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Abstract

We develop a volatility decomposition derived from flexible and robust local projections
to quantify the relative contributions of expected discount rates and cash flows to the vari-
ation of dividend yields. Local projections enable the incorporation of large information
sets, the use of monthly data along with annual data, and to consider time variation in the
volatility decomposition. While the variation of expected discount rates remains the dom-
inant contributor to market volatility, we find that the contribution of expected cash flows
is non-negligible when moving beyond the standard model with the dividend yield as the
single state variable.
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1 Introduction

The value of a stock should equal expected discounted cash flows. Understanding the relative
contribution of expected discount rates (returns) and cash flows (dividends) to the volatility
of equity markets is one of the classic topics in asset pricing research. A voluminous literature
demonstrates that expected dividends contribute only marginally, if at all, to the volatility of
prices (see, e.g., the early evidence in Shiller, 1981; LeRoy and Porter, 1981; Campbell and
Shiller, 1988b; and Cochrane, 1992, 2008). In response to these findings, the focus of asset
pricing research in recent decades has primarily been on the analysis of discount rate variation
(see, e.g., Cochrane 2011, 2017 for recent surveys).

To analyze the discount rate vs. cash flow conundrum, the typical starting point is the
Campbell and Shiller (1988b) log-linear present value model, which decomposes the dividend
yield into expected discount rates and expected cash flow growth. The empirical implementa-
tion in Campbell and Shiller (1988b), Cochrane (2008) and many other studies utilizes a vector
autoregressive (VAR) representation describing the dynamics of (log) market returns, dividend
yields, (log) dividend growth, and possibly additional variables. The estimated VAR coeffi-
cients are subsequently used to infer long-run expectations of discount rates and cash flow
growth. Specifically, Cochrane (2008) uses the lagged dividend yield as the only state vari-
able to predict future returns and dividend growth rates and finds, since the dividend yield
is a poor predictor of future dividend growth, a negligible contribution of expected dividend
growth to price volatility.

In this study, we also build upon the log-linear present value model but introduce an al-
ternative methodology to empirically quantify the relative contributions of expected discount
rates and cash flows in a more general environment than in the past approaches. Our approach
is in spirit similar to Campbell and Shiller (1988b) and Cochrane (2008) as we use regression-
based techniques to infer cash flow and discount rate expectations. However, instead of infer-
ring implied long-run expectations from the VAR, we obtain the required predictions for the
discounted (cumulative) expected returns and dividend growth rates as well as the discounted
dividend yield using (forecast) horizon-specific single-equation regressions, which we refer to,
following Jorda (2005), as "local projections’.

These flexible and information-rich local projections, which facilitate modern data-driven

machine (statistical) learning methods as a part of the analysis, enable us to reconcile the



mounting evidence of both return and dividend predictability and the prior VAR-based volatil-
ity decompositions implying that dividend expectations are flat (i.e., they do not contribute to
market volatility). That is, we are able to integrate vast past research effort emphasizing the
role of various other state variables besides the dividend yield as predictors of returns at dif-
ferent horizonsE] Similarly for dividend growth, Lettau and Ludvigson (2005) emphasize the
role of consumption ratios at longer horizons, while Ang and Bekaert (2007) and Meller and
Sander (2017) find the earnings yield as a useful predictor of future cash flows. Moreover,
Engsted and Pedersen (2010) and Rangvid, Schmeling and Schrimpf (2014) find international
evidence in favor of predictability of dividend growth by the dividend yield and other vari-
ables. In line with these findings, our main empirical result is that the estimated contribution
of long-run cash flow expectations to market volatility is considerably larger than estimates
based on the VAR approach (e.g. Cochrane, 2008) and recent latent variable approaches (see
van Binsbergen and Koijen, 2010; Zhu, 2015; and Choi, Kim and Park, 2017).

In his seminal work, Jorda (2005) proposes local projections as an alternative to VARs for
computing macroeconomic impulse response functions. We apply local projections in a dif-
ferent context: to infer long-run expectations of discount rates and cash flow growth of in-
terest for the dividend yield volatility decomposition. Instead of the conventional approach
of extrapolating an estimated one-period VAR model over multiple periods, the idea of local
projections is to construct predictions at each horizon of interest separately. Following Jorda
(2005), this is more robust to misspecification than the VAR approach, which is built upon
the strong assumption that the underlying VAR representation is correctly specified. In prac-
tice, however, the estimated VAR, like any econometric model, is likely to be misspecified,
providing at best an approximation to the true correct asset pricing process. As Jorda (2005)
puts it, misspecification errors are hence ‘compounded with the forecast horizon” with a VAR,
whereas horizon-specific local projections are optimized to minimize misspecification error at
each horizon separately, not requiring an exact specification of the true multivariate dynamic

system, and are thus generally more robust to misspecificationE]

! These variables include, e.g., valuation ratios (Campbell and Shiller, 1988a; Fama and French, 1988; Lamont,
1998), interest rates and interest rate spreads (Ang and Bekaert, 2007; Fama and French, 1989), stock market volatil-
ity (Guo, 2006; Martin, 2017) and the consumption-wealth ratio (Lettau and Ludvigson, 2001; 2005), to name just
a few. See Koijen and Van Nieuwerburgh (2011) and Rapach and Zhou (2013) for recent surveys. Several studies
have nevertheless also questioned the predictive power of the dividend yield and other valuation ratios for returns,
even at long horizons (see, e.g., Ang and Bekaert, 2007; Welch and Goyal, 2008; and Boudoukh, Richardson and
Whitelaw, 2008).

% Local projections have recently gained popularity as a tool for structural inference in macroeconomic applica-
tions. See, e.g., Owyang, Ramey, and Zubairy, 2013; Ramey, 2016; Gorodnichenko and Lee, 2017; and Ramey and



A clear example of a situation where extrapolating short-run predictions does not provide
optimal long-run predictions is the corporate policy of dividend smoothing. Short-run divi-
dend smoothing adversely affects the predictability of dividends in the short run. As Chen,
Da, and Priestley (2012) demonstrate, this lack of short-run predictability induces a negative
bias to the VAR-implied contribution of cash flow news: they show by simulation that even
if dividends are predictable in the long run, this predictability is for the most part not uncov-
ered by a VAR in the presence of short-run dividend smoothing. Since dividend growth rates
over longer horizons (say, 10 or 15 years) are less affected by dividend smoothing policies, our
local projections largely circumvent the concerns raised by Chen, Da, and Priestley (2012), by
making direct (as opposed to VAR-implied) predictions of long-run dividend growth.

In addition to minimizing misspecification concerns, raised partly by the above vastly vary-
ing findings in return and dividend growth predictability research, the use of local projections
has a number of clear-cut advantages compared to the VAR approach. First, local projections
enable the incorporation of potentially large sets of economic and financial state variables. We
apply advanced model averaging and statistical learning-based methods to facilitate large in-
formation sets, while avoiding dimensionality concerns. Second, in contrast to the existing
VAR and latent variable based decompositions with a fixed infinite horizon, our volatility de-
composition can be estimated at short, intermediate and long-run horizons, which allows for
selecting the set of predictive variables at each horizon of interest separately. Third, we show
that local projections can be estimated with higher-frequency data, such as monthly data, while
the seasonality of dividend data has restricted prior studies using the VAR-based approaches
to rely solely on annual data (see, e.g., the survey by Koijen and van Nieuwerburgh, 2011).
Fourth, due to the enlarged sample sizes resulting from the use of monthly data, we are able
to evaluate possibly important time variation of the volatility decomposition by estimating the
local projections recursively with time-varying estimation windows. These advantages, with
the resulting main empirical implications, are briefly outlined below.

In our empirical analysis, we start by applying local projections with the lagged dividend
yield as a single state variable and find that the contribution to market volatility of expected

cash flow growth is indeed marginal compared to expected discount rates, which is consistent

Zubairy, 2018. Cochrane and Piazzesi (2002) provide an early example of impulse response functions constructed
by direct regressions. The robustness of local projections in terms of potential misspecification is also supported
by comparisons between "direct’ and ’iterative” multiperiod forecasting methods (see, e.g., Marcellino, Stock, and
Watson, 2006; and Chevillon, 2007). To the best our knowledge, this is the first study to systematically integrate
local projections in an empirical asset pricing application.



with the findings by Cochrane (2008, 2011). We then first extend the information set by includ-
ing lagged (cumulative) returns and dividend growth rates along with the lagged dividend
yield, and find increased predictability of both returns and dividend growth. Importantly,
the incremental predictive power obtained from increasing the information set is particularly
significant when predicting dividend growth. As a result, we find that the contribution of
expected cash flow (dividend) growth increases considerably. In other words, even though
discount rate variation remains the primary component of market volatility, we find the role
of expected dividends to be far from negligible when incorporating predictive information
beyond the lagged dividend yield.

We proceed by extending the information set to include a broader set of potential state
variables. As the aforementioned list of potential state variables is long, we offer two specific
data-driven solutions facilitated by local projections in a data-rich environment: Model aver-
aging and LASSO (Least Absolute Shrinkage and Selection Operator). Both approaches can be
seen as shrinkage (i.e., penalization-based) methods to obtain guard against overfitting. Ra-
pach, Strauss, and Zhou (2010) are among the first ones to document strong evidence on the
superiority of model averaging in (out-of-sample) return forecasting by taking a simple aver-
age of predictive regression models containing a single predictor (see also Timmermann, 2006;
and Rapach and Zhou, 2013). This ultimately stems from the highly uncertain, complex and
potentially continuously evolving underlying data generating processes for expected returns,
dividend growth rates and the dividend yield, which are difficult to approximate with a single
and relatively parsimonious model such as a VAR. Model averaging reduces this uncertainty
and instability risk associated with reliance on a single model and importantly circumvents
overfitting despite the use of large predictor datasets.

The LASSO is a machine learning method popularized by Tibshirani (1996) that performs
variable selection (from a potentially large set of predictive variables) and parameter estima-
tion simultaneously to enhance the prediction accuracy and interpretability of the econometric
model it produces. LASSO is generally more robust than alternative approaches to variable
selection and parameter estimation such as backward or forward stepwise regressions. To the
best of our knowledge, this is the first study integrating the LASSO, or any modern machine
(statistical) learning-based method, within the context of assessing the relative importance of
discount rate and cash flow expectations to market volatility. Overall, the resulting volatility

decompositions from model averages and LASSO estimation yield very similar conclusions



as the above-mentioned case of three state variable (i.e., lagged returns, dividend growth and
dividend yield): expected discounted rates dominate but the cash flow component is also very
much present.

VAR-based volatility decompositions of the dividend yield are typically based on annual
data due to pervasive seasonal patterns in monthly dividends (e.g., Koijen and van Nieuwer-
burgh, 2011). On the contrary, the aforementioned studies on the predictability of returns and
dividend growth typically analyze monthly data. As pointed out, local projections enable us to
establish an approximative model to incorporate dividend growth also at monthly frequency,
despite the seasonality of monthly dividends data, by including monthly updated annual-
ized (i.e., 12-month) cumulative dividend growth rates. The use of monthly data increases
the number of observations considerably which facilitates meaningful examination of possi-
ble time-variation in the discount rate and cash flow contributions over time. The empirical
results of the full sample (time-invariant) and in particular the time-varying decompositions
at the monthly frequency provide additional robustness to the finding of a nonzero impact of
expected cash flows. In the time-varying decomposition, expected cash flows are at times even
the dominant component, relative to the discount rate component.

The remainder of this paper is organized as follows. Section 2] presents the methodological
advancement around local projections and over the previous volatility decomposition stud-
ies. These include model averaging and LASSO-based local projections and the approximate
monthly approach. Section 3| presents the main empirical results. We provide a discussion of
our findings in Section #and Section 5| concludes. Appendix A provides detailed descriptions
of prior volatility decomposition methods. Supplementary empirical results are documented

in our Internet Appendix.

2 Methodology

2.1 Present-value framework

Our starting point is the log-linearized present value model by Campbell and Shiller (1988b),
who show that the return on holding an asset for one period (R;+1 = P”%f)t“) can be ap-

proximated by a linear equation:

Ti41 = Kk — pdpgy1 + dpy + Adyy, (1)



where 1, = log (Ry), dp: = log (%), and Ad; = log (%). In (1), all variables are typically
interpreted as deviations from means, such that the constant term « can be omitted from the

model:

ri41 = —pdpiy1 + dps + Adiiq, ()

where p is required to be below, but close to 1. Empirically, p is typically estimated as

e

1+ edp’

p= €)

where dp is the sample average of the log dividend yield dp,. Rearranging (2) and iterating
forward results in the dividend yield expressed in terms of discounted future returns, dividend

growth rates, and dividend yields:

k k
dpy = Z Pl — Z P Ay o dpe. 4)
j=1 j=1
The identity () should hold ex-post as well as ex-ante conditional on any information set
; (see, e.g., Campbell and Shiller, 1988b; Campbell, 1991; and Cochrane, 2008). Therefore,
taking expectations of @), conditional on the information set ; available at time ¢ (i.e., Ey(-) =

E(:|924)), results in

k k
dpy = E; Z pj_lrt+j — E; Z ,Oj_lAdt+j + Etpkdpt+k. )
j=1 j=1
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The finite-horizon expression (5) implies that the dividend yield contains three components:
(i) discounted expected returns up to k periods ét(r’k), (ii) discounted expected dividend growth
rates up to k periods 6§d’k), and (iii) the discounted expected dividend yield in k periods, 5t(dp k),
which in turn implies expectations of both returns and dividends over horizons longer than %
periods. Quantifying the relative magnitudes of these three components at different horizons
k is the key objective of this paper.

In the existing literature, researchers almost solely focus on infinite horizons (k — o0),

combined with the assumption that rational bubbles cannot exist (i.e., the transversality con-



dition limy_, - E; [pkdpt%} = 0 holds). Under these conditions, the identity (5) converges to:

dp; = EtZPj_lrm-j - EtZPj_lAdt+j
j=1 j=1 (6)

5§r,oo) . 5§d,oo) '

The level of the dividend yield dp; thus reflects expected discounted returns and dividend
growth rates, both up to infinite horizons. This representation yields the important insight,
as emphasized by Cochrane (2008), that observing variation in the dividend yield implies that
either future returns or dividends, or both, are predictable.

Prior studies, such as Campbell and Shiller (1988b) and Cochrane (2008), apply a vector
autoregression (VAR) to evaluate the relative contributions of the infinite-horizon components
in (6). These VAR-based approaches are briefly outlined in Appendix A. The essential idea is to

5>y and dividend growth rates

obtain long-run discounted expectations on future returns (
(5§d’°°)) by iterating forward the predictions of a one-period VAR. Assuming that one wants to
evaluate the expected components only at an infinite horizon (k — 00), the linear structure
of the VAR has the advantage of allowing for closed form solutions of the infinite horizon
predictions (see Campbell and Shiller (1988b), Cochrane (2008) and Appendix A for details).
The VAR approach, however, also has several disadvantages. First, it assumes that the esti-
mated VAR is the correct data generating process for all three components in (5) at all horizons
k, while in reality the VAR parameters are noisy due to estimation and possible misspecifi-
cation errors. Iterating the VAR-based predictions forward therefore likely leads to poor esti-
mates of the (long-run) expected components in (5). The direct regressions (local projections)
that we propose in the next section are specified for each horizon separately, thereby minimiz-
ing misspecification bias. Second, VARs have limited capacity to incorporate large sets of state
variables since the number of parameters increases quadratically in the number of variables.
Our local projections allow for the implied expected returns and expected dividend growth
to depend on different state variables, selected even locally for each horizon of interest, and
from a large set of potential state variables. Third, VARs are restrictive also in a sense that
they do not allow the ‘mixed-frequency” matching between annual and monthly data. Within
the local projection approach, we are able to include monthly data, even if dividends are mea-
sured over rolling twelve-month windows. The use of monthly data increases the number of

observations, which is particularly useful when investigating potential time variation in the



parameters.

2.2 Local projections and volatility decomposition

In this section, we introduce a novel volatility decomposition that is built upon flexible local
projections to evaluate the relative magnitudes of the contributions of expected returns (dis-
count rates) and expected growth in dividends (cash flows) to the variation of the dividend
yield. The use of local projections (hereafter often LPs) in structural econometric inference orig-
inates from the work of Jorda (2005). At the heart of this approach lie forecast horizon-specific
predictions of the three components of interest in the identity (5). These predictions form the
basis for a flexible dividend yield volatility decomposition where the forecast horizon k can
freely vary between short, intermediate and long-term horizons. That is, we construct (linear)
local projections for the k-period ahead cumulative returns, cumulative dividend growth rates,

and the k-period ahead dividend yield as dependent variables:

k
Z pjilrm-j = k) 4 mﬁr”“)ﬁ(“’“) + 67&2)
j=1
oy d.k d.k 7)
ST Gy =l 4R g D
j=1
pkdpt—i-k — a(dp,k) + ml(tdp,k)/[,;(dp,k) + Egipkvk)’

where :L'ga’k) and 5&:), a € {r,d,dp}, are the vectors of state variables (or predictors) and zero-

mean error terms, respectively. Therefore, due to the linear structure of (7)), each equation can
be consistently estimated by ordinary least squares (OLS) under general conditions. The con-
ditional expectations (or fitted values) of the left-hand-side (LHS) variables in (7)), conditional

on the information set at time ¢ and the estimated parameters, are the empirical counterparts

of 67, 51", and 5\ in @)
5 glab) 4 @R Z@R) e ®)

Due to the flexible structure of LPs, the resulting estimates gfa’k) from (7)-(8) are expected
to be more informative and less prone to misspecification error than the estimates obtained
from the VAR approaches discussed in Section [2.1)and Appendix A. Importantly, if it in fact
turns out that the VAR is the correct data generating process, the LPs containing the same state

variables are asymptotically equivalent to the VAR predictions, whereas the reverse does not



apply (Jorda, 2005). Therefore, in large samples, nothing is lost in terms of the construction of
5t(a’k) when using the LPs instead of the VAR-based approaches.

In addition to the VAR-based approach, Cochrane (2008, 2011) also obtains the volatility
decomposition using ‘direct regressions” with the dividend yield as the only state variable.
This can be seen as a restricted case of the local projections (7), where wga’k) = dp; for all k and
for a € {r,d,dp}. Cochrane’s contribution is the starting point of our analysis: we estimate the
components 5§T’k), 6§d’k), and 5§dp k) by fitting the regressions (/) using the dividend yield dp;
as the single state variable.

There is no a priori reason to assume that the dividend yield should be the only relevant
predictor of long-run dividends and returns. Lettau and Ludvigson (2005) demonstrate that,
even if identity (6) holds, expected returns and dividends may share a common component
that is independent of the dividend yield, implying that additional variables beyond the div-
idend yield may be of use in predicting long run returns and dividend growth. We therefore

proceed by estimating the same set of regressions using not only lagged dividend yields, but

also lagged cumulative returns and lagged dividend growth rates as state variables. That is:

k k
" = (Z P ke Y P T Ay, dPt) a € {r,d,dp}, )

j=1 j=1

indicating that the predictive power of lags of all left-hand-side variables of the system (7) are
now utilized. For clarity, in the case of multiple state variables, wﬁa’k) and B(*") refer to row-
and column-vectors, respectively. In addition to these three state variables, we also explore a
larger set of financial and economic variables. To incorporate large sets of potential variables,
we estimate the LPs (7) using a LASSO approach and model averaging, on which we provide
more details in Section 2.3

After estimating the local projections with a given set of state variables, the empirical coun-

(r,k)’ 5§d,k)

terparts of d, ,and 5§dp k) provide the necessary ingredients to form our dividend yield

volatility decomposition. Taking variances of the present-value identity (5) gives:

Var (dp) = Var (o) + Var (6" + Var (5/")

—2 [cov (5§"”“>, 5§d”“)) — Cov (5?”“), 5§d””“)) + Cov (515””“), 5§dp”“))} . o

The estimated relative contributions of the first three components to the variance of the divi-



dend yield are:
Var((i(r’k)) Var(&(d’k)) Var(gt(dp’k)

)
Var(dp;) =~ Var(dp;) ’ Var(dp;) (1)

As equation suggest, the relative variance contributions do not generally sum up to
one due to neglected covariance terms in (10). Following the prior literature (e.g., Cochrane,
2008, 2011; van Binsbergen and Koijen, 2010; Zhu, 2015; and Choi, Kim, and Park, 2017), we are
primarily interested in the relative variance terms rather than the covariance terms. For
ease of interpretation and to allow explicit comparison with the VAR-based decompositions as
considered by Campbell and Shiller (1988b) and Cochrane (2008) (see details in Appendix A),

we report the square roots of the variance ratios (II). This results in our volatility decomposi-

tion:
> (r.k) (d,k) 2 (dp,k)
R Std(s, ) Std(s, ) Std(s, ")
K=—"—7">" "7 d, k) = dp, k) = ———= 12
U(T7 ) Std(dpt) Y U( Y ) Std(dpt) Y U( p7 ) Std(dpt) Y ( )

where £ is the forecast horizon of interest as in (5). In the remainder of this paper, we use
these three measures (o(r, k),o(d, k), and o (dp, k)) to quantify the relative contributions to
the volatility of the dividend yield generated by expected discount rates, expected cash flow
growth, and the expected future dividend yield, respectively.

Ultimately, we are primarily interested in measuring the relative importance of expected

discount rate and cash flow variation:

~ ~(d,k
(k) Std( ") )

5k a5

If the state variables in (7)) do not hold explanatory power on dividend growth, the fitted val-

(dk

ues gt ) will be essentially constant over time, such that the ratio (13) is close to zero. When

~(dk
moving from one to multiple state variables, it is expected that the volatility of both (5t( )

(r.k)

and
5, will increase, because of the improved fit of the local projections. However, the relative
sensitivity of the volatility of expected dividend growth and expected returns to different in-

formation sets, and therefore the behavior of the ratio (13), remains an open question that we

aim to answer in this paper.

2.3 Data-rich local projections: Model averaging and LASSO

As already surveyed in the Introduction, a vast literature compiles evidence that various vari-

ables besides the dividend yield predict stock returns as well as dividend growth rates at dif-

10



ferent frequencies and forecast horizons. To accommodate the integration of a large set of
predictors while keeping concerns on possible overfitting to a minimum, we apply two com-
mon data-driven methodologies from the machine and statistical learning literature: model
averaging and the LASSO (Least Absolute Shrinkage and Selection Operator).

In this study, similar to the frequentist model averaging approach by Rapach, Strauss, and
Zhou (2010), the model averages of expected returns, dividend growth rates and dividend
yields are constructed at each period as the equal-weighted averages of the predictions ob-
tained from the local projections (7) with different sets of state variables. Formally this can be

written as:

a 1 a _(a a.k) > (ak
sk _ L 3 (a( #) 4 glab gl >>’ a € {r,d,dp}, (14)

t
ng <=\ J J
‘77

where £ is the horizon, &\*

] ") and Bga’k) are the OLS estimates from the predictor-specific LPs

(i,k)

generated by the state variables included in x ]1 . The number of relevant candidate state

variables is denoted by n, and described more detail in Section In our empirical analy-

(i,k)

sis, ]1 includes a fixed set of pre-selected variables (e.g., the dividend yield) supplemented
by one additional predictor (indexed by j) at the time. Giving equal weight to the n, pre-
dictions is in accordance with prior studies generally showing that equal-weighted model av-
erages (forecast combinations) typically outperform more complicated alternatives (see, e.g.,
Timmermann, 2006; Rapach, Strauss, and Zhou, 2010; and Baetje, 2018).

The other method that we use to accommodate a data-rich information set is the LASSO.
The LASSO estimator, as popularized by Tibshirani (1996), is an alternative to the usual OLS
estimator where the idea in short is to select the optimal state variables, by shrinking the pa-
rameters of irrelevant state variables to zero, without taking a prior standpoint on which vari-
ables should be included. This shrinkage (or penalization) based method allows us to consider
a potentially large number of state variables simultaneously. In our context, this means that
the LASSO estimator will select the state variables separately for all three components in
and for all horizons k, without causing excessive computational burden.

The LASSO estimator for parameters plahk) = (k) B(“’k)), a € {r,d,dp}, is defined as
(k>1)

T n

~(a,k . 1 a a,k a 2 - a,k

Biadso = argmm{QT 2 (LHS(G) — al®h) — i gl ’k)) +A) ’5]( ))}7 (15)
=1 =1

(p(‘%k)

11



where LH S(a) is one of the three left hand side variables in (7)), T' is the number of observations
in the estimation sample (depending also on the horizon k), and all the other notations are the
same as above in (I4). The essential difference to (14) is that now all n, candidate predictors,
for which the shrinkage is set to apply, are initially included simultaneously in :cga’k) (i.e. wga’k)

isan 1 x n, vector) whereas the predictors are considered one by one in the model averaging

method. Intuitively, the aim of the LASSO estimator is to find a set of coefficient estimates that

lead to the smallest residual sum of squares, subject to the constraint set by the penalty term

S 184 ]

The amount of shrinkage is controlled by the tuning parameter \: Increasing A results in
greater shrinkage toward zero in B](-a’k). We follow Medeiros and Mendes (2016) and Medeiros
and Vasconcelos (2016), who recommend in a time-series context to determine A by the Bayesian
information criterion (BIC), as opposed to the cross-validation typically used in cross-sectional
LASSO analyses. For a sufficiently large value of A\, the LASSO estimator shrinks some Bj(-a’k)
exactly to zero (e.g., Hastie, Tibshirani, and Friedman, 2009, Section 3.4), performing thus pa-
rameter estimation and model selection at the same time. This is effective and in practice
highly useful in our context, producing automatically the required horizon-specific local pro-
jections where the optimal state variables are selected depending on the horizon k. As a result,
the estimated local projections generated from the LASSO are ‘sparse” and circumvent overfit-

ting since only a subset of the full set of potential state variables is involvedﬂ

2.4 Monthly local projections

Prior studies on dividend yield volatility decompositions are implemented with annual data
(see, e.g., Campbell and Shiller 1988b; Cochrane, 1992, 2008, 2011; van Binsbergen and Koijen,
2010; Zhu, 2015; and Choi, Kim, and Park, 2017). Since dividend payments are highly sea-
sonal, dividend growth rates are often considered informative only on an annualized basis

One of our contributions is that local projections allow for the use of monthly (or even higher-

3 For simplicity, the notation for state variables m,ﬁ“*k) is the same throughout this study. Following common

practice, we standardize the predictors within the construction of the LASSO estimator when determining the
penalty function, but for the construction of the LPs (Eq. the original variables are used and the OLS estimator
is just replaced by the LASSO estimator (I5).

* All computations in this paper are carried out in R. Specifically, the LASSO-based local projections are con-
structed with the glmnet package and BIC-based tuning parameter A selection (see, e.g., Medeiros and Vasconcelos,
2016).

> Closely related return decomposition studies do use monthly data, but compared to (7), these studies only
model expected returns explicitly and treat the contribution of expected dividend growth as a residual term (see,
e.g., Campbell, 1991; Campbell and Ammer, 1993; and Chen and Zhao, 2009).

12



frequency) data explicitly when modelling the component 5§d’k) associated with the expected

dividend growth in (§). From an empirical point of view, the introduction of a volatility de-
composition based on monthly data implies substantially more observations and hence greater
statistical accuracy than the annual case. This provides additional robustness and enables var-
ious extensions to the annual decompositions, such as examining potential time variation and
time-varying parameters in the discount rate and cash flow dynamics (see Section 3.5).

Instead of the annual frequency, as implicitly assumed in the previous sections, we now
let the time index ¢ be monthly. The essential challenge at the monthly frequency is the mea-
surement of dividends. Even though dividend data are available at the monthly frequency,
these figures have strong seasonalities, resulting in highly erratic behaviour of the monthly
dividend yield (dp;) and dividend growth rate (Ad;). Therefore, in the following we treat the
monthly dividend growth rates as unobserved while cumulative 12-month dividend growth
rates are observable each month. Monthly dividend yields refer, as common in the literature,
to the cumulative 12-month dividend yield. Finally, return series are simply monthly returns.
Section 3.T|below provides further details on the variable definitions.

In the absence of reliable observable monthly dividend growth rates, instead of accumulat-
ing dividend growth rates month by month, we accumulate the growth rates by groups of 12

months:

k k
Z pPIAd ;& Z p; A1 j = p1aAtdivia + puAidiiog + - (16)
j=1 j=1
where pf = pPPif j € {12,24,36,...} and 0 otherwise, and A*dyy; = diyj — dytj—12 is the
12-month cumulative dividend growth. Since A*d; = Zilio Ad;_;, the approximation is exact
if p = 1 and holds closely when the difference between p’~! and p?~1? is small, which is the
case when p is close to one, as assumed in and estimated hereafter in this study. Thus, to
obtain the monthly volatility decomposition of the dividend yield, we replace the (unobserved)
monthly dividend growth component in identity (5) and the local projections (7) by the right
hand side of (16), which is based on monthly observations of 12-month cumulative dividend
growth rates.

The approximation implies that the (monthly) forecast horizon £ needs to be a multiple
of 12 (i.e., k € {12,24, 36, ...}). In other words, despite basing the analysis on the monthly fre-

quency data, we report the monthly decompositions only for annualized horizons. Neverthe-
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less, although we are considering annualized horizons, the local projection approach enables
us to use updated data in every month, thereby greatly increasing the number of observations
and therefore statistical power. The increased number of observations in turn allows us to

study time variation of the volatility decomposition.

3 Empirical results

This section first describes the data and then presents the estimated volatility decompositions

based on local projections with different sets of state variables.

3.1 Data

For our monthly analysis, our main variables are the monthly value-weighted market returns
reported by the Center for Research in Security Prices (CRSP), the dividend-price ratio (divi-
dend yield), and the 12-month dividend growth rate. Following Cochrane (2008), the annual-
ized log dividend yield in each month is computed as follows:

dp; = log <R““ - 1) (17)

Rxy 114

where R;_11.; refers to the cumulative gross CRSP value-weighted market return over the 12-
month period ending in month ¢, and Rz, refers to the cumulative gross CRSP value-weighted
market return over the same period excluding dividends.

Following Koijen and van Nieuwerburgh (2011), among others, we compute monthly div-
idends by D; = (Rt — Rx)P;—1. To avoid seasonality concerns, monthly dividends are com-
pounded over 12 months to compute 12-month (log) growth rates, as discussed in Section
Monthly dividends are compounded under the assumption that dividends paid out during the
12-month periods are at the end of each month reinvested in the risk-free rate of return, follow-
ing Chen (2009), van Binsbergen and Koijen (2010), and others. Alternatively, Cochrane (2008)
assumes that dividends are re-invested in the market portfolio. Chen (2009) discusses the im-
plications of these different assumptions on the predictability of dividends and argues that it is
difficult to disentangle return predictability from dividend predictability when dividends are

reinvested in the market?]

® For robustness, we report in Section IV of the the Internet Appendix our main results computed using market-
reinvested and non-reinvested dividends. In addition, we also consider S&P 500 returns instead of CRSP market
returns. Overall, these variations of the data lead to qualitatively similar results.
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For our analysis of annual data, we use cumulative returns over each calendar year (January-
December), and the end of year (December) observations of the 12-month dividend growth

rate and dividend yield.

Table 1: A list of additional candidate state variables

List of candidate state variables obtained from the datasets of Welch and Goyal (2008) and Rapach and Zhou
(2013). Here “(A)" and ‘(M)” denote annual and monthly data availability only. Default yield spread (DFY’) is the
difference between BAA- and AAA-rated corporate bond yields. Following Campbell (1991), RREL is the
difference between the short-term interest rate and its average in the past 12 months. The monthly C'AY series is
obtained from linear interpolation of the quarterly CAY series (following, e.g., Guo and Whitelaw, 2006).
Specifically, in the first month of each quarter, the CAY is the weighted average of the prior quarter’s CAY and the
current quarter’s CAY with weights § and 2, respectively. In the second month of the quarter, the respective
weights are % and % In the last month of the quarter, the monthly CAY is equal to the same-quarter CAY
observation.

EP Log earnings-price ratio (S&P 500 earnings yield)

DE Log dividend-payout ratio

SVAR Realized volatility (monthly sum of squared daily returns on the S&P 500)
BM Book-to-market value ratio for the DJIA (Dow Jones Industrial Average).
NTIS Net equity expansion

TBL Treasury bill rate (three-month Treasury bill, secondary market)

LTY Long-term government bond yield

RFREE Risk-free rate

TMS Term spread: LTY — TBL

LTR Return on long-term government bonds

CORPR Return on long-term corporate bond

DFY Default yield spread

DFR Default return spread: CORPR — LTR

INFL Inflation (CPI inflation)

CAY Consumption-wealth ratio

EQIS (A)  Percent equity issuing

IK (A) Investment-to-capital ratio

RREL (M) Stochastically detrended risk-free rate

Table[1]lists the additional state variables that we consider in the local projections over and
above the three state variables given in (9). The set of additional variables is based on prior
literature on the predictability of returns and dividends (see the discussion in the Introduction,
as well as, e.g., Welch and Goyal, 2008; and Rapach and Zhou, 2013). These additional vari-
ables are obtained from the updated dataset of Welch and Goyal (2008), who provide detailed
descriptions of the data and their sources

In our main analysis, we consider the sample period starting from 1952 until the end of
2017. Monthly observations start in March 1952. This choice of starting point is mainly driven
by the data availability of C'AY, which the prior literature has found to be an important predic-
tor of both dividends and returns. The starting point of our sample coincides with Cochrane

(2011) and Campbell and Ammer (1993) and is very close to the ones in Cochrane (2008), Let-

7 Monthly and annual data updated up to 2017 can be found at Amit Goyal’s website http://www.hec.
unil.ch/agoyal/docs/PredictorData2017.x1lsx.
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tau and Ludvigson (2005) and van Binsbergen and Koijen (2010). Section IV of the Internet

Appendix reports the results for subsamples and earlier data (1928-1951).

3.2 One state variable

We start by estimating the local projections (7) over the full annual sample, for k € {1,2,...,15}
years, using the last observed dividend yield as a single predictor (state variable). That is, we
select wga’k) = dp; for a € {r, Ad, dp}, which is the same single state variable as considered by

Cochrane (2008). The maximum horizon of 15 years is the same as the longest horizon applied

by Cochrane (2011) in his direct regressions.

(r,k) =(d,k)

Figure 1 plots the estimated components (/5; , Ot ,and gt(dp’k) (i.e., the fitted values of
the local projections (7)), for & = 1 and k = 15 years. Due to the maximum horizon of k& = 15
years, the first 15 years of the sample are missing from the figures. The first panel of Figure 1
shows that, at short horizons, only little dividend yield variation can be explained by expected

(1) are mostly flat, while gt(dp’l) is

discount rates or cash flows: the time-series gt(r’l) and gt
highly volatile. This means that most of the volatility of the dividend yield is attributed to
discount rate and cash flow expectations over horizons beyond one year. At longer horizons
(k = 15 years), a substantial part of dividend yield variation is captured by expected discount

(5"*)). The cash flow component 5.*'*)

rate variation remains rather flat, suggesting that cash
flow expectations, even at longer horizons, can explain only a minor part of observed market
volatility.

Following Eq. (B), the final panel of Figure 1 plots the observed dividend yield and the
implied dividend yield obtained as @T’k) - Zﬂd’k) + &Edp *) for k = 1 and k = 15. The plot
provides supporting evidence on the accuracy of the LP-based estimates of the components
in the the present-value relation (5), both at short and long horizons, as the implied dividend
yields closely trace the observed yield.

Panel A in Table 2| reporting the volatility decomposition (12) at the annual frequency,
shows a highly similar pattern to Figure 1. The volatility contribution of expected returns
(o (r, k)) increases over the horizon k, up to a maximum of 0.80 at 15-year horizon, implying
that 80 percent of dividend yield volatility can be attributed to expected discount rates. The
contribution of expected dividends (¢ (d, k)) remains very low, if not exactly zero: the ratio

g%flg)) peaks at the 15-year horizon at 0.10, but is mostly close to zero. Overall, these results

are highly consistent with the results reported by Cochrane (2008), who argues that expected
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Figure 1: Time-series plots of the the components St(r’k), Sid’k), and S\t(dp *) (see ), estimated from the annual local
projections (7), using dp: as the single explanatory variable, for k = 1 year (left panel) and k = 15 years (middle

panel). The right panel shows the observed dividend yield dp; and the implied dividend yield L) _FLR) g Gldrk)

for k = 1 year and k = 15 years.
cash flow variation hardly contributes to price volatility. In fact, Cohrane’s (2008) long-run
coefficients can be backed out from our local projections with £ = 1 and the lagged dividend
yield as the only predictor (see Appendix A). We find that the long-run coefficients in his VAR-
based approach are br = 1.04 and Bf{ = 0.03, confirming that discount rates, in the long run
(i.e., the infinite horizon k — ©0), are the major drivers of price volatility

Panel B of Table [2| presents the volatility decomposition estimated with monthly data
for horizons of one up to 15 years (i.e., k£ = 12 to k = 180 months) and utilizing the approxima-
tion (16). The relative contributions of discount rates and cash flows are very similar, although
not fully equivalent, to those reported in Panel A. Another notable result in Table [2| is that
the relative impact of the forward dividend yield (¢ (dp, k)) is diminishing monotonically with
the forecast horizon. At the 15-year horizon, the contribution of the expected dividend yield
is close to zero. This implies that the lagged dividend yield by itself does not contain any

predictive power on the future dividend yield over horizons exceeding 15 years.

3.3 Three state variables

Instead of a single state variable (dividend yield) in Section in this section we move to three
state variables as specified in (9). That is, lagged cumulative returns and dividend growth rates

are included as additional state variables in the estimated local projections.

8 Full regression (estimation) results of the annual and monthly local projections (7) on all horizons k are re-
ported in Section I and II of the Internet Appendix. This is also the case for the three state variable system to be
examined in the next section (Section.

17



Table 2: Volatility decomposition: one state variable

This table reports the annual (Panel A) and monthly (Panel B) volatility decomposition of the dividend yield (12),
based on the local projections (7), using dp: as the single explanatory variable for different horizons k. The columns
report the relative contributions of expected discount rates &(r, k), cash flow growth & (d, k) and forward dividend
yields & (dp, k), as well as the ratio g(d.k) given in (T3).

o(r,k)
A: Annual B: Monthly

k(years)y &(r,k) &(d,k) &(dp,k) g((‘j :i k (months) (k) &(d,k) &(dp, k) g((jf ]’3
1 013 000 090  0.03 12 012 000 090 002
2 023 002 080 007 24 021 0.02 080  0.09
3 028 003 073  0.10 3 028 003 073 011
4 033 002 066  0.06 48 033 002 066  0.07
5 040 0.0 057 0.0 60 040  0.00 057 001
6 047 001 049 003 72 045 0.0 049 001
7 053 001 042 003 84 051 0.0 041 001
8 059 001 036 001 96 058  0.00 035  0.00
9 065 000 028 0.0 108 064  0.00 028 0.0
10 070 001 024 001 120 068 0.0 023 001
1 073 001 019 001 132 070 001 019 001
12 073 003 015 004 144 071 003 015 004
13 074 005 012 007 156 071  0.04 012 006
14 076 007 009  0.09 168 073  0.04 009  0.06
15 079  0.08 004  0.10 180 077 005 004  0.06

Moving beyond the one state variable model, in Table [3|we see that the discount rate con-
tribution further increases, but in particular the cash flow contribution is now clearly nonzero.
This increase in the volatility of all components is as expected due to additional full-sample
predictive power that the lagged cumulative returns and dividend growth rates provide. In
Table[2} ratios between the cash flow and discount rate contributions are mostly below 0.1,
whereas in Table 3| these ratios are roughly between 0.25-0.5, depending on the horizon £. In
other words, the discount rate channel maintains its dominant role but the cash flow contri-
bution is substantially more important when moving ahead from the standard model with the
dividend yield as the single state variable.

The additional state variables predict also the future dividend yield. When compared to
Table[2 the volatility shares 5 (dp, k) reported in Table 3 are clearly higher than zero at the long
forecast horizons. It is worth noting that this result does not imply rejection of the transver-
sality assumption or the existence of (rational) bubbles: it just suggests that the dividend yield
itself is predictable by other factors, even at long but finite horizonsﬂ

3rk) (k) 3(dp.k)

Figure 2 plots the estimates 9, ", §,”" and ¢, for the case of three state variables. At

? When considering horizons beyond k = 15 years, the share G (dp, k) does converge to zero, which is consistent
with the transversality assumption. This convergence is nevertheless much slower than when the dividend yield
is the single state variable (see Table .
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Table 3: Volatility decomposition: three state variables

This table reports the annual (Panel A) and monthly (Panel B) volatlhty decomposition (12) based on the local

projections (7) using three state variables (9): oM = <Z o i, Z o Ak, dpt> for a € {r,d,dp},
Jj=1 j
for different horizons k. The columns report the relative contributions of expected discount rates & (r, k), cash flow

growth &(d, k), forward dividend yields & (dp, k), and the ratio ”((T Z)) given in (13).

A: Annual B: Monthly

k(years)y &(r,k) &(d,k) &(dp,k) ‘Ui((i Z; k (months) (k) &(d,k) &(dp, k) g\((f ]’3
1 015 012 092 076 12 014 016 091 117
2 030 008 080 025 24 024 0.10 081 042
3028 017 077 062 3 031 0.4 077 043
4 040 027 073 0.6 48 041 025 073 061
5 048 023 066 048 60 044 022 066 050
6 049 019 059 038 72 045  0.16 058 035
7 053 015 052 028 84 052 015 052 028
8 064 017 047 027 9 061 017 049 028
9 069 023 041 033 108 067 026 046  0.39
10 074 032 048 043 120 071 032 053 045
11 0.76 0.34 0.48 0.45 132 0.73 0.35 0.51 0.48
12 077 036 044 046 144 075 035 046 046
13 079 032 035 041 156 077 032 037 041
14 084 027 032 032 168 082 028 033 034
15 089 025 027 029 180 088 026 029 030

short horizons, the picture is similar to Figure 1, with both expected returns and expected
dividends being fairly flat. Atlonger horizons, the dividend growth and dividend yield com-
ponents g(d %) and g(dp %) are now strikingly more volatile than in Figure 1, thereby clearly
contributing to the volatility of the dividend yield. The final panel of Figure 2 shows that the
approximate present value relation (5) holds accurately also when the implied dividend yield
is based on these multivariate local projections.

The interpretation of our decomposition based on three state variables is that variation in
expected discount rates is not the sole driver of market volatility. Expectations on future divi-
dends do in fact contribute significantly to the variation of the dividend yield. Conditional on
the lagged dividend yield only, expected dividend growth rates are flat (Figure 1). However,
after adding lagged returns and dividend growth rates to the information set, these expec-
tations do vary over time. This result corroborates the conclusions by Menzly, Santos, and
Veronesi (2004), Lettau and Ludvigson (2005), Ang and Bekaert (2007), van Binsbergen and
Koijen (2010), and others, who document dividend growth rate predictability by other factors
than the lagged dividend yield. The flexibility of local projections allow us to integrate this

predictability into the volatility decomposition.

19



10

4 — &N 24 — 8(r,19) 24 —— dpratio
fffff 8(d, 1) -—--- 8(d,15) = 8(r,1)-8(d,1)+&(dp,1)
==-= 8(dp,1) ==-- &(dp,15) — -7 8(r,15)-8(d,15)+&(dp,15)

=10

o

T T T T T T
1966 1981 1996 2011 1966 1981 1996 2011 1966 1981 1996 201

rk d,k
5k k)

, 0, ,andgt(dp’k)

Figure 2: Time-series plots of the components (see (5)), estimated from the annual local pro-

k k

jections (7), using three fixed state variables: mia’k) = (Z 0 ek, Z 0 Adiyj, dpt> for a € {r,d,dp},
=1 j=1

for k = 1 year (left panel) and k = 15 years (middle panel). The right panel shows the observed dividend yield dp;

and the implied dividend yield 3" — 6{** 45" for k; = 1 year and k = 15 years.

3.4 LASSO and model averaging results

In this section, we enlarge the information set from three state variables (9) to the more general
case where all the potential state variables described in Table |1 are involved in the construc-
tion of local projections. That is, we are moving to the data-rich model averaging and LASSO
approaches as introduced in Section 2.3|where, importantly, the built-in regularization mecha-
nisms control the potential hazards of overfitting.

Before moving to the empirical results, let us clarify a couple of modelling selections made
in this section. According to the regression results in Section |3.3|and also LASSO model selec-
tions (especially based on the monthly data), we pre-specify model averages so that the model
always includes lagged cumulative returns, dividend growth and the dividend yield (i.e., all
three state variables in (9)). The model averages are then constructed as in (14), by including a
fourth predictor that varies across specifications j and is one of the variables listed in Table
Moreover, in the LASSO estimation we do not apply shrinkage to the dividend yield (i.e., the
penalty term in does not include the regression coefficient related to the lagged dividend
yield), due to its essential role in the benchmark volatility decompositions (see Section [2| and
also Engsted, Pedersen, and Tanggaard, 2012). This implies that dp; is always included in the

resulting local projections

10 Internet Appendix Section III presents annual and monthly results where the dividend yield is also subject to
shrinkage. It turns out that the dividend yield is typically included in all local projections and hence the resulting
volatility decompositions are very close to those reported in TableE}
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Figure 3: Time-series plots of the the components gt(r’k), gt(d’k), and :ﬂdp *) (see ), estimated from the annual local
projections (7), using the LASSO (upper panel) and model averaging (below panel) approaches, for k = 1 year (left
panel) and k& = 15 years (middle panel). The right panel shows the observed dividend yield dp; and the implied
dividend yield 6% — 5" 4 6\%"%) for k = 1 year and k = 15 years.

Table[d]presents the volatility decomposition using local projections estimated by the LASSO
and model averaging. Overall, the results are qualitatively in line with those obtained with
three state variables. Our main result in Table 3, that expected cash flow variation is by no
means negligible relative to expected discount rate variation, is robust to expansion of the pre-
dictive information set. Even though long-run expected returns remains the dominant factor,
the ratio (13) of dividend yield volatility that can be attributed to expected long-run (15-year)
cash flow growth relative to expected discount rates is 0.46 (0.43) when estimated with an-
nual (monthly) data. This is considerably higher than the share of 0.10 (0.06) found with the
dividend yield as the single state variable in Table

Table | presents detailed LASSO regression results, i.e., the estimated local projection mod-

els at different forecast horizons. These results include both the variable selection (i.e., the
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Table 4: Volatility decomposition: LASSO and model averaging

This table reports the annual and monthly volatility decomposition of the dividend yield ({2), based on the local
projections (7), using the LASSO and model averaging approaches for different horizons k. The columns report
the relative contributions of expected discount rates &'(r, k), cash flow growth & (d, k) and forward dividend yields
& (dp, k), as well as the ratio 25 given in (T3).

o(r,k)

A: LASSO - Annual B: LASSO - Monthly
k(years)y &(r,k) &(d,k) &(dp,k) g((‘j :i k (months) (k) &(d,k) &(dp, k) g((jf ]’3
1 0.13 0.12 0.90 091 12 0.23 0.24 0.94 1.06
2 0.24 0.19 0.81 0.77 24 0.39 0.28 0.86 0.74
3 0.34 0.24 0.82 0.70 36 0.52 0.31 0.82 0.59
4 0.56 0.27 0.78 0.49 48 0.62 0.31 0.80 0.50
5 0.62 0.30 0.73 0.49 60 0.72 0.31 0.76 0.43
6 0.72 0.30 0.70 0.41 72 0.80 0.32 0.79 0.40
7 0.75 0.24 0.67 0.32 84 0.83 0.32 0.76 0.38
8 0.86 0.27 0.66 0.31 96 0.95 0.33 0.74 0.35
9 0.94 0.29 0.66 0.31 108 0.92 0.39 0.75 0.43
10 0.94 0.28 0.62 0.29 120 0.91 0.38 0.70 0.42
11 0.92 0.32 0.67 0.35 132 0.92 0.48 0.68 0.52
12 0.96 0.51 0.54 0.53 144 0.93 0.54 0.65 0.58
13 0.96 0.38 0.54 0.40 156 0.94 0.52 0.61 0.56
14 0.94 0.36 0.54 0.38 168 0.92 0.49 0.54 0.54
15 0.93 0.42 0.50 0.46 180 0.95 0.40 0.55 0.43
C: Model averaging - Annual D: Model averaging - Monthly
N ~ N o(d, k) . N . a(d, k)
k (yearsy o(r,k) o(d,k) o(dp,k) = k (months) o (r,k) o(d,k) o(dp, k) =
a(r.k) o(r,k)
1 0.15 0.12 0.92 0.78 12 0.14 0.17 0.92 1.20
2 0.30 0.08 0.81 0.27 24 0.24 0.10 0.81 0.44
3 0.28 0.17 0.78 0.62 36 0.31 0.14 0.78 0.45
4 0.41 0.27 0.73 0.66 48 0.41 0.25 0.73 0.61
5 0.49 0.23 0.67 0.48 60 0.44 0.22 0.66 0.50
6 0.50 0.19 0.59 0.38 72 0.46 0.16 0.59 0.35
7 0.54 0.16 0.52 0.29 84 0.53 0.15 0.52 0.28
8 0.65 0.18 0.48 0.27 96 0.62 0.18 0.49 0.28
9 0.70 0.23 0.42 0.33 108 0.68 0.25 0.45 0.37
10 0.75 0.31 0.47 0.42 120 0.73 0.32 0.53 0.44
11 0.76 0.36 0.48 0.47 132 0.74 0.37 0.52 0.50
12 0.77 0.37 0.44 0.48 144 0.76 0.37 0.47 0.49
13 0.80 0.34 0.36 0.42 156 0.77 0.34 0.37 0.44
14 0.85 0.29 0.33 0.34 168 0.83 0.30 0.33 0.36
15 0.89 0.26 0.28 0.29 180 0.87 0.27 0.29 0.31

inclusion and exclusion of state variables), and the specific estimated LASSO coefficients (see
(I5)). The results in Table [5| are based on annual data: monthly model selection results are
reported in Section III of the Internet Appendix. First of all, we can clearly see that the selected
LASSO local projections are indeed horizon-specific so that different state variables are valu-
able for different horizons. For returns, the best predictors in terms of systematic inclusions,
along with the dividend yield, are lagged cumulative returns, term spread (7'M .S), volatility

(SV AR), investment-to-capital ratio (/ K), and consumption-wealth ratio (CAY"). As reviewed
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in the Introduction and Section 3.1} these are largely the variables that are expected to have pre-
dictive power (see Fama and French, 1989; Martin, 2017; Lettau and Ludvigson, 2001, 2005). In
contrast, earnings yield (£ P), book-to-market ratio (BM), and short-term interest rates (I'BL
and RF REFE) are typically excluded. For the dividend growth local projections, also CAY ap-
pears to be an important predictor, as well as the dividend-payout ratio (DFE) and net equity
expansion (NT'IS). For the dividend yield local projections, we get more exclusions (i.e., we
select a smaller set of state variables), but also here CAY is a relevant predictor at almost all
horizons k.

Even if the LASSO and model averaging approaches exploit larger information sets, the
resulting volatility decompositions in Table [4|are overall not too different from those obtained
with three fixed state variables. Also the time series plots of g(’”*k), g(dJ“), and 5(@P:k) in Figure 3
are largely similar to those in Figure 2, while the final panels in these figures again reaffirm the
validation of the approximate present-value relation (5). In addition, the monthly and annual
results in Table [] are generally very similar for both LASSO and model averaging.

In Section III of the Internet Appendix, we still report the monthly LASSO estimates and
model selection results. Compared to the annual case (Table , there are clearly less exclusions
(i.e., more state variables are included in for the monthly frequency), presumably due to the
larger number of observations in estimation, but this turns out have only marginal impact
on the resulting volatility decomposition, as seen in Table E} Furthermore, we also extend
the presented LASSO procedure with a cross-validation-based determination of the tuning
parameter (cf. remarks below Eq. (15)), a post-LASSO estimation step, and the elastic net
method. It is important to keep in mind that in addition to selecting state variables, such as
presented in Table 5, the LASSO estimator shrinks all the coefficients towards zero. However,
in the post-LASSO step the idea is to first select the state variables with the LASSO and perform
the final estimation by OLS. The elastic net respectively combines the LASSO with the closely
related ridge regression, leading to an important robustness check for the penalty (shrinkage)
term as defined in (15). Overall, it turns out that all the main conclusions on the importance
of the discount rate and cash flow channels in the volatility decomposition are intact (i.e., the

main results are robust to alternative LASSO specifications).
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3.5 Time-varying parameters

The larger sample size, resulting from the use of monthly data in our local projection approach,
facilitates us to allow the underlying parameters of our volatility decompositions to be time-
varying. In the traditional VAR approach with annual data, this would be infeasible in practice
because of the inevitably limited sample size.

The motivation for studying potential time-variation of our volatility decomposition is
grounded in recent and mounting empirical and theoretical evidence suggesting that return
predictability is time-varying (e.g., Timmermann, 2008; Rapach, Strauss, and Zhou, 2010;
Henkel, Martin, and Nardari, 2011; Dangl and Halling, 2012; Zhu, 2015; Zhu and Zhu, 2013;
Farmer, Schmidt, and Timmermann, 2018; and Cochrane, 2017), which may originate from
various economic reasons, including business cycle fluctuations, time-varying risk aversion,
and rare disasters. As summarized by Timmermann (2008), investors” search for successful
predictive models is expected to cause the data generating process to change over time, which
means that single return prediction models can, at best, hope to uncover evidence of local pre-
dictability. Recent findings suggest that the predictive power often concentrates during bad
times in financial markets (see Henkel, Martin, and Nardari, 2011; Zhu and Zhu, 2013; Cujean
and Hasler, 2017). Zhu (2015) also finds that time-varying predictability of return and divi-
dend growth is a tug-of-war: when returns are predictable, dividend growth is not, and vice
versa. Furthermore, Choi, Kim, and Park (2017) find that incorporating regime shifts into the
present-value framework of van Binsbergen and Koijen (2010) strengthens the importance of
dividend growth variation in explaining both the price-dividend ratio and unexpected stock
returns in the post-1951 sample.

As argued in the previous sections, the use of horizon-specific local projections reduces
model misspecification concerns. However, allowing time-variation in the parameter coeffi-
cients may further increase the accuracy of the estimated discount rate and cash flow compo-

nents. Therefore, we extend the local projections (7)) by allowing for time-varying parameters:

k
Z pg_lrtﬂ* = ay’k) + a:,ﬁ’"”‘“)ﬂﬁ’"”“) + &?EQZ)
j=1

k

j— 1

Zﬂ? "Adyy; = a§d,k) n wgd,k)ﬁgd,k) " El(ti’i]z) (18)
j=1
pfdpt—‘,—k — Oégdp,k) _|_ mgdp,k)ﬁl(fdp’k) _|_ egip];k))
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where the parameters aga’k) and Bga’k) are now time—varying

Specifically, we allow for time-variation by estimating the coefficients in recursively
using Exponentially Weighted Least Squares (EWLS), which is a particular case of Weighted
Least Squarels estimation in which the weight of each observation i in a sample of size ¢ is given
by <Zt: qbi> . ¢'. The decay parameter ¢ is a number between zero and one. Following the con-
Ventizgr(i in the literature, we calibrate the decay parameter ¢ at 0.97, which is suggested by J.P.
Morgan’s (1996) Riskmetrics report as the optimal exponential decay parameter for modeling
volatility using monthly data. Applying an expanding window estimation approach combined
with exponential weighting ensures that most weight is given to recent observations, while the
weights of distant past observations gradually fadeF_ZI

In addition to the regression parameters, we allow p to vary over time, by applying a sim-
ilar expanding window scheme combined with exponential weights. That is, instead of esti-
mating p over the full sample (cf. Eq. (3)):

5 19
Pt = 14 ednt (19)
where dp; is the exponentially weighted moving average (EWMA) of the dividend yield up to

period t:

t -1 4

in = (To) Lo am (20)
i=0 =0
where, as in the regressions (18), the decay parameter ¢ is set at 0.97.

In addition to allowing for time-varying coefficients in prediction as such, Lettau and van
Nieuwerburgh (2008) show that the poor performance of financial ratios as predictors of re-
turns can be improved if the assumption of a fixed and time-invariant steady state mean of the
economy is relaxed. That is, adjusting the dividend yield, but also the earnings yield (£ P) and
book-to-market (BM) ratio, for level shifts increases the predictive performance substantially.
Lettau and Nieuwerburgh (2008) correct these nonstationarities by estimating the timing of
structural break points. Locating the exact timing of breaks or identifying regime switching

patterns (cf. Zhu, 2015; and Choi, Kim and Park, 2017) is in general a difficult task, in particu-

lar in small samples. Therefore, we handle time-variation of the steady-state levels of variables

1 As argued by Granger (2008), any nonlinear model can be approximated by linear models with time-varying
parameters. Hence the LPs in are able to accommodate various nonlinear patterns that may have an impact on
the volatility decomposition.

12 See Taylor (2008), Kofman and McGlenchy (2005), and Hallerbach and Menkveld (2004) for applications of
EWLS.
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by detrending not only the dividend yield, but also all other variables using the same recursive
EWMA filtration as in (20). Specifically, in our time-varying local projections (18), we recur-
sively detrend all variables by subtracting at each point in time the exponentially weighted
moving average, as opposed to demeaning these variables over the full sample, as we have
done so far. Thereby, we implicitly also allow the parameter « in the log-linear present value

model (1) to vary over time.

Table 6: Monthly volatility decompositions with time-varying parameters

This table reports the monthly (unconditional) volatility decomposition of the dividend yield (I2), based on the
local projections estimated by Exponentially Weighted Least Squares (EWLS) using an expanding window
approach. The local projections contain one (dividend yield) and three state variables (9) along with the LASSO and
model averaging strategies for various (annualized) horizons of k months. All variables are demeaned recursively
using EWMA filtration.

A: One state variable B: Three state variables

o(d, k o(d, k

k (months) o (r,k) o(d,k) o(dp, k) 8((7: k:)> o(r,k) o(d,k) o(dp,k) 8((7": k)>
12 0.39 0.37 1.06 0.96 0.90 0.57 1.09 0.63
24 1.04 0.60 0.98 0.58 1.49 0.94 1.24 0.63
36 1.40 0.74 1.09 0.53 1.48 1.06 1.28 0.72
48 1.61 0.69 1.30 0.43 1.89 0.76 1.50 0.40
60 1.52 0.64 1.52 0.42 1.47 1.05 1.21 0.72
72 1.00 0.54 1.34 0.54 2.12 0.71 1.47 0.34
84 0.59 0.57 1.00 0.97 1.55 0.59 1.24 0.38
96 0.74 0.65 0.72 0.89 0.87 0.78 0.59 0.89
108 1.23 0.54 0.89 0.44 1.30 0.62 0.84 0.48
120 1.12 0.64 0.90 0.57 1.48 0.67 1.01 0.46
132 1.22 0.85 0.84 0.70 1.49 0.91 0.86 0.61
144 1.04 0.93 0.78 0.89 1.59 0.82 0.78 0.51
156 0.86 0.86 0.80 1.00 1.00 0.87 0.95 0.87
168 0.95 0.67 0.98 0.71 1.56 0.60 1.22 0.38
180 0.72 0.56 0.75 0.78 1.25 0.65 0.80 0.52

C: LASSO D: Model averaging

o(d, k o(d, k

k (months) o(r,k) o(d,k) o(dp,k) &\Er: k)) o(r,k) o(d,k) o(dp,k) EET: k))
12 0.61 0.45 0.97 0.74 0.88 0.56 1.10 0.64
24 0.82 0.59 0.87 0.72 1.40 0.80 1.23 0.57
36 0.79 0.61 091 0.77 1.32 0.97 1.28 0.74
48 1.01 0.57 091 0.56 1.72 0.71 1.39 0.41
60 1.57 0.52 1.25 0.33 1.43 0.99 1.21 0.69
72 1.42 0.50 1.36 0.35 2.07 0.70 1.46 0.34
84 0.89 047 0.98 0.53 1.55 0.55 1.25 0.36
96 1.04 0.59 1.00 0.57 0.90 0.75 0.54 0.83
108 1.13 0.59 1.16 0.52 1.25 0.59 0.83 047
120 1.28 1.04 0.71 0.81 1.33 0.63 0.98 0.47
132 1.36 0.96 1.08 0.71 1.28 0.84 0.83 0.66
144 1.56 0.99 0.95 0.63 1.53 0.83 0.79 0.54
156 1.66 0.66 0.82 0.40 1.02 0.87 0.90 0.86
168 1.21 0.61 1.17 0.51 1.36 0.59 1.16 0.44
180 1.36 0.73 0.89 0.54 1.26 0.55 0.75 0.44

Table [f] presents the monthly (unconditional) volatility decomposition (I2) over different
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horizons for all different choices of state variables considered so far: i.e., one state variable,
three state variables, LASSO selection and model averaging. Note that for computing the
volatility decomposition (12), also the dividend-price ratio dp; is now recursively demeaned
using the EWMA filtration (20). The local projections are estimated with monthly data, by
EWLS and using an expanding window approach with an initial window size of 240 months.
Since reliable implementation of the recursive estimation requires a reasonable number of ob-
servations, we only present results based on monthly data.

The main pattern in Tablel|f|is very clear: The relative importance of the cash flow variation
turns out to be even higher than with the full-sample results, with the long-run (180 months)
ratio fluctuating between 0.44 and 0.78, depending on the choice of state variables. In other
words, the time-varying local projections provide additional support for our general finding
that local predictability of cash flows does contribute significantly to observed dividend yield
volatility.

It is specifically worth noting in Table [¢] that the reported ratios between time-varying
cash flow and discount rate components are in particular high in the case of a single state
variable. That is, allowing time-variation and monthly data, due to the introduction of the
local projections-based methods, reveals strong local predictability of dividend growth by the
dividend yield that is not identified by the conventional and past static full-sample approaches.

In addition to the unconditional (i.e., full sample) volatility decompositions in Table [ our
expanding window approach in particular allows us to consider the time-varying contribution
of the different components to the dividend yield volatility over time. Since we are in particular
interested in the relative contribution of expected cash flows and expected discount rates, in
line with (13), we compute the time-varying ratio of the conditional standard deviations of the

cash flow and discount rate components:

(o (dk
) < 5t( ))
SN (1)
~ (7 (k)
(5
where the time-varying standard deviations ;(.) are once again computed using an expanding

window and exponential weighting;:

57 (o) = (iqﬁ“‘)
=0

-1 t

; = avk <cla 2
ot (5 =5 ) 22)
1=0
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Figure 4: Time-series plots of W
ae(d;

jections , with k = 180, using four different information sets: one state variable, three state variables, LASSO

selection, and model averaging.

, with gt(d’k) and gt(r’k) estimated by EWLS from rolling window local pro-

Figure 4 plots the ratio (21) over time, for all four modelling approaches, with k£ = 180
(i.e., for a 15-year horizon). The estimated ratios fluctuate considerably over time. The
ratios are mostly below one but clearly higher than zero, fluctuating around 0.5. At times, they
do peak above one, indicating that during these periods the contribution of the variation in
expected cash flow growth exceeds that of the variation in expected discount rates. All in all,
the time-varying dynamics in Figure 4 indicate that both discount rate and cash flow compo-
nents matter (i.e. both are predictable) with a varying degree of importance. Our time-varying
volatility decomposition thus somewhat contradict the ‘tug-of-war” hypothesis by Zhu (2015),
in which either dividends or returns are predictable. Moreover, we find that the cash flow
contribution is systematically more important than reported in the recent regime switching

studies by Zhu (2015) and Choi, Kim and Park (2017).

4 Discussion

The main empirical result of this study is that expected dividend growth does contribute to

gt(d’k) is by no means

market volatility. The time-varying volatility of the cash flow component
negligible compared to the volatility of the discount rate component 3,5’”7’“) . Only in the static
baseline case of a single state variable (the dividend yield) and constant parameters over the
full sample (years 1952-2017), we find that expected dividend growth is nearly flat and does

not contribute to the volatility of the dividend yield. When we expand the information set

to contain multiple state variables, we do find evidence of dividend growth predictability
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(i.e., variation of expected cash flows), even if expected discount rates remain the primary
component in our volatility decomposition. Moreover, when we estimate the local projec-
tions recursively (i.e., allowing for time-varying parameters), we find that expected dividend
growth rates become substantially more important. During various periods, expected divi-
dend growth becomes temporarily the dominant component of market volatility.

Our results provide a new perspective to the puzzling "stylized fact” that dividend growth
is not predictable by the dividend yield in the US during the postwar period. As documented
by Engsted and Pedersen (2010), this finding does not hold in general in international equity
markets, while Golez and Koudijs (2018) do find dividend growth predictability in the US
prior to 1945. Chen, Da, and Priestley (2012) attribute this apparent lack of dividend growth
predictability in the postwar period to dividend smoothing, causing dividend yields to be un-
informative of future cash flows, but not necessarily implying that future cash flows are truly
unpredictable. Indeed, various studies have found evidence of dividend growth predictabil-
ity in the US postwar sample (e.g., Lettau and Ludvigson, 2005; Ang and Bekaert, 2007; and
Moller and Sander, 2017). Our local projections allow the existing dividend predictability to
be recognized in the decomposition of dividend yield volatility, by integrating additional state
variables beyond the dividend yield. Moreover, by relying on direct long-run predictions, as
opposed to iterated short-run predictions, we circumvent the diminished predictability caused
by short-run dividend smoothing and its potential disruptive impact on the volatility decom-
position (Chen, Da, and Priestley, 2012).

In terms of return and dividend growth predictability, our results are largely rather con-
sistent with van Binsbergen and Koijen (2010) and the regime switching extensions of their
model in Zhu (2015) and Choi, Kim and Park (2017). These approaches are built upon latent
variable models with Kalman filtering to extract unobserved components in returns and div-
idend growth. Van Binsbergen and Koijen (2010) incorporate the full lagged history returns,
dividend growth, and dividend yield and find the long-term dependence statistically impor-
tant in their analysis. This is in spirit similar to our approach where we employ the cumulative
lagged returns and dividend growth rates as predictors along with the lagged dividend yield
to enlarge the information set. In addition, our approach allows us to extend the information
set set even further beyond lagged returns and dividend growth, and to consider monthly
data. Zhu (2015) and Choi, Kim and Park (2017) find, as we do with time-invariant and also

time-varying parameter local projections, important divergences from the conventional linear
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VAR-based single state variable benchmark. Their results show that it is necessary to allow
regime switches to increase the importance of the cash flow component, while here linear but
otherwise much more flexible and information-rich local projections emphasize the cash flow
component even more. Moreover, as discussed at the end of Section we do not obtain
as strong evidence as Zhu (2015) for the ‘tug-of-war’ hypothesis, i.e. alternating return and
dividend growth predictability.

We find that the time-varying volatility decomposition is sensitive to the choice of state
variables (i.e.: the four time-varying ratios plotted in Figure 4 are not highly correlated), which
indicates that different factors predict discount rates and cash flows at different points in time.
We emphasize that the aim of this paper is not to determine which factors forecast cash flows
and returns as such, but rather to evaluate the relative magnitudes of cash flow and return
predictability. Our results are clear in the sense that, regardless of the set of state variables,
we find that allowing for a time-varying volatility decomposition increases the contribution of
dividends relative to discount rates. This is demonstrated by the volatility ratios of cash-flow
predictability to return predictability (13), which are for all choices of state variables higher
with the time-varying-parameter LPs (Section than with the time-invariant (i.e., linear)
LPs. This time-varying nature of dividend growth predictability is consistent with dividend
growth being subject to time-varying payout policies, affected by factors including dividend
smoothing and time-varying investor demand for dividends (e.g., Baker and Wurgler, 2004;

Chen, Da, and Priestley, 2012; Larkin, Leary, and Michaely, 2017).

5 Conclusions

We specify horizon-specific local projections to identify the relative contributions of expected
discount rates and expected cash flows to the variation of the dividend yield. Building upon
the well-known vector autoregressive (VAR) approach, we apply our local projection approach
to develop a flexible volatility decomposition. In addition to general flexibility and robustness
to model misspecification, local projections allow us to employ LASSO model selection and
model averaging, and thereby incorporate large sets of potential state variables. Moreover,
despite strong seasonalities in dividend payments, we are able to accommodate monthly data
in addition to annual data. The enlarged sample size due to the use of monthly data allows

us to apply recursive estimation to examine time variation in the the dividend yield volatility
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decomposition.

Our results generally confirm that variation in expected discount rates is the dominant
component of observed dividend yield volatility. However, the cash flow component is also
very much present. Only in the restrictive case of linear (i.e., non-time-varying) local projec-
tions with a single state variable (the dividend yield), we find that the contribution of expected
cash flows is close to zero. Moving beyond this basic static model, by extending the set of
state variables and/or allowing for time-varying parameters, we find that the contribution
of expected cash flows is not negligible: the ratio of expected long-run cash flow volatility
to expected long-run discount rate volatility ranges between 0.2 and 0.5, depending on the
specification. Our time-varying volatility decomposition shows that during certain periods,
expected cash flows in fact contribute more to market volatility than expected discount rates.

By incorporating multiple state variables and time-varying parameters within our local
projection framework, we believe that we provide a more robust volatility decomposition
than prior studies. Indeed, various alternative specifications and robustness checks reported
throughout this paper and the Internet Appendix point to the same main conclusion: variation

in expected dividend growth contributes significantly to dividend yield volatility.

Appendix A VAR-based approaches

In this Appendix, we briefly outline the commonly used vector autoregressive (VAR) ap-
proaches implemented by Campbell and Shiller (1988b) and Cochrane (2008). In contrast to the
local projection approach that we employ, both of these VAR-based approaches are built upon
the assumption that the multivariate system containing stock return (r;), dividend growth rate
(Ady) and the dividend yield (dp;) follows a VAR regresentation, from which the long-run con-

tributions of expected dividend growth rates (£, Z p’ "' Ady ;) and expected discount rates
j=1

(Ey Z p] _lrt+j) can be derived. Due to the linear structure of the VAR, Campbell and Shiller
j=1
(1988b) and Cochrane (2008) derive closed form expressions of these long-run predictions.

A.1 Campbell and Shiller (1988b)

Starting from the long-run identity (6) with infinite horizon (¢ — oc), Campbell and Shiller

(1988b) attempt to estimate the component associated with expected dividend growth <(5t(d’°°) =
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Ey Z o’ ’1Adt+j> by fitting a bivariate VAR to the annual price-dividend ratio and the annual
j=1
dividend growth rate (both measured in logs):

pdy
Ady

== AZt,1 + &¢. (Al)

Z

For ease of exposition, we assume a VAR structure with only one lag (VAR(1)) below, but as
Campbell and Shiller (1988b) show, the framework can be straightforwardly adapted to a more
general VAR(p) structure. Also note that Campbell and Shiller model the price-dividend ratio,
while we and others model the dividend-price ratio. Due to the logarithmic transformation
and the linear structure of the models, this choice has no impact on the final results since
pdy = —dp;. The matrix of estimated parameters A in and the calibrated parameter p
(see, e.g., (B)) can be used to recover the conditional expectations E;Ad; j, and to compute a

time-series of the VAR-implied dividend growth variable (5§d’°°):

&Ed’oo) = L ;)piAdt+1+i - Zf)pi (ehA'z;) = ehA (I pA) 2, (A2)

in which ey is a vector of zeros in which the second element is replaced by one. A full deriva-
tion is provided by Campbell and Shiller (1988b). The constructed variable (5§d’°°) can be
thought of as a ‘theoretical PD ratio’ that should closely trace the observed PD ratio, if ex-

pected discount rates would be constant (i.e., if all variation in the PD ratio is due to expected

Std (5!
Std(pdy)

related to our measure o(d, k) in (12). The main difference is that, instead of obtaining long-run

cash flow variation). Campbell and Shiller report the ratio , which is clearly closely

predictions by iterating forward a one-period VAR, we obtain these predictions with horizon-

specific direct regressions (7) at different horizons k, which has several advantages as we dis-

cuss in Section [2

33



A.2 Cochrane (2008)

Cochrane (2008) fits a first-order VAR system to the annual returns, dividend growth rates and

dividend yields:
r1 = b dp, + ggfr)l
Adpy = oD 5D dp, + () (A3)
dperr = P 4l gp, 4 51(tip1)a

where the lagged dividend yield is the only state variable. As Cochrane (2008) shows, the
(approximate) log-linear present-value identity (1) implies the following link between the VAR

coefficients of (A.3):
b =1 — pblP) 4 p@D) (A.4)

which also leads to links between the error terms by 5751)1 = agi)l +p Eiipl). The system of three

equations is thus overidentified: The regression coefficients and the error term of any of
the three equations are implied by the other two.

Dividing the identity by 1 — pbl?) yields the long-run coefficients of returns (b(""))
and dividend growth (b(d1r)):

p(r) p(d)
1—pblde) 1 — pbldp)

b(r,lr) o b(d,lr) _

= 1. (A.5)

As Cochrane (2008) derives, the coefficients b("") and b(%!") can be interpreted as the slope coef-
ficients of hypothetically regressing long-run cumulative discounted returns (zjo’;l o’ _lrt+j>

and dividend growth (Z;’il o’ _1Adt+j> on the dividend yield dp;:

0o i—1 00 1
Cov (Zj:l I Tt+j,dpt> i ) Cov (ijl i Adtﬂ,dpt)

B(r,lr) _
Var(dp;) Var(dpy)

(A.6)

The fitted values of these hypothetical regressions thus correspond to the fitted values of our
local projections (8), in the special case of the dividend yield as the only predictor and the

infinite horizon (k — o0):

8y = Elrdn) L B gp, (A7)
S\Ed,oo) _ /C\(d,lr)_{_/l;(d,lr)dpt.
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From (A.7), it is easy to see that our volatility decomposition is closely related to the im-

plied long-run coefficients by Cochrane (2008):

R Var(gf’oo) Var(/b\“’”dpt) ~al Var(dpy) — |rus
e _ L = —_—_— = ba’ r _— = ba’ r A8
7(a,0) \/ Var (pdy) \/ Var(dp;) Var (dpy) ’ (A.8)
for a € {r,d}.
References

Ang, A., and G. Bekaert (2007). Return predictability: Is it there? Review of Financial Studies 20,
651-707.

Baetje, F. (2018). Does a lot help a lot? Forecasting stock returns with pooling strategies in
a data-rich environment. Journal of Forecasting 37, 37-63.

Baker, M., and J. Wurgler (2004). A catering theory of dividends. Journal of Finance, 59(3),
1125-1165.

van Binsbergen, J.H., and R.S.]. Koijen (2010). Predictive regressions: A present-value ap-
proach. Journal of Finance 65, 1493-1471.

Boudoukh, J., M. Richardson, and R.F. Whitelaw (2008). The myth of long-horizon pre-
dictability. Review of Financial Studies 21, 1577-1605.

Campbell, J.Y. (1991). A variance decomposition for stock returns. Economic Journal 101,
157-179.

Campbell, ].Y.,, and J. Ammer (1993). What moves the stock and bond markets? A variance
decomposition for long-term asset returns. Journal of Finance 48, 3-37.

Campbell, J.Y., and R.J. Shiller (1988a). Stock prices, earnings, and expected dividends.
Journal of Finance 43, 661-676.

Campbell, J.Y., and R. J. Shiller (1988b). The Dividend-Price Ratio and Expectations of
Future Dividends and Discount Factors. Review of Financial Studies 1, 195-228.

Chen, L. (2009). On the reversal of return and dividend growth predictability: A tale of two
periods. Journal of Financial Economics 92, 128-151.

Chen, L., Z. Da, and R. Priestley (2012). Dividend smoothing and predictability. Manage-
ment Science, 58(10), 1834-1853.

Chen, L., and X. Zhao (2009). Return decomposition. Review of Financial Studies 22, 5213~

35



5249.

Chevillon, D. (2007). Direct multi-step estimation and forecasting. Journal of Economic Sur-
veys 21, 746-785.

Choi, K.H., C-J. Kim, and C. Park (2017). Regime Shifts in Price-Dividend Ratios and Ex-
pected Stock Returns: A Present-Value Approach. Journal of Money, Credit and Banking 49,
417-441.

Cochrane, J.H. (1992). Explaining the Variance of Price-Dividend Ratios. Review of Financial
Studies 5, 243-280.

Cochrane, ].H. (2005). Asset Pricing. Revised Edition. Princeton University Press, New Jersey.

Cochrane, ].H. (2008). The dog that did not bark: A defense of return predictability. Review
of Financial Studies 21, 1533-1575.

Cochrane, J.H. (2011). Presidential address: Discount rates. Journal of Finance 66, 1047-1108.

Cochrane, J.H. (2017). Macro-Finance. Review of Finance 21, 945-985.

Cochrane, J.H., and M. Piazzesi (2002). The Fed and interest rates — A high-frequency
identification. American Economic Review 92, 90-95.

Cujean, J., and M. Hasler (2017). Why Does Return Predictability Concentrate in Bad
Times? Journal of Finance 72, 2717-2758.

Dangl, T., and M. Halling (2012). Predictive regressions with time-varying coefficients.
Journal of Financial Economics 106, 157-181.

Engsted, T., and T.Q. Pedersen (2010). The dividend-price ratio does predict dividend
growth: International evidence. Journal of Empirical Finance 17, 585-605.

Engsted, T., T.Q. Pedersen, and C. Tanggaard (2012). Pitfalls in VAR Based Return Decom-
position: A clarification. Journal of Banking and Finance 36, 1255-1265.

Fama, E. E, and French, K. R. (1988). Dividend yields and expected stock returns. Journal
of Financial Economics, 22(1), 3-25.

Fama, E.F,, and K.R. French (1989). Business conditions and expected returns on stocks and
bonds. Journal of Financial Economics 25, 23—49.

Farmer, L.E, L. Schmidt, and A. Timmermann (2018). Pockets of predictability. Unpub-
lished manuscript, available at SSRN: https:/ /ssrn.com/abstract=3152386.

Golez, B., and P. Koudijs (2018). Four centuries of return predictability. Journal of Financial
Economics 127, 248-263.

Gorodnichenko, Y., and B. Lee (2017). A Note on Variance Decomposition with Local Pro-

36



jections. NBER Working Paper No. 23998.

Granger, C.W.J. (2008). Non-linear models: where do we go next — time-varying parameter
models? Studies in Nonlinear Dynamics & Econometrics 12, 1-9.

Guo, H. (2006). On the out-of-sample predictability of stock market returns. Journal of
Business 79, 645-670.

Guo, H., and R. F. Whitelaw (2006). Uncovering the Risk-Return Relation in the Stock
Market. Journal of Finance 61, 1433-1463.

Hallerbach, W. G., and Menkveld, A.J. (2004). Analysing Perceived Downside Risk: the
Component Value-at-Risk Framework. European Financial Management, 10(4), 567-591.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Second Edition, Springer-Verlag, New York.

Henkel, S.J., J. Martin, and E. Nardari (2011). Time-varying short-horizon predictability.
Journal of Financial Economics 99, 560-580.

Jorda, O. (2005). Estimation and Inference of Impulse Responses by Local Projections.
American Economic Review, 95(1), 161-182.

J. P. Morgan, (1996). Riskmetrics technical document. (4th ed.). New York.

Kofman, P., and McGlenchy, P. (2005). Structurally sound dynamic index futures hedging.
Journal of Futures Markets, 25(12), 1173-1202.

Koijen, R.S.]J., and S. Van Nieuwerburgh (2011). Predictability of Returns and Cash Flows.
Annual Review of Financial Economics 3, 467—491.

Lamont, O. (1998). Earnings and expected returns. Journal of Finance 53, 1563-1587.

Larkin, Y., M. T. Leary, and R. Michaely (2017). Do investors value dividend-smoothing
stocks differently?. Management Science, 63(12), 4114-4136.

LeRoy, S. F, and R. D. Porter (1981). The present-value relation: Tests based on implied
variance bounds. Econometrica, 555-574.

Lettau, M., and S. Ludvigson (2001). Consumption, aggregate wealth, and expected stock
returns. Journal of Finance 56, 815-849.

Lettau, M., and S. Ludvigson (2005). Expected returns and expected dividend growth.
Journal of Financial Economics 76, 583-626.

Lettau, M., and S. Van Nieuwerburgh (2008). Reconciling the return predictability evi-
dence. Review of Financial Studies 21, 1607-1652.

Marcellino, M., J. H. Stock, and M.W. Watson (2006). A comparison of direct and iter-

37



ated multistep AR methods for forecasting macroeconomic time series. Journal of Econometrics,
135(1-2), 499-526.

Martin, I. (2017). What is the expected return on the market? The Quarterly Journal of Eco-
nomics, 132, 367-433.

Medeiros, M.C., and E. Mendes (2016). [1-regularization of high-dimensional time-series
models with non-Gaussian and heteroskedastic errors. Journal of Econometrics 191, 255-271.

Medeiros, M.C., and G.FR. Vasconcelos (2016). Forecasting macroeconomic variables in
data-rich environments. Economics Letters 138, 50-52.

Menzly, L., T. Santos, and P. Veronesi (2004). Understanding predictability. Journal of Politi-
cal Economy 112, 1-47.

Mpgller, S.V., and M. Sander (2017). Dividends, earnings and predictability. Journal of Bank-
ing and Finance 78, 153-163.

Owyang, M. T., Ramey, V. A., and Zubairy, S. (2013). Are government spending multipliers
greater during periods of slack? Evidence from twentieth-century historical data. American
Economic Review, 103(3), 129-34.

Ramey, V.A. (2016). Macroeconomic Shocks and Their Propagation. In H. Uhlig and J.
Taylor (eds), Handbook of Macroeconomics. Elsevier.

Ramey, V.A., and S. Zubairy (2018). Government spending multipliers in good times and
in bad: evidence from US historical data. Journal of Political Economy, 126(2), 850-901.

Rangvid, J., M. Schmeling, and A. Schrimpf (2014). Dividend Predictability Around the
World. Journal of Financial and Quantitative Analysis 49, 1255-1277.

Rapach, D.E., and G. Zhou (2013). Forecasting stock returns. In eds. Elliott, G. and Tim-
mermann, Handbook of Economic Forecasting, volume 2A, pages 329-383. North-Holland.

Rapach, D.E., ].K. Strauss, and G. Zhou (2010). Out-of-sample equity premium prediction:
Combination forecasts and links to the real economy. Review of Financial Studies 23, 821-862.

Shiller, R.J. (1981). Do Stock Prices Move Too Much to be Justified by Subsequent Changes
in Dividends? American Economic Review, 71(3), 421-436.

Taylor, J. W. (2008). Using exponentially weighted quantile regression to estimate value at
risk and expected shortfall. Journal of Financial Econometrics, 6(3), 382-406.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the lasso. Journal of the Royal
Statistical Society. Series B, 58, 267-288.

Timmermann, A. (2006). Forecast combinations, in G. Elliott, C.W.]J. Granger, and A. Tim-

38



mermann (eds.), Handbook of Economic Forecasting. Elsevier, Amsterdam.

Timmermann, A. (2008). Elusive return predictability. International Journal of Forecasting 24,
1-18.

Welch, I. and A. Goyal (2008). A comprehensive look at the empirical performance of equity
premium prediction. Review of Financial Studies 21, 1455-1508.

Zhu, X. (2015). Tug-of-War: Time-Varying Predictability of Stock Returns and Dividend
Growth. Review of Finance 19, 2317-2358.

Zhu, X., and J. Zhu (2013). Predicting stock returns: A regime-switching combination ap-

proach and economic links. Journal of Banking and Finance 37, 4120-4133.

39



Internet Appendix

Discount Rates and Cash Flows:

A Local Projection Approach

September 18, 2019

This Internet Appendix presents various supplemental results to the main results reported in
the paper. Sections I and II present detailed estimation (regression) results for the local pro-
jections containing one and three state variables which generate the volatility decompositions
reported in Sections 3.2 and 3.3 of the paper. Additional results and extensions to the LASSO
analyses (Section 3.4) are presented in Section III. Together with the parameter estimates of the
LASSO local projections for the monthly data, these include volatility decompositions obtained
with the ‘post-LASSO step’ (i.e. the use of the Ordinary Least Squares in the final estimation
for the LASSO-selected state variables), cross-validation-based tuning parameter selection and
elastic net as an alternative to the LASSO. Finally, Section IV reports the volatility decompo-
sitions using (i) subsamples of the data, (ii) dividends that are market re-invested and cash
re-invested (as opposed to dividends re-invested at the risk-free rate, as in the main paper),
and (iii) S&P 500 index returns and dividends (as opposed to CRSP value-weighted market

returns and dividends, as in the main paper).



I One state variable local projections: Estimation results

This section and Section [l describe the detailed estimation (regression) results of the local pro-
jections leading to the dividend yield volatility decompositions reported in Sections 3.2 and 3.3
of the paper.

Tables [I| and [II| report the estimated local projections when the dividend yield (dp;) is the
single state variable. As introduced in equation (7) of the paper, the dividend yield at time ¢ is
thus used to predict ¢ + k-period-ahead left hand side (LHS) variable which is the (discounted)
cumulative return, cumulative dividend growth or the (forward) dividend yield. Similarly as
in the reported volatility decompositions, the horizon % is given in annualized terms from one
year up to 15 years.

As expected, the highest predictive power is obtained for short-term horizons for the div-
idend yield itself. The predictability of cumulative returns (in terms of the adjusted-R?) gen-
erally increases when the horizon increases, consistent with the well-known long-horizon pre-
dictability documented in the literature (see the survey by Welch and Goyal, 2008, and the
critical appraisal of this literature by Boudoukh, Richardson and Whitelaw, 2008). In line with
our reported volatility decompositions (Table 2 in the paper), the predictability of dividend

growth rates is very small in the case of a single state variable (dividend yield).

II Multiple state variable local projections: Estimation results

Tables [[lI|and [IV| present corresponding regression results as Tables|lland [lI| with the difference
that now local projections contain three state variables (see equation (9) of the paper, i.e. the
lagged cumulative return, cumulative dividend growth rate and dividend yield are used as
predictors). Compared with the dividend yield as the single state variable, the increasing pre-
dictable patterns in the cumulative dividend growth rate are evident. This applies also to the
dividend yield: lagged cumulative returns and dividend growth rates help to predict them in

the long-run (when the horizon k increases).



c00- 000 100 €00 900 600 €ro 120 8¢0 £E0 8%°0 190 690 820 680 4 — (pe

(100 (Cro) @ro (ro (600 «oo) (oo o (1o ((ro (o (o Fro (1o (€00 (ors)
$00 600 CI'0  STO0O 6T0 ¥CO0O 8C0 9¢€0 CFO0  6F0 450 990 €0 080 060 dp
190 (850 (220 (290 (2s0) (¥0) (go) (620 (g0 @Fgo) (0v0) @0 (9v0) (s¢0) (£1°0) (ors)
LU L0T ¥0T- 00T ¥E6T- 98T-  84T-  09T-  9FT1-  6CT-  Z0T-  ¥80- 040- TS0- SCO- "}SU0D

PRI puspralqg :SH'T
600 800 900 SO0 <00 100 00 000 000 000- 100- <200~ <00~ 100- 100- Lo —[pe

(900) (G000 (9000 (s00) (s00) (S00) (S00) (F00) (F00) (S00) (S00) (900) (900) (¥00) (20°0) (ors)
0T'0-  600- 800- Z00- 900- S00- ¥%00- ¥00- ¥00- €00- <T00- T00- 000 100 100 dp
(1z0) (0z0) (€200 (0T0) (0T0) (6100 (81°0) (L10) (L1°0) (617°0) (67°0) (120) (61°0) (ST°0) (90°0) (ors)
868  TI'S  99Z  ZIZ 149 0T9 S9S OIS ISV wee  SeE€  WLT  CIT V1 840 "}SU0d

3MO0I3 PUSPIAIP dABe[NWN)) :SH'T
15°0 6v'0 6v'0 6v'0 150 190 870 Svo 0¥0 €€0 9¢0 €C0 0co  ¥I'0  4£00 < — fpe

(6027 (Qro) «ro (ro (1o Qo0 oo (so00) Fo00) (€00 (900 (010 (010 (600 (S0°0) (ors)

640 940 WL0 €40 €0 00 S90 650 €50 ZFO0 O¥V0  €£0 8C0  €T0 €10 dp

(2o9) (290 (9900 (8700 (170 (sg0) (gg0) (zzo) (8100 (910) (81°0) (0€0) (€€0) (620) (91°0) (os)

6C €L€ €9€ 1S€ ¥Ee  LTE€ S0 94T  8FT  8T'T /8T €51 6CT 00T SS0 "}su0d
uinjol ®>EM1~ESU “w:A

ST jd! €1 4! It 01 6 8 / 9 G i ¢ 4 I (sxeaf) 3

*y UoZLIoy ay3 03 renba
33uay Sef oy M SI0IIS pIepuess 3snqor (DY) UOIIR[OII0d0Ne pue AJIDT)Sepayso1d}ay 1Sop-AamMaN] 9y a1e s10110 prepuess pajrodar oy 1oded ay jo () uonenbs ur paqrsap
saqeLieA (SHT) 9PIS puey 39 991y} aU} 10§ i SUOZLIOY JUSIafIp ye suondaloxd [edof jo s y7-pajsnipe pue SIOLIS pIEpue)s ‘SJUSIDYFI0D UOTSSIIZaI pajewnyss a3 syrodar ajqe; siyL,

‘(£102-2S61 porrad osrdures) eyep enuuy ‘suondsloid [ed0] (P[RIA PUSPIAIP) S[ELIEA 9)€)S dUO Y} JO S}NSI Uorewnysy ;[ [qe],



000 TO0 €00 SO0 L0 IT0 SIT0 TCO 620 80  6V0 190 0L0 80 680 4 — [pe
(ozo) 1o (czo) (co Gro (1o @ro) (o Gco (sco) (0ro) Q70 (€70 (OF0) (610 (ors)
¥00 600 ¢TI0  ST0 610 €20 80 S€0  TF0  6F0 450 990 €0 080 060 dp
(6900 (g0 (1) (671 (150 (zg0) (50 (880 Fz0 (6600 1) @S1D  (SF1D) (281 (99°0) (ors)
LU 0T ¥0T- 00T ¥6T-  98°1-  LLT- T9T-  ¥FI- 6CT-  60T-  S80- 690- 1S0-  ZT0- “}SU0d
PRI puspralqg :SH'T
100 100 100 000 00O 00O 0OO 0OO 00O 00O 0OO 00O 10O 00O 00O 4 — [pe
(600) (10 (aro &ro) o) (@ro (600 (00 (00 (600 Gro) 1o ©Oro (1o  (£00) (ors)
G0'0- ¥00- ¥00- €00- T100- 000 000 00O 00O 000 000 TOO €00 TO0 000 dp
(9¢0) (zv0) (¢v0) (g50) (g50) (9v0) (¢c0) (9z0) (8T0) (2e0) (8¢0) (5500 (€500 (700 (F2T0) (ors)
80 940 €0 TO ¥£0 TLO S90 80 IS0  9F0 THO  €F0 60 8TO IO “JSU0d
LﬁSOhw ﬁﬁwﬁﬁ&ﬁ w>ﬁm_SESU “mmd
60 050  6F0 TS0 T§0 T§0 IS0 6F0  ¢F0  S€0 0€0 STO  ITO0  STO 800 4 — [pe
(sv0) (6100 (s1°0) (1700 (11°0) (6000) (8000) (900) (s00) (800 (cro) (9100 (0TO) (8100 (80°0) (ors)
L0 €0  TZ0  TZ0 040 890 ¥90 850 IS0 SF0  OF0O €0 820 10 <TI0 dp
(9v'1) (020) (950) (Fg0) (a¥0) (sc0) (co) (9z0o) (Ozo) GFeco) «go) g0 F90 (850 (670 (os)
®€  T9E 0S€ €FE €e€ LI€ 66T €T T It 8T ST STT 60 IS0 “}SU0d
uinjol ®>EESESU “w:,._
08T 891 961 jiad! 438 0Ct 80T 9 78 [ 09 i 9¢ 4 4! (sypuowr) y

"y uozrIoy ayj o} renba

33uay Sef oy M SI0IIS pIepuess }snqor (DY) UOIIR[OII0d0Ne pue AJIDT)Sepayso1d}ay 1Sop-AoMaN] Y} dIe s10110 prepuess pajrodar oy 1oded ay jo () uonenbs ur paqrsap
saqeLieA (SHT) dPIS puey 39 991y} aU3 10§ 3 SUOZLIOY JUSIafIp ye suondaloxd [edof jo s y7-pajsnipe pue SIOLIS PIepue)s ‘SPUSIDYFI0D UOTSSIIZaI pajewnss a3 syrodar ajqe; siyL,

‘(£102-2S61 potrad ajdures) eyep Aypuoly ‘suonosfoid [0 (PRIA PUSPIAIP) S[CELILA 9)€)S SUO 3} JO S)NSAI UOIewnSy [] 9[qeL.



600 TI0  ¥I0 10 SC0  ZC0 €20 €0 9¢0  FF0 S0 S90 040 940 160 4 — [pe
(zro) (9z0o) 1o (6100 (sTo) (0900 (0689  (1T0) (0C0) (Lo (€100 Fr0) (€100 (1IT°00 (F0O0) (ors)
60 G0 020 800 ¥00 ¥00  ¥IO ¥C0 8€0 SF0 €50 990 SZ0 080 160 dp
(6v0) (7D (8200 G¥0) (8c0) (c1'D (8Tser) (1£0) (800 (990) (s0) (Lgo) (8r0) (S10) (0T0) (-os)
860~ 10T~ 640~ /S0~ 0£0- F00  TE0 SF0  Tz0  L€0 8¥0 8€0 10 200 €r0  *ftpy, 0TI
(ero) (6100 Gro) (czo) (9zo) (sv0) (9622) (1g0) (Qr0) (€r0) (910) (Fro) (0r0) (2r0) (80°0) (-os)
100- S00- SC0- 1¥0- Z¥0- Z¥F0- 6C0- [T0- 8TO0- 8T0- 8¢0- C€0- 1T0- €00  1T0- A=ty d ﬂmw
#200 (622 (960) (0£0) (680) (87 (¢szze) (1) (orD) (9400 (6600 (160) (s7°0) (8¢0) (€1°0) (os)
[F0- 00~ /80- 8€T- 081- 91'C- VT 90C- 16T~ FFI-  STI-  S80- 850 €50~ STO- }SU0D
PRI puspIalqg :SH'T
¥co sT0 1F0  6F0 SFO  TF0 420 SI'0 600 ST'0 ZT0 /ZFO  0TO  TOO  TEO - — [pe
(6000 (6000 (0r0) (1T0) (0T0) (CF0) (¥1°0) (cro) «ro Gro) (oro (oo (oo (00 (€00 (o)
800 100 800 F00 000 FO0O 800 ¥00 €00  ¥00 900 400 SO0 €00  TOO- tdp
(6z0) (1200 (6000 (c1'0) (1T70) (88°0) (2€°0) (9¢0) (s70) (GFzo) (10 (0Tz0o) (s10) (2ro) (6070 (ors)
640-  990- €80- 840- T90- T90- €90- €0-  ¥€0-  I¥F0-  0S0- SP0-  S€0- €C0- 0TO  YTHHpv,_d ﬂhw
(0100 (800 (200) (800 (£L00) (ZZ0) (9T°0) (0100 (Sro) (cro) (800 (900 (800 (010 (900 (ors)
80°0- 91°0- 610- ZTO- 0€0- ZTO- 810 ST0-  ¥10-  ¥10-  ¥10- STO-  9T0- 900  ZTO A= d ﬂhw
(19000 (700 1o (F0 (€70 (821 (650) (9900 #80) (9500 (g0 (o) Fco) (cco) (6070 (ors)
10 69T 00C 08T 9FT €FT  OFT €0T  ¥80 T80 080 FL0 €50  ZTO  T00- JSU0d
LUKSO.HM ﬁCwUTw:u w>ﬁm~3§5U “mmd
180 €0 650 €50 6FV0 80 @ SHO SP0  S€0 I€0 620 9TO STO  1T0 800 4 — [pe
(600 (o) «ro «ro (©zo (610 ((20) (cro (Oro Qo0 (o0 (800 (10 (€ro) (900 (os)
0 660 090 790 690  ZL0 S0 €40 460 €50 8F0 80  LT0 TTO  ¥I0 dp
(st (g0 (€900 (900 #90) (£g0) (TF0) (6c0) (0700 G¥F0) (070 (¢co) (9z0) (9100 (920 (os)
00 IS0 IT0 STO L0  ¥L0-  1F0- 99°0- 820~ 9¥0- €90~ 090- €0~ 80 €0~ ftpy, 0TI
(900  Fro (6100 (LT0) (s¢0) (cT0) (2€0) (cro) (ro (oro (oro (€ro (€ro) ((ro (600 (os)
SY0-  €F0-  SC0-  910- Z00- 000  80°0- $00- 000 000  S00- S00- <TI0~ 6C0- SIO- 1=t d 1R
(1e1) (€800 (860) FOT) (1800 (120) (260) (9500 (g0 (s70) (z€0) (8c0) (1F70) (¢¥0) (120 (os)
10¢€  ¥9C  0€€ LIS 9T¢  ¥9¢  0L¢€ ¥9¢  9LT 65T 6T I61  6CT 860 790 }SU0D
uinjol ®>SESESU “wmd
Gl ¥l €1 4! 1 01 6 8 / 9 S i € 4 I (s1e3h) 5

"y uozrIoy ayj o} renba

33uay Sef oy M SI0IIS pIepuess }snqor (DY) UOIIR[OII0d0Ne pue AJIDT)Sepayso1d}ay 1Sop-AoMaN] Y} dIe s10110 prepuess pajrodar oy 1oded ay jo () uonenbs ur paqrsap
saqeLieA (SHT) dPIS puey 39 991y} aU3 10§ i SUOZLIOY JUSIafIp ye suondaloxd [edof jo s y7-pajsnipe pue SIOLIS PIEpuE)s ‘SJUSILFI0D UOTSSIIZDI pajewnyss a3 syrodar ajqe; siyL,
(£102-2S61 porrad ordures) eyep enuuy ‘suondsfoxd [edo[ a[qerrea aje)s 991} 9y} JO S}NSI uonewnsy [ 9[qeL



0 €T0  ¥TO0 10 FEO0  9€0  TEO0  Z€0  6€0  9F0 950 /90  IZ0  ZL0 060 4 — [pe
(9100 (920) (8100 (81°0) (6200 (80T) (201) (LZO) (9Tz0) (LT0O) (10O) (B0 (9z0) (FT0) (80°0) (ors)
G0 €0 0Z0O OI0  ¥0O0O €00  FI0  TCO  9€0  FFO €50  S90  SL0 IS0 060 *dp
(6z0) (90D (980 (6200 (s¥0) (80 (s80) (0600 (8T'D (e (gD (sv0) (20) (1€0) (81°0) (-os)
6U'T- 80T- 6L0- 650 8C0- 100 8I'0 90 I€0 L0 TFO  S€0 LU0 100 FI0 4 CHpy, 0K
(tro) Gro (rzo) (czo (cco (180 (G920 (Geo) (60 (1zo) (6100 o) (sro) (8r0) (81°0) (-os)
000 600~ 920~ €F0- IS0~ ¥S0- 0F0- TEO0- 620~ 8C0- 00~ TEO- €20 100  9T0- 1=t IR
(890) (¢61) (I (O (01 (B (69 (FSTD (991 (91 (o1 (980) (980) (€80) (00) (os)
1000- 020- T80- 9TI- 9L1- O0I'C- S0C  <Cl'c- ¥91-  /¥1-  ¥C1-  880- 190- 0S50- SC0- 3su0d
PRI puspIalqg :SH'T
¥e0  ¥€0  TF0  9%0 90  IFO0  ¥E0 0CT0 910 9T0 620 S€0  ITO0 800  STO M — [pe
(oro) (oro (1o @ro Fro (g0 (oo (Oro o) ©ro) aro «oo) («ro) (€ro (€00 (os)
0ro 000 ¥00 100- F¥00- €00- SO0 FOO0 €00  ¥OO 900  Z00 900 TO0  TO0- *dp
(czo) (6100 (€100 (6000 (TT0) (121) (G0 (gc0) (6€0) (€c0) (120) (2T0) (FE0) (€00  (FL0) (ors)
80-  090- £90- SS0- TFO- €£0- SFO- C€0- TCO-  €TO-  ¥E0-  I€0-  9T0- TO0  eF0  tTitpy,_d HHMN
(z00) (8o0) (800 (6000 (80000 (sc0) (cr0) (czo) Fr0) Fr0o) (Cro) (600 (8100 (€20) (ST0) (ors)
TI0-  0T0-  €T0-  0€0- €€0- TE0- 920- 6100 ZI0- 8T0- <TCO0- 8TO- OT0- ZI0 €20 A=, d HHMN
(¢g0) (o) «go) (050 ((g0) (o) (70 (650 (280 (690 GFF0o) (o) GFo  (8c0) (€10 (ors)
6T  ILT €8T S§T STL PIT TET LO0T /80 180 /80 T80 650  ZT0  €0°0- }su0d
Lugouw ﬁﬁwﬁfﬁﬁu m>ﬁs~5§5U “mmd
¥80  ZL0  ¥90 850 €50 TS0  6F0  8¥0  6€0  €€0  I€0 €0  ¥TO  SI0 IO 4 — [pe
(zo) (ro (ozo) (1z0o) G0 (10) (€0) *Fro (aro) (600 (600 (6000 (10) (1200 (800 (os)
80 9€0 050 €90  Z90 040 10 690 950 8¥0 9¥0 O0F0 620 1TO €10 *dp
(Ic0)  Fc0) (850) (800 (850) (ce0) (820) (¢v0) (F0) (FS0) (8500 (Feo0) (8T0) (sg0) (91°0) (os)
60 850 9¢0 80 €I'0  ¥00  0C0- OF0- SCO-  1T0-  6F0-  LSO-  6€0- 900- F00- 1 CHpy, d K
cro o 1o (co) «co (czo) (8z0) (ro (1o ((ro) (ro ©Oro) Gro) (ro (Sro) (os)
8F'0- FF0- 1€0- ZI'0-  600- 100- <TO0- 000 100 000  Z00- 800~ II0- TCO-  FLO- 4=t d 1Y
(2900 (8s0) (01 (Fcm) (880 (590) (¢r1) (890 (290) (950) (s7°0) (8c0) (€900 (#£0) (8C0) (os)
€LT  ¥FT 98T  €TE  €TE  LTE  OFE  S€E LT ¥ET  TET 661 SFT 860 650 3su0d
uinjol ®>Sw~555U “w:A
08T 891 941 jad! 438 0Tl 801 9 ¥8 zL 09 8 9¢ ¥C 4! (syguow) 3

"y uozrIoy ayj o} renba

33uay Sef oy M SI0IIS pIepuess }snqor (DY) UOIIR[OII0d0Ne pue AJIDT)Sepayso1d}ay 1Sop-AoMaN] Y} dIe s10110 prepuess pajrodar oy 1oded ay jo () uonenbs ur paqrsap
saqeLieA (SHT) dPIS puey 39 991y} aU3 10§ & SUOZLIOY JUSIafIp ye suondaloxd [edof Jo s y7-pajsnipe pue SIOLIS PIepue)s ‘SJUSILFI0D UOTSSIIZDI pajewnss a3 syrodar ajqe; snyL,

‘(£102-2S61 porrad osrdues) eyep Apyiuoyy ‘suondsloid [ed0] a[qerrea 93e)s 9913 Y} JO S}NSaI uonewnsy ‘A [qel.



IIT LASSO extensions

III.I LASSO state variable selection: Monthly data

Table [V|reports the LASSO estimation and model selection results for the monthly data. When
comparing the corresponding results for the annual data (see Table 5), we obtain clearly less
exclusions (i.e. state variables completely left out from the resulting LASSO estimates and
local projections) than with the annual data. In this monthly case, the most exclusions happen
largely for variables that are also excluded in the annual case, including short-term interest
rates (levels), which have been found useful to predict stock returns in Ang and Bekaert (2007).
However, it is important to note that the relative risk-free rate (RREL) seems systematically
an important state variable for all the LHS variables, so the information transmission from
the (short-term) interest rates is coming strongest through the relative short-rate instead of the

levels.

IILII LASSO: Shrinkage also in dividend yield

In Table |VI, we consider the change to the previous LASSO setting so that also the dividend
yield as a state variable is subject to possible shrinkage (penalization) in the local projections.
In practice, the dividend yield turns out to be consistently involved in the estimated local pro-
jections for all the LHS variables in the monthly data and especially for expected returns in the
annual data frequency. These findings, in addition to strong theoretical backing as discussed
in Section 2 of the paper, are the reasons why the main analyses have been carried out by al-
ways including the lagged dividend yield. Given these findings, the volatility decomposition
reported in Table |Vl|is, as expected, very similar to the decomposition reported in Section 3.4

(Table 4)[T]

! At the one-year horizon (k = 1, annual data) the discount rate variation, (r, 1), is zero since all state variables
are excluded by the LASSO model selection. The cash flow-discount rate ratio (equation (13)) is thus not defined as
all volatility is coming from the cash flow variation.
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Table VI: LASSO-based volatility decomposition when the dividend yield is also subject to
shrinkage.

This table reports the annual (Panel A) and monthly (Panel B) volatility decomposition using the LASSO estimator
for different horizons k where the dividend yield as a state variable is also subject to shrinkage (cf. Table 4 in the

paper).

A: LASSO - Annual B: LASSO - Monthly

k(years)y &(r,k) &(d,k) &(dp,k) g((i :) k months)  G(r, k) &(d,k) &(dp, k) g((i ]’3
1 0.00 0.11 0.90 - 12 0.23 0.24 0.94 1.07
2 043 019 081 044 24 039 028 085 072
3043 024 079 055 3 052 031 082 059
4 061 02 074 035 48 062 030 081 049
5 075 030 061 040 60 073 030 076 042
6 070 030 064 043 72 080 032 079 040
7 073 030 062 040 84 083 031 075 037
8 08 033 068 039 9 094 034 074 037
9 093 030 074 032 108 092 039 073 043
10 092 028 069  0.30 120 091 040 068  0.44
11 093 032 063 034 132 093 047 068 051
12 095 050 061 053 144 093 053 065 058
13 08 039 057 045 156 094 053 061 056
14 093 037 055 040 168 089 049 054 055
15 091 039 059 043 180 095 040 055 043

IILIII Cross-validation-based tuning parameters

For cross-sectional datasets, the tuning parameter A in the LASSO estimator (equation (15))
is often determined by using cross-validation. As argued in Section 2.3, our main results are
based on the use of the BIC to determine )\, which follows the conventional use of information
criteria in financial econometrics.

Tables|VIIHVIII|report the estimated coefficients in the annual and monthly local projections
and the resulting volatility decompositions are presented in Table [IX| The results are based on
the 10-fold cross-validation instead of the BIC as employed in the results of Section 3.4. It turns
out that the local projections (inclusions and exclusions of the state variables) are in large extent
the same as reported in Table 5 and Table [V]above (slightly more inclusions due to a typically
somewhat smaller shrinkage than in the BIC case). The resulting volatility decompositions in

Table [[X|are hence the same in their main conclusions as in Table 4 (Section 3.4).
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Table IX: Volatility decompositions build upon the cross-validation-based LASSO estimator
and resulting local projections (both annual and monthly data).

This table reports the annual and monthly dividend yield volatility decompositions for different horizons k based
on the local projections (equation (7)) where in the LASSO estimator (equation (15)) the tuning parameter A\ is
determined by the 10-fold cross-validation, with the value of the parameter A at which the minimum mean square
error is achieved.

A: Annual B: Monthly

k(years)y &(r,k) &(d,k) &(dp,k) g((‘j :i k (months) (k) &(d,k) &(dp, k) g((f ]’3
1 0.14 0.16 0.92 1.14 12 0.23 0.24 0.94 1.08
2 042 021 083 050 24 039 028 086 072
3054 024 081 045 3 052 031 084  0.60
4 056 027 077 049 48 063 032 081 051
5 061 027 072 044 60 073 031 077 043
6 071 030 069 043 72 081 032 079 040
7 073 029 067 040 84 084 032 080 038
8 08 031 065 036 9 095  0.34 077 036
9 090 030 075 034 108 093 040 077 042
10 09 028 070 029 120 091 042 070 046
11 095 040 063 042 132 092 049 067 053
12 09 051 060 053 144 093 054 064 057
13 096 037 065 038 156 094 052 059 056
14 093 037 053 040 168 092 049 054 054
15 091 038 050 042 180 095 040 055 043

IILLIV  Post-LASSO step

Instead of the direct use of the LASSO estimator (equation (15)), we can also consider a ‘post-
LASSO’ step where the state variables for information-rich local projections are first selected
by the LASSO but the final estimation of the selected model is carried out by OLS. Belloni
and Chernozhukov (2013), among others, have shown that the post-LASSO step has the (near)
oracle property, that is the estimator is consistent both in parameter estimation and variable
selection. Put differently, the inference is as efficient as if ‘an oracle’ had revealed the true
model and estimation had been carried out using only the relevant state variables. If the LASSO
selects the ‘true’ model in the first-stage, the OLS estimator in the second stage becomes the
oracle estimator.

Table [X| reports the volatility decomposition of the post-LASSO step local projections. The
selected state variables for each LHS variable are the same as presented in Table 5 and Table
[V]above (i.e. the components with non-empty cells), but the final estimation is carried out by
OLS. The essential message is still the same as in the previous analyses: The main contributor
for asset volatility is the discount rate variation but the cash flows also matter. The expected

dividend growth contributions at different horizons £ and both data frequencies (annual and
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monthly) are generally diverging only marginally from the ones in Table 4 obtained with the
LASSO. In other words, replacing the shrinkage-based estimation by the OLS step does not

change the main findings and, hence, our results are robust also to this change of methodology.

Table X: Volatility decompositions based on the post-LASSO step.

This table reports the annual (Panel A) and monthly (Panel B) volatility decomposition of the dividend yield based
on the local projections where the predictors for each LHS and horizon k are selected by the LASSO but the final
estimation of the selected model is carried out with OLS.

A: Annual B: Monthly

k(years)y &(r,k) &(d,k) &(dp,k) ;((i Z; k (months) (k) &(d,k) &(dp, k) ‘;((f Z;
1 013 015 090  1.17 12 023 025 094  1.10
2 038 023 083  0.60 24 040 029 08 071
3044 028 084 062 3 052 031 083  0.60
4 064 031 082 048 48 064 032 081 050
5 0.75 0.31 0.77 0.41 60 0.74 0.32 0.77 0.43
6 081 033 075 041 72 082 032 079 039
7 080 031 072 039 84 084 032 079 038
8 090 032 071 036 9 095 035 076 036
9 096 034 072 036 108 093 040 077 043
10 097 035 069 035 120 091 043 070 047
11 096 040 068 042 132 093 049 068 053
12 097 051 064 052 144 094 054 065 058
13 099 041 062 042 156 094 053 061 057
14 09 044 057 046 168 092 050 054 055
15 094 044 058 047 180 095 041 055 043
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III.V Elastic net

In statistical (machine) learning, the elastic net is a regularized regression method that linearly
combines the LASSO and ridge regressions (see Zou and Hastie, 2005, and also, e.g., Hastie,
Tibshirani and Friedman, 2009, pp. 662-663). Ridge regression shrinks parameter estimates
using the [2 penalty, which precludes shrinkage to zero, while the LASSO also performs vari-
able selection by employing the /1 penalty. In the past statistical learning studies, a reported
potential drawback of the LASSO is that it may tend to arbitrarily select a single predictor from
a group of correlated predictors, possibly making it less informative for datasets with several
rather strongly correlated regressors. This is to some extent the case in our study. The elas-
tic net is proposed to avoid this problem by including both /1 (LASSO) and /2 (ridge) penalty
terms. See, e.g., Bai and Ng (2008) for a survey of variable selection and parameter estimation
with a large number of potential predictors and applications of the LASSO and the elastic net
to macroeconomic forecasting.

Formally, like the LASSO estimator introduced in equation (15) of the paper, the elastic net
estimator is based on a penalized sum of squared errors where the penalty (shrinkage) term is

different than in the LASSO:

Q(Ea]\’;) = arg( nrkl)m{ % ET: (LHS(CL) —al®k) wﬁ“’“ﬁ“’“) ’ +A (l/ i |B]('a7k) |+(1— y)% i BJQ (mk)) }7
2 t=1 j=1 j=1
where ¢(@F) = (a(a’k),ﬁ(a’k)), a € {r,d,dp}, and the parameter » measures the compromise
between the LASSO and ridge penalties (all the other notations as in equation (15)). In finance,
Rapach, Strauss and Zhou (2013) were the first ones to apply (a modification of) the elastic
net estimator in their predictive regressions for international stock returns. We experimented
with a range of v values (0, 0.25,0.5,0.75) (v = 1 corresponds the LASSO), with essentially the
same main conclusions on the relative importance of expected discount rates and cash flows
channels. Following the common selection in the applications of the elastic net in various fields,
in Table [XII| we report the results of v = 0.5, which gives equal weight to ridge regression and
LASSO. In this case, we benefit both from the feature selection capability of the LASSO and
the ability of ridge regression to handle, for example, the potential multicollinearity issues in
data-rich local projections.
Tables present the elastic net-based estimated coefficients in the corresponding lo-

cal projections. In Table the volatility shares and the ratios between the cash flow and
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discount rate components are again very close to the ones reported for the LASSO-based local
projections and all the main conclusions are intact. So, when modifying the learning part of the
local projections, which can be interpreted as agents’ (investors’) learning on the useful state

variables, the main findings are the same as obtained with the LASSO in the main text.
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Table XIII: Volatility decompositions based on the elastic net.

This table reports the annual (Panel A) and monthly (Panel B) volatility decomposition based on the elastic net
estimator where v = 0.5.

A: Annual B: Monthly

k(years)y &(r,k) &(d,k) &(dp,k) ‘;((i ’]3 k (months)  &(r, k) &(d,k) &(dp, k) ‘;((‘j ]’3
1 013 012 090  0.90 12 023 024 094  1.04
2 0.22 0.19 0.81 0.87 24 0.39 0.28 0.86 0.72
3029 025 081 085 36 052 0.30 082 059
4 054 024 077 044 48 063 031 080 049
5 061 024 072 039 60 073 030 075 041
6 069 030 068 043 72 081 032 079 040
7 072 029 066 040 84 083 032 080 038
8 08 025 061 030 9 095 034 073 036
9 094 032 064 034 108 092 039 075 043
10 097 026 061 027 120 091 041 069 045
11 095 030 066 032 132 092 048 068 051
12 09 050 060 052 144 093 054 064 058
13 096 040 060 042 156 094 052 061 056
14 094 045 054 048 168 092 049 054 054
15 092 042 053 046 180 095 040 055 043
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IV Alternative datasets: Dividends and sample periods

IV.I Subsample analysis

In Section 3.5 of the paper, we provide a volatility decomposition based on local projections
with time-varying parameters. The empirical evidence favours our main conclusions: Allow-
ing for time-varying parameters in (flexible) local projections, the relative importance of ex-
pected cash flows is substantially more important than previously thought in the correspond-
ing volatility decompositions.

Supplementing the time-varying parameter analysis, we provide subsample analyses in
this section: we estimate the volatility decomposition on two (partly overlapping) subsamples:
(i) the period 1952-2007, which excludes the Great Recession of 2008-2009 and it’s aftermath;
and (ii) the period 1985-2017, during which the dividend yield trended downwards (caused by
a prolonged upward trend in stock prices) and reached a lower average level than before. We
consider again one and three state variables, LASSO and model averaging. Due to the reduced
number of observations in these subsamples, we consider exclusively monthly data (facilitated
by the local projection approach). We also investigate the earlier sample of 1928-1951. For this
sample, we only consider the LPs with one or three state variables. We omit the LASSO and
model averaging approaches, since not all variables (listed in Table 1) are available during this
period. Moreover, the shorter data sample allows to estimate the volatility decomposition only
up to horizons of 10 years (120 months).

Results are reported in Tables and Both in the 1928-1951 and 1952-2007 sam-
ples, the contribution of long-run dividend expectations is substantially higher than in the
later 1985-2017 sample. For example, the ratio (equation (13)) of expected dividend volatil-
ity to expected return volatility reaches 0.90 in the 1952-2007 subsample (using LASSO model
selection), while the ratio even exceeds one in the early 1928-1951 sample (using three state
variables). The declining dividend contribution over time is consistent with patterns docu-
mented by Chen (2009) and Golez and Koudijs (2018). Interestingly, in the later 1985-2017
subsample, the estimated contribution of dividends is still higher than in the benchmark full-
sample results in Table 2. This discrepancy between the full-sample and subsample results is
likely caused by the trending behaviour of the dividend yield, which has been documented to
generate spurious predictability of long-horizon returns (see, e.g., Boudoukh, Richardson and

Whitelaw, 2008).
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Table XIV: Volatility decomposition: Subsample 1952:3-2007:12 (monthly data).

This table reproduces the monthly volatility decompositions as reported in Tables 2—4 of the paper, with the differ-
ence that the local projections are now estimated on the monthly subsample period 1952:3-2007:12.

A: One state variable B: Three state variables

o(d, k o(d, k

k (months) o (r,k) o(d, k) o(dp, k) 8((r: k:)) o(r,k) o(d,k) o(dp,k) &Er” k:))
12 0.11 0.00 0.91 0.03 0.13 0.12 0.92 0.92
24 0.19 0.01 0.82 0.05 0.21 0.05 0.83 0.24
36 0.26 0.02 0.75 0.07 0.24 0.13 0.80 0.54
48 0.31 0.02 0.68 0.06 0.35 0.21 0.73 0.62
60 0.39 0.01 0.59 0.01 0.43 0.24 0.66 0.55
72 0.48 0.00 0.52 0.00 0.51 0.24 0.60 0.47
84 0.56 0.01 0.47 0.02 0.67 0.28 0.57 0.41
96 0.63 0.03 0.43 0.05 0.90 0.32 0.62 0.35
108 0.71 0.06 0.34 0.08 0.93 0.35 0.58 0.38
120 0.79 0.07 0.24 0.09 0.97 0.39 0.56 0.40
132 0.89 0.11 0.13 0.12 1.04 0.53 0.60 0.51
144 0.96 0.17 0.00 0.18 1.03 0.64 0.64 0.62
156 1.03 0.22 0.11 0.21 0.96 0.66 0.61 0.69
168 1.13 0.26 0.23 0.23 0.98 0.70 0.64 0.72
180 1.26 0.32 0.41 0.25 1.09 0.66 0.61 0.61

C: LASSO D: Model averaging

o(d, k o(d, k

k (months) o (r,k) o(d,k) o(dp,k) /U\ET,’ k)) o(r,k) o(d,k) o(dp,k) 8Er: k))
12 0.22 0.18 0.95 0.82 0.13 0.12 0.93 0.94
24 0.38 0.22 0.89 0.58 0.21 0.05 0.84 0.25
36 0.49 0.25 0.86 0.51 0.24 0.13 0.80 0.54
48 0.56 0.29 0.83 0.51 0.35 0.22 0.73 0.61
60 0.64 0.32 0.77 0.49 0.44 0.23 0.67 0.53
72 0.70 0.30 0.77 0.43 0.52 0.24 0.60 0.46
84 0.80 0.33 0.77 0.41 0.69 0.27 0.58 0.39
96 0.96 0.33 0.73 0.34 0.93 0.32 0.64 0.34
108 0.87 0.43 0.72 0.49 0.91 0.35 0.60 0.39
120 0.81 0.49 0.67 0.61 0.92 0.39 0.56 0.42
132 0.73 0.52 0.64 0.71 0.96 0.52 0.58 0.54
144 0.69 0.58 0.65 0.83 0.95 0.63 0.60 0.66
156 0.68 0.54 0.66 0.79 0.92 0.64 0.57 0.70
168 0.64 0.53 0.65 0.83 0.96 0.68 0.61 0.71
180 0.63 0.57 0.59 0.90 1.06 0.65 0.59 0.61
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Table XV: Volatility decomposition: Subsample 1985:1-2017:12 (monthly data).

This table reproduces the monthly volatility decompositions as reported in Tables 2—4 of the paper, with the differ-
ence that the local projections are now estimated on the monthly subsample period 1985:1-2017:12.

A: One state variable B: Three state variables

o(d, k o(d, k

k (months) o (r,k) o(d, k) o(dp, k) 8((r: k:)) o(r,k) o(d,k) o(dp,k) &Er” k:))
12 0.17 0.05 0.85 0.30 0.17 0.43 0.87 2.60
24 0.30 0.04 0.71 0.15 0.40 0.23 0.71 0.57
36 0.38 0.06 0.59 0.16 0.82 0.49 0.58 0.59
48 0.48 0.11 0.45 0.22 1.08 0.80 0.56 0.74
60 0.56 0.17 0.28 0.31 0.99 0.73 0.57 0.73
72 0.62 0.22 0.16 0.35 0.87 0.36 0.41 0.42
84 0.72 0.24 0.02 0.34 0.97 0.29 0.48 0.30
96 0.84 0.22 0.10 0.26 1.03 0.30 0.40 0.29
108 0.90 0.18 0.20 0.20 1.47 0.26 0.26 0.18
120 0.95 0.16 0.26 0.17 1.61 0.29 0.16 0.18
132 0.96 0.17 0.31 0.18 1.99 0.83 0.10 0.42
144 0.93 0.19 0.33 0.21 1.93 0.77 0.19 0.40
156 0.87 0.21 0.31 0.24 1.29 0.66 0.16 0.51
168 0.82 0.21 0.26 0.25 1.36 0.28 0.51 0.21
180 0.80 0.20 0.24 0.25 1.49 0.16 0.15 0.11

C: LASSO D: Model averaging

o(d, k o(d, k

k (months) o (r,k) o(d,k) o(dp,k) /U\ET,’ k)) o(r,k) o(d,k) o(dp,k) 8Er: k))
12 0.48 0.61 0.84 1.27 0.18 0.45 0.87 2.55
24 0.77 0.80 0.69 1.04 0.42 0.27 0.71 0.63
36 0.94 0.83 0.63 0.88 0.82 0.48 0.58 0.58
48 1.17 0.69 0.66 0.59 1.09 0.79 0.56 0.72
60 1.12 0.74 0.49 0.65 1.02 0.71 0.55 0.70
72 1.41 0.39 0.34 0.28 0.92 0.36 0.38 0.39
84 1.53 0.39 0.31 0.25 0.97 0.29 0.42 0.30
96 1.13 0.44 0.83 0.39 1.04 0.29 0.38 0.28
108 1.27 0.78 0.35 0.61 1.46 0.28 0.26 0.19
120 1.07 0.66 0.65 0.62 1.59 0.36 0.15 0.23
132 1.52 0.68 0.57 0.45 1.96 0.81 0.14 0.41
144 1.88 0.52 0.37 0.28 1.90 0.73 0.18 0.38
156 1.62 0.46 0.51 0.28 1.26 0.63 0.11 0.50
168 0.96 0.25 0.54 0.26 1.28 0.25 0.46 0.20
180 1.38 0.18 0.19 0.13 1.58 0.17 0.14 0.11

20



Table XVI: Volatility decomposition: 1928:6-1951:12 (monthly data).

This table reproduces the monthly volatility decompositions as reported in Tables 2-3 of the paper, with the dif-
ference that the local projections are now estimated on the monthly subsample period 1928:6-1951:12. Due to the
reduces sample size, the maximum horizon k considered is 120 months.

A: One state variable B: Three state variables
k months) (k) &(d, k) &(dp, k) gii:; G(r,k) &(d,k) &(dp,k) ;Efz))
12 053 078 050 149 058 051 051 0.89
24 105 083 002 079 096 076 021 079
36 149 074 032 050 075 098 019 130
48 159 050 036 032 094 090 034 095
60 148 026 009 018 103  0.64 036 062
72 145 014 006 010 090 048 043  0.54
84 137 020 013 014 109 087 037  0.80
96 1.47 0.20 0.14 0.13 1.18 0.57 0.37 0.49
108 142 0.9 027 006 106 052 047 049
120 130 030 042 023 114 134 029  1.18
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IVII S&P 500 index returns

In accordance with, e.g., van Binsbergen and Koijen (2010) and their latent variable approach,
we also repeat our empirical analysis for the S&P 500 index returns and dividends, as opposed
to CRSP value weighted returns and dividends. In the return predictability literature, both
the use of CRSP and S&P 500 data are widespread (see, e.g., Ang and Bekaert, 2007; Welch
and Goyal, 2008). We use the S&P 500 returns and S&P 500 12-month cumulative dividends
reported in the (updated) dataset by Welch and Goyal (2008). Other than the dividend series
analyzed in the main paper, the cumulative dividends in the Welch-Goyal dataset are simply
aggregated over 12 months, without a re-investment scheme for dividends received during the
12-month windows. We will more closely investigate the effects of dividend re-investment in
the next subsection.

The results, reported in Tables|XVIljand [XVIII|are very similar to the CRSP-based results in

the paper. With a single state variable, the impact of long-run dividend expectations is almost
neglible, while this impact (in particular relative to the impact of long-run return predictabil-
ity) increases substantially when larger information sets (three state variables, LASSO, model

averaging) are used for predicting dividend growth rates.
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Table XVII: Volatility decomposition: S&P 500 (annual data).

This table reproduces the annual volatility decompositions as reported in Tables 2—4 of the paper, with the difference
that the local projections are estimated with S&P 500 returns and dividends instead of CRSP value-weighted average
returns and dividends.

A: One state variable B: Three state variables
k o(r,k) o(d, k) o(dpk o(d.k) k) o(d, k) o(dpk a(d, k)
(years) J(T7 ) U( ) ) U( D, ) 8(T7 k) J(T7 ) U( ) ) U( Ps ) 3(7"7 k)
1 0.10 0.02 0.89 0.16 0.12 0.09 0.97 0.77
2 0.18 0.03 0.80 0.16 0.24 0.04 0.81 0.15
3 0.24 0.03 0.72 0.11 0.23 0.13 0.78 0.57
4 0.32 0.01 0.64 0.05 0.35 0.27 0.74 0.76
5 0.37 0.00 0.55 0.01 0.38 0.28 0.66 0.75
6 0.44 0.01 0.49 0.02 0.48 0.20 0.64 0.43
7 0.51 0.00 042 0.01 0.60 0.16 0.66 0.27
8 0.58 0.02 0.36 0.03 0.65 0.17 0.62 0.27
9 0.64 0.03 0.30 0.05 0.70 0.17 0.56 0.24
10 0.71 0.03 0.25 0.05 0.75 0.23 0.57 0.31
11 0.73 0.03 0.20 0.03 0.79 0.32 0.55 0.41
12 0.74 0.01 0.16 0.01 0.87 0.35 0.59 0.40
13 0.75 0.01 0.12 0.01 0.96 0.35 0.60 0.37
14 0.77 0.02 0.08 0.03 1.06 0.35 0.64 0.33
15 0.79 0.04 0.04 0.05 1.05 0.35 0.53 0.33

C: LASSO D: Model averaging

k(years) &(r,k) &(d,k) &(dp,k) ‘;((‘j 113 5(r,k) &(dk) &(dp,k) g((f ’]3
1 0.10 0.13 0.97 1.32 0.12 0.09 0.97 0.78
2 0.17 0.14 0.83 0.78 0.24 0.04 0.82 0.17
3 0.22 0.17 0.80 0.74 0.24 0.13 0.78 0.56
4 0.52 0.26 0.78 0.49 0.36 0.27 0.74 0.74
5 0.57 0.29 0.72 0.50 0.39 0.28 0.67 0.73
6 0.72 0.29 0.74 0.40 0.48 0.21 0.65 0.43
7 0.71 0.24 0.72 0.34 0.60 0.17 0.67 0.28
8 0.83 0.27 0.59 0.33 0.65 0.18 0.63 0.28
9 0.90 0.24 0.62 0.26 0.71 0.17 0.56 0.25
10 0.97 0.23 0.65 0.24 0.75 0.23 0.56 0.31
11 0.98 0.23 0.62 0.23 0.78 0.33 0.54 0.42
12 0.96 0.29 0.60 0.30 0.86 0.36 0.57 0.42
13 1.00 0.31 0.63 0.31 0.96 0.37 0.58 0.38
14 0.98 0.37 0.51 0.38 1.06 0.37 0.63 0.35
15 0.96 0.31 0.49 0.32 1.04 0.36 0.52 0.35
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Table XVIII: Volatility decomposition : S&P 500 (monthly data).

This table reproduces the monthly volatility decompositions as reported in Tables 2—4 of the paper, with the differ-
ence that the local projections are estimated with S&P 500 returns and dividends instead of CRSP value-weighted
average returns and dividends.

A: One state variable B: Three state variables

o(d, k o(d, k

k (months) o (r,k) o(d, k) o(dp, k) 8((r: k:)> o(r,k) o(d,k) o(dp,k) 8((r: k))
12 0.10 0.02 0.89 0.19 0.12 0.16 0.96 1.38
24 0.18 0.03 0.80 0.16 0.20 0.08 0.82 0.40
36 0.25 0.03 0.71 0.11 0.27 0.11 0.79 0.42
48 0.32 0.02 0.63 0.06 0.34 0.26 0.73 0.76
60 0.38 0.01 0.54 0.02 0.40 0.23 0.66 0.57
72 0.44 0.00 0.48 0.01 0.52 0.16 0.64 0.31
84 0.51 0.01 0.41 0.03 0.59 0.16 0.63 0.27
96 0.58 0.03 0.35 0.04 0.64 0.16 0.59 0.25
108 0.65 0.03 0.29 0.05 0.70 0.20 0.57 0.28
120 0.69 0.03 0.25 0.05 0.73 0.28 0.59 0.38
132 0.71 0.03 0.21 0.04 0.77 0.31 0.58 0.41
144 0.72 0.02 0.17 0.03 0.84 0.34 0.59 041
156 0.74 0.01 0.13 0.01 0.91 0.35 0.59 0.38
168 0.75 0.00 0.09 0.00 0.97 0.35 0.54 0.36
180 0.80 0.00 0.05 0.00 0.98 0.32 0.38 0.32

C: LASSO D: Model averaging

o(d, k o(d, k

k (months) o (r,k) o(d,k) o(dp,k) EET,’ k)) o(r,k) o(d,k) o(dp,k) EET,’ k:))
12 0.17 0.22 0.97 1.32 0.12 0.17 0.96 1.41
24 0.34 0.24 0.88 0.71 0.20 0.08 0.83 0.42
36 0.50 0.27 0.82 0.54 0.27 0.11 0.79 0.42
48 0.62 0.30 0.79 0.49 0.34 0.26 0.73 0.76
60 0.68 0.28 0.76 0.41 0.40 0.23 0.67 0.57
72 0.75 0.24 0.75 0.33 0.53 0.17 0.66 0.32
84 0.80 0.22 0.75 0.28 0.59 0.17 0.65 0.28
96 0.96 0.23 0.72 0.24 0.64 0.17 0.60 0.26
108 0.94 0.31 0.71 0.33 0.70 0.19 0.57 0.27
120 0.98 0.35 0.70 0.36 0.74 0.27 0.59 0.36
132 0.97 0.41 0.65 0.42 0.77 0.31 0.58 0.41
144 0.95 0.43 0.62 0.45 0.83 0.35 0.58 0.42
156 0.98 047 0.58 0.48 0.91 0.37 0.58 0.40
168 0.96 0.46 0.56 0.48 0.97 0.36 0.54 0.38
180 0.98 0.37 0.48 0.37 0.97 0.32 0.38 0.33
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IVIII Dividend re-investment

Finally, we consider the robustness of our results to different re-investment schemes. There is
not a single convention prevailing in the literature. For example, Welch and Goyal (2008) ac-
cumulate dividends without adjusting for returns, Cochrane (2008) assumes that dividends
received during the year are re-invested in the market portfolios, while in van Binsbergen
and Koijen (2010) dividends received during the year are re-invested at the risk-free rate.
Chen (2009) and van Binsbergen and Koijen (2010) caution that the assumption of market-
reinvestment may possibly complicate disentangling dividend predictability from return pre-
dictability because market-reinvested dividends contain a substantial return component.

In the main paper, we follow the assumption by van Binsbergen and Koijen (2010) of risk-
free rate re-investment. In this section, we reproduce our volatility decompositions recon-
structed using market re-invested dividends and non-reinvested dividends, for both monthly
and annual data. The results, reported in Tables reveal that our results are not very
sensitive to the choice of re-investment strategy. Our main result of a significant volatility
contribution of long-run dividend expectations when the information set is extended beyond
the single state variable holds for all re-investment assumptions, at both monthly and annual

frequency.
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Table XIX: Volatility decomposition: No dividend re-investment (annual data).

This table reproduces the annual volatility decompositions as reported in Tables 2—4 of the paper, with the difference
that the 12-month dividend growth rates are constructed under the assumption that dividends received during the
12 months are not re-invested.

A: One state variable B: Three state variables
k o(r,k) o(d, k) o(dpk o(d.k) k) o(d, k) o(dpk a(d, k)
(years) J(T7 ) U( ) ) U( D, ) 8(T7 k) J(T7 ) U( ) ) U( Ps ) 3(7"7 k)
1 0.13 0.00 0.90 0.04 0.15 0.11 0.92 0.72
2 0.23 0.01 0.80 0.06 0.30 0.07 0.80 0.24
3 0.28 0.02 0.73 0.08 0.28 0.16 0.77 0.59
4 0.33 0.01 0.66 0.04 0.40 0.25 0.73 0.63
5 0.40 0.01 0.57 0.01 0.47 0.22 0.66 047
6 0.47 0.02 0.49 0.04 0.48 0.18 0.58 0.37
7 0.53 0.02 042 0.04 0.53 0.15 0.52 0.28
8 0.59 0.01 0.36 0.02 0.63 0.17 0.46 0.27
9 0.65 0.00 0.28 0.01 0.68 0.22 0.40 0.33
10 0.70 0.00 0.24 0.00 0.74 0.30 0.48 0.41
11 0.73 0.02 0.19 0.02 0.76 0.33 0.48 0.44
12 0.73 0.04 0.15 0.05 0.77 0.34 0.45 0.45
13 0.74 0.06 0.12 0.07 0.79 0.32 0.38 0.40
14 0.76 0.08 0.09 0.10 0.85 0.27 0.36 0.31
15 0.79 0.09 0.04 0.11 0.89 0.26 0.31 0.29

C: LASSO D: Model averaging

k(years) &(r,k) &(d,k) &(dp,k) ‘;((‘j 113 5(r,k) &(dk) &(dp,k) g((f ’]3
1 0.13 0.08 0.90 0.66 0.15 0.11 0.92 0.73
2 0.24 0.19 0.81 0.80 0.30 0.08 0.81 0.25
3 0.34 0.25 0.82 0.72 0.28 0.16 0.78 0.59
4 0.56 0.25 0.75 0.44 0.40 0.25 0.73 0.63
5 0.62 0.26 0.73 0.42 0.48 0.22 0.66 0.47
6 0.72 0.29 0.70 0.39 0.50 0.18 0.59 0.36
7 0.75 0.28 0.67 0.38 0.54 0.15 0.52 0.28
8 0.86 0.24 0.66 0.28 0.64 0.17 0.47 0.27
9 0.95 0.27 0.68 0.28 0.70 0.22 0.42 0.32
10 0.94 0.25 0.62 0.27 0.75 0.30 0.47 0.40
11 0.92 0.30 0.56 0.32 0.76 0.35 0.48 0.45
12 0.96 0.46 0.60 0.48 0.77 0.36 0.45 0.46
13 0.95 0.33 0.55 0.35 0.80 0.33 0.38 0.41
14 0.94 0.31 0.54 0.33 0.86 0.28 0.37 0.32
15 0.92 0.40 0.54 0.43 0.89 0.26 0.30 0.29
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Table XX: Volatility decomposition: No dividend re-investment (monthly data).

This table reproduces the monthly volatility decompositions as reported in Tables 2—4 of the paper, with the differ-
ence that the 12-month dividend growth rates are constructed under the assumption that dividends received during
the 12 months are not re-invested.

A: One state variable B: Three state variables

o(d, k o(d, k

k (months) o (r,k) o(d, k) o(dp,k) 8((7’: k:)) o(r,k) o(d,k) o(dp,k) 6—((7‘: k:))
12 0.12 0.01 0.88 0.12 0.13 0.14 0.88 1.10
24 0.22 0.00 0.78 0.01 0.23 0.09 0.80 0.38
36 0.29 0.02 0.72 0.07 0.31 0.12 0.76 0.38
48 0.34 0.02 0.66 0.07 0.41 0.22 0.72 0.54
60 0.41 0.01 0.57 0.02 0.45 0.20 0.64 0.44
72 0.46 0.00 0.50 0.00 0.46 0.14 0.57 0.31
84 0.52 0.00 0.43 0.00 0.52 0.13 0.50 0.25
96 0.58 0.00 0.38 0.01 0.59 0.16 0.45 0.26
108 0.63 0.00 0.31 0.01 0.65 0.23 0.42 0.36
120 0.66 0.00 0.28 0.01 0.69 0.29 0.47 0.43
132 0.70 0.00 0.24 0.00 0.71 0.33 0.47 0.46
144 0.71 0.02 0.21 0.02 0.72 0.31 0.42 0.44
156 0.74 0.03 0.18 0.04 0.74 0.29 0.38 0.39
168 0.77 0.03 0.14 0.04 0.79 0.25 0.36 0.32
180 0.82 0.04 0.09 0.05 0.84 0.24 0.31 0.28

C: LASSO D: Model averaging

o(d, k o(d, k

k (months) o (r,k) o(d,k) o(dp,k) Eir: k)) o(r,k) o(d,k) o(dp,k) 8Er: k))
12 0.19 0.21 0.91 1.10 0.13 0.15 0.88 1.13
24 0.35 0.25 0.85 0.72 0.23 0.09 0.81 0.39
36 0.48 0.27 0.81 0.57 0.31 0.12 0.76 0.39
48 0.58 0.28 0.79 0.49 0.41 0.22 0.72 0.55
60 0.68 0.26 0.75 0.39 0.45 0.20 0.64 0.44
72 0.75 0.28 0.78 0.37 0.47 0.15 0.57 0.31
84 0.79 0.28 0.76 0.35 0.52 0.13 0.51 0.26
96 0.89 0.30 0.73 0.33 0.60 0.16 0.45 0.27
108 0.88 0.35 0.72 0.39 0.66 0.23 0.42 0.34
120 0.86 0.35 0.69 0.40 0.70 0.29 0.48 0.42
132 0.88 0.42 0.67 0.48 0.71 0.34 0.48 0.48
144 0.88 0.47 0.62 0.53 0.72 0.33 0.43 0.46
156 0.89 0.45 0.59 0.51 0.74 0.30 0.38 0.41
168 0.86 041 0.52 0.47 0.79 0.27 0.36 0.34
180 0.89 0.33 0.52 0.38 0.84 0.24 0.30 0.29
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Table XXI: Volatility decomposition: Market re-investment of dividends (annual data).

This table reproduces the annual volatility decompositions as reported in Tables 2—4 of the paper, with the difference
that the 12-month dividend growth rates are constructed under the assumption that dividends received during the
12 months are re-invested at the market rate of return.

A: One state variable B: Three state variables
k o(r,k) o(d, k) o(dpk o(d.k) k) o(d, k) o(dpk a(d, k)
(years) J(T7 ) U( ) ) U( D, ) 8(T7 k) J(T7 ) U( ) ) U( Ps ) 3(7"7 k)
1 0.13 0.02 0.90 0.18 0.15 0.12 0.91 0.80
2 0.23 0.03 0.80 0.13 0.29 0.13 0.80 0.43
3 0.28 0.02 0.73 0.08 0.28 0.21 0.77 0.76
4 0.33 0.01 0.66 0.02 0.40 0.30 0.73 0.76
5 0.40 0.01 0.57 0.02 0.50 0.29 0.65 0.58
6 0.47 0.02 0.49 0.04 0.49 0.22 0.58 0.45
7 0.53 0.02 0.42 0.03 0.54 0.24 0.51 0.44
8 0.59 0.01 0.36 0.02 0.63 0.25 0.46 0.40
9 0.65 0.01 0.28 0.02 0.72 0.27 0.44 0.38
10 0.70 0.00 0.24 0.01 0.74 0.33 0.49 0.44
11 0.73 0.02 0.19 0.02 0.76 0.37 0.48 0.49
12 0.73 0.05 0.15 0.07 0.77 0.40 0.44 0.52
13 0.74 0.06 0.12 0.08 0.79 0.36 0.41 0.45
14 0.76 0.08 0.09 0.10 0.85 0.32 0.44 0.38
15 0.79 0.09 0.04 0.11 0.92 0.30 0.52 0.33

C: LASSO D: Model averaging

k(years) &(r,k) &(d,k) &(dp,k) ‘;((‘j 113 5(r,k) &(dk) &(dp,k) g((i ’]3
1 0.13 0.05 0.90 0.38 0.15 0.12 0.92 0.80
2 0.24 0.06 0.81 0.24 0.29 0.13 0.81 0.43
3 0.34 0.12 0.81 0.36 0.28 0.21 0.78 0.75
4 0.62 0.27 0.80 0.43 0.40 0.30 0.73 0.75
5 0.60 0.34 0.72 0.56 0.51 0.29 0.66 0.58
6 0.72 0.29 0.70 0.41 0.51 0.22 0.58 0.44
7 0.75 0.31 0.74 0.42 0.55 0.24 0.52 0.43
8 0.86 0.33 0.66 0.39 0.64 0.25 0.47 0.40
9 091 0.36 0.69 0.39 0.74 0.27 0.45 0.37
10 0.95 0.31 0.62 0.32 0.75 0.32 0.48 0.42
11 0.95 0.30 0.56 0.32 0.77 0.38 0.48 0.49
12 0.95 0.48 0.60 0.50 0.77 0.41 0.44 0.53
13 0.93 0.48 0.58 0.51 0.80 0.37 0.39 0.46
14 0.95 0.46 0.56 0.48 0.86 0.33 042 0.38
15 0.94 0.51 0.54 0.55 0.92 0.31 0.49 0.33
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Table XXII: Volatility decomposition: Market re-investment of dividends (monthly data).

This table reproduces the monthly volatility decompositions as reported in Tables 2—4 of the paper, with the differ-
ence that the 12-month dividend growth rates are constructed under the assumption that dividends received during
the 12 months are re-invested at the market rate of return.

A: One state variable B: Three state variables

o(d, k o(d, k

k (months) o (r,k) o(d, k) o(dp,k) 8((7’: k:)) o(r,k) o(d,k) o(dp,k) 6—((7‘: k:))
12 0.12 0.05 0.88 0.42 0.13 0.11 0.88 0.85
24 0.22 0.05 0.78 0.21 0.23 0.12 0.81 0.52
36 0.29 0.05 0.72 0.18 0.30 0.19 0.77 0.63
48 0.34 0.05 0.66 0.14 0.38 0.27 0.72 0.70
60 0.41 0.04 0.57 0.11 0.45 0.25 0.64 0.56
72 0.46 0.02 0.50 0.05 0.47 0.20 0.57 0.42
84 0.52 0.02 0.43 0.05 0.52 0.19 0.50 0.36
96 0.58 0.02 0.38 0.04 0.59 0.20 0.45 0.34
108 0.63 0.03 0.31 0.05 0.65 0.26 0.42 0.40
120 0.66 0.02 0.28 0.03 0.69 0.38 0.47 0.55
132 0.70 0.02 0.24 0.03 0.71 0.38 0.47 0.54
144 0.71 0.00 0.21 0.01 0.72 0.40 0.43 0.56
156 0.74 0.01 0.18 0.02 0.74 0.35 0.38 0.47
168 0.77 0.02 0.14 0.02 0.79 0.33 0.39 0.42
180 0.82 0.01 0.09 0.01 0.83 0.29 0.34 0.35

C: LASSO D: Model averaging

o(d, k o(d, k

k (months) o (r,k) o(d,k) o(dp,k) Eir: k)) o(r,k) o(d,k) o(dp,k) 8Er: k))
12 0.20 0.18 0.91 0.90 0.13 0.11 0.88 0.86
24 0.35 0.26 0.84 0.74 0.23 0.12 0.81 0.53
36 0.48 0.31 0.82 0.65 0.30 0.19 0.77 0.63
48 0.56 0.32 0.79 0.57 0.38 0.27 0.73 0.69
60 0.66 0.32 0.75 0.49 0.45 0.25 0.64 0.55
72 0.75 0.29 0.77 0.39 0.47 0.20 0.57 0.42
84 0.78 0.32 0.77 0.41 0.52 0.19 0.51 0.36
96 0.91 0.31 0.73 0.35 0.60 0.20 0.45 0.34
108 0.87 0.38 0.72 0.44 0.66 0.26 0.42 0.39
120 0.87 0.42 0.70 0.49 0.70 0.39 0.48 0.56
132 0.87 0.48 0.67 0.55 0.71 0.41 0.48 0.57
144 0.89 0.58 0.63 0.65 0.72 0.44 0.43 0.61
156 0.87 0.48 0.58 0.55 0.74 0.38 0.37 0.50
168 0.88 0.49 0.53 0.56 0.79 0.35 0.37 0.44
180 0.89 0.40 0.51 0.45 0.83 0.29 0.32 0.35
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