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Abstract

This paper investigates the large sample properties of local regression distribution estimators,

which include a class of boundary adaptive density estimators as a prime example. First,

we establish a pointwise Gaussian large sample distributional approximation in a unified way,

allowing for both boundary and interior evaluation points simultaneously. Using this result, we

study the asymptotic efficiency of the estimators, and show that a carefully crafted minimum

distance implementation based on “redundant” regressors can lead to efficiency gains. Second,

we establish uniform linearizations and strong approximations for the estimators, and employ

these results to construct valid confidence bands. Third, we develop extensions to weighted

distributions with estimated weights, and to more general L2 least squares estimation. Finally,

we illustrate our methods with two applications in program evaluation: counterfactual density

testing, and IV specification and heterogeneity density analysis. Companion software packages

in Stata and R are provided.
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1 Introduction

Kernel-based non-parametric estimation of distribution and density functions, as well as higher-

order derivatives thereof, play an important role in econometrics. These non-parametric estimators

often feature both as the main object of interest and as preliminary ingredients in multi-step semi-

parametric procedures. Whitney Newey’s path-breaking contributions to non-/semi-parametric

econometrics employing kernel smoothing include Newey and Stoker (1993), Newey (1994a), Newey

(1994b), Hausman and Newey (1995), Robins, Hsieh and Newey (1995), Newey, Hsieh and Robins

(2004), Newey and Ruud (2005), Ichimura and Newey (2019), and Chernozhukov, Escanciano,

Ichimura, Newey and Robins (2019). See also Newey and McFadden (1994) for an outstanding

handbook chapter reviewing those methods. Our paper hopes to honor Whitney’s influential work

in this area by studying the main large sample properties of a new class of local regression distri-

bution estimators, which can be used for non-/semi-parametric estimation and inference.

The class of local regression distribution estimators is constructed using a local least squares

approximation to the empirical distribution function of a random variable x ∈ X ⊆ R, where the

localization at the evaluation point x ∈ X is implemented via a kernel function and a bandwidth

parameter. The local functional form approximation is done using a finite-dimension basis function,

not necessarily of polynomial form. When the basis function contains polynomials up to order

p ∈ N, the associated least squares coefficients give estimators of the distribution function, density

function, and higher-order derivatives (up to order p − 1), all evaluated at the localization (or

evaluation) point x ∈ X . If only a polynomial basis is used, then the resulting estimator reduces

to the one recently proposed in Cattaneo, Jansson and Ma (2019c).

We present two main large sample distributional results for the local regression distribution

estimators. First, we establish a pointwise (in x ∈ X ) Gaussian distributional approximation with

consistent standard errors. Because these estimators have a U-statistic structure with an n-varying

kernel, where n denotes the sample size, we construct a fully automatic Studentization given a

choice of basis, kernel, and bandwidth. Furthermore, we show that when the basis function in-

cludes polynomials, the associated density and its higher-order derivatives estimators are boundary

adaptive without further modifications. This result generalizes Cattaneo, Jansson and Ma (2019c)

by allowing for arbitrary local basis functions, which is particularly useful for efficiency considera-

tions, as we will discuss below.
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Because the limiting asymptotic variance of the local polynomial density estimator is non-

diagonal, we show that more efficient estimators can be constructed via a minimum distance ap-

proach based on “redundant” regressors. In particular, for estimation of the density and its deriva-

tives, we show that our minimum distance construction can be used to recover the well-known

asymptotic variance lower bound for kernel-based density estimation (Granovsky and Müller, 1991;

Cheng, Fan and Marron, 1997). We also show that this efficiency bound is tight: we construct

a feasible minimum distance procedure exploiting carefully chosen redundant regressors, which

leads to an estimator with asymptotic variance arbitrarily close to the theoretical efficiency bound.

These results offer not only a novel theoretical perspective on efficiency of classical non-parametric

kernel-based density estimation, but also a new class of more efficient boundary adaptive density

estimators for practice.

Our second main large sample distributional result concerns uniform estimation and inference

over a region I ⊆ X , based on either the basic local regression distribution estimators or the

associated more efficient estimators obtained via our proposed minimum distance procedure. More

precisely, we establish a strong approximation to the boundary adaptive Studentized statistic,

uniformly over x ∈ I, relying on a “coupling” result in Giné, Koltchinskii and Sakhanenko (2004);

see also Rio (1994) and Giné and Nickl (2010) for closely related results, and Zaitsev (2013) for

a review on strong approximation methods. This approach allow us to deduce a distributional

approximation for many functionals of the Studentized statistic, including its supremum, following

ideas in Chernozhukov, Chetverikov and Kato (2014b). For further discussion and references on

strong approximations and their applications to non-/semi-parametric statistics and econometrics

see Chernozhukov, Chetverikov and Kato (2014a), Belloni, Chernozhukov, Chetverikov and Kato

(2015), Belloni, Chernozhukov, Chetverikov and Fernandez-Val (2019), and Cattaneo, Farrell and

Feng (2019b), Cattaneo, Crump, Farrell and Feng (2019a), and references therein.

We employ our strong approximation results for local regression distribution estimators to

construct asymptotically valid confidence bands for the density function and derivatives thereof,

in one-sample and two-sample problems. Other applications of our results, not discussed here

to conserve space, include parametric specification and shape restriction testing; see Cattaneo,

Crump, Farrell and Feng (2019a) for an example using strong approximation methods in a different

non-parametric setting. As a by-product, we also establish a linear approximation to the boundary
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adaptive Studentized statistic, uniformly over x ∈ I, which gives uniform convergence rates and

can be used for further theoretical developments.

In addition to our main large sample results for local regression distribution and related es-

timators, we briefly discuss two extensions. First, we allow for a weighted empirical distribution

function entering our estimators, where the weights themselves may be estimated. Our results

continue to hold in this more general case, which is empirically relevant as illustrated in Section

6. Second, we present and study an alternative class of estimators that employ a non-random L2

loss function, instead of the more standard least squares approximation underlying our local re-

gression distribution estimators. These alternative estimators enjoy certain theoretical advantages,

but require ex-ante knowledge of the boundary location of X . In particular, we show how these

alternative estimators can be implemented to achieve maximum asymptotic efficiency in estimating

the density function and its derivatives.

Finally, we illustrate our methods with two applications in program evaluation (see Abadie and

Cattaneo, 2018, for a review). First, we discuss counterfactual density analysis following DiNardo,

Fortin and Lemieux (1996); see also Chernozhukov, Fernandez-Val and Melly (2013) for closely

related discussion based on distribution functions. Second, we discuss specification testing and het-

erogeneity analysis in the context of instrumental variables following Kitagawa (2015) and Abadie

(2003), respectively; see also Imbens and Rubin (2015) for background and other applications of

non-parametric density estimation to causal inference and program evaluation. In all these ap-

plications, we develop formal estimation and inference methods based on non-parametric density

estimation using local regression distribution estimators implemented with weighted distribution

functions. We showcase our new methods using a subsample of the data in Abadie, Angrist and

Imbens (2002), corresponding to the Job Training Partnership Act (JTPA).

The paper proceeds as follows. Section 2 introduces the class of local regression distribution

estimators. Section 3 establishes a pointwise distributional approximation, along with consistency

of a standard errors estimator, and discusses efficiency focusing in particular on the leading special

case of density estimation. Section 4 establishes uniform results, including valid linearizations and

strong approximations, which are then used to construct confidence bands and related procedures.

Section 5 discusses two extensions of our methodology, while Section 6 illustrate our new methods

with two distinct program evaluation applications: counterfactual densities estimation (Section
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6.1) and IV specification and heterogeneity density analysis (Section 6.2). Section 7 concludes.

A supplemental appendix includes all proofs of our theoretical results as well as other technical,

methodological and numerical results. Finally, a software package implementing the main results

in this paper for Stata and R is discussed in Cattaneo, Jansson and Ma (2019d).

2 Setup

Suppose x1, x2, . . . , xn is a random sample from a univariate random variable x with absolute

continuous cumulative distribution function F (·), and associated Lebesgue density f(·), over its

support X ⊆ R, which may be compact and not necessarily known. We propose, and study the

large sample properties of, a new class of non-parametric estimators of F (·), and derivatives thereof,

both pointwise at x ∈ X and uniformly over I ⊆ X .

Our proposed estimators are applicable whenever F (·) is suitably smooth near x and admits a

(sufficiently accurate) linear-in-parameters local approximation of the form:

%(δ, x) = sup
|x−x|≤δ

∣∣∣F (x)−Rh(x− x)′θ(x)
∣∣∣ is small for δ small, (1)

where Rh(·) is a known local basis function, which can depend on a tuning parameter h, and θ is

a parameter to be estimated. The generic formulation (1) is motivated in part by the important

special case where F (·) is sufficiently smooth, in which case

F (x) ≈ F (x) + f(x)(x− x) + ...+ f (p−1)(x)
1

p!
(x− x)p for x ≈ x, (2)

and f (s)(x) = dsf(x)/dxs|x=x are higher-order density derivatives. Of course, the approximation

(2) is of the form (1) with Rh(u) = (1, u, · · · , up/p!)′, and hence θ(x) = (F (x), f(x), · · · , f (p−1)(x))′.

But, as further discussed below, other choices of Rh (·) and/or θ(·) can be attractive, and as a

consequence we take (1) as the starting point for our analysis.

As an estimator of θ(x) in (1), we consider the local regression estimator

θ̂(x) = argmin
θ

n∑
i=1

Wi(F̂i −R′iθ)2, (3)
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where Wi = K((xi − x)/h)/h for some kernel K(·) and some bandwidth h, Ri = Rh(xi − x), and

F̂i =
1

n

n∑
j=1

1 (xj ≤ xi) (4)

is the empirical distribution function evaluated at xi. The formulation (3) allows for a basis function

Rh(·) that could explicitly depend on the tuning parameter h. The estimator θ̂(x) is a generalization

of the density estimator introduced in Cattaneo, Jansson and Ma (2019c) where it was assumed

that Rh(u) = (1, u, u2/2, · · · , up/p!)′.

While not discussed herein to conserve space, the formulation (3) is general enough to allow for

some interesting extensions/refinements in the definition of the local regression distribution estima-

tors. For example, the local basis Rh(u) can incorporate specific restrictions, such as continuity or

lack thereof, on the distribution function, density function or higher-order derivatives at the eval-

uation point x. As a second example, shape constrains such as positivity or monotonicity can be

incorporated by means of specific restrictions on the parameter space of θ. Finally, a third natural

extension of (3) could allow for a non-identity link function, leading to a non-linear least squares

formulation. We plan to investigate these and other extensions of our work in future research.

3 Pointwise Distribution Theory

This section discusses the large sample properties of the estimator θ̂(x), pointwise in x ∈ X . We first

establish asymptotic normality, and then discuss asymptotic efficiency. Other results are reported

in the supplemental appendix to conserve space. We drop the dependence on the evaluation point

x whenever possible.

3.1 Assumptions

We impose the following assumption throughout this section. We do not restrict the support of X ,

which can be a compact set or unbounded, because our estimator automatically adapts to boundary

evaluation points.

Assumption 1 x1, . . . , xn is a random sample from a distribution F (·) supported on X ⊆ R, and

x ∈ X .
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(i) For some δ > 0, F (·) is absolutely continuous on [x− δ, x + δ] with a density f(·) admitting

constants f(x−), ḟ(x−), f(x+), and ḟ(x+) such that

sup
u∈[−δ,0)

|f(x + u)− f(x−)− ḟ(x−)u|
|u|2

+ sup
u∈(0,δ]

|f(x + u)− f(x+)− ḟ(x+)u|
|u|2

<∞.

(ii) K(·) is nonnegative, symmetric, and continuous on its support [−1, 1], and integrates to 1.

(iii) There exists a fixed and locally bounded function R(·), and a positive-definite diagonal

matrix Υh for each h > 0, such that ΥhRh(u) = R(u/h).

(iv) Let Xh,x = X−x
h . For all h sufficiently small, the minimum eigenvalue of Γh,x is bounded

away from zero, where

Γh,x =

∫
Xh

R(u)R(u)′K(u)f(x + hu)du.

(v) The minimum eigenvalue of h−1Σh,x is bounded away from zero, where

Σh,x =

∫
Xh,x

∫
Xh,x

R(u)R(v)′
[
F (x + hmin{u, v})− F (x + hu)F (x + hv)

]
×K(u)K(v)f(x + hu)f(x + hv)dudv.

Part (i) imposes smoothness conditions on the distribution function F (·), separately for the

two regions on the left and on the right of the evaluation point x. In most applications, the

distribution function will also be smooth at the evaluation point, in which case f(x−) = f(x+)

and ḟ(x−) = ḟ(x+). However, there are important situations where F (·) only has one-sided

derivatives, such as near or at boundary points. Part (ii) requires standard restrictions on kernel-

based estimators, which allows for all standard (compact supported) second-order kernel functions.

Part (iii) requires that the local basis Rh(·) can be stabilized by a suitable normalization. Finally,

parts (iv) and (v) give assumptions on various (nonrandom) matrices which will feature in the

asymptotic distribution.

The error of the approximation in (1) depends on the choice of Rh(·) and θ, and is quantified

by %(h) (we suppress the dependence on the evaluation point x). The approximation error will be

required to be “small” in the sense that n%(h)2/h→ 0. In the cases of main interest, we have either

%(h) = O(hp+1) or %(h) = o(hp) for some p. The condition can therefore be stated as nh2p+1 → 0

and nh2p−1 = O(1), respectively, in those cases.
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3.2 Asymptotic Normality

We show that, under regularity conditions and if h vanishes at a suitable rate, then

Ω̂−1/2(θ̂ − θ) N (0, I), Ω̂ = Γ̂−1Σ̂Γ̂−1, (5)

where

Γ̂ =
1

n

n∑
i=1

WiRiR
′
i, Σ̂ =

1

n2

n∑
i=1

ψ̂iψ̂
′
i, ψ̂i =

1

n

n∑
j=1

WjRj(1 (xi ≤ xj)− F̂j).

This result implies, in particular, that inference on θ can be based on θ̂ by employing the (point-

wise) distributional approximation θ̂
a∼ N (θ, Ω̂). The three matrices, Γ̂, Σ̂ and Ω̂, depend on the

evaluation point x in general, but such dependence is suppressed in this section for simplicity.

Assuming Γ̂ is invertible (with probability approaching one), we have

θ̂ − θ = Γ̂−1S, S =
1

n

n∑
i=1

WiRi(F̂i −R′iθ),

and result (5) follows if S is asymptotically mean-zero Gaussian in the sense that

V[S]−1/2S  N (0, I) (6)

and if the variance estimator Σ̂ is consistent in the sense that V[S]−1(Σ̂ − V[S]) →P 0. Up to a

leave-in bias term and a smoothing bias term, the statistic S can be written as

S =
1

n(n− 1)

n∑
i,j=1,i 6=j

WjRj

(
1 (xi ≤ xj)− F (xj)

)
, (7)

that is, S is approximately a second-order U -statistic, so (6) should follow from a central limit theo-

rem for (n-varying) U -statistics under suitable regularity conditions, including conditions ensuring

that the approximation error in (1) is negligible. Moreover, the projection theorem for (varying)

U -statistics suggests that if the approximation error in (1) is negligible, then

V[S] ≈ 1

n
E[ψiψ

′
i], ψi = E[WjRj1(xi ≤ xj)|xi]− E[WjRj1(xi ≤ xj)],
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an observation which motivates the functional form of the variance estimator Σ̂ used to form Ω̂.

The following theorem formalizes the above intuition, and gives precise sufficient conditions.

Here, and elsewhere in the sequel, we are considering asymptotics as h→ 0 and n→∞.

Theorem 1 (Pointwise Asymptotic Normality) Suppose Assumption 1 holds. If n%(h)2/h→

0 and nh2 →∞, then (5) holds.

This theorem establishes a (pointwise) Gaussian distributional approximation for the Studen-

tized statistic Ω̂−1/2(θ̂ − θ), which is valid for each evaluation point x ∈ X . For example, letting c

be a vector of conformable dimension and α ∈ (0, 1), this result implies that the standard (1−α)%

confidence interval:

CIα(x) =

[
c′θ̂(x)− q1−α/2

√
c′Ω̂(x)c , c′θ̂(x)− qα/2

√
c′Ω̂(x)c

]
,

qa = inf
{
u ∈ R : P [N (0, 1) ≤ u] ≥ α

}
,

is asymptotically valid, that is,

lim
n→∞

P
[
θ(x) ∈ CIα(x)

]
= 1− α, for all x ∈ X .

The above confidence interval is valid asymptotically for each evaluation point x, which is reflected

by the notation CIα(x). Later, we will also develop asymptotically valid confidence bands, which

will be denoted by CIα(I) for some region I ⊆ X .

3.3 Efficiency

As it is well known in the literature (Fan and Gijbels, 1996), standard local polynomial regression

estimators also have a limiting asymptotic variance of the “sandwich” form A−1BA−1, where

A ∝
∫
R(u)R(u)′K(u)du and B ∝

∫
R(u)R(u)′K(u)2du,

which implies that setting K(·) to be the uniform kernel minimizes their asymptotic variance, at

least in the sense that A−1BA−1 ≥ B−1. See Granovsky and Müller (1991) for a more general

discussion on the optimality of the uniform kernel for kernel-based estimation.

8



In the case of local regression distribution estimators, employing the uniform kernel does not

exhaust the potential efficiency gains of choosing a kernel function to minimize their asymptotic

variance. Heuristically, unlike the case of the asymptotic variance of local polynomial estimators,

which is effectively of the form A ∝ B for appropriate choice of kernel function, the local regression

distribution estimators exhibit a more complex and uneven asymptotic variance formula due to their

construction. For example, in the case of local polynomial density and higher-order estimation (i.e.,

setting R(u) polynomial of order p > 1) the asymptotic variance matrix of θ̂, excluding the intercept

term for simplicity, takes the form A−1CA−1 with

C ∝
∫ ∫

min{u, v}R(u)R(v)′K(u)K(v)dudv,

which implies that (the corresponding submatrix of) A is not proportional to (the corresponding

submatrix of) C even when the kernel function is uniform. This discussion excludes the intercept

because that (
√
n-consistent) estimator corresponds to the cumulative distribution function, and

has a quite different asymptotic variance. The above heuristics apply to the general case where the

local basis function R(·) needs not to be of polynomial form. See the SA for further discussion and

detailed formulas.

In this section we employ a minimum distance approach to develop a lower bound on the

asymptotic variance of the local regression distribution estimators, and also propose more efficient

estimators based on this idea. To motivate our approach, notice that in many cases it is possible

to specify Rh(·) in such a way that θ can be taken to be of the form θ = (θ′1, θ
′
2)
′, where θ2 = 0. In

such cases several distinct estimators of θ1 are available. To describe some leading candidates and

their salient properties, partition θ̂, Γ̂, Σ̂, and Ω̂ conformable with θ as θ̂ = (θ̂′1, θ̂
′
2)
′ and

Γ̂ =

 Γ̂11 Γ̂12

Γ̂21 Γ̂22

 , Σ̂ =

 Σ̂11 Σ̂12

Σ̂21 Σ̂22

 , Ω̂ =

 Ω̂11 Ω̂12

Ω̂21 Ω̂22

 .

The “short regression” counterpart of θ̂1 obtained by droppingR2,h(·) fromRh(·) = (R1,h(·)′, R2,h(·)′)′

is given by

θ̂R,1 = θ̂1 + Ω̂−111 Ω̂12θ̂2,
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while an optimal minimum distance estimator of θ1 is given by

θ̂MD,1 = argmin
θ1

(
θ̂1 − θ1
θ̂2

)′
Ω̂−1

(
θ̂1 − θ1
θ̂2

)
= θ̂1 − Ω̂12Ω̂

−1
22 θ̂2. (8)

As a by-product of results obtained when establishing (5) it follows that

Ω̂
−1/2
11 (θ̂1 − θ1) N (0, I),

Ω̂
−1/2
R,11 (θ̂R,1 − θ1) N (0, I), Ω̂R,11 = Γ̂−111 Σ̂11Γ̂

−1
11

and

Ω̂
−1/2
MD,11(θ̂MD,1 − θ1) N (0, I), Ω̂MD,11 = Ω̂11 − Ω̂12Ω̂

−1
22 Ω̂21,

under mild regularity conditions. Since Ω̂ is of “sandwich” form, the estimators θ̂1 and θ̂R,1 cannot

be ranked in terms of (asymptotic) efficiency in general. On the other hand, θ̂MD,1 will always be

(weakly) superior to both θ̂1 and θ̂R,1 in terms of (asymptotic) efficiency. In fact, because

θ̂1 = argmin
θ1

(
θ̂1 − θ1
θ̂2

)′ Ω̂−111 0

0 Ω̂−122

(θ̂1 − θ1
θ̂2

)
,

and

θ̂R,1 = argmin
θ1

(
θ̂1 − θ1
θ̂2

)′
Ω̂

(
θ̂1 − θ1
θ̂2

)
,

each estimator admits a minimum distance interpretation, but only θ̂MD,1 can be interpreted as an

optimal minimum distance estimator based on θ̂.

As a consequence, we investigate whether an appropriately implemented θ̂MD,1 can lead to asymp-

totic efficiency gains relative to θ̂1 and θ̂R,1. More generally, as a by-product, we obtain an efficiency

bound among minimum distance estimators and show that this bound coincides with those known

in the literature for kernel-based density estimation at interior points (Granovsky and Müller, 1991;

Cheng, Fan and Marron, 1997).

In the remaining of this section we focus on the case of local polynomial density estimation

at an interior point for concreteness, but the SA presents more general results. Consequently, we

assume that F (·) is p-times continuously differentiable in a neighborhood of x. Then, (2) is satisfied
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and a natural choice of Rh(·) is

Rh(u) =
(
R1,h(u)′, R2,h(u)′

)′
=
(

1, P (u)′, Q(u)′
)′

= R(u), (9)

where P (u) = (u, u2/2, · · · , up/p!) is a polynomial basis, and Q(·) represent redundant regressors.

Therefore, in our minimum distance construction, the parameters are

θ =
(
F (x)︸︷︷︸

intercept

, f(x), · · · , f (p−1)(x)︸ ︷︷ ︸
slope, R1,h(·)=P (·)

, 0, · · · , 0︸ ︷︷ ︸
redundant, R2,h(·)=Q(·)

)′
, (10)

with smoothing error of order %(h) = o(hp).

With (9) and (10), we define the minimum distance density estimator as f̂MD(x) = e′1θ̂MD,1, where

e` is the (` + 1)th unit vector. Similarly, we have f̂(x) = e′1θ̂1 and f̂R(x) = e′1θ̂R,1. Of course, if it

is known a priori that the distribution function is p+ q times continuously differentiable, then one

can specify Q(·) to include higher order polynomials: Q(u) = (up+1/(p + 1)!, · · · , up+q/(p + q)!).

By redefining the parameters as θ = (F (x), f(x), · · · , f (p+q−1)(x))′, the smoothing error will be of

order %(h) = o(hp+q). Notice that, in this case, f̂(x) and f̂R(x) correspond to the density estimator

introduced in Cattaneo, Jansson and Ma (2019c) implemented with Rh(u) = (1, u, · · · , up+q/(p +

q)!)′ and R(u) = (1, u, · · · , up/p!)′, respectively. Since the purpose of this section is to investigate

the efficiency gains of incorporating additional redundant regressors, we do not exploit the extra

smoothness condition, and we will treat Q(·) as redundant regressors even if Q(·) contains higher

order polynomials.

As both f̂(x) and f̂R(x) are (weakly) asymptotically inefficient relative to f̂MD(x) for any choice of

Q(·), we consider the asymptotic variance of the minimum distance estimator, which can be obtained

by establishing asymptotic counterparts of Γ̂ and Σ̂ after suitable scaling. Under the natural

minimal regularity conditions (e.g., lack of perfect collinearity between P and Q) the asymptotic

variance of the minimum distance density estimator (and more generally, its `-th derivative) is

AsyVar[f̂
(`)
MD (x)] = e′`

[
ΩPP − ΩPQΩ−1QQΩQP

]
e`,
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where 
Ω11 Ω1P Ω1Q

ΩP1 ΩPP ΩPQ

ΩQ1 ΩQP ΩQQ

 = h−1Γ−1h ΣhΓ−1h .

Because we consider an interior evaluation point x where F (·) is assumed to be smooth, it is possible

to simplify the expression of Γh and Σh. In particular, it suffices to consider the following:

Γh = f(x)

∫ 1

−1
R(u)R(u)′K(u)du, Σh = hf(x)3

∫ 1

−1

∫ 1

−1
R(u)R(v)′K(u)K(v) min{u, v}dudv.

See the SA for omitted details.

Therefore, the objective is to find a function Q(·) that minimizes the asymptotic variance

AsyVar[f̂
(`)
MD (x)]. Taking Q(·) scalar and properly orthogonalized, without loss of generality, we have∫ 1

−1 P (u)K(u)du = 0 and
∫ 1
−1(1, P (u)′)′Q(u)K(u)du = 0. It follows that the problem of selecting

an optimal Q(·) to minimize AsyVar[f̂
(`)
MD (x)] is equivalent to the following variational problem:

sup
Q∈Q

[∫ 1
−1
∫ 1
−1 P`(u)Q(v) min{u, v}K(u)K(v)dudv

]2
∫ 1
−1
∫ 1
−1Q(u)Q(v) min{u, v}K(u)K(v)dudv

(11)

where

Q =

{∫ 1

−1
Q(u)K(u)du = 0,

∫ 1

−1
P (u)Q(u)K(u)du = 0

}
,

with P`(u) = e′`

( ∫ 1
−1 P (u)P (u)′K(u)du

)−1
P (u) and ` = 1, 2, . . . , p. The objective function is

obtained from the fact that, after proper orthogonalization, the matrix Γ becomes block diagonal.

See the SA for all other omitted details.

The following theorem characterizes a lower bound for the asymptotic variance of the minimum

distance estimator among all possible choices of redundant regressors Q. In addition, it shows

that this lower bound can be (approximately) achieved by setting the redundant regressor Q(·) to

include certain higher order polynomial functions.

Theorem 2 (Efficiency: Local Polynomial Density Estimator at Interior Points) Suppose

12



the conditions of Theorem 1 hold. If x ∈ X is an interior point, then

inf
Q∈Q

AsyVar[f̂
(`)
MD (x)] ≥ ν`, ν` = e′`

(∫ 1

−1
Ṗ (u)Ṗ (u)′du

)−1
e`.

Furthermore, by direct calculation for each p = 1, 2, 3, · · · , limj→∞ AsyVar[f̂
(`)
MD,j(x)] = ν`, where

the minimum distance estimator f̂
(`)
MD,j(x) = e′`θ̂MD,j is constructed with

Q(u) = u2j+1 − P (u)′
(∫ 1

−1
P (u)P (u)′du

)−1 ∫ 1

−1
P (u)u2j+1du, for ` = 0, 2, 4, · · · ,

or

Q(u) = u2j+2 − P (u)′
(∫ 1

−1
P (u)P (u)′du

)−1 ∫ 1

−1
P (u)u2j+2du, for ` = 1, 3, 5, · · · ,

and K(·) being the uniform kernel.

The first part, and the main result in this theorem, establishes a lower bound among minimum

distance estimators. Importantly, it is shown in the SA that this bound coincides with the variance

bound of all kernel-type density (and derivatives thereof) estimators employing the same order

of the (induced) kernel function (Granovsky and Müller, 1991). Therefore, our minimum distance

approach provides an alternative way of characterizing minimum variance results for non-parametric

kernel-based estimators of the density function and its derivatives.

The second part of the theorem gives a simple recipe for implementation. Specifically, it pro-

poses a specific choice of Q(·) so that the corresponding minimum distance estimator approximately

achieves the variance bound for j large enough. We assume Q(·) is orthogonal to P (·) for theoret-

ical convenience: to implement this estimator only a local polynomial regression of the empirical

distribution function on a constant, the polynomial basis P (·), and one additional regressor u2j+1

or u2j+2 (depending on the choice of `) needs to be implemented, to then apply (8) with the

corresponding estimated variance-covariance matrix.

In Figure 1, we consider the local linear/quadratic density estimator (` = 1) with the redundant

regressor being a higher order polynomial (i.e., P (u) = u or P (u) = (u, u2/2)′, and Q(u) =

u2j+1), and plot the corresponding equivalent kernel of our minimum distance estimator for j =

1, 2, . . . , 30. As j increases, the equivalent kernel converges to the uniform kernel, which is well-
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known to minimize the (asymptotic) variance among all kernel density estimators employing second

order kernels. In other words, the asymptotic variance of our proposed minimum distance local

polynomial density estimator converges to the optimal asymptotic variance as j →∞.

4 Uniform Distribution Theory

The distributional result presented in Theorem 1 is valid pointwise for x ∈ X . In this section we

develop an uniform distributional approximation for the Studentized process

T (x) =
c′θ̂(x)− c′θ(x)√

c′Ω̂(x)c
: x ∈ I

 ,

using the notation in (5), and where c is a conformable vector and I ⊆ X is some prespecified

region. This stochastic process is not tight, and hence does not converge in distribution. Our

approximation proceeds in two steps. First, for an positive (vanishing) rn sequence, we establish

an uniform “linearization” of the process T (·) of the form:

sup
x∈I
|T (x)− T(x)| = OP(rn), (12)

where {
T(x) =

1√
n

n∑
i=1

Kh,x(xi) : x ∈ I

}

with

Kh,x(xi) =
c′ΥhΓ−1h,x

∫
Xh
R(u)

[
1(xi ≤ x + hu)− F (x + hu)

]
K (u) f(x + hu)du√

c′ΥhΩh,xΥhc
,

and Ωh,x = Γ−1h,xΣh,xΓ
−1
h,x. In words, we show that the Studentized process T (·), which involves

various pre-asymptotic estimated quantities, is uniformly close to the linearized process T(·), which

is a sample average of independent observations. To obtain (12), we develop new uniform approxi-

mations with sharp rate of convergence, which may be of independent interest in semi-parametric

estimation and inference settings. See the SA for more details.

Second, in a possibly enlarged probability space, we show that there exists a copy of T(·),

denoted by T̃(·), and a Gaussian process {B(x) : x ∈ I}, with a suitable variance-covariance
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structure, such that

sup
x∈I

∣∣∣T̃(x)−B(x)
∣∣∣ = OP(rn). (13)

This type of strong approximation result, when established with suitably fast rate rn → 0, can be

used to deduce distributional approximations for statistics such as supx∈I |T (x)|, which are useful for

constructing confidence bands or for conducting hypothesis tests about shape or other restrictions

on the function of interest. To obtain (13), we employ a result originally established by Rio (1994),

and later extended in Giné, Koltchinskii and Sakhanenko (2004); see also Giné and Nickl (2010,

Proof of Proposition 5).

In this section we consider a fixed the linear combination c for ease of exposition, but in the SA

we discuss the more general case where c can depend on both the evaluation point x and the tuning

parameter h, which is necessary to establish uniform distribution approximations for the minimum

distance estimator introduced in the previous section. All the results reported in this section apply

to the latter class of estimators as well.

4.1 Assumptions

In addition to Assumption 1, we impose the following conditions on the data generating process.

In the sequel, continuity and differentiability conditions at boundary points should be interpreted

as one-sided statements (e.g., part (i) of Assumption 1).

Assumption 2 Let I ⊆ X be a compact interval.

(i) The density function f(x) is twice continuously differentiable and bounded away from zero

on I.

(ii) There exists some δ > 0 and compactly supported kernel functions K†(·) and {K‡,d(·)}d≤δ,

such that (ii.1) supu∈R |K†(u)|+supd≤δ,u∈R |K‡,d(u)| <∞, (ii.2) the support of K‡,d(·) has Lebesgue

measure bounded by Cd, where C is independent of d; and (ii.3) for all u and v such that |u−v| ≤ δ,

|K(u)−K(v)| ≤ |u− v| ·K†(u) +K‡,|u−v|(u).

(iii) The basis function R(·) is Lipschitz continuous in [−1, 1].

(iv) For all h sufficiently small, Σh,x is positive definite, and the minimum eigenvalues of Γh,x

and h−1Σh,x are bounded away from zero uniformly for x ∈ I.
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The above strengthens and expands Assumption 1. Part (i) requires the density function to be

reasonably smooth uniformly in I. This assumption can be easily justified if the density function

belongs to a Hölder ball. Part (ii) imposes additional requirements on the kernel function. Although

seemingly technical, it permits a decomposition of the difference |K(u)−K(v)| into two parts. The

first part, |u − v| ·K†(u), is a kernel function which vanishes uniformly as |u − v| becomes small.

Note that this will be the case for all piecewise smooth kernel functions, such as the triangular or

the Epanechnikov kernel. However, difference of discontinuous kernels, such as the uniform kernel,

cannot be made uniformly close to zero. This motivates the second term in the above decomposition.

Part (iii) requires the basis function to be reasonably smooth. Together, parts (i)–(iii) imply that

the estimator θ̂(x) will be “smooth” in x, which is important to control the complexity of the process

T (·). Finally, part (iv) implies that the matrices Γh,x and Σh,x are well-behaved uniformly for x ∈ I.

4.2 Strong Approximation

We first discuss the covariance of the process T(·). It is straightforward to show that

Cov[T(x),T(y)] =
c′ΥhΩh,x,yΥhc√

c′ΥhΩh,xΥhc
√
c′ΥhΩh,yΥhc

, Ωh,x,y = Γ−1h,xΣh,x,yΓ
−1
h,y,

where

Σh,x,y =

∫
Xh,y

∫
Xh,x

R(u)R(v)′
[
F (min{x + hu, y + hv})− F (x + hu)F (y + hv)

]
×K(u)K(v)f(x + hu)f(y + hv)dudv,

and Σh,x,x = Σh,x.

Now we state the second main distributional result of this paper in the following theorem.

Theorem 3 (Strong Approximation) Suppose Assumptions 1 and 2 hold, and that h→ 0 and

nh2/ log n→∞.

1. (12) holds with

rn =

√
n

h
sup
x∈I

%(h, x) +
log n√
nh2

.

2. On a possibly enlarged probability space, there exists a copy T̃(·) of T(·), and a tight and
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centered Gaussian process, {B(x), x ∈ I}, defined with the same covariance as T(·), such that

(13) holds with

rn =
log n√
nh

.

The first part of this theorem gives conditions such that the feasible t-statistic process T (·) is

well approximated by the infeasible (linear) t-statistic process T(·), uniformly for x ∈ I. The latter

process is mean zero, and takes a kernel-based form. However, standard strong approximation

results for kernel-type estimators do not apply directly to the process T(·), as the implied (equiv-

alent, Studentized) kernel Kh,x(·) depends not only on the bandwidth but also on the evaluation

point in a non-standard way. That is, due to the boundary adaptive feature of the local distribution

regression estimators, the shape of the implied kernel automatically changes for different evaluation

points depending on whether they are interior or boundary points. Nevertheless, we are able to

obtain a valid strong approximation result, which is reported in the second part of the Theorem.

Putting the two results together, it follows that the distribution of T (·) is approximated by that

of B(·), provided the following condition holds:

√
n

h
sup
x∈I

%(h, x) +
log n√
nh2
→ 0.

To facilitate understanding of this rate restriction, we consider the local polynomial density es-

timation setting of Cattaneo, Jansson and Ma (2019c), where the basis function takes the form:

Rh(u) = R(u) = (1, u, u2/2, · · · , up/p!) for some p ≥ 1, and the second element of θ̂(x) estimates

the density f(x). That is, e′1θ̂(x) = f̂(x) →P f(x) under Assumption 1, where c = e1 is the second

unit vector. By a Taylor expansion argument, it is easy to see that the smoothing bias has order

hp+1 as long as the distribution function F (·) is suitably smooth. Then, the above rate restriction

reduces to
√
nh2p+1 + logn√

nh2
→ 0.

Finally, if the goal is to approximate the distribution of supx∈I |T (x)|, then an extra
√

log n factor

is needed in the rate restriction, as discussed in Chernozhukov, Chetverikov and Kato (2014a). A

formal statement of such result is given below, after we discuss how we can further approximate

the infeasible Gaussian process B(·).
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4.3 Confidence Bands

Feasible inference cannot be based on the Gaussian process B(·), as its covariance structure is

unknown and has to be estimated in practice. For estimation, first recall from Sections 2 and 3

that Wi(x) = K((xi− x)/h)/h, Ri(x) = Rh(xi− x), and Γ̂(x) = 1
n

∑n
i=1Wi(x)Ri(x)Ri(x)

′. Then, we

construct the plug-in estimator of Ωh,x,y as follows:

Ω̂h,x,y = nΥ−1h Γ̂(x)−1Σ̂(x, y)Γ̂(y)−1Υ−1h , Σ̂(x, y) =
1

n2

n∑
i=1

ψ̂i(x)ψ̂i(y)′

where

ψ̂i(x) =
1

n

n∑
j=1

Wj(x)Rj(x)(1 (xi ≤ xj)− F̂j).

The following lemma characterizes the approximation error from replacing the infeasible process

B(·) by a plug-in feasible version. (Conditioning on data means conditioning on x1, x2, · · · , xn.)

Lemma 1 Suppose Assumptions 1 and 2 hold, and that h → 0 and nh2/ log n → ∞. Then, there

exist two tight and centered Gaussian processes, {B̃(x), x ∈ I} and {B̂(x), x ∈ I}, such that (i)

B̃(·) has the same distribution as B(·) and is independent of the data; (ii) conditional on the data,

B̂(·) has covariance

Cov
[
B̂(x), B̂(y)

∣∣∣Data
]

=
c′ΥhΩ̂h,x,yΥhc√

c′ΥhΩ̂h,xΥhc
√
c′ΥhΩ̂h,yΥhc

,

and (iii)

E
[

sup
x∈I
|B̃(x)− B̂(x)|

∣∣∣∣Data

]
= OP

((
log2 n√
nh3

)1/3
)
.

The following theorem combines previous results, and justifies the uniform confidence band

constructed using critical values from supx∈I |B̂(x)|.

Theorem 4 (Kolmogorov-Smirnov Distance) Suppose Assumptions 1 and 2 hold, and that

n log n

h
sup
x∈I

%(h, x)2 +
(log n)7

nh3
= o(1),
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then

sup
u∈R

∣∣∣∣P[ sup
x∈I
|T (x)| ≤ u

]
− P

[
sup
x∈I
|B̂(x)| ≤ u

∣∣∣Data
]∣∣∣∣ = o(1),

where B̂(·) is a tight and centered Gaussian process defined in Lemma 1.

From Theorem 4, an asymptotically valid (1− α) confidence band for {c′θ(x) : x ∈ I} is given

by

CIα(I) =

{[
c′θ̂(x)− q1−α

√
c′Ω̂(x)c , c′θ̂(x) + q1−α

√
c′Ω̂(x)c

]
, x ∈ I

}
,

where q1−α is the 1− α quantile of supx∈I |B̂(x)|, conditional on the data, that is,

qa = inf

{
u ∈ R : P

[
sup
x∈I
|B̂(x)| ≤ u

∣∣∣Data

]
≥ α

}
,

which can be obtained by simulating the process B̂(·) on a dense grid.

5 Extensions

We briefly outline two extensions of the main results presented above. First, we introduce a re-

weighted version of θ̂, which is useful in applications as illustrated in Section 6. Second, we discuss

a new class of local regression estimators based on a non-random least-squares loss function, which

has some interesting theoretical properties and may be of interest in some semi-parametric settings.

5.1 Re-weighted Distribution Estimator

Suppose (x1, w1), (x2, w2), · · · , (xn, wn) is a random sample, where xi is a continuous random vari-

able with a smooth cumulative distribution function, but now wi is an additional “weighting”

variable, possibly random and involving unknown parameters. We consider the generic weighted

distribution parameter

H(x) = E[wi1(xi ≤ x)],

whose practical interpretation depends on the specific choice of wi.

We discuss some examples. If wi = 1, H(·) becomes the distribution function F (·), and hence

the results above apply. If wi is set to be a certain ratio of propensity scores for subpopulation

membership, then d
dxH(x) becomes a counterfactual density function, as in DiNardo, Fortin and
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Lemieux (1996); see Section 6.1 below. If wi is set to be a combination of the treatment assignment

and treatment status variables, then the resulting density can be used to conduct specification

testing in IV models, or if wi is set to be a certain ratio of propensity scores for a binary instrument,

then the density can be used to identify distributions of compliers, as in Imbens and Rubin (1997),

Abadie (2003), and Kitagawa (2015); see Section 6.2 below. Other examples of applicability of this

extension include bunching, missing data, measurement error, data combination, and treatment

effect settings. More generally, when weights are allowed for, there is another potentially interesting

connection between the estimand d
dxH(x) and classical weighted averages featuring prominently in

econometrics because d
dxH(x) = E[wi|xi = x]f(x), which is useful in the context of partial means

and related problems as in Newey (1994b).

Our main results extend immediately to allow for
√
n-consistent estimated weights wi. Specifi-

cally, we let F̂w,i(x) = 1
n

∑n
j=1wj1(xj ≤ xi) in place of F̂i in (4), and investigate the large sample

properties of our proposed estimator in (3) when wi is replaced by ŵi = wi(β̂) with β̂ a
√
n-

consistent estimator and wi(·) a known function of the data, that is, when estimated weights are

used to construct the weighted empirical distribution function F̂w,i(x). All the results reported in

the previous sections apply to this extension, which is heavily used in the upcoming applications.

5.2 Local Projection Distribution Estimators

The local regression distribution estimator is obtained from a least squares projection of the empiri-

cal distribution function to a local basis, where the projection puts equal weights at all observations.

That is, (3) employs an L2(F̂ )-projection

θ̂(x) = argmin
θ

∫ (
F̂ (u)−Rh(u− x)′θ

)2
K

(
u− x

h

)
dF̂ (u).

This representation motivates a general class of local projection distribution estimators given by

θ̂G(x) = argmin
θ

∫ (
F̂ (u)−Rh(u− x)′θ

)2
K

(
u− x

h

)
dG(u)

for some distribution function G. We show in the SA that all our theoretical results continue to

hold for θ̂G, provided that the distribution G is absolutely continuous with respect to the Lebesgue

measure and the Radon-Nikodym derivative is reasonably smooth.
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The estimator θ̂G involves only one average, while the local regression estimator θ̂ has two layers

of averages (one from the construction of the empirical distribution function, and the other from the

L2(F̂ )-projection/regression). As a result, with suitable centering and scaling, the local projection

estimator, θ̂G, can be written as the sum of a mean-zero influence function and a smoothing bias

term. Since θ̂G no longer involves a second order U-statistic (c.f. (7)), or leave-in bias, pointwise

asymptotic normality can be established under weaker conditions: it is no longer needed to assume

nh2 → ∞ (Theorem 1), but rather nh → ∞. Similarly, for the strong approximation results we

only need to assume log n/
√
nh as opposed to log n/

√
nh2 (part 1 of Theorem 3).

In addition, the local projection estimator θ̂G is robust to “low” density. To see this, recall that

the local regression estimator θ̂ involves regressing the empirical distribution on a local basis, which

means that this estimator can be numerically unstable if there are only a few observations near the

evaluation point. More precisely, the matrix Γ̂ will be close to singular if the effective sample size

is small.

Although the local projection estimator θ̂G takes a simpler form, is robust to low density, and

its large sample properties can be established under weaker bandwidth conditions, it does have

one drawback: it requires knowledge of support X . In contrast, the local regression distribution

estimator is fully boundary adaptive, even in cases where the location of the boundary is unknown.

See Cattaneo, Jansson and Ma (2019c) for further discussion for the case of density estimation.

6 Applications

We discuss two applications of our main results in the context of program evaluation (see Abadie

and Cattaneo, 2018, and references therein). These applications also employ the first extension

discussed previously.

6.1 Counterfactual Densities

In this first application, the objects of interest are density functions over their entire support,

including boundaries and near-boundary regions, which are estimated using estimated weighting

schemes, as this is a key feature needed for counterfactual analysis (and many other applications).

Our general estimation strategy is specialized to the counterfactual density approach originally

proposed by DiNardo, Fortin and Lemieux (1996). We focus on density estimation, and we refer
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readers to Chernozhukov, Fernandez-Val and Melly (2013) for related methods based on distribution

functions as well as for an overview of the literature on counterfactual analysis.

To construct a counterfactual density or, more generally, re-weighted density estimators, we

simply need to set the weights (w1, w2, · · · , wn) appropriately. In most applications, this also

requires constructing preliminary consistent estimators of these weights, as we illustrate in this

section. Suppose the observed data is (xi, ti, z
′
i)
′, i = 1, 2, . . . , n, where xi continues to be the main

outcome variable, zi collects other covariates, and ti is a binary variable indicating to which group

unit i belongs to. For concreteness, we call these two groups control and treatment, though our

discussion does not need to bear any causal interpretation.

The marginal distribution of the outcome variable xi for the full sample can be easily estimated

without weights (that is, wi = 1). In addition, two conditional densities, one for each group, can

be estimated using w1
i = ti/P[ti = 1] for the treatment group and w0

i = (1 − ti)/P[ti = 0] for the

control group, and are denote by f̂1(x) and f̂0(x), respectively. For example, in the context of

randomized controlled trials, these density estimators can be useful to depict the distribution of

the outcome variables for control and treatment units.

A more challenging question is: what would the outcome distribution have been, had the treated

units had the same covariates distribution as the control units? The resulting density is called the

counterfactual density for the treated, which is denoted by f1�0(x). Knowledge about this distribu-

tion is important for understanding differences between f1(x) and f0(x), as the outcome distribution

is affected by both group status and covariates distribution. Furthermore, the counterfactual distri-

bution has another useful interpretation: Assume the outcome variable is generated from potential

outcomes, xi = tixi(1) + (1 − ti)xi(0), then under unconfoundedness, that is, assuming ti is inde-

pendent of (xi(0), xi(1))′ conditional on the covariates zi, f1�0(x) is the counterfactual distribution

for the control group: it is the density function associated with the distribution of xi(1) conditional

on ti = 0.

Regardless of the interpretation taken, f1�0(x) is of interest and can be estimated using our

generic density estimator f̂(x) with the following weights:

w1�0
i = ti ·

P[ti = 0|zi]
P[ti = 1|zi]

P[ti = 1]

P[ti = 0]
.

22



In practice, this choice of weighting scheme is unknown because the conditional probability P[ti =

1|zi], a.k.a. the propensity score, is not observed. Thus, researchers estimate this quantity using a

flexible parametric model, such as Probit or Logit. Our technical results allow for these estimated

weights to form counterfactual density estimators after replacing the theoretical weights by their

estimated counterparts.

6.1.1 Empirical Illustration

We demonstrate empirically how marginal, conditional, and counterfactual densities can be esti-

mated with our proposed method. We consider the effect of education on earnings using a subsample

of the data in Abadie, Angrist and Imbens (2002). The data consists of individuals who did not

enroll in the Job Training Partnership Act (JTPA). The main outcome variable is the sum of earn-

ings in a 30-month period, and individuals are split into two groups according to their education

attainment: ti = 1 for those with high school degree or GED, and ti = 0 otherwise. Also available

are demographic characteristics, including gender, ethnicity, age, marital status, AFDC receipt

(for women), and a dummy indicating whether the individual worked at least 12 weeks during a

one-year period. The sample size is 5, 447, with 3, 927 being either high school graduates or GED.

Summary statistics are available as the fourth column in Table 1. We leave further details on the

JTPA program to Section 6.2, where we utilize a larger sample and conduct distribution estimation

in a randomized controlled (intention-to-treat) and instrumental variables (imperfect compliance)

setting.

It is well-known that education has significant impact on labor income, and we first plot earning

distributions separately for subsamples with and without high school degree or GED. The two

estimates, f̂1(x) and f̂0(x), are plotted in panel (a) of Figure 2. There, it is apparent that the

earning distribution for high school graduates is very different compared to those without high

school degree. More specifically, both the mean and median of f̂1(x) are higher than f̂0(x), and

f̂1(x) seems to have much thinner left tail and thicker right tail.

As mentioned earlier, direct comparison between f̂1(x) and f̂0(x) does not reveal the impact of

having high school degree on earning, since the difference is confounded by the fact that individuals

with high school degree can have very different characteristics (measured by covariates) compared

to those without. We employ covariates adjustments, and ask the following question: what would
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the earning distribution have been for high school graduates, had they had the same characteristics

as those without such degree?

We estimate the counterfactual distribution f1�0(x) by our proposed method, and is shown in

panel (b) of Figure 2. The difference between f̂1�0(x) and f̂1(x) is not very profound, although

it seems f̂1�0(x) has smaller mean and median. On the other hand, difference between f̂0(x) and

f̂1�0(x) remains highly nontrivial. Our empirical finding is compatible with existing literature on

return to education: it is generally believed that education leads to significant accumulation of

human capital, hence increase in labor income. As a result, educational attainment is usually one

of the most important “explanatory variables” for differences in income.

6.2 IV Specification and Heterogeneity

Self-selection and treatment effect heterogeneity are important concerns in causal inference and

studies of socioeconomic programs. It is now well understood that classical treatment parameters,

such as the average treatment effect or the treatment effect on the treated, are not identifiable even

when treatment assignment is fully randomized due to imperfect compliance. Indeed, what can

be recovered is either an intention-to-treat parameter or, using the instrumental variables method,

some other more local treatment effect, specific to a subpopulation: the “compliers.” See Imbens

and Rubin (2015) and references therein for further discussion. Practically, this poses two issues

for empirical work employing instrumental variables methods focusing on local average treatment

effects. First, since compliers are usually not identified, it is crucial to understand how different

their characteristics are compared to the population as a whole. Second, it is often desirable to

have a thorough estimate of the distribution of potential outcomes, which provides information not

only on the mean or median, but also its dispersion, overall shape, or local curvatures.

Motivated by these observations, and to illustrate the applicability of our density estimation

methods, we now consider two related problems. First, we investigate specification testing in the

context of Local Average Treatment Effects based on comparison of two densities as discussed by

Kitagawa (2015). This method requires estimating two densities non-parametrically. Second, we

consider estimating the density of potential outcomes for compliers in the IV setting of Abadie

(2003), which allows for conditioning on covariates. The resulting density plots not only provide

visual guides on treatment effects, but also can be used for further analysis to construct a rich set
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of summary statistics or as inputs for semi-parametric procedures. Both methods require estimated

weights.

We first introduce the notation and the potential outcomes framework. For each individual there

is a binary indicator of treatment assignment (a.k.a. the instrument), denoted by di. The actual

treatment (takeup), however, can be different, due to imperfect compliance. More specifically, let

ti(0) and ti(1) be the two potential treatments, corresponding to di = 0 and 1, then the observed

binary treatment indicator is ti = diti(1) + (1−di)ti(0). We also have a pair of potential outcomes,

xi(0) and xi(1), associated with ti = 0 and 1, and what is observed is xi = tixi(1) + (1− ti)xi(0).

Finally, also available are some covariates, collected in zi. We assume that the observed data is a

random sample {(xi, ti, di, z′i)′ : 1 ≤ i ≤ n}.

There are three important assumptions for identification. First, the instrument has to be

exogenous, meaning that conditional on covariates, it is independent of the potential treatments

and outcomes. Second, the instrument has to be relevant, meaning that conditional on covariates,

the instrument should be able to induce changes in treatment takeups. Third, there are no defiers

(a.k.a. the monotonicity assumption). We do not reproduce the exact details of those assumptions

and other technical requirements for identification; see the references given for more details.

Building on Imbens and Rubin (1997), Kitagawa (2015) discusses interesting testable implica-

tions in this IV setting, which can be easily adapted to test instrument validity using our density

estimator. In the current context, the testable implications take the following form: for any (mea-

surable) set I ⊂ R,

P[xi ∈ I, ti = 1|di = 1] ≥ P[xi ∈ B, ti = 1|di = 0],

and P[xi ∈ I, ti = 0|di = 0] ≥ P[xi ∈ B, ti = 0|di = 1].

The first requirement holds trivially in the JTPA context, since the program does not allow enroll-

ment without being offered (that is, P[ti = 1|di = 0] = 0). Therefore we demonstrate the second

with our density estimator. Let fd=0,t=0(x) be the earning density for the subsample di = 0 and

ti = 0, that is, for individuals without JTPA offer and not enrolled. Similarly let fd=1,t=0(x) be

the earning density for individuals offered JTPA but not enrolled. Then the second inequality in
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the above display is equivalent to

P[ti = 0|di = 0] · fd=0,t=0(x) ≥ P[ti = 0|di = 1] · fd=1,t=0(x), for all x ∈ I.

Thus, our density estimator can be used directly, where fd=0,t=0(x) is consistently estimated with

weights wd=0,t=0
i = (1− di)(1− ti)/P[di = 0, ti = 0], and fd=1,t=0(x) is consistently estimated with

wd=1,t=0
i = di(1− ti)/P[di = 1, ti = 0].

Abadie (2003) showed that the distributional characteristics of compliers are identified, and can

be expressed as re-weighted marginal quantities. We focus on three distributional parameters here.

The first one is the distribution of the observed outcome variable, xi, for compliers, which is denoted

by fc. This parameter is important for understanding the overall characteristics of compliers, and

how different it is from the populations. The other two parameters are distributions of the potential

outcomes, xi(0) and xi(1), for compliers, since the difference thereof reveals the effect of treatment

for this subsample. They are denoted by fc,0 and fc,1, respectively. The three density functions can

also be estimated using our proposed local polynomial density estimator f̂(x) using, respectively,

the following weights:

wci =
1

P[ti(1) > ti(0)]
·
(

1− ti(1− di)
P[di = 0|zi]

− (1− ti)di
P[di = 1|zi]

)
,

wc,0i =
1

P[ti(1) > ti(0)]
· (1− ti) ·

1− di − P[di = 0|zi]
P[di = 0|zi]P[di = 1|zi]

,

wc,1i =
1

P[ti(1) > ti(0)]
· ti ·

di − P[di = 1|zi]
P[di = 0|zi]P[di = 1|zi]

.

Here, the weights need to be estimated in practice, unless precise knowledge about the treatment

assignment mechanism is available. Our results again allow for
√
n-consistent estimated weights

such as those obtained by fitting a flexible Logit or Probit model to approximate the propensity

score P[di = 1|zi].

6.2.1 Empirical Illustration

The JTPA is a large publicly funded job training program targeting at individuals who are econom-

ically disadvantaged and/or facing significant barriers to employment. Individuals were randomly

offered JTPA training, the treatment take-up, however, was only about 67% among those who were

26



offered. Therefore the JTPA offer provides valid instrument to study the impact of the job training

program. We continue to use the same data as Abadie, Angrist and Imbens (2002), who analyzed

quantile treatment effects on earning distributions.

Besides the main outcome variable and covariates already introduced in Section 6.1, also avail-

able are the treatment take-up (JTPA enrollment) and the instrument (JTPA Offer). See Table

1 for summary statistics for the full sample and separately for subgroups. As the JTPA offers

were randomly assigned, it is possible to estimate the intent-to-treat effect by mean comparison.

Indeed, individuals who are offered JTPA services earned, on average, $1, 130 more than those not

offered. On the other hand, due to imperfect compliance, it is in general not possible to estimate

the effect of job training (i.e. the effect of JTPA enrollment), unless one is willing to impose strong

assumptions such as constant treatment effect.

We first implement the IV specification test, which is straightforward using our density estimator

f̂(x): one first constructs two density estimates using the weights given earlier, wd=0,t=0
i and

wd=1,t=0
i . We plot the two estimated (scaled) densities in Figure 3. A simple eyeball test suggests

no evidence against instrumental variable validity. A formal hypothesis test, justified using our

theoretical results, confirms this finding.

Second, we estimate the density of the potential outcomes for compliers. In panel (a) of Figure

4, we plot earning distributions for the full sample and that for the compliers, where the second

is estimated using the weights wci , introduced earlier. The two distributions seem quite similar,

while compliers tend to have higher mean and thinner left tail in the earning distribution. Next we

consider the intent-to-treat effect, as the difference in earning distributions for subgroups with and

without JTPA offer (a.k.a. the reduced form estimate in the 2SLS context). This is given in panel

(b) of Figure 4. The effect is significant, albeit not very large. We also plot earning distributions for

individuals enrolled (and not) in JTPA in panel (c). Not surprisingly, the different is much larger.

Simple mean comparison implies that enrolling in JTPA is associated with $2, 083 more income.

Unfortunately, neither panel (b) nor (c) reveals information on distribution of potential out-

comes. To see the reason, note that in panel (b) earning distributions are estimated according

to treatment assignment, but potential outcomes are defined according to treatment takeup. And

panel (c) does not give potential outcome distributions since treatment takeup is not randomly

assigned. In panel (d) of Figure 4, we use weighting schemes wc,0i and wc,1i to construct potential
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earning distributions for compliers, which estimates the identified distributional treatment effect in

this IV setting. Indeed, treatment effect on compliers is larger than the intent-to-treat effect, but

smaller than that in panel (c). The result is compatible with the fact that JTPA has positive and

nontrivial effect on earning. Moreover, it demonstrates the presence of self-selection: those who

participated in JTPA on average would benefit the most, followed by compliers who are regarded

as “on the margin of indifference.”

7 Conclusion

We introduced a new class of local regression distribution estimator, which can be used to con-

struct distribution, density, and higher-order derivatives estimators. We established valid large

sample distributional approximations, both pointwise and uniform over their support. Pointwise

on the evaluation point, we characterized a minimum distance implementation based on redun-

dant regressors leading to asymptotic efficiency improvements, and gave precise results in terms of

(tight) lower bounds for interior points. Uniformly over the evaluation points, we obtained valid

linearizations and strong approximations, and constructed confidence bands. Finally, we discussed

two extensions of our work: re-weighted local regression estimators, and local L2 least squares

projection estimators.

Although beyond the scope of this paper, it would be useful to generalized our results to the case

of multivariate regressors xi ∈ Rd. Boundary adaptation is substantially more difficult in multiple

dimensions, and hence our proposed methods are potentially very useful in such setting. In addition,

multidimensional density estimation can be used to construct new conditional distribution, density

and higher derivative estimators in a straightforward way. These new estimators would be useful in

several areas of economics and econometrics, including for instance estimation of auction models.
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Table 1: Summary Statistics for the JTPA data.

Full JTPA Offer JTPA Enrollment

N Y N Y

Income 17949.20 17191.13 18321.59 17015.58 19098.44

HS or GED 0.72 0.71 0.72 0.70 0.74

Male 0.46 0.47 0.46 0.48 0.45

Nonwhite 0.36 0.36 0.36 0.36 0.37

Married 0.28 0.27 0.29 0.27 0.29

Work ≤ 12 0.44 0.43 0.44 0.44 0.44

AFDC 0.17 0.17 0.17 0.16 0.19

Age

22-25 0.24 0.25 0.24 0.24 0.25

26-29 0.21 0.20 0.21 0.21 0.21

30-35 0.24 0.25 0.24 0.24 0.25

36-44 0.19 0.19 0.19 0.20 0.19

45-54 0.08 0.08 0.08 0.08 0.07

Sample Size 9872 3252 6620 5447 4425

Columns: (i) Full: full sample; (ii) JTPA Offer: whether offered JTPA services; (iii) JTPA Enrollment: whether
enrolled in JTPA. Rows: (i) Income: cumulative income over 30-month period post random selection; (ii) HS or
GED: whether has high school degree or GED; (iii) Male: gender being male; (iv) Nonwhite: black or Hispanic;
(v) Married: whether married; (vi) Work ≤ 12: worked less than 12 weeks during one year period prior to random
assignment; (vii) Age: age groups.
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Figure 1: Equivalent Kernels of the Minimum Distance Estimators.
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Notes. We set P (u) = u or P (u) = (u, u2/2)′, and K uniform. The redundant regressor is Q(u) = u2j+1 for
j = 1, 2, · · · , 30. The initial equivalent kernel is quadratic (black solid line), and the minimum variance kernel is
uniform (red solid line).
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Figure 2: Earning Distributions by Education, JTPA.

(a) Marginal Distributions
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(b) Counterfactual Distribution
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Notes: (i) Full: earning distribution for the full sample (n = 5, 447); (ii) HS or GED (N/Y): earning distributions
for subgroups without and with high school degree or GED (n = 1, 520 and 3, 927, respectively); (iii) HS or GED
(Y, counterfactual): counterfactual earning distribution. Point estimates are obtained by using local polynomial
regression with order 2, and robust confidence intervals are obtained with local polynomial of order 3. Bandwidths
are chosen by minimizing integrated mean squared errors. All estimates are obtained using companion R (and Stata)
package described in Cattaneo, Jansson and Ma (2019d).
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Figure 3: Testing Validity of Instruments, JTPA.
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f̂d=0,t=0(x); (ii) JTPA:

Offered & Not Enrolled: the scaled density estimate
∑

i 1(ti=0,di=1)∑
i 1(di=1)

f̂d=1,t=0(x). Point estimates are obtained by using

local polynomial regression with order 2, and robust confidence intervals are obtained with local polynomial of order
3. Bandwidths are chosen by minimizing integrated mean squared errors. All estimates are obtained using companion
R (and Stata) package described in Cattaneo, Jansson and Ma (2019d).

35



Figure 4: Earning Distributions, JTPA.

(a) Marginal Distributions
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(d) Potential Outcome Distributions
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Notes: panel (a) earning distributions in the full sample and for compliers; panel (b) earning distributions by JTPA
offer; panel (c) earning distributions by JTPA enrollment; panel (d) distributions of potential outcomes for compliers.
Point estimates are obtained by using local polynomial regression with order 2, and robust confidence intervals are
obtained with local polynomial of order 3. Bandwidths are chosen by minimizing integrated mean squared errors.
All estimates are obtained using companion R (and Stata) package described in Cattaneo, Jansson and Ma (2019d).
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