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of the fundamental value of the risky asset.  More informed trading, by resolving payoff 

uncertainty, makes price more informative but reduces the Sharpe ratio and distorts risk-

sharing.  However, due to information acquisition uncertainty, traders who become informed 

receive a net benefit in expected utility, which can dominate the aforementioned negative 

effects and improve welfare under certain market conditions. 
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1. Introduction

Two types of traders typically interact in a rational expectations equilibrium

(REE) model with asymmetric information, namely informed traders who receive a

private signal about the fundamental value of the risky asset and uninformed traders

who try to infer the private signal from the equilibrium price, which serves as a public

signal (Grossman and Stiglitz, 1980; Hellwig, 1980; Diamond and Verrecchia, 1981;

Admati, 1985). In the endogenous information equilibrium, the usual assumption

requires the expected utilities to be identical between informed and uninformed

traders, such that a trader would be indifferent to having to pay to observe the

private signal or stay uninformed. Under this assumption, a trader receives zero net

benefit in expected utility from becoming informed, since any utility gain is washed

out by the information acquisition cost. As a result, informed trading is often shown

to reduce welfare for two main reasons.

The first is the so called Hirshleifer effect.1 The idea is that more informed

trading brings the asset price closer to its fundamental value, thus distorting risk-

sharing among traders with idiosyncratic endowment shocks, leaving traders less

incentives to trade for risk-sharing and more incentives to hold on to their initial

endowments. The second is the risk-return effect (see Allen, 1984; Kurlat and

Veldkamp, 2015). Essentially, traders benefit from trading risky assets with high

risk and high return; however, more informed trading resolves payoff uncertainty

and turns the assets into investments with low risk and low return, which leads to

a lower Sharpe ratio. As pointed out by Goldstein and Yang (2017), “the common

theme of both channels is that disclosure harms investors through destroying trading

opportunities”. Consequently, in the standard (CARA-Normal type) REE models,

the only Pareto-efficient equilibrium is the no-informed-trading equilibrium, where

the access to private information is shut down.

1The name references Hirshleifer (1971) where the role of information in the framework of

technological uncertainty is discussed. Allen (1984) is the first to acknowledge the implications of

this effect for financial markets, especially in the context of exchange economies.
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This paper introduces information acquisition uncertainty and probabilistic choices

into an otherwise standard Grossman-Stiglitz type REE model with asymmetric in-

formation as a channel through which informed trading can be welfare-improving.

We show that the utility gain by becoming informed is offset but not completely

washed out by the information acquisition cost, leading to a positive effect on wel-

fare, which under certain market conditions can overcome the negative risk-return

and Hirshleifer effects and improve welfare.

In a standard REE model (e.g., Grossman and Stiglitz, 1980), a trader, by paying

a fixed cost, can choose to become informed with certainty. However, as pointed

out by Mattson and Weibull (2002), “in most real-life situations, the decision maker

cannot guarantee any desired outcome with a probability exactly equal to one”, which

is most likely to be the case in financial markets with highly complex and multi-

dimensional information structure.2 For example, a trader may decide to purchase an

analyst report, hoping to obtain some valuable information about the fundamental

value of the firm. Ex-post, the analyst report could turn out to be either informative

or completely useless. However, ex-ante, the trader expects a higher probability

of becoming informed by paying more for a more valuable report. In other words,

information acquisition is uncertain. That is, instead of paying to directly observe

the payoff-relevant information, traders pay to increase the probability of observing

the information, i.e., they make a probabilistic choice.

Our baseline model is the canonical REE model with CARA utility-maximizing

traders, where the asset payoff, private signal, and asset supply are normally dis-

tributed. To introduce information acquisition uncertainty, we assume each trader

chooses the probability pi ∈ [0, 1] to observe a private signal θ̃ on the payoff of the

2The role of multi-dimensional and complex information markets has been widely discussed

in recent literature. Among others, Zhang (2006) discusses information uncertainty and its role

in shaping prices, and Veldkamp (2006b) considers different information providers with different

prices/quality. Gorban, Obizhaeva and Wang (2018) assume the presence of high and low quality

signals and uncertainty about the number of high quality informed agents. Breugem and Buss

(2018) propose an information choice problem related to institutional investors.
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risky asset by paying a variable cost µ c(pi), where µ is a scalar and c(·) is an in-

creasing and convex function. Thus, the higher the probability of being informed,

the larger the cost the trader needs to pay.3

Our model can be separated in two stages. In the first stage, each trader chooses

strategically a probability p∗i to become informed. As a result, a certain (random)

fraction λ of traders will become informed, meaning that this fraction of traders

observes θ̃, whereas a fraction 1 − λ remains uninformed. In the second stage,

the financial market takes place; each trader forms an optimal portfolio conditional

on his information set and equilibrium price is determined by the market clearing

condition. Finally, the payoff is realized and consumption occurs.

In terms of the ex-post welfare, after traders’ types are realized, the expected

utility improves for those traders who observe θ̃, and worsens for those who do not.

We refer to this ex-ante potential benefit of becoming informed as the asymmetric-

information effect. Traders make their optimal decisions strategically in a Nash

equilibrium. In equilibrium, when the asymmetric-information effect dominates the

Hirshleifer and risk-return effects, the ex-ante welfare can potentially improve for

the overall economy from the no-informed-trading equilibrium. We derive necessary

and sufficient conditions under which welfare improvement occurs.

To disentangle the Hirshleifer effect from the risk-return and asymmetric-information

effects, we propose two formulations of the model. In the baseline model, we turn

off the Hirshleifer effect and consider a REE model with exogenous noise demand, in

which traders are pure speculators who provide liquidity. In this case, we find that

a lower Sharpe ratio and a less precise private signal (about the payoff information)

make welfare improvement from the no-informed-trading equilibrium more likely.

The intuition is as follows. Due to the CARA-Normal structure, both the expected

utility and Sharpe ratio of the uninformed trader’s optimal portfolio decrease faster

when the initial Sharpe ratio in the no-informed-trading equilibrium is relatively

high. In other words, the risk-return effect is stronger when there are more trading

opportunities at stake (measured by high Sharpe ratio in the no-informed-trading

3Note that the Grossman-Stiglitz model is a special case if we restrict traders’ probabilistic

choices to pi ∈ {0, 1}.
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equilibrium). On the other hand, a lower signal precision means that informed

trading resolves less payoff uncertainty and hence leads to a smaller utility gain, i.e.,

it weakens both the risk-return and asymmetric-information effects. However, we

will see that the former always dominates the latter.

Further analysis shows that when an increase in the fraction of the informed

traders, λ, improves welfare from the no-informed-trading equilibrium, there exists

a unique Pareto-optimal state, λ∗ ∈ (0, 1), where traders’ welfare is maximized,

i.e., the relationship between welfare and λ is hump-shaped. Moreover, λ∗ decreases

with higher signal precision, which is consistent with the above intuition that a

higher signal precision worsens the risk-return effect more than the enhancement of

the asymmetric-information effect. Furthermore, we show that the welfare attained

at λ∗ is not monotonically decreasing, but maximized for some intermediate level

of signal precision. Intuitively, an overly precise signal resolves too much payoff

uncertainty, which is detrimental to welfare. On the other hand, due to a weak

asymmetric-information effect, a signal precision close to zero also diminishes the

extent to which welfare can improve.

As pointed out by Bond and Garcia (2018), welfare analysis can be compromised

by the fact that demand of the noise traders is not explicitly modeled. We overcome

this issue by presenting a second formulation of the model, where the noise demand

is endogenized. In this setup, traders’ optimal demand consists of a speculative

component and a hedging component related to the presence of a trader-specific

endowment shock. Under this more general setting, we are able to capture the

Hirshleifer effect, in addition to the risk-return and asymmetric-information effects.

Intuitively, since informed-trading distorts risk-sharing, which matters more to

traders with a relatively large endowment shock (hedgers who demand liquidity),

more informed trading tends to be welfare-reducing, i.e., the Hirshleifer effect domi-

nates. On the other hand, for those traders with relatively small endowment shocks

(speculators who provide liquidity), since the Hirshleifer effect is relatively weak, in-

formed trading is more likely to be welfare-improving. In other words, more informed

trading can have different impacts on trader’s expected utility due to different re-

alizations of their endowment shocks. Different from the baseline model, there can
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be multiple Pareto-optimal equilibria. For example, the no-informed-trading equi-

librium is Pareto-optimal since it maximizes the welfare of those hedgers with large

endowment shocks. However, an asymmetric-information equilibrium can also be

Pareto-optimal since it maximizes the welfare of speculators with relatively small

endowment shocks.

As a policy implication, our findings suggest that by levelling the playing field, i.e.,

making private information inaccessible, one would eliminate both the risk-return

and asymmetric-information effects, pushing the economy closer to the no-informed-

trading equilibrium, which is not always Pareto-optimal (depending on the Sharpe

ratio and signal precision), especially for speculators who provide liquidity in the

market (either to noise or hedging demands). On the other hand, the no-informed-

trading equilibrium is more likely to be Pareto-optimal in a market with a relatively

high Sharpe ratio, e.g., developing and emerging markets.

Related Literature. Our paper is closely related to the literature regarding the

role of information on financial markets, which is more concerned about price effi-

ciency (how quickly and accurately prices reflect information) than the social value

of information (whether a more informative price benefits investors).4

After the pioneering works by Allen (1984) and Laffont (1985), in a more recent

contribution, Angeletos and Pavan (2007) use an abstract framework to unveil the

efficient use of information and the social value of information. They find that

whether increased reliance on public information and whether information is so-

cially valuable depend on the type of economy and information structure. Kurlat

4Though information disclosure can improve market quality and efficiency, it can also lead to

unintended consequences due to crowding-out of information production. The ambiguous role of

information disclosure has led to a large literature on complementarities in information acquisition,

including Goldstein and Yang (2015) on different pieces of information about asset value, and

Veldkamp (2006b) and Veldkamp (2006a) on the increasing returns to scale in information supply.

Since the seminal work by Diamond (1985), some recent contribution to the literature dealing

with the welfare consequences of information disclosure include Medrano and Vives (2004) on

inside trading, and Amador and Weill (2010) and Kondor (2012) on information crowding out or

distorting the use of other information. A recent review on the topic can be found in Goldstein

and Yang (2017).
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and Veldkamp (2015) examine the welfare implication of mandatory disclosure by

asset issuers to potential buyers about asset quality. They find that, even when

asset issuers bear of the cost of information and providing information improves risk

allocation, information acquisition can still be welfare-reducing, “simply because re-

solving risk reduces returns”. Similar to this paper, Dow and Rahi (2003) endogenize

noise trading by using endowment shocks as a risk-sharing motive for trading, in or-

der to have a framework for analyzing the welfare cost and benefit of speculation by

privately informed traders. The uninformed trader is assumed to be risk-neutral and

acts as a market maker. They also allow asset prices to affect corporate investment

decisions.

Other related work includes Bhattacharya and Nicodano (2001) who study whether

insider trading can improve risk-sharing among outsiders with stochastic liquidity

needs; Goldstein and Leitner (2018) who show that information disclosure may be

necessary to prevent market failure; Bond and Garcia (2018) who examine the wel-

fare consequences of indexing; Rahi and Zigrand (2018) who assume traders have

heterogeneous and interdependent private valuations for risky assets and find that

raising the cost of information that discourages information acquisition can make

all traders better off; and Gargano, Rossi and Wermers (2017) who provide empiri-

cal evidence that acquiring public information that is not widely available to other

agents in the market place can be profitable.

This paper contributes to this literature by showing that, when a trader’s decision

whether to acquire private information about the asset’s payoff becomes a strategic

probabilistic choice, informed trading can be welfare-improving in a standard REE

model with asymmetric information in a pure-exchange economy, without having to

add other trader types, heterogeneity in valuation, or other market frictions.

As said, we introduce uncertainty in information acquisition and assume traders

pay to increase their probability of being correctly informed. Put differently, we

can think about an information market where investors can have access to different

sources of information of different quality: the higher the quality, the higher the

probability of being informed.5 This endogenous information acquisition scheme

5For a different approach to modelling an information market, see Veldkamp (2006b).
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relates our paper to the literature on information games inspired by global games

(Morris and Shin, 2002).

Distinct from classical global games, the strategy of the players is expressed in

terms of the probability of being informed. With this respect, our model also re-

sembles literature on probabilistic choice models (Mattsson and Weibull, 2002) and

classical results in information theory (Hobson, 1969). In Mattsson and Weibull

(2002), an individual optimally makes an effort to deviate from the status-quo (a

reference probability) and change the likelihood of a finite set of possible scenarios

in order to get closer to implementing a more desired outcome. Given that the

reward is always higher for being informed than uninformed, traders choose their

optimal information acquisition strategy to maximize the trade-off between a higher

expected reward of being more informed and a higher cost.

We rephrase this game-theoretic setting as a monetary reduction of wealth to take

into account the information acquisition cost. We model a two-stage optimization

scheme based firstly on a strategic information game and secondly on a classical

mean and variance investment decision problem. We characterize a unique Nash

equilibrium in the probabilities of traders being informed and a noisy REE in as-

set pricing. Interestingly, in a recent contribution, Hoff and Stiglitz (2016) discuss

the importance of advancing the economic modelling background to allow for en-

dogenization of preferences and behaviors. They argue that an equilibrium of the

economy is a joint (endogenous) outcome expressed in terms of probability of types

and market prices. In this respect, our framework can be seen as a first attempt to

introduce endogenization of types into an otherwise standard exchange economy.

The structure of the paper is as follows. We first introduce the model and traders’

optimization problem and then characterize the equilibrium in Section 2. In Sec-

tion 3, we conduct a welfare analysis and explore the welfare improvement channel

through Sharpe ratio, information precision, and market risk premia. Section 4

extends the analysis to explicitly model trading motives as a possible route to en-

dogenous supply. Section 5 concludes and all the proofs and additional discussions

are collected in Appendices A and B.
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2. The Model

There is a continuum of homogenous (price-taking) traders, indexed by i ∈ (0, 1),

who can invest in two assets: a risk-free asset with the interest rate normalized to

zero, and a risky asset with price P̃ and payoff D̃ = d+ θ̃+ ε̃, where d is a constant,

θ̃ ∼ N (0, vθ) is a private signal that can be observed by informed traders, and

ε̃ ∼ N (0, vε) is the residual uncertainty after θ̃ is observed; θ̃ and ε̃ are independent.

We first introduce the following assumptions on the cost of information acquisition

and traders’ preferences.

A1. Each trader i pays a cost, µ c(pi), to observe the private signal θ̃ with a

probability pi ≥ 0, where c(p) is increasing and convex in p ∈ [0, 1] and µ > 0

is a constant sensitivity to information cost.6 If trader i becomes informed,

his information set is denoted by Fi = {θ, P}; otherwise Fi = {P}.

A2. Each trader has zero initial wealth. Thus, his future wealth is given by W̃i =

xi(D̃ − P̃ ) − µc(pi), where xi is the number of shares trader i holds in the

risky asset.

A3. Each trader maximizes E
[
−e−αW̃i

]
by choosing the optimal portfolio x∗i and

the optimal probability p∗i , where α is the absolute risk aversion coefficient,

A4. The risky asset has a random net supply of z̃ ∼ N (0, vz), which is unobserv-

able to traders, and independent from θ̃ and ε̃.7

We postulate that traders can make a probabilistic choice pi ∈ [0, 1] and pay a

variable cost µ c(pi). As we will see later, the uncertainty in information acquisition

has important implications on the social value of private information, i.e., the impact

of private information gathering activities on traders’ welfare.

2.1. Information Acquisition Uncertainty and Trading. There are three dates,

t = 0, 1, 2. At date t = 0, each trader i strategically chooses a probability p∗i to ob-

serve θ̃ and pays the cost µ c(p∗i ). We refer to this stage as the information game.

Next, at date t = 1, a Boolean random variable ω̃i is drawn independently for each

6Starting from Section 3, for tractability in the welfare analysis, we will take c(p) = p2 as a

benchmark case.
7In Section 4, we model the behaviour of liquidity/noise traders explicitly using endowment

shocks. For the baseline model in this section, we simply assume a noisy supply.
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trader i with P(ω̃i = 1) = p∗i and P(ω̃i = 0) = 1 − p∗i . If ω̃i = 1, the trader ob-

serves θ̃ and becomes informed (type I). Otherwise, ω̃i = 0; the trader does not

observe θ̃ and remains uninformed (type U). Then, depending on his type, each

trader chooses his optimal demand x∗i in the risky asset. Finally, at date t = 2,

supply shock z̃ is realized, P̃ is determined by the market clearing condition, and

each trader receives his allocation of shares in the risky asset. Then, the payoff D̃

is realized and consumption occurs.

2.2. Probabilistic and Portfolio Choices. Concerning portfolio choice, since the

payoff is normally distributed (and the information cost µ c(p), as a sunk cost, does

not affect the investment strategy), the standard solution for trader i’s optimal

holding of the risky asset is given by

x∗i =


x∗I(θ, P ) =

E[D̃ − P |θ, P ]

αVar[D̃ − P |θ, P ]
, Fi = {θ, P};

x∗U(P ) =
E[D̃ − P |P ]

αVar[D̃ − P |P ]
, Fi = {P}.

(2.1)

As for information acquisition, by taking into account the associated cost, trader

i makes a probabilistic choice pi to maximize

U(pi;λ) ≡ [piVI(λ) + (1− pi)VU(λ)] eαµc(pi), (2.2)

where λ =
∫ 1

0
ωi di is a state variable representing the market fraction of informed

traders who observe θ̃, and

VI(λ) = E
{
E
[
−e−αx∗I (θ,P )(D̃−P )

∣∣∣θ, P]} , VU(λ) = E
{
E
[
−e−αx∗U (P )(D̃−P )

∣∣∣P]}
are the maximum expected utilities of the informed and uninformed attainable by

the optimal portfolios x∗I(θ, P ) and x∗U(P ), respectively.8 Note that VI(λ) and VU(λ)

depend on λ since the equilibrium price P̃ itself depends on λ.9 Also, we assume

traders take λ as given, or more precisely, each trader forms an expectation about the

whole vector (pj)j∈(0,1); thus traders’ probabilistic choices result in a non-cooperative

strategic game.

8The inner expectation is conditional on the realized signal θ and price P , whereas the outer

expectation is taken over all possible realizations of θ̃ and P̃ .
9More precisely, in equilibrium, Pλ = hλ(θ̃, z̃) is a random variable, where hλ is a deterministic

function depending on λ.
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Two technical lemmas for market equilibrium are now stated; the first provides

the solution to traders’ optimal portfolio and information acquisition decisions given

the market fraction λ. This result is based on the first order condition argument.

The second lemma provides a concavity (second order) condition ensuring that the

optimization problem (2.2) is well-defined. For convenience, we denote by

γ(λ) = 1− VI(λ)

VU(λ)
, 0 < γ(λ) < 1, (2.3)

the relative utility gain of becoming informed (by observing θ̃). We also introduce the

following notations, vx ≡ Var[x̃], vx|F ≡ Var[x̃|F ], σx,y ≡ Cov[x̃, ỹ], βx,y ≡ σx,y/vx

and ρx,y ≡ σx,y/
√
vxvy for any two normally distributed random variables (x̃, ỹ) and

information set F . Following the noisy REE literature (Admati, 1985; Admati and

Peiderer, 1987), we postulate a linear price

P̃ = d+ bθθ̃ − bz z̃, (2.4)

where bθ and bz are two positive coefficients to be determined in equilibrium.

Lemma 2.1. Assume that traders’ expected utility is concave in pi and that price

P is given by (2.4). Then

(i) trader i’s optimal demand in the risky asset is given by

x∗i =

 x∗I(θ, P ) = d+ θ − P
αvε , ωi = 1;

x∗U(P ) = d− P
αvU , ωi = 0,

(2.5)

where

vU =
vε + vθ|P
1− βP,θ

, vθ|P = (1− ρ2
θ,P )vθ, βP,θ =

σθ,P
vP

;

(ii) the expected utility of trader i, conditional on type k ∈ {I, U}, is given by

Vk(λ) = − 1√
1 + ξk(λ)

, (2.6)

where

ξI(λ) =
(1− b2

θ)
2vθ + b2

zvz
vε

, ξU(λ) =
(1− βP,θ)(b2

θvθ + b2
zvz)

vU
;
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(iii) trader i’s optimal choice of probability to be informed is given by

p∗i = g−1

(
1

αµ

γ(λ)

1− λγ(λ)

)
, (2.7)

where g(pi) = c′(pi) and g−1 is the inverse function of g.

Assuming that the trader’s optimization problem is well-defined (i.e., U(pi;λ) is

concave in pi), (2.5) gives the optimal demand and (2.6) defines the value function

of both the informed (ωi = 1) and uninformed (ωi = 0), while (2.7) provides the

optimal probabilistic choice to observe θ̃. In particular,

ξk(λ) ≡ vχk
vD|Fk

, χk = E[D̃ − P̃ |Fk], vχk = Var(χk) = Var
{
E[D̃ − P̃ |Fk]

}
.

χk and vχk are the conditional risk premium and the variance of the conditional risk

premium, and therefore ξk(λ) measures the squared Sharpe ratio a trader of type

k expects from his portfolio, which directly affects the value function Vk(λ). More

explicitly, for both informed and uninformed traders, their value functions increase

in the respective Sharpe ratios of their optimal portfolios. This relationship helps

to explore the risk-return effect for the welfare analysis.

For convenience, we introduce two new parameters:

n =
vθ
vε
, ξ0 = α2vzvD. (2.8)

Parameter n measures the informativeness or precision of the private signal. Con-

cerning the latter, it can be verified that ξ0 = ξU(0), representing the squared Sharpe

ratio of the uninformed when λ = 0.

Lemma 2.2. Concerning the function U(pi;λ) defined in (2.2);

(i) it is concave in pi, i.e., U ′′(pi;λ) < 0, if and only if

γ(λ)

g(λ)

[
2g(λ)

1− piγ(λ)
− g(pi)

1− λγ(λ)

]
≤ g′(pi)

g(pi)
, for all pi ∈ [0, 1]; (2.9)

(ii) a sufficient condition for U ′′(pi;λ) < 0, λ ∈ [0, 1], is given by

γ(λ) <
1

2
min
pi∈[0,1]

{(
g(pi)

g′(pi)
+
pi
2

)−1
}

; (2.10)
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(iii) for c(pi) = p2
i , (2.10) simplifies to γ(λ) < 1/3 which holds for all λ ∈ [0, 1]

as soon as

n <
5

4
. (2.11)

Several features of Lemma 2.2 deserve comments since they are essential in shap-

ing the market equilibrium. First, note that although the general condition (2.9)

is rather involved, the sufficient condition in the case of quadratic cost is simply

expressed in terms of signal precision n not exceeding a threshold of 5/4.

Secondly, as soon as one of the concavity conditions in Lemma 2.2 is met, the

optimal probability in (2.7) is the same for all traders, i.e., p∗i = p∗ for i ∈ (0, 1).

In this respect, the (endogenously determined) cost µ c(p∗) paid for information

acquisition is the same for all traders. Having said that, the traders’ optimization

problem differs significantly from that analyzed in Grossman and Stiglitz (1980),

which has the following solution,

p∗ =

 0, γ(λ) < 1− e−αĉ;

1, γ(λ) > 1− e−αĉ,
(2.12)

where ĉ is a fixed cost.

Note that in (2.12), information equilibrium requires γ(λ) = 1 − e−αĉ or equiv-

alently VI(λ)eαĉ = VU(λ). In other words, in the Grossman-Stiglitz model without

information uncertainty, any utility gain from becoming informed is offset completely

by the cost of information acquisition and welfare is simply measured by VU(λ) for

both informed and uninformed traders. In contrast, when traders make strategic

probabilistic choices under information acquisition uncertainty, the expected util-

ity after cost satisfies U(p∗i , λ) ≥ U(0, λ) = VU(λ). Therefore, having information

acquisition uncertainty improves the overall welfare level in comparison to that in

Grossman and Stiglitz (1980).

As aforementioned, the optimization scheme of information acquisition and port-

folio choice for trader i can be separated in two stages and solved using backward

induction. At date t = 1, trader i’s type is revealed, thus his portfolio choice x∗i ,

given his type, can be determined by (2.5) and the value functions, VI(λ) and VU(λ),

can be computed given the price coefficients bθ and bz which are both functions of
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the state variable λ in equilibrium. At date t = 0, traders play the information

game: by averaging the likelihood of becoming informed and forming an expecta-

tion about other traders’ actions, traders strategically choose optimal strategies,

(p∗i )i∈(0,1). Finally, to close the model, we require λ =
∫ 1

0
p∗i di = p∗, i.e., the market

fraction of informed traders must be consistent with traders’ strategic probabilistic

choices in the Nash equilibrium.

2.3. Information and Asset Market Equilibria. Before characterizing the in-

formation and asset market equilibria, we first define equilibrium in our baseline

model.

Definition 2.1. We say that the probabilities p∗ = (p∗i )i∈(0,1), (expected) market

fraction of informed traders, λ, and price P̃ of the risky asset are in equilibrium if

(i) p∗ = (p∗i )i∈(0,1) is a Nash equilibrium, meaning that for every i ∈ (0, 1),10

U(p∗i ;λ) ≥ U(pi;λ) for all pi ∈ [0, 1];

(ii) the following consistency condition is satisfied 11

λ = E
[∫ 1

0

ω∗i di

]
=

∫ 1

0

p∗i di, (2.13)

here ω∗i is the random variable associated with the optimal probability p∗i ;

(iii) the price P̃ satisfies market clearing condition∫ 1

0

x∗i di = λx∗I(θ, P ) + (1− λ)x∗U(P ) = z̃, (2.14)

where x∗I(θ, P ) and x∗U(P ) are given in (2.5).

With the above definition, we now characterize the following REE on the fraction

of informed traders and market price.

Proposition 2.3. Assume condition (2.9) holds. Then,

10With a slight abuse of notation, we write U(pi;λ) in place of U(pi; p
∗
−i), where p∗−i = (p∗j )j 6=i.

Indeed, the only payoff-relevant variable for the information game is λ; moreover, having a contin-

uum of traders, the contribution of trader i on the realization of λ is negligible.
11At the equilibrium, the expectations are realized so that the fraction of informed, λ, exactly

matches the value expected by the traders when using the revealed vector of probabilities p∗.
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(i) the equilibrium market fraction of informed traders is determined by

λ = g−1

(
1

αµ

γ(λ)

1− λγ(λ)

)
; (2.15)

(ii) the linear equilibrium price of the risky asset is given by

P̃ = d+ bθθ̃ − bz z̃, (2.16)

where

bθ =
λv̄

vε
, bz = αv̄, (2.17)

and
1

v̄
=
λ

vε
+

1− λ
vU

, vU = vD

(
1 +

nλ

ξ0

)
. (2.18)

As previously argued, under the mild concavity conditions stated in Lemma 2.2,

the optimal probabilistic choices p∗i for all i ∈ (0, 1) collapse to the same value p∗,

which is the solution to (2.7). Moreover, by virtue of (2.13), we have that λ = p∗.

Note that, from (2.15), there exists a unique cost coefficient µ that satisfies the

equilibrium condition for a given λ, i.e., in equilibrium we must have

µ =
1

αg(λ)

γ(λ)

1− λγ(λ)
. (2.19)

Concerning the existence and uniqueness of the Nash equilibrium with respect to

parameter µ, intuitively, λ → 0 as µ → ∞; λ = 1 when µ is small enough; other-

wise λ ∈ (0, 1). Therefore the equilibrium λ decreases in µ. The following result

provides a sufficient condition on the uniqueness.12 This relationship between the

cost sensitivity µ and equilibrium level of informed trading λ helps to provide some

policy implications from our findings.

Corollary 2.2. For n < 5
4

and µ > µ̄ := 1
2α

γ(1)
1−γ(1)

, the equilibrium λ as expressed in

(2.15) is unique and decreasing in µ. Therefore, under these conditions, there exists

a unique equilibrium (P, λ) in the economy where λ ∈ (0, 1) solves (2.15) and P is

given by (2.16).

12In Appendix B, we provide more general sufficient conditions for the uniqueness to keep our

discussion focused on welfare analysis and market implications. In principle, there could be multiple

equilibria in λ for the fixed point argument (2.15) even if the optimization problem is well-defined

in p∗. We leave this intriguing discussion on multiple equilibria for future research.
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A final remark on the perceived aggregate risk as expressed by (2.18): the per-

ceived risk is vε for the informed and vU for the uninformed, which is even larger

than the total payoff risk vD. The additional component characterizes the adverse

selection risk born by the uninformed, which always increases in the level of in-

formed trading λ and is amplified by high information precision n and low Sharpe

ratio ξ0. Therefore, for the uninformed traders, due to the adverse selection, the

total payoff risk is amplified by a factor of (1+nλ/ξ0). Moreover, the aggregate risk

v̄ is a harmonic mean of the perceived risks of informed and uninformed traders.

These observations will help us to better understand the underlying mechanism by

which asymmetric information and informed trading affect traders’ welfare.

3. Welfare Analysis

By virtue of (2.19), we can measure traders’ welfare as a function of the state

variable λ only, i.e.,

W(λ) ≡ U(λ;λ) = V̄ (λ)eΦ(λ), (3.1)

where

V̄ (λ) = λVI(λ) + (1− λ)VU(λ), Φ(λ) =
c(λ)

g(λ)

γ(λ)

1− λγ(λ)
.

We now use (3.1) to conduct a welfare analysis. Interestingly, as it will become clear

later, VI , VU and Φ (hence, the welfare function W itself), in addition to λ, only

depend on n and ξ0 as defined in (2.8).

We have noted that, at the individual level, a trader who makes a strategic choice

about the probability of becoming informed, i.e., pi, is able to achieve better welfare

than in the Grossman-Stiglitz model. Thus, in equilibrium,

W(λ) ≥ Ŵ(λ) ≡ VU(λ).

Next, we examine the impact of more informed trading, i.e., an increase in λ, on

traders’ welfare improvement. For tractability, we choose c(p) = p2. Thus, from

(3.1), the change in welfare is determined by

W ′(λ) = eΦ(λ)

(
[VI(λ)− VU(λ)] + [λV ′I (λ) + (1− λ)V ′U(λ)] + Φ′(λ)V̄ (λ)

)
, (3.2)
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where

Φ(λ) =
λ

2

γ(λ)

1− λγ(λ)
.

Equivalently, we have from (3.2) and (3.1) the following decomposition on the rate

of change in welfare,

W ′(λ)

−W(λ)
=
λV ′I (λ) + (1− λ)V ′U(λ)

−V̄ (λ)︸ ︷︷ ︸
risk-return effect

+
VI(λ)− VU(λ)

−V̄ (λ)︸ ︷︷ ︸
asymmetric-information effect

+
[
− Φ′(λ)

]︸ ︷︷ ︸
marginal cost

.

(3.3)

In the following, we analyze each of the three components in (3.3) and character-

ize the conditions under which more informed trading can actually lead to welfare

improvement.

3.1. Risk-Return Effect. Informed trading makes the price more informative,

which resolves payoff uncertainty and also reduces the conditional risk premium

for the uninformed traders. As Kurlat and Veldkamp (2015) explain, “decreasing

risk lowers the equilibrium return and systematically raises the assets average price.

For welfare, this means that information reduces the assets risk, but also implies

lower return. With exponential utility and normally distributed payoffs, the return

effect always dominates.” Indeed, we show in the following lemma that an increase

in the state variable λ, which measures the level of informed trading, reduces the

Sharpe ratios for both informed and uninformed traders, which in turn reduces their

expected utilities.

Lemma 3.1. After information acquisition uncertainty is resolved, i.e., trader types

are realized, the square Sharpe ratios as functions of the state variable λ can be

written as

ξI(λ) =
1 + ξU(λ)

η(λ)
− 1, ξU(λ) =

ξ2
0 (nλ2 + ξ0)

[n(1 + n)λ2 + (1 + nλ)ξ0]2
, (3.4)

where

η(λ) ≡
(
VI(λ)

VU(λ)

)2

= 1− nξ0

(1 + n)(ξ0 + nλ2)
< 1.

Moreover, ξ′I(λ) < 0, ξ′U(λ) < 0 and ξI(λ) > ξU(λ).
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Next, we examine the magnitude of the risk-return effect, and its dependence on

the signal precision n and (square) Sharpe ratio ξ0. We focus on the benchmark

case with no informed trading, i.e., λ = 0, which is the best-case scenario in regards

to welfare in the Grossman-Stiglitz model.

The change in the Sharpe ratio is given by

ξ′U(λ) = ξU(λ)

[
v′χU (λ)

vχU (λ)
−
v′D|P (λ)

vD|P (λ)

]
.

In the benchmark case when λ = 0, we have

v′χU (0)

vχU (0)
= −2n, v′D|P (0) = 0, and ξ′U(0) = −2nξ0.

Furthermore, the risk-return effect, measured at λ = 0, is given by

lim
λ→0

λV ′I (λ) + (1− λ)V ′U(λ)

−V̄ (λ)
=

V ′U(0)

−VU(0)
= −2nξ0︸ ︷︷ ︸

ξ′U (0)

× 1

2(1 + ξ0)︸ ︷︷ ︸
V ′U (ξ0)/VU (ξ0)

. (3.5)

From (3.5), the risk-return effect is made up of two components. The first component

is the reduction in the square Sharpe ratio, which is more severe when signal precision

n and the benchmark Sharpe ratio ξ0 are high. The second component measures the

proportional change in the expected utility due to the change in the square Sharpe

ratio ξ0, which is actually decreasing in ξ0 since the value function VU(ξ0) is concave.

Overall, in terms of its dependence on ξ0, the first component always dominates the

second component.

Furthermore, the Sharpe ratio decreases faster and hence the negative risk-return

effect on welfare is more severe with more informed trading when the private signal

is more precise (informed trading resolves more payoff uncertainty) and when the

initial Sharpe ratio is higher (more trading opportunities at stake).

Note that, because of the risk-return effect, traders’ welfare in Grossman and

Stiglitz (1980) and Allen (1984) is strictly decreasing with the level of informed

trading, i.e., Ŵ ′(λ) = V ′U(λ) < 0.

3.2. Asymmetric-Information and Marginal Cost Effects. The second com-

ponent in (3.3) measures the relative utility gain by becoming informed, which
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we refer to as the asymmetric-information effect. When the positive asymmetric-

information effect dominates the negative risk-return effect, more informed trading

leads to welfare improvement. In addition, we must also take into account the mar-

ginal cost of information acquisition, measured by Φ′(λ), which is positive when the

level of informed trading is low. In fact, in the no-informed-trading equilibrium, we

can show that

VI(0)− VU(0)

−V̄ (0)
= 1−

√
1

1 + n
, Φ′(0) =

1

2

(
1− 1√

1 + n

)
.

Therefore, in this case, the asymmetric-information effect is halved by the marginal

cost of information acquisition, however the net asymmetric-information effect re-

mains positive. This implies that, in general, depending on the trade-off between

the risk-return and the net asymmetric-information effects, more informed trading

can be welfare improving.

It is interesting to note that, different from the risk-return effect, the net asymmetric-

information effect at λ = 0 only depends on the signal precision n, not the Sharpe

ratio ξ0, in the sense that regardless of how much trading opportunities are at stake,

the relative utility gain by becoming informed is the same.

As a comparison, the welfare in the Grossman-Stiglitz model can be written as

Ŵ(λ) = λVI(λ)eΦ̂(λ) + (1− λ)VU(λ), Φ̂(λ) ≡ − ln

(
VI(λ)

VU(λ)

)
and

Ŵ ′(λ) = eΦ̂(λ)VI(λ)− VU(λ)︸ ︷︷ ︸
asymmetric-information effect

+λeΦ̂(λ)V ′I (λ) + (1− λ)V ′U(λ)︸ ︷︷ ︸
risk-return effect

+λeΦ̂(λ)Φ̂′(λ)VI(λ)︸ ︷︷ ︸
marginal cost

.

(3.6)

From (3.6) the asymmetric-information effect in the Grossman-Stiglitz model is zero,

since the equilibrium requires the expected utilities of the informed and uninformed

traders to be identical. Moreover, the marginal cost effect is positive. Since the

information acquisition cost is fixed, cost must reduce to incentivize more traders

to become informed. Unfortunately, the positive marginal cost effect is not enough

to offset the negative risk-return effect, and thus welfare is always decreasing in

the level of informed trading, i.e., Ŵ ′(λ) < 0. In other words, cheaper access to

information intensifies informed trading, which resolves payoff uncertainty leading
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to a lower Sharpe ratio (for uninformed traders), thus actually harming traders’

welfare.

Different from above, due to information acquisition uncertainty, traders pay a

variable cost µ c(p∗) depending on their optimal probabilistic choice p∗, which is

equal to λ in equilibrium. In this case, cheaper access to information is reflected by

a reduction in µ. However, a drop in µ leads to higher p∗ = λ, which can actually

increase the overall cost paid, i.e., Φ′(λ) > 0, especially when λ ≈ 0. Moreover,

the negative marginal cost effect and risk-return effect are offset by the asymmetric-

information effect, which is strictly positive.

To understand the difference with Grossman and Stiglitz (1980) and Allen (1984),

in the current model every trader pays a cost µ c(p∗) for a probability p∗ to observe

θ̃. As a result, ex-post after trader types are revealed, the informed traders are

strictly better off than the uninformed traders, i.e., VI(λ)eαµ c(p
∗) > VU(λ)eαµ c(p

∗),

while their ex-ante expected utilities are the same, which equals to U(p∗;λ). In other

words, under information acquisition uncertainty, utility gain by becoming informed

is not entirely washed out by the cost, thus providing a channel through which more

informed trading can potentially lead to welfare improvement.

3.3. Necessary and Sufficient Condition for Welfare Improvement. We

now provide the necessary and sufficient conditions under which the asymmetric-

information effect dominates the risk-return and marginal cost effects, and hence

more informed trading leads to a welfare improvement.

Proposition 3.2. In equilibrium, traders’ welfare is increasing in the fraction of

informed traders, i.e., W ′(λ) ≥ 0, if and only if

V ′U(λ)

VU(λ)
=
−ξ′U(λ)

1 + ξU(λ)
≤ 1

2

[1− 2λγ(λ)][γ(λ) + λγ′(λ)]

[1− λγ(λ)]2
; (3.7)

In particular, at λ = 0, W ′(0) ≥ 0 if and only if

V ′U(0)

VU(0)
=

nξ0

1 + ξ0

≤ 1

2
γ(0) =

1

2

(
1− 1√

1 + n

)
. (3.8)

Proposition 3.2 provides the general necessary and sufficient condition for wel-

fare improvement. First, when λ ∈ [0, 1] condition (3.7) requires the proportional

change in the expected utility of the uninformed due to informed trading to be small
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enough. That is, characterized by the relative change in the Sharpe ratio, the risk-

return effect must be sufficiently weak, which, as previously discussed, occurs when

the signal precision and the benchmark Sharpe ratio in the no-informed-trading

economy, measured by n and ξ0 respectively, are low.

The condition becomes more transparent in the benchmark economy with no

informed trading, i.e., when λ = 0. In this case, a lower ξ0 weakens the risk-return

effect and unambiguously makes welfare improvement more probable. On the other

hand, the effect of n is more subtle. A lower n weakens the risk-return effect, but

at the same time also weakens the asymmetric-information effect. To examine the

net effect of n, we can rewrite the condition in (3.8) as

ξ0 ≤
1

1 + 2
(
n+
√

1 + n
) . (3.9)

Therefore, the net effect of a lower n on the potential of informed trading to improve

welfare is positive in the benchmark economy with no informed trading. In other

words, a less precise signal weakens the risk-return effect more than it weakens the

asymmetric-information effect. From the condition in (3.9), we obtain next more

explicit sufficient and necessary conditions on welfare improvement.

Corollary 3.1. On the welfare improvement, suppose condition (2.11) is met, then

(i) if ξ0 < 2/13, then W ′(0) > 0;

(ii) if ξ0 > 1/3, then W ′(0) < 0.

Corollary 3.1 shows that the benchmark Sharpe ratio ξ0, which measures the

amount of trading opportunities at stake, plays a more important role than the signal

precision n, which measures how much payoff uncertainty is resolved by informed

trading. Corollary 3.1 (i) shows that a sufficiently small Sharpe ratio ξ0 (< 2/13)

ensures welfare improvement from the benchmark case with no informed trading,

whereas Corollary 3.1 (ii) shows that informed trading is always detrimental to

welfare when the Sharpe ratio ξ0 is too high (> 1/3).

Moreover, since we know that W(0) >W(1), if W ′(0) > 0, there exists a Pareto-

optimal state λ∗ > 0, such that W(λ) ≤ W(λ∗) for λ ∈ [0, 1]. We examine the

properties of the Pareto-optimal state λ∗ in the following numerical analysis.
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3.4. Pareto Optimal State. To better understand how welfare improvement and

Pareto optimality depend on (n, ξ0), we conduct a numerical analysis and depict

the results in Figure 3.1. Panel (A) plots the parameter regions Ω(λ) expressed in

terms of (n, ξ0) corresponding to a welfare improvement, W ′(λ) > 0, with the given

equilibrium λ. Note that, on the boundary of the improvement region, we have

W ′(λ∗) = 0.
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0.0
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0.6

0.8

1.0
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n=0.14, λ*=0.15 n=0.02, λ*=0.20

Figure 3.1. Panel (A) shows the region marked by {n, ξ0} in which

W ′(λ) > 0 for a given λ. Panel (B) shows W(λ) for 0 ≤ λ ≤ 1, where

ξ0 = 0.05 and n is chosen in such a way that W ′(λ∗) = 0.

Two remarks are needed. First, consistent with the analytical results in the

benchmark economy with no-informed trading, welfare improvement is more likely

to occur when signal precision n and benchmark Sharpe ratio are low for any given

λ, as Panel (A) shows that the welfare improvement region Ω(λ) shrinks in both

n and ξ0. Second, Ω(λ) is also shrinking in λ, i.e., Ω(λ1) ⊂ Ω(λ2) for λ1 > λ2.

Generalizing this argument, numerical results suggest that welfare improves if and

only if W ′(0) > 0.

Overall, at a low level of informed trading λ, the positive asymmetric-information

effect is more likely to dominate the risk-return effect. Therefore, more informed

trading leads to welfare improvement when both precision of private signal and

trading profitability (measured by the Sharpe ratio) are low.
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Regarding the welfare function, in Figure 3.1 Panel (B), we fix ξ0 = 0.05 and

choose different n on the boundary of the regions plotted in Panel (A) for different

values of λ∗ such that W ′(λ∗) = 0. The different plots of W(λ) in Panel (B) show

that λ∗ indeed represents the unique Pareto-optimal state, under which traders’

welfare is maximized. 13 The hump-shaped welfare functions once again corroborate

our previous observation related to Panel (A): traders’ welfare improves at some

informed trading level λ ∈ (0, 1) if and only if W ′(0) > 0.

Moreover, with ξ0 fixed, the Pareto-optimal λ∗ is lower for higher signal precision

n. Thus, with higher signal precision, traders experience a larger welfare improve-

ment at a low informed trading level (in which a smaller fraction of the population

becomes informed due to a higher sensitivity µ to the cost). In other words, if the

private signal is very informative and resolves a large part of the uncertainty, the

no-informed-trading equilibrium with λ∗ = 0 is more likely to be Pareto-optimal.

On the level of the welfare improvement, Table 1 shows welfare comparison be-

tween informed-trading and no-informed-trading equilibria, i.e.,W(λ∗)−VU(0), and

the corresponding welfare loss, VU(λ∗) − VU(0), due to the risk-return effect, for

different levels of the Pareto-optimal λ∗. We observe that welfare W(λ∗) at the

Pareto-optimal state does not monotonically increase with λ∗. In fact, W(λ∗) has

a hump-shaped relationship with n. Therefore, there exists an optimal signal preci-

sion, n∗, for which the welfare function is maximized given the Sharpe ratio ξ0.

In terms of policy implications, our findings suggest that by levelling the playing

field, i.e., reducing the level of informed trading by increasing the cost of acquiring

private information, one eliminates both the risk-return and asymmetric-information

effects, which is not always Pareto-optimal. In many scenarios where acquiring

information is very costly (so that the informed trading level in market equilibrium

is low), encouraging more informed trading (by lowing the cost) can actually lead

to welfare improvement, especially when the Sharpe ratio is relatively low and the

information signal precision is at the optimal level.

13As already said, by letting µ vary, we obtain a continuum of equilibrium values λ ∈ [0, 1].

Among those values, a unique λ∗ maximizes the welfare function W. Of course, λ∗ is related to a

unique value of cost sensitivity, given by µ∗ = 1
αg(λ∗)

γ(λ∗)
1−λ∗γ(λ∗) .
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λ∗ 0.05 0.10 0.15 0.20

n 0.91 0.39 0.14 0.02

W(λ∗)− VU(0) 20.8 25.9 18.2 3.9

VU(λ∗)− VU(0) -43.2 -41.9 -26.4 -5.7

Table 1. Welfare improvement W(λ∗) − VU(0) (in basis points)

compared with the welfare loss VU(λ∗)− VU(0) due to the risk-return

effect, for different levels of Pareto-optimal λ∗. Here, ξ0 = 0.05.

Furthermore, Table 1 shows that by ignoring the asymmetric-information effect,

one could potentially underestimate traders’ welfare by a significant amount. For

example, for the case of λ∗ = 0.10 (n = 0.39), the risk-return effect leads to a

welfare loss of 42 basis points (bps); however, there is actually an overall welfare

improvement of 26 bps. Note that, since W(λ) > VU(λ), a λ fraction of the traders

become informed at t = 1 with expected utility VI(λ)eΦ(λ) > VU(λ) and a 1 − λ

fraction remains uninformed with expected utility VU(λ)eΦ(λ) < VU(λ). Therefore,

ex-post, at time t = 1, some traders will be worse off than not paying any cost

for acquiring information while others will be better off. However, the traders are

overall better off. For example, back to the case of λ∗ = 0.10 (n = 0.39), we

have VI(λ)eΦ(λ) − VU(λ) = 1302 bps and VU(λ)eΦ(λ) − VU(λ) = −69 bps, thus the

asymmetric-information effect is V̄ (λ)eΦ(λ) − VU(λ) = 68 bps, which overcomes the

risk-return effect (−42 bps).

3.5. Relationship between Welfare Improvement and Risk Premium. In

this subsection, we try to draw a connection between the condition for the welfare im-

provement and the expected liquidity cost of the noise demand, E
[
−z̃P̃

]
= (αv̄)vz,

which is the product of the risk premium αv̄ and the variance of the noise de-

mand. Recall that the aggregate (weighted) risk prevailing in the economy, defined

in (2.18), has the following form v̄(λ) =
(
λ/vε + (1− λ)/

[
vD

(
1 + nλ

ξ0

)])−1

. Follow-

ing the discussion of Proposition 2.3, we know that v̄(λ) is not necessarily decreasing

in λ and the total risk faced by the uninformed traders is larger than the uncon-

ditional variance of the payoff. Intuitively, more informed trading reduces payoff

uncertainty; however, it increases adverse selection risk for the uninformed traders,
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who trade less aggressively knowing that price contains valuable information. The

adverse selection risk is then amplified by a low Sharpe ratio ξ0. Since the total risk

is a harmonic mean of the perceived risks of informed and uninformed traders, it is

dominated by adverse selection risk when λ is low, and more informed trading can

increase the risk premium, i.e., v̄(λ) > vD when λ is low. The next corollary pins

down the conditions for this situation to occur and also its connection with welfare

improvement.

Corollary 3.3. On the aggregate risk v̄,

(i) when ξ0 > 1, it decreases in λ;

(ii) when ξ0 ≤ 1, it increases in λ if and only if λ ≤ 1
n

[√ ξ0(n+ξ0)
1+n

− ξ0

]
.

Corollary 3.3 shows that when the Sharpe ratio is relatively large (ξ0 > 1), more

informed trading always reduces risk premium and thus the expected liquidation cost

E
[
−z̃P̃

]
, i.e., v̄′(λ) < 0. In this case, since we know that the no-informed-trading

equilibrium with λ = 0 is Pareto-optimal (see Corollary 3.1 (ii)), more informed

trading also reduces traders’ welfare, i.e., W ′(λ) < 0. Therefore, in order for more

informed trading to improve traders’ welfare, i.e., the Pareto-optimal state λ∗ > 0, it

is necessary to have v̄′(λ) > 0, which requires the adverse selection component of the

aggregate risk to dominate when the level of the informed trading is low. Therefore,

it is likely that at the Pareto-optimal state, v̄(λ∗) > vD, and thus liquidity traders

are expected to pay more to execute their market orders.

4. Modelling Trading Motives Explicitly

In this section, rather than assuming exogenous noise in supply, we follow Medrano

and Vives (2011) and Bond and Garcia (2018) to motivate trading using endowment

shocks.

Each trader i receives an endowment, eiD̃, at the end of the trading period. Thus,

trader i’s future wealth is given by

W̃i = (xi + ei)(D̃ − P̃ ) + eiP̃ − µ c(pi). (4.1)

We assume ei is known to trader i, whereas other traders only have common

knowledge about the distribution function from which ei is drawn. In particular,
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ei = z̃+ ũi, where z̃ ∼ N (0, vz) is an aggregate endowment shock and ũi ∼ N (0, vu)

is an idiosyncratic shock, thus ve ≡ Var[ẽi] = vz + vu.

4.1. Optimization problem. As before, each trader i’s objective is to determine

the optimal probability p∗i of observing the private signal θ, in order to maximize

his expected utility of terminal wealth,

U(pi;λ, ei) ≡ [piVI(λ, ei) + (1− pi)VU(λ, ei)] e
αµ c(pi), (4.2)

where VI(λ, ei) = E
{
E
[
−e−α(x∗I (θ,P,ei)(D̃−P )+ei)

∣∣∣θ, P, ei]} and VU(λ, ei) =

E
{
E
[
−e−α(x∗U (P,ei)(D̃−P )+ei)

∣∣∣P, ei]} are trader i’s expected utility, depending on

whether or not he observes the private signal θ. Note that apart from θ, trader i

also has another private signal, which is his own endowment shock ei. Intuitively,

ei helps trader i to forecast the aggregate endowment shock z̃, which is negatively

correlated with the equilibrium price P̃ . For example, after observing the same

price, a trader who receives a positive endowment shock will infer a larger value for

θ than a trader who receives a negative endowment shock.

Conditional on his information set, trader i’s optimal portfolio is given by

x∗i =


x∗I(θ, P, ei) =

E[D̃ − P |θ, P, ei]
αVar[D̃ − P |θ, P, ei]

− ei, Fi = {θ, P, ei};

x∗U(P, ei) =
E[D̃ − P |P, ei]

αVar[D̃ − P |P, ei]
− ei, Fi = {P, ei}.

. (4.3)

As before, we conjecture a linear equilibrium price,

P̃ = d+ bθθ̃ − bz z̃. (4.4)

Next, we characterize the solution to the traders’ optimization problem. The optimal

demand for the uninformed and informed traders are given by

x∗U(P, ei) =
(1− κ)(d− P )− κβe,P ei

αvU
− ei (4.5)

and

x∗I(θ, P, ei) =
d+ θ − P

αvε
− ei, (4.6)

respectively, where κ = σθ,P/[vP −
σ2
e,P

ve
] and vU = vD

(
1− ρ2P,D

1−ρ2e,P

)
= vD − κσθ,P .

We now compute expected utilities for the informed and uninformed traders, i.e.,
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VI(λ, ei) and VU(λ, ei). First, trader i’s welfare conditional on his information set is

given by

E
[
−e−αW̃i |Fi

]
= − exp

{
−αeiP −

1

2

χ2
i

vi

}
, (4.7)

where χi ≡ E
[
D̃ − P̃ |Fi

]
and vi ≡ Var

[
D̃ − P̃ |Fi

]
. Since, conditional on the

endowment shock ei, the price P and expected excess return χi follow a bivariate

normal distribution, we can obtain the following expression for trader i’s welfare

given his own endowment shock.

Proposition 4.1.

E
{
E
[
−e−αW̃i |Fi

]
|ei
}

= − exp

{
−A0ei +

1

2
A1e

2
i

}(
ν

vi

)−1/2

, (4.8)

where A0 = α d,A1 =
α2(vP |e(vε+vθ)−σ2

θ,P )−β2
e,P−2α(vε+vθ−σθ,P )βe,P

ν
, ν ≡ vχi + vi = vP |e +

(vε + vθ)− 2σθ,P and vP |e ≡ Var[P̃ |ei] = vP −
σ2
e,P

vz+vu
.

From Proposition 4.1, the expected utility gain of becoming informed is indepen-

dent of the realized endowment shock ei, i.e.,

γ(λ) ≡ VI(ei;λ)− VU(ei;λ)

−VU(ei;λ)
= 1−

√
vε

vD − κσθ,P
. (4.9)

Interestingly, the solution to trader i’s optimization problem as in (4.2) does not

depend on the trader-specific endowment shock and boils down to (2.7), just as in

the baseline model. Also, the concavity condition in pi, U
′′
(pi;λ, ei) < 0, is satisfied

if (2.11) is true.

4.2. Equilibrium. Since the risky asset is in zero net supply, market clearing re-

quires ∫ 1

0

[λx∗I(θ, P, ei) + (1− λ)x∗U(P, ei)] di = 0, (4.10)

where λ is the fraction of informed traders. In the next proposition, we determine

the coefficient bθ and bz in equilibrium.

Proposition 4.2. Assume that the sufficient condition for concavity expressed in

(2.11) is satisfied. For given λ ∈ [0, 1], let Ψ ≡ vz/(vz + vu), there exists a linear

equilibrium price of the risky asset,

P̃ = d+ bθθ̃ − bz z̃, (4.11)
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where

bθ =
1

1 + x−2 v
−1
θ +λv−1

ε

v−1
u +v−1

z

+
λ

vε+λvθ
vε+vθ

+ x2 v
−1
u +v−1

z

v−1
ε +v−1

θ

, (4.12)

x ≡ bθ
bz

solves

x =
1

αvε

(
λ+

1− λ
Ψ−1 + x−2(v−1

ε + v−1
θ )vu

)
, (4.13)

and λ is the solution of

λ = g−1

(
1

αµ

γ(λ)

1− λγ(λ)

)
, (4.14)

where γ(λ) is given by (4.9).

4.3. Welfare. The welfare of trader i, assuming c(p) = p2, given his endowment

shock ei, can be measured by

W(λ; ei) ≡ U(λ;λ, ei), αµ =
1

2

γ(λ)

λ (1− λγ(λ))
, (4.15)

since every trader optimally chooses the same probability p∗i = λ in the Nash equi-

librium.

Next, we consider two special cases where λ = 0 and λ = 1. Note that for λ = 0,

the equilibrium price becomes P̃ = d− α(vθ + vε)z̃ and trader i’s optimal portfolio

is x∗U(P, ei) = d−P
αvD
− ei. On the other hand, when λ = 1, the equilibrium price and

trader i’s optimal portfolio are given by P̃ = d+θ̃−αvεz̃ and x∗I(θ, P, ei) = d+θ−P
αvε
−ei.

The following proposition characterizes traders’ overall welfare.

Corollary 4.3. The welfare of trader i is characterized by Equation (4.8), where

A1 =
α2(vε + vθ)

(
2vz/ve − (vz/ve)

2 + α2(vε + vθ)vz|e
)

1 + α2vz|e(vε + vθ)
,

ν

vi
= 1 + α2(vε + vθ)vz|e

(4.16)

when λ = 0 and

A1 =
α2vε

(
2vz/ve − (vz/ve)

2 + α2vεvz|e
)

1 + α2vz|evε
+ α2vθ,

ν

vi
= 1 + α2vεvz|e (4.17)

when λ = 1 with vz|e ≡ Var [z̃|ei] = (v−1
z + v−1

u )−1 and αµ = 1
2

γ(1)
1−γ(1)

. Moreover,

traders are always better off in the no-informed-trading equilibrium with λ = 0 than

in the full-informed-trading equilibrium with λ = 1, i.e.,

W(0; ei)

W(1; ei)
= exp

{
−1

2

γ(1)

1− γ(1)
− 1

2
α2

(
vu
ve
ei

)2

vθ

}√
1 + α2vεvz|e

1 + α2(vε + vθ)vz|e
≤ 1.

(4.18)
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Corollary 4.3 shows that, in terms of welfare, the no-informed-trading equilibrium

with λ = 0 (no traders observe θ̃) dominates that with λ = 1 (all traders observe θ̃),

since welfare improves for every trader when λ switches from one to zero, regardless

of the realization of endowment shocks. In other words, the full-informed-trading

equilibrium is not Pareto-optimal. Therefore, the important question is whether

the no-informed-trading equilibrium also dominates any other equilibrium with λ ∈

(0, 1). If so, one may conclude that (at least in this particular model setting), the

social value of asymmetric information is strictly negative, and traders can be made

better off if no one observes θ̃ (by increasing the cost parameter µ). However, in the

following we show (numerically) that this is not the case.

In Figure 4.1, Panels (A) and (B) show that the welfare improvement region

shrinks in endowment shock e, but expands in the idiosyncratic endowment risk

vu, which has the following implications. First, informed trading is likely to hurt

those traders who demand liquidity, whose optimal demand x∗i is more driven by the

endowment shock ei rather than the speculative component. Intuitively, informed

trading distorts risk-sharing, which exerts a negative effect on their welfare; once

more, we recognize the Hirshleifer effect. Moreover, for those traders with a large

hedging demand, the Hirshleifer effect can dominate the asymmetric-information

effect.

Second, informed trading is more likely to hurt traders’ welfare when individual

trader’s endowment shock ei is more informative about the aggregate endowment

shock z̃. Intuitively, taking λ as given, a higher correlation between ei and z̃ helps

uninformed traders to make more accurate forecasts about the future payoff D̃

conditional on price P . However, since more payoff uncertainty is resolved, it also

brings more distortion to risk-sharing, i.e., both the Hirshleifer and risk-return effects

are stronger, leading to a large welfare cost. Furthermore, note that when vu →∞

and e = 0, the welfare improvement region becomes identical to that under the

baseline model in Figure 3.1 Panel (A) and the theoretical results in Proposition 3.2

hold.

Next, Panels (C) and (D) show that the optimal state λ∗, where welfareW(λ∗, ei)

is maximized, differs between traders due to the heterogeneity in endowment shocks
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Figure 4.1. Panels A and B show that regions marked by {n, vD}

in which W(∆; e) > W(0; e), where ∆ = 0.01, e = 0 and
√
vu/vz ∈

{∞, 3, 2.5, 2} in Panels A, and e/
√
ve ∈ {0, 0.1, 0.2, 0.3} and

√
vu/vz = 3 in

Panels B. Panels C and D show the welfare improvementW(∆; e)−W(0; e),

where n = 0.1. Here α = vz = 1.

ei. Since λ∗ is decreasing in ei, λ
∗ is the largest for purely speculative traders with

ei = 0, i.e., liquidity suppliers. For traders with a sufficiently large ei, λ
∗ = 0

becomes more likely the optimal state. Therefore, differently from the baseline

model, when the noise demand is endogenized using endowment shocks, there exists

not just one, but possibly multiple Pareto-optimal states.
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In fact, if we define λ∗0 as the optimal state where W(λ∗0, 0) is the maximum

welfare for the purely speculative traders, then any state λ∗ ∈ [0, λ∗0] is a Pareto-

optimal state. Therefore, unless there is excessive informed trading, i.e., λ > λ∗0, the

asymmetric-information effect can lead to welfare improvement for those traders

who are liquidity suppliers with a relatively small hedging demand, despite the

negative Hirshleifer and risk-return effects. Thus, in those cases, neither increasing

nor reducing the amount of informed trading is Pareto-improving.

5. Conclusion

In this paper, we have examined the effect of information acquisition uncertainty

on traders’ welfare. When traders make probabilistic choices strategically for observ-

ing a costly private signal, more informed trading gives rise to a positive asymmetric-

information effect, opening the doors to potential welfare improvement.

We have shown that the asymmetric-information effect can overcome both the

risk-return and Hirshleifer (risk-sharing) effects, and thus informed trading can lead

to overall welfare improvement. This is more likely to occur when the current level

of informed trading, trading profitability (measured by the Sharpe ratio), and signal

precision are low, which help to weaken the risk-return and Hirshleifer effects.

Overall, our results suggest that, unless the Sharpe ratio is too high, or there is an

excessive amount of informed trading in the market, it is not necessary for regulators

to level the playing field by discouraging traders from gathering private information

about future payoffs, since a small degree of asymmetric information can actually

make traders better off compared to the no-informed-trading equilibrium.

Appendix A. Proofs

A.1. Proof of Lemma 2.1. Since traders’ terminal wealth W̃i = xi(D̃ − P̃ ) is normally

distributed, given his type, trader i’s optimal demand is given by x∗i = E[D̃−P̃ |Fi]
αVar[D̃−P̃ |Fi]

. For

the informed trader who observes θ and P , E[D̃−P̃ |θ, P ] = d+θ−P,Var[D̃−P̃ |θ, P ] = vε.

On the other hand, for the uninformed trader who only observes P , E[D̃ − P̃ |P ] = (1 −

βP,θ)(d−P ),Var[D̃− P̃ |P ] = vθ(1− ρ2
θ,P ). Substitution leads to (2.5). Next, we compute

trader i’s expected utility given their information set Fi, which yields E[−e−αW̃i |Fi] =

− exp
{
−1

2
χ2
i

vD|Fi

}
. For the informed, vD|FI = vε and vχI = Var [(1− bθ)θ + bzz] = (1 −
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bθ)
2vθ + b2zvz, whereas for the uninformed trader, vD|FU = vD|P = vε + (1 − ρ2

θ,P )vθ =

vε + (1 − βP,θbθ)vθ and vχU = Var[(1 − βP,θ)(d − P )] = Var[(1 − βP,θ)(−bθθ + bzz)] =

(1 − βP,θ)2(b2θvθ + b2zvz). Since the conditional expectation χi = E
[
D̃ − P̃ |Fi

]
itself is a

normally distributed random variable for both informed and uninformed traders, we can

use the following standard result to compute trader i’s unconditional expected utility.

Lemma A.1. Let X ∈ Rn be a normally distributed random vector with mean µ and

variance-covariance matrix Σ. Let b ∈ Rn be a given vector, and A ∈ Rn×n a symmetric

matrix. If I − 2ΣA is positive definite, then E
[
exp{b>X +X>AX}

]
is well defined, and

given by

E
[
exp{b>X +X>AX}

]
=|I − 2ΣA|−1/2 exp{b>µ+ µ>Σµ

+
1

2
(b+ 2Aµ)>(I − 2ΣA)−1Σ(b+ 2Aµ)}.

Applying Lemma A.1 to the conditional expected utility withX = χi, A = −1/2(vD|Fi)
−1,

Σ = vχi , b = 0, µ = 0, some simple but tedious computations lead to the desired result

and the expressions for ξI(λ) and ξU (λ) in (2.6). Thus, assuming the concavity condition

U ′′(pi, λ) < 0 is satisfied, trader i’s optimal choice of pi is determined by the first order

condition, αµg(p∗i ) = − VI(λ)−VU (λ)
λVI(λ)+(1−λ)VU (λ) = γ(λ)

1−λγ(λ) , which leads to (2.7).

A.2. Proof of Lemma 2.2. On the optimization problem in (2.2), let V̄ (λ) ≡ λVI(λ) +

(1− λ)VU (λ) and V̄ (p;λ) ≡ pVI(λ) + (1− p)VU (λ), then we have14

U ′(p;λ) = eαµc(p)[αµg(p)V̄ (p, λ) + [VI(λ)− VU (λ)]]

U ′′(p;λ) = αµg(p)eαµc(p)
[(
αµg(p) +

g′(p)

g(p)

)
V̄ (p, λ) + 2[VI(λ)− VU (λ)]

]
.

Therefore, the necessary and sufficient condition for U ′′(p;λ) ≤ 0 is(
αµg(p) +

g′(p)

g(p)

)
V̄ (p, λ) + 2[VI(λ)− VU (λ)] ≤ 0. (A.1)

Note that in equilibrium, αµ = − 1
g(λ)

VI(λ)−VU (λ)
V̄ (λ)

= 1
g(λ)

γ(λ)
1−λγ(λ) . Also, note that V̄ (p, λ) =

[1− pγ(λ)]VU (λ), VI(λ)− VU (λ) = −γ(λ)VU (λ). Therefore, in equilibrium, (A.1) becomes[
γ(λ)

1− λγ(λ)

g(p)

g(λ)
+
g′(p)

g(p)

]
(1− pγ(λ))− 2γ(λ) ≥ 0, (A.2)

14We drop the subscript i for the remainder of the proof, in order to simplify the notation.
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which leads to condition (2.9). Moreover, for a sufficient condition, note that (A.1) can

be written as

VI(λ)− VU (λ) ≤ −1

2

[
g(p)

g(λ)

VI(λ)− VU (λ)

−V̄ (λ)
+
g′(p)

g(p)

]
V̄ (p, λ),

which can be written as[
1− 1

2

V̄ (p, λ)

V̄ (λ)

g(p)

g(λ)

]
︸ ︷︷ ︸

≤1

[VI(λ)− VU (λ)] ≤ −1

2

g′(p)

g(p)
V̄ (p, λ). (A.3)

Therefore, a sufficient condition for U ′′(p;λ) ≤ 0 is given by VI(λ)−VU (λ) ≤ −1
2
g′(p)
g(p) V̄ (p, λ),

which is equivalent to [
1 +

1

2

g′(p)

g(p)
p

]
VI(λ)− VU (λ)

−VU (λ)︸ ︷︷ ︸
γ(λ)

≤ 1

2

g′(p)

g(p)
(A.4)

that simplifies to condition (2.10). With c(p) = p2, the condition is further simplified to

γ(λ) < 1/3 and, finally, to condition (2.11).

A.3. Proof of Proposition 2.3. If the sufficient condition for U ′′(p;λ) ≤ 0 is satisfied,

the Nash equilibrium for the choice of probability pi to observe the private signal θ̃ must

be symmetric, since traders are homogeneous, i.e., p∗i = λ for all i ∈ (0, 1), from which

we obtain the equilibrium λ in (2.15). Next, to solve for the equilibrium price P , we

substitute the linear equilibrium price P = d + bθθ̃ − bz z̃ into traders’ optimal demand

functions in (2.5), from which we obtain

x∗I(θ, P ) =
d+ θ − P

αvε
and x∗U (P ) =

(
1− bθvθ

b2θvθ+b2zvz

)
(d− P )

α
(
vε + b2zvz

b2θvθ+b2zvz
vθ

) . (A.5)

Then, by applying the market clearing condition, λx∗I(θ, P )+(1−λ)x∗U (P ) = z̃, we obtain

the equilibrium price, P̃ = d+λv̄
vε
θ̃−αv̄z̃, where 1

v̄ = λ
vε

+(1−λ)
(

1− bθvθ
b2θvθ+b2zvz

)
/
[
vε + b2zvz

b2θvθ+b2zvz
vθ

]
.

Thus, by matching coefficient to the conjectured equilibrium price, we obtain bθ = λv̄
vε

and

bz = αv̄. Since bθ = λbz/(αvε), we obtain an explicit solution for v̄ by solving

λ

vε
+

(1− λ)
(

1− (λbz/α) vθ/vε
(λbz/α)2vθ/v2ε+b2zvz

)
vε + b2zvz

(λbz/α)2vθ/v2ε+b2zvz
vθ

=
bz
α

for bz and substituting the solution back into the expression for 1/v̄.
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A.4. Proof of Lemma 3.1. After traders’ types are realized, the Sharpe ratios, ξI(λ)

and ξU (λ), of the informed and uninformed traders’ optimal portfolios are given by (2.6).

Substituting the equilibrium value for bθ and bz in (2.17) then leads to the desired result

in (3.4). Then, it is straightforward to show that ξI(λ) > ξU (λ), ξ′I(λ) < 0, and ξ′U (λ) < 0

for λ ∈ [0, 1].

A.5. Proof of Proposition 3.2. In equilibrium, the welfare function is given byW(λ) =

V̄ (λ) exp(Φ(λ)), where V̄ (λ) = λVI(λ) + (1 − λ)VU (λ) = (1 − λγ)VU (λ) and Φ(λ) =

c(λ)
g(λ)

γ(λ)
1−λγ(λ) . Hence

W ′(λ) = eΦ(λ)(−V̄ (λ))

[
V̄ ′(λ)

−V̄ (λ)
− Φ′(λ)

]
.

and W ′(λ) ≥ 0 if and only if V̄ ′(λ)
−V̄ (λ)

≥ Φ′(λ). Note that V̄ ′(λ)
−V̄ (λ)

=
V ′U (λ)

−VU (λ) + γ(λ)+λγ′(λ)
1−λγ(λ) and

Φ′(λ) = γ(λ)
1−λγ(λ)

[
1 − c(λ)g′(λ)

g2(λ)
+ c(λ)

g(λ)
γ(λ)

1−λγ(λ)

]
+ c(λ)

g(λ)
γ′(λ)

(1−λγ(λ))2
. Therefore U ′(λ) ≥ 0 if and

only if

V ′U (λ)

VU (λ)
≤ γ(λ)

1− λγ(λ)

c(λ)

g(λ)

[
g′(λ)

g(λ)
− γ(λ)

1− λγ(λ)

]
+

(
λ

1− λγ(λ)
− c(λ)

g(λ)

1

(1− λγ(λ))2

)
γ′(λ).

Call S(λ) the r.h.s. of the latter inequality. Since c(p) = p2, it follows that

S(λ) =
1

2

[
1− λγ(λ)

1− λγ(λ)

]
+
λ

2

[
2− 1

1− λγ(λ)

]
γ′(λ)

γ(λ)
=

1

2

1− 2λγ(λ)

1− λγ(λ)

[
1 + λ

γ′(λ)

γ(λ)

]
,

which leads to
V ′U (λ)

VU (λ) ≤
1
2

[1−2λγ(λ)][γ(λ)+λγ′(λ)]
[1−λγ(λ)]2

. Finally, since
V ′U (λ)

VU (λ) =
−ξ′U (λ)

2[1+ξU (λ)] , we obtain

(3.7). At λ = 0,
V ′U (0)

VU (0) =
−ξ′U (0)

1+ξU (0) = 2nξ0
1+ξ0

. Applying this to condition (3.7) at λ = 0 leads

to condition (3.8).

A.6. Proof of Corollary 3.1. Note that the necessary and sufficient condition depends

only on the signal precision n and the (squared) Sharpe ratio ξ0. More specifically, the

condition (3.8) for W ′(0) ≥ 0 can be rewritten as

ξ0 ≤
ξ∗0

1− ξ∗0
, ξ∗0(n) =

1

2n

(
1− 1√

1 + n

)
. (A.6)

It can be verified that ξ∗(n) is a decreasing function of n. Therefore, for n ≤ 5/4, 2
15 =

ξ∗0
(

5
4

)
≤ ξ∗0(n) < limn→0 ξ

∗
0(n) = 1

4 . Note that ξ0 = 2/13 when ξ∗0 = 2/15 and ξ0 = 1/3

when ξ∗0 = 1/4. Therefore, when ξ0 ≤ 2/13, the condition (A.6) is satisfied, which implies

W ′(0) ≥ 0. Finally, ξ0 ≤ 1/3 becomes a necessary condition for the welfare improvement

near λ = 0.
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A.7. Proof of Corollary 3.3. From (2.18), we have vε
v̄ = λ+ [1− λ]/[1 + n+ n(1+n)

ξ0
λ].

Then

∂(vε/v̄)

∂λ
=

[1 + n+ n(1+n)
ξ0

λ]2 − [1 + n+ n(1+n)
ξ0

]

[1 + n+ n(1+n)
ξ0

λ]2
. (A.7)

Concerning (i), when ξ0 > 1, condition ∂(1/v̄)
∂λ > 0 always holds, meaning that the risk

premium v̄ decreases in λ. Finally, when ξ0 ≤ 1, we have ∂(1/v̄)
∂λ ≤ 0 if and only if

1 + n+ n(1+n)
ξ0

λ ≤
√

(1 + n) + n(1+n)
ξ0

, which leads to the result (ii) of Corollary 3.3.

A.8. Proof of Proposition 4.1. In the following proof, we drop the trader specific

subscript. First, note that each trader’s expected utility conditional on his information

set is given by

VK(e;λ) ≡ E
{
E
[
−e−αW̃ |F

]
|e
}

= E
[
− exp

{
−αeP − 1

2

χ2

v

}
|e
]
, K ∈ {I, U},

(A.8)

where χ ≡ E[D̃ − P̃ |F ] and v ≡ Var[D̃ − P̃ |F ], respectively. First, since (given the

endowment shock e) χ and P follow a bivariate normal distribution with mean vector and

covariance matrix given by

µ =

 µχ|e

µP |e

 and Σ =

 vχ|e σ(χ,P )|e

σ(χ,P )|e vP |e

 , (A.9)

where µχ|e ≡ E[χ|e], µP |e ≡ E[P |e], vχ|e ≡ Var[χ|e], vP |e ≡ Var[P |e] and σ(χ,P )|e ≡

Cov[χ, P |e]. Thus, using Lemma A.1 we can establish the following result,

VK(e;λ) = − exp

−µ
2
χ|e + αe

[
2νµP |e + 2µχ|eσ(χ,P )|e + αe

(
σ2

(χ,P )|e − νvP |e
)]

2ν


√
v

ν
,

(A.10)

where ν = v+vχ|e. If the trader is informed (K = I), i.e., F = {θ, P, e}, since χ = d+θ−P

and v = vε, we obtain that

µχ|e = −βe,P e, µP |e = d+βe,P e, vχ|e = vθ + vP |e− 2σθ,P , σ(χ,P )|e = σθ,P − vP |e. (A.11)

Substituting (A.11) into (A.10) leads to the expected utility of an informed trader in (4.8)

with v = vε. On the other hand, if the trader is uninformed (K = U), i.e., F = {P, e},

since χ = (1− κ)(d− P )− κβe,P e and v = vD − κσθ,P , κ = σθ,P /vP |e, we obtain that

µχ|e = −βe,P e, µP |e = d+ βe,P e, vχ|e = (1− κ)2vP |e, σ(χ,P )|e = −(1− κ)vP |e. (A.12)

Substituting (A.12) into (A.10) leads to the expected utility of an uninformed trader in

(4.8) with v = vD − κσθ,P .
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A.9. Proof of Proposition 4.2. Substituting the optimal demands x∗U (P, e) and x∗I(θ, P, e)

in (4.5) and (4.6) into the market clearing condition (4.10) leads to the following,

(d− P )

αv̄
+

λ

αvε
θ̃ =

[
1 + (1− λ)

κβe,P
αvU

]
z̃ (A.13)

where 1
v̄ ≡

λ
vε

+ 1−λ
ṽU

and ṽU = vU
1−κ . Thus, the equilibrium price can be written as

P = d+
λv̄

vε︸︷︷︸
bθ

θ̃ − αv̄
[
1 + (1− λ)

κβe,P
αvU

]
︸ ︷︷ ︸

bz

z̃. (A.14)

Therefore, we obtain

x ≡ bθ
bz

=
1

αvε

λ

1 + (1− λ)
κβe,P
αvU

,

which can be written as

x =
1

αvε

[
λ− (1− λ)

(
κβe,P

vε
vU

)
x

]
. (A.15)

Since vU = vD − κσθ,P , κ = σθ,P /vP |e and βe,P = σe,P /ve, also,

σe,P = −bzvz, σθ,P = bθvθ, vP |e = b2θvθ + b2zvz|e, vz|e = (v−1
z + v−1

u )−1, (A.16)

we can obtain that

−
(
κβe,P

vε
vU

)
x =

vzvεvθx
2

vuvzvD + vevεvθx2
=

1

ve/vz + x−2vu(v−1
θ + v−1

ε )
. (A.17)

Substituting (A.17) back into (A.15) leads to (4.13). Next, given x, we substitute (A.16)

into the expression for bθ and obtain that

bθ =
λv̄

vε
=

λbz
(
vuvzvD + vevεvθx

2
)

bzx2vzvεvθ − vevεvθx(1− λ) + bzvu(vεvθx2 + vzvDλ)
. (A.18)

Since bz = bθ/x, (A.18) can be simplified to bθ = vevεvθx
2+vuvzvDλ

vevεvθx2+vuvz(vε+vθλ)
, which leads to the

expression in (4.12).

A.10. Proof of Corollary 4.3. For λ = 0, since the equilibrium price P̃ = d−αvDz̃, we

have

vP |e = α2v2
Dvz|e, σθ,P = 0, βe,P = −αvD

vz
ve
, ν = vD(1 + α2vDvz|e). (A.19)

Substituting (A.19) into (4.8) leads to (4.16). On the other hand, for λ = 1, since the

equilibrium price P̃ = d+ θ̃ − αvεz̃, we have

vP |e = vθ + α2v2
ε vz|e, σθ,P = vθ, βe,P = −αvε

vz
ve
, ν = vε(1 + α2vεvz|e). (A.20)

Substituting (A.20) into (4.8) leads to (4.17).
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Appendix B. Existence and uniqueness of Nash equilibrium

This appendix examines the existence and uniqueness of the Nash equilibrium with

respect to parameter µ, which measures the sensitivity to the cost of information. For

convenience, we define ξ1 = α2vzvε. Note that ξ1 = ξI(1), representing the squared Sharpe

ratio of informed traders when λ = 1. Intuitively, in equilibrium, λ→ 0 as µ→∞; λ = 1

when µ is small enough; otherwise λ ∈ (0, 1). This is demonstrated as follows.

Proposition B.1. Assume c(p) = p2 and condition (2.11) holds. Then

(i) λ = 0 as µ→∞;

(ii) λ = 1 when µ ≤ µ̄ := 1
2α

γ1
1−γ1 , where γ1 ≡ γ(1) = 1−

√
n+ξ1
n+ξ0

;

(iii) there exists a unique λ ∈ (0, 1) when µ > µ̄;

Moreover, the equilibrium price P , satisfying (2.16), is characterized by parameters bθ and

bz defined in (2.17) and (2.18), evaluated at the equilibrium λ.

Proof: Note that γ(λ) ∈ (0, 1). With c(p) = p2, from the equilibrium condition 2αµλ =

γ(λ)/[1− γ(λ)], it is easy to see that λ→ 0 as µ→∞. For λ = 1, we have µ = 1
2α

γ(1)
1−γ(1) .

It remains to discuss the case µ > µ̄. To this aim, note that, in case of c(p) = p2, the fixed

point (2.15) is equivalent to

λ2 − 1

γ(λ)
λ+

1

2αµ
= 0. (B.1)

By defining

F1(λ) =
1

2γ(λ)
− 1

2γ(λ)

√
1− 2γ2(λ)

αµ
; F2(λ) =

1

2γ(λ)
+

1

2γ(λ)

√
1− 2γ2(λ)

αµ
,

(B.1) can be rewritten as [λ− F1(λ)][λ− F2(λ)] = 0. Assuming µ ≥ 2γ2(λ)/α (otherwise

the fixed point has no solution and λ = 1), F1 and F2 are well-defined. It is not difficult

to show that 0 < F1(λ) ≤ F2(λ). Therefore, since F1(0) > 0, one solution to (B.1) exists

if and only if F1(1) < 1. This condition is exactly µ > µ̄. Finally, concerning uniqueness,

note that dF1(λ)/dλ < 0. Indeed,

dF1(λ)

dλ
= − γ′(λ)

2γ2(λ)

(
1−

√
1− 2γ2(λ)

αµ

)
+

γ′(λ)

αµ
√

1− 2γ2(λ)
αµ

=
γ′(λ)

γ(λ)

F1(λ)√
1− 2γ2(λ)

αµ

< 0.

Negativity is due to the fact that γ′(λ) < 0, γ(λ) > 0, and F1(λ) > 0. By monotonicity,

λ = F1(λ) provides at most one solution. Therefore, if a second solution λ̃ to the fixed

point exists, it must solve λ̃ = F2(λ̃). By definition F2(λ) > 1
2γ(λ) ; therefore, as soon as

γ(λ) < 1/3, we would have λ̃ = F2(λ̃) > 3/2, which is not feasible. This proves that
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the solution to the fixed point is unique as soon as the sufficient condition for concavity,

γ(λ) < 1/3, is satisfied. �

Proposition B.1 provides a sufficient condition for the existence of a unique non-trivial

Nash equilibrium 0 < λ < 1. In general, the equilibrium fraction of informed traders is

expected to increase as traders become less sensitive to the cost function. Put differently,

we expect λ to be decreasing in µ. However, it turns out that such monotonicity is not

guaranteed in general.

Proposition B.2. The equilibrium λ = λ(µ) is decreasing in µ if and only if

Γ′(λ)

Γ(λ)
≤ g′(λ)

g(λ)
, Γ(λ) =

γ(λ)

1− λγ(λ)
; (B.2)

or equivalently

γ2(λ) + γ′(λ)

1− λγ(λ)
≤ g′(λ)

g(λ)
. (B.3)

For c(p) = p2, condition (B.3) becomes

λ[γ2(λ) + γ(λ) + γ′(λ)] ≤ 1. (B.4)

In particular, at λ = 0, condition (B.4) is always satisfied; while at λ = 1, it becomes√
ξ1 + n

ξ0 + n

[
1 +

ξ1 + n

ξ0 + n

]
≤ 3

ξ1 + n

ξ0 + n
+

n2ξ1

[ξ0 + n]2
. (B.5)

Proof: In equilibrium, αµg(λ) = −VI(λ)−VU (λ)
V̄ (λ)

= γ(λ)
1−λγ(λ) = Γ(λ). For λ = λ(µ), taking

the derivative w.r.t. µ, we have αg(λ) = −λ′(µ)[Γ′(λ)− g′(λ)
g(λ) Γ(λ)]. Therefore λ′(µ) ≤ 0 if

and only if (B.2) holds. Applying c(p) = p2 to condition (B.2) leads to condition (B.3).

Clearly, (B.3) holds for λ = 0. For λ = 1, condition (B.3) becomes γ2
1 + γ1 + γ′1 ≤ 1.

Since γ(λ) = 1 − f(λ), this is equivalent to 1 + f2
1 ≤ 3f1 + f ′1. Using the fact that

f(λ) =
√

ξ1+nλ2

ξ0+nλ2
, we obtain condition (B.5). �

Proposition B.2 provides conditions for the equilibrium λ = λ(µ) to be decreasing in µ,

or, put differently, it provides a less restrictive condition for the uniqueness of the Nash

equilibrium λ. Note that, since λ < 1 and γ′(λ) < 0, condition (B.4) is always satisfied

under condition (2.11). This leads to Proposition B.3.

Proposition B.3. Consider the optimization problem (2.2) with c(p) = p2. Suppose that

µ > µ̄ := 1
2α

γ1
1−γ1 and γ(λ) < 1/3, where γ1 ≡ γ(1) = 1 −

√
n+ξ1
n+ξ0

. Then, there exists a

unique equilibrium (P, λ) such that (i) λ ∈ (0, 1) solves (2.15) and is decreasing in µ; and

(ii) P is given by (2.16).
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The condition γ(λ) < 1/3 for the existence and uniqueness in Proposition B.3 indicates

that the relative utility gain of being informed should be small. To better understand this

condition, we note from γ′(λ) < 0 that γ(λ) ≤ γ(0) = 1− 1/
√

1 + n.
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