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Abstract

We examine the portfolio choice of banks in a micro-founded model of runs.

To insure risk-averse investors against liquidity risk, competitive banks offer

demand deposits. We use global games to link the probability of a bank run to

the portfolio choice. Based upon interim information about risky investment,

banks liquidate investments to hold a safe asset. This partial hedge against

investment risk reduces the withdrawal incentives of investors for a given deposit

rate. As a result of the portfolio choice, (i) banks provide more liquidity ex ante

(so banks offer a higher deposit rate) and (ii) the welfare of investors increases.
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1 Introduction

Safe assets comprise a sizable share of bank assets. Figure 1 shows the time series

of the share of safe assets averaged over U.S. banks in the period 2000–16, with an

average of 15%. Active management of this share results in significant time variation,

with a standard deviation of 2.1%. Turning to microdata in the cross-section, Cornett

et al. (2011) examine individual bank behavior during the recent financial crisis. They

find that banks with more exposure to risk increased their holdings of safe assets. The

active management of a bank’s share of safe assets is at the heart of this paper.

Figure 1: Safe asset share of U.S. banks in the period 2000–16 (Federal Reserve Y-9C).

Demand deposits insure risk-averse investors against idiosyncratic liquidity shocks

but expose banks to runs (Diamond and Dybvig (1983), henceforth DD). Introducing

investment risk and incomplete information, Goldstein and Pauzner (2005) (GP) en-

dogenize the bank-run probability and show that it increases in the bank’s liquidity

provision. Since a competitive bank balances its liquidity provision with endoge-

nous run risk, liquidity risk sharing is below its first-best level. While investors are

protected against liquidity risk via demand deposits, they are fully exposed to invest-

ment risk in GP. In this paper, we introduce safe assets as a partial hedge against

investment risk. We show that this interim portfolio choice reduces the withdrawal

incentives of investors and raises both bank liquidity provision and investor welfare.
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We introduce portfolio choice to Goldstein and Pauzner (2005)’s micro-founded

model of bank runs. As in DD, risk-averse investors face unobservable idiosyncratic

liquidity shocks, and competitive banks offer a deposit contract that allows for interim

withdrawals. As in GP, investment is risky and can be liquidated before maturity.

Investors receive dispersed private information about the unobserved investment risk

upon which they base their withdrawal decisions. This signal informs investors about

both investment risk and the possible signals of other investors. Adding to GP’s avail-

able technologies, we allow the bank to hold safe assets upon liquidating investment.

The bank observes investment risk and holds a portfolio of risky and safe assets.

This embedded standard portfolio choice expands the contract offered to in-

vestors. It now comprises two parts. The first is the usual non-contingent deposit

rate promised upon withdrawal. The second part is novel. The bank specifies interim

safe asset holdings contingent on investment risk. This contract is consistent with

the observation that a bank sets non-contingent interest rates on deposits and other

fixed-rate short-term funding but adjusts its portfolio composition as new information

arrives. We focus on private contracts and abstract from government interventions.

Our main contribution is to show how bank portfolio choice affects the with-

drawal incentives of investors, bank liquidity provision, and investor welfare. The

portfolio choice allows the bank to transfer resources from the good state to the bad

state (in which investment fails). This reallocation partially hedges non-withdrawing

patient investors against investment risk, providing them with the proceeds from

safe assets in the bad state.1 The interim portfolio choice between risky investment

and safe assets complicates the analysis, but we adapt the approach of GP based on

one-sided strategic complementarity to our environment.

1When marginal utility at zero is high enough, a solvent bank always liquidates some risky
investment to hold safe assets. This natural assumption about the marginal utility is implied by
Inada conditions, for example. Allen and Gale (1998) impose a similar lower bound on marginal
utility at zero in a bank portfolio problem without coordination risk.

2



The unique equilibrium is in threshold strategies. Patient investors withdraw

if and only if their private signal is below a threshold. The patient investor who

receives the equilibrium threshold as his signal is indifferent between withdrawing

and not withdrawing. An insolvent bank fully liquidates and does not hold safe

assets, so the expected utility of investors is independent of safe assets. In contrast, a

solvent bank always holds safe assets. In this case, a withdrawing investor receives the

promised deposit rate and his expected utility is independent of safe assets. A non-

withdrawing investor, however, benefits from the partial hedge against investment

risk and his expected utility is higher with safe assets. Therefore, investors withdraw

for fewer realizations of investment risk and both the withdrawal threshold and the

run probability decrease for a given deposit rate.

We turn to the ex-ante implications of lower withdrawal incentives because of

the partial hedge against investment risk. We show that safe asset holdings result in

uniformly higher investor welfare. Investors benefit from (i) a higher expected utility

when the bank is solvent because of the partial hedge, and (ii) a lower withdrawal

threshold for any given deposit rate. Turning to the equilibrium level of the deposit

rate, GP show that the liquidity provision of banks is below its first-best level because

of the detrimental effect of the deposit rate on the probability of a bank run. When

safe asset holdings mitigate the incentives to withdraw, however, the marginal cost

of liquidity provision is lower and competitive banks increase their liquidity provision

to investors, better insuring against liquidity risk.

Our technical contribution to the global-games literature is to extend the meth-

ods of GP to the more complicated environment with bank portfolio choice. We show

that the properties of the net incentives for withdrawing, the one-sided strategic

complementarity, and equilibrium uniqueness extend to our setting in which interim

portfolio choice results in additional effects of the economic fundamental and the

withdrawal proportion. The interested reader is referred to the main text for details.

3



Literature. Most global-games literature on bank runs makes additional assump-

tions to obtain global strategic complementarities; that is, the incentives to run on

the bank increase in the proportion of those who run, irrespective of whether the bank

is solvent or insolvent. Examples include Morris and Shin (2000), who make specific

assumptions about preferences and technology, and Rochet and Vives (2004), Vives

(2014), Ahnert and Kakhbod (2017), and Ahnert et al. (2019), who assume that the

rollover decision is delegated to fund managers with exogenous payoffs. Goldstein

and Pauzner (2005) differs from most literature by micro-founding the payoffs. Fo-

cusing on the payoffs of investors complicates the analysis, however, and results in

strategic complementarity that is only one-sided. An investor’s incentive to run in-

creases in the proportion of running investors when the bank is solvent and decreases

in this proportion when the bank is insolvent. Introducing safe assets complicates the

analysis further, but we show that one-sided strategic complementarity still holds.

We share with Allen and Gale (1998) the hedging motive against investment

risk via safe asset holdings and interim information about the future profitability of

investment. Studying the optimal portfolio choice and efficient risk-sharing in a DD

model with illiquid investment, they show that a bank run can be optimal by improv-

ing risk sharing with early consumers for a standard deposit contract. There are two

differences. First, their result on the efficiency of (partial) bank runs relies on the

perfect illiquidity of investment, while we follow DD and consider liquid investment.

Second, their banks select the preferred equilibrium when multiple equilibria exist,

while we use global games to uniquely pin down the withdrawal behavior of investors.

Our paper is also related to the literature on bank liquidity management. Fol-

lowing DD, Cooper and Ross (1998) and Ennis and Keister (2006) study the initial

portfolio choice of a competitive bank with costly liquidation, sun-spot runs, and safe

investment. They show that a higher run probability reduces (increases) safe asset

holdings for small (large) liquidation costs. There are two differences. First, the
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benefit of safe assets in our model is insurance against investment risk, not avoiding

costly liquidation. Second, we use a global-games approach to obtain an endogenous

run probability and link it to the demand-deposit contract and bank portfolio choice.

A closely related paper is Allen et al. (2018), who study government guarantees

in the environment of GP. Since risk-averse investors seek protection against both

liquidity and investment risk, a government guarantee can reduce fragility and in-

crease liquidity provision by banks. In contrast to their paper, we focus on the purely

private arrangement and study how safe asset holdings of banks reduce fragility and

increase bank liquidity provision and investor welfare. Eisenbach (2017) studies the

role of short-term debt to discipline bankers subject to risk-shifting incentives. Short-

term debt is an efficient disciplining device when risk is idiosyncratic, but a two-sided

inefficiency arises for aggregate risk. While Eisenbach (2017) studies the maturity

choice on the bank’s liability side, we study the portfolio choice on its asset side.

In another global-games paper, Liu and Mello (2011) study the optimal cash

holdings of hedge funds subject to aggregate liquidity shocks and redemptions of

risk-neutral investors. Cash forgoes a higher safe investment return but avoids costly

interim liquidation and sometimes reduces the fragility of the fund. In contrast, safe

asset holdings in our model partially hedge risk-averse investors against aggregate

investment risk and unambiguously reduce the fragility of banks.

We emphasize the interim portfolio choice of banks. In the model, there is

no role for initial safe asset holdings because interim liquidation of investment at

par yields the same return as safe assets. Therefore, we focus on the non-trivial

interim portfolio choice when safe assets partially hedge risk-averse investors against

investment risk.2 Our approach is consistent with the evidence in Morris et al. (2016),

2Our results are unchanged if both initial and interim portfolio choice is feasible because invest-
ment is costless to liquidate in our model and in GP. If only an initial portfolio choice were feasible,
however, the welfare of investors would be lower because a bank’s safe asset holdings cannot be
contingent on investment risk and withdrawals.
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who show that asset managers hoard cash after redemptions. In their model and in

Zeng (2016), such cash hoarding serves as a precautionary motive against future

redemptions. In contrast, safe asset holdings in our model insure risk-averse investors

against investment risk and affect the redemption decision of remaining investors.

The remainder of the paper proceeds as follows. We present a bank-run model

with interim portfolio choice in section 2. We study its equilibrium in section 3,

examining the impact of safe assets holdings on investor withdrawal incentives, bank

liquidity provision, and investor welfare. In section 4, we discuss an assumption about

interim information. All proofs are in the appendices.

2 Model

We study the portfolio choice of banks in the global-games model of runs by Goldstein

and Pauzner (2005). There are three dates: initial (t = 0), interim (t = 1), and final

(t = 2). A single good is used for consumption and investment. The economy consists

of a continuum of investors, i ∈ [0, 1], each with a unit endowment at t = 0. As in

Diamond and Dybvig (1983), an investor privately learns his individual preference for

consumption ωi ∈ {0, 1} at t = 1. An impatient investor, ωi = 1, values consumption

only at the interim date, while a patient investor, ωi = 0, values it at the interim and

the final dates:

Ui(c1, c2) = ωi u(c1) + (1− ωi)u(c1 + c2), (1)

where ct is consumption at date t. The probability of being impatient, Pr{ωi = 1} ≡

λ ∈ (0, 1), is i.i.d. across investors and equals the proportion of impatient investors

at t = 1 by a law of large numbers. The utility function u(c) is twice continuously

differentiable, strictly increasing, strictly concave, and satisfies u(0) ≡ 0.3

3This normalization follows GP and is without loss of generality if the utility at zero is bounded.
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A constant-return-to-scale investment technology is available at t = 0. It ma-

tures at t = 2 but can be liquidated at par at t = 1. As in GP, but in contrast to DD,

investment is risky with a return R > 1 if successful (good state) and zero otherwise

(bad state). An economic fundamental θ determines the probability of success p(θ), a

continuously differentiable and strictly increasing function, p′(θ) > 0. The net present

value of investment at t = 0 is positive in expected utility terms, Eθ[p(θ)]u(R) > u(1).

Our emphasis is on the portfolio choice at the interim date. A safe asset (storage

technology) is available at t = 1 and yields a return at t = 2 normalized to one. As

in DD and GP, liquidation of investment at t = 1 at par eliminates a role for a safe

asset at t = 0. A bank invests all resources at t = 0 and liquidates at t = 1 to satisfy

withdrawals. Liquidation at t = 1 has an additional role in our model, however.

Banks liquidate to hold safe assets as a partial hedge against investment risk.

There is incomplete information among investors about the fundamental. It is

drawn from a uniform distribution, θ ∼ U [0, 1], but is not publicly observed. Each

investor receives a noisy private signal at t = 1, θi ≡ θ + εi, where the idiosyncratic

noise is independent of the fundamental and i.i.d. across investors, εi ∼ U [−ε, ε], for

some ε > 0. We assume that the bank observes the realized fundamental θ at t = 1.4

At t = 0, a bank offers a contract to maximize investor expected utility because

of free entry (Allen and Gale, 2007). The portfolio choice expands the contract that

now comprises two parts. The first specifies a non-contingent deposit rate r1 >

1 to investors who withdraw, as in DD and GP. By pooling resources, the bank

insures investors against liquidity risk. Upon observing their private information at

t = 1, investors simultaneously decide whether to withdraw, where n ∈ [λ, 1] is the

withdrawal proportion. For low withdrawals, n ≤ 1
r1

, the bank is solvent and serves all

withdrawals. For high withdrawals, n > 1
r1

, the bank is insolvent and a withdrawing

investor receives r1 with probability 1
nr1

and zero otherwise (sequential service).

4For a discussion of this assumption, please see section 4.
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The second part of the contract is novel. It represents an embedded standard

portfolio problem (Arrow, 1963; Pratt, 1964). A solvent bank at t = 1 has remaining

investments per non-withdrawing investor, 1−nr1
1−n > 0, that depend on the withdrawal

volume n and bank liquidity provision r1. Contingent on the investment risk θ faced by

these investors, the bank chooses how much of the remaining investment to liquidate

in order to hold the safe asset and partially hedge against investment risk. An investor

who does not withdraw at t = 1 receives an equal share of the bank’s assets at t = 2,

which comprise the proceeds from both investment and the safe asset.

Initial date t = 0 Interim date t = 1 Final date t = 2

1. Bank offers demand- 1. Private information 1. Investment and safe
deposit contract. about investment. asset mature.

2. Investors deposit 2. Investors withdraw. 2. Investors withdraw.
their endowment.

3. Bank liquidates investment 3. Consumption.
3. Bank invests. to serve withdrawals

and hold a safe asset.

4. Consumption.

Table 1: Timeline of events.

3 Equilibrium

We solve for the perfect Bayesian equilibrium in pure strategies. The bank chooses

from a set of contracts, where a contract specifies (i) a promised deposit rate r1, and

(ii) a menu of interim safe asset holdings y(θ, n, r1) for each realized fundamental θ,

withdrawal proportion n, and deposit rate r1. Any deposit rate r1 defines a withdrawal

subgame at t = 1. In this subgame, the fundamental θ is realized and determines the

signals {θi} that investors receive. Based on these signals, investors simultaneously
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decide whether to withdraw, which determines the withdrawal proportion n. Based

on this proportion and the fundamental, a solvent bank liquidates, serves withdrawals,

and holds the remaining liquidation proceeds in the safe asset.

We work backward to construct the equilibrium. First, we derive and charac-

terize the optimal safe asset holdings, y∗(θ, n, r1), in section 3.1. Safe asset holdings

affect investor withdrawal decisions and the deposit rate. In section 3.2, we then

study the dominance regions required for the global-games analysis. Third, we derive

the optimal withdrawal decisions and withdrawal proportion n∗(θ; r1) in section 3.3.

Finally, we derive the optimal deposit rate r∗1 in section 3.4. We compare our results

with the benchmark without portfolio choice (GP) throughout.

3.1 Portfolio choice

The safe asset holding problem is similar to the classic portfolio problem in which

a risk-averse investor with some wealth chooses a portfolio of risky and safe assets.

Investment risk is determined by the fundamental θ, where a higher θ corresponds

to a first-order stochastic dominance improvement in the investment return. After n

investors withdraw, a solvent bank has 1−nr1
1−n > 0 of investment per non-withdrawing

investor. The bank maximizes investor expected utility at t = 1 by liquidating in-

vestment to hold safe assets per non-withdrawing investor y.5 Safe assets shift con-

sumption from the good state, R[1−nr1
1−n − y] + y, to the bad state, y, insuring against

investment risk. If insolvent, a bank fully liquidates, and there is no role for safe

assets. By contrast, a solvent bank solves the following problem for all (n, r1, θ):

y∗(θ, n, r1) ≡ arg max
y∈[0, 1−nr1

1−n ]
U(y) ≡ p(θ)u

(
R

[
1− nr1
1− n

]
− (R− 1)y

)
+(1−p(θ))u(y),

(2)

5Like investment per non-withdrawing investor, 1−nr1
1−n > 0, safe asset holdings are measured per

non-withdrawing investor, so the total volume of safe assets are y(1− n) ∈ [0, 1− nr1].
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where consumption levels are equalized across states at y = 1−nr1
1−n . Proposition 1

characterizes the bank’s safe asset holdings at the interim date.

Proposition 1. Portfolio choice. The interim safe asset holdings y∗ are unique.

1. If θ ≤ θ˜ defined by p(θ˜)R ≡ 1, then the bank fully liquidates, y∗ = 1−nr1
1−n .

2. If p(θ) = 1, then the investment is not risky and no liquidation occurs, y∗ = 0.

3. If θ > θ˜, p(θ) < 1, and u′(0) > p(R−1)
1−p u′

(
R 1−nr1

1−n

)
, then liquidation is partial:

(
1− p(θ)

)
u′(y∗) = p(θ)(R− 1)u′

(
1− nr1
1− n

R− y∗ (R− 1)

)
. (3)

Safe asset holdings y∗ ∈
(
0, 1−nr1

1−n

)
decrease in liquidity provision (∂y

∗

∂r1
< 0), the

proportion of withdrawing investors (∂y
∗

∂n
< 0), and the fundamental (∂y

∗

∂θ
< 0).

Proof. See Appendix A.

A unique safe asset holding y∗ is ensured by the concavity of the utility func-

tion. When investment risk is absent (e.g., when the fundamental θ is in the upper

dominance region—see below), then there is no role for a hedge, so y∗ = 0. Other-

wise, safe asset holdings are positive for a sufficiently high enough marginal utility of

consumption at zero. Hereafter, we assume that this condition holds, which is quite

common in banking theory (e.g., Diamond and Dybvig (1983) and Allen and Gale

(1998)).6 When the realized fundamental is low, the interim net present value of in-

vestment is negative in expected utility terms, so the bank fully liquidates. When the

fundamental is intermediate, liquidation is only partial, y∗ < 1−nr1
1−n . Safe assets pro-

vide risk-averse investors with insurance against investment risk but forgo profitable

investment and the marginal cost and marginal benefit are balanced in equilibrium.

6For example, the augmented CRRA utility function u(c) = (c+ψ)1−γ−ψ1−γ

1−γ satisfies u(0) = 0.

Moreover, the marginal utility at zero, u′(0) = ψ−γ , is finite but arbitrarily large for small ψ.
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We turn to the comparative statics of safe asset holdings. Both higher liquidity

provision by banks and a larger withdrawal proportion of investors reduce the funds

available for non-withdrawing investors, 1−nr1
1−n .7 Therefore, safe asset holdings fall in

order to spread resources more evenly across the good and bad states. Intuitively,

when overall resources per capita are scarcer, the amount per capita transferred from

the good state to the bad state is lower.

A better economic fundamental θ reduces investment risk in a first-order stochas-

tic dominance sense, so intuitively the hedge against investment risk also falls. The

expected benefit in terms of a partial hedge is lower, while the expected cost in terms

of forgoing investment is higher. This result is consistent with the evidence provided

in Cornett et al. (2011) mentioned in the introduction.

In Appendix A, we state and prove three useful technical results: the optimal

expected utility, U(y∗), decreases in both the withdrawal proportion n (Lemma 1) and

the deposit rate r1 (Lemma 2) but increases in the fundamental θ (Lemma 3). These

results help us establish dominance regions and one-sided strategic complementarity.

3.2 Dominance regions

As is typical in the global-games literature, we make assumptions about dominance

regions. When investors are certain that the fundamental is in these regions, they act

regardless of the strategies or information of other investors (Morris and Shin, 2003).

As in GP, we assume an upper dominance region in all subgames, θ ∈ (0, 1).

When the fundamental is in [θ̄, 1], the liquidation value is R and investment always

succeeds, p(θ) = 1. We assume θ̄ < 1−2ε, so this region can shrink to a point, θ → 1,

as ε→ 0. No safe assets are held for θ ≥ θ as investment is safe (Proposition 1).

7A higher withdrawal proportion decreases available resources,
d

1−nr1
1−n
dn = 1−r1

(1−n)2 < 0, as r1 > 1.
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We assume that the lowest fundamental leads to certain failure, p(0) = 0. This

natural assumption guarantees the existence of a non-trivial lower dominance region

[0, θ(r1)] in all relevant subgames, 1 < r1 <
R

1+λ(R−1) < min{ 1
λ
, R}. For a fundamental

in the lower dominance region, θ < θ, a patient investor has a strictly dominant

action to withdraw (even if all patient investors do not, n = λ). In subgames with

r1 ≥ R
1+λ(R−1) , all fundamentals are in the lower dominance region, θ = 1 because

r1 ≥ R
1+λ(R−1) implies u

(
1−λr1
1−λ R

)
≤ u(r1), for all p(θ) ≤ 1, so a patient investor

always withdraws.8 But θ = 1 leaves no space for upper dominance and intermediate

regions. In contrast, subgames with 1 < r1 <
R

1+λ(R−1) have θ ∈ (0, 1) and thus space

for the upper dominance region and an intermediate region for small enough ε.

Proposition 2. Lower dominance region. Consider a subgame defined by the

deposit rate r1 ∈
(

1, R
1+λ(R−1)

)
. If p(0) = 0, there exists a non-trivial lower dominance

bound, θ(r1) > 0. It increases in r1 and converges to θ(1) > 0 and θ
(

R
1+λ(R−1)

)
= 1.

Proof. See Appendix B.

3.3 Investor withdrawals

This section contains several results. Proposition 3 states that the unique equilibrium

in each subgame is in symmetric threshold strategies for some positive noise ε > 0.

Its proof extends GP’s proof to the case of safe asset holding. Uniqueness at every

noise level does not guarantee a unique limit as noise vanishes, however. Proposition 4

states the continuity of the threshold with respect to noise, which guarantees a unique

limit. Proposition 5 confirms that a higher deposit rate increases the withdrawal

threshold and the probability of a bank run. Proposition 6 shows that introducing

portfolio choice and allowing for safe asset holdings reduces the withdrawal threshold.

8In other words, the incentive compatibility constraint of patient investors is violated, which
results in certain runs.
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An investor’s strategy is a withdrawal probability for each realized signal θi in

every subgame. In a given subgame r1, an investor’s utility is determined by the real-

ized fundamental θ and the withdrawal proportion n. The strategies of other investors

affect the utility function only through the withdrawal proportion n and do not enter

it directly. For each withdrawal proportion and fundamental, an investor’s net incen-

tive v(θ, n) is the utility differential between not withdrawing and withdrawing. The

net incentive is affected by n through the bank’s solvency and expected utility in both

solvency and insolvency. It is affected by θ via the expected utility when the bank

is solvent, the success probability p(θ). The bank’s portfolio choice, y∗ = y∗(θ, n; r1),

introduces additional channels of how (θ, n) affect net incentives:

v(θ, n) =


(1− p)u(y∗) + p u

(
1−nr1
1−n R− (R− 1)y∗

)
− u(r1) λ ≤ n < 1

r1

if

− 1
nr1
u(r1)

1
r1
≤ n ≤ 1

(4)

Bank solvency is governed by the withdrawal proportion. The bank is solvent when-

ever λ ≤ n < 1
r1

. Withdrawing yields u(r1) if the bank is solvent and u(r1)
nr1

otherwise

because the probability of being served in insolvency is 1
nr1

(sequential service). Not

withdrawing yields (1 − p(θ))u(y∗) + p(θ)u
(
1−nr1
1−n R− (R− 1)y∗

)
if the bank is sol-

vent and zero otherwise. Without safe assets, the net incentive collapses to GP’s

expression.9

Figure 2 shows the effect of safe asset holdings on the net incentive and the

single crossing and the one-sided strategic complementarity properties. When the

bank is solvent, λ ≤ n < 1
r1

, the net incentive v is higher with safe asset holdings and

decreases in n (Lemma 1). For each θ, the net incentive crosses zero at exactly one

n. When the bank is insolvent, the net incentive increases in n, exactly as in GP.

9In the upper dominance region, θ ≥ θ, the net incentive is u(R−nr11−n ) − u(r1) if n < 1 and
u(R)− u(r1) if n = 1. See also section 3.2.
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−u(r1)

1
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r1

v(θ, n)

λ
n

r
Figure 2: Net incentive v(θ, n) for fixed fundamental θ as the withdrawal propor-
tion n varies: with safe asset holdings (solid blue) and without (dotted red). Safe
asset holdings increase the net incentive when the bank is solvent and have no effect
otherwise. One-sided strategic complementarity and single crossing are preserved.

The realized fundamental θ determines the private signals of investors. Investor

i uses θi to extract information about the fundamental aspect (θ) and the strategic

aspect (the possible signals of other investors). The posterior about θ is uniform and

centered at the signal, [θi − ε, θi + ε]. An impatient investor always withdraws at

t = 1. A patient investor, however, compares the expected utility of withdrawing and

not withdrawing. An equilibrium defines a mapping between the fundamental θ and

the withdrawal proportion n that goes through the signal structure and equilibrium

strategies. These strategies determine the equilibrium withdrawal proportion.

Proposition 3. Uniqueness in each withdrawal subgame. Consider the with-

drawal subgame defined by an deposit rate r1 ∈
(

1, R
1+λ(R−1)

)
. There exists an upper

bound on private noise ε(r1) > 0 such that, for all 0 < ε < ε, there exists a unique

threshold θ∗ε (r1). A patient investor withdraws if and only if θi < θ∗ε (r1).

Proof. See Appendix C.

Proposition 3 shows that the unique equilibrium is a symmetric threshold equi-
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librium, θ∗. This equilibrium induces a simple mapping between θ and n, where the

withdrawal proportion is pinned down as a function of the fundamental, n(θ). The

withdrawal proportion is determined by the proportion of investors who receive sig-

nals below the threshold, θi ≤ θ∗. An investor who knows θ can compute n. When

the fundamental is above θ∗ + ε, all investors receive signals above the threshold and

no patient investor withdraws, n = λ. When the fundamental is below θ∗ − ε, ev-

ery investor receives a signal below the threshold and all patient investors withdraw,

n = 1. In the intermediate region [θ∗− ε, θ∗+ ε], the proportion of investors with sig-

nals below the threshold linearly decreases in θ, so n decreases linearly between 1 and

λ. The function n(θ) allows us to express the expected utility as v(θ) ≡ v(θ, n(θ)).

Figure 3 plots the withdrawal proportion function n(θ) and the resulting net incentive

v(θ).
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Figure 3: The net incentive v(θ) and withdrawal proportion n(θ, θ∗) for a threshold
equilibrium θ∗. The level θ̂ is the lowest fundamental for which the bank is solvent.

The posterior induced by the signal θi determines the integral of net incentives.

It can be written as ∆r1(θi, n(.)) = 1
2ε

∫ θi+ε
θi−ε v(θ)dθ. It is better to withdraw if and

only if the net incentive integral is negative at a signal. The net incentive integral

integrates the function v(θ) in Figure 3 over a rolling window of [θi − ε, θi + ε].
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Safe asset holdings complicate the relationship between one-sided strategic com-

plementarity and the uniqueness result. The relevant net incentive term in GP is

p(θ)u(1−nr1
1−n R). In a threshold equilibrium, an increase in θ increases p(θ) and de-

creases n(θ). The decrease in n(θ) mechanically raises the consumption in the good

state since
∂(

1−nr1
1−n

R)

∂n
= R 1−r1

(1−n)2 < 0. The consumption in the bad state is fixed at

zero. In contrast, the relevant net incentive term with safe assets, (1− p(θ))u(y∗) +

p(θ)u
(
1−nr1
1−n R− (R− 1)y∗

)
, comes from optimal safe asset holdings (Proposition 1).

The optimal expected utility of a non-withdrawing investor increases because of the

direct effect of θ itself (Lemma 3) and through the decrease in n (Lemma 1). The

results are not mechanical and derive from the monotonicity of the optimal expected

utility with respect to θ and n that are formally established in Appendix A.

The proof of Proposition 3 extends the proof of GP to the case of bank portfolio

choice and safe assets. It has three steps. First, we show there is a unique symmetric

threshold candidate for an equilibrium. Therefore, there exists only one θ that all

patient investors can use as a threshold, where each investor is indifferent between

withdrawing and not when receiving this threshold as a signal. That is, the net

incentive from withdrawing, ∆r1(θ
′
, n(., θ

′
)), is zero at exactly one θ

′
. This rules out

the existence of two possible symmetric threshold equilibria. Second, we show that

the candidate threshold of step 1 is actually an equilibrium. When all investors except

i use the threshold strategies at the θ
′

computed in step 1, i ′s unique best response

is to use a threshold strategy at that θ
′
. Therefore, in steps 1 and 2, we showed

that if we restrict attention to threshold strategies, the identified equilibrium is the

unique equilibrium. The third step is to exclude equilibria that are not in threshold

strategies.

GP show uniqueness for every positive noise ε > 0 and assume that the unique-

ness of the threshold is conserved as private noise vanishes. However, uniqueness of the

threshold θ∗ε at every positive ε does not guarantee convergence to a unique limit. In-
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deed, it may converge to two or many limits. We prove continuity of the threshold with

respect to noise. This guarantees a unique limit expressed as θ∗(r1) ≡ limε→0 θ
∗
ε (r1).

We characterize this limit by the dominated convergence theorem.

Proposition 4. Continuity and vanishing private noise. The withdrawal

threshold θ∗ε is continuous in ε for every ε > 0 and its unique limit θ∗ ≡ limε→0 θ
∗
ε is

given by

p(θ∗) =

u(r1)
r1

[1− λr1 + ln(r1)]−
∫ 1

r1
λ u(y∗)dn∫ 1

r1
λ u(

[
1−nr1
1−n − y∗

]
R + y∗)dn−

∫ 1
r1
λ u(y∗)dn

, (5)

where y∗ = y∗(θ∗, n; r1) for short.10

Proof. See Appendix D.

In the limit of vanishing private noise, ε→ 0, fundamental uncertainty vanishes

because investors almost perfectly observe the economic fundamental (and thus the

success probability). However, strategic uncertainty—that is, uncertainty about the

behavior of other investors—remains in this limit and allows us to determine a unique

equilibrium. This result in the limit of the incomplete-information model contrasts

with the equilibrium multiplicity in a complete-information benchmark.

The unique limit allows us to classify every fundamental into a full-run region,

where n∗ = 1 and θ < θ∗, or a no-run region, where n∗ = λ and θ ≥ θ∗. The prior

about θ determines the ex-ante probability that the fundamental falls in the full-run

region, which is the probability of a bank run. Lemma 2 shows the monotonicity

of optimal expected utility in r1, which ensures that the threshold θ∗ monotonically

increases in r1 when banks can hold safe assets. Thus, the bank faces a trade-off

between higher insurance of investors against their preference shock (higher deposit

rate r1) and heightened probability of a bank run, Pr{θ < θ∗}. That is, we confirm

that this trade-off extends from GP to our environment with portfolio choice.

10Note that θ∗ is defined implicitly because y∗ also depends on θ∗.
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Proposition 5. Bank liquidity provision and run probability. A higher de-

posit rate increases the probability of a run, dθ∗

dr1
> 0.

Proof. See Appendix E.

Using GP as our benchmark, we evaluate the impact of safe asset holdings on

the probability of a bank run (for a given deposit rate). Safe asset holdings raise the

expected utility of a patient investor when the bank is solvent and have no effect when

either the investor is impatient or the bank is insolvent. This increase in expected

utility raises the net incentive integral with safe asset holdings, making it positive

at GP’s threshold. Since this integral increases in the threshold, the threshold has

to decrease. Therefore, the withdrawal threshold and the probability of a bank run

decrease. Proposition 6 summarizes and Figure 4 illustrates.

Proposition 6. Hedging against investment risk lowers withdrawal incen-

tives. In all subgames, the withdrawal threshold with safe asset holdings is lower,

θ∗ ≤ θ∗GP , (6)

with strict inequality for r1 < r1, where r1 is the smallest solution to θ∗(r1) = 1.

Proof. See Appendix F.

3.4 Deposit rate

For each subgame given by a deposit rate r1, we have calculated the optimal with-

drawal decision and safe asset holdings. Integrating over the possible realizations of

the fundamental, we calculate the ex-ante expected utility in each subgame. At t = 0,
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Figure 4: Partial hedging against investment risk via safe asset holdings reduces
the withdrawal threshold θ∗. The figure shows the withdrawal thresholds with and
without safe asset holdings across subgames characterized by a deposit rate r1.

the bank chooses the deposit rate r1 to maximize ex-ante expected utility:

lim
θ→1
ε→0

EU(r1) =

∫ θ∗(r1)

0

u(r1)

r1
dθ +

∫ 1

θ∗(r1)

λu(r1) + · · ·

· · ·+ (1− λ)

[
p(θ)u

(
1− λr1
1− λ

R− (R− 1)y∗
)

+ (1− p)u(y∗)

]
dθ (7)

=
u(r1)

r1
θ∗ + λ(1− θ∗)u(r1) + (1− λ)

∫ 1

θ∗
p u

(
1− λr1
1− λ

R− (R− 1)y∗
)

+ (1− p)u(y∗)dθ,

where y∗ = y∗(θ, λ, r1) is evaluated at the no-run withdrawal level n = λ.

Figure 5 shows the ex-ante expected utility for a given deposit rate. The red

curve shows the expected utility for each θ. For θ < θ∗, all investors withdraw and

each investor receives r1 with probability 1
r1

by sequential service. For θ ≥ θ∗, only

impatient investors withdraw. An investor’s expected utility is a convex combination

when impatient, u(r1), and patient, pu(1−λr1
1−λ R−y

∗(R−1))+(1−p)u(y∗) (solid black

curves). The red dotted curve shows this convex combination with weight λ. The

ex-ante expected utility integrates over all fundamentals. The figure also indicates

the effect of a higher deposit rate, where gray arrows point in the direction of change.
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Figure 5: Expected utility for each fundamental θ. For θ < θ∗, a run occurs and the
bank is insolvent, so each investor receives r1 with probability 1

r1
. For θ ≥ θ∗, an

investor is impatient with probability λ, withdraws and receives r1. With probability
1− λ, the investor is patient, does not withdraw and consumes safe asset holdings y∗

or 1−λr1
1−λ R− y

∗(R− 1). The red curve (dashed above θ∗) is the λ-convex combination
of the horizontal black line and the upward-sloping black curve. Finally, the gray
arrows point to the direction of change as the deposit rate increases.

The optimal deposit rates r∗1 solves:

λ(1− θ∗)u′(r1) = u(r1)−u′(r1)r1
r21

θ∗ + λR
∫ 1

θ∗
p(θ)u′

(
1−λr1
1−λ R− (R− 1)y∗

)
dθ

+dθ∗

dr1

{
λu(r1) + (1− λ)

[
p(θ∗)u

(
1−λr1
1−λ R− (R− 1)y∗

)
+ (1− p(θ∗))u(y∗)

]
− u(r1)

r1

}
,

(8)

where the benefit of an increase in the deposit rate r1 is better insurance against

liquidity shocks (becoming impatient), captured by the left-hand side of equation (8),

and represented by the gray arrows pushing u(r1) up in Figure 5. With probability

λ(1−θ∗(r1)) the investor is impatient and the bank is solvent, resulting in an expected

benefit of λ(1− θ∗(r1))u′(r1).
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The costs associated with an increase in r1 are threefold: lower expected utility

in insolvency, loss from additional interim liquidation, and a higher run probability.

More precisely, the first cost is a reduced expected utility when the bank is insolvent

(with probability θ∗) because u(r1)
r1

decreases in r1. The second cost is the loss suffered

by the patient investor when the bank is solvent. An increase in r1 means fewer

resources for consumption. The third cost is a marginal increase in the insolvency

risk, dθ∗

dr1
> 0, where p(θ∗)u

(
1−λr1
1−λ R− (R− 1)y∗

)
+ (1− p(θ∗))u(y∗) is substituted by

u(r1)
r1

.

Using GP as a benchmark again, the portfolio choice increases both the expected

utility in each subgame and investor welfare (the ex-ante expected utility at the

optimal deposit rate). There are two channels through which safe asset holdings affect

ex-ante expected utility. First, the decrease in the withdrawal threshold creates an

interval [θ∗, θ∗GP ]. In this interval, ex-ante expected utility increases because states

with low expected utility (insolvency) are substituted with states with high expected

utility (solvency). Second, when θ > θ∗GP , the expected utility of patient investors is

higher. Figure 6 illustrates the impact of safe asset holdings.

Proposition 7 compares the ex-ante expected utility with and without safe asset

holdings for a given deposit rate, shown in Figure 7.

Proposition 7. Safe asset holdings increase ex-ante expected utility. In all

subgames, the ex-ante expected utility is higher with safe asset holdings than without:

EU(r1) ≥ EUGP (r1), (9)

with strict inequality in subgames with r1 < r1.

Proof. See Appendix G.

We have shown that the ex-ante expected utility increases in a given subgame
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Figure 6: Comparison of expected utility with safe asset holdings (red) and without
(blue) in a given subgame. The expected utility with safe asset holdings is unambigu-
ously higher because the run probability is reduced and insurance against investment
risk is valuable when the bank is solvent.

when a safe asset becomes available at the interim date. Next, we show that ex-ante

expected utility at the respective equilibrium deposit rate is higher with safe asset

holdings. The optimum levels of r1 with safe asset holdings and without differ, so one

needs to compare welfare in each of the resulting equilibria. Let the optimal deposit

rates with and without safe asset holdings be r∗1 and r∗1,GP , respectively.

Proposition 8. Safe asset holdings increase investor welfare. The expected

utility at the optimum deposit rate is higher with safe asset holding:

EU(r∗1) > EUGP (r∗1,GP ). (10)
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Figure 7: Safe asset holdings increase the ex-ante expected utility in each subgame
and result in higher investor welfare and greater bank liquidity provision.

Proof. See Appendix G.

Finally, we analyze the impact of portfolio choice on bank liquidity provision.

GP showed that liquidity provision of competitive banks is below its first-best level

once the impact of liquidity provision on the endogenous probability of a bank run

is considered. We can push this analysis one step further. Since safe asset holdings

offer a partial hedge against investment risk and lower the withdrawal incentives of

investors, the resulting lower marginal cost of liquidity provision allows competitive

banks to offer a higher deposit rate than without safe asset holdings.

Proposition 9. Safe asset holdings increase bank liquidity provision. The

deposit rate is higher with safe asset holdings:

r∗1 > r∗1,GP . (11)

Proof. See Appendix H.
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4 Discussion: interim information received by banks

We have assumed that the bank observes the realized fundamental when choosing its

portfolio at the interim date. This assumption may seem crucial, but we show that

our main results are robust across alternative information structures. We consider two

alternatives. In the first information structure, the bank observes only the withdrawal

proportion n. Since the bank makes withdrawal payments, it knows the number of

investors served. It is thus natural to assume that the bank observes n after all

withdrawals occur.11 In the second, the bank observes a noisy signal in addition to

the withdrawal proportion. A bank typically has no less information than investors

about its assets, so the bank’s information should be at least as precise.

A change in the information structure has three effects. The first is on the

withdrawal threshold, the second is on the ex-ante expected utility, and the third is

an indirect effect on expected utility through the withdrawal threshold.

The withdrawal threshold is the same under all three information assumptions,

so this effect is void. The withdrawal proportion n aggregates the dispersed private

signals of investors. In the interval (θ∗− ε, θ∗+ ε), the withdrawal proportion n(θ, θ∗)

linearly decreases and is invertible (Figure 8), so it identifies the realized fundamental

θ. The net incentive integral at the withdrawal threshold depends only on the utility

in this interval. Therefore, the withdrawal threshold remains the only candidate for

a unique equilibrium across information structures; that is, ∆(θ∗, n(·, θ∗)) = 0.

To show that this candidate is an equilibrium, the net incentive integral of v(θ)

on the interval [θi − ε, θi + ε] has to be monotone in the signal θi. The information

structure is irrelevant when the bank is insolvent, so the integral is unchanged when

11Some literature makes assumptions about what the bank observes before and during a run (for
example, Ennis and Keister (2009) and references therein). Our assumption, by contrast, is about
what the bank observes after a run. That is, we abstract from the bank observing the fundamental
and choosing to liquidate investment before withdrawals occur. Such a timing may give rise to
signaling by the bank and multiple equilibria (Angeletos et al., 2007).
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θi < θ∗ (see Lemma 7). When θi ≥ θ∗ and the signal increases, the integral increases

because negative values of v(θ) (the red curve at θi − ε) are replaced by positive

values of v(θ) (the blue curve at θi+ε).
12 This proves that the candidate is the unique

equilibrium in threshold strategies. Since the one-sided strategic complementarity still

holds, this is also the unique equilibrium overall for the three information structures.

-

6

1
1
r1

. . . . . . . . ............................

r

θ∗

λ . . . . . . . . . . . . . . . . . . . . .

n(θ, θ∗)

θ

. . . . . . . . . . . . . . . . . . . . .

@
@

@
@
@

@
@@

θ∗ − ε θ∗ + ε

v(θ)

Figure 8: The net incentive v(θ) when the bank does not observe the fundamental
perfectly. We plot the case of θi = θ∗ and highlight the discontinuity at θ∗ + ε.

When the bank observes only the withdrawal proportion, it perfectly infers θ if

n ∈ (λ, 1). If the bank observes n = λ, it has a uniform belief on [θ∗+ ε, 1]. The bank

chooses optimal safe asset holdings given beliefs, and the differential information may

introduce a discontinuity in the expected utility. The expected utility is less than

where it would be if the bank perfectly observed the fundamental. When the bank

observes n = λ, the posterior success probability is Eθ[p(θ)|θ ≥ θ∗ + ε] and v(θ) is

the blue curve. This posterior exceeds p(θ) if θ is above but close to θ∗ + ε. This

discontinuity notwithstanding, we expect no change in the qualitative results.

12When the lower bound of integration, θi− ε, hits θ∗+ ε, the net integral may decrease. However,
it must remain positive (bounded away from zero) because v(θ) is positive for every θ ≥ θ∗ + ε.
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If the bank observes a noisy signal in addition to n, the previous discussion

goes through and we obtain the same threshold. The additional signal raises ex-ante

expected utility, however, because the bank chooses safe asset holdings in the interval

[θ∗ + ε, 1] based on more precise information. As private noise diminishes, expected

utility approaches the expected utility for the perfectly observable fundamental case.

5 Conclusion

We have studied the portfolio choice of banks in a micro-founded model of runs based

on Goldstein and Pauzner (2005). To insure risk-averse investors against liquidity risk,

competitive banks offer demand deposits. We use global games to link the portfolio

choice to the probability of a bank run. Upon receiving interim information about

risky investment, banks liquidate investment to hold a safe asset. This partial hedge

against investment risk reduces the withdrawal incentives of investors for a given

deposit rate. As a result of the portfolio choice and lower bank fragility for a given

deposit rate, banks provide more liquidity ex ante and investor welfare increases.

We have focused on the purely private (unregulated) arrangement and ab-

stracted from incentive problems. An interesting area for future work is to study

how the design of guarantees—e.g., along the lines of Allen et al. (2018)—affects

the portfolio choice of banks and the implied levels of bank fragility and liquidity

provision. In our model, the portfolio choice reduces the expected return of bank

assets but increases welfare—the bright side of portfolio choice. In the presence of an

incentive problem, lower expected returns would reduce the skin in the game of the

banker and thus lower the incentives to exert effort. In such an augmented model,

portfolio choice would also have a dark side. We leave these issues for future work.
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A Proof of Proposition 1

The first- and second-order condition with respect to safe asset holdings are

dU

dy
= −p(R− 1)u′(cG) + (1− p)u′(cB) (12)

d2U

dy2
= −p(R− 1)2u′′(cG) + (1− p)u′′(cB) < 0, (13)

where cG ≡ 1−nr1
1−n R−y(R−1) is consumption in the good state and cB = y is consumption

in the bad state. It follows that the objective function is globally concave and the solution

to Problem 2, y∗, is unique.

We turn to corner solutions. First, y∗ < 1−nr1
1−n requires dU

dy

∣∣∣
y=

1−nr1
1−n

< 0, which can

be rewritten as θ > θ˜ ≡ p−1
(
1
R

)
. Thus, full liquidation occurs for θ ≤ θ˜. Second, y∗ > 0

requires dU
dy

∣∣∣
y=0

> 0, which can be rewritten as u′(0) > p(R−1)
1−p u′

(
R 1−nr1

1−n

)
. Finally, if

the fundamental is in the upper dominance region and investment is no longer risky, then

liquidation is dominated, y∗ = 0.

We turn to the comparative statics of the optimal interim safe asset holdings. These

results follow from the implicit function theorem and the following cross-partial derivatives:

d2U

dydn
= pR(R− 1)

r1 − 1

(1− n)2
u′′(cG) < 0 (14)

d2U

dydr1
= pR(R− 1)

n

1− n
u′′(cG) < 0 (15)

d2U

dydθ
= −p′(θ)

[
(R− 1)u′(cG) + u′(cB)

]
< 0, (16)

given our focus on bank liquidity provision, r1 > 1. The partial derivatives of y∗ follow.

We turn to the three lemmas mentioned in the main text. More withdrawals are

detrimental to non-withdrawing investors. For each θ and r1, an increase in n decreases the

consumption in the good state, ∂
∂n

(
R 1−nr1

1−n − y
∗(R − 1)

)
= 1−r1

(1−n)2 < 0, raising marginal

utility. Since the other parts of the first-order condition in equation (3) remain unchanged,

the optimal safe asset holdings must decrease to maintain equality, which decreases the
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optimal expected utility. Lemma 1 summarizes.

Lemma 1. Expected utility and withdrawals. For θ˜ < θ < θ and a solvent bank,

consumption and optimal expected utility of non-withdrawing investors decrease in n.

Proof. Let θ˜ < θ < θ. When the bank is solvent λ ≤ n < 1
r1

, we get an interior solution

for safe asset holdings y∗(θ, n, r1). Let n′ > n, y′ and y be the optimal interior safe asset

holdings that solve the respective problems in 2. Using equation (3) yields

u′(y)

u′
(
1−nr1
1−n R− y (R− 1)

) =
p(R− 1)

1− p
=

u′(y′)

u′
(
1−n′r1
1−n′ R− y′ (R− 1)

) (17)

First, assume y′ = y. By strict concavity of u(c), we get 1−nr1
1−n = 1−n′r1

1−n′ . This implies n = n′

because 1−nr1
1−n decreases in n when r1 > 1, a contradiction. Thus, y′ 6= y. Second, assume

y′ > y. By strict concavity, we have u′(y′) < u′(y). By equation (17) and strict concavity,

we get 1−n′r1
1−n′ R − y′ (R− 1) > 1−nr1

1−n R − y (R− 1) and (y − y′) (R−1)R > 1−nr1
1−n −

1−n′r1
1−n′ .

Since y − y′ < 0, 1−n′r1
1−n′ > 1−nr1

1−n , which implies n′ < n, another contradiction. Taken

together, we have shown that y′ < y and the consumption level in the bad state decreases

in n. Finally, y′ < y implies u′(y′) > u′(y). Equation (17) and strict concavity imply

that 1−n′r1
1−n′ R − y

′ (R− 1) < 1−nr1
1−n R − y (R− 1). Thus, the consumption level in the good

state also decreases in n. Since the consumption in both states decreases in n, so does the

expected utility of the non-withdrawing investor.

Consider a solvent bank for a fixed θ. A higher deposit rate r1 decreases marginal

utility in the good state and reduces optimal expected utility. The effect is similar to that

in Lemma 1 and summarized in Lemma 2.

Lemma 2. Expected utility and deposit rate. Let θ˜ < θ < θ. For a solvent bank, con-

sumption in both states decreases in r1, so the optimal expected utility of a non-withdrawing

investor decreases in r1.

Proof. Let θ˜ < θ < θ. When the bank is solvent λ ≤ n < 1
r1

, we get an interior solution

for y∗(θ, n, r1). Let r′1 > r1, y
′ and y be the optimal interior safe asset holdings that solve
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the respective problems in 2. Using equation (3) yields

u′(y)

u′
(
1−nr1
1−n R− y (R− 1)

) =
p(R− 1)

1− p
=

u′(y′)

u′
(
1−nr′1
1−n R− y′ (R− 1)

) (18)

Assume y′ = y. This implies 1−nr1
1−n =

1−nr′1
1−n and r1 = r′1, a contradiction. Next, assume

y′ > y. Steps similar to the proof of Lemma 1 lead to the required contradiction.

Consider a solvent bank for a fixed r1. At an interior safe asset holding, the optimal

expected utility increases and is continuous in θ. Consumption is higher in the good state,

1−nr1
1−n R − y∗ (R− 1) > y∗, and expected utility is a convex combination of utility in both

states, p(θ)u(R[1−nr11−n ]− (R − 1)y∗) + (1− p(θ))u(y∗). Hence, an increase in the weight on

the good state, θ, without adjusting safe assets, raises expected utility. Allowing safe assets

to adjust increases expected utility further. Taken together, we have the following result.

Lemma 3. Expected utility and fundamental. Let θ˜ < θ < θ. For a solvent bank,

the optimal expected utility of a non-withdrawing investor is continuous and increases in θ.

(For an insolvent bank, it is independent of θ.)

Proof. Let θ˜ < θ < θ. For a solvent bank, the solution is determined by equation (3).

The continuity of y∗ in θ follows from the continuity of marginal utility, u′(·), and of the

success probability, p(·). The continuity of optimal expected utility follows. To prove that

the optimal expected utility increases in θ, let p′ > p be short for θ′ > θ and the respective

optimal safe asset holdings be y′ and y. Optimality of y′ and strict concavity imply

p′u

(
1− nr1
1− n

R− y′(R− 1)

)
+ (1− p′)u(y′) > p′u

(
1− nr1
1− n

R− y(R− 1)

)
+ (1− p′)u(y).

Since y is interior, we have y < 1−nr1
1−n and thus both y < 1−nr1

1−n R − y (R− 1) and u (y) <

u
(
1−nr1
1−n R− y (R− 1)

)
. p′ > p implies p′u (cG) + (1 − p′)u(y) > pu (cG) + (1 − p)u(y).

Combining both inequalities yields strict monotonicity.
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B Proof of Proposition 2

Consider a fixed r1 ∈ (1, R
1+λ(R−1)). For an insolvent bank, withdrawing at t = 1 yields

expected utility u(r1)
nr1

and waiting yields u(0) = 0, so a patient investor prefers to withdraw.

Consider a solvent bank next. To use the intermediate value theorem, we show that the

expected utility differential is negative at θ = 0 and positive on the upper dominance

region. Fix n = λ. At θ = 0, the investment certainly fails because p(0) = 0. Therefore, all

investment is liquidated, y∗ = 1−λr1
1−λ . Thus, a non-withdrawing patient investor’s expected

utility at the interim date is u(1−λr11−λ ), which is below u(r1) because r1 > 1, the lower

bound on r1. When θ ≥ θ, the investment certainly succeeds, p(θ) = 1. Insurance against

investment risk is zero, y∗ = 0, and all resources remain invested. The interim-date expected

utility is u(1−λr11−λ R) > u(r1) because r1 <
R

1+λ(R−1) , the upper bound on r1.

For each r1, by the continuity of expected utility in θ at n = λ (Lemma 3), there is

a cut-off θ(r1) defined by p(θ(r1))u
[
1−λr1
1−λ R− y

∗ (R− 1)
]

+ (1− p(θ(r1)))u (y∗) = u(r1) by

the intermediate value theorem. Since the expected utility increases in θ when n = λ by

Lemma 3, we have p(θ)u
[
1−λr1
1−λ R− y

∗(R− 1)
]

+ (1− p(θ))u(y∗) < u(r1) for any θ < θ(r1).

Because the optimal expected utility at the interim date decreases in n at every θ < θ,

Lemma 1 shows that for all n > λ, the patient investor still has a dominant strategy to

withdraw at t = 1. This establishes a lower dominance region for every r1 in the domain.

Let r′1 > r1, and y′, y solve the respective problems in 2 with associated bounds θ′ and

θ. Note that p(θ)u
[
1−λr1
1−λ R− y (R− 1)

]
+ (1 − p(θ))u (y) = u (r1). When r1 increases to

r′1, the expected utility evaluated at p(θ) decreases by Lemma 2. But to raise the expected

utility to u(r′1) > u(r1), θ must increase by Lemma 3. This establishes strict monotonicity

of θ(r1) in r1. The discussion at the beginning shows that θ → 1 when r1 → R
1+λ(R−1) .

32



C Proof of Proposition 3

The proof that the symmetric threshold equilibrium is unique is in four steps. In step C.1,

we show that there is a unique threshold θ′: if all investors except i use θ′ as a threshold

strategy, then i would be exactly indifferent between withdrawing and not when upon

receiving the signal θi = θ′. In step C.2, we show that θ′ is actually a symmetric threshold

equilibrium: i withdraws when his signal is below the threshold θi < θ′ and does not when

above it θi > θ′. Steps C.1 and C.2 prove that there is a unique equilibrium when we restrict

strategies to be symmetric threshold strategies. Step C.3 extends the equilibrium uniqueness

to all threshold strategies. Step C.4 shows that no equilibrium different from a symmetric

threshold equilibrium can exist. These four steps prove uniqueness in all strategies.

C.1 Unique threshold candidate

A threshold strategy for investor i is a function that maps deposit rates r1 into a threshold

signal θ
′
i, whereby i (does not) withdraws when the signal is below (above) the threshold.

The first step of the proof shows a unique candidate for a symmetric threshold equi-

librium, ruling out multiple symmetric threshold equilibria. Fix a subgame defined by

an deposit rate r1 and assume all investors except i use the same threshold strategy at

a θ′ = θ
′
(r1). By the law of large numbers, investor i ′s belief about the proportion of

investors who withdraw at a realized fundamental θ, n(θ, θ
′
), is degenerate and defined by

n(θ, θ
′
) =


1 ifθ ≤ θ′ − ε

λ+ (1− λ)(12 + θ
′−θ
2ε ) ifθ

′ − ε ≤ θ ≤ θ′ + ε

λ ifθ ≥ θ′ + ε

(19)

Writing y∗ as a shorthand for y∗(θ, n, r1), i ’s net incentive at any θ and n is

v(θ, n; r1) =

 (1− p(θ))u(y∗) + p u((1−nr11−n − y
∗)R+ y∗)− u(r1) ifλ ≤ n ≤ 1

r1

− 1
nr1

u(r1) if 1
r1
≤ n ≤ 1

(20)
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The proposed threshold strategies pin down the proportion of withdrawals as a function of

the realized fundamental: n(θ, θ′). This allows us to compute i’s net incentive at a realized

fundamental θ as v(θ) = v(θ, n(θ, θ
′
)). Investor i does not observe the realized fundamental

θ, however, only a signal θi. At signal θi, his posterior on θ is uniform over the interval

[θi − ε, θi + ε]. Therefore, i’s net expected utility of not withdrawing versus withdrawing at

signal θi is represented by the integral of net incentives: ∆r1(θi, n(., θ
′
)) = 1

2ε

∫ θi+ε
θi−ε v(θ)dθ.

We will show that i’s integral of net incentives when he receives the threshold θ
′

as a

signal: ∆r1(θ
′
, n(., θ

′
)) intersects zero at exactly one point θ

′
, which we call θ∗. It is negative

below it (∆r1(θ
′
, n(., θ

′
)) < 0 when θ′ < θ∗) and positive above it (∆r1(θ

′
, n(., θ

′
)) > 0 when

θ′ > θ∗). Hence, θ∗ is the unique potential threshold for a symmetric threshold equilibrium.

We prove the uniqueness of θ∗ by the intermediate value theorem. The argument is

complicated by the fact that when θ′ is close to the upper dominance region: θ − ε ≤ θ
′ ≤

θ + ε, the function v(θ) is not monotone in θ over [θ̂, θ′ + ε], where θ̂ is defined below. v(θ)

might increase at first, then discontinuously jumps at θ and decreases. We show that this

decrease preserves the single crossing of the integral of net incentives and the uniqueness

of θ∗. We analyze v(θ) in two cases: case I is when the threshold θ
′

is far from the upper

dominance region (θ
′ ≤ θ − ε), while case II is when it is closer to it (θ − ε ≤ θ′ ≤ θ + ε).13

Case I: θ
′ ≤ θ−ε. v(θ) achieves its minimum at θ̂ ∈ (θ

′−ε, θ′+ε), where the proportion

of investors withdrawing is equal to 1
r1

.14 As θ increases from θ
′− ε to θ̂, n decreases from 1

to 1
r1

and v(θ) = −u(r1)
nr1

decreases to its minimum value −u(r1). On the interval [θ̂, θ
′
+ ε],

v(θ) = (1−p(θ))u(y∗)+p(θ)u((1−nr11−n −y
∗)R+y∗)−u(r1). As θ increases from θ̂ to θ

′
+ ε, n

decreases from 1
r1

to λ. The increase in θ coupled with the decrease in n(θ, θ′) means that

the combination of Lemma 1 and Lemma 3 insure v(θ) increases in θ. At θ, the liquidation

value discontinuously increases from 1 to R, which results in a discontinuous v(θ). By the

13We analyze the net incentive integral to compute i’s best response to symmetric threshold
strategies. Investors with signals θi ≥ θ + ε are sure that θ is in the upper dominance region.
Irrespective of n, withdrawing in the region [θ+ ε, θ′] is a strictly dominated strategy. Although we
can still analyze when the threshold θ′ exceeds θ + ε, but this case adds little and we drop it.

14Over the segment {θ : λ ≤ n(θ, θ
′
) ≤ 1}, n(., θ

′
) is linearly decreasing and hence invertible.

Therefore, let θ̂ ≡ θ : n(θ, θ
′
) = 1

r1
. By the intermediate value theorem θ̂ exists, and θ

′−ε < θ̂ < θ
′
+ε.
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continuity of p(.) and because p(θ) = 1, v(θ) approaches u(1−λr11−λ R)−u(r1) as θ approaches

θ. But v(θ) = u(R−λr11−λ R)− u(r1) for all θ ≥ θ. Figure 9 shows the discussion.

As θ
′

changes, the interval [θ
′ − ε, θ̂] remains of constant length. Using n(θ̂, θ

′
) = 1

r1
,

we see that θ
′ − θ̂ = ( 1

r1
− 1+λ

2 ) 2ε
1−λ , which is independent of θ′. On [θ

′ − ε, θ̂], v(θ) depends

on θ
′

only through n, v(θ) = −u(r1)
nr1

. Therefore, v(θ) on this interval is merely translated

sideways as θ′ changes, and the integral
∫ θ̂
θ′−ε v(θ)dθ remains constant. As θ′ increases, v(θ)

is evaluated at a translation to the right of the interval [θ̂, θ
′
+ ε]. Therefore, at a fixed n

but higher fundamental, v(θ) increases by Lemma 3. Figure 10 plots v(θ) at two different

thresholds θ′1 < θ′2. The blue plot of v(θ) on interval [θ̂, θ
′
2 + ε] is clearly higher than the

black plot on interval [θ̂, θ
′
1 + ε]. Clearly,

∫ θ′+ε
θ̂

v(θ)dθ increases in the threshold θ
′
.

Case II: θ − ε < θ
′ ≤ θ + ε. The graph of v(θ) is similar to case I on the interval

[θ
′ − ε, θ), with a minor difference regarding θ̂. If θ̂ < θ, then v(θ) decreases first, achieves

its minimum at θ̂, then increases and exhibits a point of discontinuity at θ. When θ̂ ≥ θ,

however, v(θ) decreases and approaches an infimum value at θ but never achieves it and

exhibits a point of discontinuity at θ. In both cases, for θ ∈ [θ, θ
′
+ ε], v(θ) has the peculiar

feature that it decreases in θ. On this interval, v(θ) = u(R−nr11−n R)− u(r1), which increases

in n. This presents a reversal in the incentives: an increase in n is good news to those

who do not withdraw. Since the project is riskless now, an increase in θ mainly implies an

increase in n. Therefore, on θ ∈ [θ, θ
′
+ ε], v(θ) decreases in θ, until it becomes constant at

u(R−λr11−λ R)− u(r1), when θ is above θ
′
+ ε. Figure 11 plots a representative v(θ).

Two issues are important to show that the Case II integral of net incentives increases

in θ′. First is the change in v(θ) as θ′ increases. At θ
′

= θ−ε, v(θ) would be almost identical

to Figure 9. As θ
′

increases, the interval [θ
′ − ε, θ] shrinks and v(θ) would resemble Figure

9 on the domain below θ, and Figure 11 on the domain above θ. Second, we show that

u(R−nr11−n R)− u(r1) ≥ u(R−λr11−λ R)− u(r1) > 0. The first inequality is discussed before, while

the second is evident. (This expression is positive because R−nr1
1−n increases in n as r1 < R

and R−λr1
1−λ > r1. As θ′ increases, the integral increases because positive values of v(θ) are

added and negative ones are dropped. This discussion proves the following result:
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Figure 9: Net incentives when the threshold is far below the upper dominance region,
θ
′
+ ε ≤ θ.
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Figure 10: The net incentive with two thresholds (θ′2 > θ′1). The curves representing
v(θ) on [θ′1−ε, θ̂1] and [θ′2−ε, θ̂2] are identical. The increasing black curve on [θ̂1, θ

′
1+ε]

is lower than the increasing blue curve on [θ̂2, θ
′
2 + ε]. This depicts an integral of net

incentives
∫ θ′+ε
θ̂

v(θ)dθ that increases in the threshold θ
′
.
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Lemma 4. There exists an ε such that ∆r1(θ
′
, n(., θ

′
)) increases in θ

′
.

To show the existence and uniqueness of θ∗, the following lemma proves that ∆r1(θ
′
, n(., θ

′
))

is continuous in θ
′
. Next we show that it starts negative when θ

′
is close to 0 and increases

until it is positive. The intermediate value theorem and strict monotonicity then prove the

claim.

Lemma 5. The integral ∆r1(θ
′
, n(., θ

′
)) is continuous in θ

′
.

Proof. The integrand is bounded, which makes the continuity of the integral straightfor-

ward. Because the discontinuity in v(θ) is a simple discontinuity, it has no effect on the

continuity of the integral.

That the integral is positive on the higher part of the upper dominance region when

ε is small enough is clear by the discussion when θ′ goes to θ̂ + ε. Next we show it is

negative, when θ′ is close to zero. For the lower dominance region, fix r1 > 1, we have that

θ(r1) > 0. Hence, there exists a ε(r1) > 0 small enough, such that θ(r1)−3ε(r1) > 0. When
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θ
′
< θ(r1)− ε(r1), we have v(θ) < 0 for all θ ∈ [θ

′ − ε, θ′ + ε), therefore ∆r1(θ
′
, n(., θ

′
)) < 0.

Note that this still holds for any ε ≤ ε(r1). We have established by the intermediate value

theorem, the unique state θ∗ where ∆r1(θ∗, n(., θ∗)) = 0.

C.2 The identified threshold is an equilibrium

Step 2 studies how the integral of net incentives ∆r1(θi, n(., θ∗)) varies with i’s signal, θi.

Step 1 showed it is zero at θi = θ∗. Lemma 6 shows it is continuous in the signal θi and

Lemma 7 shows that it is negative for all θ < θ∗ and positive for all θ > θ∗, thereby showing

a threshold best response by investor i at θ∗ to all investors using the threshold strategy θ∗.

Lemma 6. The function ∆r1(θi, n(., θ∗(r1))) is continuous in θi.

Proof. v(θ) is bounded and has simple discontinuities, so the integral is continuous.

Lemma 7. There exists a ε̄ such that, for all ε ≤ ε̄, the function ∆(θi, n(., θ∗(r1))) starts

negative and decreases in θi, then bottoms out and increases until it is and remains positive.

Proof. The integral ∆r1(θi, n(., θ∗(r1))) starts constant at −2εu(r1)r1
when θi < θ

′ − 2ε. It

decreases on the downward sliding portion of v(θ). It is clear that it bottoms out at the θ

that achieves the following infimum: inf{θi : v(θi − ε) < v(θi + ε)}. (If this is not achieved

because θ
′

is close to the upper dominance region, then the same logic carries through,

though.) After that point, as θi increases, the integral substitutes values of v(θ + ε) which

are higher than the v(θi − ε) that get dropped out of the integral. Therefore, the integral

increases. Straightforwardly, the integral is positive when θi > θ̄ + ε.

C.3 Uniqueness in general threshold strategies

Step 3 shows that the symmetric threshold equilibrium is unique in all threshold strategies.

Proof by contradiction. Suppose that there is an asymmetric threshold equilibrium. Then
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there are θA 6= θB such that some investors withdraw at a signal below threshold θA and

others withdraw below θB. But at every signal in [θA, θB], some investors withdraw, while

others do not. So investors must be indifferent and the net incentive integral at each signal

in this interval must be zero. In any threshold equilibrium, the proportion n(θ) weakly

decreases in θ. Since the integral of net incentives is zero at θA, we have that v(θA− ε) < 0

and v(θA+ε) > 0. To see this, assume v(θA−ε) ≥ 0, then v(θ) > 0 for all θ in (θA−ε, θA+ε],

and if v(θA + ε) ≤ 0, then v(θ) < 0 for all θ in [θA − ε, θA + ε). But then the integral of net

incentives cannot be zero. Since v(θA + ε) > 0, the combination of Lemma 1 and Lemma 3

ensure that v(.) increases at θA + ε. Thus the integral of net incentives increases at signal

θA, since it drops negative values and adds positive ones. Contradiction.

C.4 No non-threshold equilibrium in symmetric strategies

The final step of the proof is to show that any equilibrium has to be in threshold strategies.

This proof heavily builds on GP and we skip it here for brevity.

D Proof of Proposition 4

We start with two lemmas that help us prove continuity of the withdrawal threshold θ∗(ε)

with respect to noise. The first lemma establishes that the optimal safe asset holdings do

not depend directly on the noise ε, but only indirectly through n and θ.

Lemma 8. For a given n, y∗ depends on ε through θ.

Proof. First, we assume ε1 6= ε2. At the same n and θ, both problems have the same

first-order condition 3. Thus, by strict concavity, y∗(n, θ, ε1) = y∗(n, θ, ε2). And y∗ does

not depend directly on ε. Next, we show the dependence through θ(ε). When θ(ε1) 6= θ(ε2)

and at the same n, the first-order condition 3 implies u′(y∗(ε1))

u′
[
1−nr1
1−n

R−y∗(ε1)(R−1)
] = p(θ(ε1))(R−1)

1−p(θ(ε1)) .

Hence, by strict concavity, y∗(n, θ(ε1)) 6= y∗(n, θ(ε2)).

39



The next lemma describes the relationship between θ∗(ε1) and θ∗(ε2) for different ε.

Lemma 9. For all ε1 6= ε2 > 0, we have

∫ 1
r1
λ p[θ∗(ε1) + ε1(1− 2n−λ1−λ )]u((1−nr11−n − y

∗)R+ y∗) + p[θ∗(ε1) + ε1(1− 2n−λ1−λ )]
]
u(y∗)dn =∫ 1

r1
λ p[θ∗(ε2) + ε2(1− 2n−λ1−λ )]u((1−nr11−n − y

∗)R+ y∗) + p[θ∗(ε2) + ε2(1− 2n−λ1−λ )]u(y∗)dn

(21)

Proof. At any ε, an investor with signal θ∗(ε) is indifferent between withdrawing and

not withdrawing. Recall that θ̂ is the fundamental θ at which the bank is exactly insolvent

n(θ, θ∗(r1)) = 1
r1

, where θ̂ ∈ (θ∗−ε, θ∗+ε). The expected utility of not withdrawing when the

investor receives the threshold signal is 1
2ε

∫ θ∗+ε
θ̂

p(θ)u((1−nr11−n −y
∗)R+y∗)+(1−p(θ))u(y∗)dθ.

The expected utility of withdrawing is
∫ θ̂
θ∗−ε

u(r1)
nr1

1
2εdθ +

∫ θ∗+ε
θ̂

u(r1)
1
2εdθ. Thus:

∫ θ∗+ε

θ̂
p(θ)u((

1− nr1
1− n

−y∗)R+y∗)+(1−p)u(y∗)dθ =

∫ θ̂

θ∗−ε

u(r1)

nr1
dθ+

∫ θ∗+ε

θ̂
u(r1)dθ. (22)

We use n = λ + (1 − λ)(12 + θ∗−θ
2ε ) to change the integration variables, dθ = − 2ε

1−λdn, and

Lemma 8 to get

∫ 1
r1
λ p(θ∗ + ε(1− 2n−λ1−λ ))u((1−nr11−n − y

∗)R+ y∗) + (1− p(θ∗ + ε(1− 2n−λ1−λ )))u(y∗)dn

=
∫ 1

r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn,
(23)

where the right-hand side is independent of ε. Rewriting yields equation (21).

Next, we show that the withdrawal threshold θ∗(ε) is continuous in ε. Proof by

contradiction. Assume ∃x > 0 at which θ∗(ε) is not continuous. Then there exists a sequence

{εm} with εm > 0 s.t. εm → x but θ∗(εm) 9 θ∗(x). θ∗(εm) ∈ [0, 1] a sequence in a compact

set, so it has a convergent subsequence with limit θ 6= θ∗(x). Let |θ − θ∗(x)| = η. There

exists m̄ s.t. ∀m > m̄, |εm − x| < δ but |θ∗(εm)− θ∗(x)| > η
2 . Assume θ > θ∗(x)—a similar

argument holds for θ < θ∗(x)—then θ(εm) − θ∗(x) > 0 ∀m > m̄. But then by choosing

εm close enough to x, ∃ m̄ (we abuse notation here by calling this new cutoff counter m̄

again) s.t. ∀m > m̄, θ(εm)− θ(x)− (1− 2n−λ1−λ )(εm − x) > η
4 for all withdrawal proportions

λ ≤ n ≤ 1
r1

. By using Lemma 3, we show that the expected utility at θ(εm)− (1− 2n−λ1−λ )εm
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is greater than at θ(x)− (1− 2n−λ1−λ )x for all n. But then the integral of the expected utility

across n, still preserves the same sign, which contradicts Lemma 9. In other words:

∫ 1
r1
λ p[θ∗(εm) + εm(1− 2n−λ1−λ )]u((1−nr11−n − y

∗)R+ y∗) + p[θ∗(εm) + εm(1− 2n−λ1−λ )]
]
u(y∗)dn−∫ 1

r1
λ p[θ∗(x) + x(1− 2n−λ1−λ )]u((1−nr11−n − y

∗)R+ y∗) + p[θ∗(x) + x(1− 2n−λ1−λ )]u(y∗)dn > 0

(24)

The contradiction with Lemma 9 completes the proof of the continuity with respect to noise.

We next prove that there is a unique limit of θ∗(εm) for every noise sequence going

to zero. θ∗(εm) is in the compact set [0, 1], so it has a convergent subsequence for any

sequence {εm} going to zero. We show that there cannot be two subsequential limits, thus

proving the claim. The idea of the proof follows the proof for continuity. We sketch it here.

Contrapositive, assume there are two subsequential limits. Then there are two sequences

converging to those two different limits. One limit is greater than the other. But then we

can find two elements along the two sequences, call them x and εm, close enough to each

other (since they are close to zero) s.t. inequality 24 holds.

We now compute the unique limit θ. We first note that the proof of Lemma 3 contains

a discussion on why y∗ is continuous in p, which we will use here.

Let g(n) = p(θ∗)u
[
1−nr1
1−n R− y∗(R− 1)

]
+(1−p(θ∗))u(y∗). Let gε(n) = p(θ∗(ε)+ε[1−

2n−λ1−λ ])u
[
1−nr1
1−n R− y∗(R− 1)

]
+ (1− p(θ∗(ε) + ε[1− 2n−λ1−λ ]))u(y∗). We direct the reader to

Lemma 8 to point out that y∗ depends only indirectly on ε through θ = θ∗(ε) + ε[1− 2n−λ1−λ ].

By continuity of p(.), u(.), and y∗ in θ, gε → g point-wise. Taking the limits of equation

(22):

limε→0

∫ 1
r1
λ p(θ∗ + ε(1− 2n−λ1−λ ))u((1−nr11−n − y

∗)R+ y∗) + (1− p(θ∗ + ε(1− 2n−λ1−λ )))u(y∗)dn

=
∫ 1

r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn

(25)
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We use the dominated convergence theorem to get

∫ 1
r1
λ limε→0p(θ

∗ + ε(1− 2n−λ1−λ ))u((1−nr11−n − y
∗)R+ y∗) + limε→0(1− p(θ∗ + ε(1− 2n−λ1−λ )))u(y∗)dn

=
∫ 1

r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn
(26)

∫ 1
r1
λ p(θ∗)u((1−nr11−n − y

∗)R+ y∗) + (1− p(θ∗))u(y∗)dn =
∫ 1

r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn ,

where y∗ in the last equation is y∗ = y∗(p(θ∗), n). Simplifying yields:

p(θ∗)
∫ 1

r1
λ u((1−nr11−n − y

∗)R+ y∗)dn+ (1− p(θ∗))
∫ 1

r1
λ u(y∗)dn =

∫ 1
r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn (27)

p(θ∗) =
∫ 1

r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn−
∫ 1

r1
λ u(y∗)dn

/(∫ 1
r1
λ u((1−nr11−n − y

∗)R+ y∗)dn−
∫ 1

r1
λ u(y∗)dn

)

p(θ∗) =

∫ 1
r1
λ u(r1)dn+

∫ 1
1
r1

u(r1)
r1n

dn−
∫ 1

r1
λ u(y∗)dn∫ 1

r1
λ u((1−nr11−n − y∗)R+ y∗)dn−

∫ 1
r1
λ u(y∗)dn

.

E Proof of Proposition 5

Rewriting equation (5) and taking the derivative yields

∫ 1
r1
n=λ p(θ

∗)u(1−nr11−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1))dn

+r1
∂
∂r1

∫ 1
r1
n=λ p(θ

∗)u(1−nr11−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1))dn

= u′(r1)[1− λr1 + ln(r1)] + (u(r1)/r1)(1− λr1),

(28)

⇔

∫ 1
r1
n=λ p(θ

∗)u(1−nr11−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1))dn

+r1
∫ 1

r1
n=λ p

′(θ∗)∂θ
∗

∂r1
u(1−nr11−n R− (R− 1)y∗(r1))− p′(θ∗)∂θ

∗

∂r1
u(y∗(r1))dn

+r1
∫ 1

r1
n=λ p(θ

∗) ∂
∂r1
u(1−nr11−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂

∂r1
u(y∗(r1))dn

= u′(r1)[1− λr1 + ln(r1)] + (u(r1)/r1)(1− λr1).
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Thus:

∂θ∗

∂r1
p′(θ∗)r1

∫ 1
r1
λ u(1−nr11−n R− (R− 1)y∗)− u(y∗)dn =

−r1
∫ 1

r1
n=λ p(θ

∗) ∂
∂r1
u(1−nr11−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂

∂r1
u(y∗(r1))dn

−
∫ 1

r1
n=λ p(θ

∗)u(1−nr11−n R− (R− 1)y∗(r1)) + (1− p(θ∗))u(y∗(r1))dn

+u′(r1)[1− λr1 + ln(r1)] + (u(r1)/r1)(1− λr1)

(29)

In words, the left-hand side of equation (29) is equal to −r1 multiplied by the expected

derivative minus the expected utility and the last two positive terms. This differs from

GP’s equation because the expected utility and the expected derivative differ from GP’s.

The last two terms are positive: p′(.) > 0, the difference u(1−nr11−n R − (R − 1)y∗) −

u(y∗) > 0 for an interior y∗, so we have ∂θ∗

∂r1
> 0 if the negative of the expected deriva-

tive minus the expected utility is positive, which happens for −r1
∫ 1

r1
n=λ p(θ

∗) ∂
∂r1
u(1−nr11−n R−

(R − 1)y∗(r1)) + (1 − p(θ∗)) ∂
∂r1
u(y∗(r1))dn −

∫ 1
r1
n=λ p(θ

∗)u(1−nr11−n R − (R − 1)y∗(r1)) + (1 −

p(θ∗))u(y∗(r1))dn > 0. Focusing on the expected derivative with respect to r1, we express

it as a derivative with respect to n in order to use integration by parts (see also GP):

∂

∂r1
u(

1− nr1
1− n

R− (R− 1)y∗(r1)) = u′(
1− nr1
1− n

R− (R− 1)y∗(r1))(−
nR

1− n
− (R− 1)

∂y∗

∂r1
)

∂

∂r1
u(y∗) = u′(y∗)

∂y∗

∂r1
.

Thus, p(θ∗) ∂
∂r1
u(1−nr11−n R − (R − 1)y∗(r1)) + (1− p(θ∗)) ∂

∂r1
u(y∗(r1)) = −p(θ∗)u′((1−nr11−n R −

(R − 1)y∗(r1)))(
nR
1−n)− p(θ∗)(R − 1)∂y

∗

∂r1
u′(1−nr11−n R − (R − 1)y∗(r1)) + (1− p(θ∗))∂y

∗

∂r1
u′(y∗).

Collecting terms yields p(θ∗) ∂
∂r1
u(1−nr11−n R − (R − 1)y∗(r1)) + (1 − p(θ∗)) ∂

∂r1
u(y∗(r1)) =

−p(θ∗)u′((1−nr11−n R − (R − 1)y∗(r1)))
nR
1−n) − ∂y∗

∂r1
[p(θ∗)(R − 1)u′(1−nr11−n R − (R − 1)y∗(r1)) −
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(1− p(θ∗))u′(y∗)]. Using the first-order condition for y∗ makes the last term null; we get

p(θ∗)
∂

∂r1
u(

1− nr1
1− n

R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂

∂r1
u(y∗(r1)) = · · · (30)

= −u′((1− nr1
1− n

R− (R− 1)y∗(r1)))p(θ
∗)(

nR

1− n
)

p(θ∗)
∂

∂n
u(

1− nr1
1− n

R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂
∂n
u(y∗(r1)) = · · · (31)

= −p(θ∗)u′((1− nr1
1− n

R− (R− 1)y∗(r1)))(
R(r1 − 1)

(1− n)2
) (32)

⇒
p(θ∗) ∂

∂r1
u(1−nr11−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂

∂r1
u(y∗(r1))

p(θ∗) ∂
∂nu(1−nr11−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂

∂nu(y∗(r1))
=
n(1− n)

r1 − 1
(33)

Using equation (33), the second term of equation (29) becomes

−r1
∫ 1

r1

n=λ
p(θ∗)

∂

∂r1
u(

1− nr1
1− n

R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂

∂r1
u(y∗(r1))dn = · · · (34)

= − r1
r1 − 1

∫ 1
r1

n=λ
p(θ∗)n(1− n)

∂

∂n
u(

1− nr1
1− n

R− (R− 1)y∗(r1)) + (1− p(θ∗))n(1− n)
∂

∂r1
u(y∗(r1))dn

Integrating by parts the two terms (we do only the harder term; the other one is similar),

let u = n(1 − n) and dv = ∂u
∂n(1−nr11−n R − (R − 1)y∗), then du = (1 − 2n)dn and v =

u(1−nr11−n R− (R− 1)y∗). We get −p(θ∗) r1
r1−1 [−λ(1− λ)u(1−λr11−λ R− (R− 1)y∗(λ))−

∫ 1
r1
n=λ(1−

2n)u(1−r1n1−n R−(R−1)y∗)dn] and −(1−p(θ∗)) r1
r1−1 [−λ(1−λ)u(y∗(λ))−

∫ 1
r1
n=λ(1−2n)u(y∗)dn].

Thus:

−r1
∫ 1

r1
n=λ p(θ

∗) ∂
∂r1
u(1−nr11−n R− (R− 1)y∗(r1)) + (1− p(θ∗)) ∂

∂r1
u(y∗(r1))dn =

−p(θ∗) r1
r1−1 [−λ(1− λ)u(1−λr11−λ R− (R− 1)y∗(λ))−

∫ 1
r1
n=λ(1− 2n)u(1−r1n1−n R− (R− 1)y∗)dn]

−(1− p(θ∗)) r1
r1−1 [−λ(1− λ)u(y∗(λ))−

∫ 1
r1
n=λ(1− 2n)u(y∗)dn]

(35)

Taken together, the two terms of equation (29) yield

p(θ∗) r1
r1−1λ(1− λ)u(1−λr11−λ R− (R− 1)y∗(λ)) + p(θ∗)

r1−1
∫ 1

r1
n=λ(1− 2nr1)u(1−nr11−n R− (R− 1)y∗)dn

(1− p(θ∗)) r1
r1−1λ(1− λ)u(y∗(λ)) + 1−p(θ∗)

r1−1
∫ 1

r1
n=λ(1− 2nr1)u(y∗)dn

(36)

It remains to be shown that expression (36) is positive. A picture (below) helps with this
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step. The picture could be drawn in two ways, and in both cases we get the desired result.

If 1−2λr1 < 0, then 1−2nr1 never hits zero on the domain. If it is positive, it does hit zero.

In both cases 1−2nr1 evaluated at the midpoint of the domain segment (
1
r1

+λ

2 ) is negative.

We will assume it does not hit zero, the other case follows similarly. Note that there are

two triangles: one to the left and one to the right of the dotted line. These two triangles

are congruent. Since u(.) is decreasing, substituting
1
r1

+λ

2 instead of n inside the integral

just shifts weights on different u(.) values inside the integral. Now note that the blue line

is a plot of the line 1− 2nr1, while the red line is the constant function at 1− 2r1
1
r1

+λ

2 .

From Lemma 1, we have that 1−nr1
1−n R − (R − 1)y∗ and y∗ are both decreasing in

n. Because u(.) is decreasing, this exchange shifts weight from higher-valued u()s to lower-

valued ones. Therefore, we have p(θ∗)
r1−1

∫ 1
r1
n=λ(1−2nr1)u(1−nr11−n R−(R−1)y∗)dn > p(θ∗)

r1−1
∫ 1

r1
n=λ(1−

2(
1
r1

+λ

2 )r1)u(1−nr11−n R − (R − 1)y∗)dn = −λr1p(θ∗)
r1−1

∫ 1
r1
n=λ u(1−nr11−n R − (R − 1)y∗)dn. And also:

p(θ∗)
r1−1

∫ 1
r1
n=λ(1− 2nr1)u(y∗)dn > p(θ∗)

r1−1
∫ 1

r1
n=λ(1− 2(

1
r1

+λ

2 )r1)u(y∗)dn = −λr1p(θ∗)
r1−1

∫ 1
r1
n=λ u(y∗)dn.

-

?

λ
1
r1

1
r1

+λ

2
n

...

...

...

...

...

...

Moreover, since from Lemma 1, 1−nr1
1−n R−(R−1)y∗ and y∗ are both decreasing in n and

u(.) is decreasing, ( 1
r1
−λ)u(1−λr11−λ R−(R−1)y∗(λ)) >

∫ 1
r1
n=λ u(1−nr11−n R−(R−1)y∗)dn. We get

that −λr1p(θ∗)
r1−1

∫ 1
r1
n=λ u(1−nr11−n R− (R− 1)y∗)dn > −p(θ∗) r1

r1−1λ( 1
r1
−λ)u(1−λr11−λ R− (R− 1)y∗).

Similarly, ( 1
r1
− λ)u(y∗(λ)) >

∫ 1
r1
n=λ u(y∗)dn, so −λr1p(θ∗)

r1−1
∫ 1

r1
n=λ u(y∗)dn > −p(θ∗) r1

r1−1λ( 1
r1
−
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λ)u(y∗(λ)). Next, looking at the sum on the top, we find

p(θ∗) r1
r1−1λ(1− λ)u(1−λr11−λ R− (R− 1)y∗(λ)) + p(θ∗)

r1−1
∫ 1

r1
n=λ(1− 2nr1)u(1−nr11−n R− (R− 1)y∗)dn >

p(θ∗) r1
r1−1λ(1− λ)u(1−λr11−λ R− (R− 1)y∗(λ))− p(θ∗) r1

r1−1λ( 1
r1
− λ)u(1−λr11−λ R− (R− 1)y∗(λ)) and

p(θ∗) r1
r1−1λ(1− λ)u(1−λr11−λ R− (R− 1)y∗(λ)) + p(θ∗)

r1−1
∫ 1

r1
n=λ(1− 2nr1)u(1−nr11−n R− (R− 1)y∗)dn >

p(θ∗)λu(1−λr11−λ R− (R− 1)y∗(λ)) > 0

Similarly, p(θ∗) r1
r1−1λ(1 − λ)u(y∗(λ)) + p(θ∗)

r1−1
∫ 1

r1
n=λ(1 − 2nr1)u(y∗)dn > p(θ∗)λu(y∗(λ)) > 0,

which completes our proof.

F Proof of Proposition 6

Proof by contradiction. Assume that θ∗ ≥ θ∗GP . Fix a withdrawal proportion n : λ ≤

n ≤ 1
r1

, where n determines the resources left for the remaining patient investors. Un-

der p(θ∗) and without insurance, these resources are all invested in the project and yield

p(θ∗)u(1−nr11−n R). With insurance, in contrast, these resources yield p(θ∗)u(1−nr11−n R − (R −

1)y∗(r1)) + (1 − p(θ∗))u(y∗(r1)). Since investors are risk averse and marginal utility is

high enough at zero, we have y∗(r1) > 0 and p(θ∗)u(1−nr11−n R − (R − 1)y∗(r1)) + (1 −

p(θ∗))u(y∗(r1)) > p(θ∗)u(1−nr11−n R). Note that θ∗ ≥ θ∗GP implies that p(θ∗) ≥ p(θ∗GP ) and,

therefore,
∫ 1

r1
n=λ p(θ

∗)u(1−nr11−n R)dn ≥
∫ 1

r1
n=λ p(θ

∗
GP )u(1−nr11−n R)dn. This would imply

∫ 1
r1
n=λ p(θ

∗)

u(1−nr11−n R−(R−1)y∗(r1))+(1−p(θ∗))u(y∗(r1))dn >
∫ 1

r1
n=λ p(θ

∗)u(1−nr11−n R)dn ≥
∫ 1

r1
n=λ p(θ

∗
GP )

u(1−nr11−n R)dn = u(r1)
r1

(1− λr1 + ln(r1)), a contradiction. This completes the proof.

G Proof of Propositions 7 and 8

Fix any θ > θ∗. Recall that θ∗ < θ∗GP . When no patient investor withdraws, an investor

with a signal above the equilibrium threshold strictly prefers to wait. At n = λ, v(θ, λ) > 0,

so (1− p(θ))u(y∗) + p(θ)u((1−nr11−n − y
∗)R + y∗) > u(r1) >

u(r1)
r1

, which follows from r1 > 1.
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But then by taking a convex combination of the two terms greater than u(r1)
r1

, the result is

still greater than u(r1)
r1

: (1−λ)[(1−p(θ))u(y∗)+p(θ)u((1−nr11−n −y
∗)R+y∗)]+λu(r1) >

u(r1)
r1

.

But then:
∫ θ∗GP
θ∗ (1−λ)[(1−p(θ))u(y∗)+p(θ)u((1−nr11−n −y

∗)R+y∗)]+λu(r1) >
u(r1)
r1

(θ∗GP−θ∗).

Therefore: u(r1)
r1

θ∗+
∫ θ∗GP
θ∗ λu(r1) + (1−λ)[(1− p(θ))u(y∗) + p(θ)u((1−nr11−n − y

∗)R+ y∗)]dθ >

u(r1)
r1

θ∗GP . Next, since
∫ 1
θ∗GP (r1)

λu(r1)+(1−λ)[(1−p(θ))u(y∗)+p(θ)u((1−nr11−n −y
∗)R+y∗)]dθ >∫ 1

θ∗GP (r1)
λu(r1) + (1 − λ)p(θ)u(1−λr11−λ R)dθ and adding the inequality to the one before, we

get u(r1)
r1

θ∗ + λ(1− θ∗)u(r1) + (1− λ)
∫ 1
θ∗ p(θ)u(1−λr11−λ R− (R− 1)y∗) + (1− p(θ))u(y∗)dθ >

u(r1)
r1

θ∗GP + λ(1− θ∗GP )u(r1) + (1− λ)u(1−λr11−λ R)
∫ 1
θ∗GP

p(θ)dθ. This completes the first proof.

Finally, we need to show EU(r∗1) ≥ EU(r∗1GP ) > EUGP (r∗1GP ). The first inequality

follows from the optimality of r∗1. The second inequality follows from the fact that allowing

for safe assets raises expected utility in the subgame defined by r∗1GP .

H Proof of Proposition 9

This proof uses the concavity of the objective function in equation (7). For comparison

with the objective function and its first-order condition, we state the equivalent expressions

in GP here:

lim
θ→1
ε→0

EUGP (r1) =
u(r1)

r1
θ∗GP + λ(1− θ∗GP )u(r1) + (1− λ)u

(
1− λr1
1− λ

R

)∫ 1

θ∗GP

p(θ)dθ. (37)

λ(1− θ∗GP )u′(r1) = u(r1)−u′(r1)r1
r21

θ∗GP + λR
∫ 1
θ∗GP

p(θ)u′(1−λr11−λ R)dθ

+
∂θ∗GP
∂r1

[λu(r1) + (1− λ)p(θ∗GP )u
(
1−λr1
1−λ R

)
− u(r1)

r1
]

,

which defines bank liquidity provision without safe asset holdings, r∗1,GP . One can show

that the marginal expected utility (equation (8)) is positive when evaluated at r∗1,GP . The

concavity of the objective function then implies r∗1 > r∗1,GP .
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