section, we offer an empirical illustration using the 25 size

and book/market sorted portfolios (Fama and French, 1993). We emphasize that our purpose

is not to find a better factor of returns, nor to dismiss the previously found factors. Instead,

we try to understand how close to the LMH portfolio can empiricist get without perfect hind-
sight, i.e., by forming LMH based on data that is available at the time of portfolio formation.

Equally importantly, we attempt to evaluate empirically the theoretical implications of the

previous section.

Figure 1 presents mean excess returns and volatilities for 25 size and book/market sorted

portfolios, in monthly data from 7/1963 to 12/2018, 666 observations. Panel (a) plots these

portfolios in a mean-standard deviation diagram, together with the full-sample efficient fron-

tier. The triangle labeled M is the market portfolio, whereas the dot labeled T is the tangency

portfolio, computed based on the entire sample. Panel (b) illustrates the empirical failure of

the CAPM. It plots the expected excess returns of the above 25 portfolios against market

betas. Return and beta are not related as the CAPM suggests—the Security Market Line

(SML) has a negative slope and a statistically significant positive intercept (numbers are

provided in the caption of the figure).

The rejection of the CAPM can also be interpreted in terms of the geometric distance

between the points M and T. It is clearly apparent from panel (a) that this distance is large:
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Figure 1: 25 Size-B/M portfolios and the CAPM
Panel (a): Monthly mean excess returns and volatilities for 25 Size-B/M sorted portfolios
(Fama and French, 1993), July 1963-December 2018, 666 months. The solid line is the (ex-
post) minimum-variance frontier and the dashed line is the CML. The squares labeled [1],
[2], and [3] are defined in the text. Panel (b): Mean excess returns against beta on market
(the market portfolio is depicted in panel (a) with the red triangle labeled M). The dashed
line is the SML, which has an intercept of 0.0117 (t-stat 3.01), a slope of -0.0042 (t-stat -1.00),
and a coefficient R2 of 4.8%.

the expected excess return of portfolio T is orders of magnitude larger than the expected ex-

cess return of the market. Thus, a test based on this distance (Gibbons, Ross, and Shanken,

1989) will likely reject the CAPM, which panel (b) confirms.

The rejection of the CAPM, as illustrated above, has led to a decades-long quest for al-

ternative factors. This can be best understood in the familiar mean-variance diagram: when

factors are long-short portfolios with zero net investment—e.g., “Small-Minus-Big” (SMB),

“High-Minus-Low” (HML)—one can simply add these portfolios to the market and obtain a

tilted portfolio, with the hope that the resulting portfolio does a better job at explaining asset

returns. Consider, for instance, the square labeled [1] in panel (a) of Figure 1. It represents

the tilted portfolio that results from adding the Fama and French (1993) SMB and HML

factors to the market. The square labeled [2] adds two more factors, “Robust-Minus-Weak”

(RMW) and “Conservative-Minus-Aggressive” (CMA) (Fama and French, 2015). Finally, the

square labeled [3] further adds the momentum factor (MOM) (Carhart, 1997). As more fac-

tors are added, there is a clear tendency of the tilted portfolio to move towards the portfolio

with the maximum Sharpe ratio attainable theoretically, T. One may therefore think of the

search for factors as an effort to improve the Sharpe ratio.

Instead of trying to move gradually towards the tangency portfolio T, we follow the the-

oretical result of Proposition 2 and start directly from T. Let M and T be the vectors of
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portfolio weights for the market and the tangency portfolios, and consider the Low-Minus-
High portfolio of deviations between T and M, ∆ = T − M. Let the covariance matrix of

excess returns for the 25 Size-B/M portfolios be Σ̂ and their expected excess returns be µ.

Proposition 2 then implies

µ= µTσ̂
2
M

σ̂2
T

β̂+ µTσ̂
2
∆

σ̂2
T

β̂∆, (32)

where µT ≡µ′T, σ̂2
M ≡ M′Σ̂M, σ̂2

T ≡ T ′Σ̂T, σ̂2
∆ ≡∆′Σ̂∆, β̂≡ Σ̂M/σ̂2

M , and β̂∆ ≡ Σ̂∆/σ̂2
∆.

Two sets of betas, one computed on the market portfolio M and one computed on the ∆

portfolio, explain ex-post 100% of the variation in expected excess returns. A similar point

has been previously made by Roll (1977, p. 138, emphasis his): “there will always be some
portfolio which is ex-post efficient and will bring about exact observed linearity among ex-

post sample mean returns and ex-post sample betas.” In our context, this portfolio is T.

Notice, however, that we are not interested in computing betas based on T. Instead, we

compute two sets of betas (β̂ and β̂∆), because this allows us to understand how the CAPM

is rejected when considering the market and the LMH portfolios together.

According to Eq. (32), assets earn a positive risk premium µTσ̂
2
M /σ̂2

T per unit of β̂ on the

market and a positive risk premium µTσ̂
2
∆/σ̂2

T per unit of β̂∆ on the ∆ portfolio.10 Interest-

ingly, there is a positive relationship between β̂∆ and ∆:

β̂∆ = β̄∆+ 1
∆′∆

∆+u, (33)

where β̄∆ is the arithmetic average over β̂∆ and u is uncorrelated with ∆.11 Together with

Eq. (32), Eq. (33) implies that under-valued assets—in empiricist’s view—earn a positive

risk premium relatively to over-valued assets, risk premium which is not explained by the

market factor. This result hints at a possible positive correlation between the returns of the

the value factor and the returns of the LMH portfolio.

The relation (32) is tautological in the sense that it is uninformative about the validity

of the CAPM. The only assumptions necessary for Proposition 2 are that the covariance

matrix Σ̂ is non-singular and that at least one asset has a different sample mean return

from others—which, incidentally, are assumptions (A.1) and (A.2) in Roll (1977). Aside from

10The two sets of betas in Eq. (32) result from two univariate first-pass regressions, as opposed to one
multivariate regression of asset returns on the market and the ∆ portfolio. A multivariate regression will yield
linear combinations of β̂ and β̂∆, with different slopes, but same R2 (see Proposition 8).

11Eq. (33) results from a least squares calculation. Consider the N ×2 matrix X = [1N∆] and compute the
estimated coefficients as (X ′X )−1X ′β̂∆. Since ∆ is a long-short portfolio, we have 1′

N∆= 0 which simplifies the
algebra and yields (33). Notice also that the arithmetic average β̄∆ is different from 1 (instead, the weighted
average ∆′β̂∆ equals one).
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these two assumptions, we do not need to impose assumptions about investor preferences or

to characterize the dynamics of assets’ excess returns.

How close to the portfolio ∆ can an empiricist get without perfect hindsight? To answer

this question, we build a time-varying LMH portfolio that is not based on the full sample of

returns, but on the data that is available at the time of portfolio formation only. Doing so,

we build the LMH portfolio in real time, and this portfolio is thus as much “ex-ante” as any

other risk factor.

The procedure is as follows. At every time t starting from 6/1963, we use the past 30

years of monthly excess returns up to and including time t, to compute mean excess returns,

µt, and the covariance matrix of excess returns, Σ̂t. Relying on efficient set mathematics,

we compute the tangency portfolio Tt = Σ̂−1
t µt/Bt, where Bt ≡ 1′

N Σ̂
−1
t µt and N = 25. Then

we compute ∆t as the difference between Tt and the mean market capitalizations for the 25

portfolios over the past 30 years of monthly data.12 Using ∆t, we compute the one-month

ahead excess return of the low-minus-high portfolio (from t to t+1). This yields a time series

of monthly excess returns from 7/1963 to 12/2018. This approach of building the LMH factor,

which draws directly from mean-variance theory, optimally uses the covariance information

from past returns, as opposed to the common practice of creating factor portfolios by sorting

on characteristics (see also Daniel, Mota, Rottke, and Santos, 2017).

During the period from 7/1963 to 12/2018, the LMH portfolio produces a mean monthly

excess return of 1.49% and a monthly standard deviation of 7.6%. The annualized Sharpe

ratio for the monthly returns of the LMH portfolio is thus 0.68. The correlations of the

LMH portfolio returns with the Fama and French (2015) five factors (MKT, HML, SMB,

RMW, CMA) and the Carhart (1997) momentum factor (MOM) are shown in Table 1 (Pearson

product-moment correlations below-diagonal; Spearman rank correlations above-diagonal).

The LMH portfolio returns are strongly negatively correlated with the MKT factor returns

and strongly positively correlated with the HML and CMA factor returns.

In Table 2, we regress the LMH portfolio returns on the Fama and French (2015) five

factors and the MOM returns. Columns (1) to (6) in Table 2 show that none of these factors is

able to explain the returns of the LMH portfolio, whose risk-adjusted alphas range between

1.03% and 1.85% per month, with t-statistics ranging from 3.89 to 6.48. Regressing the LMH

portfolio returns on all the six factors’ returns (column 7) indicates that the LMH portfolio

has a risk-adjusted alpha of 0.94% per month with a Newey and West (1987) t-statistic of

3.74, adjusted for six autocorrelation lags. The returns of the LMH portfolio, therefore, are

not explained by exposure to the MKT, HML, SMB, RMW, CMA, or MOM factors. We also

12We choose a window of 30 years of monthly data in order to reliably estimate the covariance matrix Σ̂.
Our results are robust to this choice, as long as we use more than 20 years of past data. We have also estimated
the covariance matrix using a DCC-GARCH model, with similar results.
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LMH MKT HML SMB RMW CMA MOM
LMH -0.40 0.45 -0.06 0.06 0.38 0.11
MKT -0.40 -0.24 0.26 -0.19 -0.32 -0.09
HML 0.46 -0.24 -0.14 -0.20 0.68 -0.16
SMB -0.02 0.27 -0.19 -0.27 -0.16 0.01
RMW 0.08 -0.21 0.06 -0.39 -0.20 0.17
CMA 0.43 -0.37 0.70 -0.17 -0.04 -0.08
MOM 0.17 -0.14 -0.19 0.00 0.11 -0.03

Table 1: Correlations
This table presents the time-series correlations between the returns of the LMH portfolio
and returns of the MKT, HML, SMB, RMW, CMA, and MOM factors, July 1963-December
2018, 666 months. The below-diagonal entries show Pearson product-moment correlations.
The above-diagonal entries show Spearman rank correlations.

notice the strong negative sensitivity of the LMH portfolio to the MKT factor (-0.69, with

a t-statistic of -7.04) and the strong positive sensitivity to the HML factor (1.23, with a t-
statistic of 6.28) and the CMA factor (1.62, with a t-statistic of 8.61). Finally, the sensitivity

to the MOM factor is 0.31, with a significant t-statistic of 2.40.

Table 3 presents the results of regressions of the Fama-French-Carhart six factors on the

LMH portfolio. Although in Table 2 the alpha of the LMH portfolio returns remains strongly

economically and statistically significant, and is thus unexplained by any of these factors

(separately or together), Table 3 indicates that, with the exception of the market factor and

the momentum factor, the alphas of all other factors become either statistically insignificant

(HML, SMB, CMA) or weakly economically significant (RMW). In particular, the alpha from

regressing the HML factor returns on the LMH portfolio returns is 0.07% per month, and

the alpha of the CMA factor is 0.11% per month. These values are small in both practical

and statistical terms.

We take the results of Tables 2 and 3 as evidence for our theoretical implication that the

LMH portfolio should be strongly positively related to the value factor and to the investment

factor. Furthermore, Table 3 shows that the LMH portfolio is able to price other factors, in

particular HML and CMA. Put differently, following logic from Barillas and Shanken (2017),

the HML and CMA factors are redundant for describing average returns, as they appear to

be explained by exposure to the LMH portfolio alone.

Before testing Proposition 2, we also verify the prediction of Eq. (33), which states that

assets deemed by the empiricist as being in low-demand (∆+ assets) have a higher β∆. In-

deed, the correlation between β∆ and the average of ∆ over the full sample (∆̄) is 54%.

Regressing β∆ on ∆̄ yields a positive slope of 0.083 (t-statistic 2.94), but not statistically dif-

ferent from (∆̄′∆̄)−1 = 0.12, as Eq. (33) predicts. Consistent with Eq. (33), low-demand assets
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(1) (2) (3) (4) (5) (6) (7)
Intercept 0.0185 0.0109 0.0150 0.0142 0.0103 0.0128 0.0094

(6.48) (3.89) (4.74) (4.80) (3.98) (4.47) (3.75)
MKT -0.6937 -0.4812

(-7.04) (-4.97)
HML 1.2319 1.0812

(6.28) (6.40)
SMB -0.0502 0.3952

(-0.28) (2.82)
RMW 0.2714 0.1374

(0.80) (0.55)
CMA 1.6169 0.3026

(8.61) (1.29)
MOM 0.3130 0.3759

(2.40) (3.86)
Adj. R2 0.1575 0.2070 -0.0011 0.0046 0.1814 0.0284 0.3569
Obs. 666 666 666 666 666 666 666

Table 2: Regression results: LMH on the Fama-French-Carhart six factors
This table presents the results of regressions of returns of the LMH portfolio on the MKT,
HML, SMB, RMW, CMA, and MOM factors, July 1963-December 2018, 666 months. The
columns labeled (1), (2), (3), (4), (5), and (6) present results for univariate specifications using
only MKT, HML, SMB, MOM, RMW, and CMA, respectively, as the independent variable.
The column labeled (7) presents results from the multivariate specification using all six
factors as independent variables. t-statistics, adjusted following Newey and West (1987)
using six lags, are presented in parentheses.

(1) (2) (3) (4) (5) (6)
MKT HML SMB RMW CMA MOM

Intercept 0.0086 0.0007 0.0022 0.0022 0.0011 0.0052
(5.87) (0.72) (1.78) (2.61) (1.53) (2.71)

LMH -0.2288 0.1690 -0.0082 0.0224 0.1129 0.0954
(-7.49) (7.21) (-0.28) (0.83) (6.88) (2.17)

Adj. R2 0.1575 0.2070 -0.0011 0.0046 0.1814 0.0284
Obs. 666 666 666 666 666 666

Table 3: Regression results: Fama-French-Carhart six factors on LMH
This table presents the results of regressions of returns of the MKT, HML, SMB, RMW, CMA,
and MOM factors on the LMH portfolio, July 1963-December 2018, 666 months. t-statistics,
adjusted following Newey and West (1987) using six lags, are presented in parentheses.

have higher β∆ which, according to Proposition 2, should command a positive risk premium.

The following Proposition transforms Eq. (32) into an equivalent relation that is testable

using standard two-stage multivariate regressions.
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Proposition 8. Eq. (32) can be equivalently written as

µ=µMβ̃+µ∆β̃∆, (34)

where µM ≡ µ′M, µ∆ ≡ µ′∆, and β̃ and β̃∆ are jointly estimated from multivariate time-series
regressions of assets’ excess returns on the excess returns of the market and of the LMH port-
folio. Furthermore, β̃ and β̃∆ are linear combinations of β̂ and β̂∆:

β̃= σ̂2
∆

σ̂2
∆σ̂

2
M − σ̂2

M∆
(σ̂2

Mβ̂− σ̂M∆β̂∆) and β̃∆ = σ̂2
M

σ̂2
∆σ̂

2
M − σ̂2

M∆
(σ̂2
∆β̂∆− σ̂M∆β̂), (35)

where σ̂M∆ is the covariance between the returns of the market portfolio and the returns of
the LMH portfolio.

Proof. See Appendix A.8.

Testing Proposition 2 is therefore equivalent to testing Eq. (34). We first regress the time

series returns of each of the 25 Size-B/M portfolios on the excess returns of MKT and LMH.

Table 4 shows the intercepts and the two factor slopes for these time-series regressions.

Interestingly, none of the intercepts, which range from -0.26% to 0.21%, are statistically

significant, with t-stats between -1.30 and 1.71. This is the case even for extreme growth

stocks, which are a typical problem for traditional factor models (Fama and French, 2015).

The slopes of the market factor are positive and strongly statistically significant, with t-
stats ranging from 27.75 to 66.71. Small stocks tend to have higher betas than large stocks,

whereas there is no clear pattern on the B/M dimension. The slopes on the LMH portfolio are

mostly negative for the extreme growth stocks and positive for the extreme value stocks, and

a large majority are statistically significant. Because the average excess return on the LMH

portfolio is positive, the negative slopes of growth stocks lowers their average excess returns

and the positive slopes of value stocks increases their average excess returns. Finally, the

R2 coefficients of the 25 regressions (unreported here) range from 0.60 to 0.89.

We then use the estimates from Table 4 in cross-sectional regressions of average excess

returns on betas. For the sake of comparison, column (1) of Table 5 shows a direct test of

the CAPM. When betas on the market are used alone, we obtain the typical failure of the

CAPM: a strong positive intercept and a slope not significantly different from zero, in this

case slightly negative (see also panel (b) in Figure 1).

Column (2) presents the direct test of Proposition 8. When both betas on the market

and on the LMH portfolio are used as explanatory variables, the slope on βMKT changes

sign from negative to positive, although it remains statistically insignificant (t-stat 0.91).

The intercept is virtually zero, the slope on βLMH is strongly statistically significant (t-stat
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Rn(t)=αn + β̃nRMKT(t)+ β̃∆,nRLMH(t)+εn(t), n = 1, ...,25

Low 2 3 4 High Low 2 3 4 High

αn(%) t-stat(αn)
Small -0.26 0.06 0.07 0.19 0.21 -1.30 0.32 0.47 1.35 1.42

2 -0.04 0.08 0.13 0.10 0.07 -0.29 0.62 1.21 1.00 0.56
3 -0.07 0.08 0.08 0.12 0.20 -0.57 0.87 0.92 1.31 1.63
4 0.05 0.04 0.01 0.15 0.08 0.56 0.51 0.14 1.71 0.68

Big 0.07 0.06 -0.03 -0.06 0.07 1.08 1.02 -0.45 -0.61 0.53

β̃n t-stat(β̃n)
Small 1.32 1.25 1.15 1.11 1.18 27.75 29.33 33.63 33.42 33.38

2 1.32 1.20 1.13 1.11 1.24 36.56 40.73 42.26 43.94 38.87
3 1.27 1.17 1.06 1.06 1.16 42.10 52.54 49.44 47.69 39.45
4 1.19 1.09 1.08 1.03 1.16 51.74 60.39 54.36 49.41 40.69

Big 0.96 0.94 0.91 0.93 1.00 64.48 66.71 48.86 39.86 32.13

β̃∆,n t-stat(β̃∆,n)
Small -0.12 0.04 0.06 0.14 0.16 -4.53 1.47 3.25 7.27 7.95

2 -0.11 0.03 0.09 0.13 0.16 -5.21 1.79 5.78 9.21 8.57
3 -0.07 0.06 0.06 0.12 0.12 -4.13 4.41 5.05 9.40 7.10
4 -0.05 -0.01 0.07 0.09 0.08 -3.51 -0.52 6.19 7.51 4.89

Big -0.05 -0.02 0.06 0.04 0.03 -5.94 -2.22 5.84 2.67 1.58

Table 4: Regressions for 25 Size-B/M portfolios
This table shows two-factor intercepts, slopes for MKT and LHM, and t-statistics for these
coefficients, July 1963-December 2018, 666 months. The two-factor regression equation is
provided above the table. t-statistics, adjusted following Newey and West (1987) using three
lags, are presented in parentheses.

4.56), and the two-factor model explains 89% of the variation in average returns. The values

of the two slopes are to be compared with their historical counterparts: over the period

7/1963-12/2018, the average monthly excess return on the market was 0.52% and on the

LMH portfolio 1.49%. The slope on βMKT (0.49%) is thus not significantly different from the

historical market risk premium of 0.52% (t-stat -0.06), whereas the slope on βLMH (2.41%) is

marginally statistically different from 1.49% (t-stat 1.75). The Wald test that the intercept

equals zero, the first slope equals 0.52%, and the second slope equals 1.49% is not rejected

at 5% significance level (p-value 35%), suggesting that the two-factor model in column (2) is

a reasonable description of expected returns.

Figure 2, panel (a) depicts the performance of the CAPM and panel (b) depicts the perfor-

mance of the two-factor specification MKT+LMH. The vertical axis plots the unconditional
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(1) (2) (3) (4) (5) (6) (7) (8)
Intercept 0.0117 0.0005 0.0122 -0.0007 0.0098 0.0007 0.0028 0.0007

(3.01) (0.10) (4.63) (-0.18) (3.31) (0.17) (0.66) (0.18)
βMKT -0.0042 0.0049 -0.0067 0.0064 -0.0047 0.0049 0.0025 0.0048

(-1.00) (0.92) (-2.16) (1.43) (-1.37) (1.13) (0.55) (1.13)
βLMH 0.0241 0.0284 0.0263 0.0264

(4.57) (5.56) (6.25) (5.96)
βHML 0.0034 0.0033 0.0030 0.0032 0.0033 0.0032

(3.09) (2.91) (2.70) (2.88) (2.98) (2.87)
βSMB 0.0015 0.0021 0.0020 0.0021 0.0021 0.0021

(1.23) (1.72) (1.63) (1.75) (1.71) (1.75)
βRMW 0.0049 0.0012 0.0057 0.0011

(2.88) (0.71) (2.83) (0.60)
βCMA -0.0007 -0.0003 -0.0013 -0.0003

(-0.38) (-0.19) (-0.63) (-0.18)
βMOM 0.0254 0.0015

(3.47) (0.18)
Adj. R2 0.0479 0.8852 0.6272 0.8898 0.7270 0.8900 0.8126 0.8835
GLS R2 0.1087 0.6457 0.2838 0.6595 0.3352 0.6781 0.4636 0.6801
Obs. 25 25 25 25 25 25 25 25

Table 5: Cross-sectional regressions: Average excess returns on factor betas
This table presents the results of regressions of average excess returns for 25 size and
book/market sorted portfolios (Fama and French, 1993), on various combinations of seven
factors: MKT, LMH, HML, SMB, RMW, CMA, and MOM, July 1963-December 2018, 666
months. Standard errors and t-statistics (presented in parentheses) are corrected for cross-
sectional correlations in alphas and for errors in estimating betas (Shanken, 1992).

expected excess returns for the 25 portfolios, whereas the horizontal axis plots the predicted

values from columns (1) and (2) of Table 5. The points lie closely to a 45◦ line (dashed line)

only in panel (b). Overall, column (2) of Table 5 and panel (b) of Figure 2 show support for

Proposition 8: the market portfolio and the LMH portfolio explain a significant fraction of

cross-sectional variation in expected returns and thus the two-factor model (34) does a good

job at capturing the returns of the 25 Size-B/M portfolios.

Column (3) in Table 5 shows the results for the Fama and French (1993) three-factor

model, whereas column (4) adds the LMH portfolio. The striking difference between columns

(3) and (4) is the sign of the slope with respect to the market factor. Whereas in column (3)

the estimated premium is negative and statistically significant, in column (4) the estimated

premium is positive and close to the average excess market return of 0.52%. Yet, the in-

tercept is strongly statistically significant for the Fama and French (1993) model, and the

R2 coefficient is considerably lower than in column (3). This suggests that the LMH port-

folio acts like an omitted variable in column (3), distorting regression coefficients. Indeed,
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Figure 2: Average excess returns vs. prediction
Expected excess monthly returns for the 25 Size-B/M portfolios (y-axis) vs predicted
monthly excess returns (x-axis) from the regression specifications in columns (1) and (2)
of Table 5, July 1963-December 2018, 666 months.

as discussed in Section 2.3, the LMH portfolio will always be able to explain the remaining

variation in returns, and thus acts as an omitted variable in cross-sectional regressions.

Column (5) shows the results for the Fama and French (2015) five-factor model, whereas

column (6) adds the LMH portfolio. Once again, the market estimated premium changes

sign and the alpha becomes statistically insignificant when adding LMH. Columns (7) and

(8) further add the momentum factor. Curiously, when the LMH is added to the regression

(column 8), the momentum factor loses significance. This suggests that the LMH portfolio

may be able to explain momentum returns, a finding that we will verify later in this section.

Finally, the slope on the LMH portfolio returns is strongly statistically significant in all the

specifications (t-stats ranging from 4.57 to 6.25), whereas with the exception of the HML

factor, all other factors lose their statistical significance in presence of LMH.

In the mean-variance space high cross-sectional R2s are not necessarily indicative of a

good fit (Roll and Ross, 1994; Kandel and Stambaugh, 1995). As proposed by Lewellen et al.

(2010), we also report GLS R2s, which measure the proximity of a given model’s portfolio to

the minimum-variance frontier (mean-variance efficiency is obtained when the GLS R2 is 1).

As Table 5 shows, according to this metric, the two-factor model of column (2) is the closest

to mean-variance efficiency (GLS R2 0.65) when compared to the Fama and French (1993)

three-factor model (GLS R2 0.28), to the Fama and French (2015) five-factor model (GLS R2

0.34), and the Fama and French (2015)-Carhart (1997) six-factor model (GLS R2 0.46).
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We turn to the ability of the the LMH portfolio to price additional portfolios sorts, such

as portfolios based on past performance, on alternative price multiples, and on investment.

An interesting result of this section is the relatively high positive correlation between the re-

turns of the LMH portfolio and the returns of the momentum factor (0.17, Table 1). Although

the LMH portfolio did not entirely eliminate the alpha of the momentum factor (Table 3, col-

umn 6), it did eliminate its statistical significance in cross-sectional regressions (Table 5).

That LMH partially eliminates the statistical significance of momentum suggests that

the LMH portfolio could price stocks sorted based on past performance, and Table 6 con-

firms. In columns (1)-(3) of panel A, we present cross-sectional regressions on 10 portfolios

sorted based on their past performance (from Professor Ken French’s website). The LMH

portfolio explains, together with the market, 95% of the cross-section of returns. Its esti-

mated premium is positive and statistically significant (0.1058, with a t-stat of 2.22), and

the intercept of the regression is not statistically different from zero. In contrast, the inter-

cept of the Fama and French (1993) three-factor model is economically large and strongly

statistical significant (0.0251, with a t-stat of 3.17), and none of the three factors are sta-

tistically significant. Overall, columns (1)-(3) of Table 6, panel A, attest to the ability of the

LMH portfolio to price stocks sorted based on momentum.

Columns (4)-(9) of panel A further show results when stocks are sorted based on short-

term reversal and long-term reversal. While in both cases the CAPM performs particularly

badly, the LMH portfolio earns a positive risk premium, statistically significant only in one

case. The Fama and French (1993) three-factor model performs relatively better in these

portfolio sorts. Finally, as shown in panel B, the LMH portfolio performs extremely well in

sorts based on investment, earnings/price ratios, or cashflow/price ratios. In particular, we

notice that the intercepts are all statistically indistinguishable from zero when the MKT and

LMH are both used in the regressions.

Overall, the powerful explanatory power of the LMH portfolio in the 25 Size-B/M portfo-

lio set carries over to other portfolio sorts. But, as the results above show, the LMH portfolio

is hardly a panacea. We emphasize, nevertheless, that the LMH portfolio need not be built

exclusively from the 25 Size-B/M portfolio set. One can in fact build one LMH portfolio for

each of the portfolio sorts considered here. Any combination of these portfolios—always a

zero-investment portfolio—would yield a global LMH portfolio.

In sum, we have shown theoretically that, when the CAPM fails, a low-minus-high port-

folio explains, together with the market, 100% of the cross-sectional variation in returns.

We have confirmed empirically these properties of the LMH portfolio within the Fama and

French (1993) Size-B/M portfolio space. We emphasize that this factor appears significant

regardless of the reason behind the CAPM rejection. In particular, if the CAPM is rejected
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Panel A: Sorts involving prior returns
Momentum ST Reversal LT Reversal

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept 0.0170 -0.0035 0.0251 0.0022 -0.0048 -0.0003 0.0052 0.0035 0.0195

(4.75) (-0.42) (3.17) (0.68) (-0.81) (-0.03) (1.68) (0.97) (1.47)
MKT -0.0101 0.0114 -0.0169 0.0030 0.0099 0.0049 0.0010 0.0023 -0.0136

(-2.55) (1.32) (-1.96) (0.82) (1.63) (0.57) (0.29) (0.60) (-1.04)
LMH 0.1058 0.0442 0.0124

(2.22) (2.15) (1.62)
HML -0.0093 0.0200 -0.0016

(-1.44) (2.20) (-0.40)
SMB 0.0036 -0.0011 0.0064

(0.61) (-0.23) (1.29)
Adj. R2 0.1817 0.9502 0.8351 -0.0251 0.1233 0.7987 -0.1076 0.7976 0.9063
Obs. 10 10 10 10 10 10 10 10 10

Panel B: Sorts involving Investment, E/P, and CF/P
Investment Earnings/Price Cashflow/Price

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept 0.0096 -0.0042 0.0104 0.0102 -0.0006 0.0088 0.0114 -0.0009 0.0115

(3.59) (-0.73) (1.54) (2.27) (-0.14) (0.99) (2.47) (-0.17) (1.54)
MKT -0.0037 0.0096 -0.0048 -0.0042 0.0064 -0.0031 -0.0055 0.0067 -0.0058

(-1.19) (1.61) (-0.70) (-0.88) (1.29) (-0.35) (-1.14) (1.17) (-0.76)
LMH 0.0441 0.0239 0.0252

(2.59) (2.66) (2.19)
HML 0.0028 0.0023 0.0012

(1.31) (1.44) (0.72)
SMB 0.0038 0.0071 0.0087

(1.27) (1.56) (2.06)
Adj. R2 0.0784 0.6816 0.4318 -0.0532 0.9071 0.8698 0.0585 0.6843 0.8627
Obs. 10 10 10 10 10 10 10 10 10

Table 6: Regression results: Various portfolio sorts
This table presents the results of regressions of average excess returns for six different port-
folio sorts on various combinations of four factors: MKT, LMH, HML, and SMB, July 1963-
December 2018, 666 months. t-statistics, adjusted following Shanken (1992), are presented
in parentheses.

by mistake—because the empiricist does not use the correct market portfolio (Roll, 1977),

or has information that differs from that of investors (Andrei et al., 2018)—then the LMH

portfolio becomes a proxy for this mistake. In this case, not only will the empiricist reject

the CAPM, but she will also fail to reject a multifactor model. We have illustrated this pos-

sibility in an equilibrium model of stock returns in Section 2, and in this section have found

empirical support for it. The credibility of the claim “anomalies are evidence against the

CAPM” stands on slippery ground.
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4 Conclusion

Empirical asset pricing has identified hundreds of anomalies, and interpreted them as evi-

dence against the CAPM. Admittedly, their sheer number makes the case against the theory

compelling. Yet, we argue that anomalies are not, by themselves, evidence that the theory

is wrong. On the contrary, their large number could be the greatest weakness of the case

against theory.

Regardless of whether the CAPM is rejected for valid reasons or by mistake, finding

anomalies is the unavoidable symptom of the rejection. Theoretically, one can always build a

long-short portfolio that explains, together with the market, the cross section of returns. The

moment a factor based on firm characteristics or on macroeconomic fundamentals covaries

with this portfolio, it becomes an anomaly, although in fact it need not be. This situation re-

sembles a statistical mirage in which empiricists are lured into accepting multifactor models

of returns, and theorists feel compelled to interpret these models. This hypothetical state of

affairs raises legitimate concerns regarding p-hacking (Simmons, Nelson, and Simonsohn,

2011; Chordia et al., 2017) and HARKing (Kerr, 1998).

More problematically, though, anomalies are silent about the true cause of the CAPM

rejection. Because the potential number of anomalies is unlimited, multifactor models of

returns do not reveal the true reasons for the difference between the theory and the data.

In our theoretical model, for instance, the CAPM is rejected by mistake. But even if the

CAPM is rejected for valid reasons, finding anomalies will likely not identify these reasons.

Anomalies are, at best, uninformative and, at worst, misleading.

Several fascinating questions arise. Can our economic setup identify instrumental vari-

ables that would help improve cross-sectional asset-pricing tests? What does our model say

about the return of anomalies on days with public announcements (Savor and Wilson, 2014;

Engelberg et al., 2018) or during non-trading hours (Hendershott, Livdan, and Rösch, 2018)?

Is there a possible theoretical link between the return of the LMH portfolio and momentum?

We leave these questions for future research, and conclude with William F. Sharpe’s words

in response to the Fama and French (1992) empirical results (according to Eric Berg of The
New York Times, February 18, 1992, emphasis ours):

“It is a remarkable set of empirical results about what happened in the past, but

I am not willing to make investment decisions based on the theory that there is

no relationship between beta, properly measured, and expected returns.”

. — William F. Sharpe
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A Appendix

A.1 Proof of Proposition 1
We solve for a linear equilibrium of the economy in which market-to-book ratios satisfy

P
K

=α0F +ξ0M+αF̃ + gG̃+ξm̃, (A.1)

where α0, α, and g are N-dimensional vectors and ξ0 and ξ are N ×N matrices, all of which will be
determined in equilibrium by imposing the market clearing condition (5).

Each investor i forms expectations about excess returns based on her information set:

Fi = {Vi,G̃,P}. (A.2)

It will be convenient to isolate the informational part of market-to-book ratios by writing

Pa

K
≡ P

K
−α0F −ξ0M− gG̃ =αF̃ +ξm̃, (A.3)

This equation shows that each market-to-book ratio is a noisy signal on F̃. The precision of each one
of these signals is endogenously determined in equilibrium.

We use the Projection Theorem (see, e.g., DeGroot, 2005), which we restate here for convenience.

Projection Theorem. Consider the n-dimensional normal random variable

(θ, s)∼N

([
µθ
µs

]
,
[
Σθ,θ Σθ,s
Σs,θ Σs,s

])
. (A.4)

Provided Σs,s is non-singular, the conditional density of θ given s is normal with conditional mean
and conditional variance-covariance matrix:

E[θ|s]=µθ+Σθ,sΣ
−1
s,s

(
s−µs

)
(A.5)

Var[θ|s]=Σθ,θ−Σθ,sΣ
−1
s,sΣs,θ. (A.6)

Stack all the information of investor i, both private and public, into a single vector

Si =
Pa/K

Ṽi
G̃

=
α1

1

 F̃ +
 ξ 0N×1 0N×1

01×N 1 0
01×N 0 1

m̃
ṽi
ṽ

≡ HF̃ +Θ
m̃

ṽi
ṽ

 , (A.7)

where the vector of noise in the signals, [m̃ vi v]′, is jointly Gaussian with covariance matrix:

Σ=
τ−1

m IN 0N×1 0N×1
01×N τ−1

v 0
01×N 0 τ−1

G

 . (A.8)

We define

r ≡ (ΘΣΘ′)−1 =
τm(ξξ′)−1 0N×1 0N×1

01×N τv 0
01×N 0 τG

 , (A.9)
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and obtain that an investor i’s total precision on the common factor satisfies

τ≡Var[F̃|Fi]−1 = τF +H′rH = τF +τG +τv +τmα
′(ξξ′)−1α. (A.10)

To obtain (A.10), first replace Σθ,θ = 1/τF , Σθ,s = H′/τF , Σs,θ = H/τF , and Σs,s = HH′/τF +ΘΣΘ′ in Eq.
(A.6), then use the Woodbury matrix identity.

The precision τ is the same across investors. Furthermore, investor i’s expectation of F̃ satisfies:

E[F̃|Fi]= 1
τ

H′rSi = 1
τ

[
τmα

′(ξξ′)−1 τv τG
]
Si. (A.11)

To obtain (A.11), start from (A.5):

E[F̃|Fi]= H′

τF

(
HH′

τF
+ΘΣΘ′

)−1

Si (A.12)

= 1
τF

H′r− 1
ττF

H′rHH′r, (A.13)

and replace H′rH = τ−τF in the last term on the right hand side. Replacing Si in (A.11) yields

E[F̃|Fi]= 1
τ

[
(τ−τF −τG)F̃ +τGG+τmα

′(ξξ′)−1ξm̃+τvvi
]
, (A.14)

where we have used the definition of the total precision (A.10) for the term that multiplies F̃. It
follows that average market expectation of future payoffs is

Ē[D]≡
∫

i
E[D|Fi]di = KΦF +KΦ

1
τ

[
(τ−τF −τG)F̃ +τGG+τmα

′(ξξ′)−1ξm̃
]
, (A.15)

and the covariance matrix of future payoffs is

Σ≡Var[D|Fi]= K2
(

1
τ
ΦΦ′+ 1

τε
IN

)
. (A.16)

The market-clearing condition (5) implies

P = Ē[D]−γΣ(M+ m̃). (A.17)

Thus

P
K

=ΦF +Φ1
τ

[
(τ−τF −τG)F̃ +τGG+τm(ξ−1α)′m̃

]−γ Σ
K

(M+ m̃) (A.18)

where we have used the simplification α′(ξξ′)−1ξ= (ξ−1α)′. This yields

α0 =Φ, ξ0 =−γ Σ
K

, α=Φτ−τF −τG

τ
, g =ΦτG

τ
, (A.19)

and

ξ=Φτm

τ
(ξ−1α)′−γK

(
1
τ
ΦΦ′+ 1

τε
IN

)
. (A.20)
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Multiply both sides of Eq. (A.20) by ξ−1α (to the right):

α=Φτm

τ
(ξ−1α)′ξ−1α−γK

(
1
τ
ΦΦ′+ 1

τε
IN

)
ξ−1α, (A.21)

and then recognize that τm(ξ−1α)′ξ−1α= τmα
′(ξξ′)−1α= τ−τF −τG −τv (from Eq. A.10), which can be

replaced above, together with the solution for α to obtain (after multiplication with τ):

Φτv =−γK
(
ΦΦ′+ τ

τε
IN

)
ξ−1α, (A.22)

which leads to an equation for ξ−1α:

ξ−1α=− τv

γK

(
ΦΦ′+ τ

τε
IN

)−1
Φ. (A.23)

Multiply both sides with Φ′ (to the left):

Φ′ξ−1α=− τv

γK
Φ′

(
ΦΦ′+ τ

τε
IN

)−1
Φ=− τvτεΦ

′Φ
γK(τ+τεΦ′Φ)

, (A.24)

where the second equality follows from the Woodbury matrix identity. Conjecture

ξ−1α≡−
p
τPp
τm
Φ, (A.25)

where τP is an unknown positive scalar. Replacing Eq. (A.25) in Eq. (A.10) yields the total precision τ

as a function of this scalar:

τ= τF +τG +τv +τPΦ
′Φ. (A.26)

Furthermore, replacing the conjecture (A.25) in Eq. (A.24) yields
p
τPp
τm

= τvτε

γK(τ+τεΦ′Φ)
(A.27)

which leads to a cubic equation in τP :

τP
[
τF +τv +τG + (τP +τε)Φ′Φ

]2 = τmτ
2
ετ

2
v

γ2K2 . (A.28)

The discriminant of this equation is strictly negative and thus it has a unique real root. Since it
cannot have a negative root (the right hand side is strictly positive), it follows that τP is a unique
positive scalar. The conjecture (A.25) can now be replaced in (A.20) to obtain the undetermined
coefficients ξ:

ξ=−γK +p
τmτP

τ
ΦΦ′− γK

τε
IN . (A.29)

This completes the proof of Proposition 1.
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A.2 Proof of Corollary 1.3
For this proof we will make the following assumptions:

Assumption 1. There is no ex-ante proportionality relation between the unconditional market portfo-
lio M and the vector of firms’ loadings on the common productivity factor Φ.

Assumption 1 ensures that we keep the setup as general as possible, excluding pathological cases
with an exogenous perfect relationship between firms’ market capitalizations and their exposure to
the common productivity factor.

Assumption 2. M′Φ> 0.

Assumption 2 eliminates the uninteresting case M′Φ = 0 (zero market exposure to the common
factor), and is without loss of generality (if M′Φ < 0, one can simply switch the sign of the common
factor).

Setting x = Σ̂1/2M and y = Σ̂−1/2µ, we have σM = ‖x‖ and
√
µ′Σ̂−1µ = ‖y‖, where ‖ · ‖ denotes the

norm. The Cauchy-Schwartz inequality states that

‖x‖‖y‖ ≥ x′y= M′Σ̂1/2Σ̂−1/2µ=µM . (A.30)

where we have used the properties of symmetric positive-definite matrices for Σ̂. Thus,

µM

σM
≤

√
µ′Σ̂−1µ. (A.31)

The relation (A.31) holds with equality if and only if x is proportional to y, or

µ∝ Σ̂M. (A.32)

To show that the proportionality relation (A.32) is cannot hold for the empiricist, we first compute
Σ̂ by using the law of total variance:

Σ̂=Σ+Var[E[D−P|Fi]] (A.33)

=Σ+Var
[
Ē[D]+KΦ

τv

τ
vi

]
(A.34)

=Σ+ γ2

τm
Σ2 + K2τv

τ2 ΦΦ′ (A.35)

Replace (A.16) above to obtain

Σ̂=
(

K2(τ+τv)
τ2 + K4γ2Φ′Φ

τ2τm
+ 2K4γ2

ττmτε

)
ΦΦ′+

(
K2

τε
+ K4γ2

τmτ
2
ε

)
IN . (A.36)

Replace IN from (A.16) or ΦΦ′ from (A.16) to write Σ̂ in two equivalent forms:

Σ̂= c1Σ+ c2ΦΦ
′ (A.37)

Σ̂= c3Σ− c4 IN (A.38)

where c1, c2, c3, and c4 are positive scalars:

c1 = 1+ K2γ2

τmτε
> 0, c2 = K2τv

τ2 + γ2K4(τ+τεΦ′Φ)
τ2τmτε

> 0, (A.39)
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and

c3 = 1+ τv

τ
+ K2γ2(2τ+τεΦ′Φ)

ττmτε
> 0, c4 = K2τv

ττε
+ γ2K4(τ+τεΦ′Φ)

ττmτ
2
ε

> 0. (A.40)

Multiply Equations (A.37)-(A.38) with M:

Σ̂M = c1ΣM+ c2(Φ′M)Φ (A.41)

Σ̂M = c3ΣM− c4M. (A.42)

Since ΣM and µ are proportional (Corollary 1.1), (A.32) implies that µ∝Φ and µ∝ M. This implies
M ∝Φ, contradicting Assumption 1, which completes the proof of Corollary 1.3.

A.3 Proof of Proposition 3
Start from the true CAPM relation (Corollary 1.1):

µ= µM

σ2
M
ΣM, (A.43)

and replace Σ from (A.37):

µ= µMσ̂
2
M

c1σ
2
M
β− µM c2M′Φ

c1σ
2
M

Φ. (A.44)

where σ̂2
M ≡ M′Σ̂M. We further know that average market-to-book ratios are

E[P]
K

=ΦF − µ

K
, (A.45)

from which we can replace Φ in (A.44) and solve for µ. This yields

µ=λ1β+λ2
E[P]

K
, (A.46)

with

λ1 =
FKµMσ̂

2
M

c1FKσ2
M + c2µM M′Φ

and λ2 =− c2KµM M′Φ
c1FKσ2

M + c2µM M′Φ
. (A.47)

Assumption 2 ensures that λ1 > 0 and λ2 < 0. This completes the proof of Proposition 3.

A.4 Proof of Proposition 4
Replacing Φ from (18) in (A.44) yields (19), with

η0 =− c2M′ΦµM

c1Fσ2
M

< 0, η1 =
µMσ̂

2
M

c1σ
2
M

> 0, and η2 =−ac2M′ΦµM

c1Fσ2
M

< 0. (A.48)

This completes the proof of Proposition 4.
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A.5 Proof of Proposition 5
This appendix solves an extension of the model when assets’ payoffs are driven by multiple factors.
We start by conjecturing that market-to-book ratios satisfy

P
K

=α0F +ξ0M+αF̃ + gG̃+ξm̃. (A.49)

Since agents observe G̃, M, and F the effective price signal is

Pa

K
≡ P

K
− gG̃−α0F −ξ0M =αF̃ +ξm̃. (A.50)

Regrouping all signals in a vector we obtain

S i =
 Pa/K

Ṽi
G̃

=
 α

IJ
IJ

 F̃ +
 ξ 0N×J 0N×J

0J×N IJ 0J×J
0J×N 0J×J IJ

 m̃
ṽi
ṽ

 (A.51)

with  m̃
ṽi
ṽ

∼N

0,

 τ−1
m IN 0N×J 0N×J

0J×N τ−1
v IJ 0J×J

0J×N 0J×J τ−1
G IJ

 . (A.52)

Using these matrices we now define a (N +2J)× (N +2J) matrix:

R ≡ (ΘΣΘ′)−1 =
 (ξξ′)−1τm 0N×J 0N×J

0J×N IJ τv 0J×J
0J×N 0J×J IJ τG

 . (A.53)

The projection theorem then implies that

τ≡Var[F̃|Fi]−1 = IJ τF +H′RH = (τF +τv +τG)IJ +α′(ξξ′)−1ατm. (A.54)

The projection theorem also yields

E[F̃|Fi]= τ−1H′RSi = τ−1 [
τmα

′(ξξ′)−1(αF̃ +ξm̃)+τv(F̃ + ṽi)+τG(F̃ + ṽ)
]

(A.55)

= τ−1 [
(τ−τF IJ −τG IJ)F̃ +τmα

′(ξξ′)−1ξm̃+τv ṽi +τGG̃
]
. (A.56)

It follows that average expectations of future payoffs satisfy

Ē[D̃]≡
∫

i
E[D̃|Fi]di =ΦF +Φτ−1 [

(τ−τF IJ −τG IJ)F̃ +τmα
′(ξξ′)−1ξm̃+τGG̃

]
. (A.57)

and the covariance matrix of future payoffs satisfies:

Σ≡Var[D̃|Fi]= K2(Φτ−1Φ′+τ−1
ε IN ). (A.58)

The market-clearing condition then requires that P = Ē[D̃]−γΣ(M+ m̃), which yields

P
K

=ΦF +Φτ−1 [
(τ−τF IJ −τG IJ)F̃ +τm(ξ−1α)′m̃+τGG̃

]−γ Σ
K

(M+ m̃). (A.59)
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Separating variables we obtain the following system of equations:

α0 =Φ, ξ0 =−γ ΣK , g = τGΦτ
−1, α=Φτ−1(τ−τF IJ −τG IJ), (A.60)

and

ξ= τmΦτ
−1(ξ−1α)′−γK

(
Φτ−1Φ′+τ−1

ε IN
)
. (A.61)

To reduce the size of this system of equations, post-multiply both sides of the above by ξ−1α:

α= τmΦτ
−1(ξ−1α)′ξ−1α−γK

(
Φτ−1Φ′+τ−1

ε IN
)
ξ−1α (A.62)

Observing that τmΦτ
−1(ξ−1α)′ξ−1α=Φτ−1 [τ− (τF +τG +τv)IJ]≡α−τvΦτ

−1, we obtain

τvΦτ
−1 =−γK

(
Φτ−1Φ′+τ−1

ε IN
)
ξ−1α, (A.63)

which yields an equation for the vector of signal-to-noise ratios:

ξ−1α=− τv

γK
(
Φτ−1Φ′+τ−1

ε IN
)−1
Φτ−1. (A.64)

Pre-multiply this equation by τ−1Φ′ and use Woodbury matrix identity that implies:

τ−1Φ′ (Φτ−1Φ′+τ−1
ε IN

)−1
Φτ−1 = τ−1 − (τ+τεΦ′Φ)−1 (A.65)

to conclude that

τ−1Φ′ξ−1α=− τv

γK
(
τ−1 − (τ+τεΦ′Φ)−1)

. (A.66)

Conjecture that ξ−1α≡− 1p
τm
ΦτP , where τP is a J × J symmetric matrix of J(J +1)/2 unknown coef-

ficients. Replacing this conjecture in the expression for total precision in Eq. (A.54):

τ≡ (τF +τv +τG)IJ +τPΦ
′ΦτP . (A.67)

Further replacing the conjecture in Eq. (A.66) produces a matrix equation for τP :

τ−1Φ′ΦτP =p
τm

τv

γK
(
τ−1 − (τ+τεΦ′Φ)−1)

, (A.68)

which, premultiplying by τ, can be rewritten as

Φ′ΦτP =p
τm

τv

γK
(
IJ −(IJ +τετ−1Φ′Φ)−1)

. (A.69)

Once we have a solution for τP we can subsitute the conjecture we obtain the matrix ξ as:

ξ=−pτmΦτ
−1τ′PΦ

′−γK
(
Φτ−1Φ′+τ−1

ε IN
)
. (A.70)

completing the proof of Proposition 5.
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A.6 Proof of Proposition 6
As in the single factor case, the market-clearing condition implies

Ē[Re]= γΣ(M+ m̃), (A.71)

a relation that can be represented in the traditional CAPM form. To construct this relation as mea-
sured by the empiricist, we use the law of total covariance:

Σ̂=Σ+Var
[
Ē[R]+τvΦτ

−1vi
]=Σ+ γ2

τm
Σ2 +τvΦτ

−1τ−1Φ′, (A.72)

where the second line follows from substituting the market-clearing condition above. Furthermore,
the conditional covariance matrix of returns satisfies:

Σ= K2 (
Φτ−1Φ′+τ−1

ε IN
)
. (A.73)

Substituting one relation into the other we obtain

Σ̂=Σ+ γ2K4

τm
(Φτ−1Φ′+τ−1

ε IN )(Φτ−1Φ′+τ−1
ε IN )+τvΦτ

−1τ−1Φ′ (A.74)

=
(
1+ γ2K2

τmτε

)
Σ+ γ2K4

τmτε
Φτ−1Φ′+Φτ−1

(
γ2K4

τm
Φ′Φ+τv IJ

)
τ−1Φ′ (A.75)

Let us further write:

τ−1 =


ω11 ω12 . . . ω1J
ω12 ω22 . . . ω2J

...
...

...
...

ω1J ω2J . . . ωJJ

 , (A.76)

and

Φ≡ [
Φ1 Φ2 . . . ΦJ

]
. (A.77)

We can then write:

Φτ−1Φ′ =
J∑

j=1

J∑
k=1

ωk jΦkΦ
′
j, (A.78)

Φτ−1τ−1Φ′ =
J∑

j=1

J∑
k=1

(
J∑

n=1
ωknωn j

)
ΦkΦ

′
j. (A.79)

We further need to compute:

Φτ−1Φ′Φτ−1Φ′ =
J∑

n=1

J∑
i=1

J∑
j=1

J∑
k=1

ωinωk jΦiΦ
′
nΦkΦ

′
j. (A.80)

We first note that:

ΦiΦ
′
nΦkΦ

′
j = (Φ′

nΦk)ΦiΦ
′
j. (A.81)
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Substituting back we get:

Φτ−1Φ′Φτ−1Φ′ =
J∑

n=1

J∑
i=1

J∑
j=1

J∑
k=1

ωinωk j(Φ′
nΦk)ΦiΦ

′
j (A.82)

=
J∑

j=1

J∑
i=1

(
J∑

k=1

J∑
n=1

ωinωk j(Φ′
nΦk)

)
ΦiΦ

′
j (A.83)

For convenience, we relabel the indices to obtain:

Φτ−1Φ′Φτ−1Φ′ =
J∑

j=1

J∑
k=1

(
J∑

i=1

J∑
n=1

ωknωi j(Φ′
nΦi)

)
ΦkΦ

′
j (A.84)

We can then compute:

Φτ−1
(
γ2K4

τm
Φ′Φ+τv IJ

)
τ−1Φ′+ γ2K4

τmτε
Φτ−1Φ′ (A.85)

=
J∑

j=1

J∑
k=1

(
γ2K4

τmτε
ωk j +τv

J∑
n=1

ωn jωkn +
γ2K4

τm

J∑
i=1

J∑
n=1

ωknωi j(Φ′
nΦi)

)
ΦkΦ

′
j (A.86)

=
J∑

j=1

J∑
k=1

(
γ2K4

τmτε
ωk j +

J∑
n=1

ωkn

(
τvωn j + γ2K4

τm

J∑
i=1

ωi jΦ
′
nΦi

))
︸ ︷︷ ︸

≡ck j

ΦkΦ
′
j, (A.87)

and thus

Σ̂=
(
1+ γ2K2

τmτε

)
Σ+

J∑
j=1

J∑
k=1

ck jΦkΦ
′
j. (A.88)

We can write expected returns as

µ= µM

σ2
M

(
1+ γ2K2

τmτε

)−1 (
σ̂2

Mβ̂−
J∑

k=1

(
J∑

j=1
φ̄ j ck j

)
Φk

)
, (A.89)

where φ̄ j ≡Φ′
jM denotes the average loading on factor j. Similarly, using Proposition 2, we can obtain

a relation between β̂∆ and the J factors:

β̂∆ = σ̂2
T

µT σ̂
2
∆

(
σ̂2

M

(
µM

σ2
M

(
1+ γ2K2

τmτε

)−1

− µT

σ̂2
T

)
β̂− µM

σ2
M

(
1+ γ2K2

τmτε

)−1 J∑
j=1

(
φ̄ j

J∑
k=1

ck j

)
Φk

)
(A.90)

= σ̂2
T

µT σ̂
2
∆

(
σ̂2

M

(
γτmτε

τmτε+γ2K2 − B̂
)
β̂− µM

σ̂2
M

(
1+ γ2K2

τmτε

)−1 J∑
j=1

(
φ̄ j

J∑
k=1

ck j

)
Φk

)
, (A.91)

where we have used µT /σ̂2
T ≡ B̂ =µ′Σ̂−11. Premultiply Eq. (A.88) by Σ̂−1 and rearrange to obtain:

τmτε

γ2K2 +τmτε

(
IN −

J∑
j=1

J∑
k=1

ck jΣ̂
−1ΦkΦ

′
j

)
= Σ̂−1Σ, (A.92)
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which substituted back in B̂ = 1′Σ̂−1µ= γ1′Σ̂−1ΣM yields:

B̂ = γτmτε

γ2K2 +τmτε

M′1︸︷︷︸
≡1

−
J∑

j=1

J∑
k=1

ck j1′Σ̂−1ΦkΦ
′
jM︸ ︷︷ ︸

≡φ̄ j

 (A.93)

= γτmτε

γ2K2 +τmτε

(
1−

J∑
j=1

φ̄ j

(
J∑

k=1
ck j

)
1′Σ̂−1Φk

)
(A.94)

Finally, substitute back in the relation for β∆ and get:

β̂∆ = σ̂2
T

µT σ̂
2
∆

γτmτε

γ2K2 +τmτε

J∑
j=1

φ̄ j

J∑
k=1

ck j

1′Σ̂−1Φk︸ ︷︷ ︸
≡B̂k

σ̂2
Mβ̂−Φk

 (A.95)

= σ̂2
T

µT σ̂
2
∆

γτmτε

γ2K2 +τmτε

J∑
k=1

B̂k

(
J∑

j=1
φ̄ j ck j

)
Σ̂

(
M− Σ̂−1Φk/B̂k

)
(A.96)

which completes the Proof of Proposition 6.

A.7 Proof of Proposition 7
Following the steps of Appendix A.3 we start from average market-to-book ratios, yet in the J−factors
case:

E[P]
K

=
J∑

k=1
ΦkFk −

µ

K
. (A.97)

We then use the asset-pricing relation in Eq. (27) to write the vector of loadings on the k−th factor
as:

Φk =
(

J∑
j=1

φ̄ j ck, j

)−1 (
σ̂2

M

σ2
M

µM

γ
β̂− γ2K2 +τmτε

γτmτε
µ− ∑

l 6=k

(
J∑

j=1
φ̄ j cl j

)
Φl

)
. (A.98)

We then subtitute it back in the above equation, isolating unconditional expected excess returns, µ,
on the left-hand side:

µ=
(

1
K

+ γ2K2 +τmτε

γτmτε

J∑
k=1

Fk

(
J∑

j=1
φ̄ j ck, j

)−1)−1
 σ̂2

M
σ2

M

µM
γ

∑J
k=1 Fk

(∑J
j=1 φ̄ j ck, j

)−1
β̂− E[P]

K

−∑J
k=1 Fk

(∑J
j=1 φ̄ j ck j

)−1 ∑
l 6=k

(∑J
j=1 φ̄ j cl j

)
Φl

 .

(A.99)

To rewrite the second line in the second bracket we use that, for arbitrary coefficients a and b:

J∑
k=1

ak
∑
l 6=k

blΦl =
J∑

k=1
bk

(∑
l 6=k

al

)
Φk. (A.100)
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This yields the following asset-pricing relation (where we have relabled the indices for convenience):

µ=
(

1
K

+ γ2K2 +τmτε

γτmτε

J∑
k=1

Fk

(
J∑

j=1
φ̄ j ck, j

)−1)−1
 σ̂2

M
σ2

M

µM
γ

∑J
k=1 Fk

(∑J
j=1 φ̄ j ck, j

)−1
β̂− E[P]

K

−∑J
k=1

(∑
l 6=k Fl

∑J
j=1 φ̄ j ck j∑J
j=1 φ̄ j cl j

)
Φk

 , (A.101)

which in turn delivers the relation in Eq. (29), with:

λ2 ≡−
(

1
K

+ γ2K2 +τmτε

γτmτε

J∑
k=1

Fk

(
J∑

j=1
φ̄ j ck, j

)−1)−1

, (A.102)

λ1 ≡−λ2
σ̂2

M

σ2
M

µM

γ

J∑
k=1

Fk

(
J∑

j=1
φ̄ j ck, j

)−1

, (A.103)

λk ≡λ2
∑
l 6=k

Fl

∑J
j=1 φ̄ j ck j∑J
j=1 φ̄ j cl j

, k = 1, . . . , J. (A.104)

The statement that one of the J factors is redundant follows from that we can extract one factor,
say factor l, arbitrarily from Eq. (A.97):

E[P]
K

=ΦlFl +
∑
k 6=l
ΦkFk −

µ

K
. (A.105)

Mirroring the computations above, we can then use Eq. (A.98) to write:

µ=
(

1
K

+ γ2K2 +τmτε

γτmτε
Fl

(
J∑

j=1
φ̄ j cl, j

)−1)−1
 σ̂2

M
σ2

M

µM
γ

Fl

(∑J
j=1 φ̄ j cl, j

)−1
β̂− E[P]

K

+∑
k 6=l

(
Fk −Fl

∑J
j=1 φ̄ j ck j∑J
j=1 φ̄ j cl j

)
Φk

 (A.106)

≡λ′
1β̂+λ′

2
E[P]

K
+ ∑

k 6=l
λ′

k+2Φk. (A.107)

This completes the proof of Proposition 7.

A.8 Proof of Proposition 8
Consider the following multivariate time-series relation (stacked for all assets):

Re = α̃+ β̃Re
M + β̃∆Re

∆+u, (A.108)

where Re is the vector of excess returns on all assets, Re
M is the excess return on the market, and Re

∆
is the excess return on the ∆ portfolio. Let the univariate time-series relation be

Re = α̂+ β̂Re
M +ε, (A.109)

where the coefficient β is the same as in Proposition 2. Comparing Eqs. (A.108) and (A.109), there is
an omitted variable (Re

∆) in Eq. (A.109). This yields

β̂= β̃+ σ̂M∆

σ̂2
M
β̃∆. (A.110)
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By the same logic, writing Re = α̂∆+ β̂∆Re
M +ε∆ and comparing with Eq. (A.108) yields

β̂∆ = β̃∆+ σ̂M∆

σ̂2
∆

β̃. (A.111)

Eqs. (A.110)-(A.111) can then be replaced in Proposition 1:

µ= µT σ̂
2
M

σ̂2
T

(
β̃+ σ̂M∆

σ̂2
M
β̃∆

)
+ µT σ̂

2
∆

σ̂2
T

(
β̃∆+ σ̂M∆

σ̂2
∆

β̃

)
. (A.112)

This relation can be further simplified by eliminating σ̂M∆ and µT . In order to do this, multiply Eq.
(32) with M′ and with ∆′ to obtain two equations with two unknowns:

µM = µT σ̂
2
M

σ̂2
T

+ µT

σ̂2
T
σ̂M∆ (A.113)

µ∆ = µT

σ̂2
T
σ̂M∆+

µT σ̂
2
∆

σ̂2
T

, (A.114)

which yields

σ̂M∆ = µ∆σ̂
2
M −µMσ̂

2
∆

µM −µ∆
(A.115)

µT = (µM −µ∆)σ̂2
T

σ̂2
M − σ̂2

∆

. (A.116)

Replacing σ̂M∆ and µT from above in Eq. (A.112) yields

µ=µMβ̃+µ∆β̃∆. (A.117)

which is Eq. (34) of Proposition 8. Furthermore, solving for β̃ and β̃∆ in (A.110)-(A.111) yields Eq.
(35). This completes the proof of Proposition 8.
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