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Abstract

We analyze whether learning is simply difficult or impossible when first hand in-

formation is relayed to agents through long chains of noisy person-to-person com-

munication. Suppose noise only takes the form of random mutations and message

dependent transmission failures. Agents can still learn but at the cost of accessing

many more chains of communication. They learn fully when they have more than a

certain threshold number of chains and learn nothing with fewer. On a positive note,

this threshold remains unchanged when agents adopt a simpler, naive learning rule.

In particular, both the frequency and content of their communications are informa-

tive about the state, but agents can safely restrict attention to the more important of

these dimensions. Results change dramatically when there are biased agents who relay

their preferred message despite what they hear. Learning is typically impossible in the

presence of even an arbitrarily small fraction of biased agents. This can explain why

people become stuck at potentially different priors, despite a significant body of pri-

mary evidence pointing to one answer (e.g., disagreement on the effects of vaccination

or the reality of global warming). We show that a planner can recover partial learning

by limiting the number of contacts to whom agents can pass along a given message, a

policy some messaging platforms are starting to use.
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1 Introduction

People rely on word-of-mouth learning when deciding whether to vaccinate their children,

adopt a new diet, participate in a government program, adopt a new technology, support

a challenger over an incumbent politician, etc. When does such word-of-mouth learning—

interpreted as any form of relayed information—lead to efficient aggregation of information

and informed decisions?

Francis Galton’s famous article “Vox Populi” (1907) showed that the information pos-

sessed by a group of people, when centrally aggregated, can be remarkably accurate. Galton

examined 787 entries in a contest at the “West of England Fat Stock and Poultry Fair,” in

which people guessed the dressed weight of an ox. Even though more than half of the guesses

were off by more than 3 percent, the mean and median guesses were each within 0.1 percent

of the ox’s true weight.

This sort of dispersed information can also be successfully aggregated in a decentralized

manner through repeated communication in a social network, as people learn indirectly from

neighbors of neighbors through the updated beliefs of their neighbors, and so on.1

Under this view of the world, once sufficiently strong evidence is gathered in favor of a

certain position, repeated communication should ensure that everyone’s beliefs converge to

the truth. However, people remain strongly divided even on objective issues for which there

is scientific consensus. For example, Largent (2012) estimates that 40 percent of American

parents have delayed or denied recommended vaccinations for their children. Meanwhile,

around twenty-seven percent of Americans do not accept that climate change is happening,

and even more do not believe in human-caused climate change.2 One explanation for this

phenomenon is that primary evidence diffuses through the relevant population by means

of noisy and potentially biased communication. This would dampen the informativeness

of socially acquired information—people who start with different beliefs but do not consult

primary sources of information may get stuck there.

Consider the children’s game of Telephone, in which a starting message is whispered from

one player to the next. The final message typically bears little resemblance to the original

message because of “mutations” that occur along the transmission chain.

Such mutations are not unique to a child’s game. Simmons, Adamic and Adar (2011)

discuss a revealing example of message mutation. An initial tweet, “Street style shooting

in Oxford Circus for ASOS and Diet Coke. Let me know if you’re around!”, was an in-

vitation for people to join the crowd for a commercial being filmed in London. This was

1Golub and Jackson (2010a) show that individuals can converge to accurate beliefs by repeatedly (weight-

edly) averaging their beliefs with those of their neighbors, as long as the social network is balanced in a sense

that no individual is unduly influential. Mueller-Frank (2014) shows that, if some individuals are more

sophisticated, then learning can occur in a broader set of networks. For a review of the large literature on

social learning that we do not survey here; see e.g., Golub and Sadler (2016).
2This figure is from the December 2018 “Climate Change in the American Mind” poll conducted jointly by

the Yale Program on Climate Change Communication and the George Mason University Center for Climate

Change Communication.
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misunderstood and within minutes had mutated to “Shooting in progress in Oxford Circus?

What?” and then retweeted as “Shooting in progress in Oxford Circus, stay safe people.”

The informational content of the message completely changed.

Mutations can occur frequently. In Adamic, Lento, Adar and Ng (2016)’s study of online

viral memes, one meme was reposted more than 470,000 times, with a mutation rate of

around 11 percent and more than 100,000 variants. This was not an outlier in their analysis:

121 of the 123 most viral memes each had more than 100,000 variants. Other examples of

mutating messages include mythology and the morphing of religious texts. Gurry (2016)

estimates that there are around 500,000 textual variants of the Greek New Testament, not

including spelling errors.

The information that reaches the receiver at the end of a transmission chain also depends

on the likelihood that messages get transmitted, which itself may depend on message content.

For instance, a person may be more likely to pass along information that they find surprising,

or that is in line with their prior beliefs. Even in the publication of scientific articles,

reviewers may be more likely to agree to publish (pass along) significant or surprising results

than insignificant or expected ones.

In addition, some people may be ideologues, relaying messages that they prefer telling

rather than what they heard (e.g., “fake news”).3 To give an example, Largent (2012) finds

that parents who are skeptical of vaccinations have “tremendously high trust in medical

communities.” But he writes ”[who] don’t they trust? The feds, and pharma.”4 These are

agents who participate in the process of diffusing scientific research and whom some parents

worry may be ideologically motivated to misreport scientific research.

All three types of distortions—mutation, content-dependent transmission, and deliberate

ideological bias—build up as relaying chains grow. Moreover, the paths that word-of-mouth

communication follow can be quite long. Liben-Nowell and Kleinberg (2008) found instances

of Internet chain letters that travelled median distances of over one hundred links.5 Adamic

et al. (2016) examined hundreds of millions of instances of thousands of memes and found

chains with lengths in the hundreds and typical distances well into the dozens.

Here, we investigate the consequences for learning when information reaches a learner over

lengthy chains. In our model, information is relayed from its original source via a sequence

of individuals to the eventual learner, who wishes to learn the state of the world. We code

the state of the world and messages as either being in favor of an action (“1”, e.g., it is best

to vaccinate a child) or against it (“0”, it is best not to vaccinate). With noiseless word-of-

mouth communication and sufficiently many starting sources of conditionally independent

information, the learner learns the true state. However, along each chain, the message may

mutate, be dropped, or be deliberately biased—reducing the information content of the

3For other perspectives on the role of biased agents in the spread of false information, see Acemoglu,

Ozdaglar and ParandehGheibi (2010) and Bloch, Demange and Kranton (2018).
4This was quoted from Mark Largent’s book, Vaccine: The Debate in Modern America, in The Atlantic

article “Anti-Vaxers Aren’t Stupid” by Emma Green.
5 Golub and Jackson (2010b) explain why the resulting trees can be much longer than they are wide.
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signals that reach the learner.

We characterize the (sharp) threshold number of independent chains that the learner

needs in order to learn the true state, as chains grow long. We also contrast the implications

of different sorts of transmission distortion on the difficulty in learning. And finally, we

discuss a form of communication platform design that can partly overcome the difficulties

presented by these distortions.

First, in a baseline model in which mutation and message dropping are the only sources

of noise, we show that the number of independent original sources of information that a

learner needs grows exponentially in the mutation rate, the dropping rate, and the length of

chains over which messages travel. Thus, given the nontrivial empirically-observed mutation

rates and chain lengths mentioned earlier, accurate learning may require observing many

chains.

Second, when transmission/dropping likelihood depends on message content,6 we show

that the learner can draw meaningful inferences from the number of messages received. To

gain intuition, suppose that “surprising” messages are more likely to be shared. If the state

is surprising, people will be more likely to share a message that matches the state, until

a mutation occurs that changes the message’s surprisingness. This relative advantage from

early stages is never erased: the relative likelihood a chain delivers a message to the learner is

higher by a non-vanishing amount when the true state is surprising. This allows the learner

to make inferences about the state from the number of messages received—even if she is

unable to view or trust message content (which is likely to have mutated along the way).

We also bound how much more likely a Bayesian agent—who updates based on both

message survival and content—is to guess the state compared to someone who looks only at

message content or only at message survival. The Bayesian’s advantage vanishes as chain

length increases; so, full Bayesian learning can be well-approximated by simple rules of

thumb conditioned on just message survival or just message content. Thus, learning in the

presence of mutations and transmission failures is not only possible, but may be easy as

well—provided sufficiently many initial sources of information.

Third, we uncover a crucial difference between mutation and ideological bias. Mutations

noise up a message sequence but even when chains are long enough that mutations are

very likely to occur at some point, one can make probabilistic inferences about a sequence’s

starting state and learn well from large numbers of sequences. In contrast, the information in

a sequence that contains an ideologue is lost and cannot be recovered, even probabilistically.

Learning from information passed along long chains is therefore only possible if ideologues

can be identified and/or if their exact frequency is known. With even a small amount of

uncertainty about ideologues’ location and relative bias for/against each state, learning is

precluded. Indeed, uncertainty about the other parameters of the model, such as mutation

6In Banerjee (1993), a rumor’s survival rate increases with the number of people who have made an

investment. Hearing a rumor therefore conveys information about how many people invested. The survival

bias here comes from a different source, but there is still an inference to be made purely from information

survival regardless of content.
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rate or number of starting sources, would not produce the same effect. In the absence of

biased agents, there would still be some partial learning in these cases.

Finally, we examine policies that offset the impact of ideologues on learning and reduce

the frequency with which false messages are sent. When firsthand information can originate

from anywhere in a network, one such policy is to limit the number of steps that a message

can travel, which limits the chances it is distorted and allows partial learning for those near

the original information. People see fewer messages, but ones that are more likely to be

informative - and this increases the overall signal to noise ratio. If the distances that a

message travels cannot be tracked, a cruder but still partially effective policy is to limit

the number of other people to whom any given agent can forward a message. This also

limits the number of messages flooding a network, and increases the relative frequency of

messages that traveled short distances to longer distances. Thus received messages are less

distorted. Interestingly, such policies have been adopted by online messaging platforms, like

WhatsApp, for the express purpose of curbing the spread of false information.

2 The Base Model of Noisy Information Transmission

Information passes by “word-of-mouth” (oral or written) from an original source to “the

learner”.

There are two possible states of the world, ω ∈ {0, 1} and the prior probability that the

state is 1 is θ ∈ (0, 1).

A sequence of agents {1, 2, . . . , t}, referred to as a “chain,” successively relays a signal of

the state via word of mouth, terminating with the learner at t ≥ 1.

We do not model what the learner does with this information, but one can think of the

learner preferring to match her action with the state. For instance, the learner may hear

from friends about whether there is a link between vaccines and autism and then decide

whether to vaccinate her child.

A first agent in a chain, interpreted as “an original source,” observes a noisy signal of

the state, s1 ∈ {0, 1, ∅}.7 That signal is transmitted with noise becoming s2 ∈ {0, 1, ∅}, and

so on until signal st reaches the learner.

The “null signal,” sτ = ∅, indicates that no signal was received, in which case no signal is

transmitted. In particular, if agent τ ≥ 1 receives the null signal sτ = ∅, then all subsequent

agents (including the learner) also receive the null signal.

If instead agent τ ≥ 1 receives a signal sτ ∈ {0, 1}, then that agent passes a signal along

(sτ+1 6= ∅) with probability p if sτ = 1, and with probability q if sτ = 0. Thus, when p > q,

agents are more likely to transmit a signal if they heard a 1, and vice versa if p < q. With the

remaining probabilities of 1− p and 1− q, respectively, the signal is dropped and sτ+1 = ∅.
7We focus on a binary world to crystallize the main ideas. Extensions to richer state spaces and signal

structures are left for future research.
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Each time a non-null signal is transmitted, a mutation occurs with probability µ ∈
[0, 1/2], changing a non-empty signal from 0 to 1 or from 1 to 0. Bearing in mind that

imperfections in “telling and listening” apply equally to any message, we assume that the

likelihood of mutation µ ∈ [0, 1/2] does not depend on signal content (and defer bias in

transmission to Section 5). Thus, conditional upon sτ+1 6= ∅, the probability that sτ = sτ+1

is 1− µ and the chance that sτ 6= sτ+1 is µ.

To keep equations as simple as possible, we focus on a stationary setting in which the

initial signal s1 is derived from the state in the same way, as if nature were “agent 0” in the

chain with signal s0 equal to the state.8

In summary, if st−1 = 1, the next agent (including t = 1) hears st = 1 with probability

p(1−µ), st = 0 with probability pµ, and st = ∅ with probability 1−p. Similarly, conditional

on st−1 = 0, st = 1 with probability qµ, st = 0 with probability q(1 − µ), and st = ∅ with

probability 1 − q. If sτ = ∅ for some τ , then that is true for all subsequent signals. This

defines a 3× 3 Markov chain in which ∅ is an absorbing state.

Most of our analysis presumes that the learner has access to some number n ≥ 1 of

chains, each of length t and along each of which conditionally independent signals of the

state are independently relayed via the same noisy process to the same learner.

The base model described here allows for signal mutation and content-dependent signal

dropping. In Section 5, we extend the model to include biased agents who distort signals.

3 Learning from Chains of Noisy Transmission

In Sections 3.1-3.3 we consider the case in which signals mutate, but their content does not

affect the likelihood of further transmission (p = q). In Section 3.4 we allow for content-

dependent signal survival (p 6= q).

3.1 The Rate of Decay due to Mutation

Lemma 1 characterizes the rate of information decay as a signal is passed along a single

chain, which has a remarkably simple formula.

Lemma 1 Suppose that p = q > 0 and consider any mutation rate µ ∈ (0, 1/2). If agent

t ≥ 1 receives a non-null signal, it matches the true state with probability

X(t) =
1

2

(
1 + (1− 2µ)t

)
. (1)

Note that X(t) > 1/2 for all t, limt→∞X(t) = 1/2, and X(t)−1/2 decreases exponentially

at rate 1− 2µ. Intuitively, the rate of decay, 1− 2µ = (1− µ)− µ, is how much more likely

one is to get an unmutated signal than a mutated one from one period to the next.

8Our analysis is easily extended to settings in which first-signal accuracies and dropping rates differ from

subsequent ones.
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3.2 Learning (or Not) from Many Mutated Messages

We now characterize the threshold number of independent word-of-mouth chains that a

Bayesian learner needs to access in order to have an accurate view of the true state.

Suppose that the learner has access to n(t) independent chains, let In(t) be the vector of

(potentially null) random signals that the learner receives the chains, and let the random

variable b(t) = Pr(ω = 1|In(t)) be the posterior probability that the state equals 1 conditional

on the signals. We index n by t since we wish to characterize how many chains are needed

as a function of their length. Longer chains are more likely to be null or to have an incorrect

signal and so more are needed to deliver an equivalent amount of information.

Definition 1 (Threshold for learning) τ(t) is a threshold for learning if (i) Plim b(t) =

1 or 0 whenever n(t)/τ(t)→∞ and (ii) Plim b(t) = θ whenever n(t)/τ(t)→ 0.

Note that if Plim b(t) = 1 or 0, then Bayesian-updated beliefs are correct with a proba-

bility going to 1. Thus, a threshold for learning is sharp in that if the number of chains of

signals is of higher order, then the receiver learns the true state with a probability going to

one, while if it is of lower order, the receiver learns nothing.

Proposition 1 If p = q > 0 and µ ∈ [0, 1/2),9 then 1
pt(1−2µ)2t is a threshold for learning.

The proof of Proposition 1 is provided in the appendix but to build intuition we provide

an informal argument here.

Each chain delivers a non-null message to the learner with probability pt and, conditional

on a signal being received, it is a Bernoulli random variable that matches the true state – is

“true” – with probability X(t) = 1
2

(1 + (1− 2µ)t) by equation (1). If m(t) non-null signals

are received, the standard deviation of the fraction of true signals is(
X(t)(1−X(t))

m(t)

)1/2

.

The expected fraction of true signals is more than k standard deviations away from 1/2 if

X(t)− k
(
X(t)(1−X(t))

m(t)

)1/2

≥ 1/2. (2)

Inequality (2) – which roughly speaking ensures that the difference between the average

received message and 1/2 can be used to confidently infer the true state if k is large – is

equivalent to

(1− 2µ)2tm(t) ≥ 4k2X(t)(1−X(t)). (3)

9If µ = 1/2 then learning becomes impossible since all messages are independent of the starting state and

the threshold diverges.
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The right hand side in (3) converges to k2 since X(t) converges to 1/2; so, for large t, (2) is

approximately the same as

m(t) ≥ k2

(1− 2µ)2t
. (4)

Finally, since a message is received from each chain with probability pt,

n(t) ≥ k2

pt(1− 2µ)2t
(5)

chains are needed in order to generate, on average, enough messages to satisfy (4). This is

not a formal proof, but inequality (5) turns out to be a precise expression for the threshold

for learning, as shown in the Appendix.

When inequality (5) holds for arbitrarily large k, the information contained in the set

of received messages swamps the prior and allows the learner to perfectly discern the true

state. If (5) does not hold for any positive k, then nothing can be learned.

3.3 Trees

The threshold number of word-of-mouth chains needed for learning translates into an exact

degree cutoff when chains correspond to paths through a tree.

Suppose that the learner receives word-of-mouth signals through a random network; in

particular, a random tree generated by a Galton-Watson branching process in which the ‘off-

spring’ distribution has strictly positive support.10 Initial signals about the state are received

by leaf nodes, at distance t from the learner, and propagate toward the learner through the

tree as independent transmission chains, as modeled in Section 2. An intermediate node

hears multiple signals and transmits those as a vector to the next node, which each entry of

the vector independently being subjected to the noise process described above.

For instance, leaf nodes could be a sales force in a firm who relay reports to their man-

agers, who then collect the reports from their team and send them on to their managers. As

each report flows up the organizational ladder, it becomes more likely to have mutated at

least once along the way. The length of the chains over which word-of-mouth reports have

to pass depends on the “flatness” of the firm’s organizational structure. See Figure 1, in

which there are eight sources of information (and hence eight paths toward the learner) and

three levels to the tree. In this context, Proposition 1 implies that, in a large firm, the top

manager’s ability to learn from word-of-mouth messages depends on the expected degree of

the graph corresponding to the firm’s organizational structure.

Corollary 1 Suppose that word-of-mouth signals pass through a tree generated by a Galton-

Watson branching process having a degree distribution with mean d, finite variance11, and

10This condition ensures that the tree does not die out and so has at least some paths of depth t with

probability one. The analysis can be adapted to allow for extinction, but no new insight emerges.
11The assumption of finite variance can be relaxed. If X is the degree of the offspring distribution, the

finite variance assumption can be replaced with E[X log(X)] <∞.
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Figure 1: The root node (“learner”) receives messages passed through eight paths, each

starting from a different “information source” distance three from the learner. The absence

of an arrow from one node to the one below it indicates that no message was delivered, a

dashed arrow indicates the message was delivered but mutated, and a solid arrow indicates

that the message was delivered unmutated. In the instance illustrated here: The true state

is 1 and paths 1-3 and 6-8 begin with a correct initial signal, while path 4 begins with

an incorrect initial signal and path 5 begins with no signal received. Initial messages are

delivered on paths 1,2,4, and 6-8, mutating from 1 to 0 on path 1 and from 0 to 1 on path 4,

and undelivered on paths 3 and 5. Messages are then relayed on path 2,4, and 6-8, mutating

from 1 to 0 on path 6, but dropped on path 1. Finally, messages are re-relayed on paths 2

and 6-8, mutating from 0 to 1 on path 6, but dropped on path 4. Overall, the learner hears

four messages, of which two never mutated, one mutated once, and one mutated twice.
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strictly positive support. The root node learns perfectly (Plim b(t) = 1 or 0) if

d >
1

p(1− 2µ)2
; (6)

but the root node learns nothing (Plim b(t) = θ) if

d <
1

p(1− 2µ)2
.

To build intuition for this result, consider a (non-random) regular tree with degree d at

each step. Since the number n(t) of nodes distance t from the learner equals dt, n(t) exceeds

the threshold for learning from Proposition 1 if and only if d > 1
p(1−2µ)2 . The proof handles

the details associated with this being a random tree from a Galton-Watson process.

3.4 Learning from Message Survival

We now consider the case in which p 6= q, so that current signal content affects the likeli-

hood that the signal is dropped along a word-of-mouth transmission chain. Without loss of

generality, we focus on the case in which p > q, meaning that people are more likely to pass

along signal 1 than 0.

The fact that a message has survived to reach the learner carries information about

the original state. Moreover, unlike the content of a single message, which becomes nearly

meaningless as chains grow long (due to mutation), the information conveyed by a single

message’s survival does not vanish in the long-chain limit.12

Let

z ≡ p

q

(
1 + (1− 2µ)

(p− q)
q + µ(p− q)

)
.

When p > q and 0 < µ < 1/2, this is strictly greater than 1/2.

Proposition 2 Suppose that 1 ≥ p > q > 0 and µ ∈ (0, 1/2].13

1. The relative probability of message survival over a chain of length t conditional on state

1 versus state 0 is uniformly bounded away from p
q
:

Pr(st 6= ∅|ω = 1)

Pr(st 6= ∅|ω = 0)
≥ z ≥ p

q
for all t ≥ 1, (7)

with strict inequalities when µ < 1/2.

12The amount of belief updating due to a single message’s non-survival vanishes in the long-chain limit,

but the amount due to message survival does not. What holds this together, of course, is the fact that the

probability of survival itself vanishes in the long-chain limit.
13If µ = 0 then Pr(st 6=∅|ω=1)

Pr(st 6=∅|ω=0) = (p/q)t, which diverges, and the problem becomes trivial. Similarly, if q = 0

then Pr(st 6= ∅|ω = 0) = 0 and the problem becomes trivial. Note that here we do not require that µ < 1/2

since survival at the first step contains information, even if subsequent steps are completely random. This

contrasts with the case in which p = q, in which learning is precluded when µ = 1/2.
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2. The ratio in (7) converges as chain-length grows: y ≡ limt→∞
Pr(st 6=∅|ω=1)
Pr(st 6=∅|ω=0)

exists.

3. Upon seeing a surviving message, the learner’s updated belief Pr(ω = 1|st 6= ∅) is

uniformly bounded below by θ
θ+(1−θ)/z > θ and bounded above in the limit by θ

θ+(1−θ)/y <

1.

4. In the limit, updating is entirely due to signal survival and not content: limt→∞ Pr(ω =

1|st = 1) = limt→∞ Pr(ω = 1|st = 0) = limt→∞ Pr(ω = 1|st 6= ∅).

The reason that signal survival is informative is that early survival affects the relative

survival of a whole chain. To gain intuition, suppose for a moment that only the first agent in

each chain was biased in favor of message 1, with other agents transmitting with probability

p̂ regardless of signal content. The likelihood of survival to t is p (p̂)t−1 if the first agent saw

signal 1 or q (p̂)t−1 if the first agent saw signal 0. Thus, the relative likelihood of survival

equals p/q > 1 (favoring signal 1) no matter how long the chain. Moreover, biasing all agents

in favor of transmitting message 1 further increases the relative likelihood of survival from

state 1 since, by an extension of the reasoning in Lemma 1, signal 1 is more likely to be

received at each step along the chain when the true state is 1 rather than 0.

As with learning from signal content only, the learner can discern the state from signal

survival only, as long as transmission is more likely after one signal than the other (p 6= q)

and there are sufficiently many starting sources of information.

Proposition 3 Suppose that the learner receives n(t) signals along independent chains of

length t, and that µ ∈ (0, 1/2] and 1 > p > q > 0.14 There exists λ(t) = c + o(1) for some

c ∈ (0, 1), such that a threshold for learning when conditioning only upon signal survival is

1

(pλ(t) + (1− λ(t))q)t
.

Given that messages mutate, the probability that any agent transmits a message lies

somewhere between p and q. Conditional on the initial message being 1, the overall proba-

bility that a message is transmitted all the way to the end of a length-t chain must therefore

take the form (pλ(t) + (1− λ(t))q)t for some λ(t) ∈ (0, 1). If the number of sequences n(t)

grows faster than this conditional survival likelihood decreases, then a growing number of

signals survive conditional upon starting out as a 1. The learner can then discern the state

(perfectly in the limit) based on the actual number of signals that survive. On the other

hand, if the number of chains grows more slowly than (pλ(t) + (1− λ(t))q)t decreases, then

approximately zero messages are expected to survive in either state over long chains and

approximately nothing is learned with probability going to one.

14If µ = 0, then it is easy to check that the threshold is 1/pt, which is then the threshold for messages to

survive conditional upon state ω = 1, which are the more likely to survive.
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4 Full Bayesian Learning vs Learning Only from Sur-

vival or Only from Content

In this section we provide a bound on how much more likely a Bayesian agent using both

signal survival and message content is to guess the true state compared to someone who pays

attention only to signal survival or only to signal content.

Without loss of generality, we focus on the case in which p ≥ q.

Suppose for a moment that the learner has access to a single chain and needs to guess

the state based on the signal st ∈ {0, 1, ∅}. We consider four different ways in which the

learner might guess.

• A “Bayesian agent,” B, guesses the most likely state conditional on both signal survival

and signal content.

• A “survival rule-of-thumb agent,” S, guesses 1 if a signal is received and guesses 0 if

no signal is received.

• A “content rule-of-thumb agent,” C, guesses 1 if signal 1 is received, 0 if signal 0 is

received, and guesses in favor of the prior if no message is received (flipping a coin if

θ = 1/2).

• A “naive agent,” N , always guesses in favor of the prior.

S,C,N are collectively referred to as “limited learners” since they make their guess based

on less information than is available.

Proposition 4 Suppose that 1 ≥ p ≥ q ≥ 0 and µ ∈ [0, 1/2]. The probability that a

Bayesian agent is correct in guessing the state is at most 4
3

higher than the best limited

learner when t = 1, and at most 3
2

higher than the best limited learner for all t > 1.15

Moreover, as t grows, this upper bound converges to 1.

Proposition 4 implies that, when word-of-mouth chains are long, a belief-updating strat-

egy that uses only message survival or only message content is approximately equivalent to

one that uses all available information, no matter what the parameters and no matter what

the realized state.16

Suppose now that the learner observes multiple chains. In this context, define “C” to

be an agent who guesses 1 whenever the fraction of 1 messages compared to 0 messages is

above a threshold, and define “S” to be the an agent who guesses 1 whenever the number

of messages that survive is above or below a threshold. These thresholds are the conditional

Bayesian ones, but these agents only consider one aspect of the information available.

15We conjecture that the bound is 4
3 for any t > 1.

16This is obvious when µ = 1/2, in which case message content contains no information, or when p = q,

in which case message survival contains no information.
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It is difficult to give tight bounds on the relative performance of the Bayesian agent

and the best of the limited learners when there are many sequences. However, we establish

limiting results. In particular, everywhere in the parameter space, the threshold for learning

for agent B is the same as for one of the limited learners. Thus, there is no number of starting

messages for which a Bayesian agent can learn but none of the naive agents can. Indeed,

for large t full learning can be obtained from just one dimension, and we get the following

result.

Proposition 5 For any θ, p, q ∈ [0, 1] and µ ∈ [0, 1
2
], the threshold for learning is the same

for B as it is for the better of C or S.

5 The Impossibility of Learning with Mutation and

Deliberately Biased Agents

Finally, we consider the impact of ideologically-biased (“extremist”) agents on learning,

starting, for simplicity, with the case in which p = q.

We consider situations in which each agent in the population is a “1-ideologue” (only

sending message 1, no matter what message they received) with probability πf and a “0-

ideologue” with probability (1− π)f . f < 1 is each agent’s likelihood of being an ideologue

and π ∈ [0, 1] is the expected fraction of ideologues biased in favor of message 1.

Note that the presence of an idealogue kills the information content of a chain, as the

same signal is forwarded regardless of the incoming signal.

If the learner knows ideologues’ identities, chains containing an ideologue can be ignored—

resulting in the same amount of learning as if ideologues always drop their messages, i.e., as

if each message is passed along with probability p̂ = p(1 − f) rather than p. Alternatively,

if messages are passed along a tree, one can think of removing ideologues entirely, reducing

the expected degree of the tree from d to d̂ = d(1− f) and thereby eliminating all chains to

which any ideologue belongs. The new threshold for learning is that a tree have expected

degree of more than
1

p(1− f)(1− 2µ)2
.

If the learner knows f and π exactly, but not the particular identities, the true state can

still be learned in the limit when the learner has access to sufficiently many chains, with the

above threshold being a necessary condition.

A much more challenging case is one in which there is some uncertainty about the relative

frequency of the different types of ideologues. Even with arbitrarily small, but nonzero,

uncertainty about π, all learning is precluded in the limit regardless of the number of chains.

12



Proposition 6 Consider a learner getting signals from n(t) independent chains17 of length

t, with dropping rates p = q, mutation rate µ ∈ [0, 1/2), and a faction of ideologues f , with

proportion π biased to 1 and 1− π biased to 0. If the learner does not know anything about

the location of ideologues18 but knows f exactly19 and has a prior on π that has an atomless

continuous distribution with convex support (however concentrated), then for any n(t) the

receiver learns nothing in the limit; i.e., the learner’s posterior converges in probability to θ

as t grows large.

To gain intuition for Proposition 6, consider the special case with no mutation, µ = 0,

and no message dropping, p = q = 1. The final signal in a chain will match the state with

probability (1 − f)t, which tends to 0. Each contaminated signal is determined by the last

ideologue in the chain, and hence equals 1 with probability π and 0 with probability 1− π.

When the state is 1, a fraction (1−f)t+π(1−(1−f)t) of all signals equal 1, while if the true

state is 0, a fraction π(1 − (1 − f)t) of signals equals 1. When π and f are exactly known,

the vanishing difference (1−f)t in expected signal content depending on the state allows the

learner to discern the true state given enough signals. However, with any uncertainty about

π, the vanishing difference of (1 − f)t is completely obscured by the non-vanishing overall

base level of π(1− (1− f)t), which varies nontrivially. This logic holds no matter how many

signals are received.

Proposition 6 can be viewed as an impossibility result, since it shows how learning may be

impossible even when there is no signal mutation and the learner has good (but imperfect)

knowledge of f and π. Even an arbitrarily small amount of uncertainty about how the

relative frequency of different types of ideologues drowns the information in the noise.

Returning to the example of anti-vaxers given in the introduction, their concern about

messages being deliberately distorted by biased parties like the feds or pharma reduces

what they infer from messages. But the presence of such parties doesn’t necessarily preclude

learning in our model, unless the parents are also unsure of how many messages were distorted

by these groups.

This stands in stark contrast to unintentional mutations, which can still be unraveled

probabilistically. Even though one does not know where mutations lie, one can figure out

their frequency and make inferences about starting states.20 In contrast, information about

17If messages are passed through a tree as modeled in Section 3.3, the learner can make inferences about

which agents are biased based on the messages passed through them. We abstract from this inference

problem here, implicitly assuming that each agent is part of only one word-of-mouth transmission chain.

This simplifies the exposition and the proof of Proposition 6, but is not essential. As the proof makes clear,

our main qualitative findings continue to hold if messages are passed through a tree.
18The result generalizes to a setting in which the learner knows the identity of some but not all ideologues,

as long as the fraction of unknown ideologues does not go to zero.
19If there is uncertainty about both f and π, the result clearly extends.
20If mutations were biased in one direction or the other - for instance more likely to turn a 1 into a 0 than

the reverse, and that bias were unknown, then those inferences would also be clouded. Thus, one can also

interpret “mutations” as unbiased distortions, and the deliberate changes as biased distortions.
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the starting state in a sequence that contains at least one extremist is irrecoverable. Extrem-

ists render learning impossible, unless they can be identified and their sequences ignored.

Next, we comment on the case in which p 6= q and both lie between 0 and 1. As t grows,

then only a vanishing fraction of signals survive. When p 6= q, changing π slightly changes

that fraction by orders of magnitude even though it will still be vanishing. Again, this crowds

out the information about the original state that can be gleaned from survival , which dies

out over the sequence.21 Thus, the difficulty with learning in the face of uncertain bias is

not overcome by considering survival when p 6= q.

Finally, we note that other forms of uncertainty can also hamper learning. For example.

agents may have uncertainty about the average degree in the network (tree). Again, as

the observer is learning from a fractional difference in survival rates, having a larger order

uncertainty over the overall number of sequences obscures the finer information needed to

infer the state. This happens whether or not there are biased agents present. Interestingly,

without any biased agents, uncertainty about the degree does not preclude learning from

signal content, since that is based on relative frequencies and not how many sequences

survive. Indeed, without biased agents, uncertainty over the rate of mutation does not

completely crowd out learning either.

Proposition 7 Suppose the learner receives signals from n(t) independent chains of length

t, with dropping rates p, q ∈ [0, 1) and mutation rate µ ∈ [0, 1
2
). Moreover, suppose the

learner knows p and q exactly, but only has a prior on µ with support bounded away from 1
2
.

Then there exists f(t) such that if n(t)/f(t)→∞, Plim b(t) = 0 or 1.

Unlike in the case of uncertainty over the composition of biased agents, uncertainty over

the mutation rate does not preclude the possibility of learning as t grows large. Thus, there

are subtle differences in which sorts of uncertainty crowd out which sorts of inference.

6 Overcoming Deliberate Bias by Restricting Commu-

nication

We have so far assumed that agents learn from messages that originated from distant sources

in the network. However, agents were assumed to know how many times a message was

21In particular, to see this (wlog) consider a case in which 1 > p > q > 0. Let Zπ(t, s) be the probability

that a signal survives t periods conditional on starting out as a signal s, given π. The key observation is

that Zπ(t, 0)/Zπ−ε(t, 1) grows without bound as t grows, for any ε. Both probabilities are tending to 0, but

eventually they mix and the probabilities are strings of products of combinations of ps and qs, and tilting

that combination one way or the other eventually accumulates arbitrarily in terms of relative probabilities as

things are exponentiated. Even a small shift in the fraction of extremists completely overturns the advantage

of the starting state. Then tiny uncertainty about π introduces much larger swings in the survival rates than

the starting states.
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relayed before reaching them, which helps them more accurately update beliefs. Here, we

relax both of these assumptions and address an aspect of communication platform design.

In reality, people hear information originating close to them, such as from friends, friends

of a friend. However they may not be able to distinguish whether messages originated from

someone close by or far away. Although news articles or primary research papers identify

their sources and authors, messages passed through more informal channels of communication

rarely come with attributions to the originators. Moreover, even learning the identity of the

sources of a message may not fully reveal how many times it was relayed before reaching

people’s ears.

Consider a network in which information can originate from any node, and there are

biased agents. Increasing the size of the network, for instance by increasing the average

degree, can actually worsen the learning. As the degree grows, more messages come to a

receiver from a greater distance. In the limit, this leads to almost all messages coming from

an arbitrary distance, and the logic of Theorem 6 applies and learning is precluded. Limiting

the distance that messages can travel can enable partial learning.

In particular, if distances that messages travel are unlimited and degree is large, then

learning is precluded. At the other extreme in which distances are limited to be very short,

then an agent does not have much information. If one can limit distances, then optimal

learning occurs at in intermediate range. The formula of the precise distance that maximizes

learning appears to be intractable as there is also learning about the distance a message

traveled from its survival, and this depends upon the prior beliefs about π. However, it is

possible to characterize a closely related policy that aims to choose the maximal distance

that still ensures that messages are more likely to be true than false. This would be the policy

of a platform that was interested in maximizing traffic, but subject to having a reputation

that a majority of its information was correct. We explore this, and another related policy

of limiting degree in this section.

We extend our model to allow any node to be an original source with probability r > 0.

For simplicity, suppose that 0 and 1 messages survive with the same probability (p = q > 0)

and that messages do not mutate (µ = 0) (the arguments below extend to the more general

case with more complex expressions). Agents are biased with known probability f > 0, and

there is a fraction π of biased agents who are biased towards always forwarding 1’s, while

the remainder always forward 0’s. The receiver does not know π and has a symmetric prior

around π = 1/2. Without loss of generality, consider a realized π ≥ 1/2.

In this environment, since (weakly) more biased agents tend to forward 1’s, received

messages will always be more likely to reflect the true state when the state is 1. Messages

are more likely to be incorrect in the other state, 0. For large t, messages which have

only passed through unbiased agents are slightly more likely to match the state. However,

conditioning on the messages that pass through at least one biased agent, the last biased

agent through which the message passed is more likely to be biased towards 1 than 0 (since

π ≥ 1/2). Since there are no further mutations, the correctness of the message only depends

on the direction of bias of this last biased agent along the chain.
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By this argument, the probability that in state 0, a message that originated t steps away

and reached the learner matches the true state is (1 − f)t + (1 − π)(1 − (1 − f)t). With

probability π(1− (1− f)t), the message will be false. Indeed, messages in state 0 will more

often be true precisely when

(1− f)t + (1− π)(1− (1− f)t) ≥ π(1− (1− f)t)

⇐⇒ 1

2π − 1
(1− f)t ≥ 1− (1− f)t

⇐⇒ 2π

2π − 1
(1− f)t ≥ 1,

and this last inequality holds precisely when

t ≤ t∗ ≡ log(2π − 1)− log(2π)

log(1− f)
(8)

Thus, only messages that originate sufficiently close to the learner are more likely to be true

when the state is 0.

The example above suggests that one policy to reduce the frequency of false messages in a

network is to limit the number of times a message (and its variants) can be forwarded. Indeed,

social media companies such as WhatsApp and Facebook have recently been concerned with

curbing the spread of misinformation over their platforms.

But following the life-cycle of a message can be difficult or infeasible to achieve in practice

(e.g., for reasons of privacy, a designer may not be allowed to observe the messages being

forwarded). In such cases, a designer can still cut down the number of long chains by

restricting the number of others to whom any given agent can forward messages. We show

how this works as follows.

Suppose that the receiver is in a tree of degree d. Let T be the largest integer smaller

than t∗ (which we take not to be an integer, which is generically true). Then the expected

number of messages that come from nodes at a distance of less than t∗ is

r

T∑
t=1

(pd)t = r
pd(1− (pd)T )

1− pd
,

while the expected number of messages that come from nodes at a distance of more than t∗

is

r
∞∑

t=T+1

(pd)t = r
(pd)T+1

1− pd
.

The closer messages are more likely to be correct than false, while the latter are all more

likely to be false (conditional on state 0).

More messages are expected to be true than are expected to be false if and only

r
pd(1− (pd)T )

1− pd
> r

(pd)T+1

1− pd
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which simplifies to

1− (pd)T > (pd)T or pd <

(
1

2

)1/T

.

Putting this all together, it is enough to limit d to

d <
1

p

(
1

2

) log(1−f)
log(2π−1)−log(2π)

.

Our result above suggests that platforms can reduce the frequency of false communica-

tions by limiting how many people each person can spread information to. One effect of such

a policy is that it enable agents to partially learn the true state in the presence of biased

agents. Restricting communication creates a positive selection whereby relatively more of an

agent’s received messages will have originated from nearby sources. Nearby messages have

fewer distortions, and so this increases the signal to noise ratio even though it lowers the

total number of messages that agents see.

Another very attractive feature of this policy is that is does not violate privacy and is

more content neutral than having the planner directly censor messages agents send each

other.

Indeed, cutting down on “fake news” has recently become an express objective for social

media platforms who have been blamed for facilitating the spread of misinformation. For

example, the messaging platform WhatsApp was criticized for allowing the spread of incen-

diary rumors leading to mob killings in India and for serving as a vehicle of misinformation

in 2018 Brazilian elections. In line with the results of this section, WhatsApp, placed a cap

of 5 on the number of people to whom a message can be forwarded in an attempt to curtail

the spread of false information (see Hern and Safi (2019)).

7 Concluding Remarks

We introduced a benchmark model of social learning via relayed signals in the presence

of signal mutation, dropping, and biasing. We showed that learning is challenging in the

presence of mutations and dropped messages, in that it requires an exponentially growing

number of original sources as the length of the chains over which information is relayed

grows. We also showed that simpler information processing rules than full Bayesian updating

suffice for making correct inferences. The presence of ideologues, however, renders learning

impossible regardless of the number of chains observed, as it is difficult to imagine contexts

where learners know the exact relative fraction of ideologues taking one or another side. In

some cases, a central planner can partly overcome this issue and restore some learning by

either optimally limiting the diameter of networks of information transmission (the number of

steps that information can be relayed), or by implementing a second-best policy of restricting

the number of people to whom someone can relay a message.
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These challenges also naturally motivate learners to seek out information from closer,

trusted contacts, and to down-weight or ignore more distantly-sourced information. However,

learning is challenging in a network with varying lengths of sequences and with cycles that

introduce interdependencies. Still, there may be partial learning since news sourced from

nearby in the graph has lower chances of mutation, deliberate bias, and dropping. This gives

a rationale for paying attention only to things for which one can directly trace and fact-check

— short distances where the source of information has been retained.
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Appendix

Proof of Lemma 1: The proof is by induction.

First, note that if t = 1 then this expression simplifies to 1 − µ, which is exactly the

probability that the signal has not mutated, and so this holds for t = 1.

Then for the induction step, suppose that the claimed expression is correct for t− 1, we

show it is correct for t.

The probability of an even number of mutations at t is the probability of an odd number

at t − 1 times µ plus the probability of an even number at t − 1 times 1 − µ, which by the

induction assumption can be written as[
1− 1

2

(
1 + (1− 2µ)t−1

)]
µ+

[
1

2

(
1 + (1− 2µ)t−1

)]
(1− µ).

This can be rewritten as

µ+

[
1

2

(
1 + (1− 2µ)t−1

)]
(1− 2µ),

or
1

2

(
1 + (1− 2µ)t

)
,

as claimed.

Lemma 2 Let p = q and suppose a Bayesian agent with prior θ on the state being 1 observes

k > 0 more of one type of signal than the other out of n(t) independent sequences.

If there are k more 1 signals, then the agent’s posterior that the state is 1 is

θX(t)k

θX(t)k + (1− θ)(1−X(t))k
.
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If there are k more 0 signals, then the agent’s posterior that the state is 1 is

θ(1−X(t))k

θ(1−X(t))k + (1− θ)X(t)k
.

The proof is direct and omitted.

Proof of Proposition 1:

Case 1: µ = 0. As long as any signal survives, it will be perfectly informative of the

state. It is easily checked that 1
pt

is the threshold for survival of a signal, and so the result

follows.

Case 2: µ ∈ (0, 1
2
).

We first show that if 1
pt(1−2µ)2t = o(n(t)) then a Bayesian learner’s beliefs will converge

to the correct posterior of either 1 or 0 with a probability going to 1.

We first develop an expression for the variance of the fraction of correct signals, condi-

tional on observing some signals.

Let r(t,m) ∼ Bin(m,X(t)) be the number of correct signals given m received signals.

Let s(t,m) = r(t,m)
m

be the share of signals received which are correct. Then

var(s(t,m)|m > 0) = var(
r(t,m)

m
|m > 0)

= E[var(
r(t,m)

m
|m)|m > 0]

= E[
1

m2
X(t)(1−X(t))m|m > 0]

= X(t)(1−X(t))E[
1

m
|m > 0].

Next, we show that a Bayesian agent can infer the correct state with high probability as

t grows large. It is sufficient to show that (1) Pr(m > 0)→ 1, and (2) for every k,

E[s(t,m)|m > 0]− k
√
var(s(t,m)|m > 0) >

1

2

for large enough t.

(2) implies, by Chebyshev’s inequality, that the probability that the majority signal is

correct approaches 1, conditional some signal surviving to the receiver. (1) says that at least

some signal survives with probability approaching 1, so conditioning on this event poses no

obstacle for showing the claim.

Note that (1) follows by standard arguments given that 1
pt(1−2µ)2t = o(n(t)), which implies

that 1
pt

= o(n(t)) (e.g., then Chernoff Bounds imply that the probability that m(t) < ptn(t)/2

is less than e−p
tn(t)/8 which goes to 0).

To show (2), first note that

E[s(t,m)|m > 0]− k
√
var(s(t,m)|m > 0) >

1

2
⇐⇒ X(t)− k

√
X(t)(1−X(t))E[

1

m
|m > 0] >

1

2
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⇐⇒ (1− 2µ)t

2
> k

√
X(t)(1−X(t))E[

1

m
|m > 0]

⇐⇒ (1− 2µ)2t

4k2X(t)(1−X(t))
> E[

1

m
|m > 0].

Since 4X(t)(1−X(t))→ 1, it suffices to show that (1−2µ)2t
k2

> E[ 1
m
|m > 0] for any k and

large enough t.

Let τ(t) = (1− δ)n(t)pt for some δ ∈ (0, 1). Then

E[
1

m
|m > 0] = Pr(m < τ(t)|m > 0)E[

1

m
|0 < m < τ(t)] + Pr(m ≥ τ(t)|m > 0)E[

1

m
|m ≥ τ(t)]

< Pr(m < τ(t)) + Pr(m ≥ τ(t)|m > 0)
1

τ(t)

< Pr(m < τ(t)) +
1

τ(t)

= Pr(n(t)pt − τ(t) < n(t)pt −m) +
1

τ(t)

≤ Pr((n(t)pt − τ(t))2 < (n(t)pt −m)2) +
1

τ(t)
, since τ(t) < n(t)pt

≤ var(m)

(n(t)pt − τ(t))2
+

1

τ(t)
, by Markov’s inequality

=
n(t)pt(1− pt)

(δn(t)pt)2
+

1

(1− δ)n(t)pt

= Θ(
1

n(t)pt
)

= o((1− 2µ)2t),

completing the proof of (2). 22

It remains to show that receiving too few signals precludes learning. Let k(t) be the

number of true signals minus the number of false signals received by the agent when n(t) =

o( 1
pt(1−2µ)t ). Then E[k(t)] = n(t)pt(2X(t) − 1) = n(t)pt(1 − 2µ)t → 0 as t → ∞. Moreover,

the variance of k(t)(1 − 2µ)t, by similar calculations, tends to 0 as t → ∞. Therefore

−2k(t)(1 − 2µ)t → 0 in probability. This in turn means (using that ln(1 + x) = x + o(x2))

that k(t)[ln(1− (1− 2µ)t)− ln(1 + (1− 2µ)t)]→ 0 so (1−(1−2µ)
t

1+(1−2µ)t )
k(t) → 1. By Lemma 2, the

agent’s belief converges in probability to the prior as t→∞.

Proof of Corollary 1:

If the offspring distribution is degenerate, i.e., the tree is d-regular, the proof follows

directly from Proposition 1 by noting that d is the t-th root of n(t).

So, consider the general case in which d is the mean of the offspring distribution and

let d∗ ≡ 1
p(1−2µ)2 > 1 (the case where d∗ = 1 is degenerate in which all streams survive

22 If f(t) = Θ(g(t)), then there exist constants 0 < c < C such that cg(t) ≤ f(t) ≤ Cg(t) for all sufficiently

large t.
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and do not mutate, in which case the result is direct). By the previous proposition and

Lemma 2, it suffices to show that when d > d∗, the number of source nodes asymptotically

dominates 1
pt(1−2µ)2t with probability going to 1; and when d < d∗, the number of source

nodes is o( 1
pt(1−2µ)2t ) with probability going to 1. We show the former claim and henceforth

assume d > d∗, since the proof of the latter follows similar steps.

Let g(t) be the number of information sources, or leaves, in a depth t tree. Let σ2 < 0 be

the variance of the offspring distribution. Given that d > d∗ > 1, it follows from standard

arguments that E[g(t)] = dt (e.g., this can be shown by induction as in Harris (1948)).

First, note that there exists a random variable W with c.d.f F such that g(t)
dt

converges

to W in distribution by the martingale convergence theorem.

Next, note that under the assumption that the offspring distribution has strictly positive

support the tree does not have any extinction. Given this, it can be shown that W has

weight 0 on 0. This can be deduced from Harris (1948).23 Therefore, since (d∗)t = o(dt),

it follows that (d∗)t = 1
pt(1−2µ)2t = op(g(t)). 24 That is to say, the number of source nodes

asymptotically dominates 1
pt(1−2µ)2t with high probability.

Proof of Proposition 2, Part 1:

For ease of notation, let P t
1S ≡ Pr(st 6= ∅|ω = 1) and P t

0S ≡ Pr(st 6= ∅|ω = 0). These are

the probabilities of signal survival to time t conditional on the first signal.

First we prove that
P t1S
P t0S
≥ p

q
, with strict inequality when µ < 1/2 and t > 1.

This is proven by induction. First, P 1
1S = p > q = P 1

0S. Next, let us show that
P t1S
P t0S
≥ p

q

given that P t−1
1S > P t−1

0S . Note that given the stationarity of the process, P t−1
1S = Pr(st 6=

∅|s1 = 1) and P t−1
0S = Pr(st 6= ∅|s1 = 0), and then we can write25 The first part

P t
1S = p [(1− µ)Pr(st 6= ∅|s1 = 1) + µPr(st 6= ∅|s1 = 0)] ,

and so then it follows that

P t
1S = p(1− µ)P t−1

1S + pµP t−1
0S .

Then by the inductive step (P t−1
1S > P t−1

0S ) and so it follows that

P t
1S ≥ p(1− µ)P t−1

0S + pµP t−1
1S ,

with strict inequality when µ < 1/2 and t > 1. Similarly,

P t
0S = q(1− µ)P t−1

0S + qµP t−1
1S .

23For instance, see the third paragraph on page 477; or see Theorem 2.1.7 in Durrett (2007).
24For a sequence of random variables Xt, and a deterministic function f , f(t) = op(Xt) means for any

ε > 0, Pr( f(t)Xt
> ε)→ 0

25The starting state s0 is 1 in this calculation and so then there is a probability p that the signal survives

to the first period, and then the calculation inside the [·] handles the two possible values of the first period

signal and then the probability the signal survives to t if it has made it to the first period in the two possible

values it could have in the first period.
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Therefore
P t
1S

P t
0S

≥
(
p

q

)
(1− µ)P t−1

0S + µP t−1
1S

(1− µ)P t−1
0S + µP t−1

1S

=
p

q
,

with strict inequality when µ < 1/2 and t > 1, as claimed.

Now we complete the proof of the first part of the proposition. Note that (from above)

P t
1S

P t
0S

=

(
p

q

)
(1− µ)P t−1

1S + µP t−1
0S

(1− µ)P t−1
0S + µP t−1

1S

.

Therefore,

P t
1S

P t
0S

=

(
p

q

)(
(1− µ)P t−1

0S + µP t−1
1S + (1− 2µ)(P t−1

1S − P
t−1
0S )

(1− µ)P t−1
0S + µP t−1

1S

)
,

and then since p > q and
P t−1
1S

P t−1
0S

≥ p
q
, with strict inequality when µ < 1/2 and t > 1, it follows

that

P t
1S

P t
0S

=

(
p

q

)(
1 + (1− 2µ)

P t−1
1S − P

t−1
0S

P t−1
0S + µ(P t−1

1S − P
t−1
0S

)

)
≥ p

q

(
1 + (1− 2µ)

(p− q)
q + µ(p− q)

)
,

with strict inequality when µ < 1/2 and t > 1 (and it directly follows that this expression

(z) is strictly larger than p/q when µ < 1/2), as claimed.

The following lemma is useful in the proofs of the remaining parts of the proposition.

Lemma 3 Fix θ ∈ (0, 1), µ ∈ (0, 1/2], 0 < q ≤ p ≤ 1. For all t > 0,

Pr(st = 1|ω = 1) ≥ Pr(st = 0|ω = 1).

Moreover, either there exists T large enough such that

Pr(st = 1|ω = 0) ≥ Pr(st = 0|ω = 0) for all for all t ≥ T,

or

Pr(st = 1|ω = 0) < Pr(st = 0|ω = 0) for all t.

Finally, the sequence

Pr(st = 1|ω = 1)

min{Pr(st = 1|ω = 0), P r(st = 0|ω = 0)}

is bounded above.

Proof of Lemma 3:

The first claim is proven by induction:
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Since µ ≤ 1/2, Pr(s1 = 1|ω = 1) ≥ Pr(s1 = 0|ω = 1). Suppose Pr(st = 1|ω = 1) ≥
Pr(st = 0|ω = 1). Note that,

Pr(st+1 = 1|ω = 1) = p(1− µ)Pr(st = 1|ω = 1) + qµPr(st = 0|ω = 1)

Pr(st+1 = 0|ω = 1) = pµPr(st = 1|ω = 1) + q(1− µ)Pr(st = 0|ω = 1).

The result then follows from the inductive hypothesis and the facts that p ≥ q and µ ≤ 1/2.

Next, to show the second claim in the lemma, note that

Pr(st+1 = 1|ω = 0) = p(1− µ)Pr(st = 1|ω = 0) + qµPr(st = 0|ω = 0)

Pr(st+1 = 0|ω = 0) = pµPr(st = 1|ω = 0) + q(1− µ)Pr(st = 0|ω = 0).

Then if Pr(st = 1|ω = 0) ≥ Pr(st = 0|ω = 0) for some t = T , the same will hold for all

t > T by a similar inductive proof. Otherwise Pr(st = 1|ω = 0) < Pr(st = 0|ω = 0) for all

t, and then the result holds directly.

Finally, we show the third part of the claim. By the second part of this lemma, there are

two cases to consider. If Pr(st = 1|ω = 0) < Pr(st = 0|ω = 0) for all t. Then

Pr(st = 1|ω = 1)

min{Pr(st = 1|ω = 0), P r(st = 0|ω = 0)}
=
Pr(st = 1|ω = 1)

Pr(st = 1|ω = 0)

If instead there is a T such that for all t ≥ T , Pr(st = 1|ω = 0) ≥ Pr(st = 0|ω = 0), then

Pr(st = 1|ω = 1)

min{Pr(st = 1|ω = 0), P r(st = 0|ω = 0)}
=
Pr(st = 1|ω = 1)

Pr(st = 0|ω = 0)

=
p(1− µ)Pr(st−1 = 1|ω = 1) + qµPr(st−1 = 0|ω = 1)

pµPr(st−1 = 1|ω = 0) + q(1− µ)Pr(st−1 = 0|ω = 0)

≤ (p(1− µ) + qµ)Pr(st−1 = 1|ω = 1)

pµPr(st−1 = 1|ω = 0) + q(1− µ)Pr(st−1 = 0|ω = 0)

<
p(1− µ) + qµ

pµ

Pr(st−1 = 1|ω = 1)

Pr(st−1 = 1|ω = 0)
,

where the second to last inequality uses the first part of this lemma. We can therefore handle

both cases simultaneously by showing that the sequence Pr(st=1|ω=1)
Pr(st=1|ω=0)

is bounded above.

To that end, note that

Pr(st = 1|ω = 0) ≥ Pr(st = 1|ω = 0, s1 = 1)Pr(s1 = 1|ω = 0)

= Pr(st−1 = 1|ω = 1)qµ.

So,
Pr(st = 1|ω = 1)

Pr(st = 1|ω = 0)
≤ Pr(st = 1|ω = 1)

Pr(st−1 = 1|ω = 1)

1

qµ
.

It then suffices to show that Pr(st = 1|ω = 1) ≤ Pr(st−1 = 1|ω = 1), since then from above

Pr(st = 1|ω = 1)

Pr(st = 1|ω = 0)
≤ 1

qµ
,
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which is finite given that q > 0 and µ > 0. To see that Pr(st = 1|ω = 1) ≤ Pr(st−1 = 1|ω = 1),

Pr(st = 1|ω = 1) = p(1− µ)Pr(st = 1|s1 = 1) + pµPr(st = 1|s1 = 0)

= p(1− µ)Pr(st−1 = 1|ω = 1) + pµPr(st−1 = 1|ω = 0)

≤ p(1− µ)Pr(st−1 = 1|ω = 1) + pµPr(st−1 = 1|ω = 1)

= pPr(st−1 = 1|ω = 1),

where the inequality follows from the first part of the lemma, establishing the claim.

Proof of Proposition 2, Part 2:

We show that limt→∞
P t1S
P t0S

= limt→∞
pPr(st−1=1|ω=1)+qPr(st−1=0|ω=1)
pPr(st−1=1|ω=0)+qPr(st−1=0|ω=0)

exists.

The sequence is bounded above by the first and last part of Lemma 3: it is bounded

above by either Pr(st=1|ω=1)
Pr(st=1|ω=0)

or Pr(st=1|ω=1)
Pr(st=0|ω=0)

, both of which are bounded above. Furthermore,

the sequence is bounded below by the first part of Proposition 2.

To complete the proof that the limit exists, we show that the sequence is monotone. For

this, we will start by writing, rt, the tth term in the sequence, as Pr(st−1=1|ω=1)+`1Pr(st−1=0|ω=1)
Pr(st−1=1|ω=0)+`1Pr(st−1=0|ω=0)

,

where `1 = q/p. Now the t+ 1st is

rt+1 =
Pr(st = 1|ω = 1) + `1Pr(st = 0|ω = 1)

Pr(st = 1|ω = 0) + `1Pr(st = 0|ω = 0)

=
(p(1− µ) + `1pµ)Pr(st = 1|s1 = 1) + (qµ+ `1q(1− µ))Pr(st = 0|s1 = 1)

(p(1− µ) + `1pµ)Pr(st = 1|s1 = 0) + (qµ+ `1q(1− µ))Pr(st = 0|s1 = 0)

=
Pr(st−1 = 1|ω = 1) + `2Pr(st−1 = 0|ω = 1)

Pr(st−1 = 1|ω = 0) + `2Pr(st−1 = 0|ω = 0)
,

where `2 = q
p
µ+l(1−µ)
(1−µ)+lµ . Consider the sequence `t, where `t+1 = q

p
µ+`t(1−µ)
(1−µ)+`tµ and `1 = q

p
. Note

that `t is non-decreasing in t given that µ ≤ 1/2 and it is strictly increasing when µ < 1/2.

Iterating on the above logic

rt =
Pr(s1 = 1|ω = 1) + `t−1Pr(s1 = 0|ω = 1)

Pr(s1 = 1|ω = 0) + `t−1Pr(s1 = 0|ω = 0)
.

To see that rt is monotone in t, note that the sign of the derivative of rt with respect to `t
only depends on the sign of Pr(s1 = 0|ω = 1)Pr(s1 = 1|ω = 0)− Pr(s1 = 1|ω = 1)Pr(s1 =

0|ω = 0)), and so it is monotone given the monotonicity of `t in t.

Proof of Proposition 2, Part 3:

That Pr(ω = 1|st 6= ∅) ≥ θz
1+θ(z−1) for any t > 1, with strict inequality when µ < 1/2,

follows from Part 1 and Bayes rule (and it is evident from the proof that this lower bound is

not tight). Therefore, it remains to show that limt→∞ Pr(ω = 1|st 6= ∅) exists, a step which

is deferred to the proof of Part 4.

The fact that limt→∞ Pr(ω = 1|st 6= ∅) = θ
θ+(1−θ)/y < 1 follows from Part 2 and Bayes’

Rule.
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Proof of Proposition 2, Part 4:

It suffices to show that limt→∞ Pr(ω = 1|st = 1) = limt→∞ Pr(ω = 1|st = 0), as this

implies that limt→∞ Pr(ω = 1|st 6= ∅) exists and has the same value. This limiting equality

between posterior distributions can equivalently be expressed in terms of likelihood ratios:

lim
t→∞

Pr(st = 1|ω = 0)

Pr(st = 1|ω = 1)
= lim

t→∞

Pr(st = 0|ω = 0)

Pr(st = 0|ω = 1)

⇐⇒ lim
t→∞

Pr(st = 1|st 6= ∅, ω = 0)

Pr(st = 1|st 6= ∅, ω = 1)
= lim

t→∞

Pr(st = 0|st 6= ∅, ω = 0)

Pr(st = 0|st 6= ∅, ω = 1)
. (9)

We show that

lim
t→∞

Pr(st = 1|st 6= ∅, ω = 0) = lim
t→∞

Pr(st = 1|st 6= ∅, ω = 1), (10)

since this implies that both sides of equation 9 are equal to 1.26

Denote by S a sequence of signals that evolve according to our process, starting with

S0 = 1 and S ′ another (independent) sequence of signals with S ′0 = 0. Let τ = min{t|S ′t = 1},
where τ =∞ if S ′ is dropped at some step before mutating to signal 1, or if S ′t = 0 for all t.

In this notation, equation 10 can equivalently be expressed as: limt→∞ Pr(St = 1|St 6=
∅) = limt→∞ Pr(S

′
t = 1|S ′t 6= ∅). Note the following relationship between the two independent

paths:27

Pr(S ′t = 1|S ′t 6= ∅) =
t∑
i=1

Pr(S ′t = 1|S ′t 6= ∅, τ = i)Pr(τ = i|S ′t 6= ∅)

=
t∑
i=1

Pr(St−i = 1|St−i 6= ∅)Pr(τ = i|S ′t 6= ∅)

≡

(
t∑
i=1

Pr(St−i = 1|St−i 6= ∅)wti

)
, (11)

where wti = Pr(τ = i|S ′t 6= ∅).
The result then follows from the following three facts, to be proved:

1. For any ε > 0 and positive integer k, for all sufficiently large t,
∑t

i=t−k w
t
i < ε.

2. limt→∞ Pr(St = 1|St 6= ∅) exists.

3.
∑t

i=1w
t
i + wt∞ = 1. Moreover, wt∞ → 0 as t→∞, i.e., the probability that the signal

never mutated conditional on survival to t goes to 0 as t grows.

26Subtract each side of equation 10 from 1 before taking ratios to see that the right side of equation 9 is

also 1.
27Note that if τ > t, then the probability that S′t = 1 is 0.
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To see that these facts imply the result, note that by fact 1, most of the weight falls on

the first t−k terms of the sum in equation 11 for large enough t. By fact 2, for a large enough

k (growing slower than t), these first t− k terms will be close to limt→∞ Pr(St = 1|St 6= ∅),
and therefore by fact 3 the limiting weighted sum of these terms converges to this value as

well.

Fact 3 is clear, so we prove the other two.

First we prove fact 1. Note that qi(1 − µ)i−1µ is the probability of survival with no

mutation through i − 1 and then survival with mutation at t = i, i.e., Pr(τ = i) = qi(1 −
µ)i−1µ. Second, let mi be number of mutations through time i. Obviously, Pr(S ′i 6= ∅) >
Pr(S ′i 6= ∅ and mi = 1). Third, if survival were always at rate q, then Pr(S ′i 6= ∅ and

mi = 1) = iqi(1 − µ)i−1µ. However, since survival likelihood immediately after the first

mutation, p, is strictly higher than q and mutations sometimes occur (note, we assume

µ > 0), Pr(S ′i 6= ∅ and mi = 1) > iqi(1 − µ)i−1µ. Putting these observations together, we

have

lim
i→∞

Pr(τ = i)

Pr(S ′i 6= ∅)
< lim

i→∞

qi(1− µ)i−1µ

iqi(1− µ)i−1µ
= lim

i→∞

1

i
= 0, (12)

where, as noted earlier, the inequality arises from replacing Pr(S ′i 6= ∅) with a lower bound

on the probability of exactly one mutation occurring over the course of the first i periods,

and all the ways this could happen, and then noting that q < p. Now

Pr(τ = i|S ′t 6= ∅) =
Pr(S ′t 6= ∅|τ = i)Pr(τ = i)

Pr(S ′t 6= ∅)

=
Pr(St−i 6= ∅)Pr(τ = i)

Pr(S ′t 6= ∅)

=
Pr(St−i 6= ∅)Pr(τ = i)

Pr(S ′t−i = 1)Pr(Si 6= ∅) + Pr(S ′t−i = 0)Pr(S ′i 6= ∅)

<
Pr(St−i 6= ∅)
Pr(S ′t−i 6= ∅)

Pr(τ = i)

Pr(S ′i 6= ∅)
,

where the inequality follows from the fact that Pr(Si 6= ∅) > Pr(S ′i 6= ∅), by Proposition 2,

Part 1. Pr(St−i 6=∅)
Pr(S′t−i 6=∅)

is bounded by Proposition 2 Part 2 (as it has a limit), and Pr(τ=i)
Pr(S′i 6=∅)

can be

made arbitrarily small for large enough i by equation 12. Thus, for any δ and k we can find

large enough t for which wti < δ for i > t− k. Choosing δ = ε/k establishes fact 1.

Finally, we prove fact 2. The probability distribution of St is given by e′1A
t, where

A =

p(1− µ) pµ 0

qµ q(1− µ) 0

0 0 1


is the Markov transition matrix for S. Let B be the principal 2× 2 submatrix of A. By the

partitioned matrix multiplication formula, Pr(St = 1|St 6= ∅) =
e′1B

te1
e′1B

t1
. Since B is strictly

positive, the Perron-Frobenius theorem implies that this expression converges to the first

entry of eigenvector corresponding to the largest eigenvalue of B.
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Proof of Proposition 3:

limt→∞
P t0S
P t1S

= r for some r < 1, by Proposition 2. Let rt be the tth term in the sequence.

Let m(t) be the number of surviving signals. By Chernoff bounds, it follows that

Pr(m(t) > n(t)P t
1s(1 + rt)/2|ω = 1)→ 1

and

Pr(m(t) < n(t)P t
1s(1 + rt)/2|ω = 0)→ 1

provided that n(t)P t
1s →∞. Given this separation, it is easy to the check that if n(t)P t

1s →
∞, the beliefs will converge to 0 or 1 in probability.

Next, note that if n(t)P t
1s → 0, then the expected number of surviving signals in either

state is 0, and that happens with the probability going to 1 by Chebychev, and so there is

no learning. So, the threshold is 1/P t
1s.

Note that survival lies between 1/pt and 1/qt and so

1/P t
1s =

1

(pλ(t) + (1− λ(t))q)t
.

The fact that λ(t) converges to some λ then follows since this is a Markov chain and the

probability that it survives in any given period (the third state with st = ∅ is absorbing)

converges to a steady state distribution, which in this case lies between p and q.

The following lemma is useful in the proof of Proposition 4.

Let P t
1 (P t

0) denote the Bayesian posterior probability that the state is 1 conditional

upon a signal being received at time t and being 1 (0). Similarly, let P t
∅ (P t

S) denote the

Bayesian posterior probability that the state is 1 conditional upon no signal (some signal)

being received at time t.

Lemma 4 If p > q, then P t
1 ≥ P t

0 and P t
1 ≥ P t

∅.

Proof of Lemma 4

Let st denote the state of the signal at period t. That P t
1 ≥ P t

0 holds when t = 1 is easy

to check from Bayes rule, given that p > q and µ ≤ 1/2. Now suppose P t
1 ≥ P t

0 for some t.

Then by the law of total probability, it follows that

P t+1
1 = Pr(st = 0|st+1 = 1)P t

0 + Pr(st = 1|st+1 = 1)P t
1

=
qµPr(st = 0)

qµPr(st = 0) + p(1− µ)Pr(st = 1)
P t
0 +

p(1− µ)Pr(st = 1)

qµPr(st = 0) + p(1− µ)Pr(st = 1)
P t
1

Similarly,

P t+1
0 =

q(1− µ)Pr(st = 0)

q(1− µ)Pr(st = 0) + pµPr(st = 1)
P t
0 +

pµPr(st = 1)

q(1− µ)Pr(st = 0) + pµPr(st = 1)
P t
1
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Since P t
1 ≥ P t

0 by the inductive hypothesis, it suffices to show that

p(1− µ)Pr(st = 1)

qµPr(st = 0) + p(1− µ)Pr(st = 1)
≥ pµPr(st = 1)

q(1− µ)Pr(st = 0) + pµPr(st = 1)

i.e., that
1

1 + q
p
Pr(st=0)
Pr(st=1)

µ
1−µ

≥ 1

1 + q
p
Pr(st=0)
Pr(st=1)

1−µ
µ

which follows, since µ ≤ 1− µ.

To see that P t
1 ≥ P t

∅, note that it suffices to prove that P t
S ≥ P t

∅, since P t
S is a convex

combination of P t
1 and P t

0, and we just proved P t
1 ≥ P t

0. Now the statement follows directly

from part 1 of Proposition 2.

Proof of Proposition 4:

First, note that we can focus on the case in which p 6= q as otherwise there is nothing to

be learned from signal survival, and agent C does as well as B. Without loss of generality

we take p > q. Similarly, if µ = 1/2, then all learning is from survival and S does as well as

B, and so we can take µ < 1/2.

Note that by Lemma 4, P t
1 ≥ P t

0 and P t
1 ≥ P t

∅. In order for B to do strictly better in

expectation than the other agents, it must be that P t
1 > 1/2 and at least one of P t

0 and P t
∅

are less than 1/2. To see this note that if all three are on the same side of 1/2, then they

must lie on the same side as the prior.28 If θ 6= 1/2 then N gets the same payoff as B. If

θ = 1/2, then for all three to lie on the same side of the prior it must be that p = q, in which

case there is nothing learned from survival and C does as well as B in expectation.

Thus, P t
1 > 1/2 and at least one of P t

0 and P t
∅ are less than 1/2. If it is just P t

∅ that is less

than 1/2, then S guesses the same as B (or equivalently in expected payoff terms). Thus,

we need P t
0 < 1/2 to have a difference.

If is just P t
0 that is less than 1/2, then C guesses the same as B except if θ ≤ 1/2. But

for such a θ, it must be that P t
∅ ≤ 1/2 and so C guesses as well as B.

So, consider the case in which P t
1 > 1/2 and P t

0 < 1/2 and P t
∅ < 1/2. For C to guess

differently than B, it must be that θ ≥ 1/2.

We can compute the expected payoff’s for the three most relevant agents for this remain-

ing case (we ignore N now, since in these conditions it is dominated by one of the others)

for a given (p, q, µ, θ) satisfying the above constraints.

Letting UB, UC , US be the expected payoffs of agents B,C29 and S respectively, it follows

that

UB = Pr(st = 1)P t
1 + Pr(st = 0)(1− P t

0) + (1− Pr(st = 1)− Pr(st = 0))(1− P t
∅)

28They cover three disjoint events whose union is all possibilities, and so the overall probability of a 1 is a

convex combination of these conditionals, and so it is impossible to have them all weakly and some strictly

greater (or all weakly and some strictly less) than the prior.
29C has expected payoff UC = Pr(st = 1)P t1 + Pr(st = 0)(1 − P t0) + (1 − Pr(st = 1) − Pr(st =

0))
(
Iθ>1/2P

t
∅ + Iθ=1/21/2

)
. The expression in the main text is obtained by noting that the worst ratio

for this compared to B will be in cases for which θ > 1/2
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UC = Pr(st = 1)P t
1 + Pr(st = 0)(1− P t

0) + (1− Pr(st = 1)− Pr(st = 0))P t
∅

US = Pr(st = 1)P t
1 + Pr(st = 0)P t

0 + (1− Pr(st = 1)− Pr(st = 0))(1− P t
∅)

First, note that if q < 1 and µ > 0, then as t→∞, then Pr(st = ∅)→ 1 and P∅ → 1/2, in

which case the ratio of B to either of these goes to 1. If q < 1 and µ = 0, then B does as

well as S for every t. If p = q = 1, then B does as well as C for every t. These facts together

establish the last claim in the proposition that as t→∞, the ratio UB
max{US ,UC}

→ 1.

That the ratio is bounded above by 3/2 can be seen as follows. Since θ ≥ 1/2 and p > q,

it follows that

Pr(st = 1) ≥ Pr(st = 0), P t
1 ≥ (1− P t

0), and so Pr(st = 1)P t
1 ≥ Pr(st = 0)(1− P t

0).

Then if Pr(st = 0)(1 − P t
0) ≤ (1 − Pr(st = 1) − Pr(st = 0))(1 − P t

∅) it follows that

US ≥ UB2/3. If Pr(st = 0)(1− P t
0) ≥ (1− Pr(st = 1)− Pr(st = 0))(1− P t

∅) then it follows

that UC ≥ UB2/3.

To complete the proof, we compute

max
p,q,θ,µ∈[0,1]

UB
max{US, UC}

.

for t = 1. We can rewrite the payoffs of agents B, S and C in the case P 1
1 > 1/2 and

P 1
0 < 1/2 and P 1

∅ < 1/2 as follows:

UB = θp(1− µ) + (1− θ)(1− qµ)

UC = θ(1− pµ) + (1− θ)q(1− µ)

US = θp+ (1− θ)(1− q)

where

θpµ ≤ q(1− θ)(1− µ) (13)

θ(1− p) ≤ (1− θ)(1− q) (14)

θ ≥ 1/2 (15)

µ ≤ 1/2 (16)

p ≥ q (17)

p, q, µ, θ ∈ [0, 1]. (18)

Case 1: US ≤ UC .

This condition can be rewritten as

θ(pµ+ (p− 1)) ≤ (1− θ)(q(1− µ) + (q − 1)) (19)

The program with this additional constraint can be written as

max
p,q,θ,µ satisfy 13-19

UB
UC
≡ max

p,q,θ,µ satisfy 13-19

θp(1− µ) + (1− θ)(1− qµ)

θ(1− pµ) + (1− θ)q(1− µ)
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= max
p,q,θ,µ satisfy 13-19

θp+ (1− θ)− µ(θp+ (1− θ)q)
θ + (1− θ)q − µ(θp+ (1− θ)q)

≤ max
p,q,θ,µ satisfy 13-19

θ + (1− θ)2q − 2µ(θp+ (1− θ)q)
θ + (1− θ)q − µ(θp+ (1− θ)q)

where the inequality is from rearranging constraint 19, as θp + (1 − θ) ≤ θ + (1 − θ)2q −
µ(θp + (1 − θ)q), and plugging this into the numerator. It is easily verified that the above

ratio is decreasing in µ for any values of the remaining parameters 30. Moreover, reducing

µ to 0 only relaxes constraints 13, 16 and 19, and leaves the other constraints unaffected.

Therefore,

max
p,q,θ,µ satisfy 13-19

UB
UC
≤ max

p,q,θ satisfy 14-19

θ + (1− θ)2q
θ + (1− θ)q

It is clear that smaller values of θ increase this ratio, and by constraint 15, the smallest

value of θ is 1
2
. But while reducing θ down to 1

2
for given p and q relaxes constraint 14, doing

so may violate constraint 19. We therefore separately consider the cases where either 19 or

15 bind, since at least one of them must at the optimum.

Subcase 1: 19 is satisfied with equality, i.e., θ(1− p) = (1− θ)(1− 2q). Plugging this

in, the objective then becomes 2 1+θ(p−1)
1+θ(p−1)+θ , which is decreasing in θ, so it is optimal to set

θ = 1
2
. The objective is then 21+p

2+p
≤ 4/3. Note that at p = 1, q = 1

2
, θ = 1

2
, µ = 0, UB

UC
= 4

3
,

so this upper bound is tight.

Subcase 2: θ = 1/2. Then

UB
UC

=
p+ 1− µ(p+ q)

q + 1− µ(p+ q)
,

which is weakly increasing in µ by constraint 17. Constraint 19 can be rearranged to be

µ ≤ 2q − p
p+ q

,

which, first, implies that
UB
UC
≤ 2(p− q) + 1

(p− q) + 1
,

and second, along with the condition that µ ≥ 0, implies that

q ≥ p

2
.

Since 2(p−q)+1
(p−q)+1

is decreasing in q, this expression is maximized under the given constraints

when q = p
2
. Therefore, UB

UC
≤ p+1

p
2
+1

, which is maximized when p = 1 and equals 4/3.

Case 2: US ≥ UC . The new constraint is

θ(pµ+ (p− 1)) ≥ (1− θ)(q(1− µ) + (q − 1)), (20)

30 d
dx

A−2x
B−x ≤ 0 if A ≤ 2B and A,B > 0.
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and the relevant maximization program is

max
p,q,θ,µ satisfy 14-18, 20

UB
US
≡ max

p,q,θ,µ satisfy 14-18, 20

θp(1− µ) + (1− θ)(1− qµ)

θp+ (1− θ)(1− q)
.

Notice that the ratio θp(1−µ)+(1−θ)(1−qµ)
θp+(1−θ)(1−q) is linear and decreasing in µ, and the constraints

are linear in µ as well. Constraint 13 only places an upper bound on µ, so it is not relevant

in pinning down this value at the optimum. On the other hand, constraint 20, which can be

rewritten as

2q(1− θ)− pθ − (1− 2θ) ≤ (pθ + q(1− θ))µ

and the constraint that µ ≥ 0 are relevant. There are two cases:

Subcase 1: 2q(1− θ)− pθ − (1− 2θ) ≥ 0, µ = 2q(1−θ)−pθ−(1−2θ)
pθ+q(1−θ) .

Then

UB
US

=
θp+ (1− θ)− µ(θp+ (1− θ)q)

θp+ (1− θ)− (1− θ)q

=
θp+ (1− θ)− 2(1− θ)q + pθ + (1− 2θ)

θp+ (1− θ)− (1− θ)q

=
2θp+ (2− 3θ)− 2(1− θ)q
θp+ (1− θ)− (1− θ)q

= 2
θp+ (1− 3

2
θ)− (1− θ)q

θp+ (1− θ)− (1− θ)q

Clearly, the ratio is decreasing in θ, and moreover, decreasing θ only relaxes constraints 13

and 14. Therefore, constraint 15 binds and θ = 1
2

at the optimum, so

UB
US

= 2
p+ 1

2
− q

p+ 1− q
Since µ = 2q−p

p+q
at θ = 1

2
, constraints 13 and 14 reduce to just p ≥ q. Since the ratio is

increasing in p− q, the only binding constraint is that µ ≥ 0, i.e., 2q ≥ p. Therefore at the

optimum, p = 1, q = 1
2
, µ = 0, θ = 1

2
, and UB

US
= 4

3
.

Subcase 2: 2q(1− θ)− pθ − (1− 2θ) ≤ 0, µ = 0. In this case, the problem reduces to

max
p,q,θ, satisfy 14,15,17, 18, 20

θp+ (1− θ)
θp+ (1− θ)(1− q)

,

which is decreasing in θ. Now

2q(1− θ)− pθ − (1− 2θ) ≤ 0

⇐⇒ θ(2− 2q − p) ≤ 1− 2q

Suppose 2 − 2q − p < 0. Since 1 − 2q ≤ 1 − 2q + (1 − p) = 2 − 2q − p < 0, it follows that

θ(2 − 2q − p) ≥ θ(1 − 2q) ≥ 1 − 2q. Therefore, the only way to satisfy the constraint is if

p = 1 and θ = 1, in which case UB
US

= 1.
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If 2− 2q − p ≥ 0, then θ = 1
2

at the optimum, and so the constraint in this sub-subcase

becomes 2q ≤ p, while the objective function is p+1
p+1−q . This constraint binds at the optimum

and again the optimal value is 4
3

at p = 1 and q = 1
2
.

Proof of Proposition 5:

We proceed by cases for different values of the parameters. We concentrate on situations

in which µ < 1/2 since if µ = 1/2 then content is completely uninformative and the result is

direct.

Case 1: µ = 0. Suppose without loss of generality that q ≤ p. Any signal that reaches

the agent is perfectly informative of the state, so a threshold for learning for agents B and

C is the threshold for at least one signal to survive, which (following the logic of the proofs

above) is 1
pt

.

Case 2: p = q and µ > 0. By Proposition 1, the threshold for learning for agent B is
1

pt(1−2µ)2t . In this case there is no information from signal survival, and by Lemma 2, agent

B’s posterior is the same as agent C’s posterior. Therefore, agent C has the same threshold

for learning as B.

Case 3: q 6= p and µ > 0. Without loss of generality let p > q. Then τ(t) = 1
P t1S

is

a threshold for learning for an agent conditioning only on signal survival, as shown in the

proof of Proposition 3. Let b(t) denote the beliefs of agent B after observing the outcome of

n(t) original sources of information sent along chains of depth t. Since agent B conditions on

survival and signal content, plim b(t)→ 1 or 0 whenever n(t)/τ(t)→∞. When n(t)/τ(t)→
0, then the probability of even a single signal surviving to reach the agent approaches 0. This

holds regardless of the starting state by Proposition 2 part 2, so plim b(t) → θ. Therefore,

agent B and S have the same thresholds for learning in this case.31.

Proof of Proposition 6:

We give the proof for the case in which ptn(t) → ∞. (With fewer paths there are even

fewer signals from which to learn.) The following lemma is straightforward (and so its proof

is omitted) but it useful.

Lemma 5 Consider a sequence of k ≤ m such that m→∞ and k
m
→ a. The maximizer of

zk(1− z)m−k is z(m, k) = k
m

, and

z(m, k)k(1− z(m, k))m−k

zk(1− z)m−k
→∞

for any z 6= a, the size of this ratio increases with the distance of z from a (as za(1− z)1−a

is strictly concave). Moreover, for any atomless and continuous probability measure G on z

that has connected support and includes a in its interior∫ a+ε
a−ε z

k(1− z)m−kdG(z)∫ 1

0
zk(1− z)m−kdG(z)

→ 1,

31Strictly speaking, we only showed that they share a common threshold, but it is easy to see that being

a threshold for learning for B, for S or for neither partitions the space of functions on N→ N.
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for any ε > 0.

Let Yπ(t) be the probability that a sequence ends with a signal 1 at time t conditional

upon there being at least one extremist in the sequence, the sequence reaching time t, and

the fraction of extremists always sending 1 being given by π. Note that this is independent

of the starting state. Then 1 − Yπ(t) is the probability that a sequence with at least one

extremist ends with a signal 0 at time t.

Moreover, the process is a time-homogeneous irreducible and aperiodic Markov chain,

and so it has a steady state distribution, and Yπ(t) converges to that steady-state as t grows.

It is direct to calculate the limit Yπ, and in particular, note that the probability that a signal

that was received as a 1 in one period is received as a 0 in the next period (conditional upon

being received) is

p10 = (1− f)µ+ fπµ+ f(1− π)(1− µ) = µ+ f(1− π)(1− 2µ)

and similarly the probability that a signal that was received as a 0 is then received as a 1 in

the next period is

p01 = µ+ fπ(1− 2µ).

This means, via a standard calculation for the limiting distribution for a two-state Markov

chain, that the steady state limit is

Yπ =
p01

p01 + p10
=
µ+ fπ(1− 2µ)

2µ+ f(1− 2µ)
,

which is linear in π. Also, note that

Yπ(1) = π(1− µ) + (1− π)µ = µ+ π(1− 2µ),

and for t > 1,

Yπ(t+ 1) =
(
1− (1− f)t

)
[Yπ(t)(1− p10) + (1− Yπ(t))p01] + (1− f)tf (µ+ π(1− 2µ)) ,

where the first expression captures the probability that the process has already had an

extremist, and the second expression is the chance that this is the first period after an

extremist. This becomes

Yπ(t+1) =
(
1− (1− f)t

)
[Yπ(t)(1− f)(1− 2µ) + µ+ fπ(1− 2µ)]+(1−f)tf (µ+ π(1− 2µ)) ,

which is also linear and increasing in π, by induction (noting that Yπ(1) is linear and in-

creasing in π). From the above it is also clear that the slopes of Yπ(t) converge to that of

Yπ, and so for large enough t, ∂Yπ(t)
∂π

> δ > 0, for some δ regardless of t.

Also note that since Yπ(t) is increasing in π, it is invertible.

The probability that some sequence ends in a 1 conditional on π and starting in state

ω = 1 is (
1− (1− f)t

)
Yπ(t) + (1− f)tX(t).
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The probability that some sequence ends in a 1 conditional on π and starting in state ω = 0

is (
1− (1− f)t

)
Yπ(t) + (1− f)t(1−X(t)).

Similar calculations provide probabilities of ending in a 0.

The chance of observing k 1s, conditional on m sequences reaching the receiver, on π and

on the starting state being ω = 1 is then

Pk,m,t,π(1) =(
m

k

)[(
1− (1− f)t

)
Yπ(t) + (1− f)tX(t)

]k [(
1− (1− f)t

)
(1− Yπ(t)) + (1− f)t(1−X(t))

]m−k
.

Then the chance of observing k 1s out of m sequences that reach the receiver conditional

the starting state being ω = 0 is then

Pk,m,t,π(0) =(
m

k

)[(
1− (1− f)t

)
Yπ(t) + (1− f)t(1−X(t))

]k [(
1− (1− f)t

)
(1− Yπ(t)) + (1− f)tX(t)

]m−k
.

First consider the case where π is known, and suppose the state is 1 (the argument for

the case where the state is 0 is analogous). As the number of signals grows large (keeping

t fixed), k
m−k →

(1−(1−f)t)Yπ(t)+(1−f)tX(t)

(1−(1−f)t)(1−Yπ(t))+(1−f)t(1−X(t))
= at,1 in probability, and at,1 > 1. Now, the

Bayesian’s posterior that the state is ω = 1 conditional upon seeing k 1’s out of m sequences

that reached the receiver32

θPk,m,t.π(1)

θPk,m,t,π(1) + (1− θ)Pk,m,t,π(0)
,

By Lemma 5,
Pk,m,t(0)

Pk,m,t(1)
→ 0 in probability as the number of signals grow large, so it follows

that
θPk,m,t(1)

θPk,m,t(1) + (1− θ)Pk,m,t(0)
→ 1.

Therefore, since the agent can learn the true state with sufficiently many paths for any

given t, it follows that the agent can learn the true state as t → ∞ if n(t) grows quickly

enough.

Now we consider the case when π is unknown but follows an atomless distribution

F with connected support. A Bayesian’s posterior that the state is ω = 1 conditional upon

seeing k 1’s out of m sequences that reached the receiver is

θ
∫
π
Pk,m,t,π(1)dF (π)

θ
∫
π
Pk,m,t,π(1)dF (π) + (1− θ)

∫
π
Pk,m,t,π(0)dF (π)

,

32Note that each sequence has an independent probability pt of reaching the observer, so this there is

nothing to update about which sequences reach the observer when p = q.
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and so if we can show that
∫
π
Pk,m,t,π(1)dF (π)/

∫
π
Pk,m,t,π(0)dF (π) converges to one in prob-

ability, then we conclude the proof.

Given a true π∗ in the interior of the support of F , the realized k,m will be such that
k

m−k −
Yπ∗ (t)

1−Yπ∗ (t)
converges to 0 in probability, and Yπ∗ (t)

1−Yπ∗ (t)
→ Yπ∗

1−Yπ∗
= a.

By the first part of Lemma 5, for any k,m, Pk,m,t,π(1) is maximized when

Yπ(t) =
k
m
− (1− f)tX(t)

1− (1− f)t
,

and Pk,m,t,π(0) is maximized when

Yπ(t) =
k
m
− (1− f)t(1−X(t))

1− (1− f)t
.

Under the true π∗, if m(t) = ptn(t)→∞, then these two right hand sides converge to each

other as t becomes large. Given that ∂Yπ(t)
∂π

> δ > 0, it then follows that the π1(t, k,m) and

π0(t, k,m) that are the corresponding maximizers, converge to each other, and to π∗, as well

in probability.33 It therefore follows from Lemma 5 that

plim

∫
π
Pk,m,t,π(1)dF (π)∫

π
Pk,m,t,π(0)dF (π)

= plim

∫ π1(t,k,m)+ε

π1(t,k,m)−ε Pk,m,t,π(1)dF (π)∫ π0(t,k,m)+ε

π0(t,k,m)−ε Pk,m,t,π(0)dF (π)

for any ε > 0.

Letting [l, h] be the support of π, and recalling that Yπ(t) is linear in π and note that

Pk,m,t,π1(t,k,m)(1) = Pk,m,t,π0(t,k,m)(0). From this, it follows that

Pk,m,t,π1(t,k,m)+δ(1) = Pk,m,t,π0(t,k,m)+δ(0)

for any δ ∈ R such that both π1(t, k,m) + δ and π0(t, k,m) + δ fall in (l, h). In particular,

if we let εt = 1
2

min{π1(t, k,m)− l, h− π0(t, k,m)} and if εt > 0, the intervals [π1(t, k,m)−
εt, π1(t, k,m) + εt] and [π0(t, k,m)− εt, π0(t, k,m) + εt] strictly lie in (l, h). So by the earlier

observation, ∫ π1(t,k,m)+εt

π1(t,k,m)−εt
Pk,m,t,π(1)dF (π) =

∫ π0(t,k,m)+εt

π0(t,k,m)−εt
Pk,m,t,π(0)dF (π)

Moreover plim εt = 1
2

min{π∗ − l, h − π∗} > 0. Therefore, by the continuous mapping

theorem,

plim

∫
π
Pk,m,t,π(1)dF (π)∫

π
Pk,m,t,π(0)dF (π)

= plim

∫ π1(t,k,m)+εt
π1(t,k,m)−εt Pk,m,t,π(1)dF (π)∫ π0(t,k,m)+εt
π0(t,k,m)−εt Pk,m,t,π(0)dF (π)

= 1,

33There will be realizations for which π1(t, k,m) and π0(t, k,m) that exactly solve the equations do not

exist and then a corresponding corner solution of the extremes of the support of the prior can be used, but

those will occur with vanishing probability.
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which concludes the proof.

Proof of Proposition 7:

Let µ̄ be the supremum of the support of the agent’s prior on µ. By assumption, µ̄ < 1/2.

By Propositions 1 and 3, we know there exists and f(t) such that if the mutation rate is

known to be µ̄, Plim b(t) = 0 or 1 whenever n(t)/f(t)→∞. With such a choice of n(t), the

probability of full learning approaches 1 in t conditional on any value of µ in the support of

the agent’s prior. Therefore the agent’s unconditional posterior also converges to 0 or 1 in

probability.
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