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Regulating Financial Networks Under Uncertainty

ABSTRACT

I study the problem of regulating a network of interdependent financial institutions that is

prone to contagion when there is uncertainty regarding its precise structure. I show that

such uncertainty reduces the scope for welfare-improving interventions. While improving

network transparency potentially reduces this uncertainty, it does not always lead to welfare

improvements. Under certain conditions, regulation that reduces the risk-taking incentives

of a small set of institutions can improve welfare. The size and composition of such a set

crucially depend on the interplay between (i) the (expected) susceptibility of the network

to contagion, (ii) the cost of improving network transparency, (iii) the cost of regulating

institutions, and (iv) investors’ preferences.
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The financial crisis that began in 2007 underscored the relevance of interdependencies

among financial institutions—e.g., commercial banks, money market funds, investment banks,

and insurance companies—in the functioning of modern economies. While, in normal times,

these interdependencies—in the form of contractual obligations or common exposures—can

be beneficial, as they help institutions manage liquidity or diversity risk, they can also create

channels through which shocks propagate in times of economic stress. These channels might

cause problems at one institution to spread to others, potentially leading to cascades of

distress with economy-wide implications.

In light of the potential harmful side effects of these interdependencies, policymakers

across the globe implemented responses that directly or indirectly take into account the

interconnected nature of modern financial systems so as to preserve the benefits of interde-

pendencies while managing their unintended negative consequences. When designing these

responses, however, policymakers are confronted with an inconvenient truth: it is hard to

determine the precise structure of the network of exposures among financial institutions

because of the opacity, complexity, and multifaceted nature of their linkages. Importantly,

this problem becomes particularly acute in times of economic stress, as spirals of fire sales may

become relevant. A natural question then arises: How can policymakers regulate a network

of interdependent financial institutions when those policymakers are fundamentally uncertain

about its precise structure? Despite its importance, this question has been overlooked by

most of the literature. This paper partially fills this gap by developing a model to study the

behavior of such policymakers.

The main results are as follows. First, I show that uncertainty about the precise archi-

tecture of the network can reduce the scope for welfare-improving interventions, as such

uncertainty gives rise to difficulties in determining the likelihood of systemic events. However,

this lack of certainty does not necessarily justify a non-interventionist policy, considering the

negative consequences of cascades of distress. Second, while improving network transparency

could help policymakers overcome forecasting limitations, it does not necessarily lead to
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welfare improving interventions as improving network transparency is also costly. Because

confidentiality might be valuable to institutions, improving network transparency might

compromise their market position and potentially decrease efficiency. Third, under certain

conditions, regulation that reduces the risk-taking incentives of a set of institutions can

increase welfare. Importantly, the size and composition of that set is determined by the

interplay between (i) the (expected) susceptibility of the network to contagion, (ii) the cost

of improving network transparency, (iii) the cost of regulating institutions, and (iv) investors’

preferences.

The model is motivated by an economy in which financial institutions (banks, for short)

are interconnected through an exogenous network of opaque exposures, on either the asset

side or the liability side, that cannot be mitigated through contractual protections. In times

of economic stress, some of these exposures (henceforth referred to as contagious exposures)

function as propagation mechanisms, as banks become more vulnerable to distress affecting

related banks (henceforth referred to as neighbors). Cascades of distress may occur as a

result of contagion, as the distress affecting one bank could cause distress to that bank’s

neighbors, which, in turn, may cause distress to the neighbors’ neighbors, and so on.

To capture policymakers’ inability to ascertain the precise architecture of the network in

times of economic stress, I assume that the set of contagious exposures is unknown when

designing interventions. Because banks fail to internalize the consequences of their actions

on the spread of distress, introducing regulation potentially leads to a Pareto improvement.

A planner seeks to maximize welfare by imposing preemptive liquidity restrictions on a set

of banks. While liquidity restrictions decrease banks’ likelihood of distress, they are not

costless as they limit banks’ ability to allocate funds toward more productive investment

opportunities, thereby introducing resource misallocation. Although the planner is uncertain

which exposures may propagate distress, she can improve network transparency at a cost. By

improving network transparency, the planner can strategically target banks with the highest

number of contagious exposures first to limit the spread of distress more effectively, avoiding
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losses associated with regulating an excessively large number of banks.

I first analyze the behavior of the planner when the distribution of contagious exposures

across banks is known. I show that the optimal policy—which is jointly determined by

a choice of network transparency and a selection of restricted banks—is shaped by the

interplay between the distribution of contagious exposures, the cost of improving network

transparency, and the costs of restricting banks. If the network of contagious exposures

exhibits a highly asymmetric structure (that is, there is high variation in the number of

contagious exposures across banks), then a handful of banks play an important role in the

propagation of distress. Learning the identity of those banks becomes critical to adequately

avoid contagion, as regulating them effectively deters the emergence of cascades of distress.

As a result, improving network transparency tends to be optimal. However, if the network of

contagious exposures exhibits a highly symmetric structure (that is, there is small variation

in the number of contagious exposures across banks), every bank is likely to play a similar

role in the propagation of distress when conditions deteriorate. Thus, improving network

transparency tends not to be optimal as more information regarding the precise structure of

the network does not necessarily allow the planner to uncover the most contagious banks.

Finally, higher costs of restricting banks lead to a smaller fraction of banks that can be

restricted.

Next, I analyze the behavior of the planner when the distribution of contagious exposures

is unknown. In this case, the planner faces model uncertainty as she unsure about the

model that describes how the economy behaves in times of economic stress. The optimal

intervention is then affected by investors’ attitudes toward ambiguity and their beliefs

regarding the susceptibility of the network to contagion. Under certain conditions, small

changes in beliefs generate significant changes in the optimal set of restricted banks. When

investors are sufficiently ambiguity averse, they worry the number of restricted banks might

not be sufficiently large to prevent cascades of distress. As a result, more banks might need to

be restricted as network uncertainty increases. Importantly, the value of improving network
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transparency now also depends on the extent of network uncertainty. In many cases, improving

network transparency tends to be more valuable as network uncertainty increases. This is

because more transparency allows the planner to hedge the risk of implementing non-optimal

policies ex-ante as a result of not knowing the distribution of contagious exposures.

The first set of results informs the ongoing debate regarding the optimal design of

preemptive macroprudential regulations. While post-crisis reforms with a macroprudential

dimension have focused principally on large financial institutions, my results underscore that

the architecture of the financial system (and not just the size of institutions) matters for policy

design. In addition, these results provide a rationale for regulation that seeks to improve

network transparency and, in particular, improve information disclosure, as institution-level

information may be critical to effectively limit the impact of cascades of distress. More

broadly, these results highlight the importance of developing privacy-preserving methods

for sharing financial exposures. The second set of results highlights that an appropriate

macroprudential regulatory framework must be mindful of the uncertainty regarding the

pattern of interdependencies among institutions.

Related literature. This paper contributes to two strands of the literature. First, this

paper adds to a body of work that explores how network features of the financial system

affect the likelihood of contagion. An incomplete list includes Rochet and Tirole (1996), Allen

and Gale (2000), Freixas et al. (2000), Eisenberg and Noe (2001), Lagunoff and Schreft

(2001), Dasgupta (2004), Leitner (2005), Nier et al. (2007), Allen and Babus (2009), Hal-

dane and May (2011), Allen et al. (2012), Amini et al. (2013), Cont et al. (2013), Georg

(2013), Zawadowski (2013), Cabrales et al. (2014), Elliott et al. (2014), Glasserman and

Young (2015, 2016), Acemoglu et al. (2015), and Castiglionesi et al. (2019). Unlike these

papers, my paper explicitly focuses on the planner’s problem in the presence of spillovers and

uncertainty regarding the pattern of linkages among institutions. Second, my paper adds to

recent research that explores how policy interventions affect the mechanism through which

shocks propagate (see, for example, Beale et al. (2011), Gai et al. (2011), Battiston et al.
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(2012), Goyal and Vigier (2014), Alvarez and Barlevy (2015), Adrian et al. (2015), Aldasoro

et al. (2017), Erol and Ordoñez (2017), Gofman (2017), and Galeotti et al. (2018)). While

my paper also focuses on how contagion varies with different interventions, it provides a

tractable framework in which optimal policies can be determined under uncertainty regarding

the economy’s connectivity structure.

The rest of the paper is organized as follows. The next section provides a motivating

example which illustrates the key ideas of the paper. Section II introduces a more flexible

framework to see the extent to which these ideas can be generalized. Section III explores

how regulation affects expected total output. Section IV characterizes optimal interventions.

Section V concludes. All derivations appear in the Appendix.

I. Motivating Example

Consider a two-period economy with three banks. Time is indexed by t ∈ {tO, tF} , with

tO < tF . There is a representative investor who owns all assets in the economy. Although she is

risk-neutral, she cares about model uncertainty as her preferences that can be characterized by

the smooth ambiguity model of Klibanoff et al. (2005).1 While it is commonly acknowledged

that banks’ payoffs are linked through the network of exposures depicted in figure 1(a), the

precise position of banks in 1(a) is unknown.

At t = tO, a planner imposes preemptive liquidity restrictions on a set of banks so as

to maximize the representative investor’s smooth ambiguity certainty equivalent. Liquidity

restrictions simply force restricted banks to hold more liquid portfolios. As it becomes clear

in section II, this intervention possibly leads to a Pareto improvement as banks take more

risk than is socially optimal. At t = tF , economic conditions deteriorate, payoffs are realized,

1In a broad sense, these preferences capture circumstances in which investors are uncertain about the
“true model” that determines the behavior of the economy. Given the uncertainty about the model, investors
may exhibit aversion to (or preference for) that uncertainty. For example, if investors are averse to such
uncertainty, they worry about making non-optimal decisions ex ante because they do not know the “true
model.” Importantly, with these preferences, investors’ tastes for risk and model uncertainty can be separated
in a simple form. For more details, see Klibanoff et al. (2005) and Maccheroni et al. (2013).
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Figure 1. Two network architectures among three banks.

and consumption occurs. When economic conditions deteriorate, cascades of liquidity shocks

might occur as a result of contagion. In particular, the following events occur before payoffs

are realized:

• One bank (chosen uniformly at random) faces an adverse liquidity shock.

• If that bank is affected, the shock can propagate to others via randomly selected

exposures. Each exposure is contagious (independently of others) with probability

0 < p < 1. Bank i faces a liquidity shock if (1) there is a sequence of contagious

exposures between i and the first bank that faces the liquidity shock, and (2) every

bank within that sequence is affected by the liquidity shock.

At a basic level, cascades of liquidity shocks can be broadly interpreted as liquidity-driven

crises in which liquidity shocks affecting certain banks induce liquidity shocks for some of

their neighbors (as in Diamond and Rajan (2011), Caballero and Simsek (2013), and Stein

(2013)). In times of stress, those neighbors may face a run due to solvency concerns,

which, in turn, potentially causes solvency concerns about some of the neighbors’ neighbors,

possibly generating cascades of runs. Consequently, cascades of liquidity shocks could also be

interpreted as crises of confidence (as in Zhou (2018)).

The random selection of contagious exposures serves as a metaphor for market participants

and regulators having difficulty assessing how exposures react in times of economic stress.

This difficulty makes the planner fundamentally uncertain which banks are more prone to

propagate shocks when economic conditions deteriorate, motivating the assumption that the

8



exact position of banks in the network is unknown.2

A bank’s output is set at zero if such a bank is affected by a liquidity shock at t = tF ;

otherwise, its output is set at one dollar. As regulation forces banks to hold more liquid

portfolios, I assume restricted banks absorb, rather than amplify, liquidity shocks. This

assumption has two implications. First, restricted banks become resilient to liquidity shocks.

Second, restricted banks do not propagate shocks within any sequence of contagious exposures

as they become resilient to shocks, thereby decreasing the likelihood of distress of their (direct

and indirect) neighbors. As a result, regulation reshapes the way that shocks spread. This is

because, from the perspective of shock propagation, imposing restrictions on a bank can be

represented by the removal of such a bank and its exposures from any realized network of

contagious exposures.

While restrictions generate positive externalities, they are not costless as they prevent

banks from investing in illiquid (and possibly more profitable) assets, potentially deterring

bank lending and/or introducing resource misallocation. To capture this idea in a simple

form, I assume that imposing restrictions on any given bank entails paying a cost of c dollars,

with 0 < c < 1.

I now focus on two cases. First, in section I.A, I characterize the optimal intervention

when p is known. Second, in section I.B, I characterize the optimal intervention when p

is unknown. Importantly, when p is unknown, there is another layer of uncertainty as the

planner is now also unsure about the model that describes how the economy behaves in times

of stress. This type of uncertainty seeks to capture situations wherein regulators are also

uncertain about the process determining how shocks spread when a crisis manifests.

2Of course, this random selection process—which is similar to the one used in Ramı́rez (2017)—provides
a crude approximation of how liquidity shocks propagate in times of stress. Yet, it allows me to provide a
tractable analysis of cascades of shocks within a more general framework (see section II). The main results
continue to hold if a small set of banks is initially affected by liquidity shocks. Conditional on banks i, j,
and k being connected via contagious exposures, the existence of a contagious exposure between i and j is
independent of the existence of a contagious exposure between j and k. A richer model would include local
dependencies among such events so that the effect that a single distressed neighbor has on a bank depends
critically on whether other neighbors face liquidity shocks. For a model that introduces such dependencies,
see Watts (2002). If one introduces such dependencies, the basic trade-off behind the main results should
continue to appear.
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A. p is known

In this case, there is no model uncertainty as the shock propagation mechanism at t = tF

is commonly known. Consequently, the representative investor’s smooth ambiguity certain

equivalent equals expected total output, Ep[TO], as she is risk neutral. Thus, regulation is

selected so as to maximize Ep[TO].

How many banks should be regulated? In the absence of any further information,

the planner is unable to determine the position of banks in the network. Hence, the planner

imposes restrictions at random. Let x denote the number of restricted banks. For any given

p, expected total output is

Ep [TO|x = 0] =
2

3
(1− p)(3 + p) and Ep [TO|x = 1] = (1− c) +

4

9
(3− p), (1)

Ep [TO|x = 2] = 2(1− c) +
2

3
and Ep [TO|x = 3] = 3(1− c).

Consequently, the optimal number of restricted banks, x∗p(c), is

x∗p(c) =



3, if c ≤ 1
3

2, if 1
3
< c ≤ 1

3
+ 4

9
p

1, if 1
3

+ 4
9
p < c ≤ 1

3
+ 8

9
p+ 2

3
p2

0, if 1
3

+ 8
9
p+ 2

3
p2 < c.

(2)

That is, when c is sufficiently small, it is optimal to regulate as many banks a possible as

the marginal cost of regulation is negligible. As c increases, the marginal cost of regulation

becomes material, and, thus, it is optimal to regulate fewer banks. Importantly, the optimal

intervention, x∗p(c), hinges on the interplay between the marginal cost of regulation, c, and

the susceptibility of the economy to contagion, captured by p.

Improving network transparency. Now suppose that before implementing restrictions,

the planner could learn the identity of the bank in the middle of figure 1(a) by paying a
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cost of κ dollars, with 0 < κ ≤ 4
3
. Parameter κ can be broadly interpreted as the cost of

designing and implementing policies to improve information disclosure and transparency

regarding the network of contagious exposures.3 This cost could arise in economies wherein

more transparency might decrease banks’ confidentiality. As confidentiality is valuable to

banks, improving transparency could compromise banks’ market position, reducing their

incentives to lend and potentially decreasing market efficiency.4

Why would the planner pay κ? If she decides not to pay, then banks are ex-ante identical

from her point of view. By paying κ, however, the planner can improve the effectiveness

of her intervention by targeting the bank in the middle of figure 1(a) first. Naturally, the

planner’s decision will depend on how much this information helps her to mitigate contagion

more effectively. It directly follows from the way shocks propagate

Ep [TO|pay κ and restrict the bank in the middle of figure 1(a)] = (1− c) +
4

3
− κ. (3)

By comparing equations (3) and (1), I determine the set of pairs (κ, c) for which paying κ

and then targeting the bank in the middle generates higher expected output than regulating

banks at random,

Tp ≡
{

(κ, c)

∣∣∣∣ (1

3
≤ (c− κ) and

1

3
≤ c ≤ 1

3
+

4

9
p

)
or

(
κ ≤ 4

9
p and

1

3
+

4

9
p ≤ c ≤ 1

3
+

8

9
p+

2

3
p2

)
· · ·

or

(
κ+ c ≤ 1

3
+

12

9
p+

2

3
p2 and

1

3
+

8

9
p+

2

3
p2 ≤ c

)}
.

The definition of Tp underscores that the decision to improve network transparency depends

3These policies may allow regulators to uncover banks that play an important role in the transmission of
shocks when a crisis materializes. Two important examples of such policies are the Comprehensive Liquidity
Assessment and Review (CLAR) and the Dodd-Frank Act supervisory stress test, run annually by the Federal
Reserve. In these programs, regulators evaluate the liquidity risk profile of bank holding companies (BHCs)
through a range of metrics and project whether BHCs would be vulnerable during times of weak economic
conditions. Other examples include programs implemented by the SEC such as forms N-MFP and PF. Form
N-MFP requires registered money market funds to report their portfolio holdings and other information on a
monthly basis, while form PF requires private funds to report assets under management.

4Thinking of banks as secret keepers is also consistent with this idea; see Dang et al. (2017) for more
details.
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on the interaction between (i) the marginal cost of regulation, c, (ii) the cost of improving

network transparency, κ, and (iii) the susceptibility of the economy to contagion, p. Figure 2

illustrates this result by depicting Tp for different values of p.

0.2 0.4 0.6 0.8 1.0
c

0.2

0.4

0.6

0.8

1.0

κ

p = 0.2

p = 0.3

p = 0.4

Figure 2. Tp when p ∈
{

2
10
, 3

10
, 4

10

}
.

What would happen if the network architecture was different? Now suppose

that it is commonly acknowledged that banks are linked as in figure 1(b). For now, assume

that the position of banks in the network is unknown. For any given p, expected total output

is

Ep [TO|x = 0] = 2(1− p)2(1 + p) and Ep [TO|x = 1] = (1− c) +
2

3
(2− p), (4)

Ep [TO|x = 2] = 2(1− c) +
2

3
and Ep [TO|x = 3] = 3(1− c).

Consequently, the optimal number of regulated banks, x̂p(c), is given by

x̂p(c) =



3, if c ≤ 1
3

2, if 1
3
< c ≤ 1

3
+ 2

3
p

1, if 1
3

+ 2
3
p < c ≤ 1

3
+ 4

3
p+ 2p2(1− p)

0, if 1
3

+ 4
3
p+ 2p2(1− p) < c.

(5)

12



The comparison between expressions (2) and (5) uncovers two results. First, when c

is sufficiently small, it is optimal to regulate as many banks a possible regardless of the

underlying network architecture. Second, as c increases, regulating fewer banks becomes

optimal. But, how many banks should be regulated? The comparison between x∗p and x̂p

highlights that the nature of the network architecture also has first order effects for the design

of interventions. This is because the susceptibility of the economy to contagion depends on

the interplay between p and the underlying network architecture. For example, an increase

in p increases the susceptibility of the economy to contagion relatively more if the network is

captured by figure 1(b) rather than by figure 1(a).

Should network transparency be improved? If banks are linked as depicted in figure 1(b),

all banks are ex-ante identical from the perspective of shock propagation. Therefore, the

effectiveness of interventions cannot be increased by learning the position of banks in the

network. Hence, it is never optimal to pay κ. Consequently, the decision to improve network

transparency also depends on the underlying network architecture.

B. p is unknown (robust interventions)

Now suppose p is unknown. Assume that it is commonly acknowledged that p can take two

values {pL, pH}, with pL < pH , and p = pL with probability φ, with 0 < φ < 1. To highlight

the importance of model uncertainty, assume banks’ payoffs are linked as in figure 1(a). To

facilitate exposition, hereinafter assume pL = 1
5
, pH = 4

5
, and c = 5

9
.

How many banks should be regulated? Suppose the planner is unable to determine

the position of banks in the network and, thus, she restricts banks at random. Let xA denote

the number of restricted banks. The representative investor’s smooth ambiguity certain

equivalent, SCE(xA), is then

SCE(xA = 0) ≡ Ep̄ [TO|xA = 0]−
(
θ

2

)
V [Ep (TO|xA = 0)]
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=
2

3
(1− p̄)(3 + p̄)−

(
θ

2

)(
6

25

)2

φ(1− φ)(25 + φ(1− φ)),

SCE(xA = 1) ≡ Ep̄ [TO|xA = 1]−
(
θ

2

)
V [Ep (TO|xA = 1)]

=

(
1− 5

9

)
+

4

9
(3− p̄)−

(
θ

2

)(
4

15

)2

φ(1− φ),

SCE(xA = 2) ≡ Ep̄ [TO|xA = 2]−
(
θ

2

)
V [Ep (TO|xA = 2)]

= 2

(
1− 5

9

)
+

2

3
,

SCE(xA = 3) ≡ Ep̄ [TO|xA = 3]−
(
θ

2

)
V [Ep (TO|xA = 3)]

= 3

(
1− 5

9

)
,

where p̄ = φpL+ (1−φ)pH = 4−3φ
5

, θ is a non-negative coefficient capturing the representative

investor’s attitude toward model uncertainty, and V[Ep(·|xA)] ≡
∑

p∈{pL,pH}(Ep(·|xA) −

Ep̄(·|xA))2P(p).

To illustrate how the optimal intervention varies with model uncertainty, figure 3(a)

depicts the number of restricted banks selected so as to maximize SCE, x∗A(φ, θ). Suppose

θ is held fixed. As φ increases, the economy is less susceptible to contagion with higher

probability. Thus, as regulating banks is costly, x∗A(φ, θ) is a weakly decreasing function of

φ. Now suppose φ is held fixed. Given the values for pL, pH , and c, it is always optimal to

regulate two banks when φ ≤ 1
2
. Thus, changes in θ do not alter the optimal intervention.

A similar idea applies when 0.85 ≈ φ < φ < φ̄ ≈ 0.97, as it is optimal to regulate only one

bank. However, when 1
2
< φ < φ or φ̄ ≤ φ, changes in θ could alter the optimal intervention.

As θ increases, the representative investor exhibits more aversion to model uncertainty, and,

thus, the planner acts as if she dislikes making non-optimal decisions ex-ante more because

she is unsure about the precise value of p. Consequently, it becomes optimal to restrict two

banks rather than one if 1
2
< φ < φ, for sufficiently large values of θ—or to restrict one bank

rather than no bank if φ̄ ≤ φ. Thus, x∗A(φ, θ) is a weakly increasing function of θ.

Improving network transparency. Now suppose the planner could learn the identity
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0.2 0.4 0.6 0.8 1.0
ϕ
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15

20

θ

x = 2

x = 1

x = 0

(a) x∗A(φ, θ). Random targeting.

0.2 0.4 0.6 0.8 1.0
ϕ

0.2

0.4

0.6

0.8

1.0

κ

θ = 1

θ = 5

θ = 10

θ = 20

(b) (φ, κ) for which improving network transparency
is optimal.

Figure 3. Robust optimal interventions.

of the bank in the middle by paying κ. Under what conditions would the planner pay κ?

Figure 3(b) answers this question by depicting the set of pairs (φ, κ) for which it is optimal

to learn this information so as to regulate the bank in the middle first. Importantly, such

a set is reshaped by θ. Intuitively, more transparency allows the planner to hedge the risk

of making non-optimal decisions ex-ante as a result of not knowing p. As θ increases, the

aversion for such risk increases, which, in turn, makes network transparency more valuable.

C. Summary of findings and challenges.

Without model uncertainty, the optimal intervention is characterized by the interplay

between three characteristics of the economy: (1) its susceptibility to contagion, (2) the

marginal cost of regulation, and (3) the cost of improving network transparency. When

model uncertainty is incorporated, beliefs regarding the nature of the network architecture

reshape this interplay as they alter the expected susceptibility of the economy to conta-

gion. Additionally, the optimal intervention is affected by investors’ attitude toward model

uncertainty.

While the motivating example characterizes the optimal intervention, it is hard to know
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what to make of results which rely on an economy with three banks and a specific network

architecture. In particular, it is not clear what happens if the size of the economy grows

large and how different network architectures can be incorporated into the analysis. The next

sections show that these findings continue to be valid for economies with arbitrary sizes and

network architectures as long as contagious exposures are randomly determined.

II. General Framework

In this section, I pose the problem in a more flexible framework in a way that parallels

the motivating example.

Environment. Take the motivating example and extend it along five dimensions. First,

consider n banks, each endowed with one dollar; with n being potentially large. Write Bn

for the set that contains all banks and P(Bn) for the power set of Bn. Second, suppose the

network of exposures has an arbitrary architecture. While banks may differ in their number

of exposures, they are ex ante identical in other respects, such as size and leverage.

Third, instead of assuming that exposures are contagious with probability p, assume that

the resulting distribution of contagious exposures across banks can be characterized by a

distribution {pk}n−1
k=0 , where pk denotes the probability that a randomly chosen bank has k

contagious exposures at t = tF . The fact that contagious exposures are randomly determined

is critical for the analysis that follows. Importantly, as the network architecture is arbitrary,

pk is allowed to take any functional form.

Fourth, assume that if the planner pays κ, she is able to rank banks based on their future

number of contagious exposures. Then, she restricts banks using that ranking; restricting

banks with the highest number of contagious exposures first so as to prevent contagion more

effectively. While, in reality, the planner might collect different pieces of information, and,

thus, decide between intermediate levels of network transparency, this assumption keeps

computations tractable.
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Fifth, generalize payoffs and describe banks’ optimization problem. To do so, introduce

an interim period tI , with tO < tI < tF , where banks are allowed to react to regulation. In

particular, for each dollar invested at t = tI , suppose the (random) payoff of bank i at t = tF ,

πi, equals

πi(ωi) = ωi ×RL + (1− ωi)×RI − βωi × εi, (6)

where ωi denotes the fraction of bank i’s portfolio invested in liquid assets; RL and RI denote

the (random) payoff of liquid and illiquid assets, respectively. Liquid assets are (exogenously

determined) investment opportunities that can be easily converted into cash. Illiquid assets

can be broadly interpreted as (long-term) projects seeking financing. Random variable εi

equals 1 if bank i faces an adverse liquidity shock; otherwise, εi = 0. The term βωi captures

the effect of liquidity shocks on bank i’s payoff.

For simplicity, I assume ωi can take two values, ωL or ωH , with 0 ≤ ωL < ωH ≤ 1.

Additionally, illiquid assets are assumed to yield a higher expected payoff than liquid assets;

hence, E[RL] < E[RI ]. Finally, I assume that the liquidity of bank i’s portfolio, ωi, alters the

effect of εi on bank i’s payoff. In particular,

βωi =


0, if ωi = ωH

ωL ×RL + (1− ωL)×RI , otherwise.

(7)

Equations (6) and (7) impose parallelism between payoffs within the general framework and

the motivating example. Banks with more liquid portfolios are not affected by liquidity shocks

when economic conditions deteriorate, while banks with more illiquid portfolios fail when

facing a liquidity shock. Consequently, when choosing ωi, bank i faces the following trade-off:

the more liquid its portfolio, the higher its resilience to liquidity shocks, but potentially the

lower its future payoff.

As in the motivating example, restrictions take a simple form: the planner forces restricted
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banks to hold more liquid portfolios. As a result, the optimal portfolio allocation of bank i,

ω∗i , solves

max
ωi∈{ωL,ωH}

Ei [πi(ωi)] (8)

s.t. ωH × ei ≤ ωi (regulatory constraint),

where ei equals 1 if bank i is restricted at t = tO and 0 otherwise; operator Ei emphasizes

that bank i chooses ω∗i based on its available information and subjective beliefs. Prob-

lem (8) underscores the idea that restricted banks optimize within the confines of regulatory

constraints.

Additional Assumptions. For tractability, I make two further assumptions. First, I

assume banks underestimate the likelihood of being affected by cascades of liquidity shocks

(in a sense properly specified in Appendix A.A). Therefore, from banks’ perspective, investing

in illiquid assets is more lucrative than storing funds in liquid assets.5 Consequently, bank i

chooses ω∗i = ωL, unless the planner imposes restrictions on i. Second, I assume there is at

least one bank that if restricted would cause the representative investor’s smooth certainty

equivalent to increase.

The first assumption ensures there is space for regulation as the market equilibrium is

not efficient. The second assumption ensures that regulation potentially leads to a Pareto

improvement. Subsection II.A provides more details.

Information Structure. As in the motivating example, in the absence of any further

information, neither banks nor the planner can determine the position of banks within the

network of contagious exposures.

Timeline. Figure 4 depicts the timeline of events within the general framework.

5This assumption is consistent with the “underestimated risks” factor highlighted by the IGM Forum
(2017) as one of the most prominent factors contributing to the 2007–2009 financial crisis as well as banks’
lack of appreciation of downside risks highlighted by Gennaioli and Shleifer (2018).
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Figure 4. Model timeline

A. The need for regulation

To better understand the reason the market equilibrium is not efficient and interventions

possibly lead to a Pareto improvement, this subsection compares expected total output under

two cases. In the first, I compute expected total output under the market equilibrium. In

the second, I compute expected total output if one bank is restricted. In what follows, {pk}k

is assumed to be known.

Market Equilibrium. Without regulation, every bank holds a fraction ωL of its portfolio

in liquid assets. As a result, the expected total output generated in the market equilibrium,

E [TOE], equals

E [TOE] = E

[
n∑
i=1

πi

]
= n (ωLE[RL] + (1− ωL)E[RI ])−

(
n∑
i=1

E0[βωiεi]

)

where E0[βωiεi] = E[βωiεi|ωi = ω−i = ωL].

Introducing regulation. To appreciate the potential benefits of regulation, suppose

only one bank, say bank i, is forced to hold a fraction ωH of its portfolio in liquid assets. Let

E [TOi] denote expected total output in this case. Then, E [TOi] equals

output derived from bank i’s response to regulation

E [TOi] =
︷ ︸︸ ︷
ωHE[RL] + (1− ωH)E[RI ]− E′[βωiεi] +
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(n− 1) (ωLE[RL] + (1− ωL)E[RI ])−

(
n∑
j 6=i

E′′[βωjεj]

)
,︸ ︷︷ ︸

output derived from other banks’ actions

with E′[βωiεi] = E[βωiεi|ωi = ωH and ω−i = ωL] and E′′[βωjεj] = E[βωjεj|ωi = ωH and ω−i =

ωL]. Thus, the difference (E [TOi]− E [TOE]) describes the welfare effects of imposing

liquidity restrictions on bank i. This difference can be written as

(E0[βωiεi]− E′[βωiεi]) +
n∑
j 6=i

(E0[βωjεj]− E′′[βωjεj])︸ ︷︷ ︸ − ∆ωE[∆R]︸ ︷︷ ︸ .
benefit cost

That is, the benefit of increasing the liquidity of bank i’s portfolio is composed of two terms.

The first term captures the increase in bank i’s resilience to liquidity shocks. The second

term captures the increase in the resilience of bank i’s neighbors (and the neighbors of those

neighbors, and so on), as bank i no longer propagates shocks when conditions deteriorate.

Importantly, bank i fails to internalize this term when choosing ωi. The cost of increasing

bank i’s liquidity captures the decrease in the expected payoff of bank i, as illiquid assets

yield a higher expected payoff than liquid assets.

One of the aforementioned assumptions ensures that there exists at least one bank, say

bank l, that if restricted, the following inequality is satisfied

(E0[βωlεl]− E′[βωlεl]) +
n∑
j 6=l

(E0[βωjεj]− E′′[βωjεj]) > ∆ωE[∆R].

Namely, the increase in resilience of bank l, its neighbors, and the neighbors of those

neighbors, (E0[βωlεl]− E′[βωlεl]) +
∑n

j 6=l(E0[βωjεj]− E′′[βωjεj]), more than compensates the

losses associated with regulating bank l, ∆ωE[∆R]. Consequently, the market equilibrium is

not efficient and interventions are potentially welfare-improving.
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III. Welfare Effects of Regulation

To better understand the welfare effects of regulation in a more general context, this

section studies how arbitrary regulation alters expected total output. Because restricted

banks are forced to change their risk-taking behavior, regulation reshapes the way that

liquidity shocks propagate, thereby modifying the distribution of total output when a crisis

manifests.

Without loss of generality, suppose the planner restricts every bank within an arbitrary

set Rx. Hereinafter, subscripts indicate the relative size of a set (compared to the size of the

economy). Namely, the cardinality of Rx is n× x, where x = s
n

and s ∈ {0, 1, · · · , n}. Then,

(
1

n

)
TO =

(
1

n

)(∑
i∈Rx

πi

)
+

(
1

n

)(∑
i/∈Rx

πi

)

= x(RI − ωH∆R) +

(
1

n

)(∑
i/∈Rx

πi

)
,

where ∆ω ≡ ωH − ωL and ∆R ≡ RI − RL;
(

1
n

)
is a normalization term used in case the

economy grows large. To determine the distribution of
(

1
n

) (∑
i/∈Rx πi

)
, it is illustrative to

analyze how shocks propagate when economic conditions deteriorate. Because the bank that

initially faces a liquidity shock is selected uniformly at random, the probability that such

a bank was restricted at t = tO is x. In this case, contagion is prevented from its onset, as

restricted banks do not propagate liquidity shocks. However, if such a bank was not restricted,

then at least one bank faces a liquidity shock and that shock might spread. Therefore,

(
1

n

)∑
i/∈Rx

πi =


(1− x)[RI − ωL∆R], with probability x(
1− x− m

n

)
[RI − ωL∆R], with probability (1− x)φRxm with m = 1, · · · , n(1− x),

where φRxm denotes the probability that m banks are affected by the liquidity shock at t = tF

once every bank in Rx has been restricted at t = tO. After some algebra, it can be shown
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that (see Appendix A.B)

(
1

n

)
E[TO|Rx] = ν − ν(1− x)

〈φRx〉
n︸ ︷︷ ︸−x∆ωE[∆R],︸ ︷︷ ︸ (9)

costs of contagion losses associated with regulation

where ν ≡ E[RI ] − ωLE[∆R]. The term 〈φRx〉 ≡
(∑n(1−x)

m=1 mφRxm

)
denotes the expected

number of banks affected by liquidity shocks at t = tF after every bank in Rx has been

restricted.

It directly follows from (9) that increasing the relative size of Rx, x, increases the losses

arising from liquidity restrictions—captured by x∆ωE[∆R]. Intuitively, once a fraction x

of banks are restricted, banks’ expected payoffs decrease by x∆ωE[∆R], as restricted banks

invest a higher fraction of their portfolio in assets with lower expected returns. Importantly,

increasing x not only increases the aforementioned losses but also alters the costs arising

from the spread of liquidity shocks—captured by ν(1− x) 〈φ
Rx 〉
n

. While increasing x decreases

(1− x), it is not clear whether increasing x will increase or decrease 〈φRx〉 as such an increase

changes the composition of banks within Rx.

It is then pivotal to determine probabilities
{
φRxm

}
m

to study how 〈φRx〉 varies with

x. While computing these probabilities is challenging even for small and medium-sized

economies—as liquidity shocks may propagate in intricate ways—the following two lemmas

show that, within the model, these probabilities can be computed for economies with arbitrary

sizes and network architectures.

Before computing probabilities
{
φRxm

}
m

, I present the following result, which characterizes

how random and strategic targeting affect the distribution of contagious exposures among

non-restricted banks.

LEMMA 1 (Probabilities
{
θRk
}
k
): For a given distribution {pk}k, let 〈k〉 =

∑n−1
k=0 kpk denote

the expected number of contagious exposures per bank. Let Rxr denote the set of restricted

banks chosen after the planner decides not to pay κ. Let Rxt denote the set of restricted banks
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chosen after the planner decides to pay κ so as to strategically target banks. Write θRk for the

probability that a non-restricted bank shares k contagious exposures with other non-restricted

banks, with k ≥ 0, after every bank in R has been restricted.

• If R = Rxr , then

θRk =


∑n−1

j=k pj
(
j
k

)
(1− xr)k xj−kr if k = {0, · · · , n(1− xr)− 1}

0 otherwise.

• If R = Rxt, then

θRk =


∑kt

j=k pj
(
j
k

)
(1− κt)kκj−kt if k = {0, · · · , kt}

0 otherwise,

where kt and κt satisfy the system of equations

xt = 1−
kt∑
k=0

pk and κt = 1− 1

〈k〉

(
kt∑
k=0

kpk

)
.

Lemma 1 states that the way the planner targets banks matters as it changes the

distribution of contagious exposures among non-restricted banks. With strategic targeting,

the planner restricts the most contagious banks first, resulting in the removal of a larger

fraction of contagious exposures than when restricting at random (from the perspective of

shock propagation). As a result, the way the planner targets banks alters the susceptibility of

the economy to contagion. With this result at hand, the next lemma characterizes probabilities{
φRxm

}
m

.

LEMMA 2 (Probabilities
{
φRxm

}
m

): For a given distribution {pk}k, define probabilities θRxk
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as in lemma 1. Suppose all banks within the set Rx are restricted. Then

φRxm =


〈θRx 〉

(m−1)!

(
dm−2

dzm−2

[
g
(
z,
{
θRxk
}
k

)m]) ∣∣∣∣
z=0

, with m = {2, · · · , n(1− x)}

θRx0 , with m = 1,

where
(
dm−2

dzm−2

[
g
(
z,
{
θRxk
}
k

)m]) ∣∣∣∣
z=0

denotes the (m−2) derivative of g
(
z,
{
θRxk
}
k

)m
evaluated

at z = 0, with

g(z,
{
θRxk
}
k
) =

n(1−x)−2∑
k=0

(
(k + 1)θRxk+1

〈θRx〉

)
zk and 〈θRx〉 =

n(1−x)−1∑
k=0

kθRxk .

Lemmas 1 and 2 allow me to compute 〈φRx〉 for any distribution {pk}k. Notably, the

computation of
{
φRxm

}
m

requires calculating sums and derivatives, which can be done numer-

ically for any finite n. However, for certain families of distributions {pk}k, it is possible to

derive closed-form expressions, as example 1 shows.

EXAMPLE 1 (Poisson): Suppose {pk}n−1
k=0 follows a Poisson distribution with parameter α,

that is, pk = e−α α
k

k!
.

• If Rx = Rxr , then

φRxm =
e−(1−xr)αm ((1− xr)αm)m−1

m!
, m = {1, · · · , n(1− xr)} .

• If Rx = Rxt, then

φRxm =
e−(1−κt)αm ((1− κt)αm)m−1

m!
, m = {1, · · · , n (1− xt)} .

where κt = 1− 1
α

(
e−α

∑kx
k=0

kαk

k!

)
and xt = e−α

∑n−1
k=kt

αk

k!
.

For illustration, suppose {pk}k follows a Poisson distribution with parameter α. Im-

portantly, when {pk}k follows a Poisson distribution, α captures the first two moments of
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{pk}k. Figure 5 illustrates that 〈φRx〉 can be a non-monotonic mapping of x. Figure 5(a)

depicts 〈φRx〉 as a function of x if the planner restricts banks at random. When α = 1, the

susceptibility of the economy to contagion is small. This is because both the average number

of contagious exposures per bank and the variation of contagion exposures across banks are

small. Thus, 〈φRx〉 is a weakly decreasing function of x, as increasing x effectively tilt the

distribution
{
φRxm

}
m

(see figure 6(a)), making cascades of liquidity shocks relatively less likely,

thereby decreasing 〈φRx〉. However, when α > 1, the variation of contagious exposures across

banks might be large enough to allow contagion to be far-reaching. Consequently, 〈φRx〉

becomes a non-monotonic function of x. For small values of x, increasing x isolates banks

with only few contagious exposures with high probability, making cascades relatively more

likely (see figure 6(b)), which, in turn, increases 〈φRx〉. However, when x is relatively large,

increasing x isolates a sufficiently large number of banks, decreasing the average number

of contagion exposures enough to tilt the distribution
{
φRxm

}
m

, curbing the likelihood of

cascades, thereby decreasing 〈φRx〉 (see figure 6(c)).

Figure 5(b) depicts 〈φRx〉 as a function of x if the planner restricts banks based on their

future number of contagious exposures. As figure 5(b) shows, 〈φRx〉 continue to vary with x,

but not necessarily in a continuous fashion. Thus, the dependence of 〈φRx〉 on x not only

hinges on the susceptibility of the economy to contagion—which is encoded in {pk}k—but

also hinges on how restricted banks are selected.

Improving network transparency. It follows from (9) that a planner’s decision to

learn the identities of the most connected banks depends on how much that information helps

reduce 〈φRx〉. If only a few banks play a key role in the propagation of shocks, targeting those

banks substantially reduces 〈φRx〉, and, hence, collecting information about their identities

may be worth the cost. Consequently, improving network transparency has an intrinsic value

to the extent that it allows the planner to dampen cascades of liquidity shocks more effectively.

As the next section shows, this value dictates the optimal choice of network transparency

and it is determined by the interplay between the distribution {pk}k and the marginal cost
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of regulation, ∆ωE[∆R].

IV. Optimal Interventions

This section characterizes optimal interventions—which are jointly determined by a choice

of network transparency and a selection of restricted banks—and explores how these policies

vary with the primitives of the model. Mirroring the motivating example, I now focus on two

cases. Section IV.A describes the optimal intervention when {pk}k is known, paralleling the

analysis of section I.A. Section IV.B mirrors the analysis of section I.B, studying economies

wherein {pk}k is unknown.

A. {pk}k is known

When {pk}k is known, there is no model uncertainty. Consequently, regulation is selected

so as to maximize expected total output.

For ease of exposition, I first study the optimal selection of restricted banks, given a

choice of network transparency. I then study the optimal choice of network transparency.

A.1. Selecting the optimal set of restricted banks

The next proposition shows that the planner’s problem has a solution.

PROPOSITION 1 (Existence): Take the choice of network transparency as given. For any

distribution {pk}k, there exists a solution of the planner’s problem, that is,

max
R ∈ P(Bn)

E
[(

1

n

)
TO

∣∣∣∣R]− κ× 1κ

where 1κ is an indicator function that equals 1 if the planner pays κ and 0 otherwise.

The above proposition guarantees that the planner’s problem can be solved. The basic

strategy behind the proof is to show that E
[(

1
n

)
TO

∣∣∣∣R] is bounded from above. This is true
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because 0 ≤ 〈φR〉
n
≤
(

1− |R|
n

)
for any R ∈ P(Bn).

The next proposition shows that, under somewhat more restrictive conditions, I can

uniquely determine the relative size of the optimal set of restricted banks. To pose those

conditions in a sharper way, I first introduce the following definitions.

DEFINITION 1: A simple intervention is a set of restricted banks.

That is, a simple intervention is any element of the power set of Bn, P(Bn).

DEFINITION 2: For a given distribution {pk}k, a collection of simple interventions CR ≡

CR({pk}k) = {Rx|Rx is a simple intervention} ⊆ P(Bn) is said to be size differentiable if the

mapping g : CR → [0, 1], defined as g(Rx) ≡ 〈φRx〉, is differentiable for all x, with 0 ≤ x ≤ 1.

While the above definition might seem abstract, there are several instances in which a

planner might focus on size differentiable interventions. For instance, suppose {pk}k follows

a Poisson distribution. If the planner decides not to pay κ, she restricts banks at random.

Figure 5(a) shows that the set of feasible interventions is size differentiable. However, if the

planner decides to pay κ so as to learn the identity of the most connected banks, figure 5(b)

shows that the set of feasible interventions is no longer size differentiable.

PROPOSITION 2 (Optimal size): Take the choice of network transparency as given. For a

given distribution {pk}k, suppose the planner only focuses on simple interventions within a

size differentiable collection, CR({pk}k). Take any three elements of CR, say Rz, Rx0, and

Rx1, with z = (1− α)x0 + αx1 ∈
(

1
n
, 1
)
, 1
n
≤ x0 < x1 ≤ 1 and α ∈ (0, 1). If

(1− α)(1− x0)〈φRx0 〉+ α(1− x1)〈φRx1 〉
(1− α)(1− x0) + α(1− x1)

> 〈φRz〉,

then the relative size of the optimal intervention, Rx∗ ∈ CR({pk}k), approximately solves

ν

(
〈φRx∗ 〉
n
− (1− x∗) ∂

∂x

(
〈φRx〉
n

) ∣∣∣∣
x=x∗

)
︸ ︷︷ ︸ = ∆ωE[∆R],︸ ︷︷ ︸ (10)

marginal benefit marginal cost
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as n grows large.

Simply put, the conditions in the above proposition ensure that expected total output

is a strictly concave mapping of the relative size of simple interventions, and, thus, I can

determine the optimal fraction of restricted banks, x∗, by solving the first order condition of

the planner’s problem (represented by equation (10)).

At the fundamental level, equation (10) highlights the planner’s trade-off when selecting

the set of restricted banks: x∗ is deliberately chosen so as to limit the spread of liquidity

shocks while at the same time avoiding excessive losses from liquidity restrictions. The

optimal intervention ensures that the benefits of restricting the last bank are equal to the

losses associated with restricting such a bank.

A.2. Value of network transparency

Before implementing restrictions, the planner decides whether to learn the identities of

the most contagious banks. By learning this information, the planner can strategically target

them first so as to confine the spread of liquidity shocks at a lower cost. Naturally, her

decision will depend on how much this information helps mitigate contagion more effectively.

Let Rxt and Rxr denote the set of restricted banks chosen if the planner strategically

targets banks or restricts them at random, respectively. Define ∆x ≡ (xr − xt). The social

value of improving network transparency, SVI, is then

SVI ≡
(

1

n

)
(E[TO|Rxt ]− E[TO|Rxr ])

= ∆x∆ωE[∆R] + ν

(
(1− xr)

〈φRxr 〉
n
− (1− xt)

〈φRxt 〉
n

)
. (11)

The left-hand side of equation (11) highlights the two benefits of improving network trans-

parency. The first term, ∆x∆ωE[∆R], captures the fact that more transparency potentially al-

lows the planner to restrict fewer banks. The second term, ν
(

(1− xr) 〈φ
Rxr 〉
n
− (1− xt) 〈φ

Rxt 〉
n

)
,

captures the fact that more transparency possibly allows the planner to decrease the spread
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of liquidity shocks more effectively. Even when xr = xt, 〈φRxr 〉 ≥ 〈φRxt 〉 as the planner

strategically chooses Rxt so as to curb contagion more efficiently than when restricting banks

at random.

Importantly, the value of network transparency depends on the pattern of contagious

exposures across banks, as SVI varies with {pk}k, because xr, xt, 〈φRxr 〉, and 〈φRxt 〉 are

implicit functions of {pk}k.

Optimal rule. Improving network transparency is optimal if and only if

∆x∆ωE[∆R] + ν

(
(1− xr)

〈φRxr 〉
n
− (1− xt)

〈φRxt 〉
n

)
≥ κ.

As a result, the planner’s decision of whether to improve network transparency is closely

linked to how useful that transparency is to limit the propagation of liquidity shocks.

A.3. Optimal Interventions in Large Economies

This section provides closed form characterizations of optimal interventions to better

illustrate how interventions vary with the primitives of the model. To do so, I focus on the

limiting case n→∞, as it considerably facilitates computations. When n→∞, cascades of

finite size have no material effect. Consequently, in what follows, I focus on large cascades of

liquidity shocks defined as events in which a finite fraction of banks in an economy of infinite

size face a liquidity shock as a result of any one bank initially facing a liquidity shock.

Appendix A.D shows that when n → ∞, the optimal fraction of restricted banks, x∗,

equals

x∗ =


xr, if ∆ωE[∆R] ≤ min

{
ν
xr
, κ

∆x

}
xt, if min

{
ν
xr
, κ

∆x

}
< ∆ωE[∆R] ≤ ν−κ

xt

0, otherwise.

(12)

where xt and xr denote the smallest fraction of banks that must be restricted to prevent large
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cascades of liquidity shocks if either the planner strategically targets banks or restricts them

at random.

Intuitively, when ∆ωE[∆R] ≤ min
{

ν
xr
, κ

∆x

}
, the marginal cost of regulation is so small

that the losses associated with random targeting are negligible. It is then optimal not to

improve network transparency, and, thus, x∗ = xr. When min
{

ν
xr
, κ

∆x

}
< ∆ωE[∆R] ≤ ν−κ

xt
,

less efficient interventions due to random targeting become sufficiently costly, as they involve

restricting an excessively large fraction of banks. It is then optimal to strategically select

banks, and, thus, x∗ = xt. Finally, when ∆ωE[∆R] > ν−κ
xt

, the marginal cost of regulation is

too large, and, thus, a non-interventionist policy is optimal; that is, x∗ = 0.

Appendix A.D also shows that when n → ∞ the social value of improving network

transparency, SVI, equals

SVI =


∆x∆ωE[∆R], if ∆ωE[∆R] ≤ ν

xr

ν − xt∆ωE[∆R], if ν
xr
< ∆ωE[∆R] ≤ ν

xt

0, otherwise.

(13)

That is, when the marginal cost of regulation is small, i.e., ∆ωE[∆R] ≤ ν
xr

, the value

of improving network transparency is proportional to ∆x, as more transparency possibly

allow the planner to restrict fewer banks. Importantly, the value of improving transparency

increases with ∆ωE[∆R], as strategically targeting directly reduces the losses associated

with ineffective regulation due to random targeting. When the marginal cost of regulation is

intermediate, i.e., ν
xr
< ∆ωE[∆R] ≤ ν

xt
, it becomes optimal to improve network transparency

as long as κ is sufficiently small. In this case, the value of improving transparency decreases

with ∆ωE[∆R] because, as ∆ωE[∆R] increases, any intervention becomes more costly to

begin with. For sufficiently large values of ∆ωE[∆R], a non-interventionist policy is optimal,

and, thus, network transparency adds no efficiency gains from a policy perspective; therefore,

SVI = 0.
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Importantly, expressions (12) and (13) underscore that the optimal intervention crucially

depends on the interplay between (a) the susceptibility of the economy to contagion, through

xt and xr, (b) the marginal cost of regulation, ∆ωE[∆R], and (c) the cost of improving

network transparency, κ. Thus, at the fundamental level, the findings presented in section I.A

can be extended to economies with larger sizes and arbitrary network architectures.

To better illustrate how {pk}k alters the optimal intervention, I now focus on two distinct

families of distributions {pk}k: Poisson and Power-laws.

Poisson networks. Suppose {pk}k follows a Poisson distribution with parameter α > 0.

Then,

xr = 1− 1

α
and xt = xr −

e−ααKα

Kα!
,

where Kα solves 1
α

=
∑(Kα−2)

j=0
e−ααj

j!
.

Substituting xr and xt into (12) fully characterizes x∗(α). This characterization helps

in analyzing how interventions vary with the underlying network architecture. Figure 8(a)

illustrates x∗(α) for different values of ∆ωE[∆R] when κ = 1/10. When α is small, both

contagious exposures are less frequent and the variation of contagious exposures across banks

is small. Thus, if ∆ωE[∆R] is not sufficiently large, the planner has little incentive to improve

network transparency as no single bank plays a determinant role in the spread of liquidity

shocks. Thus, x∗ = xr. When α increases, however, the economy becomes more prone to

contagion, because (1) more banks exhibit a higher number of contagious exposures and (2)

there is more variation in contagious exposures across banks. As a result, the planner now

has more incentives to identify the most contagious banks. Consequently, unless ∆ωE[∆R] is

sufficiently small, x∗ = xt. When ∆ωE[∆R] is sufficiently large, the losses associated with

regulation are considerable, and, thus, x∗ = 0.

Substituting xr and xt into (13) characterizes SVI. Figure 8(b) illustrates SVI(∆ωE[∆R], α)

through a contour plot. Curves connect pairs (∆ωE[∆R], α) where network transparency
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yields the same value (which are indicated in the figure). When ∆ωE[∆R] is sufficiently

small, the costs associated with regulation are negligible, and, thus, restricting as many banks

as possible is optimal regardless of the network architecture. Hence, network transparency

has no value. Similarly, when ∆ωE[∆R] is sufficiently large, network transparency has no

value, as a non-interventionist policy is always optimal.

For intermediate values of ∆ωE[∆R], however, the analysis becomes more involved, as

improving network transparency may be optimal depending on the interplay between κ

and the susceptibility of the economy to contagion, captured by α. Suppose ∆ωE[∆R] is

held fixed at one of these values. When α is small, contagion is an almost zero-probability

event. As a consequence, network transparency has no value as no regulation is required.

As α increases, the susceptibility of the economy to contagion increases, thereby increasing

the planner’s incentives to identify the most contagious banks. Thus, the value of network

transparency increases. When α is sufficiently large, contagion tends to happen anyway.

Thus, network transparency adds no value.

Power-law networks. Suppose {pk}k follows a Power-law distribution with parameter

α > 2—that is, pk ∝ k−α. Assume further that the minimum number of contagious exposures

per bank equals one. Then,

xr =


1−

((
2−α
3−α

)
− 1
)−1

if α > 3

1 if 2 < α ≤ 3.

xt = K(1−α)
α

where Kα satisfies K2−α
α − 2 =

(
2−α
3−α

)
(K3−α

α − 1).

As before, substituting xr and xt into expressions (12) and (13) characterizes x∗ and SVI.

To appreciate the differences between Poisson and Power-law distributions, figure 7 illustrates

xr(α) and xt(α) under both distributions. Notably, ∆x is visibly larger in the Power-law than

in the Poisson case; especially when 2 < α < 3. The reason is simple. When {pk}k follows a
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Power-law and 2 < α < 3, only the first moment of {pk}k is finite while higher order moments

are infinite. In this case, the high variation in the number of contagious exposures across

banks ensures that liquidity shocks affecting one bank almost surely affect a non-negligible

fraction of them through propagation, making the economy highly susceptible to contagion.

Because only an extremely small fraction of banks exhibit an excessively large number of

contagious exposures, the planner is likely to miss such banks if targeting banks at random.

Consequently, network transparency tends to prove more helpful in the Power-law than in

the Poisson case.

Figure 9(a) depicts x∗(α) for different values of ∆ωE[∆R] when {pk}k follows a Power-law.

Consistent with the previous analysis, when α ≤ 3, the planner decides to improve network

transparency so as to minimize the losses associated with excessive regulation; hence, x∗ = xt.

However, for larger values of α and sufficiently small values of ∆ωE[∆R], x∗ = xr.

Figure 9(b) illustrates SVI(∆ωE[∆R], α) through a contour plot. As before, when

∆ωE[∆R] is either sufficiently small or large, improving network transparency adds no

value. For intermediate values of ∆ωE[∆R], improving network transparency may be optimal.

Importantly, the analysis in the Power-law case differs fundamentally from the Poisson case.

When α < 3, large cascades cannot be prevented without improving network transparency

(see Appendix A.D.1). As a consequence, learning the identity of the most contagious banks

is considerably valuable, and, thus, it tends to be optimal.

Discussion. To sum up, the marked differences between the connectivity structures of

Poisson and Power-law networks underscore three important findings. First, different network

architectures exhibit different susceptibility to contagion, imposing distinct challenges to

planners when trying to mitigate cascades of liquidity shocks. Second, the planner’s ability

to prevent cascades in certain networks heavily depends on how restricted banks are selected,

and, thus, the extent of network transparency may be critical. Third, the scope for welfare-

improving interventions is intimately linked to the degree of symmetry exhibited by the

network of contagious exposures, as such degree alters the susceptibility of the economy to
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contagion. In particular, when {pk}k is somewhat symmetric—in the sense that the number

of contagious exposures does not vary too much across banks—banks do not significantly

differ in their role spreading liquidity shocks. Consequently, network transparency brings

limited efficiency gains. Yet, when {pk}k is somewhat asymmetric, a small fraction of banks

drives the spread of liquidity shocks, and, thus, there are considerable efficiency gains from

improving network transparency.

B. {pk}k is unknown

Mirroring the analysis of subsection I.B, this subsection studies economies wherein {pk}k

is unknown. Here, the planner faces model uncertainty, as she is unsure about the generating

process of contagious exposures, which ultimately determines how shocks propagate when a

crisis manifests.6

To better appreciate the implications of model uncertainty within the general framework,

suppose it is commonly acknowledged that {pk}k comes from a known family of distributions.

Assume further that each distribution within that family can be identified by a parameter

α (such as in the Poisson or Power-law case). Now suppose α is unknown. Let {{pαk}k}α∈A
denote such a family of distributions where A denotes the set of plausible values for α. For a

given value of α, the previous analysis shows that if every bank in Rx is restricted, then

(
1

n

)
Eα[TO|Rx] = ν − ν(1− x)

n(1−x)∑
m=1

m

n
φRxm (α)

− x∆ωE[∆R]

where probabilities φRxm are written as φRxm (α) to emphasize their dependence on the precise

value of α. Importantly, if α is random, probabilities φRxm (α) are now random variables,

which, in turn, makes expected total output a random variable.

Given the representative investor’s preferences, the planner takes into account the extent

6See Routledge and Zin (2009) and Easley and O’Hara (2010) for models that connect liquidity and model
uncertainty. See Ruffino (2014) for a discussion of some implications of model uncertainty for regulation.
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of model uncertainty when designing interventions, as she imposes restrictions so as to

maximize the representative investor’s smooth ambiguity certainty equivalent. Suppose it

is commonly acknowledged that α is distributed over A according to a distribution f, with

finite barycenter ᾱ ≡
∫
α∈A αdf . Then, given a choice of network transparency, the planner

chooses a set of restricted banks, Rx, to solve

max
Rx∈P(Bn)

Eᾱ
(

1

n
TO
∣∣Rx

)
−
(
θ

2

)
× Vf

(
1

n
Eα
(
TO
∣∣Rx

))
− κ× 1κ, (14)

where operator Eᾱ (·) denotes the expectation when α = ᾱ. Operator Vf (·) denotes the

variance of expected total output, computed using distribution f . As in the motivating

example, θ captures the representative investor’s attitude toward ambiguity. Notably, the

analysis in this section is equivalent to the analysis in the previous section when A is singleton

or θ = 0. When A is singleton, there is no model uncertainty, as the exact value of α is

known. When θ = 0, the representative investor is ambiguity neutral. Thus, the planner does

not mind not knowing α and implements restrictions as if α = ᾱ.

B.1. Selecting the optimal set of restricted banks

The next proposition shows that problem (14) has a solution.

PROPOSITION 3 (Existence under Ambiguity): Take the choice of network transparency as

given. Then, for any distributions {pk}k and f , there exists a solution of problem (14).

The above proposition guarantees that the planner’s problem can be solved when α is

unknown. The basic strategy behind the proof is to show that Eᾱ
[(

1
n

)
TO

∣∣∣∣Rx

]
is bounded

from above while Vf

(
1
n
Eα
(
TO
∣∣Rx

))
is bounded from below. This is true because 0 ≤ 〈φRxᾱ 〉

n
≤

(1− x) while Vf

(
1
n
Eα
(
TO
∣∣Rx

))
≥ 0 for any Rx ∈ P(Bn), where 〈φRxᾱ 〉 ≡

∑n(1−x)
m=1 mφRxm (ᾱ).

For conciseness, I defer to proposition 4 in Appendix A.C the discussion of conditions

under which the relative size of restricted banks can be uniquely determined when α is

unknown. For now, suppose those conditions are satisfied. To illustrate the planner’s trade-off
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in this environment, I now rewrite the first order condition of problem (14) as

ν

(
〈φRxaᾱ 〉
n

− (1− xa) ∂
∂x

(
〈φRxᾱ 〉
n

) ∣∣∣∣
x=xa

)
︸ ︷︷ ︸ = ∆ωE[∆R]

+

(
θ

2

)
ν2 ∂

∂x

(
(1− x)2

∫
α∈A

(
〈φRxα 〉
n
− 〈φ

Rx
ᾱ 〉
n

)2

df(α)

)∣∣∣∣∣
x=xa︸ ︷︷ ︸

marginal benefit marginal cost

To appreciate the importance of model uncertainty, it is illustrative to emphasize the

similarities between the above equation and equation (10). While the marginal benefit in

both equations is similar, the marginal cost now has an extra component—the second term

in the RHS of the above equation. Importantly, this component is unrelated to losses arising

from liquidity restrictions. This cost arises solely from the fact that (a) α is unknown, and

(b) the representative investor exhibits aversion to ambiguity. Consequently, the optimal

fraction of restricted banks, xa, now also hinges on distribution f , and the representative

investor’s attitudes toward ambiguity.

B.2. Value of network transparency.

Let Rxat
and Rxar denote the set of restricted banks chosen if the planner strategically

target banks or restricts them at random, respectively. Define ∆xa ≡ (xar − xat ). The social

value of improving network transparency under model uncertainty, SVIa, is then

SVIa ≡
(

1

n

)(
Eᾱ[TO|Rxat

]− Eᾱ[TO|Rxar ]
)
−
(
θ

2

)(
Vf

(
1

n
Eα
(
TO|Rxat

))
− Vf

(
1

n
Eα
(
TO|Rxar

)))
= ∆xa∆ωE[∆R] + ν

(
(1− xar)

〈φRxarᾱ 〉
n

− (1− xat )
〈φ
Rxat
ᾱ 〉
n

)

+

(
θ

2

)
ν2

(1− xar)2

∫
α∈A

(
〈φRxarα 〉
n

− 〈φ
Rxar
ᾱ 〉
n

)2

df(α)

− (1− xat )2

∫
α∈A

(
〈φ
Rxat
α 〉
n

− 〈φ
Rxat
ᾱ 〉
n

)2

df(α)

 .
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Thus, SVI now has three components. The first two terms in the RHS of the above equation

capture ideas similar to the two components described in the RHS of equation (11). The first

term arises from the fact that, on average, transparency helps decrease losses generated from

excessive regulation. The second term captures the fact that, on average, transparency allows

the planner to limit the spread of liquidity shocks better. However, the third term is new

and captures the idea that the representative investor is ambiguity averse and α is unknown.

Hence, she dislikes making non-optimal decisions ex-ante as a result of not knowing α. Thus,

this term can be broadly interpreted as the extent to which transparency allows the planner

to hedge the risk of implementing non-optimal policies ex-ante as a result of not knowing

α. Importantly, the perception of such risk is intimately linked to the underlying family of

networks {{pαk}k}α∈A as well as the distribution f .

Optimal rule. The optimal choice of network transparency follows a simple rule. If

SVIa ≥ κ, the social benefit of increased network transparency outweighs its cost, and, thus,

it is optimal to improve network transparency. Notably, the extent of network uncertainty

now plays a key role in this decision.

B.3. Optimal Interventions in Large Economies

To appreciate the importance of network uncertainty for policy design, I now explore (via

numerical solutions) how the optimal intervention varies with (a) f , and (b) the representative

investor’s aversion to ambiguity, θ. To facilitate comparison between subsections IV.A

and IV.B, I focus on Poisson and Power-law networks in what follows. For concreteness,

I assume hereafter that ν = 1, ∆ωE[∆R] = 2, κ = 1/10, and n = 50, while f follows a

truncated normal distribution with mean ᾱ = 3, variance σ2 > 0, and A = [2, 4]. Hereinafter,

I capture the extent of model uncertainty through variation in σ2.

Poisson networks. Figure 10 highlights the implications for policy design of changes in

distribution f and θ. Figure 10(a) depicts the optimal fraction of restricted banks, x∗, as a

function of σ2. Unless θ is sufficiently large, variation in distribution f does not generate
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variation in x∗. When the representative investor does not experience sufficiently large

disutility from making non-optimal decisions ex ante, it is optimal for the planner to choose

her policy as if α = ᾱ. Because ᾱ = 3 and ∆ωE[∆R] = 2, a non-interventionist policy is

optimal regardless of the extent of network uncertainty (see figure 8(a)).

However, when the representative investor exhibits sufficiently high aversion to ambiguity,

the optimal policy can be heavily affected by changes in model uncertainty, as figure 10(a)

shows. As σ2 increases, the extent of network uncertainty increases. When facing high network

uncertainty, the planner worries the fraction of restricted banks may not be sufficiently large

to prevent large cascades. As a result, it tends to be optimal to increase the fraction of

restricted banks as σ2 increases. In this case, the lack of certainty about the network is not

a justification for inaction, but rather the opposite, considering the considerable negative

consequences of large cascades. Importantly, when the representative investor is sufficiently

averse to ambiguity, figure 10(b) shows that the value of network transparency is non-negative

for a large set of pairs (∆ωE[∆R], σ2) as it is extremely costly to implement non-optimal

interventions ex ante. As a result, improving network transparency is valuable even though

the network of contagious exposures might exhibit a symmetric architecture.

Power-law networks. Figure 11 shows that differences in the nature of the network

architecture have important implications for policy making under network uncertainty.

Consistent with the previous results, figure 11(a) shows that x∗ is heavily affected by

changes in network uncertainty when the representative investor exhibits sufficiently high

aversion to ambiguity. Notably, figure 11(b) shows that, for relatively small values of σ2, the

value of information increases as ∆ωE[∆R] increases. Intuitively, as ∆ωE[∆R] increases, it

becomes more costly to make mistakes (by restricting an excessively large fraction of banks).

Consequently, as ∆ωE[∆R] increases, the higher the planner’s incentives to identify banks

that drive the propagation of shocks, and, thus, the greater the value of network transparency.
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V. Conclusion

My primary goal has been to show that it is possible to define an optimal solution of the

problem of regulating a network of interdependent financial institutions under uncertainty

regarding its precise structure. By incorporating results from the literature on random graphs,

my model makes it possible to compute optimal interventions in economies with arbitrary

sizes and network architectures. When the process that generates the network architecture

is also unknown, the model characterizes optimal interventions by drawing insights from

the literature on decision-making under ambiguity. As the size of the economy grows large,

interventions that prevent large cascades of distress can be analytically determined.

While the proposed framework does not capture the economic incentives underlying the

formation of interdependencies among institutions or the reasons some of them may be more

prone to propagating shocks than others, it provides a simple, yet general, approximation of

the problem faced by policymakers nowadays, where the lack of detailed information and

the high complexity of interactions among institutions besets the regulation and supervision

of financial networks. In doing so, the proposed framework provides a benchmark to which

other models can be compared to.

My emphasis on the relevance of network uncertainty should not be understood as

downplaying the role that leverage, size, and short-term funding play in the design of optimal

policies. As the network structure interacts with these variables, regulation should be mindful

of such an interaction so as to take into consideration how financial (and non financial)

institutions react to regulation and how such reactions contribute to financial stability.

Finally, network uncertainty is not only a problem for regulators as it also gives rise

to uncertainty for market participants, especially in times of economic stress. In doing so,

network uncertainty itself can be a source of cascades of liquidity shocks. Future research in

this area is certainly called for.
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For Online Publication: Appendix for

“Regulating Financial Networks Under Uncertainty”

Appendix A Mathematical Derivations

This section contains explanations of definitions and derivations of examples, lemmas,
and propositions mentioned in the body of the paper.

A Understanding banks’ beliefs and their behavior

The payoff of bank i is given by

πi = ωiRL + (1− ωi)RI − βωiεi,

where

βωi =

{
(ωLRL + (1− ωL)RI) with probability pi if ωi = ωL,

0, otherwise,

with pi = P[i faces a liquidity shock|ωi = ωL]. Given how liquidity shocks propagate among
banks,

pi(Ci) =
1

n
+

(
1− 1

n

)
E[|Ci|]
n

where Ci denotes the set of banks (directly or indirectly) connected to bank i —via a sequence
of contagious exposures at t = tF—whose portfolio contains a fraction ωL in liquid assets.
From bank i’s perspective,

Ei[πi|ωi = ωH ]− Ei[πi|ωi = ωL] = ν

[
1

n
+

(
1− 1

n

)
Ei[|Ci|]
n

]
−∆ωE[∆R].

DEFINITION 3: Bank i is said to underestimate the likelihood of being affected by cascades
of liquidity shocks if Ei[|Ci|] = o(n).

Consequently, if bank i underestimates the likelihood of being affected by cascades of
liquidity shocks, then

lim
n→∞

(Ei[πi|ωi = ωH ]− Ei[πi|ωi = ωL]) < 0.

Namely, as n grows large, investing in illiquid assets is more lucrative than storing funds in
cash from bank i’s perspective.
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B Welfare Effects of Regulation

Suppose the planner restricts all banks in R, with |R| = nx. Then(
1

n

)
E[TO|x] = x(E[RI ]− ωHE[∆R]) +

(
1

n

)∑
i/∈R

E[πi]

It is worth noting that(
1

n

)∑
i/∈R

πi =

{
(1− x)[RI − ωL∆R], with probability x(
1− x− m

n

)
[RI − ωL∆R], with probability (1− x)φxm with m = 1, · · · , n(1− x).

where φxm denotes the probability that m nonrestricted banks are affected by liquidity shocks,
once n× x banks have been restricted. Consequently,(

1

n

)
E[TO|x] = x(E[RI ]− ωHE[∆R])

+ (E[RI ]− ωLE[∆R])

x(1− x) + (1− x)2

n(1−x)∑
m=1

φxm


︸ ︷︷ ︸

−(1− x)

n

n(1−x)∑
m=1

mφxm︸ ︷︷ ︸


= 1 = 〈φx〉

= x(E[RI ]− ωHE[∆R]) + (1− x)(E[RI ]− ωLE[∆R])

(
1− 〈φ

x〉
n

)
+

= (E[RI ]− ωLE[∆R])− (1− x) (E[RI ]− ωLE[∆R])
〈φx〉
n
− x∆ωE[∆R]

= ν − ν(1− x)
〈φx〉
n
− x∆ωE[∆R]

where 〈φx〉 denotes the expected number of nonrestricted banks affected by liquidity shocks
once n× x banks have been restricted.

Proof of Lemma 1. There are two cases.

(a) R = Rxr . Here, banks are ex ante identical from the point of view of the planner, as
she is unable to identify whether some banks will exhibit more contagious exposures
than others. Hence, when solving her problem, the planner effectively acts as if she
restricts banks uniformly at random.
It is then illustrative to explore the distribution of contagious exposures among non-
restricted banks after imposing restrictions on a fraction r

n
. Consider a bank with k0

contagious exposures. After imposing restrictions, that bank may have k contagious
exposures, with k ≤ k0, as some of its neighbors may be restricted. Additionally,

the probability that a subset of k neighbors is not restricted is
(
1− r

n

)k
, whereas the

probability that the remaining neighbors are restricted is
(
r
n

)k0−k. Because there are(
k0

k

)
different subsets of k neighbors, the distribution of contagious exposures among
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nonrestricted banks is

θrk =

{∑n−1
j=k pj

(
j
k

) (
1− r

n

)k ( r
n

)j−k
if k = {0, · · · , n− r − 1}

0 otherwise.
(A1)

In other words, θrk captures the probability that a nonrestricted bank shares k contagious
exposures with other nonrestricted banks, once r banks are restricted.

(b) R = Rxt . Here, the planner is able to identify which banks will exhibit the highest
number of contagious exposures. Then, she can use that information and restrict such
banks first to prevent contagion more efficiently than restricting at random, as such
intervention results in the removal of a larger fraction of contagious exposures.
Suppose the planner imposes restrictions on all banks with more than kx contagious
exposures, with kx ≥ s∗. Restricting those banks is equivalent to restricting a fraction
x of banks with the highest number of contagious exposures. The relationship between
x and kx is given by

x =
∑
kx<k

pk =⇒ x = 1−
kx∑
k=0

pk. (A2)

Implementing the above policy results in an approximate random removal of contagious
exposures from nonrestricted banks, as contagious exposures of restricted banks no
longer propagate liquidity shocks. The probability κx that a contagious exposure leads
to a restricted bank equals

κx =
∑
kx<k

kpk∑
k kpk

=
1

〈k〉

(∑
kx<k

kpk

)
=⇒ κx = 1− 1

〈k〉

(
kx∑
k=0

kpk

)
. (A3)

It is important to note that the network of contagious exposures that remains after
implementing the above policy is equivalent to a network in which the maximum
number of contagious exposures per bank is kx and a fraction κx of banks is restricted
uniformly at random. It follows from the previous analysis that the probability that
a nonrestricted bank has k contagious exposures once a fraction x of banks has been
restricted, ϕxk, is given by

ϕxk =

{∑kx
j=k pj

(
j
k

)
(1− κx)kκj−kx if k = {0, · · · , kx}

0 otherwise.
(A4)

Proof of Lemma 2. It is worth noting that {θrk}
n−r−1
k=0 represents the degree distribution of a

randomly generated network among (n− r) banks. Consequently, φrm is equivalent to the
probability that a randomly chosen nonrestricted bank belongs to a connected subgraph of
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size m. Therefore, one can directly apply results in Newman (2007) and show that

φrm =


〈θr〉

(m−1)!

(
dm−2

dzm−2 [g (z, {θrk}k)
m]
) ∣∣∣∣

z=0

, with m = {2, · · · , n− r}

θr0 , with m = 1.

where 〈θr〉 denotes the average number of contagious exposures among nonrestricted banks

and
(
dm−2

dzm−2 [g (z, {θrk}k)
m]
) ∣∣∣∣

z=0

denotes the (m− 2) derivative of g (z, {θrk}k)
m evaluated at

z = 0, where g(z, {θrk}k) represents the excess degree distribution function of {θrk}k, defined
as

g(z, {θrk}k) ≡
n−r−2∑
k=0

(
(k + 1)θrk+1

〈θr〉

)
zk.

REMARK 1 (Numerical solutions): When solving the model numerically, the (m−2) derivative
of g (z, {θrk}k)

m evaluated at z = 0, can be approximated by

1

εm−2

[
m−2∑
j=0

(−1)m−2−j
(
m− 2

j

)
g (jε, {θrk}k)

m

]

with ε > 0 sufficiently small.

Proof of Example 1. There are two cases.

(a) R = Rxr . When {pk}n−1
k=0 follows a Poisson distribution with parameter α, {θrk}

n−r−1
k=0

approximately follows a Poisson distribution of parameter
(
1− r

n

)
α. As a result,

g(z, {θrk}
n−r−1
k=0 ) = e(1− r

n)α(z−1),

and, thus,

φrm =
e−(1− r

n)αm ((1− r
n

)
αm
)m−1

m!
, m = {1, · · · , n− r} .

(b) R = Rxt . Here, pk = e−α α
k

k!
, with k = {0, n− 1}. The result follows directly from (a)

after substituting pk into

κx =
∑
kx<k

kpk∑
k kpk

=
1

〈k〉

(∑
kx<k

kpk

)
=⇒ κx = 1− 1

〈k〉

(
kx∑
k=0

kpk

)
.
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C Optimal Interventions

Proof of Proposition 1. For a given distribution {pk}k, E
[(

1
n

)
TO

∣∣∣∣R] is bounded from above

because 0 ≤ 〈φR〉
n
≤
(

1− |R|
n

)
for any R ∈ P(Bn). Thus, there exists a set R ∈ P(Bn) where

E
[(

1
n

)
TO

∣∣∣∣R] attains its maximum.

Proof of Proposition 2. For a given distribution {pk}k, proposition 1 ensures the planner’s
problem has a solution. Now suppose the planner only focuses on simple interventions within
a size differentiable collection, CR({pk}k). Additionally, for any three elements of CR, say Rz,
Rx0 , and Rx1 ,(

1

n

)
E[TO|z] = η − (1− z)

(ν
n

)
〈φz〉 − z∆ωE[∆R]

= (1− α)
(
η − (1− x0)

(ν
n

)
〈φz〉 − x0∆ωE[∆R]

)
+ α

(
η − (1− x1)

(ν
n

)
〈φz〉 − x1∆ωE[∆R]

)
= (1− α)

(
η − (1− x0)

(ν
n

)
〈φx0〉 − x0∆ωE[∆R]

)
+ α

(
η − (1− x1)

(ν
n

)
〈φx1〉 − x1∆ωE[∆R]

)
+

(ν
n

)
((1− α)(1− x0)〈φx0〉+ α(1− x1)〈φx1〉 − [(1− α)x0 + α(1− x1)]〈φz〉)

>

(
1

n

)
((1− α)E[TO|x0] + αE[TO|x1])

where the last inequality holds if and only if

(1− α)(1− x0)〈φx0〉+ α(1− x1)〈φx1〉
(1− α)(1− x0) + α(1− x1)

> 〈φz〉.

As a result,
(

1
n

)
E[TO] is a strictly concave function of x, and thus, x∗ approximately satisfies

∂

∂x

((
1

n

)
E[TO]

) ∣∣∣∣
x=x∗

= 0 (A5)

as n grows large.7 Equation (A5) can be rewritten as

ν

(
〈φx∗〉
n
− (1− x∗) ∂

∂x

(
〈φx〉
n

) ∣∣∣∣
x=x∗

)
= ∆ωE[∆R]

7The fraction of restricted banks must be a rational number because n is a natural number. However,
the solution of equation (A5) could be an irrational number. Nonetheless, the optimal intervention x∗ gets
arbitrarily close to the solution of equation (A5) as n grows large.
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Proof of Proposition 3. For any distribution {pk}k and finite barycenter ᾱ, Eᾱ
[

1
n
TO
]

is
bounded from above. Because Vf

(
1
n
Eα
(
TO
∣∣Rx

))
≥ 0 for any Rx ∈ P(Bn) and distribution

f , the objective function of the planner’s problem is bounded from above. Hence, it attains
its maximum for certain set R ∈ P(Bn).

Mirroring the ideas in proposition 2, the next proposition shows that, under certain
conditions, I can uniquely determine the size of the optimal set of restricted banks when
{pk}k is unknown. To pose these conditions in a sharper way, I first introduce a definition

DEFINITION 4: Given distributions {pk}k and f , a collection of simple interventions
CR ({pk}k , f) is said to be size differentiable under ambiguity if the mapping h : CR → [0, 1],

defined as h(Rx) ≡ 〈φRx 〉
n
−
(
θ
2

)
× Vf

(
1
n
Eα
(

TO

∣∣∣∣Rx

))
is differentiable for all x, 0 ≤ x ≤ 1.

PROPOSITION 4 (Interior Solution): Take the choice of network transparency as given.
Given distributions {pk}k and f , suppose the planner only focuses on simple interventions
within a collection that is size differentiable under ambiguity, CR({pk}k , f). Assume further
that

Eᾱ
(

1

n
TO
∣∣Rx

)
−
(
θ

2

)
× Vf

(
1

n
Eα
(
TO
∣∣Rx

))
is a strictly concave function of x, for any set Rx ∈ CR({pk}k , f). Then, the relative size of
the optimal intervention, Rxa ∈ CR({pk}k , f), approximately solves

ν

(
〈φxaᾱ 〉
n
− (1− xa) ∂

∂x

(
〈φxᾱ〉
n

) ∣∣∣∣
x=xa

)
= ∆ωE[∆R]

+

(
θ

2

)
ν2 ∂

∂x

(
(1− x)2

∫
α∈A

(
〈φxα〉
n
− 〈φ

x
ᾱ〉
n

)2

df(α)

)∣∣∣∣∣
x=xa

.

as n grows large.

Proof. If

Eᾱ
(

1

n
TO
∣∣Rx

)
−
(
θ

2

)
× Vf

(
1

n
Eα
(
TO
∣∣Rx

))
is a strictly concave function of x, for all Rx ∈ CR({pk}k , f), then the solution of the planner’s
problem is interior. Notably,

Eᾱ
(

1

n
TOα

∣∣Rx

)
= ν − (1− x)ν

〈φRxᾱ 〉
n
− x∆ωE(∆R)

Vf

(
1

n
Eα
(
TO
∣∣Rx

))
= (1− x)2ν2

∫
α∈A

(
〈φRxα 〉
n
− 〈φ

Rx
ᾱ 〉
n

)2

df(α).
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As a result, the first order condition of the planner’s problem can be rewritten as

ν

(
〈φxaᾱ 〉
n
− (1− xa) ∂

∂x

(
〈φxᾱ〉
n

) ∣∣∣∣
x=xa

)
= ∆ωE[∆R]

+

(
θ

2

)
ν2 ∂

∂x

(
(1− x)2

∫
α∈A

(
〈φxα〉
n
− 〈φ

x
ᾱ〉
n

)2

df(α)

)∣∣∣∣∣
x=xa

.

Because the fraction of restricted banks must be a rational number, x∗ gets arbitrarily close
to the solution of the above equation as n gets large.

D Optimal Interventions in Large Economies

When designing optimal interventions, it is pivotal to understand under which conditions
cascades of liquidity shocks are non-negligible. As I focus on a system of infinite size, any
cascade of finite size becomes negligible as the economy grows large. The following section
provides a detailed definition and analysis of cascades of liquidity shocks in large economies.

D.1 Large Cascades of Liquidity Shocks

The Rise of Large Cascades of Liquidity Shocks. To fix notation, let Gn denote
a network of contagious exposures among n banks and {Gn}n∈N denote a sequence of such
networks, indexed by the number of banks n. Let S (Gn) denote the largest subset of connected
banks in Gn, and let |S (Gn) | denote the cardinality of such a set. To determine the condition
under which large cascades of liquidity shocks arise, one can use the following idea, similar to
the one proposed by Molloy and Reed (1995) and Cohen et al. (2000). Let n0 denote a large
natural number. Suppose there are two banks belonging to each element in the subsequence
{S (Gn)}n≥n0

—say, i and j, which are directly connected. If bank i (or j) is also directly
connected to another bank—and loops of contagious exposures can be ignored—then the size
of the largest sequence of connected banks is proportional to the size of the system—i.e.,
limn→∞

E|S(Gn)|
n

> 0—and, thus, large cascades of liquidity shocks occur; otherwise, the largest

sequence of connected banks is fragmented, and, thus, limn→∞
E|S(Gn)|

n
= 0.8 Therefore, the

condition that determines the emergence of large cascades of liquidity shocks is given by

lim
n→∞

En [ki|i↔ j] = lim
n→∞

∑
ki

kiPn [ki|i↔ j] ≤ 2, (A6)

where Pn [ki|i↔ j] denotes the probability that bank i has ki contagious exposures, given
that i and j are connected via one contagious exposure. It follows from Bayes’ rule that

Pn [ki|i↔ j] =
Pn [i↔ j|ki]Pn [ki]

Pn [i↔ j]
.

8As n grows large, loops of contagious exposures can be ignored for En(k
2)

En(k)
< 2. For more details,

see Cohen et al. (2000).
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Because contagious exposures are randomly determined,

Pn [i↔ j] =
En[k]

n− 1
and Pn [i↔ j|ki] =

ki
n− 1

.

Thus, equation (A6) is equivalent to

lim
n→∞

En[k2]

En[k]
≤ 2, (A7)

It is important to note that the derivation of equation (A7) does not rely on the functional
form of Pn[k] and applies to any distribution of links in which banks are randomly connected
to each other. Equation (A7) establishes that if, in the limit, there is enough variation in the
number of contagious exposures among banks, liquidity shocks affecting one bank almost
surely affects a non-negligible fraction of them. High variation in the number of contagious
exposures makes the economy more prone to contagion, as banks with a large number of
contagious exposures can effectively reach a large fraction of banks.

Preventing large cascades of liquidity shocks. Because restricting a bank not
only precludes that bank from facing liquidity shocks, but also precludes that bank from
propagating liquidity shocks, restricting a sufficiently large fraction of banks can potentially
prevent the emergence of large cascades of liquidity shocks. When x exceeds a certain threshold,
x∗, large cascades of liquidity shocks can be prevented, as the network of contagious exposures
disintegrates into smaller and disconnected parts, keeping liquidity shocks locally confined.
Importantly, the value of x∗ critically depends on how restricted bank are selected, as the
ratio in (A7) varies across policies.

First, suppose a fraction x of bank are restricted uniformly at random. After imposing
restrictions, a bank with k0 contagious exposures may only have k contagious exposures,
with k ≤ k0, as some of its neighbors may be restricted. In addition, the probability that a
subset of k neighbors is not restricted is (1− x)k, whereas the probability that the remaining
neighbors are restricted is xk0−k. Because there are

(
k0

k

)
different subsets of k neighbors, the

distribution of contagious exposures among nonrestricted banks is

P′n (k) =
∑
k≥k0

pαk0

(
k0

k

)
(1− x)kxk0−k,

and, thus,

E′n[k] = 〈k〉(1− x) and E′n[k2] = 〈k2〉(1− x)2 + 〈k〉x(1− x), (A8)

where expectations with superscript prime denote expectations after implementing restrictions.
After banks are restricted, large cascades of liquidity shocks arise if and only if

lim
n→∞

E′n[k2]

E′n[k]
≤ 2. (A9)

It then directly follows from substituting equation (A8) into equation (A9) that x∗ must
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satisfy

x∗ = 1− 〈k〉
〈k2〉 − 〈k〉

.

Now, suppose banks with the highest number of contagious exposures are restricted. The
following computations closely follow the ideas in Cohen et al. (2001). Restricting banks with
more than K(x∗) contagious exposures is approximately equivalent to restricting a fraction
x∗ of banks, where x∗ satisfies

x∗ = 1−
K(x∗)∑
k=0

pαk .

Take a bank with k contagious exposures. The fraction of contagious exposures attached to
all banks with k contagious exposures equals

kpαk
〈k〉 . As a consequence, the fraction of contagious

exposures attached to restricted banks is

s(x∗) =
1

〈k〉

 n−1∑
k=K(x∗)+1

kpαk

 = 1− 1

〈k〉

K(x∗)∑
k=0

kpαk


Because imposing restrictions on a set of banks can be represented by the removal of such

banks and their exposures, the optimal policy x∗ must satisfy

s(x∗) = x∗ = 1− 〈k(x∗)〉
〈k(x∗)2〉 − 〈k(x∗)〉

.

Therefore,

1− s(x∗) =
〈k(x∗)〉

〈k(x∗)2〉 − 〈k(x∗)〉

1

〈k〉

K(x∗)∑
k=0

kpαk

 =

∑K(x∗)
k=0 kpαk∑K(x∗)

k=0 k2pαk −
∑K(x∗)

k=0 kpαk

1

〈k〉

K(x∗)∑
k=0

kpαk

 =

∑K(x∗)
k=0 kpαk∑K(x∗)

k=0 k(k − 1)pαk

〈k〉 =

K(x∗)∑
k=0

k(k − 1)pαk . (A10)

which determines the condition under which large cascades of liquidity shocks emerge.
Preventing large cascades in Poisson networks. If the planner cannot identify whether
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some banks will exhibit more contagious exposures than others, then

x∗ = 1−
(

1

α

)
.

However, if the planner is able to identify which banks will exhibit the highest number of
contagious exposures, then

x∗ = 1− e−α
K(x∗)∑

k=0

αk

k!

 , where K(x∗) satisfies α = e−α

K(x∗)∑
k=2

αk

(k − 2)!

 .

The derivation of the above equations uses the following arguments. For a Poisson
distribution with parameter α, the first two moments are given by 〈k〉 = α and 〈k2〉 = α2 +α.
Thus, when restricting at random, the optimal policy is given by x∗ = 1− 1

α
. Provided that

pαk = e−α α
k

k!
, a direct application of condition (A10) yields

x∗ = 1− e−α
K(x∗)∑

k=0

αk

k!

 , where K(x∗) satisfies α = e−α

K(x∗)∑
k=2

αk

(k − 2)!

 .

Preventing large cascades in Power-law networks. If the planner cannot identify whether
some banks will exhibit more contagious exposures than others, then

x∗ =

{
1−

((
2−α
3−α

)
k0 − 1

)−1
if α > 3

1 if 1 ≤ α ≤ 3.

However, if the planner is able to identify which banks will exhibit the highest number of
contagious exposures, then

x∗ = 1−
K(x∗)∑
k=0

k−α.

where K(x∗) satisfies(
K(x∗)

k0

)2−α

− 2 =

(
2− α
3− α

)
k0

((
K(x∗)

k0

)3−α

− 1

)
.

The derivation of the above equations uses the following arguments. A continuous
Power-law distribution with parameter α, minimal value k0, and maximum value K, satisfies

〈k〉 = kα−1
0 K2−α

(
α− 1

α− 2

)
and 〈k2〉 = kα−1

0 K3−α
(
α− 1

α− 3

)
if 1 < α < 2

〈k〉 = k0

(
α− 1

α− 2

)
and 〈k2〉 = kα−1

0 K3−α
(
α− 1

α− 3

)
if 2 < α < 3
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〈k〉 = k0

(
α− 1

α− 2

)
and 〈k2〉 = k2

0

(
α− 1

α− 3

)
if 3 < α

As a consequence, when K grows large,

〈k〉 = k0

(
α− 1

α− 2

)
if α > 2 and 〈k2〉 = k2

0

(
α− 1

α− 2

)
if α > 3

and they diverge in all other cases.
Now, consider the case when the planner cannot differentiate among banks before im-

plementing her policy. Using the above equations and the condition that determines the
emergence of large cascades of liquidity shocks, it is easy to show that

x∗ =

{
1−

((
2−α
3−α

)
k0 − 1

)−1
if α > 3

1 if 1 ≤ α ≤ 3.

as n grows large.
When the planner can identify banks with the highest number of contagious exposures,

the following equation

kx∑
k=k0

k(k − 1)pk = 〈k〉

determines the emergence of large cascades of liquidity shocks. Because the network follows
a Power-law distribution with parameter α, the above equation is equivalent to

(α− 1)kα−1
0

(
k3−α
x − k3−α

0

3− α
− k2−α

x − k2−α
0

2− α

)
= k0

(
α− 1

α− 2

)
which is equivalent to(

k0

3− α

)((
kx
k0

)3−α

− 1

)
−
(

1

2− α

)((
kx
k0

)2−α

− 2

)
= 0,

and, thus, kx can be derived from α.

D.2 Interventions in Large Economies

Suppose the planner restricts all banks in R, with |R| = nx. Then(
1

n

)
E[TO|x] = x(E[RI ]− ωHE[∆R]) +

(
1

n

)∑
i/∈R

E[πi]

For a given information set, let x∗ denote the smallest fraction of banks that must be restricted
to prevent the emergence of large cascades of liquidity shocks. As the economy grows large,
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it is worth noting that

lim
n→∞

(
1

n

)∑
i/∈R

πi =


(1− x)[RI − ωL∆R], with probability x if x < x∗

0, with probability (1− x) if x < x∗

(1− x)[RI − ωL∆R], with probability 1 if x ≥ x∗.

Let Rc denote the complement set of R. The above expression follows from the fact that
if x ≥ x∗, then the size of the largest connected component in Rc is almost surely of order
ρ2 log(n), where ρ is the highest degree within Rc. However, if x < x∗ the size of the largest
connected component is of order n—and the size of the second largest connected component
is of order log(n); for more details, see Molloy and Reed (1998). As a result,

lim
n→∞

(
1

n

)
E[TO|x] =

{
x(E[RI ]− ωHE[∆R]) + (1− x)(E[RI ]− ωLE[∆R]), if x ≥ x∗

x(E[RI ]− ωHE[∆R]) + x(1− x)(E[RI ]− ωLE[∆R]), if x < x∗.

Define ∆x = (x∗ − x). To determine the optimal policy, it is worth noting that H(x) ≡
limn→∞

(
1
n

)
(E[TO|x∗]− E[TO|x]) equals

H(x) =

{
−∆x∆ωE[∆R], if x ≥ x∗

(1− x)2(E[RI ]− ωLE[∆R])−∆ωE[∆R]∆x, if x < x∗.

If
(

E[RI ]−ωLE[∆R]
∆ωE[∆R]

)
≥ x∗, then H(x) ≥ 0 , ∀ x in [0, x∗]. Thus, x∗ generates higher expected

total output than any other fraction 0 ≤ x ≤ 1, as H(x) is strictly positive when x > x∗.

However, if
(

E[RI ]−ωLE[∆R]
∆ωE[∆R]

)
< x∗, then H(0) < 0. Consequently, H(x) < 0, when

0 ≤ x < x∗, as H(x) is an increasing function of x when x < x∗ and H(x∗) = 0. Therefore,
x = 0 maximizes expected total output. Then, as n grows large, the optimal policy converges
to the following intervention:

xoptimal =

{
x∗, if

(
E[RI ]−ωLE[∆R]

∆ωE[∆R]

)
≥ x∗

0, otherwise.

Importantly, the value of x∗ does not depend on the values of E[RI ], ωL, E[∆R], or ∆ω.
However, x∗ does depend on the distribution {pαk}k=1 and how banks are targeted. In

particular, if bank-level information is not acquired, then x∗ = 1 − 〈k〉
〈k2〉−〈k〉 . If bank-level

information is acquired, then x∗ = 1 −
∑K(x∗)

k=kmin
pαk—where K(x∗) is the solution of the

following equation 〈k〉 =
∑K(x∗)

k=kmin
k(k − 1)pαk and kmin is the smallest number of links that a

bank might have.
As in the paper, xt and xr denote the smallest fraction of banks that must be restricted

to prevent large cascades of liquidity shocks if either the planner strategically targets banks
or restricts them at random. Because xt ≤ xr, then ∆x ≥ 0.

EXAMPLE 2 (Poisson Networks): If the network exhibits a Poisson degree distribution of
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parameter α, then

xr = 1− 1

α

xt = xr −
e−ααKα

Kα!

where Kα solves 1
α

=
∑(Kα−2)

j=0
e−ααj

j!
. Thus, ∆x = e−ααKα

Kα!
.

Proof. With random targeting, xr = 1− 〈k〉
〈k2〉−〈k〉 . The result follows directly from the fact

a Poisson network with parameter α yields 〈k〉 = α and 〈k2〉 = α2 + α. With strategic
targeting, xt = 1 −

∑K∗

k=kmin
pαk =

∑∞
k=K∗+1 p

α
k—where K∗ is the solution of the equation

〈k〉 =
∑K∗

k=kmin
k(k − 1)pαk , with pαk = e−ααk

k!
. It is worth noting that the fraction of contagious

exposures attached to restricted banks, p, equals p = 1
〈k〉
∑∞

k=K∗+1 kp
α
k . Importantly, if

p = xr, then large cascades of liquidity shocks are prevented. Because p = 1
〈k〉
∑∞

k=K∗+1 kp
α
k =∑∞

k=K∗
e−ααk

k!
= (
∑∞

k=K∗+1
e−ααk

k!
) + e−ααK

∗

K∗!
= xt + e−ααK

∗

K∗!
, then xt = xr − e−ααK

∗

K∗!
.

EXAMPLE 3 (Power-law Networks): If the network exhibits a Power-law degree distribution
of parameter α and kmin = 1, then

xr =

{
1−

((
2−α
3−α

)
− 1
)−1

if α > 3

1 if 1 ≤ α ≤ 3.

xt = K(1−α)
α

where Kα satisfies

K2−α
α − 2 =

(
2− α
3− α

)(
K3−α
α − 1

)
.

As a result,

∆x =

{
1−

((
2−α
3−α

)
− 1
)−1 −K(1−α)

α if α > 3

1−K(1−α)
α if 1 ≤ α ≤ 3.

To determine the (endogenous) value of network transparency and the optimal intervention,

it is illustrative to analyze how
(

E[RI ]−ωLE[∆R]
∆ωE[∆R]

)
compares to xt and xr. First, suppose

xr ≤
(

E[RI ]−ωLE[∆R]
∆ωE[∆R]

)
. Then, limn→∞

(
1
n

)
(E[TO|xt]− E[TO|xr]) = ∆x∆ωE[∆R], which

represents the value of network transparency. Consequently, if ∆x∆ωE[∆R] ≥ κ, then
improving network transparency is optimal and xoptimal = xt. Otherwise, it is optimal not

to improve transparency and xoptimal = xr. Second, suppose xt ≤
(

E[RI ]−ωLE[∆R]
∆ωE[∆R]

)
< xr.

Then limn→∞
(

1
n

)
(E[TO|xt]− E[TO|x = 0]) = (E[RI ]− ωLE[∆R])− xt∆ωE[∆R] represents

the value of network transparency. Thus, if (E[RI ] − ωLE[∆R]) − xt∆ωE[∆R] ≥ κ, then
improving transparency is optimal and xoptimal = xt. Otherwise, improving transparency
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is suboptimal and xoptimal = 0. Finally, suppose
(

E[RI ]−ωLE[∆R]
∆ωE[∆R]

)
< xt. Then, xoptimal = 0

no matter what, and, thus, the value of transparency is 0. As a result, improving network
transparency is sub-optimal.

As a consequence, the optimal intervention is given by

xoptimal =



xr, if xr ≤ min
{(

E[RI ]−ωLE[∆R]
∆ωE[∆R]

)
, xt + κ

∆ωE[∆R]

}
xt, if κ

∆ωE[∆R]
+ xt ≤ xr ≤

(
E[RI ]−ωLE[∆R]

∆ωE[∆R]

)
or

xt ≤
(

E[RI ]−ωLE[∆R]−κ
∆ωE[∆R]

)
and

(
E[RI ]−ωLE[∆R]

∆ωE[∆R]

)
< xr

0, otherwise,

(A11)

which can be rewritten as

xoptimal =


xr, if ∆ωE[∆R] ≤ min

{
ν
xr
, κ

∆x

}
xt, if min

{
ν
xr
, κ

∆x

}
< ∆ωE[∆R] ≤ ν−κ

xt

0, otherwise.

(A12)

The endogenous value of network transparency is

SVI =


∆x∆ωE[∆R], if xr ≤

(
E[RI ]−ωLE[∆R]

∆ωE[∆R]

)
(E[RI ]− ωLE[∆R])− xt∆ωE[∆R], if xt ≤

(
E[RI ]−ωLE[∆R]

∆ωE[∆R]

)
≤ xr

0, otherwise,

(A13)

which is equivalent to

SVI =


∆x∆ωE[∆R], if ∆ωE[∆R] ≤ ν

xr

ν − xt∆ωE[∆R], if ν
xr
< ∆ωE[∆R] ≤ ν

xt

0, otherwise.

(A14)

It directly follows from the above analysis

EXAMPLE 4 (Optimal Intervention and Value of Network Transparency in Poisson Networks):
If the network exhibits a Poisson degree distribution of parameter α, then

xoptimal =


(
1− 1

α

)
, if ∆ωE[∆R] ≤ min

{
να
α−1

, κKα!
e−ααKα

}(
1− 1

α

)
−
(
e−ααKα

Kα!

)
, if min

{
να
α−1

, κKα!
e−ααKα

}
< ∆ωE[∆R] ≤ ν−κ

(1− 1
α)−

(
e−ααKα
Kα!

)
0, otherwise.
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where Kα solves 1
α

=
∑(Kα−2)

j=0
e−ααj

j!
. The endogenous value of network transparency is

SVI =


(
e−ααKα

Kα!

)
∆ωE[∆R], if ∆ωE[∆R] ≤ να

α−1

ν −
((

1− 1
α

)
− e−ααKα

Kα!

)
∆ωE[∆R], if να

α−1
< ∆ωE[∆R] ≤ ν

(1− 1
α)−

(
e−ααKα
Kα!

)
0, otherwise.

Appendix B Figures

This section contains figures mentioned in the body of the paper.
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0.2 0.4 0.6 0.8 1.0

x

0.01

0.02

0.03

0.04

0.05

0.06

<ϕx>

α=1

α=2

α=3
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Figure 5. {pk}k follows a Poisson distribution with parameter α.
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Figure 6. {pk}k follows a Poisson distribution with parameter α and restricted banks are
selected at random 60
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Figure 7. Preventing large cascades of distress
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Figure 8. Optimal intervention as a function of α in Poisson networks.
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Figure 9. Optimal intervention as a function of α in Power-law networks.
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Figure 10. Optimal intervention as a function of σ2 in Poisson networks with model
uncertainty.
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Figure 11. Optimal intervention as a function of σ2 in Power-law networks with model
uncertainty.
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