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Abstract. Counterfactual probability distributions are important elements of policy anal-
ysis, decomposition analysis, robustness and sensitivity analysis in empirical economics. In
this paper we solve two complementary problems of statistical counterfactual analysis: (i)
Given a counterfactual change in a scalar functional of a probability distribution, we de-
scribe the counterfactual distributions that have such an effect on the functional and deviate
minimally from the status quo distribution in a continuous fashion. (ii) Given a counter-
factual distribution, we compute the change in a statistical functional relative to the status
quo distribution by integrating its local changes along a path from the status quo to the
counterfactual distributions. In combination, these two exercises provide a general frame-
work for measuring the local and global relationships between (structural) estimators of
parameters or counterfactuals and descriptive statistics or specific features of the data. To
solve these problems, we use von Mises calculus (i.e. influence functions), information geom-
etry, optimal transport and introduce gradient score flows. Specifically, we define a unique
path of counterfactual distributions with a combination of a statistical functional and a
metric of distance or cost on the nonparametric manifold of probability distributions via
the gradient flow of the functional. We describe the gradient flow paths obtained with the
Fisher-Rao information metric, 2-Wasserstein optimal transport metric, and their weighted
variants.
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0. Introduction

Counterfactual distributions and their scalar functionals are important elements of policy
analysis (Stock, 1989 [68], Heckman and Vytlacil, 2007 [42]) and decomposition analysis (Oax-
aca, 1973 [58], Blinder, 1973 [14], Fortin, Lemieux, and Firpo, 2011 [33, 31], Chernozhukov,
Fernández-Val, and Melly, 2013 [20]) in empirical economics. Canonical applications include
assessing wage discrimination [58, 14, 20], predicting the effect of cleaning up a hazardous waste
cite on the distribution of local house values [68, 69], estimating the effect of de-unionization on
the distribution of wages [25, 30], and many others.

The idea here is to think of policy as a change in the distribution of policy variables and
covariates X. The exercise is to construct a counterfactual distribution of an outcome variable Y
resulting from a policy. This is done by providing (an estimate of) the counterfactual distribution
of X, and assuming that the conditional distributions of Y given X remain unchanged and can
be estimated from data.

The effect of policy on the distribution of Y is often quantified via a scalar functional ψ
of the marginal distribution of Y , i.e. a statistic. Different functionals are used in different
applications. For example, the researcher might be interested in the effect on the mean of wages
[14, 58] or house prices [69], or the effects on the quantiles, variance or Gini coefficient of the
logarithm of wages [33]. The goal of policy analysis is to evaluate the effect of policy on ψ.
The goal of decomposition analysis is to explain the effect on ψ by attributing it to changes in
distinct factors (i.e. scalar parameters) of the distribution of X. For example, the effect on ψ can
be attributed to changes the means [14, 58] or location parameters [25, 30] of each component
of X.

[14, 58, 68] use regression to estimate and decompose the policy effect on the mean of Y ,
[25] derive a local approximation to the effect on a general ψ of the policy that shifts the
distribution of X, [20] estimate the entire counterfactual distribution of Y . To our knowledge,
there is no systematic and computationally efficient way of evaluating the exact policy effect on a
general functional ψ available in the literature. Also, there is no systematic way of constructing
counterfactual distributions for changes in general functionals of X in Oaxaca-Blinder type
decompositions.

Similar statistical exercises have recently been discussed for functionals ψ that are described
as large sample limits of structural estimators and answer policy or counterfactual questions un-
der the identifying assumption of the structural model. The idea here is to establish transparency
of structural estimators by relating them to intuitive features of the data, and to inform the
reader about the implications of the potential misspecification, mismeasurement, and violation
of the identifying assumptions.

Gentzkow and Shapiro (2015) [36] report that empirical papers relying on structural models
often discuss heuristically how their estimators ψ̂ depend on specific features of the data in
order to elucidate the inner-workings of their estimators and to lend credibility to their findings.
[36] propose formal sensitivity measures to supplement such discussions. In subsequent work,
Andrews, Gentzkow and Shapiro (AGS 2017, 2018) measure the local effect on ψ of a change
in the estimation moments of the distribution of the data X [6], and the sensitivity of ψ with
respect to the variations in general descriptive statistics of the distribution of X [7].

In econometric terminology, the goal here is to solve the following:

Problem 0 Find the effect of a change in an arbitrary scalar functional ν of the distribution
of the data on the value of the structural functional ψ.

AGS [36, 6, 7] and the related econometric papers, Bonhomme and Weidner (2018) [15],
Armstrong and Kolesár (2018) [8], consider local (infinitesimal) changes in the distribution of
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X, interpret them as misspecification and refer to the effects on ψ as “sensitivity”. However,
the nature of these exercises is mathematically similar to that of policy analysis [68, 69, 42] and
decomposition analysis [14, 58, 25, 30, 20], because the main point is to evaluate the effect of a
variation in the population distribution on a statistical functional. The novelty in [36, 6, 7] is
to implicitly map a perturbation in a scalar feature ν of the distribution, to a perturbation in
the entire distribution. To our knowledge, there is no systematic and computationally tractable
way of specifying a local variation in the distribution with a local change in a scalar functional
that has been discussed in the economics literature.

Furthermore, as noted in Christensen and Connault (2019) [21], local sensitivity analysis
may fail due to nonlinearities in either ψ or ν, or a mismatch in the magnitudes of the sampling
variability in ψ̂, ν̂ and the misspecification. The effect of a perturbation in ν on ψ may vary
with the distribution of the data. It is therefore important to solve Problem 0 exactly, that is,
non-locally.

The main goal of the present paper is to propose a general econometric framework for
distributional counterfactual/sensitivity analysis, that relates these literatures by solving two
complementary problems:

Problem 1 Given a scalar policy functional ν of the probability distribution P0 and a finite
increment h, we would like to find counterfactual probability distributions Ph = Pν,h,P0

that
have the given effect

ν(Ph) = ν(P0) + h, h ∈ J ⊂ R (0.1)

on the parameter ν, and deviate minimally from P0 in a suitable sense.

The idea is to think of a counterfactual scenario (e.g. policy, decomposition, misspecification,
mismeasurement, violation of identifying assumptions) as transforming a scalar statistic ν from
the status quo value ν(P0) to the counterfactual value ν(P0) + h. In order to predict the
counterfactual effect on any other parameter, we need to characterize the entire counterfactual
distribution Ph.

Problem 2 Given an outcome functional ψ of the probability distribution P0 and a coun-
terfactual distribution Ph, we would like to evaluate the change in ψ at Ph relative to the status
quo distribution P0.

Furthermore, the solution of Problem 2 should be applicable to the setting of Problem 1,
where Ph is defined implicitly and depends on P0. The solution of Problem 2 should also be
applicable to the setting of traditional Oaxaca-Blinder decompositions, where it is assumed that
the conditional distributions of Y given X do not change and the counterfactual distribution of
X is specified without reference to P0.

With the counterfactual distributions Ph specified implicitly via a change in a functional ν
by solving Problem 1, we obtain the counterfactual effects:

∆hψ(P0) := ψ(Ph)− ψ(P0), h ∈ J ⊂ R (0.2)

of changes in ν on ψ, which can be evaluated by solving Problem 2. Our methodology thus solves
Problem 0 and contributes to the sensitivity analysis of structural estimators by describing the
global relationship between ψ and ν and by making the counterfactual distributions for finite
(non-local) changes explicit. Our methodology contributes to the policy analysis by evaluating
the change in an arbitrary statistic ψ directly, and to the decomposition analysis by constructing
counterfactual distributions for general factors ν of the covariates X.

An important limitation in the scope of the paper is to avoid entirely the questions of
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causality and endogeneity and to focus solely on descriptive methodology2.

Methodology The policy parameter ν is a 1-dimensional object (i.e. a scalar), whereas the
state of nature P0, of which the parameter ν is a functional, is, in general, an infinite-dimensional
object (i.e. a probability measure). Therefore, by a simple degree counting argument, the
mapping from the counterfactual increment h in ν to the counterfactual distribution Ph is,
in general, underdetermined and not one-to-one. In other words, eqs. (0.1) and (0.2) identify
a set of counterfactual distributions and effects. This means that the researcher [e.g. 36, 6,
7] must inevitably impose infinitely more structure on Problem 1 in order to discipline partial
identification and obtain a one-to-one relationship between parameters ν and ψ in eq. (0.2). This
phenomenon is known as path dependence in the decomposition literature [e.g. 33]. Despite its
popularity with the practitioners, the implicit additional structure in the sensitivity measures
of [36, 6, 7] has not yet been discussed in the sensitivity analysis literature.

This paper formalizes the required additional structure in Problem 1 in a general way via
a suitable infinite-dimensional parameter by using simple geometric insights. This paper also
formalizes the connection between infinitesimal perturbations (and their sensitivities) and non-
infinitesimal or global counterfactual distributions (and their effects) using gradient flows on the
space of probability measures. To this end, we adopt the geometric framework of a manifold P in
order to apply traditional calculus techniques (i.e. differentiation and integration) to probability
distributions. Set P is a nonparametric collection of probability distributions on the sample space
X , which needs to be restricted only by regularity conditions that depend on the functionals ν
and ψ.

The missing parameter that we introduce is a metric of distance g on the set of counterfactual
distributions P. The purpose of the metric is to determine the direction of steepest increase in
the policy functional

ν : P→ R
at each point P ∈ P. We call this direction the gradient score of ν at P . Because the gradi-
ent is typically unique and depends on the notion of distance on P, the metric g is a natural
parameter to regularize Problem 1. Furthermore, we show how, under regularity conditions,
local misspecification deviations and sensitivities can be connected and integrated to obtain
global (non-infinitesimal) counterfactual distributions (0.1) and effects (0.2): We define a path
of counterfactual distributions {Pg,h}h∈J to be the trajectory of the gradient flow of the func-
tional ν on P that passes through the status quo distribution P0. We define the corresponding
counterfactual effects ∆g,hψ(P0) by the eq. (0.2).

Our use of geometric techniques for counterfactual or policy analysis is not only technically
important and convenient, but is also economically and statistically natural. The metric has
an economic interpretation of the cost of changing the state of nature P ∈ P. The direction of
the counterfactual curve h 7→ Pg,h at each point is determined jointly by the policy functional ν
and the cost metric g. This should be compared to the compensated demand curve in consumer
theory that is determined jointly by the utility function (consumer preferences) and prices. Our
methodology thus provides a natural way to model counterfactual probability distributions for
policy analysis purposes with a statistical functional that reflects policymaker preferences and
a metric over alternative distributions that reflects the cost of counterfactual distributions. On
the other hand, the counterfactual objects defined in this paper have good statistical properties.
Because we specify counterfactual distributions with local optimality conditions, our non-local

2All counterfactuals in this paper are descriptions of hypothetical states of nature. The main objective here
is to develop a general framework to describe nonparametric counterfactual distributions with changes in scalar
functionals. The conditions for causal interpretations of these counterfactuals are outside of the scope of this
paper. But see Section 1.4.3 for an illustration of how the methodology of this paper can be combined with
instrumental variables approach to causal inference.
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counterfactuals depend smoothly on the status quo distribution P0. Consequently, the effects in
eq. (0.2) are not only identifiable, but are also consistently estimable with data generated from
P0, which requires smooth dependence on P0 [see 49].

Literature Our methodology generalizes seemingly unrelated results of [36, 6, 7], and [30].
The former are approximate effects of changes in the distribution along the hardest submodel
for a descriptive statistic ν on a structural estimand ψ obtained via the asymptotic distribution
of a joint estimator (ν̂, ψ̂). The latter are approximate Oaxaca-Blinder effects of changes in
the means of covariates X on the quantiles of the outcome Y obtained via location shifts of
the distribution of covariates. The results of [36, 6, 7] map into our framework by setting the
cost parameter g to the information metric3. The results of [30] map into our framework by
setting the cost parameter g to the L2-Wasserstein metric4. We extend both sets of results
by allowing counterfactual analysis with a general policy functional ν and cost metric g, and
by describing changes of a non-infinitesimal magnitude h in both the entire distribution and a
general outcome functional ψ of the distribution. Our derivation of the Wasserstein gradient is
related to [70]. Our derivation of the influence function of the effect functional (0.2) is related
to [41, 73]. References to technical literature are made in the appropriate sections of the paper.

Roadmap To comment on the technical aspects of the paper, Problems 1 and 2 are solved
by applying von Mises calculus of infinitesimal changes in the statistical functionals ν and ψ.
This is done by working with influence functions (scores) to compute the infinitesimal changes
and integrating5 the infinitesimal changes to obtain distributional and scalar counterfactuals of
a non-infinitesimal magnitude h. Influence functions ν̃P , ψ̃P : X → R are an important tool
in the theory of asymptotic inference for estimators of the parameters ν(P ), ψ(P ) with data
generated from P . The influence function obtains its name from the fact that the contribution
of an additional observation Xn on the value of any regular estimator ψ̂ of parameter ψ at
distribution P is ψ̃P (Xn)/n in large samples [see e.g. 55, 56]. Influence functions are known for
many estimators because they determine their robustness properties [e.g. 40, 44], asymptotic
distribution [e.g. 56, 45] and efficiency bounds [e.g. 13, 65]. The influence function is a useful
object for many purposes in econometrics [see 45] and can be computed with techniques of
Ichimura and Newey (2017) [45].

Problem 2 is solved readily by using influence functions ψ̃P to compute the infinitesimal
changes in ψ along any regular path from P0 to Ph and integrating them via the fundamental
theorem of calculus. In the setting of Oaxaca-Blinder decompositions, this yields a computa-
tionally efficient method to evaluate the counterfactual effect in an arbitrary functional ψ of the
distribution of the outcome variable Y without requiring access to the entire conditional distri-
bution of Y given X. Our calculation extends the RIF regression technique of Firpo, Fortin,
and Lemieux (2009) [30] to evaluate the change in ψ with arbitrary precision with a sequence
of regressions, rather than only to first order with a single regression.

Problem 1 is solved in two installments: local (infinitesimal) analysis and global (non-
infinitesimal) analysis. Locally at every distribution P, we solve for the gradient score with
respect to the given metric g of a functional ν in terms of the influence function ν̃P . The influ-
ence function is the gradient score for the Fisher-Rao information metric. We discuss gradient

3The information metric, also known as the Fisher-Rao metric, is the metric tensor of the Bhattacharyya
geodesic distance on the unit L2 sphere. It is topologically equivalent to the Hellinger norm and the total
variation distance. It coincides with the Kullback-Leibler divergence locally to second order. All these distances
measure statistical dissimilarity of probability distributions.

4The Wasserstein metric, also known as the Kantorovich or Kantorovich-Rubinstein metric, measures the
optimal cost in the Monge-Kantorovich problem of transporting population mass from one distribution to another.

5Integrating the gradient flow differential equation on the space of probability distributions P endowed with
a manifold structure to compute distributional changes and applying the fundamental theorem of calculus to
compute scalar changes along the integral paths of distributions.
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flow counterfactuals of the information and 2-Wasserstein metrics. We also generalize these
by allowing for cost-distribution weights on the sample space X in both metrics, and provide
formulas that map the influence function into the gradient score. For completeness, we also
provide a formula for the influence function using approximations to the identity (i.e. kernels)
in the Riesz representation of the pathwise derivative following [45]. From the local analysis we
obtain a score field, which consists of a local perturbation at each counterfactual distribution
P ∈ P. To connect the infinitesimal perturbations at different distributions P ∈ P, we use the
structure of a manifold on P, modeled on exponential Orlicz spaces following [61]. To obtain the
path of counterfactual distributions Pg,ν,h,P0

, we solve the resulting gradient flow differential
equation on P with the initial condition P0. We then use the smoothness properties of the
differential equation on the initial condition P0 to derive the influence function of the scalar
effect ∆g,ν,hψ(P0) in (0.2) along the integral curve Pg,ν,h,P0

of the flow.
The gradient is the direction of least costly counterfactual states of nature Pg,ν,h,P0

for the
policy that increases parameter ν and incurs a cost equal to the distance g(Ph, P0) between the
counterfactual state and the status quo state. The magnitude of the gradient score depends on
the metric. The counterfactual distribution Pg,ν,h,P0

is obtained by integrating the infinitesimal
perturbations (gradient scores) starting from P0 until the increment h in ν is attained. This
requires a rescaling of the gradient scores such that the local change in the policy functional
is always unitary. The effect of ν on ψ is the change in ψ along the curve of counterfactual
distributions parametrized by the change h in ν. Results obtained in this paper extend those of
Andrews, Gentzkow, and Shapiro (2017) in [6] and those of Firpo, Fortin, and Lemieux (2009) in
[30]. [6] describe the infinitesimal change in a structural estimand ψ along the influence function
ν̃P of a descriptive statistic ν by working with the asymptotic covariance6 of a joint estimator
(ψ̂, ν̂) and, implicitly, with information gradient flows. [30] describe the infinitesimal change in
quantiles of Y along the Wasserstein gradient of the mean of X by working with location shifts
of the distribution of X and, implicitly, with optimal transport flows.

Bonus As an application of our methodology, we obtain a nonparametric Oaxaca-Blinder
counterfactual composition interpretation of the OLS and IV estimators. From our methodol-
ogy, it follows that there exist 1-dimensional models of counterfactual distributions parametrized
by (the change in) the mean of the covariate X, such that (the large sample limit of) the estima-
tor measures the local effects on the mean of the outcome variable Y in these models. Contrary
to a common belief, the nonparametric counterfactual distributions of covariates associated with
the OLS coefficient are not location shifts in X, if the status quo distribution of X is not Gaus-
sian. The IV coefficient measures the effect on the mean of Y of the variation in the mean
of X induced by changing the marginal distribution of the instrument Z. By contrast with
OLS , the counterfactual distributions associated with the IV coefficient do not preserve the
conditional distributions of Y given X in general. Similarly with OLS , the IV counterfactual
distributions are not location shifts in either X or Z, if the joint status quo distribution of
(Y,X,Z) is not Gaussian. Moreover, location shifts in the distribution of covariates X are a
special case of transport counterfactuals that correspond to gradient flows in the Wasserstein
metric. Their infinitesimal scalar effects take the form of an average derivative, which is a very
common estimand in semiparametric estimation.

Technical contribution Nonparametric influence function of the GMM functional, infor-
mation gradient flow characterization of the hardest submodel, Lebesgue differentiation formula
for the influence function, Wasserstein gradient formula, Lipschitz condition for existence of
integral curves, influence function of the global OLS effect.

6Asymptotic covariance of a joint estimator (ψ̂, ν̂) is the inner product EP [ψ̃P ν̃P ] of influence functions ψ̃P
and ν̃P and has the value of the derivative of ψ in the direction of the information gradient ν̃P of ν.
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The rest of this paper is organized as follows. A nontechnical Section 1 presents two high-
level results that cover Problems 1 and 2 while relying on minimal amount of notation and
contains several detailed examples that illustrate our methodology with common econometric
estimators: ATE , OLS , IV and GMM . Section 2 relies on standard notation of semiparametric
efficiency theory to derive gradient scores from the influence function, characterizes the influence
function and the counterfactual distributions and effects along the influence function that can be
obtained from the asymptotic distribution of regular estimators as suggested by Gentzkow and
Shapiro (2015) [36]. Section 3 uses the exponential manifold structure of [61] to prove existence
of gradient flows for the functionals discussed in the sequel and derives the influence function of
their scalar effects (0.2).

0.1 Notation, conventions, preliminaries.

(X ,A) Sample space, with X ⊂ Rd and Borel σ-algebra A;
F,P Collection of counterfactual probability distributions on (X ,A);
F0, P0, Status quo probability distributions in P;
Fh, Ph Counterfactual probability distributions, path of counterfactual distributions;
FX Cumulative distribution function of random variable X;
fX , f, %, p, q Probability density functions of random variable X, probability measure P ;
TP Tangent space at point P ∈ P;
u, vP , wP Score functions vP = d

dt log ft, i.e. tangent vectors in TP ;
ν, ψ Statistical functionals (also parameters) ν, ψ : P → R. E.g. descriptive statistics

or large-sample limits of estimators ν̂, ψ̂;
ψ̃P , ν̃P Influence functions of statistical functionals at probability distribution P ∈ P;
∆ν,hψ Counterfactual effect of increasing ν by h on ψ;
Pg,ν,h Gradient flow path of counterfactual distributions for functional ν in metric g;
∆g,ν,hψ Counterfactual effect on ψ of increasing ν by h along the gradient flow path in

metric g, i.e. ∆g,ν,hψ = ψ(Pg,ν,h)− ψ(P0);
g, gP Metric on P, i.e. collection of inner-products gP (·, ·) on tangent spaces TP of

model P, and the induced geodesic distance function g(·, ·) on P;
gF, gK Fisher-Rao information metric, 2-Wasserstein-Kantorovich metric;
∇gψP Gradient score function in TP of functional ψ with respect to metric g;

v,w Velocity vector fields in {∇xϕ ; ϕ ∈ C∞c (Rd)}
L2(P ;Rd)

;
δx Point mass at x ∈ X ;
1A Indicator function of set A;
L2(P ) Space of measurable maps f : X → R with

∫
X |f |

2dP < +∞;
L2

0(P ) Subspace of maps f ∈ L2(P ) with zero P -mean;
L2(P ;Rd) Space of measurable maps f : X → Rd with

∫
X ‖f‖

2
Rd < +∞;

J Open interval J ⊂ R containing 0 ∈ R;
L d Lebesgue measure on Rd;
µ, χ, ζ means of the outcome, covariate, and instrument random variables Y,X,Z;
t, s time parameter of unscaled flow curves;
h time parameter of scaled flow curves;
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1. Scalar counterfactuals

We begin with a warm up exercise by solving Problem 2 in the setting of Oaxaca-Blinder
(OB) decompositions in a novel way. This result for OB decompositions is then used to explain
our approach to counterfactual distributional analysis with a policy functional by relying on
minimal amount of notation. Empirical implications of our methodology are then illustrated
with several examples of counterfactual distributions and effects implied by common estimators.

1.1 Oaxaca-Blinder setting. Let FXY,0 : X × R→ [0, 1] denote the joint cumulative distri-
bution function of an outcome random variable Y and covariates X, also called the status quo
distribution and also denoted by F0. The goal of OB-type counterfactual analysis is to evaluate
the effect of a change in the distribution of covariates X on the marginal distribution of the
outcome Y . Let FX,1 denote the counterfactual distribution of covariates, e.g. formulated by
analyzing a policy that transforms X or estimated with a sample drawn from a control popula-
tion of agents. The conditional distribution FY |X(·|x) =

∫ .
−∞ fXY,0(x, y)/fX(x) dy describes the

structure of stochastic assignment of outcomes y to agents with covariates x. Under the core OB
assumption that the outcome assignment FY |X is unaffected by the change in the distribution
of covariates, the counterfactual and the status quo marginal distributions of the outcome are
given by

FY,h(y) =

∫
X
FY |X(y|x) dFX,h(x), h = 1, 0. (1.1)

To quantify the difference between FY,1 and FY,0, empirical researchers often look at coun-
terfactual effects on scalar parameters of the outcome distribution. For example, Oaxaca (1973)
[58] and Blinder (1973) [14] studied the difference in the expected values of FY,1 and FY,0.

For a given functional
ψ : FY → R

of the marginal distribution FY ∈ FY , the effect of a small perturbation in the distribution of
Y on ψ can be approximated by the von Mises (1947) [53] formula:

d
dh |h=0

ψ(FY,h) = lim
h→0

h−1[ψ(FY,h)− ψ(FY,0)] =

∫
R
ψ̃FY,0(y) d[FY,1 − FY,0](y) (1.2)

where FY,h = (1 − h)FY,0 + hFY,1 is the mixture model interpolating the status quo and the
counterfactual distributions of Y , and ψ̃FY,0 : R → R is the influence function of parameter ψ.
A rigorous definition of the influence function7 is important to the results presented later in this
paper but requires investment in notation and is therefore postponed to Section 2. Any func-
tional that can be estimated at the parametric

√
n-rate with some uniformity in the asymptotic

distributions has an influence function. Influence functions for all functionals discussed in the
sequel are provided. By definition, the influence function ψ̃FY has finite second moment and
zero expectation under FY . From eq. (1.2) it follows that ψ̃FY,0(y) = d

dh |h=0
ψ(FY,h) when we

take FY,1 to be the point mass at y. This suggests the interpretation of ψ̃FY (y) as the effect of
replacing an infinitesimal part of the distribution FY with a point mass at y on the parameter
ψ(FY ). For example, the influence function of the mean functional

µ(FY ) =

∫
R
y dFY (y) is µ̃FY (y) = y − µ(FY ). (1.3)

Replacing part of the distribution FY with mass in the tail of the distribution has a larger effect
on the mean than replacing part of FY with mass close to the expected value.

7Riesz representation of the derivative of the map ψ with respect to the information metric inner product
[47].
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Following Firpo, Fortin, and Lemieux (2009) [30], by using the linearity of expectations,
the law of iterated expectations and the core OB assumption that the conditional distributions
FY |X are unaffected by changes in the law of X, we obtain from eqs. (1.1) and (1.2):

d
dh |h=0

ψ(FY,h) =

∫
R
ψ̃FY,0(y) dFY,1(y)

=

∫
X

∫
R
ψ̃FY,0(y) dFY |X(y|x) dFX,1(x)

=

∫
X

E
[
ψ̃FY,0(Y )|X = x

]
dFX,1(x). (1.4)

Equation (1.4) shows that the approximate effect of evolving the distribution of covariates FX,0
toward FX,1 on parameter ψ(FY,0) can be computed by averaging the nonparametric regression
of the transformation ψ̃FY,0(Y ) of the outcome variable Y onX with respect to the counterfactual
distribution of covariates. Furthermore, the exact counterfactual effect of evolving FX,0 to FX,1
can be computed by integrating the infinitesimal changes d

dhψ(FY,h) along the path h 7→ FY,h
via the fundamental theorem of calculus:

Proposition 1 (Effect of a change in the distribution of X on a statistic of Y ). Suppose
the marginal distribution of covariates can be changed from FX,0 to FX,1 without affecting the
conditional distributions FY |X . Then the effect on the statistic ψ of FY can be computed as

∆ψ = ψ(FY,1)− ψ(FY,0) =

∫
[0,1]

∫
X

E
[
ψ̃FY,h(Y )|X = x

]
dFX,1(x) dh (1.5)

where FY,h = (1 − h)FY,0 + hFY,1 with the counterfactual distribution FY,1 given in eq. (1.1),
and ψ̃F is the influence function of parameter ψ at distribution F .

Proposition 1 extends the result of Firpo, Fortin, and Lemieux (2009) [30] who obtained a
first-order approximation to ∆ψ with (1.4). Proposition 1 can be used to estimate the exact
counterfactual effect on ψ(FY ) without estimating the entire conditional distribution FY |X in
order to find the counterfactual distribution FY,1 via eq. (1.1) as described in Chernozhukov,
Fernández-Val, and Melly (2013) [20]. For example, in the case of the quantile functional
ψτ (FY ) = F−1

Y (τ), it is intuitively clear that knowing only a small part of the counterfactual
distribution function FY,1 in a neighborhood of the counterfactual quantile ψτ (FY,1) is required
to find the effect ∆ψτ . Therefore, knowing only a small subset of the conditional probabilities
{FY |X(y|x) ; ψτ (FY,1)− ε < y < ψτ (FY,1) + ε} is required to find ∆ψτ . This intuition is made
precise with eq. (1.5) by substituting the influence function of the quantile

ψτ (FY ) = F−1
Y (τ), ψ̃τ,F (y) = [τ − 1{y ≤ ψτ,F }]/fY (ψτ,F ) (1.6)

and noting that the counterfactual effect ∆ψτ depends on the conditional distribution FY |X ,
through the regression of indicators 1{Y ≤ ψτ (FY,h)} on X and density values fY,h(ψτ (FY,h)),
only at the τ -quantiles on the path FY,h. Moreover, eq. (1.5) also suggests an iterative procedure
to evaluate ∆ψτ with regression and density estimation methods, leading to a new estimator of
the unconditional quantile effect.

1.2 General nonparametric setting. We now extend the Oaxaca-Blinder setting to allow
counterfactual analysis of a scalar parameter along a general and, furthermore, implicit path of
joint counterfactual distributions Fh as follows. A more suitable for our purposes form of the
von Mises formula for the pathwise derivative (1.2) is the inner product (i.e. covariance)

d
dh |h=0

ψ(Fh) =

∫
ψ̃F0(x, y)vF0(x, y) dF0(x, y) (1.7)
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of the influence function ψ̃F of the parameter ψ and the score function (i.e. derivative of log
likelihood)

vF0(x, y) = d
dh |h=0

log fh(x, y) = ḟ0(x, y)/f0(x, y) x, y ∈ X × R (1.8)

of the 1-dimensional parametric model Fh, obtained by smoothly interpolating the joint status
quo distribution F0 and the joint counterfactual distribution F1.8

The score vF0
is the infinitesimal perturbation (i.e. direction and magnitude of change)

in the status quo distribution F0 along the path h 7→ Fh. The influence function ψ̃F0
is a

particular score associated to the functional ψ by the covariance inner product (the information
metric). Specifically, ψ̃F0 is the score that maximizes the covariance inner product, as follows
readily from the Cauchy-Schwarz inequality. Formula (1.7) can be used to find approximate
and exact counterfactual changes in ψ along any regular parametric model by taking its scores
and computing the covariance with the influence functions of ψ as in Proposition 1. The main
point this paper makes is that the pathwise derivative (1.7) can be used to make the path of
counterfactual distributions Fh implicit by replacing it with a collection of scores {vF }F∈F, one
at every hypothetical distribution F ∈ F. Furthermore, this collection of scores can be specified
with counterfactual local changes in a policy functional ν : F → R that are often discussed by
practitioners informally [see 36, 6, 7, references therein, citations thereof, and Section 1.5].

Proposition 2 (Path of counterfactual distributions of a score field, effect on a statistic). Sup-
pose a scalar parameter ν defined on F can be changed locally at each counterfactual distribution
F ∈ F along the score vF . Suppose the collection of scores {vF }F∈F satisfies a local Lipschitz
condition. Then at any status quo point F0 ∈ F, there exists a unique path of counterfactual
distributions {Fh}h∈J defined on an open interval J containing 0, such that ν(Fh) = ν(F0) + h

is the parameter of the path, and its score d
dh log fh is proportional to vFh for every h ∈ J .

Moreover, the effect of increasing the policy parameter ν by h ∈ J on another scalar param-
eter ψ defined on F is given by

∆ν,hψ = ψ(Fh)− ψ(F0) =

∫
[0,h]

∫
ψ̃Ft

[
vFt/CovFt(ν̃Ft , vFt)

]
dFt dt, (1.9)

where ψ̃Ft is the influence function of ψ, and ν̃Ft is the influence function of ν.

Proposition 2 says that counterfactual distributions and the corresponding scalar effects can
be specified implicitly by considering infinitesimal changes in a policy parameter ν(F ) ∈ R and
the infinitesimal perturbations (scores) vF to the distribution F that generate these local changes
in ν. Under a Lipschitz condition, the scores can be integrated into a curve of counterfactual
distributions. The main difficulty in this result is that scores at different distributions are not
readily comparable because they belong to different tangent spaces. This is because F is not a
linear space. The technical solution is to parametrize F by a normed linear space in a smooth
and consistent way so that all tangent spaces can be identified with that single linear space.
Such parametrization connects scores at different distributions and also makes the Lipschitz
condition precise. The formula for the scalar effects follows by the fundamental theorem of
calculus.

In order to apply Proposition 2, a score field {vF }F∈F is required. These scores can be
found in the empirical interpretation of an estimator ( ATE , OLS , IV ), and in the asymptotic
distribution of an estimator. In the rest of the paper we will discuss a nonparametric framework
and results that obtain the scores vF and counterfactual distributions Fh from the combination

8The formula is written for a general statistic ψ of the joint distribution FYX and a general regular path Fh
from the status quo distribution F0 to the counterfactual distribution F1; in the case where ψ is a statistic of
the marginal distribution FY , the influence function ψ̃F depends only on y; in the case where Fh has constant
conditional distributions FY |X as in Proposition 1, the score v depends only on x.
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of a functional ν and a metric of distance or cost g on F by solving local optimality conditions.
Specifically, we will take vF to be the direction of most rapid change in ν. These locally optimal
counterfactual distributions and scores will be denoted by Fg,ν,h and ∇gνF = d

dh log fg,ν,h, and
called the g-flow curves and g-gradients of the functional ν. The metric g is a generalization of
the covariance inner product (1.7) to allow policy changes in ν that are optimal in the sense most
suitable to the economic application at hand rather than in the sense of statistical information
distance.

We provide the technical details of the local analysis of gradient scores in Section 2 and
of the global (non-infinitesimal) analysis of integral curves of score fields in Section 3. In the
rest of Section 1 we showcase our framework by examining nonparametric counterfactual inter-
pretation of several common estimators through the lens of the von Mises derivative (1.7) and
Proposition 2.

1.3 Effect of changing the mean of an indicator X on Y: ATE. A simple example that
can be studied with either Proposition 1 or 2 is the potential outcomes framework. Suppose we
want to estimate the Oaxaca-Blinder effect of increasing the proportion of unionized workers χ
on a distributional statistic ψ of wages Y :

d
dχψ(FY ), where ψ : FY → R, χ = EF [X],

and X is the indicator of union status. Let fX,χ = (1−χ)δ0 +χδ1 denote the density function of
a hypothetical distribution of X, where δx is the point mass at x. Under the OB condition that
changes in the mean parameter χ do not affect the conditional distributions {FY |X=0, FY |X=1},
we obtain a path of joint counterfactual distributions {FXY,χ}0<χ<1 i.e. a 1-dimensional para-
metric model. The score function of this path is

vF (x) = d
dχ log fY |X(y|x)fX,χ(x) =

−1

1− χ
δ0(x) +

1

χ
δ1(x)

=
x− χ

χ(1− χ)
=

χ̃F (x)

VarF [X]
a.s. δ{0,1},

where

χ(F ) =

∫
x dF, χ̃F (x) = x− χ(F ) (1.10)

is the influence function of the mean functional of the joint distribution F . We want to compute
the infinitesimal effect of increasing the proportion of unionized workers χ on a statistic ψ. By the
von Mises formula (1.7), this can be computed as the covariance between the influence function
of the statistic ψ̃F and the score function of the counterfactual model vF = χ̃F /VarF [X], which
happens to be the normalized influence function of the mean parameter χ of our model:

d
dχψ(Fχ) =

∫
ψ̃F (y)

[
χ̃F (x)/VarF [X]

]
dF (x, y) = E[ψ̃F (Y )|X = 1]− E[ψ̃F (Y )|X = 0].

If we take ψ to be the mean µ of Y defined in (1.3), we obtain the population level counterfactual
interpretation of the average treatment effect d

dχµ(Fχ) = E[Y |X = 1]− E[Y |X = 0] = ate.
The point we make with this example is that the influence function of a statistical functional

serves two different purposes in the present paper: (i) ψ̃F is a computational device for the
pathwise derivative of the outcome parameter ψ; (ii) χ̃F is a direction of perturbation to the
distribution F that controls the counterfactual value of the policy parameter χ. Although we
started with an explicit path of counterfactual distributions, Proposition 2 says that we can also
start with the local perturbations χ̃F and local effects d

dχψ and add them together.
In the case of an indicator policy variable, there is only one possible path of marginal counter-

factual distributions, therefore a unique way to change the mean χ, and consequently a unique
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OB-effect d
dχψ(FY ) on an outcome functional ψ. However, as discussed in the Introduction,

the same question has been raised by practitioners in the case of a general random element X
and a general policy functional ν of its distribution. The latter question is ill-posed; and coun-
terfactual distributions generated by the score field of influence functions ν̃F is one possibility
among many. A new methodology is therefore required to provide practitioners with tools to
model and compute infinitesimal effects d

dνψ(F ) and non-infinitesimal effects ∆ν,hψ(F ). This is
achieved by finding natural perturbations (scores) vν,F to F that increase ν infinitesimally, and
counterfactual distributions h 7→ Fν,h parametrized by the change h in ν.

1.4 Effects of changing the mean of a scalar X on Y: OLS, IV, average derivative.
We now consider three different examples of Oaxaca-Blinder counterfactual composition effects
by changing the mean of a general scalar covariate X. The purpose of these examples is to
illustrate that: (i) a nonparametric interpretation in terms of counterfactual distributions is
available for common structural estimators; (ii) there are many natural ways to change the
probability distribution in order to control a scalar statistical parameter (the mean here). To
quantify the distributional changes, we consider their effects on the mean and the τ -quantile of
the outcome variable Y , and let χ, µ and ψτ denote these functionals in the sequel:

χ(F ) =

∫
xdF, µ(F ) =

∫
y dF, ψτ (F ) = F−1

Y (τ).

We reserve notation ν and ψ for generic policy and outcome functionals.

1.4.1 Linear regression (OLS) Fortin, Lemieux, and Firpo (2011) [33, p. 7] write:

“the coefficient β in a standard regression ... E(Y |X) = β0 + βX ... can be interpreted as
the effect of increasing the mean value of X on the mean value of Y ... using the law of
iterated expectations, E(Y ) = β0 + βE(X)”.

In the structural equation model with a linear conditional expectation function, any change
in the distribution of covariates X to a counterfactual FX,h that has χ(FX,h) = χ(FX,0)+h and
satisfies the Oaxaca-Blinder condition that FY |X are unaffected, generates the same linear effect
∆χ,hµ = βh on the mean of outcome Y . While we may not think of the linear model as the
exact description of the data, it is commonly used in empirical work, and the OLS coefficient
β is commonly interpreted in this way.

However, this interpretation of the regression coefficient β is also valid in the completely
nonparametric (nonlinear) model as well, with the caveat that we must be precise about the
counterfactual distributions FX,h and consider infinitesimal changes. The caveat arises be-
cause the least squares projection (β0, β) of Y on the linear span of {1, X} depends not only
on the conditional distributions FY |X , but also on the marginal distribution FX [74]. For a
small perturbation in FX , changes in parameters µ, χ, β0, β : F → R are approximately linear
by smoothness. Furthermore, these small changes are related by the chain rule through the
regression equation:

∆µ = ∆β0 + (∆β)χ+ β(∆χ) + o(∆F )

which is in general different from β(∆χ). This means that the OLS coefficient β measures the
effect of changes in χ on µ only for a particular perturbation in FX . Somewhat surprisingly,
this perturbation is not a location shift X 7→ X + h, if the distribution of X is not Gaussian.

To see the score vOLS,F with the infinitesimal effect β(F ) · ∆χ on µ(F ), recall the OLS

coefficient formula:

β(F ) =
CovF (Y,X)

VarF (X)
=

∫ [
y − µ(F )

][
x− χ(F )

]
dF∫ [

x− χ(F )
]2

dF
=

∫
µ̃F (y)

χ̃F (x)

VarF [X]
dF (x, y) (1.11)
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where we unpacked the expectation operators in Cov(Y,X) and Var(X), substituted our func-
tional notation µ and χ for the means of Y and X, and recognized the influence functions of
these functionals. Comparing the last expression in (1.11) with the von Mises formula (1.7), we
see that β is the derivative of the mean functional µ of Y along the rescaled influence function
vOLS,F = χ̃F /VarF [X] of the mean χ of X. Furthermore, applying Proposition 2 with the score
field {vOLS,F }F∈F, we conclude that for every status quo distribution F0 with enough regularity,
there is a unique parametric model {FOLS,h}h∈J of counterfactual distributions that has these
scores. The parameter of this model is the change h = χ(FOLS,h)−χ(F0) in the mean of X, and
the infinitesimal effects on the mean µ of Y of these counterfactual distributions are given by
the OLS coefficients:

d
dhµ(FOLS,h) = β(FOLS,h) every h ∈ J. (1.12)

In other words, if we interpret the linear regression coefficient β as the effect of increasing the
mean of X on the mean of Y and allow general misspecification of the population distribution
F0 ∈ F , then FOLS,h is the (unique in a suitable sense) model of counterfactual distributions
that are consistent with our interpretation of the functional β on F.
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Figure 1: OLS counterfactual distributions

Furthermore, by eq. (1.9), the non-infinitesimal effect of a real change h in χ on µ is given
by the path integral of OLS coefficients

∆OLS,hµ = µ(FOLS,h)− µ(F0) =

∫ h

0

β(FOLS,t) dt (1.13)

=

∫ h

0

∫
X

[
Ef0 [Y |X](x)− µ(Ft)

] x− χ(Ft)

Varft [X]

fX,t
fX,0

(x) dFX,0(x) dt.

The path h 7→ FOLS,h is the integral curve of the ordinary differential equation in the space of
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counterfactual probability distributions F:

fOLS,h(x, y) = fY |X(y|x)fX,h(x) (1.14)

fX,h =
eu(h)

Ef0 [eu(h)]
fX,0 (1.15)

u̇(h) =
x− Ef0 [X]

Varfh [X]
, u(0) = 0. (1.16)

The right-hand side of the differential equation (1.16) is given by the rescaled influence functions
of the mean functional χ. The influence function χ̃F is the direction for changing the mean χ
that has the most rapid (gradient) change with respect to the covariance (information) metric
g in eq. (1.7). The scaling is such that the magnitude of the local change in χ is always unitary,
and the parameter of the integral curve is the non-infinitesimal change in χ. The equation
is written in terms of the score functions u at the status quo distribution F0, because scores
form a linear space that is required by the theory of differential equations. The corresponding
counterfactual probability distributions, which do not form a linear space, are obtained by
transforming scores at f0 into densities near f0 via the exponential map (1.15). The geometric
properties that are required by the theory of differential equations of this parameterization of
the nonparametric model F by the scores have been worked out by Pistone and Sempi (1995)
[61] who were apparently motivated by Efron (1975) [29]. The regularity condition to guarantee
existence of a solution {FOLS,h}h∈J with this parameterization is that the distribution of X has
a moment generating function at F0.

The effect ∆OLS,hµ can be estimated by discretizing the integral
∫

[0,h]
dt above and updating

recursively the mean, variance and likelihood ratio of the empirical marginal distribution of X
and the mean of the marginal distribution of Y , starting from the status quo values (i.e. forward
Euler method).

We run Monte Carlo experiments that produce a graphical representation of the OLS curve,
see Figure 1. We solve for the OLS curve analytically and for the influence function of the
effect ∆OLS,hµ in Section 3.

1.4.2 Average derivative Consider a closely related example. Firpo, Fortin, and Lemieux
(2009) [30] consider the OB counterfactual composition effect of the location shift

fLSH,h(x, y) = fY |X(y|x)fX,0(x− h) (1.17)

in the distribution of covariates FX , while holding the outcome assignment FY |X fixed. They
show that the infinitesimal change in the τ -quantile ψτ of the outcome variable Y is given by
the average derivative of the conditional expectation of its influence function ψ̃τ,F :

α :=

∫ [
d
dx

∫
τ − 1{y ≤ ψτ (F )}

fY (ψτ,F )
dFY |X(y|x)

]
dFX(x) = d

dhψτ (FLSH,h). (1.18)

Fortin, Lemieux, and Firpo (2011) [33, p. 8] describe this result as follows:

“the estimated coefficient [α] can be interpreted as the effect of increasing the mean value
[χ] of X on the unconditional quantile [ψτ of Y ]”.

We claim that it is a corollary to [30] that the curve of counterfactual distributions FOLS,h,
defined implicitly by eqs. (1.14) to (1.16), is not the location shift (1.17) in the distribution of
X, contrary to the common belief. This can be verified by either comparing α to the change
in the quantile ψτ of Y along the OLS model FOLS,h, or by comparing β to the change in the
mean µ of Y along the location shift model FLSH,h. Let us describe these.

The local effect of changing the mean χ of X with the OLS scores on the quantile ψτ of Y
follows by the von Mises formula (1.7). It is given by the covariance of the influence function
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ψ̃τ,F of the quantile functional (1.6) and the score vOLS,F of the OLS path of counterfactual
distributions (1.11):

d
dhψτ (FOLS,h) =

∫
τ − 1{y ≤ ψτ (F )}

fY (ψτ,F )

x− χ(F )

VarF [X]
dF (x, y), (1.19)

which is clearly different from α defined in eq. (1.18). That is, the infinitesimal changes in the
quantile ψτ of Y along two paths of counterfactual distributions FOLS,h and FLSH,h are different.

Likewise, the local effect of changing the mean χ of X along the scores of the location shift
model FLSH,h on the mean µ of Y , is also given by the covariance of the influence function µ̃F
and the score d

dh log fLSH,h of the model. From the results of [30] (or integration by parts) it
follows that

d
dhµ(FLSH,h) =

∫ [
d
dx

∫
[y − µ(F )] dFY |X(y|x)

]
dFX(x), (1.20)

which is clearly different from the OLS coefficient β in eq. (1.11), proving our claim. In other
words, the curves of counterfactual distributions FOLS,h and FLSH,h, that both contain the status
quo distribution F0 and are both parametrized by the change h in the mean χ of X from the
status quo value χ(F0), are different in general. Somewhat surprisingly, these curves coincide
when the initial condition FX,0 is a Gaussian.

In this paper we show that counterfactual distributions FOLS,h and FLSH,h are both gradient
flow curves of the mean functional χ(F ), but with respect to different metrics of distance on F.
The Wasserstein metric forces local changes in the distribution to be a continuous transportation
of mass within the sample space X . Wasserstein gradient flows minimize the distance in X that
mass must be transported over. By contrast, the information metric is ignorant of the topology
of X and allows mass to be moved discontinuously in X . Information gradient flows minimize
the total amount of mass that must be created and destroyed in X .

x

f(y)

(a) Fisher-Rao information distance gF

x

f(y)

(b) Wasserstein transport distance gK

Figure 2: Vertical and horizontal metrics between probability measures

The location shift curve FLSH,h in (1.17) turns out to be the most rapid way of changing
the mean χ with respect to the Wasserstein distance between probability distributions. The
exponential tilting curve FOLS,h in (1.15) turns out to be the most rapid way of changing the
mean χ with respect to the Fisher-Rao information distance between probability distributions.

In Section 2 we will explain the mathematical relationship between the gradient scores of the
information and Wasserstein metrics and show how to obtain transportation curves of counter-
factual distributions that generalize (1.17) by considering infinitesimal gradient changes in an
arbitrary scalar functional ν of F .

1.4.3 Instrumental variables regression (IV) We now discuss the counterfactual distribu-
tions of the instrumental variables estimator. IV regression is an econometric technique used
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in the context of the linear structural model

Y = βIV,0 + βIVX + ε, Cov (Z, ε) = 0 (1.21)

to find the effect of changes in the distribution of an endogenous covariate X on the outcome
variable Y . The idea is to induce exogenous variation in the distribution of X with an instru-
mental variable Z in order to bypass the endogeneity in the process that generates the joint
distribution FXY . Endogeneity in FXY means that the OLS coefficient β(FXY ) is not neces-
sarily informative for the causal relationship between X on Y of interest to the researcher. The
IV coefficient βIV(FXY Z) is commonly used in empirical work as an alternative to β, and is
commonly interpreted the same way as the OLS coefficient β but with the endogeneity effects
excluded.

Let ζ(F ) =
∫
z dF and ζ̃F (z) = z − ζ(F ) denote the mean of the instrument as a functional

of the state of nature FXY Z and its influence function. The nonparametric (nonlinear and
nonstructural) counterfactual interpretation of the IV coefficient

βIV(F ) =
CovF (Y,Z)

CovF (X,Z)
=

∫
µ̃F

ζ̃F
VarF [Z]

dF
/∫

χ̃F
ζ̃F

VarF [Z]
dF =

∫
µ̃F

ζ̃F
CovF [X,Z]

dF

follows from the von Mises formula (1.7) applied with the score function vIV,F = ζ̃F /CovF (X,Z),
which is the normalized influence functions of the mean ζ of instrument Z.

By Proposition 2 applied with the score field {ζ̃F }F∈F, there exists a model of counterfactual
distributions FIV,t containing the status quo distribution F0 and parametrized by the change t
in the mean ζ of Z, such that

βIV(FIV,t) =
dµ

dt

/dχ
dt

(FIV,t) =
dµ

dχ
(FIV,t) (1.22)

everywhere on this curve. If we reparametrize this model by the change h(t) = χ(FIV,t) −
χ(F0) in the mean χ of X (as in the counterfactual distributions FOLS,h and FLSH,h above),
we then have d

dhµ(FIV,h) = βIV(FIV,h) for all h by the implicit function theorem. In other
words, βIV measures the effect on the mean µ of Y of the change the mean χ of X along the
path of counterfactual distributions FIV,h. The counterfactual distributions FIV,h are obtained
by changing the marginal distribution FZ along the scores ζ̃F while holding the conditional
distributions fXY |Z = fY |XZfX|Z fixed, thereby changing the joint marginal distribution FXY .

The effect of manipulating the mean of X with an instrument Z on the τ -quantile of Y is
given by the covariance of the influence function ψ̃τ,F of the quantile functional and the score
function vIV,F of the path of counterfactual distributions FIV,h:

d
dh |h=0

ψτ (FIV,h) =

∫
τ − 1{y ≤ ψτ (F0)}

fY (ψτ,F0
)

z − ζ(F0)

CovF0
(X,Z)

dF0.

In the completely nonparametric model F, the counterfactual distributions FIV,h violate the
Oaxaca-Blinder condition because the outcome assignment FY |X may change with h. The IV

perturbation score can be decomposed into ζ̃F = EF [ζ̃F (Z)|X] + {ζ̃F − EF [ζ̃F (Z)|X]}, where
only the first term creates variation in the marginal distribution of X, and the second term can
be understood to alter the outcome assignment FY |X . Therefore, we may define a modified IV

coefficient with the OB property as:

βIVX :=
CovF (Y,EF [Z|X])

CovF (X,Z)
=

∫
µ̃F (y)

[
EF [ζ̃F (Z)|X = x]

/
CovF (X,Z)

]
dF.

The counterfactual distributions generated by the scores vIVX,F = EF [ζ̃F (Z)|X]
/

CovF (X,Z)

produce the same exogenous variation in the marginal distribution FX while holding the outcome
assignment FY |X fixed.
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To conclude, by revisiting empirical interpretation of common estimators with von Mises
calculus of the estimand statistical functionals, we find that OLS and IV estimates have a
nonparametric counterfactual interpretation as the effects of small changes in the mean of a
covariate X on the mean of an outcome Y , but differ in the counterfactual distributions of
these changes. Neither OLS nor IV counterfactual distributions are location shifts, but are
exponential tilts of the marginal status quo distributions of X and Z respectively. Moreover,
instruments with different joint distributions FXY Z produce different marginal counterfactual
distributions FXY,h and therefore different scalar effects ∆hψ(FY ).

1.5 Effect of changing moments and descriptive statistics; GMM. The original moti-
vating example for this paper is from Gentzkow and Shapiro (2015) [36] and Andrews, Gentzkow
and Shapiro (AGS 2017, 2018) [6, 7], who consider functionals defined with complex structural
models9. The problem AGS are concerned with is that the estimates in these models have a
nontransparent relationship to the distribution of the data. Toward solving this problem, AGS
propose formal measures of the relationship between structural parameter estimates and general
descriptive statistics of the data.

The setup of AGS is a GMM vector estimand θ(P ) that minimizes the population criterion
function

θW (P ) := arg min
θ

gθ(P )′WP gθ(P ), where gθ(P ) := P [gθ] :=

∫
X
gθ(x) dP (x) (1.23)

is a vector of moments of g : Θ×X → Rr with respect to the distribution P that also depend on
a vector of parameters θ ∈ Θ ⊂ Rp, andWP is a positive definite weighting matrix that depends
only on P . The minimization problem (1.23) implicitly defines the vector of GMM functionals
θW : P→ Rp, whose components can be taken as the outcome functional ψ in the counterfactual
analysis studied in the present paper. The core assumption in GMM estimation is that there
exists a parameter value θ(P ) that sets all r moment conditions to zero:

gθ(P )(P ) = 0 for all P ∈ P. (1.24)

When the number of parameters p < r is smaller than the number of moment conditions, (1.24)
is a restriction on the data distributions P ∈ P. On the restricted model, all functionals θW (P )

coincide for all choices of the weighting functionals W , so can be denoted simply by θ(P ). On
the unrestricted model, different weighting matrices in (1.23) define different GMM functionals
θW (P ) because the criterion functions can have different minima and critical values. Because
structural economic models never describe the real world exactly, the latter situation is much
more likely to be the case for a given dataset.

The problem is to understand how θW (P ) depends on descriptive statistics of the data
distribution P . AGS define the sensitivity of the estimand θ(P ), at a status quo distribution
P0 that is assumed to satisfy the moment conditions (1.24), to the fixed vector of moments
g|θ=θ0(P ) corresponding to the status quo value of the parameter θ0 = θ(P0), as:

Λ = −(G′WG)−1G′W, (1.25)

where G is the Jacobian matrix of the moment vector θ 7→ gθ(P ) whose θ-argument is evaluated
at the status quo value θ0, and the distributional P -argument of both W and G is evaluated at
the status quo distribution P0.

AGS [6] provide the following interpretation of the quantity Λ:

“Intuitively, Λ is a local approximation to the mapping from moments [g|θ=θ0(P )] to esti-
mated parameters [θ(P0)]. A reader ... can use Λ to predict ... [changes in θ(P )], provided

9To make the distinction between the structural estimation setting of AGS and the Oaxaca-Blinder analysis
setting, we use notation P ∈ P for the joint probability distribution of the data X.
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she can form a guess ... [of the changes in the moments g|θ=θ0(P )]”.

The objective of [6] is to understand how θ(P0) changes in response to a variation in a
descriptive statistic ν : P → R of the data distribution. In the present paper, we call this a
counterfactual effect ∆ν,hθ of a change h in ν on θ. As we showed in the case of the mean χ
of X, there are many such sensitivities (i.e. infinitesimal counterfactual effects), enumerated by
different scores vP in von Mises formula (1.7).

The result obtained by AGS is the chain rule of the pathwise derivative (1.7), applied with
the influence function θ̃P (x) = ΛP gθ(P )(x) of the GMM functional θ(P ) and the influence
function g̃|θ=θ0,P (x) = g(θ0, x)− gθ0(P ) of the θ0-moment functional g|θ=θ0(P ):

d
dν |P=P0

θ(P ) =

∫
θ̃P0

(x) vP0
(x) dP0 =

∫
ΛP0

g(θ0, x) vP0
(x) dP0 = ΛP0

[
d
dν g|θ=θ0(P )

]
P=P0

,

which says that to find the local effect d
dν θ(P ) on the GMM parameter, it is sufficient to find the

effect on the (state of nature dependent) vector of moments g|θ=θ0(P ). In this paper, we provide
the tools to study the infinitesimal effects d

dν θ(P ) and d
dν g|θ=θ0(P ) of a change in a functional

ν along different scores and the corresponding noninfinitesimal effects and distributions.
This paper extends AGS idea along several dimensions. We show that on the unrestricted

model P, the infinitesimal change d
dν θW (P ) depends not only on the perturbation of the moments

d
dν g|θ=θ0(P ), but also on the local changes in the second derivative ∂2

θg(θ, P ) of the moments
and in the weighting functional WP . Moreover, local changes in the distribution P and in the
parameter θW (P ) can be connected and integrated to obtain global changes in the distribution
Ph and in the structural parameter ∆ν,hθW .

Proposition 3. On the unrestricted model P, the influence function of the GMM functional
θW defined in eq. (1.23) is

θ̃W,P (x) =

−
[(
P [g(θW,P )]TWP ⊗ Ip

)
P
[
∂θ vec([∂θg(θW,P )]T )

]
+ P

[
∂θg(θW,P )

]T
WP P

[
∂θg(θW,P )

]]−1

×
{(

P
[
g(θW,P )

]T
WP ⊗ Ip

) [
vec
(
[∂θg(θW,P , x)]T

)
− P

[
vec
(
[∂θg(θW,P )]T

)]]
(1.26)

+ P
[
∂θg(θW,P )

]T
W̃P (x) P

[
g(θW,P )

]
+ P

[
∂θg(θW,P )

]T
WP

(
g(θW,P , x)− P

[
g(θW,P )

])}
where W̃P is the influence function of the weighting functional WP .

Suppose a scalar parameter ν defined on P can be changed locally at each counterfactual
distribution P ∈ P along the score vP . Suppose the collection of scores {vP }P∈P satisfies a
local Lipschitz condition. Then at any status quo point P0 ∈ P, there exists a unique path
of counterfactual distributions {Ph}h∈J defined on an open interval J containing 0, such that
ν(Ph) = ν(P0) + h is the parameter of the path, and its score is proportional to vPh for every
h ∈ J . Moreover, the change in the value of the GMM parameter θW (P ) along this path of
counterfactual probability distributions Ph is

∆ν,hθW (P0) = θW (Ph)− θW (P0) =

∫ h

0

∫
X
θ̃W,Pt

[
vPt/CovPt [ν̃Pt , vPt ]

]
dPt dt,

where θ̃W,P is the influence function of the GMM functional given above, and ν̃P is the influence
function of the descriptive statistic ν.

The influence function of a statistical parameter is closely related to the asymptotic dis-
tribution of regular estimators of that parameter. The general asymptotic distribution of the
overidentified GMM estimator is discussed implicitly in Imbens (1997) [46], and derived explic-
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itly in Hall and Inoue [39]. Here we derive the general form of the influence function.
The main limitation of the sensitivity measure Λ for structural parameters defined by AGS

in [6] and the global effects ∆ν,hθW defined in Proposition 3 is that the scores vP for perturbing
the value of the descriptive statistic ν must be provided by the reader. The influence function
vP = ν̃P is one natural choice of these scores, based on all previous examples of this paper. In
Section 2 we derive the scores vP featured in Proposition 3 from the descriptive statistic ν via
local optimality conditions with respect to different criteria of optimality. This provides another
extension to the idea of AGS of how one can relate changes in a descriptive statistic to changes
in a structural parameter.

2. Score counterfactuals

As we discussed in the Introduction and examples of Section 1, in a number of empirical
papers in economics, one finds explicit or implicit discussions of the effect of changes in one
scalar statistical functional ν on another statistical functional ψ. Formally this means that
one is interested in the effects on ψ of the changes in the status quo probability distribution,
which are somehow specified by the counterfactual values of the parameter ν. The situation
is analogous to, in fact some of the obtained results are corollaries of, the idea of the hardest
submodel formulated in Stein’s (1956) paper [66] and developed rigorously by Levit (1974, 1975,
1976) in [50, 51, 47] and many others. We adapt Stein’s idea to counterfactual analysis as
follows: Given a small increment h in the status quo value of the policy functional ν(P0), it
is required to find the distribution Pν,h that “deviates minimally” from the status quo state of
nature P0 and has ν(Pν,h) = ν(P0) + h. For the purposes of economic counterfactual analysis,
we interpret “minimally” as “in the cheapest fashion” so that the “hardest” submodel becomes
the “optimal” one for e.g. policy analysis purposes.

Suppose P is a collection of counterfactual probability distributions for the random variable
X on the sample space (X ,A), and let P0 ∈ P denote the status quo distribution (e.g. the
true state of nature). Let us setup a basic geometric structure on P (i.e. a manifold10) in the
spirit of semiparametric efficiency theory [62, 53, 66, 29, 47, 10, 72, 13, 71] and information
[43, 52, 2, 9, 3, 61, 16, 19, 57, 37] and optimal transportation [35, 12, 5, 4] geometries. The
main economic idea here is to allow a general metric of “cost” of counterfactual states of nature
Ph ∈ P. The main technical idea is to work around the difficulties imposed by nonlinearities
in the model P and its functionals ν, ψ : P → R by working in an infinitesimal neighborhood
of a point P . Locally, the model P and the functionals ν, ψ are linear making infinitesimal
counterfactual analysis tractable. Furthermore, to construct global counterfactual distributions
and their parameters we can integrate consecutive local changes in the probability distribution
and its functionals. In this section we consider the local analysis, in Section 3 we consider the
global analysis.

Tangent space At each point P ∈ P, we consider a collection of smooth curves {Pt}0<t<ε ⊂
P that pass through P at t = 0 and possess a score function vP at P . This means:∫

X

[
t−1(

√
dPt −

√
dP )− 1

2vP
√
dP )

]2
→ 0 as t→ 0, (2.1)

where dPt, dP are densities with respect to some dominating measure (van der Vaart’s notation).
In other words, the score vP is the velocity of the curve Pt in the embedding of the model P into
the space H2 of square roots of measures [see 54, p. 112]. The score function vP : X → R of a

10To focus on the much higher level topic of empirical counterfactual analysis of this paper, we introduce very
briefly only the necessary geometric notation and completely ignore the fundamental notion of charts. See e.g.
Carmo (1976, 1992) [17, 18] and Lang (1999) [48] for complete and rigorous expositions of definitions of geometry.
See Pistone and Sempi (1995) [61], Cena and Pistone (2007) [19], Fukumizu (2009) [34], Grasselli (2010) [37] and
Newton (2012) [57] for rigorous constructions of nonparametric statistical manifolds.
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curve Pt is typically computed by differentiating the log density as in eq. (1.8), and has finite
second moment and zero expectation under P [see e.g. 47, 13, 71].

The tangent space TP to the model P at the point P is a linear subspace of L2
0(P ) composed

of scores vP of all regularly parametrized submodels {Pt}0<t<ε ⊂ P through the point P .

Metric A metric g is a collection of complete inner products {gP (·, ·)}P∈P on the tangent
spaces TP of the model P. A metric induces Hilbert norms ‖vP ‖2g,P = gP (vP , vP ) on score
functions vP ∈ TP , and the geodesic distance function

g(Ph, P0) := min
t 7→Pt

∫ h

0

‖vPt‖g,Pt dt (2.2)

on the set of counterfactual distributions P. The metric gP (·, ·) can be thought of as the
infinitesimal representation of the distance function g(·, ·). Not every distance on the space of
probability measures has the infinitesimal representation (2.2). The infinitesimal structure of
the distance on P is central to the analysis of this paper, we consider only metric distances.11

Pathwise derivative The pathwise derivative of a functional ν : P → R at a point P is a
continuous linear map dνP : TP → R that satisfies

dνP (vP ) = d
dt |t=0

ν(Pt) = lim
t→0

t−1
[
ν(dP + tvP dP + o(t))− ν(P )

]
(2.3)

for every regular submodel Pt with the score vP , and every score vP ∈ TP . It is important
for the analysis of this paper that a functional admits a local linear approximation. Luckily
all functionals that can be estimated at the parametric

√
n-rate with some uniformity in the

asymptotic distributions are pathwise differentiable [72].

Influence function, gradient The influence function ν̃P of a functional ν at a point P is
the Riesz representation score of its pathwise derivative dνP with respect to the L2(P ) inner
product on TP . We refer to Dudley (2002) [28, p174] for Hilbert space theory.

The g-gradient of ν, denoted by ∇gνP , is the Riesz representation score of its pathwise
derivative with respect to the inner product gP of the metric on TP . This means that the
pathwise derivative must satisfy

d
dt |t=0

ν(Pt) = gP
(
∇gνP , vP

)
(2.4)

for every regular path Pt with score vP , and every score vP ∈ TP .
In what follows, we will assume that all paths Pt, functionals ν, ψ and metrics g are smooth.

The main idea of this paper is to use the Riesz representation theorem to regularize the
Problem 1 of specifying counterfactual distributions Pν,h,P0 with changes in a scalar functional
ν(P0) of the probability distribution. Riesz representation theorem says that for a given notion
of local (and global) distance g on P, there is a unique natural score function ∇gνP ∈ TP at each
point P to associate with the functional. The following result provides a useful characterization
of the Riesz representation score:

Proposition 4 (Optimality of gradient scores). Given a pathwise differentiable functional ν
and a metric of distance g defined on the set of counterfactual distributions P with tangent
spaces TP , the normalized gradients

∇1
g νP (x) := ∇gνP (x)

/
CovP

[
ν̃P (X),∇gνP (X)

]
(2.5)

11Mathematical literature has extended the notion of gradient flows to the much more general setting of metric
spaces. See Ambrosio, Gigli and Savare (2008) [4]. We do not consider such extensions in this paper.
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uniquely satisfy the local optimality conditions

min
vP∈TP

‖vP ‖g,P s.t. lim
t→0

t−1
[
ν(dP + tvP dP + o(h))− ν(P )

]
= 1

of increasing the value of the functional ν, while minimizing the cost of the deviation measured
by the metric g, among all local perturbations vP with the same effect on ν.

Proposition 4 can be interpreted as follows. If we measure the “cost” of a counterfactual
distribution Ph by its distance g(Ph, P0) from the status quo distribution P0, and measure the
“utility” of the counterfactual distribution by the change in the functional ν(Ph)− ν(P0), then
Proposition 4 says that the optimal counterfactual distributions in a neighborhood of P0 are
those in the direction of the gradient ∇gνP0 . One way to interpret the gradient ∇1

g νP , is to
think of it as the local compensated demand in P for the policymaker with utility ν and costs
g. Normalization by the covariance term in eq. (2.5) and eq. (1.9) is the result of looking at
infinitesimal changes in ν of a unit magnitude (reflected with the superscript ∇1 in gradient
score notation). Proposition 4 provides a score function at every point P ∈ P, and together
with Proposition 2 allow counterfactual analysis to be conducted with a scalar policy functional
ν, as frequently done informally in empirical papers, by choosing a metric:

Corollary 5 (Gradient flow curve of counterfactual distributions). Suppose ν is pathwise
differentiable functional and that g is a metric on P. Provided that the gradient score field
{∇gνP }P∈P satisfies a local Lipschitz condition, at any status quo distribution P0 ∈ P, there
exists a unique regular parametric model {Pg,ν,h,P0

}h∈J defined on an open interval J containing
0, parametrized by the change h = ν(Ph)− ν(P0) in ν, and with the scores d

dh log dPh = ∇1
g νPh

for every h ∈ J .

Next we describe the gradient scores of two important distance functions on the space of
probability measures: the Fisher-Rao information metric that arises naturally in asymptotic
statistics, and the 2-Wasserstein metric of the Monge-Kantorovich theory of optimal trans-
portation of mass. These metrics have been at work implicitly in the examples from empirical
literature discussed in Section 1.

2.1 Counterfactuals via Fisher-Rao information metric gradient flow. The informa-
tion metric, denoted by gF, is just the collection of L2(P ) inner products

gF,P (vP , wP ) =

∫
X
vP wP dP = CovP [vP , wP ], vP , wP ∈ TP , P ∈ P (2.6)

on the tangent spaces vP , wP ∈ TP of P. The corresponding global distance function on P is

gF(P0, Ph) = 2 arccos
(

1− 1/2

∫
X

(
√
dP0 −

√
dPh)2

)
, P0, Ph ∈ P (2.7)

and is basically the L2 distance between the square roots of the density functions of the proba-
bility measures. In this sense, the information metric is said to measure the “vertical” distance
between probability distributions and is ignorant of the topology of the sample space (X ,A).

The information gradient ∇FνP of a functional ν is its influence functions ν̃P . This gradient
shows the optimal variation in the density of the distribution ḟP = ν̃P fP that increases the value
of the functional, while minimizing the statistical dissimilarity of counterfactual distributions
with P [47]. The gF-gradient flow curve PF,ν,h can be considered the canonical hardest submodel
for estimating parameter ν, because all of its scores are information gradients of ν and it is
unique under regularity conditions. The hardest submodel PF,ν,h contains the least statistical
information for estimating the parameter ν and inflicts the greatest dispersion in the asymptotic
distribution of its regular estimators ν̂, known as the efficiency bound. This property links the
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asymptotic distribution of regular estimators at P0 on the entire model P with the counterfactual
distributions along the information gradient flow curve PF,ν,h,P0 .

The following result was stated informally in Gentzkow and Shapiro (2015) [36], and is a
corollary of Stein (1956) [66] and many subsequent papers [e.g. 47, 10, 72].

Theorem 6 (Information gradient flow effects via asymptotic distribution of regular estimators).
Assume that model P allows arbitrary misspecification and has nonparametric tangent sets
TP = L2

0(P ). Let data X1, . . . , Xn be a random sample from the distribution P ∈ P. Suppose
estimator sequences ψ̂n = ψ̂n(X1, ..., Xn) and ν̂n = ν̂n(X1, ..., Xn) have a linear asymptotic
representation:

√
n

[
ψ̂n − ψ(P )

ν̂n − ν(P )

]
=

1√
n

n∑
i=1

[
ψ̃P (Xi)

ν̃P (Xi)

]
+ oPn,n(1), ψ̃P , ν̃P ∈ L2

0(P ). (2.8)

Define the functionals ψ(P ), ν(P ) as the large sample limits of the estimators on P. Furthermore,
suppose that for every regular parametric path Ph satisfying (2.1):

(i) the remainder terms oPn(h),n(1) converge to zero uniformly in h as n→∞;
(ii) the norms

∫
ψ̃2
P (h)dPh and

∫
ν̃2
P (h)dPh are continuous in h;

(iii) the score field {ν̃P }P∈P of influence functions of the estimator satisfies a local Lipschitz
condition.

Then (i) The functionals ψ, ν are pathwise differentiable, and their information gradients
∇FψP ,∇FνP are equal to the influence functions ψ̃P , ν̃P of the estimators. (ii) For any status
quo distribution P0 ∈ P, there exists a unique regular parametric model {PF,ν,h,P0}h∈J defined
on an open interval J containing 0, parametrized by the change h = ν(PF,ν,h,P0

) − ν(P0) in ν,
and with the scores d

dh log dPF,ν,h,P0
= ν̃P /VarP [ν̃P (X)] for every h ∈ J . (iii) The local effects

of changing ν along the hardest submodel PF,ν,h,P0 on ψ are given by

d
dhψ(PF,ν,h,P0

) = CovPh
[
ψ̃Ph(X), ν̃Ph(X)

]/
VarPh

[
ν̃Ph(X)

]
, (2.9)

which is the covariance of the asymptotic distribution at Ph of the joint estimator (ψ̂n, ν̂n)

normalized by the asymptotic variance of ν̂n. (iv) The global effects of changing ν along the
hardest submodel PF,ν,h,P0 on ψ are given by

∆F,ν,h,P0ψ(P0) = ψ
(
PF,ν,h,P0

)
− ψ(P0)

=

∫ h

0

CovPt
[
ψ̃Pt(X), ν̃Pt(X)

]/
VarPt

[
ν̃Pt(X)

]
dt, (2.10)

which is a linear combination of the local effects.

Theorem 6 says that approximate counterfactual effects are available in every empirical paper
that reports standard errors based on the usual

√
n-asymptotic approximations as a byproduct

of calculating the asymptotic distribution. Of course, asymptotic inference implicitly relies
on the information metric and provides counterfactual effects only along the hardest model
through the true distribution of the data (provided that the researcher calculates the accurate
nonparametric asymptotic distribution as we have done for the GMM estimator in eq. (1.26)).
It would actually be more accurate to say that asymptotic standard errors are a byproduct of
the information counterfactuals [47].

The idea of the hardest submodel was presented informally in [66]. This idea of making coun-
terfactual statements based on the asymptotic distribution was presented informally in [36]. The
contribution of the present paper is to supply the precise geometric interpretation and imple-
mentation of both ideas and to find the technical regularity conditions from the semiparemtric
efficiency literature and the nonparametric information geometry literature. The main difficulty
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is to formalize the ordinary differential equation on the model P of probability measures that is
determined by the score field of influence functions. Theorem 6 generalized the OLS example of
Section 1.4.1 which considered the means of an outcome Y and a covariate X, and Proposition 3
that considered GMM and descriptive statistics.

Example 2.1 (The effect of changing quantiles on moments). Returning to examples of Sec-
tions 1.3 to 1.5 that described the scalar effects of changing the mean of a covariate along the
hardest submodel, we can now find geometrically comparable counterfactual effects of a counter-
factual change in any functional by Proposition 4. Consider the effect of changing the quantiles
of a distribution. Let ψρ(P ) :=

∫
X ρ(x) dP (x) be a moment functional with a general moment

function ρ : X → R, and let ντ (P ) := F−1
Xj ,P

(τ) denote the τ -quantile of the jth covariate Xj

when the joint distribution of data is P . The moment functional has influence function

ψρ(P ) :=

∫
X
ρ(x) dP (x), ψ̃ρ,P (x) = ρ(x)− ψρ(P ) (2.11)

and the influence function of the quantile can be found in eq. (1.6). By Theorem 6, the effect of
changing the quantile ντ along its hardest submodel for estimating the quantile on the moment
ψρ is the normalized asymptotic covariance of a joint estimator:

d
dhψρ(PF,ντ ,h) =

fXj (ντ,P )

τ(1−τ) EP

[(
ρ(X)− ψρ(P )

)(
τ − 1{Xj ≤ ντ (P )}

)]
. (2.12)

Note that the effect scales linearly with the marginal density fXj (ντ,P ) at the quantile. We
shed light on this curious phenomenon of the asymptotic behavior of quantile estimates with
the transportation gradient of the quantile functional in the next subsection.

To apply Proposition 4 and Corollary 5 to counterfactual analysis in practice, the researcher
chooses a functional and a metric that best describe the hypothetical state of nature under
examination and derives the gradient score. Since the influence functions of many parameters
are known, and results that describe how to derive it are available [e.g. 45, and Theorem 8
below] this task typically amounts to finding a formula that maps the influence function into
the gradient. The next result shows the effect of reweighting the information metric by a “cost
distribution” term dQ

dP , so that the metric becomes

gFQ,P (vP , wP ) =

∫
X
vP wP dQ,

on the direction of the gradient flow curve:

Lemma 7 (Weighted information gradient scores). Suppose ν : P → R is a pathwise differ-
entiable functional with influence functions ν̃P ∈ L2

0(P ). Suppose the cost distributions satisfy
QP � P for all P ∈ P and have uniformly bounded derivatives 0 < m ≤ dQP

dP (x) ≤ M < +∞
on X . Then

∇gνP (x) =
[
ν̃P (x)−

∫
X ν̃P

dP
dQP

dP
/∫
X

dP
dQP

dP
]
dP
dQP

(x) (2.13)

are the gradient scores for the weighted information metric gFQ,P (vP , wP ) =
∫
vPwP dQP .

The effect of introducing the reweighting term dQ
dP in the information metric on the gradient

score is twofold: (i) the magnitude of mass creation/destruction is scaled by the dQ
dP

−1
(x) through

the sample space x ∈ X ; (ii) the resulting score function is recentered to have zero mean under
P . The rescaling effect provides a justification to our informal interpretation of the metric as the
“cost” of counterfactual states of nature. I.e. the higher the cost dQP (x) charged by the metric
gFQ for creating/destroying mass at x ∈ X , the smaller the contribution of the perturbation
∇gνP (x) to the distribution P at x. The information metric gF can be interpreted as having
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the uniform cost for creation/destruction of mass throughout the sample space. The fact that
a large class of changes in the metric does not radically change the profile of the gradient, and
consequently the counterfactual effects on the outcome functionals, provides some justification to
the practice of reporting sensitivities (2.9) (i.e. information gradient flow effects) for structural
estimates suggested in [36, 6, 7].

The next result shows how to compute the influence function ψ̃P (z) by calculating the
derivative of the functional along a special regular path that approximates the perturbation
toward the point mass δz. The formula extends the calculation of von Mises (1947) [53] and
Hampel (1974) [40] that recovers the influence function ψ̃P (z) of a functional ψ by computing
its derivative along the path Pt,z = (1−t)P +tδz. Unfortunately the path Pt,z is not regular and
does not have a score function at t = 0, as shown in Appendix 4.4. This means that the von Mises
calculation applies only to functionals that have stronger smoothness than the standard notion
of pathwise differentiability in semiparametric efficiency theory. Ichichura and Newey (2017)
[45] mollify the point mass in the von Mises calculation using a kernel, and recover the influence
function from Riesz representation similarly to the way the value of a density function at a point
is estimated from data. The result below is a partial generalization of this idea. We consider
only absolutely continuous distributions P but allow all pathwise differentiable functionals ψ.
Specifically, no assumption about the regularity of the influence function ψ̃P is made other
than the default L2

0(P ) integrability. The theorem covers all pathwise differentiable functionals
and all possible influence functions ψ̃P ∈ L2

0(P ), so is the most general possible, but requires
that the probability measure P has a continuous Lebesgue density. The theorem removes the
continuity assumption about the influence function ψ̃P by applying Lebesgue differentiation and
approximation to the identity ideas from analysis. We refer to Stein and Shakarchi (2009) [67]
for details of measure theory. We remark that the assumptions about the distribution P are
probably not necessary either.

Theorem 8 (General von Mises influence function formula via approximations to the identity).
Let ψ : P → R be a pathwise differentiable functional on the nonparametric model P with
influence functions ψ̃P ∈ L2

0(P ). Suppose P0 is an absolutely continuous probability measure
with respect to the Lebesgue measure on Rd with a continuous density function f0. Suppose K
is a bounded probability density function with support in the unit ball {|x| ≤ 1} ⊂ Rd, and let

Kδ(x) := δ−dK(δ−1x), δ > 0 (2.14)

Kf0,δ,z(x) :=
[ ∫
{f0>δ}Kδ(x) dx

]−1

1{f0>δ}(z − x)Kδ(z − x). (2.15)

For t ∈ (0, 1), small δ > 0 and z ∈ {f0(x) > 0} ⊂ X consider the deviations Pt,δ,z:

ft,δ,z(x) := (1− t)f0(x) + tKf0,δ,z(x) (2.16)

from the probability distribution P0 toward the point-mass at z, specified in terms of its density
function f0 and approximation to the identityKδ. Then the following influence function formula
holds:

ψ̃P0(z) = lim
δ→0

d
dt |t=0

ψ(Pt,δ,z) (2.17)

for P0-almost every z ∈ Rd.

Proof. We outline the main ideas of the proof and provide the details in Appendix 4.4. The
score of the path t 7→ Pt,δ,z is

v0,δ,z(x) = d
dt |t=0

log
{
f0(x) + t

[
Kδ(z − x)− f0(x)

]}
= Kδ(z − x)/f0(x)− 1.
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By pathwise differentiability of ψ at P0, the derivative of the functional along the curve t 7→ Pt,δ,z
at t = 0 is given by the Riesz representation of its derivative mapping dψP0 , i.e. the covariance
inner product of the influence function ψ̃P0

and the score function v0,δ,z:

d
dt |t=0

ψ(Pt,δ,z) = dψP0
(v0,δ,z)

=

∫
X
ψ̃P0

(x) v0,δ,z(x) dP0

=

∫
X
ψ̃P0(x)

[
Kδ(z − x)/f0(x)− 1

]
dP0

=

∫
suppP0

ψ̃P0
(x)Kδ(z − x) dx

= (ψ̃P0
∗Kδ)(z).

The properties assumed about the kernels Kδ insure that it is an approximation to the identity
in the sense that approximates a point mass at 0 in the and consequently

(ψ̃P0
∗Kδ)(z)→ ψ̃P0

(z) as δ → 0

for P0-almost every z ∈ Rd. �

2.2 Counterfactuals via Wasserstein transportation metric gradient flow. In some
applications it is desirable to consider counterfactual distributions that imply an unambiguous
counterfactual effect for each agent x ∈ X ⊂ Rd, e.g. Stock (1989) [68] specifies the counterfac-
tual distribution Ph with an explicit transformation X 7→ X∗ of the covariates; Firpo, Fortin,
and Lemieux (2009) [30], discussed in section 1.4, consider a location shift of the marginal
distribution of a covariate, Xj 7→ X∗j = Xj + h, X∗−j = X−j .

Transportation counterfactual distributions can be specified with gradient flow changes of the
policy functional ν in the L2-Wasserstein distance on the space of counterfactual distributions
with finite second moments P2(Rd):

W2(P0, Ph) :=
(

min
γ∈Γ(P0,Ph)

∫
X×X

|x− x∗|2 dγ(x, x∗)
)1/2

, (2.18)

where a transport plan γ ∈ Γ(P0, Ph) is a coupling (i.e. joint distribution) of the status quo and
the counterfactual distributions P0 and Ph, whose conditional distributions γX∗|X=x describe
the assignment of counterfactuals x∗ to agents with the status quo covariate x ∈ X . When the
status quo distribution P0 = %0L d has a density %0 with respect to the Lebesgue measure L d

on Rd, the optimal assignment in eq. (2.18) is actually given by a transport map x 7→ x∗ that
is almost surely the gradient ∇xϕ of a convex function ϕ : Rd → R. We will assume that all
distributions have smooth densities and enough regularity to justify the manipulations in this
section and refer to [5, 4] for the technical details.

The collection of smooth transport curves Pt = %tL d in the W2-distance is characterized by
the continuity equation:

d
dt%t + div(%tvt) = 0 (2.19)

which says that the infinitesimal change d
dt%t(x) in the density of agents at location x must be

exactly matched by the net infinitesimal transport (i.e. flux) of agents into location x. The
velocity vector field vt : X → Rd of the curve Pt measures the instantaneous rate vt(x) of
transport of agents at location x ∈ X at time t, and the divergence term div(%tvt) computes
the resulting net instantaneous outflow of agents from x [see e.g. 32, Sec 5.5]. Equating these
two terms in (2.19) prevents creation/destruction of density that is typical of smooth curves in
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the information metric, and forces all changes in the density to be the result of a continuous
transport of mass in the sample space X . In terms of the tangent space TP , the score of the
transport curve t 7→ Pt is the derivative of the log likelihood

vPt = d
dt log %t = d

dt%t/%t = −div(vt%t)/%t, (2.20)

and the 2-Wasserstein metric inner-product on TP is given by

gK,P (vP , wP ) =

∫
X
〈v(x),w(x)〉Rd dP (x) (2.21)

for the canonical choice of velocity vector fields v,w ∈ {∇xϕ ; ϕ ∈ C∞c (X )}
L2(P ;Rd)

in the con-
tinuity equation (2.19) that produce the scores vP , wP . The fact that the Wasserstein distance
(2.18) has an infinitesimal structure of a metric inner product is a nontrivial result of Benamou
and Brenier (2000) [12]. The next result relates the gradient scores of the Wasserstein metric
to influence functions.

Proposition 9 (Wasserstein gradient formula). Suppose ν : P→ R is a pathwise differentiable
functional with influence function ν̃P : X ⊂ Rd → R in L2

0(P ) that has a distributional derivative
∇xν̃P in L2(P ;Rd). Suppose P has compact support and a smooth density % = dP

dL d ∈ C1
c (Rd).

Then the gradient score of ν with respect to the 2-Wasserstein metric is

∇KνP = −div(% ∇xν̃P )/%. (2.22)

We illustrate the direction of the Wasserstein gradient score with the following examples:

Example 2.2 (Mean). Recall that the moment functional νρ(P ) =
∫
X ρ(x) dP (x) with a

moment function ρ : X → R has the influence function ν̃ρ,P (x) = ρ(x)− νρ(P ). Provided that
the moment function ρ is sufficiently smooth and P is sufficiently regular, the velocity vector
field of the gradient transport for νρ is v = ∇xρ ∈ L2(P ;Rd). In particular, we can derive the
score of the infinitesimal effect α, defined in eq. (1.18), of shifting the marginal distribution
of a scalar X and holding the conditional distribution of Y |X fixed as in the Oaxaca-Blinder
applications, by taking ρ(x) = x so that the functional is the mean ν1 of X as in Section 1.4. It
follows that the gradient velocity vector field of ν1 is v = ∇xx = d

dxx ≡ 1, i.e. the Wasserstein
gradient flow curve PX,h is the uniform location shift of the marginal distribution of X, and the
scores of these counterfactual distributions are ∇Kν1,P (x) = − d

dx%X(x)/%X(x). The infinitesimal
effects of the flow on an outcome functional ψ(PY ) follow from the von Mises formula (1.7) and
integration by parts:

d
dhψ(Ph) =

∫
ψ̃P (y)[− d

dx%X(x)/%X(x)] dP (x, y)

=

∫
supp(X)

− d
dx%X(x) E

[
ψ̃P (Y )|X = x

]
dx

=

∫
supp(X)

d
dxE

[
ψ̃P (Y )|X = x

]
%X(x)dx.

Example 2.3 (Variance). Continuing with the OB-setting of the previous example, we can
obtain comparable counterfactual transport effects by changing any sufficiently regular func-
tional of PX . The variance functional ν2(PX) =

∫
(x − ν1(P ))2dPX(x) has influence function

ν̃2(x) = (x− ν1(P ))2− ν2(P ) and gradient velocity vector field vP = ∇xν̃2,P (x) = 2(x− ν1(P )),
which sends every agent away from the mean at the speed proportional to her distance from the
mean. The effect of this perturbation on the variance is

∫
R 2(x− ν1) · 2(x− ν1)dPX = 4ν2(P ),
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and the OB-effect of changing the variance of a covariate X along the Wasserstein gradient flow
path PX,h on an outcome functional ψ(PY ) is

d
dhψ(Ph) = 1

4ν2(P )

∫
2(x− ν1(P )) d

dxE[ψ̃P (Y )|X = x] dPX .

Example 2.4 (Gaussian status quo). Let %(x; ν1, ν2) = (2πν2)−1/2e−(x−ν1)2/2ν2 denote the
density of the Gaussian distribution with mean ν1 and variance ν2. It can be verified that
the curve ν1 7→ %(ν1, ν2) has score v%(x) = [x− ν1(%)]/ν2(%) that is equal to the nonparametric
information gradient ∇1

F ν1,% and to the Wasserstein gradient ∇1
K ν1,% of the mean functional ν1 at

%, and is therefore the gradient flow curve of ν1 for any Gaussian status quo distribution in both
metrics. Moreover, the curve ν2 7→ %(ν1, ν2) has score u%(x) = [(x − ν1(%))2 − ν2(%)]/2ν2

2 that
is equal to the information gradient ∇1

F ν2,% and the Wasserstein gradient ∇1
K ν2,% of the variance

functional ν2 at %, and is therefore the gradient flow curve of ν2 for any status quo Gaussian
distribution in both metrics. Furthermore, these curves are orthogonal in both metrics.

Example 2.5 (Quantile). Wasserstein gradient velocity vector field of the quantile functional

ντ (PX) = inf{x ∈ R ; FX(x) ≥ τ}

elucidates the reason for the density term %X(ντ (P )) in its asymptotic efficiency bound and
influence function ν̃τ,P (x) = (τ − 1{x ≤ ντ (P )})/%(ντ (P )). Because ν̃τ,P is the Heaviside
function, its derivative is the Dirac delta (generalized) function: The gradient velocity vector
field of the quantile v = ∇xν̃τ (x) = δ{ντ (P )}(x)/%(ντ (P )) transports only the agents at the
quantile. The transportation cost of this velocity field, measured by the Wasserstein metric,
is directly proportional to the mass or density at the quantile, therefore the derivative of the
quantile functional is inversely proportional to the mass or density at the quantile. In the
absolutely continuous case, gradient transport does not actually change ντ in a meaningful
way, but the reweighting along the influence function (information gradient) as in eq. (2.12) is
well-defined and its effect on ντ is inversely related to the density %(ντ ).

The following companion result to lemma 7 shows the effect of reweighting the Wasserstein
metric by a “cost distribution” term dQ

dP on the direction of the gradient score.

Lemma 10 (Weighted Wasserstein gradient scores). Suppose ν : P → R is a sufficiently
smooth functional, that P is a sufficiently regular probability measure, and the cost distributions
satisfy QP � P for all P with uniformly bounded derivatives 0 < m ≤ dQP

dP (x) ≤ M < ∞ on
X . Then

∇gνP = −div(% dPdQ ∇xν̃P )/% (2.23)

are the gradient scores for the weighted Wasserstein metric gKQ,P (v,w) =
∫
〈v,w〉RddQP .

The interpretation of eq. (2.23) is that the Wasserstein metric charges a uniform price for
moving an agent (unit of density or mass) x throughout the sample space X . The effect of
introducing the reweighting term dQP

dP in the Wasserstein metric on the gradient score is to scale

the velocity ∇xν̃P (x) of transport of agents at location x by dQP
dP

−1
(x) to reflect the nonuniform

cost of transport throughout the sample space.

3. Distributional counterfactuals

In Section 2 we have discussed how to specify a collection of scores V = {vp}p∈P on the
tangent spaces V (p) ∈ Tp of the set of counterfactual distributions P with local optimality
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conditions for policy changes in a given scalar functional ν : P → R. In this section12, we
construct and study an ordinary differential equation on the model of probability distributions
P, whose points are probability densities p, from the score field V :

ṗ

p
= V (p) ∈ Tp, p(0) = p0. (3.1)

Equation (3.1) describes the construction of the one-dimensional model {ph}h∈J of counter-
factual distributions, that contains the status quo distribution p0 and continuously evolves
the current state ph according to the direction V (ph) of the score field at that state, so that
d
dh log ph = V (ph) for all h ∈ J . When the scores V are the (scaled) gradients of a functional ν,
the path ph is called the gradient flow curve of the functional ν. In this case equation (3.1) is
a very useful algorithm for increasing the value of the functional by continuously changing the
state p in the direction that most rapidly increases the value of ν.

3.1 Exponential statistical manifold. A formal treatment of this problem requires a man-
ifold structure to be introduced on the collection of counterfactual distributions P. Manifold
structure of parametric families of probability distributions has been known in the statistical
literature since at least Hotelling (1930) [43]. In the present paper we use the nonparametric
parametrization that was introduced by Pistone and Sempi (1995) [61], who extend the work
on finite-dimensional exponential families by Efron (1975) [29].

At each point p ∈ P, we consider a set of densities of the form

qu(x) = eu(x)−Kp(u) · p(x), Kp(u) = log Ep
[
eu(X)

]
, (3.2)

where u is a score function at p and belongs to the neighborhood

Sp :=
{
u ∈ L2

0(p) ; Ep[e
u] <∞

}
(3.3)

of 0 in a suitable Banach space (Bp, ‖·‖p) (defined below). Here Kp(u) is a normalization
constant. The mapping

Bp ⊃ Sp 3 u
ϕp7−−→ qu ∈ P (3.4)

from the small scores u at p to the densities qu near p in P is a nonparametric parametrization
of a neighborhood ϕp(Sp) of p in P by the open subset Sp of a normed linear space (Bp, ‖·‖p).
This should be compared to parametrization of a finite-dimensional statistical family by an open
subset of some Euclidean space (Rd, |·|). Unlike the case of a parametric model where a single
mapping describes the entire model, the entire nonparametric model P is parametrized by the
collection of maps {ϕp}p∈P. This poses the challenge to be certain that the same calculations
performed in two different charts ϕp(Sp)

⋂
ϕq(Sq) are consistent and provide the same results.

We refer to Lang (1999) [48] for the general theory of infinite-dimensional manifolds modelled
on Banach spaces. We refer to Pistone (2013) [60] for the technical details of the exponential
manifold structure {ϕp} of the nonparametric statistical model parametrized by (3.2).

The parametrization (3.2) of the model P by open subsets Sp of Banach spaces Bp identifies
the tangent spaces Tp of the model with the linear spaces Bp. Specifically, the derivative mapping
dϕp is a bijection between Bp and Tp. Recall that tangent spaces Tp and Tq at different points
p, q ∈ P are distinct. This is because P is not a linear space. By contrast, the tangent spaces to
the linear space Bp at any two vectors u, v ∈ Bp is the linear space Bp itself, so are identical.
Consequently, the parametrization (3.2) of P determines the mapping

Bq 3 u 7→ u− Ep[u] ∈ Bp (3.5)

12New namespace, notation follows [60, 1].
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of the tangent space Tq ≡ Bq at density q ∈ P onto the tangent space Tp ≡ Bp at density
p ∈ P, for densities q that are sufficiently close to p. This mapping of the tangent spaces allows
the differential equation (3.1) to be formally defined and solved on an open subset of the single
Banach space Bp0 :

pu(t) =
eu(t)

Epu(t)
[
eu(t)

]p0, (3.6)

u̇(t) =
{
V (pu(t))− Ep0

[
V (pu(t))

]}
∈ Sp0 ⊂ Bp0 , u(0) = 0. (3.7)

Parametrization (3.2) also determines sufficient conditions for the existence and regularity
of a solution to equation (3.7). Furthermore, the proof of the existence of a solution J 3 t 7→
u(t) ∈ Bp0 in eq. (3.7) is constructive and suggests a strategy for its numerical approximation
and estimation of the counterfactual distributions pt and their scalar effects ∆hψ(p0) defined
in eq. (0.2). We refer to Amann (1990) [1] and Lang (1999) [48] for the theory of ordinary
differential equations in Banach spaces.

3.1.1 Lipschitz condition The Banach space used for parameterization of P in [61] is the
Orlizc space Bp = LΦ

0 (p) of the Young function

Φ(u) = coshu− 1 (3.8)

of exponentially integrable functions with zero p-mean. A score function up ∈ L2
0(p) belongs to

Lcosh−1
0 (p) if and only if the random variable up(X) has a finite moment generating function

Ep[e
tu(X)] in a neighborhood t ∈ (−ε, ε) of zero. We note that this is a strong integrability

condition, and remark that, to our knowledge, no alternative manifold parametrization of the
nonparametric model is available in the mathematical and statistical literature.

The main technical condition that governs the differential eq. (3.7) involves the norm of the
exponential Orlicz space LΦ(p) defined by

‖u‖Φ,p := inf
{
t > 0 ; Ep

[
Φ(u(X)/t)

]
< 1
}
. (3.9)

A score field V satisfies the local Lipschitz condition at a density p if there exists a constant
λ > 0 such that∥∥{V (qu)− Ep[V (qu)]} − {V (qv)− Ep[V (qv)]}

∥∥
Φ,p
≤ λ‖u− v‖Φ,p (3.10)

for all scores u, v in a neighborhood of 0 ∈ LΦ
0 (p). The open neighborhood in this condition is

a subset of the proper domain Sp ⊂ LΦ
0 (p) of the moment generating functional Kp.

3.2 Continuous exponential tilting (CET). We now use the Euler polygon scheme to show
that under the Lipschitz regularity condition infinitesimal perturbations (scores) determine non-
infinitesimal counterfactual distributions. We follow Amann (1990) [1, Chapter 2] closely in the
development of the ODE existence theory.

Lemma 11 (Approximate solution via Euler polygon scheme). Let p0 ∈ P. Suppose score
field expressed V in local coordinates ϕp0 :

V =
{
vq − Ep0 [vq] ; q ∈ ϕp0

(
Sp0
)}

(3.11)

is Lipschitz on a neighborhood D ⊂ Sp0 of p0. Let b > 0 such that the closed ball B̄(0, b) ⊂ D.
Let M = maxu∈B̄(0,b)‖V (qu)‖Φ,p0 and α = b/M . Then for every ε > 0 there exists an ε-
approximate solution uε : [−α, α]→ B̄(0, b) of the differential equation (3.7):

(i) uε ∈ C([−α, α], B̄(0, b)), and uε is piecewise continuously differentiable;
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(ii) For every subinterval I ⊂ [−α, α] such that uε is continuously differentiable on I, we have
‖u̇ε(t)− V (uε(t))‖Φ,p0 ≤ ε for every t ∈ I;

(iii) We have the bound ‖uε(t)− uε(s)‖Φ,p0 ≤M |t− s| for all t, s ∈ [−α, α].

Proof. Let δ = ε/λ, then by Lipschitz regularity

‖V (u)− V (v)‖Φ,p0 ≤ ε if ‖u− v‖Φ,p0 ≤ δ.

Partition the interval [−α, α] into subintervals

−α =: t−n < t−n+1 < . . . < t−1 < t0 = 0 < t1 < . . . < tn := α

such that ti − ti−1 ≤ min{δ, δ/M} for i = −n+ 1, . . . , n.
Define

uε(t) :=

n∑
i=1

1{ti−1≤t≤ti}

[ i−1∑
j=1

(tj − tj−1)V (u(tj−1)) + (t− ti)V (u(ti−1))
]

+

0∑
i=−n+1

1{ti−1≤t<ti}

[ i−1∑
j=1

(tj − tj−1)V (u(tj)) + (t− ti)V (u(ti))
]
.

by choice of α = b/M , uε is well-defined on [−α, α] and remains in B̄(0, b). By construction,
uε is continuous and satisfies (iii). Moreover, u̇ε(t) = V (uε(ti)) for all t ∈ [ti, ti+1] ∩ [0,∞) and
t ∈ [ti−1, ti] ∩ (−∞, 0] so that ‖uε(t) − uε(ti)‖ ≤ δ on the same intervals by the choice of the
partition. Consequently (ii) holds by the choice of δ and Lipschitz property. �

The Euler polygon scheme is useful as a numerical algorithm for approximating the solution
to eq. (3.7) and for establishing the existence of the solution theoretically. The next result
provides a bound used to show that a sequence of approximate solutions uε converges to the
unique solution of the equation as ε→ 0.

Lemma 12. Let p0 ∈ P. Suppose score field expressed V in local coordinates ϕp0 as in
eq. (3.11) and satisfies the Lipschitz condition (3.10) on neighborhood D ⊂ Sp0 of 0. If u : Ju →
D and v : Jv → D are ε1- and e2-approximate solutions of u̇ = V (u), then for every t0 ∈ Ju ∩Jv
we have:

‖u(t)− v(t)‖Φ,p0 ≤ {‖u(t0)− v(t0)‖Φ,p0 + (ε1 + ε2)|t− t0|}eλ|t−t0| (3.12)

for all t ∈ Ju ∩ Jv.

Proof. First note that properties (i)-(ii) of ε-approximate solution in Lemma 11, it follows that∥∥∥∥u(t)− u(t0)−
∫ t

t0

V (u(s)) ds

∥∥∥∥
Φ,p0

≤ ε|t− t0|, for all t ∈ Ju (3.13)∥∥∥∥v(t)− v(t0)−
∫ t

t0

V (v(s)) ds

∥∥∥∥
Φ,p0

≤ ε|t− t0|, for all t ∈ Jv.

This follows by the fundamental theorem of calculus in the Banach space LΦ
0 (P0) applied on

each subinterval of continuous differentiability of u and v.
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Next, using above estimates and the identity

u(t)− v(t) =

[
u(t)− u(t0)−

∫ t

t0

V (u(s)) ds

]
−

[
v(t)− v(t0)−

∫ t

t0

V (v(s)) ds

]

+ [u(t0)− v(t0)] +

∫ t

t0

[
V (u(s))− V (v(s))

]
ds,

we obtain by triangle inequality the bound

‖u(t)− v(t)‖Φ,p0 ≤ (ε1 + ε2)|t− t0|+ ‖u(t0)− v(t0)‖Φ,p0 + λ

∣∣∣∣∫ t

t0

‖u(s)− v(s) ds‖Φ,p0
∣∣∣∣

for all t ∈ Ju ∩ Jv. The result follows from Gronwall’s lemma. �

Lemma 12 implies that any two exact solutions u : Ju → Sp0 and v : Jv → Sp0 to the initial
value problem (3.7) must coincide on Ju ∩ Jv.

Theorem 13 (Local existance and uniquencess of counterfactual distributions). Let p0 ∈ P.
Assume that the score field V is expressed in local coordinates ϕp0 (3.2):

V =
{
vq − Ep0 [vq] ; q ∈ ϕp0

(
Sp0
)}

and is Lipschitz with constant λ (3.10) on a neighborhood D ⊂ Sp0 of 0. Let b > 0 such that
the closed ball B̄(0, b) ⊂ D. Let M = maxu∈B̄(0,b)‖V (qu)‖Φ,p0 and α = b/M . Then the initial
value problem (IVP)

pu(t) =
eu(t)

Epu(t)
[
eu(t)

]p0,

u̇(t) = V (pu(t)), u(0) = 0.

has a unique solution u on [−α, α].

Proof. Fix a sequence εn → 0. By Lemma 11 there exist approximate solutions

uεn : [−α, α]→ B̄(0, b), for all n ∈ N

of the IVP. By Lemma 12, we have the following estimate

‖uεn(t)− uεm(t)‖Φ,p0 ≤ (εm + εm)αeλα, for all t ∈ [−α, α]

for all m,n ∈ N. Therefore sequence (uεn) is Cauchy in the Banach space C
(
[−α, α], LΦ(p0)

)
,

and converges uniformly on [−α, α] to the function u, which must satisfy

u(t) = 0 +

∫ t

0

V (u(s)) ds

by taking the limit in eq. (3.13). By the fundamental theorem of calculus, u is a solution to the
IVP. The solution is unique by Lemma 12. �

We now consider simple special cases of CET that admit an explicit solution.

Example 3.1 (Gaussian OLS ). Consider the linear regression model with an outcome Y and
a scalar covariate X that are jointly Gaussian:

Y = β0 + βX + ε, ε ⊥⊥ X, where fXY,0 = dN

([
χ0

µ0

]
,

[
σ2
X ρσXσY

ρσXσY σ2
Y

])
. (3.14)

In Example 2.4 it was shown that the information and Wasserstein gradient scores of the mean

31



functional
χ(F ) = EF [X], ∇FχF (x) = ∇KχF (x) = x− χ(F )

coincide at (marginal covariate) distributions F that are Gaussian. Moreover, changes along
the influence function of the mean do not effect the variance σ2

X(F ) = Varf [X] functional. It
turns out that, if the initial distribution of the outcome and covariate is jointly Gaussian, then
the solution to the ordinary differential equation (3.1) with the score field

VF (x, y) = x− χ(F )

is also given by a translation of the joint density that does not effect the covariance matrix:

fXY,t = dN

([
χ0 + σ2

Xt

µ0 + ρσXσY t

]
,

[
σ2
X ρσXσY

ρσXσY σ2
Y

])
.

In particular, the scalar counterfactuals ∆tµ = Cov[X,Y ]t and ∆tχ = Var[X]t are linear in the
time parameter t. Consequently, the counterfactual density and mean outcome, indexed by the
change h in χ,

fXY,h = dN

([
χ0 + h

µ0 + βt

]
,

[
σ2
X ρσXσY

ρσXσY σ2
Y

])
, ∆χ,hµ = Cov[X,Y ]/Var[X]h = βh,

follow from the linear time change ht = t/Var[X]. Apparently, the regression coefficient β
measures the change in µ in terms of the change in χ exactly when the status quo is a Gaussian
law. Also, fXY,h solves the differential equation (3.1) with the right-hand side VF (x, y) =

[x− χ(F )]/σ2
X(F ) rescaled by the information norm of the score.

We note that, despite a somewhat obscure definition via a functional ordinary differential
equation, the statistical functionals ∆tµ(F0) and ∆tχ(F0) are regular parameters of the status
quo distribution F0. The example shows that these parameters are estimable at the parametric
root-n rate on the nonparametric model when the true distribution is Gaussian. We expect this
property to hold more generally (under regularity conditions). Another observation we make is
that the estimator of the path of scalar counterfactuals

̂h 7→ ∆χ,hµ(F0) :=
{

Ĉov[X,Y ]/V̂ar[X] · h
}

0≤h≤ε

has a uniform asymptotic distribution.
It can also be verified explicitly in this example that the fundamental theorem of calculus

formula in equation (1.13) holds:

∆χ,hµ =βh =

∫ h

0

β(fs) ds

=

∫ t

0

∫
R

[
E[Y |X](x)− µ(fs)

][
x− χ(fs)

]
fs(x)dxds.

This follows by using the standard fact that E[Y |X](x) = ρσY /σX(x− χ0) + µ0 for a Gaussian
distribution, the above formulas for µ(fs) and χ(fs), and the functional form of the normal
density fs.

The simplification afforded in eq. (3.1) by the Gaussian initial condition can also be used
to solve explicitly for the distributional counterfactuals of the workhorse econometric technique
that addresses the problem of endogeneity in structural equations models (SEMs).

Example 3.2 (Gaussian IV ). Consider the linear IV model of an outcome Y with a scalar
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endogenous covariate X and a scalar instrument Z:

Y = β0 + βIVX + εY

X = γ0 + γ1Z + εX ,

where (Z, εX , εY ) are jointly Gaussian and disturbances εX , εY are independent of Z. It follows
that (X,Y, Z) is a Gaussian random vector. The idea of the IV regression is that the parameter
βIV (defined by the moment condition εY ⊥ Z) captures the relationship between the outcome
Y and the covariate X that is not confounded by endogeneity. Our distributional (and nonpara-
metric) interpretation of the IV coefficient βIV is that it measures the effect of an (exogenous)
change in the marginal distribution of the instrument Z that does not effect the conditional law
X,Y |Z. Specifically, we interpret βIV as the derivative of functional µ(F ) = EF [Y ] along the
influence function vF (x, y, z) = z − ζ(F ) of ζ(F ) = EF [Z], measured relative to the change in
χ(F ) = EF [X]. It can be verified that the solution of the differential equation (3.1), determined
by the score field vF , with a Gaussian initial condition fXY Z,0 = dN

(
[χ0, µ0, ζ0],Σ

)
, is the path

of joint Gaussian distributions with a constant covariance matrix:

fXY Z,t = dN
([
χ0 + Cov[X,Z] · t, µ0 + Cov[Y,Z] · t, ζ0 + Var[Z] · t

]
, Σ
)
.

In particular, the changes in the mean parameters χ, µ, ζ are linear (in the time parameter t).
It follows that the effect on the mean outcome, indexed by the change h in χ, is

∆χ,hµ(F0) = Cov[Y,Z]/Cov[X,Z] · h = βIV · h,

by the linear reparametrization ht = t/Cov[X,Z].

Example 3.3 (Non-Gaussian OLS ). Linearity of the mean outcome effect h 7→ ∆χ,hµ in
Examples 3.1 and 3.2 is a consequence of orthogonality of the mean and variance functionals at
Gaussian distributions. In general, these orthogonality and linearity properties do not hold.

However, the score flow equation (3.1) with the right-hand side given by the unscaled influ-
ence function of the mean VF (x, y) = x − χ(F ) corresponds to the flow of the constant vector
field u̇(x, y) ≡ x − χ(F0) in the local coordinates at F0 by (3.7). Consequently, this equation
has an explicit solution given by the exponential tilting of the initial density:

ft(x, y) =
exp{(x− χF0)t}

Ef0
[

exp{(x− χF0)t}
]f0(x, y). (3.15)

In the case of a non-Gaussian initial distribution F0, the mean counterfactual effects

∆tχ(F0) = Ef0 [XeXt]/Ef0 [eXt]− Ef0 [X], ∆tµ(F0) = Ef0 [Y eXt]/Ef0 [eXt]− Ef0 [Y ] (3.16)

need not be linear in the time parameter t along the integral path ft.
Because ft is the gradient flow of the mean χ, the map t 7→ ∆tχ(F0) is strictly increasing

and smooth. Denote the functional determined by the inverse (with respect to time parameter
t) of this map by

th(F0) := t{h}(F0) := inf{t ; ∆tχ(F0) ≥ h}. (3.17)

We use parameter h to denote the change in the mean χ in contrast to the parameter t of the
integral path (3.15) of the unscaled equation.

The solution fh of the score flow equation (3.1) with the right-hand side given by the scaled
gradient of the mean VF (x) = [x − χ(F )]/VarF [X], where the parameter is h = ∆hχ(F0) can
be expressed as

fh(x, y) = e(x−χ(F0))·th(F0)/Ef0

[
e(X−χ(F0))·th(F0)

]
× f0(x, y). (3.18)
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The corresponding change in the mean of the outcome can be expressed as

∆χ,hµ(F0) = Ef0

[
Y eXth(F0)

]
/Ef0

[
eXth(F0)

]
− Ef0 [Y ]. (3.19)

We use the expression of ∆χ,hµ in equation (3.19) to find the influence function ∆̃hµF0
of

this parameter of the status quo distribution F0. Let Fs be a differentiable in quadratic mean
path of distributions with a score v at F0. By formula (2.3), the following equation is solved
uniquely in L2

0(F0) by the influence function:

d
ds |s=0

∆µ(Fs) = Ef0

[
∆̃µF0

(X,Y ) v(X,Y )
]

= d
ds |s=0

{
Efs
[
Y eXth(Fs)

]
/Efs

[
eXth(Fs)

]}
− Ef0

[
(Y − µ(F0)) v(X,Y )

]
where we have dropped the subscripts χ, h for notational convenience. Using standard rules of
differential calculus, and the Riesz representation of the pathwise derivatives of linear functionals
(expectations) and the nonlinear time-change parameter th(F ), we find

∆̃µF (x, y) =
{
yexth(F ) − E[Y eXth(F )]

}
/Ef

[
eXth(F )

]
−
{
exth(F ) − E[eXth(F )]

}
/Ef

[
eXth(F )

]2
−
[
y − µ(F )

]
+
{

Ef
[
XY eXth(F )

]
/Ef

[
eXth(F )

]
− Ef

[
XeXth(F )

]
/Ef

[
eXth(F )

]2}× t̃{h}F (x).

The first three terms of the influence function account for local variability in the functional when
the time-change parameter th(F ) is fixed. The last term measures the local variability of the
functional due to the variability in the time-change parameter.

The time-change functional t{h}(F ) is obtained from the unscaled effect ∆tχ(F ) via an
implicit function definition by requiring the relation ∆t{h}(F )χ(F ) ≡ h to hold identically in
F . Therefore, parameters ∆tχ(F ) and t{h}(F ) share the same smoothness properties in the
distributional argument F . This is similar to the pathwise differentiability properties of the
distribution function evaluated at a point and the corresponding quantile functional. Specifically,
we have

t̃{h}F (x) =
[
−
{
d
dt∆tχ(F )

}−1
∆̃tχF (x)

]
t=th(F )

.

Finally, the velocity d
dt∆tχ(F ) and the influence function ∆̃tχF (x) can be computed (under

regularity conditions) from the explicit definition of the effect ∆tχ(F ) in eq. (3.16):

d
dt∆tχ(F ) = Ef

[
X2eXt

]
/Ef

[
eXt
]
− Ef

[
XeXt

]
/Ef

[
eXt
]2

∆̃tχF (x) =
{
xext − E[XeXt]

}
/Ef [eXt]

−
{
ext − E[eXt]

}
× Ef [XeXt]/Ef [eXt]2 −

{
x− χ(F )

}
.

We conclude that the mean outcome effect functional ∆χ,hµ is pathwise differentiable under
regularity conditions.

Remark The influence function of a scalar effect ∆tψ along a general score flow path can be
obtained by differentiating through the equation (3.1). See [1] for differentiability with respect to
the initial condition of solutions to ODEs in Banach spaces. This requires taking the derivative
of the influence function (higher order influence function, see Robins et al (2008) [63]). In
econometrics, inference for parameters defined via a differential equation in Euclidean space has
been obtained in Hausman and Newey (1995) [41] and Vanhems (2006) [73].
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4. Appendix

4.1 Conditioning and scores of marginal distributions. A common situation encountered
with Oaxaca-Blinder decomposition analysis is the paths of counterfactual distributions FXY
that hold the conditional distributions FX|Y fixed.

Proposition 14. A path of joint counterfactual distributions h 7→ FXY,h has the Oaxaca-
Blinder property that the conditional distributions FY |X,h ≡ FY |X are constant if and only
if the scores of this path vfh(x, y) = d

dh log fXY,h(x, y) ≡ vfh(x) are constant in the outcome
sample space variable y.

Moreover, if the conditional distributions FY |X are constant along the path of joint distri-
butions FXY,h, then the score of the path of marginal distribution FY,h is

d
dhfY,h(y) = EF

[
vF (X)|Y = y

]
is given by the conditional expectation of the joint score (which depends only on x).

Proof. For simplicity we assume that differentiation with respect to the parameter h can be
done point-wise over the sample space x, y ∈ X × Y. Suppose fY |X,h does not depend on h.
Using the definition of the conditional density function, the score of the joint path

vf (x, y) = d
dh log fY |X,h(x, y)fX,h(x)

= d
dh log fY |X(x, y) + d

dh log fX,h(x)

= 0 + d
dh log fX,h(x)

depends only on the sample space variable x ∈ X .
Suppose the scores of the path fXY,h are vh(x, y) ≡ vh(x) for all h. Then d

dhfY |X,h(x, y)

does not depend on h, and we can write the conditional probability density functions as

log fY |X,h = A(x, h) +B(x, y) with eA(x,0) ≡ 1.

For every t, we must have

1 ≡
∫
eB(x,y)eA(x,t) dy = eA(x,t)

∫
eB(x,y) dy.

From the normalization at h = 0, it follows that eB(x,y) = fY |X,0(x, y). This implies that
eA(x,h) = 1 for all h and the conditional density does not depend on h.

Suppose fXY,h(x, y) = fY |X(y|x)fX,h(x). We want to find the score of the path of marginal
distributions FY,h. Assuming that we can exchange the order of integration and differentiation,

d
dhfY,h(y) = d

dh log

{∫
X
fY |X(y|x)fX,h(x) dx

}
=

1

fYh(y)

∫
X
fY |X(y|x) d

dhfX,h(h) dx

=
1

fYh(y)

∫
X

d
dh log fX,h(x) fY |X(y|x)fX,h(x) dx

=
1

fYh(y)

∫
X

d
dh log fX,h(x) fXY (x, y) dx

=

∫
X

d
dh log fX,h(x) fX|Y (x|y) dx

= EF
[
vF (X)|Y = y

]
where vF (x) = d

dh log fX,h(x) is the score of the path of marginal distributions of X.
�
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4.2 Influence function of overidentified GMM functional. We compute the influence
function of the GMM parameter defined in eq. (1.23) on a fully nonparametric model, and
record the required regularity conditions for pathwise differentiability of the functional.

Conditions G:

1. The functional θW (P ) is well-defined and satisfies the first order condition of the mini-
mization problem eq. (1.23) for each P ∈ P;

2. Moment functions g : Θ× X → Rr are smooth in θ and integrable with respect to P, the
order of differentiation with respect to θ and integration over X with respect to P ∈ P

can be interchanged;

3. The derivative ∂θg(θ, x) smooth in θ and integrable in x with respect to P, the order of
differentiation in θ and integration with respect to P ∈ P can be interchanged;

4. The second derivative ∂2
θg(θ, x) is integrable;

5. Weighting matrix-valued functional is positive-definite and pathwise differentiable on P

with influence function W̃P . This means that we have the Riesz representation of the
derivative dWP (v) =

∫
X W̃P v dP for all tangent vectors v ∈ L2

0(P ).

6. The p× p matrix((
P [g(θW,P )]T WP ⊗ Ip

)
P
[
∂θ vec

(
[∂θg(θW,P )]T

)]
+ P

[
∂θg(θW,P )

]T
WPP

[
∂θg(θW,P )

] )
is nonsingular for every P ∈ P.

Theorem 15 (Influence function in Proposition 3). If conditions G hold, then the GMM

functional θW (P ) defined in eq. (1.23) is pathwise differentiable with the influence function
θ̃W,P given in eq. (1.26).

Proof. Fix a path Pt in P that is differentiable in quadratic mean at P0 with score function
ξ ∈ L2

0(P0). Let θt = θW (Pt) denote the value of the functional along this path. Under
the assumption that θW (P ) is pathwise differentiable, the derivative along the path d

dt t=0
θt

exists and is given by the action of the derivative mapping on the score function of the path
d
dt t=0

θt = dθW,P0
(ξ). All assumptions that must be made in order to compute d

dtθt are necessary
conditions for pathwise differentiability.

The idea of the calculation of θ̃W,P is to find the Riesz representation of the pathwise deriva-
tive mapping dθW,P and recognize the influence function as the element of L2

0(P0) that deter-
mines this representation. By Hilbert space theory, θ̃W,P is characterized uniquely by its inner
products with all other elements of the tangent space L2

0(P0). Since we allow the path Pt and its
score ξ ∈ L2

0(P0) to be arbitrary, the calculation fully characterizes the influence function θ̃W,P0 .
The Riesz representation theorem then implies pathwise differentiability under the conditions
that are sufficient for the inner product representation of the derivative along an arbitrary path.

The GMM functional is characterized locally in a neighborhood of P0 by the first order
condition of the minimization problem (1.23) that defines it. Under the condition G1 this first
order condition can be written as:

0 = Pt[∂θg(θt)]
T Wt Pt[g(θt)]. (4.1)

We now apply the standard rules of classical calculus to differentiate (4.1) with respect to
the parameter t of the path Pt:

0 = d
dtPt[∂θg(θt)]

T Wt Pt[g(θt)]

=:TG

+ [∂θg(θt)]
T d
dtPtWt Pt[g(θt)]

=:TW

+ [∂θg(θt)]
T Wt

d
dtPtPt[g(θt)]

=:Tg
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The three terms TG, TW , Tg defined above each yield a contribution to the influence function
of the GMM functional. On the restricted model by the requirement that moment conditions
(1.24) hold, the first two terms TG, TW that account for local changes in the second derivative
of the moment function g and the weighting matrix W vanish.

We now compute each of the three terms.
Term TG. We use denominator layout for derivatives of vectors (so that ∂θg(θ) is an array

of dimension r× p. We refer to [24] for the details of matrix calculus. We use the vectorization
identity

vec(AXB) = (BT ⊗A) vecX,

with A = Ip, X = Pt[∂θg(θt)], and B = P0[g(θ)]T W0 in order to keep the equation expressed
as a two-dimensional array after we apply chain rule and differentiate ∂θg(θt) with respect to
the vector θ:

TG
p×1

= d
dt |t=0

Pt
[
∂θg(θt)
r×p

]T
W0 P0[g(θ0)]

=
(
P0[g(θ0)]T W0 ⊗ Ip

)
:=TG,I , p×pr

d
dt |t=0

vecPt[∂θg(θt)]
T

:=TG,II , pr×1

The term TG,I is zero when the moment conditions (1.24) hold. The term TG,II is an array
of dimension pr × 1 and has the format

TG,II =

(Pt[∂θ1g1(θt)], . . . , Pt[∂θpg1(θt)])
T

...
(Pt[∂θ1gr(θt)], . . . , Pt[∂θpgr(θt)])

T


Consider the derivative with respect to t of the first element of the term TG,II , applying

chain rule and using the regularity condition G3, we have

(TG,II)1 = d
dtPt[∂θ1g1(θt)]

= P0

[
d
dt |t=0

∂θ1g1(θt)
]

+ d
dt |t=0

Pt[∂θ1g1(θt)]

= P0

[
∂θ∂θ1g1(θt) · ddt |t=0

θt

]
+ d

dt |t=0
Pt[∂θ1g1(θ0)] (4.2)

Under the hypothesis that θW (P ) is pathwise differentiable, the derivative d
dt |t=0

θt has the
Riesz representation:

d
dt |t=0

θt = d
dt |t=0

θ(Pt) = dθW,P0
(ξ) =

∫
X
θ̃W,P0

(x) ξ(x) dP0 = P0

[
θ̃W,P0

ξ
]

(4.3)

The strategy of our calculation is to differentiate d
dt in eq. (4.1), which results in an expression

that relates the influence function θ̃W,P and other terms that involve the primitives of the
problem (moments g, their derivatives, weighting matrix W , etc). The point is to then solve for
the influence function θ̃W,P in terms of the primitives of the problem.

The last term in eq. (4.2) is the derivative of the mean functional of the moment function
given by ∂th1g1(θ0), it has the following Riesz representation of the derivative:

d
dt |t=0

Pt[∂θ1g1(θ0)] = d
dt |t=0

∫
X
∂θ1g1(θ0) dPt

=

∫
X

(
∂θ1g1(θ0)(x)− P0[∂θ1g1(θ0)]

)
ξ(x) dP0

= P0

[(
∂θ1g1(θ0)− P0[∂θ1g1(θ0)]

)
ξ
]

(4.4)
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We thus have the following expression for the term TG,II :

TG,II = P0

[
∂θ vec

(
[∂θg(θ0)]T

)]
pr×p

P0

[
θ̃W,P0

· ξ
]

p×1

+P0

[(
vec
(
[∂θg(θ0)]T

)
− P0 vec

(
[∂θg(θ0)]T

))
· ξ
]

pr×1

.

We have the following expression for the term TG:

TG = TG,IP0

[
∂θ vec

(
[∂θg(θ0)]T

)]
p×p

P0

[
θ̃W,P0

· ξ
]

+ TG,IP0

[(
vec
(
[∂θg(θ0)]T

)
− P0 vec

(
[∂θg(θ0)]T

))
· ξ
]
.

Term TW . Calculation of this term is straightforward, and follows by condition G2 and
linearity of expectation:

TW = P0[∂θg(θ0)]T d
dtWt P [g(θ0)]

= P0[∂θg(θ0)]T P0[W̃P0 · ξ] P0[g(θ0)]

= P0

[
P0[∂θg(θ0)]T W̃P0

P0[g(θ0)] · ξ
]

Term Tg.

Tg = P0[∂θg(θ0)]T W0

:=Tg,I , p×r

d
dt |t=0

Pt[g(θt)]

:=Tg,II , r×1

To compute the term Tg,II we apply chain rule, condition G1 and Riesz representation of
the mean functional with moment function g(θ0):

Tg,II = d
dt |t=0

Pt
[
g(θ0)

]
+ P0

[
d
dt |t=0

g(θt)
]

= P0

[(
g(θ0)− P0[g(θ0)]

)
· ξ
]

+ P0

[
∂θg(θ0)

]
d
dt |t=0

θW (Pt)

= P0

[(
g(θ0)− P0[g(θ0)]

)
· ξ
]

+ P0

[
∂θg(θ0)

]
P0[θ̃W · ξ]

We have the following expression for the term Tg:

Tg = Tg,IP0

[(
g(θ0)− P0[g(θ0)]

)
· ξ
]

+ Tg,IP0

[
∂θg(θ0)

]
p×p

P0[θ̃W,P0 · ξ]

Collection all three calculations together we obtain:

−
(
TG,IP0

[
∂θ vec

(
[∂θg(θ0)]T

)]
+ Tg,IP0

[
∂θg(θ0)

] )
p×p

P0

[
θ̃W,P0 · ξ

]
=

P0

[{
TG,I

(
vec
(
[∂θg(θ0)]T

)
− P0 vec

(
[∂θg(θ0)]T

))
+

+ P0[∂θg(θ0)]T W̃P0
P0[g(θ0)] + Tg,I

(
g(θ0)− P0[g(θ0)]

)}
· ξ

]

38



Using condition G6, we solve for the Riesz representation of dθW,P0 :

P0

[
θ̃W,P0

· ξ
]

= −
(
TG,IP0

[
∂θ vec

(
[∂θg(θ0)]T

)]
+ Tg,IP0

[
∂θg(θ0)

] )−1

×

× P0

[{
TG,I

(
vec
(
[∂θg(θ0)]T

)
− P0 vec

(
[∂θg(θ0)]T

))
+

+ P0[∂θg(θ0)]T W̃P0
P0[g(θ0)] + Tg,I

(
g(θ0)− P0[g(θ0)]

)}
· ξ

]
Since the path Pt and its score ξ ∈ L2

0(P0) are arbitrary, we conclude that

θ̃W,P0 = −
[
TG,IP0

[
∂θ vec

(
[∂θg(θ0)]T

)]
+ Tg,IP0

[
∂θg(θ0)

] ]−1

×
{
TG,I

(
vec
(
[∂θg(θ0)]T

)
− P0 vec

(
[∂θg(θ0)]T

))
+

+ P0[∂θg(θ0)]T W̃P0 P0[g(θ0)] + Tg,I
(
g(θ0)− P0[g(θ0)]

)}
Substituting the terms TG,I and Tg,I , we obtain the expression for the nonparametric influ-

ence function of the GMM functional:

θ̃W,P = −
[(
P [g(θP )]TWP ⊗ Ip

)
P
[
∂θ vec

(
[∂θg(θP )]T

)]
+ P [∂θg(θP )]TWPP

[
∂θg(θP )

] ]−1

×
{(

P [g(θP )]TWP ⊗ Ip
) [

vec
(
[∂θg(θP )]T

)
− P vec

(
[∂θg(θP )]T

)]
+

+ P
[
∂θg(θ(P ))

]T
W̃P P

[
g(θP )

]
+ P

[
∂θg(θP )

]T
WP

(
g(θP )− P

[
g(θP )

])}
.

�

4.3 Gradient scores.
Proof of Proposition 4 . By the Riesz representation theorem for the Hilbert space (TP , gP ),
applied to the pathwise derivative dνP has the representation and by the Cauchy-Schwarz in-
equality:

dνP (vP ) = gP (∇gνP , vP ) ≤ ‖∇gνP ‖g,P ‖vP ‖g,P

with equality holding if and only if vP is a scalar multiple of the gradient ∇gνP . This implies a
lower bound on the size of the score function vP that leads to a unitary perturbation dνP (vP ) = 1

in the value of the functional:

1/‖∇gνP ‖g,P ≤ ‖vP ‖g,P for all vP ∈ TP s.t. dνP (vP ) ≥ 1.

By the Cauchy-Schwarz inequality, the lower bound is achieved uniquely by the score function
∇1
g νP = ∇gνP /Cov

[
ν̃P ,∇gνP

]
, which is a scalar multiple of the gradient and has the unitary

local effect on the functional:

dνP (∇1
g νP ) =

∫
X
ν̃P ∇1

g νP dP = CovP
(
ν̃P ,∇1

g νP
)

= 1.

�

4.4 Influence function formula. The example below shows that the original von Mises
(1947) calculation relies on paths that are not smooth in the sense required for pathwise differ-
entiability.
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Example 4.1 (Influence function for the von Mises calculation). Let P , δx be a continuous
distribution and a point mass on (X ,A) and take [0, 1] 3 h 7→ Ph = (1 − h)P + hδx to be a
deviation as in the original von Mises calculation of influence function described in Section 1.1.
We compute the tangent vector to the path Ph at h = 1/3 and h = 0. Take µ = P + δx
to be the dominating measure, then dPh = (1 − h)1{X\x} + h1{x} is the density and dP 1/2

h =√
1− h1{X\x}+

√
h1{x} is the geometric representation of Ph under embedding inH2. Note that

the path is no longer linear. Also note that dtv(Ph+t, Ph) = 2 supA∈A|Ph+t(A)− Ph(A)| = t,
so the path is continuous in H2. For h = 1/3, we can differentiate d

dt |t=0
log dP

1/2
h+t pointwise

for each z ∈ X and verify that the score function 1
2v 1

3
(z)dP

1/2
1
3

(z) = − 1
2 ( 2

3 )−1/21{X\x}(z) +
1
2 ( 1

3 )−1/21{x}(z) satisfies the smoothness condition (2.1):∥∥∥t−1[dP−1/2
1
3
+t
− dP−1/2

1
3

]
− 1

2
v 1

3
dP
−1/2
1
3

∥∥∥2
H2

=
[
t−1[

√
2
3
− t−

√
2
3
]− (−1)

1

2
(
2

3
)−1/2

]2
P (X \ x) +

[
t−1[

√
1
3

+ t−
√

1
3
]− 1

2
(
1

3
)−1/2

]2
δ{x}(x)

is o(1) as t → 0. For h = 0 the right derivative of
√
h is infinite, so there is no score function

v with finite values a.e.-µ that would satisfy condition (2.1). Consequently, the path Ph is not
smooth in H2 and does not have a tangent vector at h = 0, despite being a convex (linear)
combination of probability measures.

Lemma 16 (Approximation to von Mises perturbation with a score). Suppose K is a bounded
probability density function on Rd with support in the unit ball |x| ≤ 1. Then

Kδ(x) := δ−dK(δ−1x), δ > 0 (4.5)

is an approximation to the identity in the sense of Stein and Shakarchi (2009) [67, p. 109], that
is

(i)
∫
Rd Kδ(x) dx = 1.

(ii) |Kδ(x)| ≤ Aδ−d for all δ > 0.

(iii) |Kδ(x)| ≤ Aδ/|x|d+1 for all δ > 0 and x ∈ Rd.

Here A is a constant independent of δ.
Suppose P0 is a probability measure that is absolutely continuous with respect to the

Lebesgue measure L d with a continuous density function f0. Let

Kf0,δ,z(x) :=
[ ∫
{f0>δ}Kδ(x) dx

]−1

1{f0>δ}(z − x)Kδ(z − x), (4.6)

then for z ∈ {f0 > 0} we have Kf0,δ,z = Kδ(z − .) for all sufficiently small δ > 0 (which depend
on z that is fixed throughout). Furthermore,

ft,δ,z(x) := (1− t)f0(x) + tKf0,δ,z(x) (4.7)

is a curve of probability densities for t in an interval around 0, that is differentiable in quadratic
mean of eq. (2.1) with the score function

vδ,z(x) := d
dt |t=0

log ft,δ,z(x) =
Kf0,δ,z(x)

f0(x)
− 1. (4.8)

Proof. The three properties of an approximation to the identity follow respectively from dilation
invariance of Lebesgue integral, boundedness and compact support of the kernel K.

Fix a z ∈ {f0 > 0}. By continuity of f0 there is a neighborhood N of z such that f0 is
bounded away from zero on N . For all δ > 0 small enough, Kδ(z − .) is supported in N by
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bounded support and dilation construction, so that Kδ(z− .) ≡ Kf0,δ,z. Therefore for t negative
and close enough to 0, function ft,δ,z is a well-defined probability density and its score functions

vt,δ,z(x) := d
dt log ft,δ,z(x) =

Kf0,δ,z(x)− f0(x)

ft,δ,z(x)
(4.9)

are bounded in x ∈ X .
To check the DQM property∫

X

[√
ft,d,z −

√
f0

t
− 1

2
v0,δ,z

√
f0

]2

dx→ 0 as t→ 0, (4.10)

note that the map t 7→
√
ft,δ,z(x) is continuously differentiable for each x in a neighborhood

t ∈ (−ε, ε) of 0 with derivative 1
2vt,δ,z(x)

√
ft,δ,z(x), therefore the problem is to justify the change

of order of the limit t→ 0 and the integral
∫
X dx in eq. (4.10). By the fundamental theorem of

calculus, we can write the difference quotient as√
f0+ht(x)−

√
f0(x) =

∫ 1

0

d

dh

√
f0+ht(x) dh =

∫ 1

0

1

2
v0+ht(x)

√
f0+ht · t dh.

Therefore, by (a− b)2 ≤ 2a2 + 2b2 and Cauchy-Schwarz inequality, we have the pointwise bound[√
ft,d,z(x)−

√
f0(x)

t
− 1

2
v0,δ,z(x)

√
f0(x)

]2

≤ 2

[∫ 1

0

1

2
vht,δ,z(x)

√
fht,δ,z dh

]2

+ 2
1

2
vδ,z(x)2f0(x)

≤
∫ 1

0

1

2
vht,δ,z(x)2f0+ht dh + vδ,z(x)2f0(x).

By the generalized Lebesgue dominated convergence theorem [see 64, p89, Theorem 19], in order
to conclude (4.10), it is sufficient to show that

∫
X
∫ 1

0
1
2vht,δ,z(x)2f0+ht dhdx converges as t→ 0.

By Fubini’s theorem∫
X

∫ 1

0

1

2
vht,δ,z(x)2f0+ht dhdx =

∫ 1

0

∫
X

1

2
vht,δ,z(x)2f0+ht dxdh =

1

2

∫ 1

0

Iht,δ,z dh.

Since the scores (4.9) are bounded, the information matrix It,δ,z is continuous in t at 0, and the
above integral converges to I0,δ,z. �

Proof of Theorem 8. By pathwise differentiability of functional ψ, differentiability in quadratic
mean of the path t→ Pt,δ,z, and Riesz representation we have

d
dt |t=0

ψ(Pt,δ,z) = dψP0(vδ,z)

=

∫
ψ̃P0

(x) vδ,z(x) dP0.

Assume that ψ̃P0(x) = ψP0(x)1{f0>0}(x). Below P0 is fixed and we drop the subscript P0

for convenience. Using the score vδ,z computed in Lemma 16 and the fact that ψ̃ has zero mean,
have the expression for pathwise derivative as the convolution of influence function with the
approximation to identity kernels:

d
dt |t=0

ψ(Pt,δ,z) =

∫
ψ̃P0(x)

[
Kδ(z − x)/f0(x)− 1

]
dP0

=

∫
ψ̃P0

(x)Kδ(z − x) dx

= (ψ̃P0 ∗Kδ)(z).
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It suffices to show that for each α > 0 the set

Eα =

{
z ∈ suppP0 ; lim sup

δ→0

∣∣∣(ψ̃P0
∗Kδ)(z)− ψ̃P0

(z)
∣∣∣ > 2α

}
has zero Lebesgue measure, because then E =

⋃∞
j=1E1/j has zero measure by monotonicity,

and the assertion eq. (2.17) of the Theorem holds at all points z ∈ Ec of the complement.
Because Kδ is a bounded probability density function, with support in |x| ≤ δ by the dilation

construction (4.5), we can write∣∣∣(ψ̃P0 ∗Kδ)(z)− ψ̃P0(z)
∣∣∣ =

∣∣∣∣∣
∫
Rd

[
ψ̃P0(z − x)− ψ̃P0(z)

]
Kδ(x) dx

∣∣∣∣∣
≤
∫
Rd

∣∣∣ψ̃P0(z − x)− ψ̃P0(z)
∣∣∣Kδ(x) dx

≤ c

δd

∫
|x|≤δ

∣∣∣ψ̃P0
(z − x)− ψ̃P0

(z)
∣∣∣ dx.

Fix α > 0 and recall that continuous functions of compact support are dense in L1(Rd) [see
e.g. 67, p71], so that for each ε > 0 we can choose a function g with ‖ψ̃P0

− g‖L1(Rd) < ε. By
triangle inequality we can upper bound the expression above with

c

δd

∫
|x|≤δ

∣∣∣ψ̃P0
(z − x)− g(z − x)

∣∣∣ dx+
c

δd

∫
|x|≤δ

∣∣∣g(z − x)− g(z)
∣∣∣ dx+ c′|g(z)− ψ̃P0

(z)|.

By the continuity of g it follows that

lim
δ→0

c

δd

∫
|x|≤δ

∣∣∣g(z − x)− g(z)
∣∣∣ dx = 0, for all z.

We find that

lim sup
δ→0

∣∣∣(ψ̃P0 ∗Kδ)(z)− ψ̃P0(z)
∣∣∣ ≤ c′∣∣ψ̃P0 − g

∣∣∗(z) + c′
∣∣g(z)− ψ̃P0(z)

∣∣,
where the superscript ∗ indicates the Hardy-Littlewood maximal function:

f∗(x) := sup
B3x

1

L d(B)

∫
B

|f(y)| dy, for f ∈ L1(Rd), x ∈ Rd. (4.11)

If we

Fα = {z ∈ suppP0 ;
∣∣ψ̃P0 − g

∣∣∗(z) > α} and Gα = {z ∈ suppP0 ;
∣∣ψ̃P0(z)− g(z)

∣∣ > α}

then Eα ⊂ Fα ∪ Gα by De Morgan’s law since Ecα ⊃ F cα ∩ Gcα. Furthermore, by Chebyshev’s
inequality

L d(Gα) ≤ 1

α
‖ψ̃P0

− g‖L1(Rd),

and by the Hardy-Littlewood maximal inequality [see e.g. 67, p101]

L d(Fα) ≤ 3d

α
‖ψ̃P0 − g‖L1(Rd).

Recall that the function g was chosen such that ‖ψ̃P0 − g‖L1(Rd) < ε, so that

L d(Eα) ≤ c′ 3
d

α
ε+ c′

1

α
ε.

Since ε > 0 is arbitrary, we conclude that L dEα = 0 and consequently P0(
⋃∞
j=1E1/j) = 0. �
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4.5 Information counterfactuals of regular estimators. Here we derive a formula for the
information gradient sensitivity and effects when both the policy and outcome functionals are
specified implicitly with estimators.

Let data X1, . . . , Xn be sampled randomly from P ∈ P. We have shown that counterfactual
values and locally optimal policy scores can be obtained analytically for statistical functionals
that are smooth. However, empirical research in economics is typically formulated in terms
of estimators rather than the statistical functionals that are estimated. Suppose we have two
scalar estimators ψ̂, ν̂ = ψ̂n, ν̂n(X1, ..., Xn). We think of the functionals ψ, ν : P → R as the
sets of large sample limits of the estimators ψ̂, ν̂, indexed by the counterfactual distributions
P ∈ P of data. Parameters ψ(P0) and ψ(Ph) are the initial and the counterfactual limits of
the outcome estimator ψ̂, computed with data sampled before and after the policy that changes
the population value of ν by h. The innovation of this paper is to express the limit of ψ̂ at a
carefully chosen counterfactual distribution Ph as a function (1.9) of the initial distribution P0.
This means that both parameters ψ(P0) and ψ(Ph) can be estimated simultaneously from the
same data.

Estimators are taken in a wide sense of any sequence of measurable transformations of the
data with arbitrary dependence on the data and the sample size n. By contrast, von Mises
considered simple estimators constructed directly from the functional by evaluating it at the
empirical distribution. Consequently, the problems of asymptotic inference and counterfactual
analysis can be approached either from the perspective of the calculus of the functional following
von Mises, or from the perspective of a given estimator, as is typically done in econometrics. In
order to compute counterfactual effects in statistical parameters with von Mises calculus, regu-
larity conditions must be satisfied by the path of counterfactual distributions Ph, the functionals
ψ, ν and the estimators ψ̂, ν̂. The high level condition is that the paths and the functionals must
be smooth. More primitive regularity conditions on P ∈ P can be formulated either based on
the functionals or the estimators of the functionals. We record sufficient regularity conditions
in terms of estimators of the policy and outcome parameters.

Asymptotic linearity (2.8) on P is the basic property of an estimator that parallels the Taylor
expansion of the von Mises functional. Condition (2.8) pins down the parametric

√
n-rate of

convergence of the estimator sequence to the functional, the asymptotic Gaussian distributions
and candidates ψ̃P for information gradients ∇FψP , suggesting that the estimated functional
must be smooth. Indeed, Donoho and Liu (1991) [26, 27] showed that parameters that are
not pathwise differentiable require nonparametric estimators with rates of convergence strictly
slower than OP (n−1/2). However, asymptotic linearity is a property that is determined by
the behavior of the estimator at each fixed distribution P in isolation, without taking into
account the behavior of the estimator at any other distribution. Strictly speaking, (2.8) is too
weak for analytic counterfactual analysis, allowing for pathological behavior on a small set of
counterfactual distributions. Consider the canonical example:

Example 4.2 (Hodges’ estimator, hard thresholding). Let Xn = 1
n

∑n
i=1Xi and ψ(P ) =∫

X x dP be the sample and the population means. Functional ψ is pathwise differentiable with
information gradient ψ̃P (x) = x−ψ(P ). Note that ψ̃P is the influence function of the estimator
Xn. Fix a ∈ R and let ψ̂H = Xn1{|Xn|≥n−1/4} + aXn1{|Xn|<n−1/4}, then ψ̂H is asymptotically
linear with influence function ψ̄H,P = [1 + (a − 1)1{P ; ψ(P )=0}]ψ̃P that is different from the
information gradient of the functional at every distribution P with zero mean.

Proof. Case 1: ψP 6= 0. Write
√
n(ψ̂ − ψP ) =

√
n(Xn − ψP ) +

[√
n(a− 1)(Xn − ψP ) +

√
n(a− 1)ψP

]
1{|Xn|≤n−1/4}

and note that P
{
|Xn| ≤ n−1/4

}
= P

{
|
√
n(Xn − ψP ) +

√
nψP | ≤ n1/4

}
→ 0.
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Case 2: ψP = 0. Write
√
n(ψ̂ − ψP ) =

√
na(Xn − ψP ) +

[√
n(1− a)(Xn − ψP )

]
1{|Xn|>n−1/4}

and note that P
{
|Xn| > n−1/4

}
= P

{
|
√
n(Xn − ψP )| > n1/4

}
→ 0. Conclude that ψ̂H is

asymptotically equivalent to the sample meanXn on {P ; ψP 6= 0} and to aXn on {P ; ψP = 0}
and is therefore asymptotically linear at any distribution with finite variance. �

Example 4.2 shows that asymptotic linearity at P is not enough to find the information
gradient of the functional, and therefore does not alone provide information about the behavior
of the estimator at counterfactual distributions. An estimator ψ̂n is locally regular at P0, if for
every smooth in the sense of differentiability in quadratic mean eq. (2.1) path Ph, the asymptotic
distribution of ψ̂ has the following local uniformity property:

√
n
(
ψ̂n − ψ(Ph(n))

) Ph(n)
 LP0

(4.12)

for any sequence h(n) = O(1/
√
n) and some probability measure LP0

on (R,B(R)) that does
not depend on the path Ph. Local regularity requires the estimator to act uniformly on data
from counterfactual distributions in a shrinking neighborhood of P0 and rules out pathological
Example 4.2. This condition links statistical properties of the estimator ψ̂n to analytic properties
of the functional ψ(P ), and is used in Theorem 6 implicitly. Semiparametric efficiency theory
uses (4.12) to derive a sharp characterization of the asymptotic distribution LP and establish a
bound on the asymptotic precision of regular estimators, see Hájek (1970) [38], van der Vaart
(1991) [72]. Newey (1994) [56] uses this property to guarantee equality of the influence function
ψ̃P of the estimator and the Riesz representative ∇FψP of the functional. This paper uses local
regularity to obtain counterfactual values of the functional from the asymptotic distribution of
its estimators.

Before proving Theorem 6, we briefly unpack condition (4.12). Hodges’ estimator is asymp-
totically linear but not locally regular. There are estimators that are regular but not asymptoti-
cally linear. The following more primitive conditions take advantage of the asymptotic linearity
of an estimator and imply local regularity.

Fix a differentiable in quadratic mean path Ph and assume that estimator ψ̂n is asymptoti-
cally linear. To verify (4.12), it is sufficient that the linear representation (2.8) holds uniformly
and continuously at P0 on the path Ph:

Condition ALU. The remainder terms oP (h),n(1) =
√
n(ψ̂n − ψ(Ph))− 1√

n

∑n
i=1 ψ̃P (h)(Xi) of

the estimator’s asymptotic expansions based on random samples of size n from distributions Ph
converge to zero as n→∞ in probability uniformly in h:

lim
n→∞

sup
h
Ph
{
|oPn(h),n| > ε

}
= 0, for every ε > 0. (4.13)

Condition ALC. The variance function h 7→
∫
X ψ̃

2
P (h) dPh of the asymptotic Gaussian distri-

bution of the estimator is a continuous real-valued function of a real variable h.

These conditions strengthen asymptotic linearity by requiring that the sample averages of
different influence functions have distributions that vary smoothly on smooth paths of data
distributions, and approximate the distributions of the estimator uniformly well on the path Ph.
The ALU condition can be verified with a uniform in P law of large numbers that extends the
classical result by requiring uniform integrability, see Chung (1951) [22]. The ALC condition is
straightforward to interpret.

Note that Hodges’ estimator violates condition ALC because P 7→ Pψ̃2
H,P has a jump discon-

tinuity at every P with mean zero. DasGupta and Johnstone (2013) [23] show that the risk of
ψ̂H is unbounded in a neighborhood around the threshold, which suggests that the remainder
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terms in condition ALU may not be uniformly small near P with zero mean.

Lemma 17. Suppose the path h 7→ Ph is differentiable in quadratic mean (2.1), and suppose
that estimator ψ̂n has the asymptotically linear representation (2.8) on Ph. If conditions ALU

and ALC hold, then the estimator is locally regular on the path Ph.

Proof. Also see Bickel et al (1993) [13, Proposition 2.2.1, Appendix A.7]. We refer to Dudley
(2002) [28] for details of probability theory and to Petrov (1975) [59] for results about uniform
in P limit theorems.

Step 1: Conditions ALU and ALC imply that h 7→ ψ(Ph) is continuous. We first show that
ψ̂n is uniformly consistent in Ph. Fix ε > 0. From representation (2.8) and triangle inequality
have {

|ψ̂n − ψ(Ph)| ≤ 2ε
}
⊃
{
| 1n
∑n
i=1 ψ̃P (h)(Xi)| ≤ ε

}
∩
{
|oP (h),n(n−1/2)| ≤ ε

}
.

By De Morgan’s law and subadditivity of measure, Markov’s inequality it follows that

Ph
{
|ψ̂n − ψ(Ph)| > 2ε

}
≤ Ph

{
| 1n
∑n
i=1 ψ̃P (h)(xi)| > ε

}
+ Ph

{
|oP (h),n(n−1/2)| > ε

}
.

≤ 1

nε2

∫
X
ψ̃2
P (h) dPh + Ph

{
|oP (h),n(n−1/2)| > ε

}
.

goes to zero as n→∞ uniformly in h under conditions ALU and ALC.
Next consider the space of probability measures on (R,B(R)) with the topology of conver-

gence in distribution metrized by Prokhorov metric

dPR(L1, L2) = inf
{
ε > 0 ; L1(Aε) ≤ L2(A) + ε all A ∈ B(R)

}
,

where Aε := {y ∈ R ; |x − y| for some x in A} is the ε-enlargement of set A. For point mass
distributions, with δx denoting the point mass at x ∈ R, convergence in law is equivalent to the
convergence of the points of mass:

dPR(δψ(Ph), δψ(P0))→ 0 if and only if ψ(Ph)→ ψ(P0), h→ 0.

Therefore it is sufficient to show that the Prokhorov distance above goes to zero.
By the triangle inequality, with ψ̃∗Pnh denoting the push-forward measure on (R,B(R)) by

the estimator ψ̃n of the random sample (X1, . . . , Xn) under distribution Ph of the data,

dPR(δψ(Ph), δψ(P0)) ≤ dPR(δψ(Ph), ψ̂∗P
n
h ) + dPR(ψ̂∗P

n
h , ψ̂∗P

n
0 ) + dPR(ψ̂∗P

n
0 , δψ(P0)). (4.14)

Let X,Y be any random variables in (R,B(R)) and define the Ky Fan metric

dKF(X,Y ) = inf
{
ε > 0 ; P [|X − Y | > ε] ≤ ε

}
,

which metrizes convergence in probability [see 28, Theorem 9.2.2], and can be used to define
uniform consistency of estimators ψ̂n under different Ph. By [28, Theorem 11.3.5], the first term
of the bound in (4.14) is further bounded by

dPR(δψ(Ph), ψ̂∗P
n
h ) ≤ dKF(ψ(Ph), ψ̂n)

and is arbitrarily small uniformly in h as n→∞.
Because the path h 7→ Ph is differentiable in quadratic mean, it is also continuous in quadratic

mean, which means that as h→ 0, Ph → P0 in total variation and therefore Pnh → Pn0 in total
variation [see 13, Appendix A.6]. It is immediate from definition of convergence in total variation,
that the push-forward measures also converge ψ̂∗Pnh → ψ̂∗P

n
0 in total variation as h → 0. But

this implies convergence in distribution dPR(ψ̂∗P
n
h , ψ̂∗P

n
0 ) → 0 as h → 0, as can be seen by

the Portmanteau characterization of convergence in distribution [see 71, Lemma 2.2]. Conclude
that the bound in eq. (4.14) can be made arbitrarily small by first choosing n sufficiently large
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to control the first and the third terms (uniformly in h), and the choosing h sufficiently close to
0 to control the second term.

Fix a sequence h(n) = O(1/
√
n). Let Pk = P (k) = Ph(k).

Step 2: The push-forward measure of the influence functions ψ̃P (k)∗Pk  ψ̃P (0)∗P0 converge
in distribution as k → ∞. From differentiability in quadratic mean of the path h 7→ Ph at
P0, it follows that product measures Pnn and Pn0 are mutually contiguous, by local asymptotic
normality and Le Cam’s third lemma [see e.g. 71, Theorem 7.2 and Example 6.7]. Therefore
Pnn (|oP (0),n(1)| > ε)→ 0 for every ε > 0 by the contiguity Pnh(n) C P

n
0 and linear representation

eq. (2.8) at P0. Also Pnn (|oP (n),n(1)| > ε)→ 0 for every ε > 0 by condition ALU. Thus,

oP (0),n(1)− oP (n),n(1) =
1√
n

n∑
i=1

[
ψ̃P (n)(Xi) + ψ(Pn)− ψ̃P (Xi)− ψ(P )

]
= oP (n),n(1)

= oP (0),n(1)

the difference in the linear representations of the estimator at Pn and P0 vanishes under both
Pnn and Pn0 by mutual contiguity of these sequences. If follows that the terms of the series above
vanish in probability[

ψ̃P (n)(Xi) + ψ(Pn)− ψ̃P (Xi)− ψ(P )
]

= oP (0)(1) = oP (n)(1).

Therefore, the push-forward probability measures converge in distribution:(
ψ̃P (n) + ψ(Pn)

)
∗P0  

(
ψ̃P (0) + ψ(P0)

)
∗P0.

Since by Step 1, δψ(Pn)  δψ(P0), by the triangle inequality of e.g. Prokhorov metric defined
above, by Pn → P0 in total variation, we must have(

ψ̃P (n)

)
∗Pn  

(
ψ̃P (0)

)
∗P0. (4.15)

Step 3: Convergence eq. (4.15) and continuity of variance
∫
X ψ̃

2
P (k) Pk →

∫
X ψ̃

2
P (0) P0 imply

the Lindeberg condition

lim
λ→∞

sup
k

EPk

[
ψ̃2
P (k)1{|ψ̃2

P (k)
|>λ}

]
= 0.

This follows by e.g. [71, Theorem 2.20]. By e.g. Petrov (1975) [59, Theorem V.3.8], the
triangular array

Sn =
1√
n

n∑
i=1

ψ̃Ph(n)(Xi,n), X1,n, . . . , Xn,n ∼ Pnh(n)

admits the Central Limit Theorem Sn  N
(

0,
∫
X ψ̃

2
P0
dP0

)
. But this means that ψ̂n is regular

on Ph at P0. Similarly conclude regularity for any other point on the curve Ph. �

Proof of Theorem 6. We follow [13, Theorem 3.3.1] closely in the first part of the proof. Fix
a differentiable in quadratic mean path Ph and let v ∈ L2

0(P0) denote its score function. Fix
a sequence h(n) = tn/

√
n, with tn → t Let Pn = P (n) = Ph(n). By the asymptotic linearity

eq. (2.8) of ψ̃n, and local asymptotic normality of the parametric model Ph [see e.g. 71, Theorem
7.2],

√
n

[
ψ̂n − ψ(P0)

log
∏n
i=1

dPh(n)

dP0
(Xi)

]
P0 N

([
0

−Σ22/2

]
,Σ

)
,

where Σ = [Σij ]ij=1,2, Σ11 = EP0

[
ψ̃2
P0

]
, Σ12 = EP0

[
ψ̃P0

(tv)
]
, Σ22 = EP0

[
(tv)2

]
.
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By Le Cam’s third lemma [see 71, Example 6.5], the distribution of the estimator under the
local alternatives follows by contiguity:

√
n(ψ̂n − ψ(P0))

Pn N (Σ12,Σ11). (4.16)

By the regularity of estimator sequence ψ̂n, also have the limit in distribution under local
alternatives:

√
n(ψ̂n − ψ(Pn))

Pn N (0,Σ11). (4.17)

Combining (4.16) and (4.17), we conclude that

√
n(ψ(Pn)− ψ(P0))→ Σ12 =

∫
X
ψ̃P0(tv) dP0.

This can be written as
ψ(P0+tn/

√
n)− ψ(P0)

tn
√
n

=

∫
X
ψ̃P0

v dP0 + o(1). (4.18)

Next, we follow the proof of van der Vaart (1991) [72, Theorem 2.1]. For any sequence of
real numbers rm → 0, let nm be the subsequence such that

(1 + nm)−1/2 < rm ≤ n−1/2
m .

Let h̃(n) = r(m) for n = nm and let h̃(n) = n−1/2 for n /∈ {n1, n2, . . .}. By construction
h̃(n) = O(1/

√
n) so that the limit (4.18) holds for the sequence h̃(n) and also for its subsequence

r(m). Conclude that the derivative of ψ along the path Ph exists and is given by the follow
representation:

d
dh |h=0

ψ(Ph) =

∫
X
ψ̃P0

v dP0.

Since the integral mapping of the tangent set TP is linear and bounded, conclude that ψ is path-
wise differentiable at P0 and that ψ̃P0

is its information gradient score. The hardest submodel
{PF,ν,h,P0

}h∈J exists by Theorem 13. �

This theorem follows the result of van der Vaart (1991) in that it has differentiability of the
target and control parameters as a conclusion. We want to emphasize that the purpose of the
theorem is very different from the results of Bickel, Klaasen, Ritov, and Wellner (1993), van der
Vaart (1991), Newey (1994) and Ichimura and Newey (2015) and other important contributions
to semiparametric efficiency theory and asymptotic inference in econometrics. Here we use the
regularity of the functional and the estimator to find a rationalizable counterfactual distribu-
tion Ph and to calculate the counterfactual value of the parameter and the estimator at that
distribution. By contrast, semiparametric efficiency uses regularity to establish a lower bound
on the asymptotic precision of estimators, whereas Newey uses regularity to find the asymptotic
distribution of complex estimators.

The result relies on the key assumption that estimators ψ̂, ν̂ are regular. Most classical es-
timators employed by economists are regular, however, estimators that rely on model selection
or reduce variance with shrinkage can be nonregular. Estimators that have a high-dimensional
nuisance component and use modern machine learning tools may have nonregular behavior,
as pointed out by Belloni, Chernozhukov and Hansen (2013) [11]. For nonregular estimators,
analytic counterfactuals developed here do not apply. Our policy analysis highlights the impor-
tance of the work by Newey on techniques to prove that a complex estimator is regular, and
by Chernozhukov with many coauthors on setting up estimators in the high-dimensional setting
that are regular.
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