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Abstract: Projections of sea-level rise and coastal flooding place Bangladesh as one of the 

countries most vulnerable to climate change by the end of this century. These changes are 

expected to have widespread consequences, including for population dynamics. We build upon a 

growing economic demography literature to estimate the effect of flooding on fertility in rural 

Bangladesh, using satellite-based measures of flooding and vital registration data on the infant 

population (2003-2011). We additionally perform parallel analyses of the socio-economic effects 

of flooding to explore whether prevailing labor market opportunities during a flooding episode 

shape the decision to conceive.  We find the odds of having a child under age 1 in a household 

declines 3 percent when the extent of flooding in a sub-district increases by one standard 

deviation. There are no differential effects on the sex ratio. Flood-induced declines in fertility 

coincide with increased labor force participation by men, but maternal health, fetal vulnerability 

at gestation and/or increased health risks post birth seem to play a larger role. Future research 

differentiating how climate change affects the opportunity cost of worker’s time versus 

physiological factors related to human fertility is thus a key component to projecting the future 

stock of rural workers.  
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I. Introduction 

 

Storms, torrential monsoon rains, and high tides in coastal areas contribute to rapid onset 

flooding events which can devastate agrarian households in developing countries (Gröger and 

Zylberberg, 2016; Taraz, 2017; Desmet et al., 2018). Future projections of sea-level rise and 

coastal flooding place Bangladesh as one of the leading countries vulnerable to climate change 

by the end of this century (Clark et al., 2016). Millions are predicted to be displaced in 

Bangladesh, when considering the population under threat of inundation exposure as a proxy for 

migration (Davis et al., 2018). The ubiquitous practice of using population as a means of 

measuring migration is driven by the paucity of global, granular data required to identify the 

migration-flooding nexus (Nicholls et al., 2011; Neumann et al., 2015). However, the magnitude 

of projected climate migrants using population as an outcome does not replicate when modeling 

migration using vital registration (Chen et al., 2017; Chen and Mueller, 2018), longitudinal 

(Gray and Mueller, 2012; Call et al., 2017), and call detail record (Lu et al., 2016) data. This 

raises the question whether the estimated relationship between population and natural disasters, 

in Bangladesh and elsewhere, incorporates aspects of climate-induced demographic change 

auxiliary to human mobility.  

 A growing economic literature sheds light on the relevance of environmental conditions 

on fertility rates (Lin, 2010; Mu and Zhang, 2011; Torche, 2011; Hernández-Julián, Mansour, 

and Peters, 2014).  A paucity of studies has quantified the fertility effect of flooding (Davis, 

2017). Furthermore, the fertility literature fails to account for the importance of behavioral 

mechanisms underlying conception decisions in the context of environmental change. In 

particular, the expansion of labor activities for adaptation purposes may be likely to change 
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perceptions of the opportunity cost of one’s time, and hence, decisions to conceive (Dimova et 

al., 2015; Mathenge and Tschirley, 2015; Mueller et al., 2020).  

 In this study, we merge satellite-based measures of flooding at the sub-district level with 

nationally representative household data on infant population (2003-2011) to evaluate the effect 

of monsoon flooding on fertility in Bangladesh. The standard approach to identifying the 

implications of a given natural disaster is to employ a difference-in-difference methodology (Mu 

and Zhang, 2011; Nobles, Frankenberg, and Thomas, 2015). While the technique permits 

identification of the effect of a particular flood, our estimation strategy allows for the 

generalization of impacts to a continuum of disasters of different magnitude and scale. 

Specifically, we estimate a fixed effect regression model which, in addition to conditioning on an 

objective measure of flooding exposure, controls for the role of cultural norms regarding optimal 

family size as well as temporal trends in fertility through the inclusion of division, year, and 

division by year fixed effects. A suite of household factors known to affect family size, such as 

demographic composition, education, religion, and wealth, are also incorporated to reduce the 

potential for omitted variable bias in influencing our results. Sensitivity analyses are performed 

to verify that the fertility effects are robust to the definition of a flooding event. 

Next, we add parallel analyses on the socio-economic effects of flooding to explore whether 

prevailing labor market opportunities during a flooding episode shape the decision to conceive. 

Specifically, we use nationally representative socio-economic data (2005 and 2010) to explore 

whether gender-differentiated wages and/or employment opportunities in rural areas improve or 

worsen with the magnitude of a flood. We conclude with a mediation analysis to pinpoint which 

feature of the labor market affecting the opportunity costs of women’s and/or men’s time 

explains the observed fertility effects.  
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II. Conceptual Framework  

 

There are several pathways in which a climatic event may affect the fertility of women in 

Bangladesh (Grace, 2017). Exposure to a flooding event can induce both biophysical and 

behavioral responses among men and women that affect the decision to conceive and jeopardize 

the viability of the fetus. In what follows, we briefly review the literature on the prenatal 

consequences of disasters to motivate the hypotheses we aim to test in the paper.  

 

A. Conception 

 

Classic economic models of fertility describe the choice of family size n to be based on 

maximizing household utility (Hotz, Klerman, and Willis, 1987). Household utility depends on 

the number children n and consumption of a staple good x, with choices constrained by a time-

budget and a child production function as follows: 

 

max𝑈(𝑛, 𝑥, 𝑦; 𝜃) s.t. 𝑤𝑓𝑇 + 𝑤𝑚𝑇 = 𝑥 + 𝑤𝑓(𝑇 − 𝑙𝑓) + 𝑤𝑚(𝑇 − 𝑙𝑚) and 𝑛 = 𝑛(𝑙𝑓 , 𝑙𝑚; 𝜌) 

 

where w denotes wages for females (f) and males (m), T represents the total time allocation, 𝜃 

represents factors idiosyncratic to the household (e.g., preferences for children), and ρ represents 

a technology shifter in the production of children. For simplicity, the price of x is normalized to 

one, and we abstract from the labor-leisure decision. In the context of agricultural households, 

we could further augment the model by allowing for both household and wage labor activities, 

which are imperfect substitutes in the production of the staple good. The time-budget constraint 

could then be expressed as 

𝑤𝑓𝑇 + 𝑤𝑚𝑇 = 𝑥(𝑡𝑓, 𝑡𝑚; 𝜎) + 𝑤𝑓(𝑇 − 𝑙𝑓 − 𝑡𝑓) + 𝑤𝑚(𝑇 − 𝑙𝑚 − 𝑡𝑚) 
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where t is family labor and σ is a production technology parameter. We can then think of several 

mechanisms through which flooding may affect fertility (n) – market wages, and the production 

parameters σ and ρ. The former affects the shadow price of family labor through shocks to the 

agricultural production process, while the latter affects the shadow price of children through 

shocks to maternal and/or fetal health. 

Empirical evidence corroborates that the opportunity cost of women’s time should play a 

significant role in the decision to have a child, 
𝜕𝑛

𝜕𝑤𝑓 (Currie and Schwandt, 2014). For example, 

decreasing fertility trends have coincided with the expansion of education and the growing labor 

demand for workers due to massive structural change (Klasen, 2019). The garment and textile 

sectors, in particular, have created numerous opportunities for women to engage in the labor 

force in Bangladesh (Heath and Mobarak, 2015). At the same time, a significant percentage of 

women have managed to remain employed in the agricultural sector and diversify into self-

employment in nonfarm enterprises as both activities allow women to work while rearing 

children (Klasen, 2019). This is particularly important among subsistence farming households 

where there may be a premium for children to ensure a future supply of workers on the farm.  

Of relevance to our paper is how these aforementioned opportunity costs may change 

with exposure to a flooding event. There is a paucity of work that links the demand for women’s 

labor to flooding anomalies. Therefore, hypothesizing whether a hazard will lower the 

opportunity cost of women’s time, and increase their propensity to conceive an additional child 

is challenging. Climate anomalies, such as heat, have been shown to compromise labor and 

capital productivity (Heal and Park, 2013; Graff Zivin and Neidell, 2014) and drive firms to 

downsize (Zhang et al., 2018). Presumably, wages may decline due to flooding if firm behavior 

in wet conditions mimics firm behavior observed in hot conditions but the former relationship 
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remains poorly understood. In the agricultural sector, studies have established more direct 

linkages between wages and floods in the country under investigation. Wages decline with 

flooding anomalies, however, the disruptions to the market are short-lived (Banerjee, 2007; 

Mueller and Quisumbing, 2011). This is attributable to the positive externalities from flooding. 

Specifically, riverine flooding enriches the nutrients of the soil causing delayed yield 

improvements (Banerjee, 2010). The flooding effect on yields can, in turn, generate an increased 

demand for work on the farm and decrease the supply of migrant workers, especially men, 

among rural households (Call et al., 2017; Chen and Mueller, Forthcoming). Together these 

findings suggest that, in households who rely on agriculture as their main livelihood, the decision 

to conceive is linked not only to market wages but also the technology parameter σ, which 

affects the shadow price of family labor.  

 It is worth noting that the psychology literature highlights the importance of social 

behavior in fertility decisions rather than the pricing channels emphasized in economic models 

(Davis, 2017). Following Hurricane Hugo, partners increased their sexual activity and, hence, 

such modifications to behavior contributed to the rise in fertility rates (Cohan and Cole, 2002). 

The authors of the study owe the behavioral response to the concept of partner attachment during 

a traumatic experience. In contrast, other studies have attributed these positive fertility effects to 

the need to replace the population facing greater mortality rates (Rodgers et al., 2005; Nobles et 

al., 2015). These social factors intrinsic to 𝜃 offer a rationale for increasing fertility rates in the 

wake of a disaster, where in spite of an increased demand for female (or male) labor, women opt 

to spend more time on leisure (rather than work) activities.    

  

B. Gestation 
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The literature has since abstracted away from measuring the precise behavioral mechanism 

underlying fertility decisions (Becker and Lewis, 1973; Willis, 1973; Rosenzweig and Zhang, 

2009), instead focusing on the well-identified physiological mechanisms during gestation, as 

captured by our technology parameter ρ. Reductions in the gestational age and birth weight of 

infants has been attributed to maternal stress evoked from experiencing a natural disaster 

(Torche, 2011) or religious fasting (Almond and Mazumder, 2011). The biological mechanism 

described by the authors stems from the increased production of cortisol, a stress-releasing 

hormone, which can lead to intrauterine growth restriction.  

Other scholars have concentrated on providing an evidence base for an auxiliary 

biological mechanism proposed in evolutionary biology by Trivers and Willard (1973), hereafter 

referred to as Trivers-Willard. Trivers-Willard suggest differences in the sex ratio at birth are 

reflections of disparities in the parental condition. In particular, parents bearing more favorable 

socioeconomic, geographic, or environmental conditions are more likely to produce sons. 

Almond and Edlund (2007) offer one of the first tests of their hypothesis in human populations. 

They illustrate that parents with desirable socioeconomic characteristics are more likely to give 

birth to sons in the U.S.  

The fetal origins hypothesis expands upon the idea of Trivers-Willard to note that 

disruptions in child health in the initial trimester can also lead to additional risks of disease, and 

hence increased mortality, at later stages in life (Barker, 1990). Hernandez-Julian, Mansour, and 

Peters (2014) examine whether birth and fertility outcomes conform with both the predictions of 

Trivers-Willard and Barker, by comparing the sex ratio and birth outcomes of infants around the 

time of the 1974 Bangladesh famine. Their identification strategy focuses on comparisons of the 

health outcomes of children exposed to the famine at gestation to those among siblings born 
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during alternative periods. Their findings align closely with the notion of Trivers-Willard: 

women pregnant during the famine were less likely to have male children. In addition, they 

demonstrate that male infants exposed to malnutrition during the first trimester faced higher 

mortality rates compared to siblings in the family who were born outside of the famine period. 

Similar findings persist in the context of child exposure to risk in utero during civil conflict in 

Nepal (Valente, 2015) and earthquakes in Taiwan (Liu, Liu, and Tseng, 2015).  

Mu and Zhang (2011) suggest son preference, in specific cultures, offers another 

rationale to natural selection for observed differences in sex ratios. First, exposure to famine at 

early stages of gestation augments risk of disability and illiteracy at a greater rate for rural 

women than men. Second, the effects are muted when distinguishing by whether the child is 

associated with a gender-neutral ethnic group. These two pieces corroborate that son preference 

is more likely to drive inequities in child birth and health outcomes in China than natural 

selection. 

 

C. Hypotheses 

The objective of the research is to determine whether fertility declines with flooding events in 

rural Bangladesh. The previous studies generate strong precedence for expected declines in 

fertility in the wake of natural disasters. We therefore posit rural households experience 

reductions in fertility when exposed to flooding. If one of the mechanisms underlying the decline 
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relates to the natural selection channel implicit in Trivers-Willard, then we anticipate the declines 

will differ by child sex.1  

 We further propose to explore whether any declines in fertility can be explained by 

increases in the opportunity cost of men and women of child-bearing age (15-49) during floods. 

Given the positive externalities of flooding, we predict rural households will face an increase in 

the demand for employment in the agricultural sector. If women and men are pulled into working 

on the household’s farm or on nearby farms for causal wage labor, then presumably they will 

have less leisure time for conception activities. Moreover, if flooding generates increased value 

in time spent on crop or fish production, then the tradeoff between women working or being 

pregnant will change as the return to their labor increases. As we lack data on birth records and, 

therefore the gestation period, we will be unable to rule out completely whether declines in 

fertility are driven entirely by the channel of focus versus other competing theories, such as 

increased health risks at gestation or post birth attributable to flooding. 

 To identify the possibility that opportunity costs are affecting the fertility decision at 

flooding, we propose to first evaluate gender-differentiated employment in terms of the number 

of male and female workers in the household and the average hours men and women report 

working. We then juxtapose these findings on labor outcomes with estimated relationships 

between flooding, crop revenue, and the expenditures for hired labor in agricultural and non-

agricultural enterprises (proxies for the shadow wage of on-farm and off-farm production). In 

                                                 
1 Differences in sex ratios may also be attributable to disaster-induced preferences for sons. For example, Abrejo, 

Shaikh, and Rizvi (2011) indicate that sex-selective abortion is prevalent in Bangladesh, despite legislation 

forbidding the procedure unless mothers face higher mortality risks. However, a recent report by the Population 

Council suggests that use of ultrasounds in Bangladesh for sex determination is limited, especially for the average 

rural household who lacks access to the services provided by government hospitals or private clinics (Talukder, Rob, 

and Noor, 2014).  
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what follows, we describe the sources of data and variables (Section III) and the Methodology 

(Section IV) to test our hypotheses. 

 

III. Data 

To estimate the effect of flooding on fertility, we link socio-economic data with a suite of 

environmental and climate measures. The data are matched at the sub-district (upazila) level; 

sub-districts in Bangladesh are the second lowest tier of local government. There are 491 sub-

districts, which roughly represent the local labor and goods markets in Bangladesh and are 

comparable in size to U.S. counties. 

 

A. Environmental Data 

To measure flooding, we utilize remote sensing data from NASA’s MODIS (Moderate 

Resolution Imaging Spectro-radiometer) satellite. Each pixel in an image captures an area of 

500m2, and we examine images aggregated into 8-day composites that provide the best possible 

observation during the period. Inundation is represented by the Modified Normalized Difference 

Water Index (MNDWI) (Xu, 2006), as in other studies in Bangladesh (Guiteras et al., 2015; 

Chen et al., 2017; Chen and Mueller, 2018). The MNDWI identifies water and non-water 

features based on differences in surface reflectance and has been shown to provide greater 

accuracy than other available band-ratio indices (Ji et. al., 2009; Ogilvie et. al., 2015). We 

consider a pixel to be inundated with water if it has an MNDWI value greater than 0.1. To 

translate pixel information to the sub-district (upazila) level, we use the difference in the 

maximum percentage of water pixels in the monsoon (July-Dec) versus the dry (Jan-Mar) season 
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within a given year; this differencing helps to distinguish bodies of standing water from 

transitory flooding.  

Remote sensing measures of flooding have several advantages. They have been shown to 

be more accurate than self-reported flood exposure or proxies based on rainfall (Guiteras et. al., 

2015). Satellite imagery is available at high spatial and temporal resolution, allowing us to 

exploit a broad range of variation across areas and over time. Satellite outages are also rare, 

making these data more consistent than in situ measures, as well as alleviating concerns about 

endogenous gauge or station placement. There are, of course, some limitations as well. Images 

may be obscured by cloud cover, especially during the monsoon season.  Islam et. al. (2010) 

show that, in Bangladesh, the MODIS-based measure exhibits a high degree of correlation with 

more reliable measures which can only be constructed over smaller geographic and temporal 

scales. Remote-sensing based measures also cannot distinguish flooding depth and often fails to 

capture flash flooding. This makes it difficult to differentiate typical flooding activity from 

nuisance flooding, particularly because flooding is common in delta regions such as Bangladesh. 

To address this concern, we standardize these measures by the sub-district specific mean and 

standard deviation over the sample period. Figure 1 shows our standardized measure of flooding 

for the year 2002. As expected, flooding is more prevalent in the coastal zone, but there is 

substantial variation across sub-districts. We also observe high degrees of flooding in selected 

areas, even in an unexceptional year. 

In addition to flooding, we control for a range of additional environmental factors that 

may be correlated with flooding and have direct effects on fertility. Measures of total annual 

precipitation are constructed at 0.25 x 0.25° resolution from NASA’s Tropical Rainfall 

Measuring Mission (TRMM). Correlations between TRMM and rain gauge data are very high, 
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but extrapolation from TRMM daily measures can produce biased estimates for specific regions 

(dry vs. wet) during specific seasons (pre-monsoon vs. monsoon) (Tarek et. al., 2017). We 

therefore focus on monthly precipitation values extracted from TRMM and aggregated up to 

annual measures, following Islam and Uyeda (2007). While in situ rainfall gauges are more 

accurate, this is true only within a small radius of the physical gauge. Outages and missing 

values are not uncommon and can also significantly affect measures of cumulative precipitation. 

Moreover, placement of gauges may be related to unobserved characteristics that also affect 

fertility directly.  

To account for heat stress, we utilize data from the Bangladesh Meteorological 

Department’s (BMD) 34 weather stations. These stations are placed throughout the country, with 

roughly one station per district (Figure A1). Hourly data on temperature and rainfall are 

collected, along with monthly information on bright sun exposure. From this data source, we 

create variables that have been demonstrated to affect yields in Asia, such as annual averages for 

minimum and maximum temperature and bright sun exposure (Welch et al., 2010). Missing 

observations are imputed using values obtained from the next closest station. All environmental 

measures are constructed as the average of values in the prior two years, to allow for effects in 

both the conception and gestation phase. Furthermore, all measures are standardized by the sub-

district-specific mean and standard deviation to account for underlying differences in climate 

across regions. 

 

B. Socio-Economic Data 

We limit our attention to rural households, for whom flooding is likely to have the largest impact 

on livelihoods, and to households having at least one member in prime child-bearing age (15-49). 
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Fertility measures are taken from the Bangladesh Bureau of Statistics’ Sample Vital Registration 

System (SVRS) for the years 2003-2011, inclusive. This survey is conducted annually to update 

inter-censal population statistics at the district (zila) level. Approximately 200,000 households (1 

million individuals) are surveyed each year and, to achieve representation across rural, urban, 

and metropolitan areas, sampling is stratified by locality. The data include basic demographic 

characteristics, construction materials for the main dwelling, and use of improved sources of 

utilities and latrines. Chen and Mueller (2018) provide more details regarding the data collection 

process, sampling frame, and variables included in the SVRS. 

 Our primary outcome of interest is the presence of a child under the age of 1 in the 

household. We also analyze the sex ratio, or the number of female children (age <1) divided by 

the total number of children (age<1).2 Because the survey is conducted annually with repeated 

cross-sections, these metrics proxy for births within the household during the previous calendar 

year. Unlike fertility histories, however, we lack data on the month of birth as well as more 

detailed information on stillbirths and early life mortality. Thus, our measures reflect a 

composite of fertility and infant mortality; we explore this issue in greater detail below.   

 To further examine the potential mechanisms that may be driving the flooding-fertility 

relationship, we utilize data from the Bangladesh Bureau of Statistics’ 2005 and 2010 waves of 

the Household Income and Expenditure Survey. This survey provides detailed information on the 

income-generating activities of respondent households and is also nationally-representative at the 

district level. Our main outcomes of interest here pertain to household and market labor 

activities, as well as household agricultural production activities, which represent the largest 

source of demand for labor in rural areas (Bryan et. al., 2014). Specifically, we examine total 

                                                 
2 We assign a value of zero to households without a single birth during the last 12 months. 



 14 

household revenue from all agricultural activities and from rice crops in particular, the 

expenditures for hired labor in agricultural and non-agricultural enterprises, and the number of 

wage laborers and average hours worked by gender.  

Summary statistics are presented in Table 1. Over our sample period, 8.3% of households 

report having at least one child under the age of 1. This is a conservative proxy of the annual 

birth rate, given the presence of multiple women of child-bearing age in some households, as 

well as the incidence of infant mortality. Additionally, pregnancies that ended prematurely or 

with a stillbirth would not be included. The sex ratio also appears to be slightly skewed, as the 

proportion of households reporting a female child under the age of 1 is less than half that of the 

proportion reporting the presence of any infant. 

 

IV. Methodology  

Our primary empirical specification estimates the effect of flooding, accounting for concurrent 

environmental shocks as well as household characteristics related to risk tolerance and risk-

coping behavior that would mitigate the impact of environmental shocks: 

 𝑌𝑖𝑗𝑡 = 𝛼 + 𝛽𝐹𝑖𝑗𝑡−1,𝑡−2 + 𝛾𝑊𝑖𝑗𝑡−1,𝑡−2 + 𝛿𝑋𝑖𝑗𝑡 + 𝜇𝑘𝑡 + 𝜋𝑡 + 𝜏𝑘 + 𝜀𝑖𝑗𝑡, (1) 

where F and W represent flooding and other weather factors (rainfall, min/max temperature, sun 

exposure), standardized for each sub-district and averaged over the prior two years. X represents 

household characteristics3, and the remaining parameters represent fixed effects for division-

                                                 
3 In the SVRS data, household controls include sex, age, literacy, religion of the household head; number of 

household members and number of members in 7 age-sex categories (0-5, 6-14, 15-49, 50+ with males 15-49 as the 

omitted category), water source, fuel source, latrine type, and indicators for coastal and Northwest regions. In the 

HIES data, household controls include sex, age, education level, religion, marital status of the household head; 

number of household members and number of members in 7 age-sex categories (0-5, 6-14, 15-49, 50+ with males 

15-49 as the omitted category), water source, fuel source, latrine type, roof and wall material, number of rooms and 

indicators for coastal and Northwest regions. 
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year, year, and division. As described above, our outcomes of interest Y include fertility in the 

previous year, represented by the presence of children under the age of 1 and the sex-ratio, as 

well as a variety of household production and labor/time allocation measures. All models are 

estimated using ordinary least squares, with one exception. A logit model is applied to estimate 

how flooding affects the household odds of having a child under age 1. Standard errors are 

clustered at the sub-district level.  

 In (1), we also explore alternate definitions of flooding F to compare the relative 

importance of the first and second lagged values. The main issue with the interpretation of the 

lagged flooding variables is that we are unable to identify the behavioral or biological channel in 

which flooding affects fertility without knowledge of the i) precise timing of birth, ii) gestation 

period, and iii) timing of household interview.  

Here, we discuss the implications of iii). The vital registration monitors households on a 

continuous basis and does not provide details regarding the month in which the information was 

collected for each household.  This is particularly important to determine the point at which 

flooding exposure affects fertility, whether it be through factors that affect conception (e.g., 

sexual activity, maternal stress), vulnerability at gestation (e.g., in the first trimester), or through 

increased mortality risk post birth (e.g. due to increased health risks caused by flooding for the 

child).  

Figure 2 provides an illustration for how the interpretation of the one-year t-1 and two-

year t-2 lagged variables varies greatly for two extreme cases, when the interview is performed 

in January or December in survey year t. For the infants ages 0 to 11 months that were recorded 

in the registry in December of year t, flooding exposure at gestation is isolated to the previous 

monsoon t-1. However, there may be behavioral mechanisms underlying the decision to conceive 
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based on exposure in t-1 and t-2.  For the infants ages 0 to 11 months that were recorded in the 

registry in January of year t, flooding exposure at gestation occurs both in t-1 and t-2. In contrast, 

behavioral mechanisms underlying the decision to conceive will be isolated to experiences 

during the monsoon in t-2. Furthermore, flooding effects on fertility in period t-1 also could be 

driven by increased rates of infant mortality post birth.  

The sensitivity of timing of exposure and the interview month lead us to aggregate 

flooding exposure over the 24-month period in our preferred specification and precludes the 

ability to rule out the biological mechanisms that contribute to the observed fertility trends. We, 

thus, use the employment analysis to complement the fertility estimates in order to understand 

the merits of arguments posed by Currie and Schwandt (2014) in Bangladesh.  Although we lack 

adequate data on employment and birth records to provide causal evidence for flooding-induced 

employment effects on fertility, we aim to bring an additional perspective to the fertility-

environment literature on the role of labor market adjustments at the time of flooding on 

decisions to conceive. 

  

V. Results 

 

A. Fertility Effects of Flooding 

 

To test our first hypothesis that flooding reduces fertility, we provide the estimates from a logit 

model which regresses the binary indicator for whether the household has a child under age 1 on 

the explanatory variables included in (1). In the first column of Table 2, we report the odds of 

having a child under age 1 in response to a one standard deviation change in flooding. The 

results indicate the odds of having a child under age 1 declines 3 percent when the share of pixels 

flooded in a sub-district increases by one standard deviation. The effect remains essentially 
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unchanged when allowing for a quadratic relationship between flooding and fertility (column 2, 

Table 2).  

The magnitude of the flooding effect slightly decreases when we substitute our preferred 

flooding variable in (1) with (i) a one-year lagged flooding variable, (ii) a two-year lagged 

flooding variable, and (iii) both (i) and (ii) in the same model (Table A1). However, precise 

estimates are only obtained when using (1).4 The findings from the sensitivity analysis may 

highlight the importance of exposure at gestation on births. From Figure 2, it is clear that our 

ability to detect the increased risk of miscarriage in the first trimester is much higher in t-1  It is 

also evident from Figure 2 that failing to incorporate flooding exposure at t-2 would omit the 

added risk mothers faced who were interviewed in January and conceived during the months of 

September to November in t-2. We may be unlikely to detect the effect of flooding exposure at t-

2 on its own due to the small sample at risk at this period. However, accounting for cumulative 

exposure at gestation over a 24 month-period, our preferred specification of flooding, likely 

increases precision, by extending the sample at risk to account for this smaller segment of the 

population exposed at gestation during the monsoon of t-2.  

 We also evaluate whether the effects are robust to alternative samples (Table A2). First, 

the flooding impacts appear concentrated in rural areas, where livelihoods are likely more 

dependent on climate. For example, when we restrict the analysis to urban households, there is 

no statistically significant relationship between sub-district flooded extent and fertility. Second, 

having adequate temporal variation in the data is necessary to have sufficient power to detect a 

                                                 
4 One potential concern with our fertility estimates may be that they are subject to sample selection bias. For 

example, able-bodied individuals may be more inclined to move from sub-districts that are heavily flooded to search 

for new economic opportunities and places of residence. The exodus of such a sample would bias the fertility-

flooding relationship downward, if the remaining sample is at greater risk of having miscarriages for reasons such as 

being older or having poor health. Prior work assuages concerns over such bias, as there is now a robust body of 

evidence that shows a lack of causal flooding effect on internal and international migration patterns in Bangladesh 

(Gray and Mueller, 2012; Chen et al., 2017; Chen and Mueller, 2018; Chen and Mueller, Forthcoming). 
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significant fertility-flooding relationship. When we focus on the two years for which we have 

socio-economic data using fertility measures from the SVRS or HIES, we are unable to estimate 

a statistically meaningful relationship.  

 We also compare the flooding effect on fertility across households with different 

demographic and wealth characteristics. In particular, we explore whether there are 

heterogeneous effects by education (proxied by literacy status of the household head), religion, 

parity (number of children of the household head), age composition (share of household 

members aged 35 or older), and wealth (asset index)5. To allow for the fertility effects to vary by 

subsample, we modify (1) to include the aforementioned group-level indicators (G) as well as 

variables that interact the group level indicators with flooding: 

𝑌𝑖𝑗𝑡 = 𝛼 + (𝛽 + 𝛽𝐺)𝐹𝑖𝑗𝑡−1,𝑡−2 + (𝛾 + 𝛾𝐺)𝑊𝑖𝑗𝑡−1,𝑡−2 + 𝛿𝑋𝑖𝑗𝑡 + 𝐺𝑖𝑗𝑡 + 𝜇𝑘𝑡 + 𝜋𝑡 + 𝜏𝑘 + 𝜀𝑖𝑗𝑡. (2) 

The odds ratios estimated from (2) are displayed in Table 3. The fertility decline is slightly larger 

in magnitude for households with more children, households with fewer members aged 35 or 

older, Muslim households, and households with less wealth. With higher dependency ratios and 

fewer assets, these groups, with the exception of Muslims, also tend to be more economically 

vulnerable. Our findings therefore suggest that fertility may be another mechanism for risk-

coping, and one used predominantly by poorer households. An alternative, equally-speculative 

interpretation is that more vulnerable households may be more likely to suffer adverse health 

effects that reduce observed fertility. Interestingly, there are no apparent differences in flooding-

induced fertility declines by education. Although only 42% of households in our sample have a 

household head who is literate, this measure may be too coarse a proxy for education. 

                                                 
5 We use a principal components analysis of survey indicators for household water and energy sources to formulate 

the household asset index (Filmer and Pritchett, 2001).  
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We, finally, investigate whether changes in fertility manifested into sex-ratio differences 

following Trivers-Willard (our second hypothesis). Turning to the last column in Table 2, the 

odds ratio on the flooding variable is close to one. In other words, there is no statistical support 

for the natural selection of female or male fetuses due to flooding anomalies.  

 

B. Employment Mechanisms  

 

We lastly explore whether the declines in fertility coincide with increases in the demand for 

labor on the farm (third hypothesis). Flooding anomalies incur deleterious consequences on rice 

revenue (column B, Table 4). However, total household revenue is relatively unaffected. These 

findings are consistent with earlier work which indicates that households avail from alternative 

coping strategies during the monsoon season, such as shifting from crop to fish production or 

delaying the crop production to take advantage of the benefits from the enriched soil (Banerjee 

2010; Chen and Mueller, 2018).  

 Given the necessity to diversify household economic activities, do these coping strategies 

increase the demand for male and female family members to engage in income-generating 

activities, particularly those of child-bearing age (15-49 years old)? We first assess whether the 

number of men and women who reported to have worked at all increases with the exposure of a 

flood in Table 5. While the engagement of women in the labor force remains the same, we 

witness a greater number of men being active in the labor force with an increase in flooding. The 

coefficient estimate on flooded area in column A of Table 5 is 0.02, which suggests a one 

standard deviation increase in flooding causes a 2 percentage-point increase in the supply of 

male workers in the household. This increase in labor market activity is heavily concentrated in 

the agricultural sector (column B), and the much larger coefficient on flooding implies that not 

only are men entering the labor market, they are switching into the agricultural sector. 
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However, conditional on working, male members are spending less (not more) time 

working (column C, Table 5). This may indicate that each individual spends fewer hours in wage 

labor, or that new entrants tend to work fewer hours than those already in the labor market, or 

both. When evaluating the flooding effect on the total household expenditures on hired labor, the 

point estimate is very small in magnitude and statistically insignificant. Together, these results 

indicate that employers are hiring more workers, though perhaps for fewer hours each. 

Moreover, since the total cost of labor remains constant, wages are likely depressed following 

flooding events, consistent with Banerjee (2007) and Mueller and Quisumbing (2011). Adverse 

shocks to crop production push small farmers into the wage labor market, where they find 

limited opportunities and low wages. Also, consistent with Jayachandran (2006), we find little 

use of temporary migration in response to flooding. In Table 6 (columns A and C), flooding is 

shown to have no significant effect on the number of female and male family members reported 

to have worked in another district. 

We finally examine whether factors affecting the production technology for children 

change with flooding exposure. Temporary migration is one factor, where changes in co-

residence might limit opportunities for sexual activity and conception. However, as discussed 

above, we find no significant effect of flooding on the likelihood of working outside the district. 

Another possibility is that flooding has adverse effects on maternal health, which could reduce 

both the likelihood of conception and live births. We do not find strong evidence of this either; 

the number of individuals in a household reporting illness is not significantly affected by 

flooding, though the point estimate for men is sizable relative to the sample mean and significant 

at the 15% level. 

C. Mediation Analysis 
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We have shown that flooding affects fertility, income, and labor market outcomes concurrently. 

To further explore whether changes in income-generating activities are mechanisms through 

which flooding affects fertility, we perform a mediation analysis.6 This is done by adding income 

and labor market outcomes as regressors in our preferred fertility specification. Although these 

outcomes are clearly endogenous, including them in the fertility regression allows us to assess 

the empirical linkage between these factors. Of course, the estimates cannot be interpreted as 

causal effects. However, if the inclusion of these endogenous variables attenuates the estimated 

effect of flooding on fertility, we can infer that changes in labor force participation and income 

are mediating the flooding-fertility relationship. 

Our application of this approach is complicated by the fact that the flooding-fertility 

relationship can only be detected with the greater temporal variation in the vital statistics (SVRS) 

data, while production and labor market activities are only available for the years in which the 

HIES is collected. Therefore, we generate out-of-sample predicted values as follows. First, we 

estimate a sub-district fixed effects (FE) regression for each labor and production market 

outcome L using the HIES: 

 𝐿𝑖𝑗𝑡 = 𝛽𝐹𝐸𝐹𝑖𝑗𝑡−1,𝑡−2 + 𝛾𝐹𝐸𝑊𝑖𝑗𝑡−1,𝑡−2 + 𝜋𝑡
𝐹𝐸 + 𝜏𝑗 + 𝜀𝑖𝑗𝑡.   (3) 

Because we lack detailed socio-economic data in the SVRS, we include only year fixed effects 

and the flooding and environmental variables in this specification. By doing so, we allow 

variation in outcomes due to differences in household characteristics to be subsumed into the 

sub-district fixed effect which will, in turn, help mitigate concerns about omitted household 

characteristics. Then, we combine these sub-district fixed effects (𝜏𝑗) with the parameter 

estimates from (1), the annual variation generated by the environmental variables, and 

                                                 
6 This approach has been used in Emerick et. al. (2016), Heckman and Pinto (2015), and Maccini and Yang (2009). 
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household-specific variation generated by demographic composition to predict L for each 

household i in year t of the SVRS. We then add each predicted outcome into the fertility 

specification (1), sequentially.   

In Table 7, we observe that controlling for the number of males working in agriculture 

has a negligible effect on the previously estimated flooding-fertility relationship. There is, 

however, a significant negative correlation between the number of workers and the likelihood of 

having an infant in the household. Additionally, we find little evidence of flood-induced changes 

in agricultural income mediating the flooding-fertility relationship, nor do we detect any 

statistically significant correlation between farm revenue and fertility. Taken together, our 

findings suggest that, although flooding changes income sources and labor market activity, the 

effects of on fertility are largely working through other channels.  

  

VI. Conclusion 

 

A key ingredient to economic growth is the possession of a stable work force over time. In 

several settings facing low rates of population growth, there is systematic evidence that changes 

in environmental conditions compromise fertility through increased fetal health risks at gestation 

(Lin, 2010; Mu and Zhang, 2011; Torche, 2011; Hernández-Julián, Mansour, and Peters, 2014). 

Most developing countries are unlikely to face a weakening of the labor force in the short term 

due to the persistent impacts of historical baby booms and, thus, the current youth bulge 

(Thurlow, 2015). However, developing countries, like Bangladesh, provide a laboratory setting 

to understand whether concerns over fertility declines, and the future work force, are justified 

given its constant threat of experiencing natural hazards under global climate change.  

  We use vital registration data to provide insights on the imminent loss of children (or at 

least delays in childbearing) due to increased flooding incidence. Our results indicate that the 



 23 

odds of having a child under age 1 declines 3 percent when the share of pixels flooded in a sub-

district increases by one standard deviation. There are no differential effects on the sex ratio. 

Given the lack of detailed data on birth records and infant mortality over time, we are unable to 

pinpoint the precise biological or behavioral mechanism driving observed fertility trends. The 

main biological mechanisms revealed in the literature are the magnified vulnerability to fetal 

viability at gestation and the increased risk of infant mortality post birth. We evaluate the labor 

market effects of flooding to establish whether there is reason to believe that sexual activity or 

the decisions to conceive might change with the opportunity cost of the time of men and women 

during key child-bearing years (15 to 49 years old). Although declines in fertility coincide with 

“selling labor low” – reductions in crop revenue concurrent with increasing labor force 

participation, our mediation analysis suggests that this is not the primary mechanism through 

which flooding affects fertility. Rather, our findings suggest the need to develop an improved 

understanding of how climate change affects maternal, fetal, and child health via subsistence 

constraints. This has important implications for the future stock of rural workers and is an area 

warranting future research.  
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Figure 1. Sub-district Flooding, Standardized Measure, 2002. 
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Figure 2. Phases of Fertility Cycle Affected by Monsoon Flooding  

  

11 10 9 8 7 6 5 4 3 2 1 0 11 10 9 8 7 6 5 4 3 2 1 0

Month, year

Dec, t PE PE PE PE PE PE PE PE PE PE PE PE

Nov, t PE PE PE PE PE PE PE PE PE PE PE GE

Oct, t PE PE PE PE PE PE PE PE PE PE GE GE

Sep, t PE PE PE PE PE PE PE PE PE GE GE GE

Aug, t PE PE PE PE PE PE PE PE GE GE GE GE

Jul, t PE PE PE PE PE PE PE GE GE GE GE GE

Jun, t PE PE PE PE PE PE GE GE GE GE GE GE

May, t PE PE PE PE PE GE GE GE GE GE GE GE

Apr, t PE PE PE PE GE GE GE GE GE GE GE GE

Mar, t PE PE PE GE GE GE GE GE GE GE GE GE

Feb, t PE PE GE GE GE GE GE GE GE GE GE CE

Jan, t GE GE GE GE GE GE GE GE GE GE CE CE PE PE PE PE PE PE PE PE PE PE PE PE

Dec, t-1 GE GE GE GE GE GE GE GE GE CE CE CE PE PE PE PE PE PE PE PE PE PE PE GE

Nov, t-1 GE GE GE GE GE GE GE GE CE CE CE CE PE PE PE PE PE PE PE PE PE PE GE GE

Oct, t-1 GE GE GE GE GE GE GE CE CE CE CE CE PE PE PE PE PE PE PE PE PE GE GE GE

Sep, t-1 GE GE GE GE GE GE CE CE CE CE CE CE PE PE PE PE PE PE PE PE GE GE GE GE

Aug, t-1 GE GE GE GE GE CE CE CE CE CE CE CE PE PE PE PE PE PE PE GE GE GE GE GE

Jul, t-1 GE GE GE GE CE CE CE CE CE CE CE CE PE PE PE PE PE PE GE GE GE GE GE GE

Jun, t-1 GE GE GE CE CE CE CE CE CE CE CE CE PE PE PE PE PE GE GE GE GE GE GE GE

May, t-1 GE GE CE CE CE CE CE CE CE CE CE CE PE PE PE PE GE GE GE GE GE GE GE GE

Apr, t-1 GE CE CE CE CE CE CE CE CE CE CE CE PE PE PE GE GE GE GE GE GE GE GE GE

Mar, t-1 CE CE CE CE CE CE CE CE CE CE CE CE PE PE GE GE GE GE GE GE GE GE GE CE

Feb, t-1 CE CE CE CE CE CE CE CE CE CE CE CE GE GE GE GE GE GE GE GE GE GE CE CE

Jan, t-1 CE CE CE CE CE CE CE CE CE CE CE CE GE GE GE GE GE GE GE GE GE CE CE CE

Dec, t-2 CE CE CE CE CE CE CE CE CE CE CE CE GE GE GE GE GE GE GE GE CE CE CE CE

Nov, t-2 CE CE CE CE CE CE CE CE CE CE CE CE GE GE GE GE GE GE GE CE CE CE CE CE
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Notes:

CE Exposure at conception (sexual activity, maternal stress, decision to conceive)

GE

PE

Age in monthsAge in months

December interview in year t January interview in year t

Exposure at gestation (first trimester very important)

Exposure after birth (health risks increase for child)



 31 

  
 

Table 1. Summary Statistics.

N Mean Std. Dev.

Sample Vital Registration System

Child, Age < 1 1,033,884 8.429% 0.278         

Female Child, Age < 1 1,033,884 4.117% 0.199         

Head is Literate 1,033,884 42.43% 0.494         

Head is Muslim 1,033,884 88.15% 0.323         

# Children of Hh Head 1,033,884 2.359         1.529         

Proportion Hh Members > Age 35 1,033,884 0.300         0.213         

Household Income and Expenditure Survey

Agricultural Revenue (taka) 10,439 32,509       75,611       

Rice Revenue (taka) 6,445 23,836       30,156       

Expenditure, Non-Ag Labor (taka) 3,047 11,814       57,369       

Expenditure, Ag Labor (taka) 9,463 2,139         5,549         

# Male Workers 13,402 0.964         0.687         

# Female Workers 13,402 0.106         0.333         

# Male Ag Workers 13,402 0.437         0.496         

# Female Ag Workers 13,402 0.035         0.184         

Avg Hours Worked Last Year, Male 10,552 2,509         920            

Avg Hours Worked Last Year, Female 1,325 1,892         1,000         

# Males Worked Away 13,402 0.095         0.337         

# Females Worked Away 13,402 0.007         0.092         

# Males Sick 13,394 0.152         0.376         

# Females Sick 13,394 0.212         0.428         

Data from the Bangladesh Bureau of Statistics. SVRS includes years 2002-

2011. HIES includes 2005 and 2010.
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Table 2. Flooding-Fertility Relationship, Rural Households

Child Under Age 1a Sex Ratiob

Avg. Min. Temp. 0.985 0.985 1.000

(-0.557) (-0.549) (-0.376)

Avg. Max. Temp. 0.982 0.982 1.000

(-0.768) (-0.749) (-0.190)

Bright Sun 1.019 1.020 1.000

(0.804) (0.812) (0.608)

Total Precipitation 1.011 1.011 1.000

(0.472) (0.469) (0.115)

Flooded Area 0.970** 0.965** 0.999

(-2.069) (-2.048) (-1.466)

Flooded Area Squared 1.009

(0.615)

N 1,033,884 1,033,884 1,033,884

aLogit specification. Coefficients reported as odds ratios.
b
Female birth/any birth. Zero if no births. OLS specification.

Notes: Socio-economic data drawn from Sample Vital Registration 

System, 2005-2011, Bangladesh Bureau of Statistics. All 

environmental variables are the average of t-1 and t-2 values. 

Inundated area is the fraction of water pixels in the upazila, drawn 

from NASA's MODIS satellite. Includes controls for rainfall, 

min/max temperature, sun, demographic and wealth controls, 

region (coastal, northwest), year, division, and division by year 

fixed effects. Logit regression with effects reported as odds ratios. 

Standard errors clustered at sub-district level. t-statistics in 

parentheses. *** indicates significance at 1%, 5% (**) and 10% (*) 

levels. N=1,033,884
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Table 3. Flooding-Fertility Relationship, Heterogeneous Effects

A. Literacy B. Parity C. Age D. Religion E. Wealth

Avg. Min. Temp. 0.996 0.972 0.989 0.983 0.986

(-0.145) (-0.884) (-0.383) (-0.221) (-0.476)

Avg. Max. Temp. 0.965 0.964 0.980 1.004 0.979

(-1.408) (-1.330) (-0.794) (0.0942) (-0.889)

Bright Sun 1.019 1.020 0.999 1.043 1.020

(0.669) (0.722) (-0.0518) (1.185) (0.731)

Total Precipitation 1.005 1.006 1.000 0.983 1.010

(0.207) (0.217) (0.0154) (-0.336) (0.410)

Flooded Area 0.979 0.965* 0.961** 0.939* 0.969**

(-1.255) (-1.850) (-2.489) (-1.809) (-2.063)

Head is Low Older Head is Higher

Literate Parity
a

Membersa Muslim Wealthb

Avg. Min. Temp. 0.979 1.028 0.987 1.004 0.995

(-0.949) (1.390) (-0.655) (0.0479) (-0.150)

Avg. Max. Temp. 1.042** 1.035** 1.014 0.975 1.017

(2.217) (2.240) (0.896) (-0.624) (0.653)

Bright Sun 1.001 0.998 1.072*** 0.977 0.998

(0.0546) (-0.122) (5.394) (-0.691) (-0.0841)

Total Precipitation 1.013 1.010 1.050*** 1.032 1.001

(0.648) (0.569) (3.167) (0.635) (0.0348)

Flooded Area 0.978 1.009 1.042** 1.036 1.007

(-1.207) (0.569) (2.420) (0.986) (0.308)

aDefined relative to the median value for the sample.
b
Defined relative to 80th percentile for the sample.

Relative Effects

Notes: Socio-economic data drawn from Sample Vital Registration System, 2005-2011, 

Bangladesh Bureau of Statistics. All environmental variables are the average of t-1 and t-2 

values. Inundated area is the fraction of water pixels in the upazila, drawn from NASA's MODIS 

satellite. Includes controls for rainfall, min/max temperature, sun, demographic and wealth 

controls, region (coastal, northwest), year, division, and division by year fixed effects. Logit 

regression with effects reported as odds ratios. Standard errors clustered at sub-district level. t-

statistics in parentheses. *** indicates significance at 1%, 5% (**) and 10% (*) levels. 

N=1,033,884
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Table 4. Household Production Activities

A. Total Hh B. Rice C. HH Exp, D. Hh Exp,

Revenuea Revenuea Ag. Labora Non-Ag Labora

Avg. Min. Temp. -0.139** -0.0648* -0.275** 0.258

(-2.400) (-1.708) (-2.140) (1.510)

Avg. Max. Temp. -0.0670 -0.210*** -0.169 0.141

(-1.324) (-5.681) (-1.579) (0.807)

Bright Sun 0.0411 0.0210 -0.0966 0.000773

(0.982) (0.771) (-1.139) (0.00693)

Total Precipitation 0.0613 -0.00496 0.0694 0.289*

(1.309) (-0.155) (0.730) (1.757)

Flooded Area 0.0199 -0.0617* 0.00281 -0.0466

(0.369) (-1.846) (0.0263) (-0.298)

N 10,439 6,445 9,463 3,047

Notes: Socio-economic data drawn from Household Income and Expenditure 

Surveys, 2005 and 2010, Bangladesh Bureau of Statistics. For each specification, 

the sample is limited to households engaged in the activity, including those 

reporting a zero value. All environmental variables are the average of t-1 and t-2 

values. Inundated area is the fraction of water pixels in the upazila, drawn from 

NASA's MODIS satellite. Includes controls for rainfall, min/max temperature, 

sun, demographic and wealth controls, region (coastal, northwest), year, 

division, and division by year fixed effects. Standard errors clustered at sub-

district level. t-statistics in parentheses. *** indicates significance at 1%, 5% (**) 

and 10% (*) levels. 
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Table 5. Household Labor Allocation, by Gender

Males Females

A. # of B. # of Ag C. Avg. Hours D. # of E. # of Ag F. Avg. Hours

Workers Workers Workeda Workers Workers Workeda

Avg. Min. Temp. -0.0231*** -0.0128 -0.00881 -0.0156** -0.00992** 0.0347

(-3.169) (-0.832) (-0.661) (-1.967) (-2.138) (0.720)

Avg. Max. Temp. -0.00822 -0.0284** 0.00230 -0.00415 -0.00283 -0.00721

(-1.152) (-2.068) (0.156) (-0.573) (-0.599) (-0.147)

Bright Sun 0.000588 0.0181* -0.0175* -0.00730 -0.000671 0.0154

(0.0989) (1.862) (-1.730) (-1.311) (-0.235) (0.462)

Total Precipitation 0.0102 -0.00103 0.00846 0.00344 -0.00160 0.0219

(1.442) (-0.0728) (0.583) (0.529) (-0.403) (0.508)

Flooded Area 0.0173** 0.0390*** -0.0329** 0.00314 0.00685 -0.0478

(2.060) (3.079) (-2.425) (0.435) (1.309) (-0.929)

N 13,402 13,402 10,552 13,402 13,402 1,325

a
Limited to individuals engaged in the labor market including those reporting a zero value.

Notes: Socio-economic data drawn from Household Income and Expenditure Surveys, 2005 and 2010, 

Bangladesh Bureau of Statistics. All environmental variables are the average of t-1 and t-2 values. Inundated 

area is the fraction of water pixels in the upazila, drawn from NASA's MODIS satellite. Includes controls for 

rainfall, min/max temperature, sun, demographic and wealth controls, region (coastal, northwest), year, 

division, and division by year fixed effects. Standard errors clustered at sub-district level. t-statistics in 

parentheses. *** indicates significance at 1%, 5% (**) and 10% (*) levels.

Table 6. Alternate Time Allocation Measures

Males Females

A. # Work B. # with C. # Work D. # with

Out of District Illness Out of District Illness

Avg. Min. Temp. -0.00775 -0.0113* -0.00102 -0.0237**

(-0.720) (-1.723) (-0.405) (-2.541)

Avg. Max. Temp. -8.48e-05 0.000999 -0.00258 0.00586

(-0.00852) (0.145) (-1.533) (0.626)

Bright Sun -0.00228 -0.00112 0.000141 -0.00266

(-0.284) (-0.219) (0.116) (-0.390)

Total Precipitation 0.000346 0.0106 0.00220 1.69e-05

(0.0394) (1.489) (1.290) (0.00218)

Flooded Area -0.00585 0.0135 0.00155 -0.000263

(-0.701) (1.611) (1.000) (-0.0259)

N 13,402 13,394 13,402 13,394

Notes: Socio-economic data drawn from Household Income and Expenditure 

Surveys, 2005 and 2010, Bangladesh Bureau of Statistics. All environmental 

variables are the average of t-1 and t-2 values. Inundated area is the fraction of 

water pixels in the upazila, drawn from NASA's MODIS satellite. Includes controls 

for rainfall, min/max temperature, sun, demographic and wealth controls, region 

(coastal, northwest), year, division, and division by year fixed effects. Standard 

errors clustered at sub-district level. t-statistics in parentheses. *** indicates 

significance at 1%, 5% (**) and 10% (*) levels.
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Table 7. Mediation Analysis of Flooding-Fertility Mechanisms.

A. B. C.

Flooded Area 0.968** 0.970* 0.970*

(-2.131) (-1.917) (-1.937)

# Male Ag. Workers
a

0.872* 0.854*** 0.880*

(-1.954) (-2.265) (-1.657)

Rice Revenuea,b 1.009 1.015

(0.298) (0.468)

Total Hh Ag. Revenuea,b 0.979

(-0.807)

a
Predicted value.

bLog value

Notes: Socio-economic data drawn from Household Income and 

Expenditure Surveys, 2005 and 2010, Bangladesh Bureau of 

Statistics. Flooded area is the fraction of water pixels in the 

upazila, averaged over t-1 and t-2, drawn from NASA's MODIS 

satellite. Includes controls for rainfall, min/max temperature, sun, 

demographic and wealth controls, region (coastal, northwest), 

year, division, and division by year fixed effects. Standard errors 

clustered at sub-district level. Standard errors bootstrapped with 

500 replications. t-statistics in parentheses. *** indicates 

significance at 1%, 5% (**) and 10% (*) levels.



 37 

 
 

Figure A1. Bangladesh Meteorological Department Weather Stations.  
Source: Bangladesh Meteorological Department, http://www.bmd.gov.bd.  
 

http://www.bmd.gov.bd/
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Table A1. Flooding-Fertility Relationship, Alternate Specifications

A. B. C. Two Lags

1 Year Lag 2 Year Lag 1 Year 2 Year

Avg. Min. Temp. 0.989 0.981 1.032 0.953

(-0.433) (-0.674) (0.958) (-1.332)

Avg. Max. Temp. 0.989 0.973 1.035 0.946**

(-0.512) (-1.135) (1.313) (-2.016)

Bright Sun 1.014 1.021 0.998 1.025

(0.702) (0.971) (-0.139) (1.414)

Total Precipitation 1.013 1.002 1.015 0.990

(0.635) (0.0954) (0.675) (-0.472)

Flooded Area 0.983* 0.987 0.982 0.985

(-1.786) (-1.338) (-1.572) (-1.409)

Notes: Socio-economic data drawn from Sample Vital Registration System, 2005-

2011, Bangladesh Bureau of Statistics. Inundated area is the fraction of water 

pixels in the upazila, drawn from NASA's MODIS satellite. Includes controls for 

rainfall, min/max temperature, sun, demographic and wealth controls, region 

(coastal, northwest), year, division, and division by year fixed effects. Logit 

regression with effects reported as odds ratios. Standard errors clustered at sub-

district level. t-statistics in parentheses. *** indicates significance at 1%, 5% (**) 

and 10% (*) levels. N=1,033,884

Table A2. Flooding-Fertility Relationship, Alternate Samples

A. Urban B. 2005 &

Households 2010 Only C. HIES

Avg. Min. Temp. 0.990 1.029 1.130**

(-0.279) (0.721) (2.226)

Avg. Max. Temp. 1.013 0.941* 1.040

(0.369) (-1.645) (0.787)

Bright Sun 0.986 1.025 1.048

(-0.713) (0.777) (1.234)

Total Precipitation 0.948 0.993 1.184***

(-1.122) (-0.200) (3.531)

Flooded Area 1.024 0.984 1.079

(1.414) (-0.531) (1.301)

N 590,419 268,529 13,402

Notes: Socio-economic data drawn from Sample Vital Registration 

System, 2005-2011, Bangladesh Bureau of Statistics. All 

environmental variables are the average of t-1 and t-2 values. 

Inundated area is the fraction of water pixels in the upazila, drawn 

from NASA's MODIS satellite. Includes controls for rainfall, 

min/max temperature, sun, demographic and wealth controls, 

region (coastal, northwest), year, division, and division by year 

fixed effects. Logit regression with effects reported as odds ratios. 

Standard errors clustered at sub-district level. t-statistics in 

parentheses. *** indicates significance at 1%, 5% (**) and 10% (*) 

levels.
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