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Abstract

This paper proposes both point-wise and uniform confidence sets (CS) for an element θ1
of a parameter vector θ ∈ Rd that is partially identified by affine moment equality and in-
equality conditions. The method is based on an estimator of a regularized support function of
the identified set. This estimator is half-median unbiased and has an asymptotic linear repre-
sentation which provides closed form standard errors and enables optimization-free multiplier
bootstrap. The proposed CS can be computed as a solution to a finite number of linear and
convex quadratic programs, which leads to a substantial decrease in computation time and
guarantee of global optimum. As a result, the method provides uniformly valid inference in
applications with the dimension of the parameter space, d, and the number of inequalities, k,
that were previously computationally unfeasible (d, k > 100). The proposed approach is then
extended to construct polygon-shaped joint CS for multiple components of θ. Inference for
coefficients in the linear IV regression model with interval outcome is used as an illustrative
example.
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1 Introduction

Strong econometric assumptions can lead to poor estimates. Moment inequalities occasionally pro-
vide alternative estimates under weaker assumptions. Linear models with interval-valued data are
a good example.1 It is common practice to replace the income bracket data with the corresponding
midpoints when estimating the returns to schooling (Trostel et al. (2002)). The conventional ap-
proach is applicable only under strong assumptions on the distribution of the residual term.2 The
affine moment inequality approach to interval-valued data proposed by Manski and Tamer (2002)
can set-identify the return to schooling without such strong assumptions.

There are multiple methods that can be used to construct confidence sets for parameters
defined by moment inequalities. The pioneering procedures of Chernozhukov et al. (2007) and
Andrews and Soares (2010, AS) and their subsequent refinements by Bugni et al. (2016) (BCS)
and Kaido et al. (2015) (KMS) are powerful procedures that solve this inference problem in the
small-dimensional case. Some applications, such as panel or semiparametric regression models with
interval measured outcome variables, have a large dimension of the parameter space (for example,
Trostel et al. (2002) consider a panel regression with more that 60 variables including country fixed
effects, time effects, exogenous demographic control variables, and their interactions) which poses
a computational challenge for the existing procedures.

I propose confidence intervals (CIs) for an element θ1 of an unknown parameter vector θ ∈ Rd

in models defined by affine moment equalities and inequalities. In the returns to schooling ex-
ample, θ1 corresponds to the returns to schooling and θ ∈ Rd to the full vector of the regression
coefficients that can include many control variables. I estimate the lower and upper extremes of
the identified set for θ1, which is an interval, using an estimator of the regularized support func-
tion. This estimator has a closed-form asymptotic Gaussian distribution which I use to construct
both point–wise valid and uniform CIs for θ1. The latter asymptotically controls the coverage
probability uniformly over a class of data generating processes (DGP) (as it was pointed out in
Imbens and Manski (2004), the uniformity in DGP is desirable as it controls coverage probability
in finite sample properties better than point-wise CIs).

Procedure. The regularized support function proposed in this paper is a solution to a convex
quadratic program that minimizes the sum of θ1 and a penalty µn ‖θ‖2 with µn → 0, subject to
the sample moment restrictions. If the set of optima for µ = 0 is not a singleton, this additional
convex term selects the optimum with the minimal norm as n increases. The standard errors are
computed using the sample variance of the weighted moment conditions at the unique optima. To
correct the asymptotic bias resulting from the regularization exactly, I suggest using the argmin
of the regularized program with a larger tuning parameter κn → 0. If κn/µn → ∞ as n → ∞,
then the bias correction does not affect the asymptotic distribution of the estimator. To achieve a
uniformly valid CI, I replace the exact correction with an upper bound on the maximum of µn ‖θ‖2
over the argmin set of the non-regularized program.

The proposed CIs have several attractive statistical and computational properties which make
them viable in high dimensional affine moment inequality models.

1Other examples of affine moment inequalities include monotone instrumental variables (Manski and Pepper
(2000),Freyberger and Horowitz (2015)) and models with missing data (Manski (2003)).

2Another common approach is to assume Gaussian distribution for the residuals and apply Maximum Likelihood
method (Stewart (1983)).
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Asymptotically linear representation. The estimator of the regularized support function
has a Asymptotically linear (or Bahadur) representation that provides easy to compute asymp-
totic standard error and enable the multiplier bootstrap. This resampling procedure avoids the
necessity of solving mathematical programs for every bootstrap draw present in the existing uni-
form methods.

This paper is the first to propose a closed–form estimator of the bounds on θ1 in affine mo-
ment inequality models with asymptotic Gaussian distribution. In contrast, the estimator of
the ordinary support function used in the existing literature (Beresteanu and Molinari (2008),
Kaido and Santos (2014), Freyberger and Horowitz (2015, FH), Gafarov et al. (2018), among oth-
ers) has non-Gaussian asymptotic distribution, which complicates inference.

Computational properties. The proposed approach requires only a fraction of the compu-
tational time of the existing pointwise and uniform procedures, in particular if θ has a large
dimension. The computational cost is low since it involves only four quadratic programs, it does
not require any resampling and it depends on covariance of the moment conditions at two points.

The computation time for my procedure increases only slowly in the dimension of θ ∈ Rd and
takes 1 sec only for d = 15 and k = 30 moment inequalities and 20 sec for d = 100 and k = 100.
As a result, the proposed method can address the parameters with a large dimension and a large
number of moment conditions. In contrast, the existing uniform inference methods for moment
inequalities proposed by AS, KMS, and BCS are based on costly non–convex optimization.

The new estimators, which are based on strictly convex programs, also avoid the problem of
distinguishing between local and global optima, which is present for the existing uniform procedures
even in the affine moment inequality setup. The low computational cost together with applicability
of the fast multiplier bootstrap allows one to perform joint inference on the components of θ using
the support function representation of a convex set.

I provide an example of an affine moment inequality model illustrating that the number of local
optimal solutions in the existing uniform procedures (AS,BCS, and KMS) can grow exponentially
with the dimension d. As a result, the procedures take more computational time and can produce
misleadingly short CIs if the optimization routine fails to find the global optimum. It takes 630
sec to compute the CI of AS in an affine model with d = 15 and 30 moment inequalities.3 In my
numerical experiments the computational time for the AS procedure increases by 30% with every
additional dimension d while my procedure is barely affected by changes in the dimension.

Length comparison. The proposed uniform CIs have length properties that are not worse than
these of the existing methods as suggested by Monte Carlo experiments. The proposed uniform
CI is has length within simulation error from the projection CI of AS in the MC design considered
in the paper.

Assumptions. The uniform CI is applicable in a situation where the existing uniform procedures
are inapplicable. I show that a linear model with an interval-valued outcome can have a moment
inequality with zero variance which violates the assumptions in AS, Kaido et al. (2015, KMS) and
Bugni et al. (2014, BCS).4

3I use the implementation of the AS procedure provided by KMS. This algorithm uses smooth interpolation of
the critical values by the kriging method which allows one to use a Newton-type solver. This approach reduces the
computational cost of the AS procedure.

4AS, KMS, and BCS procedures can be applied in some setups where my procedure is not applicable. I compare
setups in Section 2.5.
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The class of DGPs over which I prove uniform coverage properties is not nested in the classes
considered in BCS and KMS. I impose a rank condition on the affine constraints typical for
the support function approach ( Beresteanu and Molinari (2008), Kaido and Santos (2014), FH,
Gafarov et al. (2018) ). These conditions rule out over-identification of the solutions to the reg-
ularized programs. In particular, they rule out the possibility of point-identification by moment
inequalities of the components of θ, which can be addressed using BCS and KMS procedures. This
complication can be alleviated if one can split the full set of the inequality constraints into (possibly
overlapping) subsets that meet the rank condition. Within this framework, my procedure covers
θ1 for any sequences of DGP that drift to a DGP with a moment condition orthogonal to θ1, which
is not the case in BCS.5 As mentioned earlier, my CIs remain valid if some moment inequalities
have zero variance, which violates assumptions in both KMS and BCS. I expect poor coverage of
the existing procedures as the variance becomes very small (but still positive).

The number of maintained assumptions for the large sample inference in the present paper is
kept to a minimum. All the assumptions are testable.

Examples of affine inequality models. Identified sets defined by affine inequalities appear
in various economic applications, in particular, those dealing with discrete variables and shape re-
strictions. Linear models with interval outcome, that were originally studied in Manski and Tamer
(2002) and Haile and Tamer (2003), is just one example of affine inequalities. Other examples in-
clude bounds on marginal effects in panel dynamic discrete choice models (Honoré and Tamer
(2006), Torgovitsky (2016, 2018)), bounds on average treatment effects (Kasy (2016), Lafférs
(2018), Russell (2017)), non-parametric instrumental variable models with shape restrictions (Manski and Pepper
(2000), Freyberger and Horowitz (2015)), errors in variables (Molinari (2008)), intersection bounds
(Honoré and Lleras-Muney (2006)), revealed preference restrictions (Kline and Tartari (2016), Shi et al.
(2018)), game-theoretic models (Pakes et al. (2015), Syrgkanis et al. (2017)).

Inference on non-differentiable functions and regularized estimators. Bounds on com-
ponents of a parameter characterized by a linear moment conditions considered in this paper is
an example of a non-differentiable (non-regular) function of a parameter (the expectation of the
data) that has an asymptotically normal estimator (the sample mean). Recently a number of
papers have studied inference for such non-regular functions. The problem was considered first
by Shapiro (1991) and Dümbgen (1993). Hirano and Porter (2012) proved that it is impossible
to have a locally unbiased estimator of non-regular parameters. In particular, it implies that it is
impossible perform non-conservative inference on non-regular parameters. Fang and Santos (2018)
shown that the standard bootstrap inference in this setup is inconsistent in general provide a pro-
cedure based on a consistent estimator for the directional derivative of the non-regular function.
Hong and Li (2018) provide a general way to estimate the directional derivative by developing the
numerical delta-method based on rescaled bootstrap of Dümbgen (1993). In general, confidence
sets based on this method are only point-wise consistent.

In this paper I propose uniformly valid CS for θ1 using a different approach. I propose regular
lower and upper bounds that converge to the non-regular parameter of interest as sample size grows.
Since the bounds are regular parameters themselves, the standard delta-method and bootstrap can
be used to conduct one or two-sided inference on the bounds. In the regular case these bounds
collapse and coincide with the original parameter of interest, which results in

√
n-consistent and

5See KMS for a discussion of the assumptions in BCS
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asymptotically normal estimator. In the non-regular case, the bounds converge converge at a
slower rate which results in a locally biased estimator.

Inference for extrema of finitely many parameters known as intersection bounds problem
(Hall and Miller (2010) and Chernozhukov et al. (2013)) can be framed as a value of a linear
program. The regularized support function estimator can also be used for uniform delta-method
CS in this setting. The approach considered here is expected to have similar statistical properties
to Chernozhukov et al. (2013) but has additional advantage of closed form standard errors and
critical values, which correspond to the standard normal distribution.

Finally, the regularization principle was recently considered in Jansson and Pouzo (2017) who
studied general conditions for consistency and asymptotic linear representation for regularized
estimators. That work was concerned with estimation and point-wise inference, whereas I also
study uniform asymptotic linear representation and inference in a special case of affine moment
inequality models.

Structure. The paper is structured as follows. Section 2 describes the setup and the main result.
Section 3 outlines the extension to the general subvector inference and show how one can deal with
the violation of the main regularity assumptions on the moment conditions. Section 4 compares
the maintained assumptions and the computational properties of the proposed procedure with the
existing alternatives. Section 5 provides the results of the Monte Carlo experiments. Section 6
concludes.

Notation. I use , to denote definitions. I write EP [·] to denote expectation with respect
to a probability distribution P . I use uppercase English letters to denote random variables
(scalar,vector, or matrix valued) and lower case letters to denote the corresponding realizations,
W and wi. I use Pn for the sample distribution. I use f (0+) for limx↓0 f (x). The vector
ej , (0, ...1, ...0)′ is the j-th coordinate vector, where the one occurs at position j. ej is the
projector on the j-th coordinate. I use the symbol J for a finite set of indices J , {i1, ..., iℓ} ⊂ N

and J , (ei1 , ..., eiℓ)
′ as a coordinate projection matrix in the the corresponding Euclidean space.

I use |J | to denote the cardinality of the set J . The acronym u.h.c. stands for upper hemi-
continuous correspondence. I will use symbol sVar (x) to denote the sample variance, sVar (x) =
1
n

∑n
i=1 x

2
i −

(
1
n

∑n
i=1 xi

)2
.

2 Setup and main results

2.1 Affine moment conditions

I consider a parameter vector θ ∈ Θ ⊂ Rd where Θ is the set defined by

−∞ < aℓ ≤ θℓ ≤ bℓ <∞ (1)

for ℓ = 1, ..., d. The inequalities (1) can be written as a subsystem of the following system of
unconditional moment equalities/inequalities

{
EP gj(W, θ) = 0, j ∈ J eq,

EP gj(W, θ) ≤ 0, j ∈ J ineq,
(2)
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where gj(W, θ) ,
∑d

ℓ=1Wjℓθℓ −Wj(d+1), |J eq| = p, 0 ≤ p ≤ d, |J ineq| = k − p ≥ 2d, k < ∞, the
random matrix W has probability measure P with the sample space Rk×(d+1). Correspondingly,
|J eq ∪ J ineq| = k. A solution to (2) may not be unique. Let the identified set Θ (P ) ⊂ Θ ⊂
Rd be the set of parameter values θ that satisfy (2) for a given data generating process (DGP)
parametrized by P . The stochastic programming approach described below allows me to deal with
both random and deterministic (in)equalities in (2) symmetrically.

The identified set Θ (P ) is a polytope or an empty set. The convexity of Θ (P ) provides
characterization using support functions. Such support functions, for example, can provide bounds
on coordinate projections of Θ (P ) or any subvectors of θ ∈ Θ (P ). Without loss of generality, I
will consider first a special case of θ1 = e′1θ, the value of the first component of θ ∈ Θ (P ). Any
other support function can be obtained by a corresponding rotation of W and θ.

Definition 1. The marginal identified set for θ1 is the set

S (P ) = {e′1θ|θ ∈ Θ (P )} . �

The first assumption I make rules out a possibility of specification and makes boundaries of
S (P ) well defined (specification testing is discussed later in Remark 1 in Section 3.2).

Assumption 1. Θ (P ) is nonempty for the probability measure P .

The following example illustrates the general setup.

Example 1 (Linear IV model with interval valued outcome). Consider a linear IV model

EP [Y − θ′X|Z] = 0,

where Y is unobserved. One can only observe bounds Y and Y such that Y ∈
[
Y , Y

]
a.s. Suppose

that Z, the random vector of instruments, has a finite support SZ = {z1, . . . , zK} ⊂ Rd.6 In this
case the model can be equivalently characterized by a finite number of conditional moments:

EP

[
Y |Z = zj

]
≥ θ′EP [X|Z = zj ] ≥ EP [Y |Z = zj ] , j = 1, . . . , K.

The identified set Θ (P ) is defined by the set of unconditional moment inequalities,

{
EP [Y 1 {Z = zj}] ≤ θ′EPX1 {Z = zj} , j = 1, ..., K,

EP

[
Y 1 {Z = zj−K}

]
≥ θ′EPX1 {Z = zj−K} , j = K + 1, ..., 2K.

(3)

These inequalities can be converted to the form (2) with p = 0, k = 2K and

Wjℓ ,

{
−Xℓ1 {Z = zj} , for j = 1, ..., K,

Xℓ1 {Z = zj−K} , for j = K + 1, ..., 2K,

Wj(d+1) ,

{
Y 1 {Z = zj} , for j = 1, ..., K,

−Y 1 {Z = zj−K} , for j = K + 1, ..., 2K.

6If SZ is infinite, one can estimate an enlargement of S (P ) using a finite number of unconditional moment
inequalities. See Chernozhukov et al. (2007) for details. Andrews and Shi (2013) provide conditions for sharp
characterization of the identified set by a finite number of unconditional moment functions. I leave the case of
infinite number of moment inequalities for future extensions.
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If it is known a priori that for some support points j

EP [Y 1 {Z = zj}] = EP

[
Y 1 {Z = zj−K}

]
,

then one should replace the corresponding pair of inequalities with a single equality,

EP

[
Y + Y

2
1 {Z = zj}

]
= θ′EPX1 {Z = zj} . (4)

In this case p is equal to the number of such support points.
One can incorporate additional information such as sign restrictions on θ in the form of linear

inequalities to get a smaller identified set. �

The following example illustrate one particular dataset and economic application of the interval-
outcome IV regression.

Example 2 (The returns to schooling). Trostel et al. (2002) study economic returns to schooling
for 28 countries using International Social Survey Programme data (ISSP), 1985–1995. They
estimate a conventional Mincer (1974) model of earnings (the human capital earnings function),
which has log wage determined by years of schooling, age, experience, and other explanatory
variables:

E [Y |Z] = θ′Z, (5)

where Y is the log of hourly wages, Z1 is years of schooling and the other components of Z is a
vector of observed exogenous explanatory variables including, where appropriate, country and year
fixed effects. The component θ1 is interpreted as the rate of returns to schooling; it is equal to the
percentage change in wages due to an additional year of schooling. Their explanatory variables
Z include year dummies, union status, marital status, age and age squared and, in the case of
the aggregate equation, country-year dummies. Exact measures of Y are not available for some
countries (including the USA); only income bracket data

[
Y , Y

]
is available for those countries.

Trostel et al. (2002) use a conventional technique to deal with this problem – they replace the
interval data with the corresponding midpoints and estimate (5) using OLS. This technique is
valid only under the unreasonably strong condition

EP

[(
Y − 0.5(Y + Y )

)
Z
]
= 0. (6)

If condition (6) is violated then the OLS estimator for the effect of schooling is inconsistent.
The interval outcome model from Example 1 can provide estimates of the marginal identified

set for returns to schooling without assumption (6). The conventional estimates based on the
midpoint approach converge to one of the elements in S (P ). All the explanatory variables are
discrete in this example, so the existing approach of Bontemps et al. (2012) is not applicable.7

The number d of the explanatory variables Z including country and time effects is larger than
60 which makes the existing (uniformly valid) approaches to moment inequalities computationally
challenging. �

Since in our setup all the moment conditions are affine, the identified set Θ (P ) is a polytope

7 Bontemps et al. (2012) provide a sharp characterization of the identified set and the corresponding confidence
intervals in a class of linear models with interval-valued outcome if all of the regressors have continuous support.
This example has discrete-valued regressors.

6



and the marginal identified set is an interval, S (P ) = [v (P ) , v̄ (P )], where

v (P ) = min
θ∈Θ(P )

e′1θ and v̄ (P ) = max
θ∈Θ(P )

e′1θ. (7)

It is possible that S (P ) is a singleton. The value functions v (P ) and −v̄ (P ) are the support
functions for e1 and −e1, respectively. The analysis for the upper bound is analogous to that for
the lower bound, so from here on I focus on the lower bound. I will use the following example to
illustrate ideas throughout the paper.

Example 3 (Running example). Consider the linear model with discrete IV from Example 1.
Suppose that θ ∈ R2, X = Z, and suppose that z1, z2 take values in {0, 1} with equal probability
(K = 4). As in equation (3), the identified set for can be characterized using 2K = 8 inequality
constraints,

E [Y ψz(Z)] ≤ E [Z1ψz(Z)] θ1 + E [Z2ψz(Z)] θ2 ≤ E
[
Ȳ ψz(Z)

]
, (8)

where indicator functions ψz(Z1, Z2) = 1 {Z = z} correspond to all combinations of z ∈ {0, 1}2.
For illustrative purposes, consider the following subsystem of four inequalities

E [Y Z1] ≤
1

2
θ1 + θ2E [Z1Z2] ≤ E

[
ȲiZ1

]
,E [Y (1− Z1)] ≤ θ2E [(1− Z1)Z2] ≤ E

[
Ȳ (1− Z1)

]
. (9)

Suppose that the identified set for θ is given by (9). These bounds are not sharp in general, but
they are easy to study analytically. Suppose further that the a.s. bounds on the outcome variable
Y satisfy EP [Ȳ |Z1 = i] = −EP [Y |Z1 = i] = 1

2
∆i ≥ 0 for i ∈ {0, 1} which implies ∆i is the average

length of the outcome interval depending on Z1. Let ρ = E (z1z2). Then the marginal identified
set can be written in explicit form S (P ) = [−∆1 − 2 |ρ|∆0,∆1 + 2 |ρ|∆0].

Figure 1: The identified sets corresponding to system (9) in Example 3 for various values of ρ.

Figure 1 shows that the shape of the full identified set Θ (P ) depends on the sign of ρ. The
borderline case ρ = 0 will play crucial role throughout the paper as since the coordinate of the
argmin of Program (7), θ2, is not uniquely defined. I will refer to such cases as non-regular. �

2.2 Bounds based on the regularized support function.

The Delta-method framework is a natural way to do inference on v (P ). In order to use this
approach we need to study the behavior of Program (7) when we replace the coefficients EPW
with their consistent estimators. Namely, we need to consider a (directional) derivative of v (P )
with respect to (AP , bP ) , EPW (correspondingly, EP g(W, θ) = AP θ− bP ). The derivative can be
obtained by the envelope theorem applied to the min/max representation for Program (7) which

7



is valid under Assumption 1,

v (P ) = min
θ∈Rd

max
λ∈Rp×R

k−p
+

{θ1 + λ′(APθ − bP )}. (10)

This representation shows that the derivative of v (P ) with respect to (AP , bP ) depends not only
on the optimal solution of Program (7) but also on the solution λ(P ) to the corresponding dual
program which is defined below.

The dual program takes form

v (P ) = max
λ∈Rp×R

k−p
+

{−λ′bP} (11)

s.t. λ′AP = e′1.

If solutions to both (7) and (11) are unique, the envelope theorem suggests

∂v (P )

∂(AP )ij
= λiθj and

∂v (P )

∂(bP )i
= −λi. (12)

Shapiro (1993) shows that under Assumption 1 and some additional regularity conditions that
if we use 1

n

∑n
i=1wi as a consistent estimator for EPW , the value of

v̂n = min
θ∈Rd

e′1θ (13)

s.t.

{
1
n

∑n
i=1 gj(wi, θ) = 0, j ∈ J eq,

1
n

∑n
i=1 gj(wi, θ) ≤ 0, j ∈ J ineq,

(14)

is a consistent estimator of v (P ) with a non–Gaussian asymptotic distribution that depends on
both θ and λ. These parameters are not uniquely defined in general which makes them nuisance
parameters. I suggest imposing a constraint qualification on EP g(W, θ) to ensure a unique λ and
regularizing Program (7) to select a unique point in θ.8

To introduce the constraint qualification, I use the following notation. For any J ⊂ J ineq

let the projection matrix Ja = (ei1 , ..., eiℓ)
′ correspond to J a , J eq ∪ J = {i1, ..., iℓ}, a set of

active constraints. Let η1(·) be the smallest left singular value function of a matrix, i.e. η1(A) ,√
minu(u′AA′u/u′u) . The constraint qualification can now be formulated as the following two

assumptions.

Assumption 2. Measure P satisfies

η(P ) , min
J⊂J ineq ;|J |=d−p

η1 (J
a(AP , bP )) > 0. (15)

In geometric terms, Assumption 2 restricts angles between the gradients of any d intersecting
moment restrictions to be away from zero. Moreover, the gradients need to have the norm bounded
away from zero.9

8Constraint qualifications are common in the literature on set identified models. In particular, BM, KS, FH and
Gafarov et al. (2018) impose them in various forms.

9Potentially, one could normalize the inequality constraints by
∥∥e′jEPW

∥∥. This way, it may be easier to meet
Assumption 2 for inequalities j with smaller value of the norm. Moreover, the normalization will re-scale the
corresponding Lagrange multiplier λj by the same factor which can reduce the variance of the resulting estimator
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Assumption 3. Measure P satisfies

s(P ) , min
J⊂J ineq ;|J |=d−p+1;θ∈Θ(P )

‖Ja(AP θ − bP )‖ > 0. (16)

Example 4 (Example 3 continued). To meet Assumption 2 the moments (9) have to satisfy

∆0 > 0,∆1 > 0, (17)

E [(1− Z1)Z2] > 0. (18)

Inequalities (17) implies that the upper and lower bounds on Y are different conditional on Z1,
while inequality (18) implies that the instruments Z2 with values in {0, 1} is not perfectly correlated
with Z1. Both conditions seem reasonable. Indeed, in case if the bounds Y and Ȳ coincide w.p.1,
one can replace the corresponding pair of moment inequalities with an equality, as noticed in
Example 1. The case E [(1− Z1)Z2] = 0 corresponds to the multicollinearity problem in the
conventional linear regression setup. Inequalities (17) also imply that Assumption 3 is satisfied.

Suppose that we add one more moment condition corresponding to instrument Z2,

E [Y Z2] ≤ θ1E [Z1Z2] +
1

2
θ2.

Assumption 3 would be violated if this additional inequality is binding at the corner points θ =
(−∆1 ∓ 2ρ∆0,±∆0). If in addition ρ = 1/2, then Assumption 6 would also be violated (because
of the collinearity of corresponding gradients). �

Together Assumptions 2-3 imply that at any point in θ ∈ Θ (P ) any binding (active) moment
conditions have linearly independent gradients, a condition called Linear Independence Constraint
Qualification (LICQ) in the optimization theory.10 LICQ is a necessary and sufficient condition for
uniqueness of the Lagrange multipliers λ.11 In particular, Assumptions 2-3 are sufficient to bound
the Lagrange multipliers in Program 7.12 The bounded Lagrange multipliers are necessary and
sufficient condition for stability of solutions to the linear program.13 Correspondingly, the explicit
bound on Lagrange multipliers, that depends on η(P ) and size of the box Θ, provides a bound on
the variance of the corresponding estimator. Both these assumptions also play role in guaranteeing
that the sample analog of the identified set is non-empty with probability approaching 1.14

The following regularized program has a unique solution and approximates Program (7) from
above,

v (µ, P ) = min
θ∈Θ(P )

{
e′1θ + µ ‖θ‖2

}
. (19)

Clearly, for any positive µ the value of the regularized program is larger than v(P ) by at least

of θ
1
. At the same time, the program with normalized constraints may result in a smaller value of the cut-off

tuning parameter µ̄(P ) described in Theorem 1 and thus larger worst-case bias. Heuristically, the benefits of the
normalization will be larger for inequalities j with large value of the ratio Var

∥∥e′jEPW
∥∥ /
∥∥e′jEPW

∥∥. I leave the
problem of optimal normalization for future work.

10See Assumption 6 and Lemma 2 in Appendix.
11See Wachsmuth (2013).
12The assumptions are sufficient, but not necessary for bounded Lagrange multipliers. Proposition 5.45 on p.439

in Bonnans and Shapiro (2000) provide necessary and sufficient conditions.
13This is true since we restrict θ to a compact set Θ. See Robinson (1977) for details.
14See Lemma 10
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µ ‖θ(µ, P )‖2. So it is reasonable to consider the following two tighter bounds on v(P ),

vin(µ, κ, P ) , v(µ, P )− µ ‖θ(κ, P )‖2 , (20)

vout(µ, P ) , v(µ, P )− µ ‖θ∗‖2 , (21)

where θ∗ is any point in θ(P ). These bounds continuously shrink towards v(P ) from both sides as
µ and κ go to zero as the following theorem shows.

Theorem 1. For any P satisfying Assumption 1 and any κ ≥ µ ≥ 0, the following bounds hold

vout(µ, P ) ≤ v(P ) ≤ vin(µ, κ, P ) (22)

If in addition P satisfies Assumptions 2-3, then there exist µ̄(P ) > 0 such that vin(µ, κ, P ) = v(P )
for any µ < κ < µ̄(P ). Further, if θ(P ) is a singleton, then vout(µ, P ) = v(P ) for any µ < µ̄(P ).

Proof. See Appendix 8.3.

Theorem 1 is crucial for inference on v(P ). Under LICQ, the value of Program (19) for µ > 0
is differentiable in (AP , bP ) so that the sample analog, v(µn,Pn), has asymptotic Gaussian distri-
bution.15 As a result, the analog estimators of vout and vin are half median unbiased estimators
for v and can be used for uniform one-sided inference (for both sides) in the subsequent sections.

Assumptions 2-3 are rather strong but they considerably simplify the inference. There is a
purely computational reason to ensure LICQ. If it is violated, Newton-type algorithms, which typ-
ically guarantee quadratic rate of convergence to a stationary point, have linear rate of convergence
or do not converge at all.16 The thresholds η and s can be consistently estimated so it is possible
to test their positiveness. Assumption 3, in particular, can be violated in applications with many
moment inequality conditions if the identified set is very tight as a result.17 In Section 3 I show how
one can use a representation of v (P ) as a maximum of sub-problems that meet this requirement
even if Assumption 3 is violated.

2.3 Large sample properties of the regularized support function.

In this section I will use versions of the limiting theorems that are uniform in the underlying DGP
parametrized by P ∈ P. This level of generality is necessary for to study uniform inference in
Section 2.5. To work with uniform limiting theorems, it is convenient to extend Op(1) and op(1)
notation.18 Let ζn(P ) be a sequence of random vectors with measures that depend on a parameter
P ∈ P. Probability measures of ζn(P ) are called uniformly tight if for any ǫ > 0 there exist R > 0
such that for all n supP∈P P (‖ζn‖ ≥ R) ≤ ǫ. I will denote random vectors ζn(P ) with uniformly
tight measures (i.e. bounded in probability) as OP(1). Analogously, I will denote ζn(P ) as oP(1)
if limn→∞ supP∈P P (‖ζn(P )‖ ≥ ǫ) = 0.

Consider the analog estimator of v (µn, P ),

v (µn,Pn) = min
θ∈Θ(Pn)

{
e′1θ + µn ‖θ‖2

}
. (23)

15See Lemma 7 in Appendix.
16See, for example, Golishnikov and Izmailov (2006).
17One interesting recent example is Shi et al. (2018).
18Stochastic Op(1) and op(1) notation is introduced, for example, in Van der Vaart (2000) on p.12.
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In order to prove consistency and study the asymptotic distribution of this estimator, I make
the following two assumptions.

Assumption 4.
{
wi ∈ Rk×(d+1)| i = 1, ..., n

}
is an i.i.d. sample with probability measure P .

Assumption 5. There exist an ε > 0 such that

EP ‖W‖2+ε <∞. (24)

For uniform inference I will consider the class of all measures P = P(η, s, ε, M̄) that satisfy

Assumptions 1-5 with some uniform positive constants η, s, ε, M̄ , i.e. every P ∈ P satisfies Θ (P ) 6=,

η(P ) > η, s(P ) > s, and EP ‖W‖2+ε < M̄2+ε. Within this class, Assumptions 4-5 are sufficient to
guarantee a uniform law of large numbers (LLN) for first and second moments of W and a central
limit theorem (CLT) for the estimated coefficients in Program (23). In particular, Assumption 5
provides an explicit bound on the CLT approximation error of the coefficients.19

Before we can study the properties of the estimator in Program (23), we need to show that it
is well defined. Lemma 10 in Appendix shows that Program (23) has feasible points and satisfies
LICQ with probability approaching 1 as n → ∞ uniformly in P ∈ P. This property guarantees
that there exists a sample argmin and a unique vector of Lagrange multipliers in large enough
samples with probability approaching 1.

The envelope theorem suggests the asymptotic linear (Bahadur) representation of the value
function in Program (23),20

v (µn,Pn) = v (µn, P ) +
1

n

n∑

i=1

λ (µn, P )
′ g(wi, θ (µn, P )) +OP(

1

µnn
). (25)

This representation, in turn, suggests a coupling of v (µn,Pn) with a Gaussian process. Since the
residual term OP(1) is uniformly tight over P ∈ P, the asymptotic linear representation (25) makes
this coupling a strong approximation result.21 The asymptotically vanishing distance between the
corresponding measures is denoted as

ρn(P ) , π(
√
n(v (µn,Pn)− v (µn, P )), N

(
0, σ2 (µn, P )

)
),

where π(·) is the Levy-Prohorov metric. Representation (25) suggests an analog estimator of the
asymptotic variance,

σ2 (µn,Pn) =
1

n

n∑

i=1

(λ′ (µn,Pn) g(wi, θ (µn,Pn)))
2,

where θ (µn,Pn) and λ (µn,Pn) are, respectively, the optimum and the vector of Lagrange multi-
pliers of (23). In addition, it suggests an estimator of the influence functions that can be used in
the multiplier bootstrap inference.

The following theorem summarizes the large sample results for regularized program (23).

19This bound is based on the generalization of the theorem of Yurinskii (1978) by van der Vaart and Wellner
(1996).

20See Lemma 11 in Appendix
21 See Definition 4 in Appendix A of Chernozhukov et al. (2013).
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Theorem 2. Consider any sequence µn such that µn → 0 and µn

√
n→ ∞. Then with probability

approaching 1 uniformly in P ∈ P

lim
n→∞

sup
P∈P

ρn(P ) = 0, (26)

θ (µn,Pn) = θ (µn, P ) +OP(
1

µn

√
n
), (27)

λ (µn,Pn) = λ (µn, P ) +OP(
1√
n
), (28)

σ (µn,Pn) = σ (µn, P ) + oP(1). (29)

Proof. See Appendix 8.4.

2.4 Point-wise valid confidence sets.

Now we can combine Theorems 1 and 2 to provide the following consistent and asymptotic normal
estimator of v (P ),

vin(µn, κn,Pn) , v (µn,Pn)− µn ‖θ (κn,Pn)‖2 . (30)

Theorem 1 guarantees that the corresponding parameter vin(µ, κ, P ) bound becomes tight if κn and
µn are sufficiently small. Theorem 2 implies that if κn converges to zero slower than µn and both
converge slower that 1/

√
n, then vin(µn, κn,Pn) is asymptotically normal estimator with variance

σ (µn, P ) Using the bias corrected estimator vin(µn, κn,Pn) and its analog for the upper bound,
vin(µn, κn,Pn), I construct the following Delta-method confidence sets:





CBα,n =
[
vin(µn, κn,Pn)− z1−αn

−1/2σ (µn,Pn) ,∞
)
,

CIθ1α,n =
[
vin(µn, κn,Pn)− z1−αn

−1/2σ (µn,Pn) ; v
in(µn, κn,Pn) + z1−αn

−1/2σ̄ (µn;Pn)
]
,

CISα,n = CIθ1α/2,n,

(31)

where z1−α is 1 − α quantile of the standard Gaussian distribution. Here CBα,n is a one-sided
confidence band for θ1, CIθ1α,n is a two-sided confidence interval that covers any θ1 in the the

identified set, and CISα,n is a two-sided confidence interval that covers the entire identified set
S (P ) based on the Bonferroni inequality.22

Theorem 3. Suppose that Assumptions 1–5 hold and that in addition 0 < α < 1/2 , µn and κn
are such that κn → 0, µn/κn → 0 and µn

√
n→ ∞. Moreover, suppose that limn→∞ σ2 (µn, P ) > 0

and limn→∞ σ̄2 (µn, P ) > 0. Then,

lim
n→∞

P (S (P ) ⊂ CBα,n) = lim inf
n→∞

inf
θ∈Θ(P )

P (θ1 ∈ CBα,n) = 1− α,

lim
n→∞

P
(
S (P ) ⊂ CISα,n

)
≥ 1− α, lim inf

n→∞
inf

θ∈Θ(P )
P
(
θ1 ∈ CISα,n

)
≥ 1− α.

If the model has no equality constraints, i.e. if p = 0, then

lim inf
n→∞

inf
θ∈Θ(P )

P
(
θ1 ∈ CIθ1α,n

)
= 1− α. (32)

22One can develop tighter confidence sets using the joint asymptotic normality of the estimators vin(µn, κn,Pn)
and vin(µn, κn,Pn). I leave this exercise for future work.
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Proof. See Appendix 8.5.

The confidence band CBα,n and interval CIθ1α,n are asymptotically non-conservative, at least for
a fixed DGP, i.e. they have coverage of exactly 1 − α. If p > 0, θ1 can be point identified if there
are equality constraints in the model that are orthogonal to e1. So in this case I recommend the
Bonferroni–type confidence set CISα,n which remains valid under point identification. The shorter

CIθ1α,n proposed by Imbens and Manski (2004) is valid only if θ1 is not point–identified.
The theory for optimal choice of tuning parameter is beyond the scope of this paper. The

following considerations, however, can provide some guidance for the optimal choice. Theorem 1
suggests that the tuning parameters should be smaller than µ̄(P ) to avoid the bias in the first
order asymptotic distribution. This choice is infeasible since µ̄(P ) is unknown ( moreover, it is a
discontinuous function of EPW and hence cannot be consistently estimated) so one has to let κn
and µn go to zero. The optimal rates of κn and µn should balance the higher order variance and
the worst case bias. A reasonable choice is to set µn = κ

1/2
n n−1/4 and let κn go to zero at a slow

rate, say n−1/4. A specific choice of the tuning parameters is further discussed in Section 5.
Finally, note that if the limiting variance limn→∞ σ2 (µn, P ) = 0, then the Gaussian limiting

distribution does not provide a the coverage probability which in this case is governed by the
distribution of the higher order terms. In the next subsection I will discuss how to relax this
requirement.

2.5 Uniform confidence sets

Theorem 3 provides asymptotic coverage probability for a given DGP with measure P . The size of
the sample required to achieve the nominal coverage of 1− α with a given precision in this result
can depend on P through µ̄(P ) defined in Theorem 1. This cut-off µ̄(P ) can be arbitrarily close
to zero so it is possible to construct an example where sequence of measures Pn that meet the
assumptions of Theorem 3 but such that

√
nµn(‖θ (µn, Pn)‖ − ‖θ (κn, Pn)‖) → +∞.

In other words, there a examples of DGP with a measure P and some ǫ > 0 such that for any n
it is possible to find a measure Q in a neighborhood of P with

Q (S (P ) ⊂ CBα,n) < 1− α− ǫ.

In practical terms it means that the large sample theory with a fixed P may provide a poor
approximation for the true coverage probability.

This feature of the confidence sets from the Theorem 3 should not come as a surprise. Parameter
of interest, v (P ) is a non-differentiable function of EPW which in turn is a parameter of a locally
asymptotically normal model. By the impossibility theorem of Hirano and Porter (2012) v (P ) does
not have a locally unbiased estimator. This impossibility result justifies use of half-median unbiased
estimators used in Chernozhukov et al. (2013), i.e. such that have median value smaller or equal
(larger or equal) than the parameter of interest with probability. Such estimators can be used for
uniformly valid one-sided inference on θ1. In fact, Theorems 1 and 2 imply that vin(µn, κn,Pn) has
asymptotic distribution with median non-smaller than v (P ) which makes it half-median unbiased,
but in the direction that results in the worst-case coverage probability below 1 − α. The outer
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bound provides another estimator,

vout(µn,Pn) , v (µn,Pn)− µn ‖θ∗ (Pn)‖2 , (33)

that is also half-median unbiased in the opposite direction if θ∗ (Pn) is appropriately chosen. To
achieve this goal, the estimator θ∗ (Pn) should have larger norm than the point with the minimal
norm in θ(P ) with probability approaching 1. We can use the analog estimator θ∗ (Pn) that
converges to the following point,

θ∗i (P ) , max{θ+i (P ), θ−i (P )}, (34)

where

θ±i (P ) ,

∣∣∣∣ min
θ∈Θ(P ),θ1≤v(P )+µn

{±θi}
∣∣∣∣ . (35)

By definition, ‖θ∗‖ ≥ ‖θ‖ for any θ ∈ θ(P ).23 This bound on ‖θ∗‖ has two attractive properties.
First, it can be (uniformly) consistently estimated using only 2k linear programs, so that it can be
computed in models with a very large dimension and a large number of inequalities using interior
point numerical optimization methods. Second, if θ(P ) is a singleton, then ‖θ∗‖ → ‖θ(P )‖. So
for any such fixed P by Theorem 1 we have vout(µn, P ) = v(P ) for sufficiently small µn, i.e. the
corresponding confidence intervals will have the correct coverage.

Before I introduce the uniformly valid confidence sets, I would like to address the difficulty
resulting from the degenerate Gaussian distribution mentioned in the end of the previous section.
To do so, I consider a regularized estimator of the asymptotic variance,

σ̂reg
n , max{σ (µn,Pn) , σ0},

where σ0 is some small positive number.
Let CBα,n,P and CISα,n,P be the confidence sets defined in (31) with vin(µn, κn,Pn) and σ (µn,Pn)

being replaced by vout(µn,Pn) and σ̂reg
n , correspondingly. As before, let P contain all measures P

that satisfy Assumptions 1-5 with some uniform positive constants η, s, ε, M̄ .

Theorem 4. Suppose that Assumption 4 holds. In addition, suppose that 0 < α < 1/2, µn → 0
and µn

√
n→ ∞. Then the following results hold,

lim inf
n→∞

inf
P∈P

P (S (P ) ⊂ CBα,n,P) = lim inf
n→∞

inf
P∈P

inf
θ∈Θ(P )

P (θ1 ∈ CBα,n,P) ≥ 1− α,

lim inf
n→∞

inf
P∈P

P
(
S (P ) ⊂ CISα,n,P

)
≥ 1− α, lim inf

n→∞
inf
P∈P

inf
θ∈Θ(P )

P
(
θ1 ∈ CISα,n,P

)
≥ 1− α.

Proof. See Appendix 8.4.

Note that the worst case asymptotic coverage probability of CBα,n,P is exactly equal to 1− α
for a fixed regular DGP, i.e. such that θ(P ) is a singleton and limn→∞ σ̄2 (µn, P ) > 0.

3 Extensions

In this section I outline how to use the regularized support function approach to construct joint
confidence sets for multiple components of θ and tackle the intersection bound problem. The

23See Lemma 12 in Appendix.
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latter problem appears once we represent the value of program (7) as a maximum over values of
its subproblems. Such subproblems may meet Assumptions 2-3 even if the full problem does not.

3.1 Joint confidences sets for multiple parameters

It is trivial to extend the analysis to

v(P ; a) = min
θ∈Θ(P )

a′θ

for any a ∈ Rd with ‖a‖ = 1. Indeed, Assumptions 1-5 are invariant with respect to orthogonal
transformations of the coordinates, i.e. they are satisfied for the following program ( with θ̃ = U ′θ,
ÃP = APU and a′ = e′1U for any orthogonal matrix U)

v(P ; a) = min
θ∈Rd

e′1θ̃ (36)

s.t.

{
e′jÃP θ̃ = e′jbP , j ∈ J eq,

e′jÃP θ̃ ≤ e′jbP , j ∈ J ineq,
(37)

One can think about ÃP as a coefficient matrix under a different measure P̃ , AP̃ . The set of
measures P from Section 2.5 includes P̃ corresponding to all orthogonal transformations of AP .

The identified set Θ (P ) is convex so any projection of it can be characterized using support
functions. One can construct a joint confidence set for Θ (P ) as follows. For any set of directions
A ⊂ Rd take

CSA
α,n = {θ|a ∈ A, a′θ ≤ −vout(µn,Pn;−a) + c1−αn

−1/2 max{σ(µn,Pn;−a), σ0}},

where c1−α is 1 − α quantile of the maximum of the corresponding Gaussian process that can be
estimated using multiplier bootstrap enabled by the asymptotic linear representation, (25).

By appropriately choosing the set of directions A we can construct joint confidence sets for
projections of Θ (P ) on any subvectors θ. If A has finitely many elements, CSA

α,n is a polygon.
So we can plot it directly without performing test inversion as in the one-dimensional case. The

confidence set C̃I
B

α,n is a particular case of CSA
α,n corresponding to A = {e1,−e1} and the Bonferroni

estimate of c1−α. The following example provides another interesting set of directions.

Example 5 (Natural joint confidence set). It seems natural to construct a joint confidence set for
θ based on directions corresponding to the normal vectors of the moment conditions. For simplicity
assume that p = 0. The original system (2) may have some inequalities that are slack for any point
θ ∈ Θ (P ). We can characterize the identified set Θ (P ) as solution to a tight system of inequalities

e′jAP θ ≤ bj, j ∈ J ineq. (38)

where

bj = max
(ϑ,θ)∈Rd+1

ϑ (39)

s.t.

{
ϑ = e′jAP θ,

e′ℓAP θ ≤ e′ℓbP , ℓ ∈ J ineq.
(40)
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Every inequality in System (38) is active at least in one point in Θ (P ) ( any point in the argmax

of (39)). Programs (39) meet Assumptions 1-5 and so the outer estimators b̂
out

j are half-median
unbiased with corresponding standard error estimators σ̂j . Then the following polyhedron confi-
dence set will cover any point θ ∈ Θ (P ) with asymptotic probability at least 1−α uniformly over
P ∈ P,

CSN
α,n = {θ|e′jÂP θ ≤ b̂

out

j + c1−αn
−1/2 max{σ̂j , σ0}}, j ∈ J ineq}.

The generalization to the case p 6= 0 is straightforward. �

3.2 Dealing with overidentification

Another interesting extension concerns the case when Assumptions 1-3 are violated for Θ (P ), but
it can be represented as an intersection of sets s = 1, ..., L, Θs(P ) which satisfy these assumptions.
Then

v(P ) = min
θ∈Θ(P )

e′1θ ≥ max
s=1,...,L

( min
θ∈Θs(P )

e′1θ) ≥ max
s=1,...,L

vs,out(µn, P ) (41)

If we define v(P ) = +∞ in the case Θ (P ) = ∅, then the bounds (41) are trivially valid too.
It is possible to make the first bound in (41) sharp if we consider all subsets of d− p inequality

restrictions (besides the ones that define Θ) as the following example shows.

Example 6 (Example 3 continued). Consider all L = C(K, d) = C(4, 2) = 6 subsystems Θs(P )
of (8) corresponding to any two support points z, z′ ∈ {0, 1}2. We can get a sharp bound on v(P )
in form of a maximum of the values of the subproblems,

v(P ) = min
θ∈Θ(P )

e′1θ = max
s=1,...,L

( min
θ∈Θs(P )

e′1θ).

Indeed, value v(P ) is attained at some basic solution θ(s). By definition, at such θ(s) at least two
inequalities are active. There exist a subproblem Θs(P ) that contains the same two inequalities.

By construction, θ
(s)
1 = minθ∈Θs(P ) e

′
1θ�.

Let v(s) denote the solution to the subproblem s. Since every subproblem satisfies Assump-
tions 1- 3, we get

√
n




v(1)(µn,Pn)− v(1)(µn, P )
· · ·

v(L)(µn,Pn)− v(L)(µn, P )


 N(0,Ω).

As before,
Ωij = EP [λ

′(i)g(W, θ(i))g(W, θ(j))′λ(j)].

Inference on (41) can be done using methods developed in Hall and Miller (2010) or Chernozhukov et al.
(2013), which are based on bootstrap. Alternatively, we can use the following representation to
reduce it to a linear program,

max
s=1,...,L

v(s),out = max∑L
s=1 γs=1,γs≥0

γsv
(s),out. (42)

The solution γ to (42) is not unique in general. Program (42) satisfies the Assumptions 1-3. In
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order to restore the asymptotic normality of the corresponding estimator we need to regularize it,

−min
γ

−
L∑

s=1

γjv
(j),out + µn ‖γ‖2

s.t.

L∑

s=1

γj = 1, γj ≥ 0.

(43)

The estimator of the value of this program also has a Bahadur representation which can be used
to derive an estimator for the variance,

sVar(

L∑

s=1

γsλ
′(s)g(wi, θ

(s))).

The inner bias correction analogous to vin defined in Section 2.2 to the plug-in estimator of (43)
would in this case make the corresponding confidence sets longer and preserve asymptotic coverage
probability of at least 1−α uniformly in P ∈ ∩s=1,LPs. The case with no-overidentification would
result in zero bias uniformly. Case with over-identification can result in overcoverage along some
DGP sequences but is not conservative for a fixed DGP if bound (41) is sharp.

Remark 1 (Specification testing). The subproblem representation (41) can provide a test for model
specification, i.e. the test of Assumption 1. Under the misspecification, the case Θ(P ) = ∅, the
lower bound on the minimum v(P ) is larger than the analogous upper bound on the maximum
v(P ). It should always be possible to find subproblems with non-empty domains and finite values
in the sample, vs(Pn) and v(s′)(Pn). The t-test of the hypothesis

vs,out(µn, P ) ≤ vs
′,out(µn, P )

can be interpreted as a specification test. I leave this extension for future work.

4 Discussion

4.1 Scope

There are at least two recent papers, BCS and KMS, to construct confidence sets that provide
explicit classes of DGP with uniform asymptotic coverage probability. Both methods are appli-
cable in non-linear moment inequality models. They however are more restrictive in some other
dimensions and there are examples of affine moment inequality models that fall outside of their
scope.

Both methods are using standardized moment conditions and hence restrict variance of the
moment conditions to be strictly larger that some small constant (Definition 4.2.ii in BCS and
Assumption 4.1 b (iii) in KMS). Moreover, the standardized moment conditions has to be differ-
entiable (Assumption A.3.c in BCS and 4.4.i in KMS). Both Assumptions are also present in the
pioneering AS paper. The following example illustrates violation of these assumptions in an affine
models.

Example 7 (Example 1 continued). Suppose that for some support point z0 with a positive mass
the lower bound on the outcome is deterministic, i.e. EP (Y |Z = z0) = y0 and VarP (Y |Z = z0) = 0.
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The corresponding moment inequality condition is

EP g(Y, Z, θ) = EP [(Y − z′0θ) 1 {Z = z0}] ≤ 0. (44)

The standard deviation of the moment condition is |z′0θ − y0|
√
pz (1− pz), where pz = EP1 {z = z0}.

It is equal to zero for any solution of the linear equation z′0θ = y0. These values of θ make the
constraint (44) binding, which is exactly the case when this constraints determines v (P ). This
moment condition is also non-differentiable at these points.

∂θg(y0, z0, θ) = sign (y0 − z′0θ)
√
pz/ (1− pz).�

I also avoid imposing any restrictions on the correlation matrix of the moment conditions which
is present in KMS (Assumption 4.3) and the polynomial minorant condition (Assumption A.3.a in
BCS, present in CHT, avoided in KMS).

I do impose an explicit assumptions that guarantee the LICQ which is not present in KMS or
BCS, but I only require them to hold in subproblems, as noted in Section 3.2. I would like to
note here that the M-step in KMS uses standard Newton optimization routines that can find all
the stationary (KKT) points. If there is no constraint qualification, however, KKT conditions are
no longer providing the nesessary conditions for the optimum, which in this case is a John-Fritz
conditions.24 As a result, E-A-M algorithm considered in KMS is not guaranteed to converge to
the global optimum without some constraint qualification.

4.2 Computation properties

4.2.1 Fast convergence to a minimum

The existing uniform methods of AS, BCS and KMS are based on standardized moment condtions
that are non-convex even if the original inequlaities are affine in θ. Example 2 in the previous
section illustrate this feature. The estimators θ (µn,Pn) is a solutions to a strictly convex quadratic
programs for any affine moment inequlaity model. For convex programs the set Karush–Kuhn–
Tucker (KKT) conditions25 provide necessary and sufficient conditions for the global optimum.
Moreover, convex quadratic programs can be solved using an interior point algorithms with a
polynomial rate of convergence.26 This strict convexity gives a dramatically faster rates of obtaining
the optimum than the ones used in BCS and KMS. These methods are based on non-convex
constraint optimization problems, which are NP-hard. Section 5 compares computational time in
specific examples.

4.2.2 Uniqueness of a global optimum

KKT system for strictly convex optimization problems has a unique solution. The number of
KKT points of the optimization problems in the KMS, BCS and AS procedures in affine moment
inequality models can be large and typically grows exponentially with the dimension d and number
of inequalities k. The following example illustrates this point.

24See Section 5.2.2 in BS(2000)
25See Lemma 3 in Appendix
26See, for example, Ye and Tse (1989).
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Example 8. Consider a set of moment inequalities with coefficients that have expectation

EPW =

(
−Id −ι
Id −ι

)
.

Suppose that components of W are independent and have the same variance s2. Θ (P ) is a box
[−1, 1]d. The standardized moment conditions take the form

±θj + 1

s
√

1 + ‖θ‖2
≤ 0, j = 1, . . . , d. (45)

The KMS procedure adds slack c (θ) to the right hand side of every standardized moment inequality.
Consider , for example, j = 1,

θ1 ≥ 1− c (θ) s

√
1 + ‖θ‖2. (46)

The slack function c (θ) is computed using a resampling on a grid of points. Assume, for
simplicity, that c (θ) is a constant, for example, provided by the Bonferroni approach. Figure 2
shows the identified set and the corresponding expansion with c (θ) = const. The optimization
domain of the E-A-M algoritm in KMS is similar the non-convex set on right of Figure 2. Every
vertex of the [−1, 1]d with θ1 = −1 corresponds to an isolated local minimum of the optimization
procedure in KMS. Correspondingly, the number of local minima grows exponentially with the
dimension d. For example, the number of local minima for d = 10 is 512. The growth in the
number of local optima is even faster in models with more than 2 inequalities per coordinate. �

Multiplicity of KKT points makes the procedures of KMS, AS and BCS both computationally
costly does not provide guarantees of convergence to a global optimum for large d.

4.2.3 Multiplier bootstrap

The proposed estimators of the regularized support functions have a Bahadur representation with
explicit influence functions. One can use this property to justify multiplier bootstrap for inference
on support of the identified set. The main advantage of this approach is that it allows one to solve
the mathematical programs only once. For example, FH and KMS solve mathematical programs
repeatedly for every bootstrap sample. The multiplier bootstrap approach is particularly appealing
in subvector inference on more that one component as discussed in Section 3.1, since one has repeat
computations for various directions a.

4.2.4 Implementation

The point-wise CIs in (31) can be computed using any Newton type optimization software that pro-
vides accurate Lagrange multipliers. I use fmincon function of MATLAB software. I recommend
using the ’active set’ or ’SQP ’ options since the ’interior point’ solver does not provides accurate
Lagrange multipliers. The estimator ‖θ∗ (Pn)‖2 which enters the uniformly valid CS described in
Theorem 4 is based on 2d linear programs. Linear programs typically scale very well.27

27A bench-marking of results for the state-of-art commercial LP solvers can be found, for example, at
http://plato.asu.edu/bench.html. The commercial solvers can tackle LP with tens thousands of constraints and
variables in a matter of minutes. Matlab’s linprog solver tends to underperform in the time comparison.
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The extended procedure outlined in Section 3.2 requires finding subproblems that make the
bound (41) sharp. This can be achieved if Assumption 2 is satisfied for the original program and
one considers all subproblems with exactly d moment conditions. Such an exhaustive approach
may require considerable computational resources if d is large. Potentially, one could use a moment
selection procedure that would restrict attention to combinations of moments inequalities that are
close to be binding at point θ (µn,Pn). Such an extension is beyond the scope of this paper.

5 Monte Carlo

5.1 Designs

I examine two-dimensional and multi-dimensional designs. The two-dimensional design is based
on the identified set defined by four moment inequality conditions with the following coefficients:

EPW =




− cos( ωπ
180

) − sin
(
ωπ
180

)
cos( ωπ

180
) + sin

(
ωπ
180

)

cos( ωπ
180

) sin( ωπ
180

) cos( ωπ
180

) + sin
(
ωπ
180

)

0 −1 1
0 1 1


 .

The shape of this set is a parallelogram analogous to the one on Figure 1, case ρ ≥ 0. The parameter
ω ∈ [0◦, 36◦] defines the angle between the normal vectors of the rear sides of the parallelogram
and the horizontal axis. The value ω = 0◦ corresponds to a square-shaped identified set. In
vicinity of ω = 0◦ CBα,N may have coverage probability below the nominal level because it lacks
uniform validity of CBα,N,P . The expectations EPW are parametrized to guarantee θ1 = θ2 = −1
and θ1 = θ2 = 1 for all values of ω. The components of Wi are independent Gaussian random
variables with variance s22 = 0.01. For each value of ω, I compute the frequency of coverage and
the average length in excess of the identified set for CBα,N and CBα,N,P based on sample sizes
N ∈ {100, 1000, 10000}. Number of MC simulations is 1000 for every combination of N and ω.

The d-dimensional design (values of d under consideration are d = 2, ...16 , d = 50 and d =
100) is based on the value of EPW from Example 8. As before, random matrices Wi consist
of independent Gaussian random variables, but variance of each component now changes with
the dimension of the problem as s2d = 0.09/1 + 4d. It is done to keep lengths of confidence
bounds comparable across different dimensions. I use samples of N = 1000 and compute frequency
of coverage, average length in excess of 2 and computational time for CBα,N , CBα,N,P . As a
benchmark, I use CBα,N,AS, one-sided confidence bounds for θ1 based on Andrews and Soares
(2010) with Bonferroni critical values implemented using the fast E-A-M algorithm of Kaido et al.
(2015). This choice of the benchmark is the fastest available uniformly valid procedure in the
literature.28 I use 100 MC simulations for CBα,N and CBα,N,P and 20 simulations for CBα,N,AS

(due to its higher computational cost). 29

28The two alternative approaches, Bugni et al. (2016) and Kaido et al. (2015), can potentially provide uniformly-
valid confidence sets with shorter average length. Both of them, however are expected to be considerably slower
because they add a profiling or calibration step.

29The code is available on https://molinari.economics.cornell.edu/programs.html. Note that this implementation
of AS procedure requires additional constraint qualification assumption, which was not made explicitly in KMS.
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5.2 Choice of the tuning parameters

The theory for optimal choice of the tuning parameter is beyond the scope of this paper. In the

Monte Carlo exercise the following tuning parameters performed particularly well, µn = µ̂1

√
logn
n

and κn = µ̂1

√
log logn

n
with µ̂1 = µ̂in ,

√
tr(sV ar(λ′(0,Pn)wi)) for CBα,N and µ̂1 = µ̂out ,

µ̂in/max
{
‖θ∗ (Pn)‖2 , 1

}
for CBα,N,P . The size of µ̂in captures the sample variation of the relevant

data: the noisier data requires stronger regularization. Division by max
{
‖θ∗ (Pn)‖2 , 1

}
makes

the worst case bias of vout(µn,Pn) independent of the scale of the identified set. This re-scaling
considerably reduced the average length of the confidence set in my simulations.

5.3 Results

Figures 3 and 4 for the two dimensional design illustrate the difference in the coverage for the
point-wise and uniformly-valid confidence bounds.

First note that average length and coverage frequency for both CBα,N and CBα,N,P are almost
indistinguishable for ω > 3◦ even for N = 100. This is due to the fact that both confidence
bounds are asymptotically equivalent and have correct coverage of 95% in the regular case (see
Section 2.5).

Second, for values ω < 3◦ the average length for CBα,N and CBα,N,P are apparently different.
In particular, length of CBα,N for ω = 0.9◦ and 1.8◦ is shorter that for either ω = 0◦ or ω = 2.7◦,
which results in the coverage frequency below the nominal level of 95%. This reflects the positive
bias in vin(µn, κn,Pn) that makes the corresponding confidence bound unreliable for small but
positive ω. In contrast, the average length of CBα,N,P spikes at ω = 0◦ which results in coverage
close to 100%. In most practical situations the true value of ω is unknown so vout(µn,Pn) is the
preferred option for confidence bounds despite its larger length, in particular in small samples.30

Third, the point-wise valid bound CBα,N performs reasonably well even for small samples. The
coverage frequency for the considered grid values of ω is only moderately below the nominal level
(82% instead of 95%). Moreover as sample size grows, the converge frequency approaches 95%. So
the size of the problematic neighborhood of ω = 0 shrinks with as the number of data grows.

The results for d-dimensional design are given on Figures 5-7. The first observation is that
the coverage frequency for CBα,N is reliably close to 95% for all even for large dimensions. The
coverage frequency for CBα,N,P and CBα,N,AS was equal to 100% for all d. Figure 5 shows that the
negative bias of vout(µn,Pn) grows with the dimension of the problem. The length is comparable
to that of CBα,N,AS, which grows as log(d) due to the Bonferroni-correction of the critical values.
Figure 5 suggests that in very high-dimensional cases the uniform validity comes at big costs in
terms of the length (for d = 50 the average excess length of CBα,N is almost 14 times shorter than
that of CBα,N,P). The substantially shorter average length may justify use of the point-wise valid
CBα,N in such cases.

Finally, Figure 7 shows that the computational time of CBα,N,P grows at a very slow rate. It
takes only a second to compute CBα,N,P for d = 15 (the average computational time for d = 50
and 100 is 4.3 and 20 seconds, correspondingly). The computational time for the AS procedure
increases by approximately 30% with every additional dimension and takes 630 seconds to compute
the CI for d = 15. With estimated growth rate of 30% per dimension the KMS procedure with

30An exception to this rule is the natural joint confidence polygon in Example 5. There the objective function is
orthogonal to the moment inequalities by construction which makes vin(µn, κn,Pn) preferable to vout(µn,Pn).
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precompiled code would take more than hour to compute a CS for d = 15, while d > 30 would be
practically infeasible.

6 Conclusion

This paper shows that the regularization approach provides a fast way to construct both point-wise
and uniform confidence sets for θ1 that has comparable or shorter length to those in the existing
literature. Moreover, the confidence remain valid in some situations where the existing procedures
cannot be used. Monte Carlo simulations show that the proposed confidence sets have good finite
sample coverage properties. The computational benefits of the new approach are particularly
prominent if the dimension of θ is large. The general framework can be extended in the number of
ways to allow for overidentificaiton and joint inference. My approach is attractive in applications
like linear model with interval-valued outcome variable and a large number of regressors.
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Appendix

7 Figures

Figure 2: The identified set and the corresponding optimization domain of KMS procedure for
d = 3 in Example 8.
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Figure 3: Average excess length in the two-dimensional design for CBα,N and CBα,N,P for various
sample sizes as a function of angle ω.
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Figure 4: Coverage frequency in the two-dimensional design forCBα,N and CBα,N,P for various
sample sizes as a function of angle ω.
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Note: the dashed line corresponds to the asymptotic 95% confidence interval for the parameter
p = 0.95 of Bernoulli random variable based on a random sample of 1000 observations.
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Figure 5: Average excess length in the d-dimensional design for CBα,N ,CBα,N,P and CBα,N,AS for
sample size N = 1000 as a function of the dimension d.
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Figure 6: Coverage frequency in the d-dimensional design for CBα,N ,CBα,N,P and CBα,N,AS for
sample size N = 1000 as a function of the dimension d.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d

0.95

1

C
ov

er
ag

e 
fr

eq
.

Note: the dashed line corresponds to the asymptotic 95% confidence interval for the parameter
p = 0.95 of Bernoulli random variable based on a random sample of 100 observations.

Figure 7: Average computation time in the d-dimensional design for CBα,N,P and CBα,N,AS for
sample size N = 1000 as a function of the dimension d.
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8 Proofs

8.1 Topological properties of optimal solutions

Consider any distribution P with support on R(k−2d)×(d+1) such that (AP , bP ) , EPW exist. Let
J a (θ;P ) ⊂ {1, ..., k} be the set of indices of moment equality and inequality constraints active at θ,
i.e. all j s.t. mj(θ, P ) , EP gj(W, θ) = 0. J a (θ;P ) can be empty.

Lemma 1 (Characterization of the optimal solution). Under Assumption 1 for any µ ≥ 0 any minimizer
θ for Program (19) is a solution to the corresponding Karush–Kuhn–Tucker (KKT) optimality conditions
for some finite λ ∈ Rk,





(e1 + 2µθ)′ = −λ′AP , (47)

mj(θ, P ) = 0 j ∈ J eq, (48)

mj(θ, P ) ≤ 0, λj ≥ 0, λjmj(θ, P ) = 0 j ∈ J ineq. (49)

Proof. By Assumption 1, Θ(P ) ⊂ Θ is non–empty and closed, so the global optima for Program (19)
exist. Program (19) is convex for any µ ≥ 0, i.e. the objective function is convex, the constraints are affine.
Assumption 1 implies Slater’s condition. Since the Program (19) is convex, any global optimum θ (µ, P )
of Program 19 satisfies (47)-(49) for some finite vector of Lagrange multipliers λ (maybe non–unique) (see
p.244 in Boyd and Vandenberghe (2004)).

If we introduce notation L (λ, θ;µ, P ) , θ1 + µ ‖θ‖2 + λ′m(θ, P ), (47) becomes

∂θL (λ, θ;µ, P ) = 0

Let ξ (µ, P ) , (θ (µ, P ) , λ (µ, P )) be a set of solutions to (47)-(49). In order to have a unique solution
λ Program (19) need to meet a stronger constraint qualification condition, Assumption 6 defined below.

As before, I use symbols J a (θ;P ), J a (µ, P ) etc to denote the projectors on the coordinates with the
corresponding indices. Let Jdd+1 , (e1, . . . , ed).

Assumption 6 (Linear Independence Constraint Qualification (LICQ)). The matrix Ja (θ;P )AP has full
row rank for any θ ∈ Θ(P ).

Lemma 2 (Sufficient condition for LICQ). Assumptions 2-3 imply Assumption 6.

Proof. Assumption 3 implies that J a (θ;P ) has at most d elements at any θ ∈ Θ(P ). Consider any point
θ ∈ Θ(P ). The set J ineq includes (1), so k ≥ 2d ≥ d+1. It implies that there exists a set J with |J | = d
such that J a (θ;P ) ⊂ J . By Assumption 2, rk [JEPW ] = d, so M , Ja (θ;P ) (AP , bP ) has full row rank
which is equal to |J a|. By definition, Ja (θ;P )AP θ = JabP . It implies by the Rouché–Capelli theorem
that the matrices Mθ , Ja (θ;P )AP and M have the same rank. This result implies Assumption 6.

The inverse implication does not hold in general as the following remark shows.

Remark 2. Assumption 6 implies Assumption 3 and that for any θ ∈ Θ(P )

rk [Ja (θ;P )EPW ] = |J a (θ;P )| . (50)

Indeed, suppose that Assumption 6 holds. It immediately implies Assumption 3. To see (50) consider
any point θ ∈ Θ(P ) such that |J a (θ;P )| ≤ d. By the Rouché–Capelli theorem and the full row rank
property of Mθ correspondingly,

rk (M) = rk (Mθ) = |J a (θ;P )| .
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Lemma 3 (Uniqueness of the optimal solutions). Suppose that both Assumptions 1 and 6 are satisfied.
Then for any µ ≥ 0 the set of multipliers λ (µ, P ) is a singleton. Moreover if µ > 0, then ξ (µ, P ) is a
singleton.

Proof. By definition of Ja (θ;P ), any θ and λ satisfying (47) satisfy

λ′(Ja (θ;P ))′Ja (θ;P ) = λ′. (51)

So (47) becomes
(e1 + 2µθ)′ = −γ′Ja (θ;P )AP , (52)

where γ′ , λ′(Ja (θ;P ))′ ∈ R|J a(θ;P )|. By Assumption 6, for any θ ∈ Θ(P ) the matrix A , Ja (θ;P )AP

has full rank. Hence for any θ there can be at most one γ∗ ∈ R|J a(θ;P )| satisfying (52). If e1 + 2µθ = 0 ,
then trivially λ is a zero vector. Otherwise it is given by

γ∗ = −(AA′)−1A′ (e1 + 2µθ) . (53)

Then (λ (µ, P ))′ , (γ∗)′Ja (θ;P ) is the unique solution to (47)-(49) for any solution θ.
Now consider the case µ > 0. The second order derivative matrix of L (λ, θ;µ, P ) with respect to θ at

any solution ξ (µ, P ) is 2µId. It is positive definite for any µ > 0, so the Second Order Sufficient Condition
(SOSC) is satisfied at any point. By Theorem 3.63 from Bonnans and Shapiro (2000) the second order
growth condition holds at θ (µ, P ), i.e. ∃ε > 0 and c > 0 s.t. for ∀θ ∈ Θ(P ) s.t. ‖θ − θ (µ, P )‖ < ε the
following inequality holds

θ1 + µ ‖θ‖2 ≥ e′1θ (µ, P ) + µ ‖θ (µ, P )‖2 + c ‖θ − θ (µ, P )‖2 .

So the value of the objective function at θ (µ, P ) is strictly smaller than the value at any other point in a
neighborhood of θ (µ, P ). Since for the convex program the set of global optima is convex and connected,
it implies that θ (µ, P ) is the unique global minimizer.

Lemma 4. Suppose that Assumptions 1-3 are satisfied and µ ≤ 1/2. Then

‖λ (µ, P )‖2 ≤ C2
Λ ,

C3
Θ

η2
< ∞, (54)

where CΘ , (1 + maxθ∈Θ ‖θ‖).

Proof. Consider any point θ ∈ θ (µ, P ) and the corresponding J a (θ;P ). Let A , Ja (θ;P )AP and
b , Ja (θ;P ) bP . Let η2A , eig(AA′) so that equation (53) implies

‖λ (µ, P )‖ ≤ η−1
A ‖e1 + 2µθ‖ . (55)

By the variational property of eigenvalues,

η2A = min
v∈Rℓ

v′AA′v

v′v
. (56)

By Assumption 2

η2 ≤ eig((A, b)(A, b)′) , min
v∈Rℓ

v′(AA′ + bb′)v

v′v
.

Let vA be any minimizer of the r.h.s. of (56) such that v′AvA = 1 . Then

η2 ≤ v′A(AA
′ + bb′)vA = (A′vA)

′(Id + θθ′)(A′vA) (57)
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where the last equality holds since by definition b = Aθ. Finally,

η2

η2A
≤ (A′vA)

′(Id + θθ′)(A′vA)

(A′vA)′(A′vA)
≤
∥∥Id + θθ′

∥∥ ≤ CΘ. (58)

Result (54) then follows from (55) and (58) for any µ ≤ 1/2.

Remark 3. Equation (58) provides bound for, A, a matrix with gradients of active moment conditions at
any point θ ∈ Θ, ∥∥∥

(
AA′

)−1
∥∥∥ ≤ CΘη

−2. (59)

The function φ (a, b) ,
√
a2 + b2 + a− b , considered in Fischer (1992), has the following property.

Proposition 1.

φ (a, b) = 0 if and only if a ≤ 0, b ≥ 0, ab = 0. (60)

It can be used to replace (49) with an equivalent equality so that the KKT system becomes a system
of equations. This result can be used to establish the continuity of the solutions in µ as the following
lemma shows.

Lemma 5. Under Assumptions 1- 3 ξ (µ, P ) is u.h.c. in µ; v (µ, P ) is continuous in µ for µ ≥ 0.

Proof. By Proposition 1 equation (49) is equivalent to

φ (mj(θ, P ), λj) = 0 for j ∈ J ineq. (61)

Solutions to (47),(48),(61) coincide with solutions to

Ψ(θ, λ;µ, P ) , ‖∂θL (λ, θ;µ, P )‖22 +
∑

j∈J eq

(mj(θ, P ))2 +
∑

j∈J ineq

(φ (mj(θ, P ), λj))
2 = 0. (62)

Lemmas 3-4 imply that λ (µ, P ) is unique and satisfies (54) for any µ ∈ [0, 1/2]. So the solution to (62)
coincides with solutions of

min
θ,λ

Ψ(θ, λ;µ, P )

s.t. θ ∈ Θ, λ ∈ R
k, ‖λ‖ ≤ CΛ.

(63)

The objective function of this program is continuous in µ and the domain is a compact valued continuous
correspondence in µ. By the Maximum Theorem (see Ok (2007)) ξ (µ, P ) is u.h.c. function of µ ≥ 0.

Function v (µ, P ) = e′1θ (µ, P ) + µ ‖θ (µ, P )‖2 is a composition of u.h.c. functions and hence, by
Theorem VI.2.1’ from Berge (1963), is u.h.c. in µ ∈ R+. Since by definition v (µ, P ) is a single–valued
function, u.h.c. implies continuity in µ ≥ 0 for any fixed P .

8.2 Smoothness properties

In this section we will study the directional derivatives of the value and the optimal solutions of Pro-
gram (19). We will pursue this goal by taking a limit of the perturbed program defined below as the size
of the perturbation goes to zero. Consider a perturbation in parameters EPW = (AP , bP ) and µ in a di-
rection h′ = (vec(hW )′, hµ) ∈ Rk(d+1)+1, where hW , (hA, hb) ∈ Rk×(d+1) and hµ ∈ R. The corresponding
perturbation in the constraints is ṁh(θ) , hAθ − hb. Given these directions, for any t ≥ 0, µ > 0 we can
define a perturbed program,

min
θ∈Θ

e′1θ + (µ + thµ) ‖θ‖2 , (64)

6



s.t.

{
mj(θ, P ) + tṁh;j(θ) = 0 for j ∈ J eq,

mj(θ, P ) + tṁh;j(θ) ≤ 0 for j ∈ J ineq.

Perturbations of inequality constrained programs can lead to changes in the set of the constraints active
at the optimum in response to an arbitrarily small perturbations. It is instructive to consider the following
sets of constraints for the unperturbed program, i.e. with hA = 0, hb = 0, hµ = 0,

J + (µ, P ) ,
{
j ∈ J ineq|λj (µ, P ) > 0

}
∪ J eq,

J − (µ, P ) ,
{
j ∈ J ineq|mj(θ (µ, P ) , P ) > 0

}
,

J 0 (µ, P ) ,
{
j ∈ J ineq|λj (µ, P ) = 0,mj(θ (µ, P ) , P ) = 0

}
,

J a (µ, P ) , J 0 (µ, P ) ∪ J+ (µ, P ) .

Set J+ contains active inequality constraints with positive Lagrange multipliers and the equality con-
straints. These constraints will remain active for small enough perturbations in any directions hA, hb
(by continuity of the Lagrange multipliers). Set J − contains slack constraints. They will remain slack
in response to sufficiently small perturbations (by continuity of the optimal solution and the constraints
functions). Set J 0 contains active inequality constraints with zero Lagrange multipliers. If we drop these
constraints the optimal solution will not change, but they play an important role in the perturbed pro-
gram. Constraints in J 0 become inactive in response to perturbations in some directions no matter how
small the perturbation is or remain active and acquire positive Lagrange multipliers for other directions.
The optimal solution ξ would be fully differentiable iff J 0 is empty as will be evident from the explicit
formula for its directional derivative. Finally, J a contains all active constraints at the optimal solution.

Suppose that the perturbation size t > 0 is small enough such that Program (64) satisfies Assump-
tions 1-3. Then it has a unique solution ξ

h
(t) for 0 ≤ t < T which can be represented as ξ

h
(t) = ξ + tξ̇

h
,

as the following lemma shows. The directional derivative ξ̇
′

h
(µ, P ) , (θ̇

′
(µ, P ) , λ̇

′
(µ, P )) will depend on

the following objects,

J h (µ, P ) ,
{
j ∈ J 0 (µ, P ) |λ̇h;j (µ, P ) > 0

}
∪ J+ (µ, P ) ,

Ah (µ, P ) , J
h (µ, P )AP ,

Qh , Id −A′
h

(
AhA

′
h

)−1
Ah,

A† , A′
(
AA′

)−1
.

I suppress the argument (µ, P ) from now on.

Lemma 6 (Local linear representation). Suppose that Assumptions 1 -3 hold for P . There is a neighbor-
hood [0, T (µ, h, P )] in which Program (64) has a unique solution ξ

h
(t) = ξ + tξ̇

h
with

ξ̇
h
= −

(
(2µ)−1 Qh A†

h

(Jh)′(A†
h)

′ −2µ(Jh)′ (AhA
′
h)

−1

)(
(hA)

′λ+ 2hµθ
Jh(hAθ − hb)

)
. (65)

Proof. By Lemma 3, if t = 0 Program (64) has a unique solution ξ. Since this solution satisfies LICQ
(Assumption 6) and SOSC, it is strongly regular by Proposition 5.38 from BS(2000). The remaining
argument follows the proof of Theorem 5.60 from BS(2000), which uses an implicit function theorem for
generalized equations (Theorem 5.13 in the same book) at a strongly regular solution. We are going to
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apply it to the KKT conditions for Program (64) at the strongly regular solution ξ,





(e1 + 2 (µ+ hµt) θ)
′ = −λ′ (AP + thA) , (66)

mj(θ, P ) + tṁh;j(θ) = 0 j ∈ J eq, (67)

φ (mj(θ, P ) + tṁh;j(θ), λj) = 0 j ∈ J ineq. (68)

By Theorem 5.60 from BS(2000), ξ
h
(t) is analytic in t in some neighborhood [0, T (µ, h, P )] , i.e. it can be

represented as power series. First, let us compute the linear term. By the strong regularity and Theorem

5.13 in BS(2000), there exist a unique solution
(
θ̇, λ̇
)

to the following system of equations (this system is

the gradient of (66)-(68) with respect to t at point t = 0)





2µθ̇
′
Id + λ̇

′
AP = −λ′hA − 2hµθ

′, (69)

e′jAP θ̇ + ṁh;j(θ) = 0 j ∈ J + (µ, P ), (70)

φ
(
e′jAP θ̇ + ṁh;j(θ), λ̇j

)
= 0 j ∈ J 0 (µ, P ), (71)

λ̇h;j = 0 j ∈ J − (µ, P ). (72)

This unique solution determines the set J h. System (69)-(72) can be represented in a matrix form:31

(
2µId A′

h

Ah 0

)(
θ̇

Jhλ̇

)
= −

(
(hA)

′λ+ 2hµθ
Jh(hAθ − hb)

)
. (73)

In addition to that, λ̇ = (Jh)′Jhλ̇. One can check by direct computation that

(
2µId A′

h

Ah 0

)−1

=

(
(2µ)−1 Qh A†

h

(A†
h)

′ −2µ (AhA
′
h)

−1

)
.

Since the higher order derivatives of every constraint function and the objective function of Program
(64) with respect to t are zero, the higher order directional derivatives of ξ

h
are equal to zero at t = 0.

Thus the power series expansion of ξ
h

has only constant and linear terms.

Now we can rewrite Program (64) in an explicit form assuming hµ = 0,

min
θ∈Θ

e′1θ + µ ‖θ‖2 , (74)

s.t.

{
e′j(AP + thA)θ = bP + thb for j ∈ J eq,

e′j(AP + thA)θ ≤ bP + thb for j ∈ J ineq.

Lemma 7. Suppose that Assumptions 1-3 hold for P . There exist such δ > 0 such that for any h =
(hA, hb) ∈ Rk×(d+1) with norm ‖h‖ < δ and any µ ∈ (0, 1/2] and t ∈ [0, 1] the solution of Program (74)
satisfies

‖θh(t)− θ‖ ≤ Lθ
‖th‖
µ

(75)

‖λh(t)− λ‖ ≤ Lλ ‖th‖ (76)

∣∣vh(t)− v − tλ′(hAθ − hb)
∣∣ ≤ Lv

‖th‖2
µ

, (77)

31Compare Equation (73) with Equation (5.81) on page 186 in Shapiro et al. (2014).
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where Lθ =

√
2C3

Θ

(η/2) , Lλ =
(‖EPW‖+δ)C4

Θ
+η2C2

Θ

(η/2)4
, and Lv =

2C3
Θ

(η/2)2
.

Proof. First consider t ∈ [0, T (µ, h, P )] with T (µ, h, P ) defined in Lemma 6. By Lemma 6 the value
function vh(t) , e′1θh(t) + µ ‖θh(t)‖2 can be represented as

vh(t) = v + t (e1 + 2µθ)′ θ̇ + µt2
∥∥∥θ̇
∥∥∥
2
. (78)

First, consider the second term. Since by definition J+ ⊆ J h, we have λ′ = λ′(Jh)′Jh. Correspondingly,
λ′AP = λ′(Jh)′Ah. By Lemma 3, (e1 + 2µθ)′ = −λ′AP . So

(e1 + 2µθ)′ Qh = −λ′(Jh)′(AhQh) = 0, (79)

(e1 + 2µθ)′ A†
h = −λ′(Jh)′(AhA

†
h) = −λ′(Jh)′. (80)

Equations (79) and (80) imply that

(e1 + 2µθ)′ θ̇ = −λ′ṁh(θ). (81)

Second, by Lemma 4 and Remark 3 for any µ ≤ 1/2 ,

∥∥∥
(
AhA

′
h

)−1
∥∥∥ ≤ CΘη

−2(P ) and ‖λ‖2 ≤ C3
Θη

−2(P ). (82)

Then by the triangular inequality and inequalities (82) (and the fact that CΘ ≥ 1)

∥∥∥θ̇
∥∥∥
2
=

1

(2µ)2
(
λ′hA

)
Qh

(
λ′hA

)′
+ ṁh(θ)

′(Jh)′
(
AhA

′
h

)−1
J
hṁh(θ) (83)

≤ ‖hW ‖2 C3
Θ

η2(P )

(
1

µ2
+ 1

)
, (84)

which implies (75). Equation (76) can be proven similarly,

∥∥∥λ̇
∥∥∥ =

∥∥∥(Jh)′(A†
h)

′
(
λ′hA

)
− 2µ(Jh)′

(
AhA

′
h

)−1
J
hṁh(θ)

∥∥∥ (85)

≤‖EPW‖C4
Θ + η2(P )C2

Θ

η4(P )
‖hW ‖ (86)

Finally, the bound in (77) follows from equations (75), (78), and (81).
To extend the argument to the entire interval t ∈ [0, 1], notice that η(P ) and s(P ) are Lipshitz-

continuous. So there exist δ > 0 such that η(EPW + th) > η/2 and s(EPW + th) > s/2 for any

h = (hA, hb) ∈ Rk×(d+1) with norm ‖h‖ < δ and any t ∈ [0, 1]. Such δ can be chosen uniformly for P ∈ P.
Now we can replace ‖EPW‖ with (‖EPW‖+ δ) and η(P ) with η/2 to obtain uniform constants Lθ, Lλ ,
and Lv.

8.3 Proof of Theorem 1

Lemma 8. Suppose that Assumptions 1-3 hold. There exist some µ̄ (P) > 0 such that for any µ < µ̄ (P)
the solution to Program (19), θ (µ, P ) is constant.

Proof. Consider a direction h′ = (vec(hW )′, hµ) ∈ Rk(d+1)+1 satisfying hW = 0, hµ = 1 and any µ0 > 0 in
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a neighborhood of 0. By Lemma 6 we get

θ̇ (µ0, P ) = − 1

µ0
Qh (µ0, P ) θ (µ0, P ) . (87)

Substitute difference in eq.(47) (Lemma 1) between µ = 0 and µ0 for θ in (87),

θ̇ (µ0, P ) = (2µ2
0)

−1Qh (µ0, P )A′
P (λ (µ0, P )− λ (0, P )) . (88)

Now we need to show that θ̇ (µ0, P ) = 0. To establish this result, we need to study the behavior of the set
of inequalities with positive Lagrange multipliers.

Consider any j ∈ J ineq. We know by Lemma 5 that λj (µ, P ) is continuous in µ. If λj (0, P ) > 0
then by continuity λj (µ, P ) > 0 in some neighborhood (0, µ̄j(P )]. If λj (0, P ) = 0 set µ̄j = 1. Take

µ̄(P ) , minj∈J ineq µ̄j(P ). WLOG suppose that µ0 ∈ [0, µ̄ (P )], so we get the inclusion

J+ (0, P ) ⊆ J+ (µ0, P ) . (89)

By definition of J h

J + (µ0, P ) ⊆ J h (µ0, P ) . (90)

By definition of the index matrices, inclusions (89) and (90) imply that

λ (0, P ) = (Jh (µ0, P ))′Jh (µ0, P )λ (0, P ) , (91)

λ (µ0, P ) = (Jh (µ0, P ))′Jh (µ0, P )λ (µ0, P ) , (92)

so
A′

P (λ (µ0, P )− λ (0, P )) = A′
h (µ0, P ) (Jh (µ0, P )) (λ (µ0, P )− λ (0, P )) . (93)

Since by definition Qh (µ0, P )Ah (µ0, P ) = 0 and Qh is a symmetric matrix, equation (88) implies
θ̇ (µ0, P ) = 0. By Lemma 5 the single valued function θ (µ, P ) is continuous for µ > 0. So the r.h.s.
directional derivative being equal to zero implies that θ (µ0, P ) = θ (µ̄(P ), P ) for any µ0 ∈ (0, µ̄ (P )] .

Remark 4. Equation (47) from Lemma 1 with µ = 0 and µ = µ0 also implies

λ (µ0, P ) = λ (0, P )− 2µ0θ
′ (µ̄(P ), P )A†

h (µ0, P ) Jh (µ0, P ) .

This implies that λ (µ, P ) is Lipschitz at µ = 0. By Lemma 4 the Lipschitz constant can be taken equal
to 2CΛ. So for any j ∈ J ineq with λj (0, P ) > 0, we can take µ̄j (P ) = λj (0, P ) /2CΛ. On a top of that,
Lemma 6 implies that λ (µ, P ) is Lipschitz in µ with the same constant for any µ ∈ [0, 1/2]

Proof of Theorem 1. Take any θ∗ ∈ θ(0, P ). Since θ∗ is a feasible point of Program (19),

θ1(µ, P ) + µ ‖θ (µ, P )‖2 ≤ θ∗1 + µ ‖θ∗‖2 . (94)

By definition v (P ) = θ∗1 which immediately implies the l.h.s. inequality in (22).
The first coordinate θ1(µ, P ) is increasing in µ while the norm ‖θ (µ, P )‖2 is decreasing in µ. Since

κ ≥ µ ≥ 0, we get

‖θ (µ, P )‖2 ≥ ‖θ (κ, P )‖2 , (95)

v (P ) ≤ θ1(µ, P ). (96)

These two inequalities imply the r.h.s. inequality in (22),

v (P ) ≤ θ1(µ, P ) + µ(‖θ (µ, P )‖2 − ‖θ (κ, P )‖2) = vin(µ, κ, P ). (97)
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The remaining part of the Theorem’s assertion follows from Lemma 8.

8.4 Proof of Theorem 2

Proposition 2. Suppose that EP |ξ|1+ǫ ≤ ∞ for some ǫ > 0. Then for any r > 0

EP [|ξ| I{|ξ| ≥ r}] ≤ EP |ξ|1+ǫ /rǫ.

Proof. The result follows from the monotonicity of integrals.

Let π(P,Q) denote the Prohorov distance between probability laws on P and Q , which induces the
weak topology (see p. 456 in invan der Vaart and Wellner (1996)). Let

Gn (P ) ,
√
n

(
vec

(
1

n

n∑

i=1

wi

)
− vec (EPW )

)
.

Lemma 9. Consider P, a class of distributions satisfying Assumptions 4-5, and any ǫ > 0. Then

lim
n→∞

sup
P∈P

P

(
sup
m≥n

∥∥∥∥∥
1

m

m∑

i=1

wi − EPW

∥∥∥∥∥ ≥ ǫ

)
= 0, (98)

lim
n→∞

sup
P∈P

P

(
sup
m≥n

∥∥∥∥∥
1

m

m∑

i=1

wi ⊗wi − EP [W ⊗W ]

∥∥∥∥∥ ≥ ǫ

)
= 0, (99)

lim
n→∞

sup
P∈P

π(Gn (P ) , N (0,ΩP )) = 0, (100)

where ΩP = CovP (vec (W )).

Proof. Consider any combination of indices r, ℓ, j,m. Assumption 5 together with the Schwarz inequality
implies,

EP |Wr,ℓWj,m|1+ε/2 ≤
(
EP |Wr,ℓ|2+ε

EP |Wj,m|2+ε
)1/2

≤ M̄. (101)

So the random variables |Wr,ℓ| and |Wr,ℓWj,m| have correspondingly finite 1 + ε/2 and 2 + ε moments.
The bound (101) on the moments is independent of P ∈ P, so these random variables are uniformly
integrable on P by Proposition 2. The limits (98) and (99) follow immediately from Proposition A.5.1
in van der Vaart and Wellner (1996). The result (100) follows from Proposition A.5.2 in the same book.

Lemma 10. Suppose that P ∈ P. Then Pn satisfies Assumptions 1 and 6 with probability approaching 1
uniformly in P ∈ P.

Proof. Consider any P ∈ P. Since such a P satisfies Assumption 1, there exists a set of constraints J
with |J | = d and containing J eq such that

θJP , ((AJ
P )

′AJ
P )

−1(AJ
P )b

J
P ∈ Θ(P ) , (102)

where AJ
P , JAP and bJP , JbP . By Assumption 3 for all j ∈ J ineq\J we have

ej(AP θ
J
P − bP ) ≥ s. (103)

The function (AP , bP ) = EPW is uniformly continuous on P since this class of measures in uniformly
integrable, as was shown in the proof of Lemma 9. The function θJP is uniformly continuous on P since
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the product matrix (AJ
P )

′AJ
P has eigenvalues uniformly bounded from below by η2. By Lemma 9 and the

continuous mapping theorem,

lim
n→∞

sup
P∈P

P{ inf
m≥n;j∈J ineq\J

{ej(Âmθ̂Jm − b̂m)} < s/2} = 0, (104)

where Âm and b̂m are sample analog estimators of AP and bP based on a sample of size m; θ̂Jm ,
((ÂJ

m)′ÂJ
m)−1(ÂJ

m)b̂Jm. This result implies that Θ(Pn) contains at least one element, θ̂Jn , with probability
approaching 1 uniformly in P ∈ P as n → ∞.

Analogously, the continuous mapping theorem implies

lim
n→∞

sup
P∈P

P{ inf
m≥n

η(Pm) < η/2, inf
m≥n

s(Pm) < s/2} = 0. (105)

Result follows from Lemma 2.

Lemma 11. Suppose that P ∈ P and that µn → 0. Then

v (µn,Pn) = v (µn, P ) +
1

n

n∑

i=1

λ (µn, P )′ g(wi, θ (µn, P )) +OP (
1

µnn
). (106)

Proof. First note that by Lemma 10 the random variables θ (µn,Pn) and v (µn,Pn) are well defined with
probability approaching 1 uniformly in P ∈ P. Consider t = 1/

√
n and h such that hW =

√
n( 1n

∑n
i=1w−

EPW ) and hµ = 0. The sequence of perturbations satisfies
√
n( 1n

∑n
i=1 wi − EPW ) = OP(1) (i.e. it has

uniformly tight measures) by (100) in Lemma 9 and the fact that ‖ΩP ‖ ≤ M̄ (by Jensen’s inequality).
The assertion of the Lemma follows from equation (77) in Lemma 7. Indeed, by Lemma 9

lim
n→∞

sup
P∈P

P

(
sup
m≥n

∥∥∥∥∥
1

m

m∑

i=1

wi − EPW

∥∥∥∥∥ ≥ δ

)
= 0, (107)

so the perturbation is small enough to preserve the results of Lemma 7, i.e. ‖thW‖ < δ, with probability
approaching 1 uniformly as sample size grows.

Let’s introduce the following definitions

Σ(θ) ,EP

[
g(W, θ)g(W, θ)′

]
−m(θ, P )m(θ, P )′,

Σ̂n(θ) ,
1

n

n∑

i=1

g(wi, θ)g(wi, θ)
′ − 1

n

n∑

i=1

g(wi, θ)
1

n

n∑

i=1

g(wi, θ)
′.

Proof of Theorem 2. First note that Lemma 10 the random variables θ (µn,Pn) and λ (µn,Pn) are well
defined with probability approaching 1 uniformly in P ∈ P. Consider t and h as in the proof of Lemma 11.
Equation (26) follows from Lemma 9, Lemma 11, and Slutsky’s theorem. The results (27) and (28) follow
from Lemma 7. Finally, by the triangular inequality

∣∣∣σ (µ,Pn)
2 − σ (µ, P )2

∣∣∣ =
∣∣∣λ (µ,Pn)

′
Σ̂n(θ (µ,Pn))λ (µ,Pn)− λ (µ, P )′Σ(θ (µ, P ))λ (µ, P )

∣∣∣ ≤
∣∣∣λ (µ,Pn)

′
Σ̂n(θ (µ,Pn))λ (µ,Pn)− λ (µ, P )′ Σ̂n(θ (µ, P ))λ (µ, P )

∣∣∣

+
∣∣∣λ (µ, P )′ Σ̂n(θ (µ, P ))λ (µ, P )− λ (µ, P )′ Σ(θ (µ, P ))λ (µ, P )

∣∣∣ . (108)

Together with (27), (28) and Lemmas 4 and 9 it implies (29).
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8.5 Proof of Theorem 3

Proof of Theorem 3. Step 1. Consider

ζ
n
,

√
n
vin(µn, κn,Pn)− vin(µn, κn, P ) + vin(µn, κn, P )− v (P )

σ (µ,Pn)
(109)

Since µn/κn → 0 and µn → 0, for all n large enough, such that µn ≤ κn ≤ µ̄ (P ), by Theorem 1 we get

vin(µn, κn, P ) = v (P ) . (110)

By Theorem 2 we get

µn

√
n
(
‖θ (κn,Pn)‖2 − ‖θ (κn, P )‖2

)
=

µn

κn
Op(1) = op(1). (111)

By Lemma 5, θ (µ, P ) and λ (µ, P ) are continuous for µ > 0. The matrix function Σ (θ, P ) is continuous
in θ and thus σ (µ, P ) is continuous in µ for µ > 0. So the limit limn→∞ σ2 (µn, P ) exists and belongs to
the set σ2 (0, P ) which by assumptions implies limn→∞ σ2 (µn, P ) > 0. Result (26) in Theorem 2 together
with (110) and (111) imply by Slutsky’s theorem that ζ

n
converges in distribution to N (0, 1).

Step 2. Consider the one–sided confidence band CBα,n.

limn→∞ P {S (P ) ⊂ CBα,n}
= limn→∞ P

{
v (P ) ≥ vin(µn, κn,Pn)− σ (µn,Pn) z1−αn

−1/2
}

= limn→∞ P
{
ζ
n
≤ z1−α

}

= Φ(z1−α) = 1− α.

Proof for CISα,n follows immediately from the Bonferroni inequality. Finally, consider the case p = 0. Then
by Lemma 2 and Assumption 1, v (0, P ) < −v̄ (0, P ). So

lim
n→∞

min
θ∈Θ(P )

P
(
θ ∈ CIθ1α,n

)
=

min
{
lim
n→∞

P
{
v (µn,Pn)− µn ‖θ (κn,Pn)‖2 − σ (µn,Pn) z1−αn

−1/2 ≤ v (P )
}
, 1, . . .

lim
n→∞

P
{
−v̄ (µn;Pn) + µn

∥∥θ̄ (κn,Pn)
∥∥2 + z1−ασ̄ (µn;Pn)n

−1/2 ≥ v̄ (P )
}}

=

min
{
lim
n→∞

P {S (P ) ⊂ CBα,n} , 1, lim
n→∞

P
{
S (P ) ⊂ CBR

α,n

}}
= (112)

min {1− α, 1, 1 − α} = 1− α. (113)

To understand the second equation, consider the following argument. Suppose that θ ∈ Θ(P ) is such that
v (P ) < θ1 < v̄ (P ). Then such θ1 will be covered with probability 1 since CIθα,n is the intersection of

CBα,n and CBR
α,n which cover correspondingly v (P ) and v̄ (P ) .

8.6 Proof of Theorem 4

Lemma 12. Suppose that A4 holds then for any ǫ > 0 there exists R ≥ 0 such that for any n the following
uniform bound holds

sup
P∈P

P
(√

n ‖θ∗(Pn)− θ∗(P )‖ ≥ R
)
≤ ǫ. (114)
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Proof. The proof is based on the delta method applied to θ∗(P ) = θ∗(AP , bP ), a composition of direction-
ally differentiable functions.32

First note that v (P ) = v(AP , bP ) is directionally differentiable function. To see it, consider the
minimax representation, which is valid since P satisfies Assumption 1,

v(AP , bP ) = min
θ∈Θ

max
λ∈Rp×R

k−p
+ ,‖λ‖≤CΛ

{θ1 + λ′(AP θ − bP )}. (115)

Here we also used Lemma 4 to bound λ and make the domain compact. By Theorem 7.28 from Shapiro et al.
(2014) for any direction (hA, hb) ∈ Rk×(d+1) we have

v̇(P |hA, hb) , lim
t→0+

v(AP + thA, bP + thb)− v(AP , bP )

t
= min

θ∈θ(P )
{λ(P )′(hAθ − hb)}. (116)

Similarly,

θ±i (AP , bP ) =

∣∣∣∣∣min
θ∈Θ

max
γ∈Rp×R

k−p
+ ,‖γ‖≤CΛ,ν≥0

{±θi + γ′(AP θ − bP ) + ν(θ1 − v(P )− µn)}
∣∣∣∣∣ . (117)

Once again, by Theorem 7.28 from Shapiro et al. (2014) for any direction (hA, hb) ∈ Rk×(d+1) we have

θ̇±i (P |hA, hb) = min
θ∈argmin (117)

{γ(P )′(hAθ − hb)}+ ν(P ) min
ϑ∈θ(P )

{λ(P )′(hAϑ− hb)}. (118)

Here we used Proposition 2.47 from Bonnans and Shapiro (2000), the chain rule for directional derivatives.
By the same proposition, the vector with maximal components θ∗(P ) is directionally differentiable.

Delta method (Theorem 7.67 in Shapiro et al. (2014)) and Lemma 9 imply

√
n(θ∗(Pn)− θ∗(P )) = θ̇∗(P |Gn (P )) + op(1). (119)

By compactness of P, the vanishing term op(1) is bounded in probability uniformly in P ∈ P. It is

a routine to compute a uniform bound on the directional derivative,
∥∥∥θ̇∗(P |hA, hb)

∥∥∥ ≤ LP < ∞. The

constant LP provides a uniform asymptotic bound

√
n ‖θ∗(Pn)− θ∗(P )‖ ≤ LP ‖Gn (P )‖+OP (1). (120)

By Lemma 9, this representation implies (114).

Proof of Theorem 4. The proof is analogous for all CI. Consider, for example, CBα,n,P . Pick an arbitrary
measure P ∈ P. Consider any δ > 0 such that z1−ασ

0 > 2δ > 0. Then by Lemma 12 and Theorem 2
correspondingly there exist n(δ, ǫ) such that for any n > n(δ, ǫ)

inf
P∈P

P{µn

√
n
∣∣∣‖θ∗(Pn)‖2 − ‖θ∗(P )‖2

∣∣∣ ≤ δ} ≥1− ǫ, (121)

inf
P∈P

P{z1−α |σ (µn,Pn)− σ (µn, P )| ≤ δ} ≥1− ǫ, (122)

sup
P∈P

ρn(P ) ≤δ (123)

By construction ‖θ∗(P )‖ ≥ minθ∈θ(P ) ‖θ‖, so by Theorem 1

θ1(µn, P ) + µn(‖θ (µn, P )‖2 − ‖θ∗(P )‖2) ≤ v (P ) . (124)

32Since the space of AP , bP is finite dimensional, GÃćteaux and Hadamard directional derivatives coincide.
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Using this bound,

P
{
v (µn,Pn)− µn ‖θ∗(Pn)‖2 − σ (µn,Pn) z1−αn

−1/2 ≤ v (P )
}
≥

P
{√

n(v (µn,Pn)− v (µn, P ))− µn

√
n(‖θ∗(Pn)‖2 − ‖θ∗(P )‖2) ≤ σ (µn,Pn) z1−α

}
≥ (by (75))

P
{√

n(v (µn,Pn)− v (µn, P )) ≤ σ (µn, P ) z1−α − 2δ
}
(1− ǫ)2 ≥

(Φ(z1−α − 2δ

σ0
)− δ)(1 − ǫ)2

Since P is arbitrary, for any n > n(δ, ǫ)

inf
P∈P

min
θ∈Θ(P )

P (θ1 ∈ CBα,n,P) ≥ (Φ(z1−α − 2δ

σ0
)− δ)(1 − ǫ)2. (125)

Hence,

lim inf
n→∞

inf
Pn∈P

min
θ∈Θ(Pn)

Pn (θ1 ∈ CBα,n,P) ≥ (1 − α). (126)
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