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Abstract 
 
We develop a return variance decomposition model to separate the role of different types of information 
and noise in stock price movements. We disentangle four components: market-wide information, private 
firm-specific information revealed through trading, firm-specific information revealed through public 
sources, and noise. Overall, 31% of the return variance is from noise, 37% from public firm-specific 
information, 24% from private firm-specific information, and 8% from market-wide information. Since the 
mid-1990s, there has been a dramatic decline in noise and an increase in firm-specific information, 
consistent with increasing market efficiency.  
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The issue of what drives stock price movements is a fundamental question in finance with implications for 

understanding risk, informational efficiency, and asset pricing. By understanding the stock return 

generating process, researchers can address questions such as whether private information is more 

important than public information, whether the role of market-wide information is increasing or decreasing 

over time, or how much noise is in stock price movements. A methodology for measuring the return 

generating process is also useful for evaluating the impacts of recent phenomena such as the growth in 

passive investing and algorithmic trading, among others. This paper develops a new tool that allows stock 

returns to be decomposed into various information components while simultaneously allowing for price 

changes to occur due to non-informational reasons.  

There are currently two dominant approaches to decomposing the drivers of stock price changes. One 

approach exploits the canonical discounted cash flow valuation model to divide a return series into cash 

flow and discount rate related return components (Campbell and Shiller, 1988a, 1988b; Campbell, 1991). 

The second decomposes returns into market-wide news and firm-specific news using the 𝑅𝑅2 from a 

regression of stock returns on market returns (Morck, Yeung, and Yu, 2000).  

The existing decompositions have limitations, which we overcome with the variance decomposition 

developed in this paper. To illustrate, Figure 1 shows the time-series of the 𝑅𝑅2 measure. The 𝑅𝑅2 time-series 

suggests that market efficiency has been on the decline since the mid-1990s (higher 𝑅𝑅2 implies less firm-

specific information is reflected in prices). This is at odds with much of the event study literature that 

suggests different market changes have generally improved market efficiency in recent years (e.g., 

Brogaard, Hendershott, and Riordan, 2014; Comerton-Forde and Putnins, 2015).  

 

Insert Figure 1 About Here 

 

The first limitation of existing decompositions arises from ignoring the role of noise in stock returns. 

Temporary deviations of prices from their equilibrium levels are part of the return generating process (e.g., 

Hendershott and Menkveld, 2014; Asparouhova, Bessembinder, and Kalcheva, 2010; Asparouhova, 
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Bessembinder, and Kalcheva, 2013). These price deviations, or “noise,” arise from microstructure frictions 

such as bid-ask spreads, nonsynchronous trading, discrete price grids, and temporary price impacts of order 

imbalances, as well as changes in investor sentiment or other behavioral factors, in combination with limits 

to arbitrage (Asparouhova et al., 2013). Noise has a significant effect on returns at daily and monthly 

frequencies, not just intraday horizons. For example, Blume and Stambaugh (1983) and Asparouhova et al. 

(2013) show that noise at daily frequencies causes an economically meaningful bias in returns, equal to 

50% or more of the corrected estimate and is able to explain the size effect. Jegadeesh (1990) and Lehmann 

(1990) document significant reversals in stock returns at monthly and weekly horizons, respectively, also 

consistent with the notion that daily, weekly, and monthly returns contain substantial noise.  

Noise can distort the existing measures. For instance, an increase in 𝑅𝑅2 is generally interpreted as 

indicating a relative decrease in the amount of firm-specific information in prices. However, if returns also 

contain noise, an alternative interpretation of a high 𝑅𝑅2 is that there has been a decrease in the magnitude 

of idiosyncratic pricing errors and therefore an increase in 𝑅𝑅2 does not necessarily indicate deteriorating 

informational efficiency. 

The second limitation is the inability of existing methods to disentangle information into more refined 

categories. The partition into market-wide and firm-specific information has long been of interest in finance 

as firm-specific information is vital for efficient resource allocation across firms. Some recent studies 

suggest the rapid growth in passive investing could harm the firm-specific information in stock prices (e.g., 

Cong and Xu, 2017). Similar concerns have been raised about the effects of high-frequency trading (e.g., 

Baldauf and Mollner, 2018). Further, the partition into private and public information is important given 

substantial changes in the regulation of corporate information disclosure in recent decades (e.g., Regulation 

Fair Disclosure (2000) and the Sarbanes Oxley Act (2002)). Such regulations could result in better 

disclosure crowding out private information acquisition, with implications for the profitability of active 

investing and the levels of adverse selection. Having a variance decomposition methodology to shed light 

on cross-sectional variation and general time trends can aid research on these types of information topics. 
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We propose a new return variance decomposition model that explicitly accounts for noise and 

partitions information into various sources. For example, in the baseline model, we distinguish between 

market-wide information, firm-specific information revealed through trading on private information, and 

firm-specific information revealed through public news. In an extended version of the model, we further 

decompose the information components into cash flow and discount rate sub-components to relate the 

model to this long-standing branch of the asset pricing literature. Our approach allows for a more nuanced 

understanding of the specific sources of information that is impounded into stock prices along economically 

meaningful dimensions. It also allows the variance decompositions to be performed at higher frequencies 

(e.g., annual decompositions of daily returns) and therefore allows researchers to examine time-series 

variation in the components of stock return variance.1 

We motivate our approach with an extension of the model of Jin and Myers (2006), allowing for 

noise traders and pricing errors. We allow returns to be driven by noise, firm-specific information revealed 

by trading on private information or by other sources such as public news, and market-wide information.  

Our empirical return variance decomposition model draws on the market microstructure toolkit 

where separating temporary price movements driven by frictions from permanent price movements is 

commonplace. For example, Hasbrouck (1993) separates noise from information through a temporary-

permanent component decomposition. Permanent innovations are those that affect the long-run expected 

value of the security, whereas temporary innovations affect prices in the short-run, but have no effect on 

the long-run expected value of the security. Permanent innovations in prices reflect innovations in the 

fundamental value driven by new information, whereas temporary innovations are pricing errors. These 

deviations from the fundamental value can arise from various well-documented market frictions including 

the bid-ask bounce, discrete price grids, temporary price pressures created by uninformed buying or selling, 

and non-synchronous trading.  

                                                           
1 Most existing variance decompositions rely on low frequencies to mitigate the effects of noise, precluding time-
series analysis. 
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We build on Hasbrouck’s original decomposition by adapting the model to daily returns and 

separating innovations in the fundamental value into market-wide information, firm-specific information 

revealed through trading on private information, and firm-specific information revealed through other 

sources (public information). This gives rise to four components of return variance that map to the 

theoretical model. We estimate the model using daily returns on all common stocks listed on the NYSE, 

AMEX, and NASDAQ between 1960 and 2015, performing the variance decomposition separately for 

every stock in every year. This approach minimizes the issue of non-stationarity and allows us to examine 

how the variance components change in the cross-section and through time.  

Intriguingly, we find that roughly 31% of daily return variance is noise. Firm-specific information 

accounts for the majority (61%) of stock return variance, with market-wide information accounting for the 

remaining 8% of variance in the full sample. We further partition firm-specific information and find that in 

the full sample, public firm-specific information plays a larger role than private firm-specific information 

that is impounded into prices through trading (37% and 24% of variance, respectively). While the estimates 

suggest that noise makes up an economically meaningful share of daily stock return variance, the estimate 

is substantially lower than estimates of noise at intra-day horizons (82%).2 Our estimate is consistent with 

Hendershott and Menkveld (2014) who find that the ratio of “price pressure,” distortions of the midquote 

price from the efficient price, to the variance of efficient prices is 33% in their sample of 697 NYSE stocks 

during 1994-2005. It is also consistent with Hendershott et al. (2011) who estimate that one-quarter of 

monthly return variance in NYSE stocks is due to transitory price changes explained by order imbalances 

and market-makers’ inventories. Finally, the estimate is also consistent with the economically meaningful 

return reversals at daily, weekly, and monthly horizons, which reflect temporary departures from efficient 

prices due to imperfect liquidity (e.g., Jegadeesh, 1990; Lehmann, 1990; Avramov, Chordia, and Goyal, 

2006; Nagel, 2012). 

                                                           
2 Extrapolating from Hasbrouck (1991b, 1993) for the year 1989. 
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We find substantial time-series variation in the components of variance. Some key trends stand out. 

First, noise increases from the 1970s to the mid-1990s, in particular around a period of collusion by dealers 

that widened bid-ask spreads. The subsequent decline in noise corresponds to a period with a general 

improvement in liquidity and exogenous decreases in tick sizes (minimum price increments). Separating 

the sample by firm size shows that the noise component decreases monotonically with firm size. Larger 

firms have less noise in their prices, as expected. When separating the sample by industry we observe only 

minor fluctuations in the different components of variance, suggesting that the findings are not specific to 

a particular industry, nor are they driven by a certain segment of the economy. 

Second, the role of firm-specific information has increased through time, driven largely by increases 

in the amount of public firm-specific information that is reflected in prices. This trend is consistent with 

increasing informational efficiency through time, which one may expect given a variety of regulations such 

as the Regulation Fair Disclosure (2000) and the Sarbanes Oxley Act (2002) that have increased the quality 

and quantity of corporate disclosure. Third, market-wide information has become a less important driver of 

stock returns over time. While market-wide information tends to spike during crises, it has generally 

declined from around 15% of variance to around 5-10% in recent years. 

During the 55-year sample period markets have changed dramatically. The number of exchanges has 

increased, bid-ask spreads have decreased, intermediaries have transitioned from dealers to market-makers 

to high-frequency traders, and investor horizons have declined. In addition, the quantity of information has 

ballooned and at the same time the cost and latency of accessing it has plummeted. These time-varying 

changes can impact the various components of the price process differently. Because we re-calculate the 

decomposition each year for each stock, our measure is able to vary along with these changes in the market. 

We provide three detailed examples of how this decomposition can be useful for examining 

prominent questions in finance. First, we look at the role tick size has on the noise component. The tick size 

was reduced from eighths of a dollar to sixteenths of a dollar in 1997 and then from sixteenths to pennies 

in 2001. Chordia, Roll, and Subrahmanyam (2008) show that informational efficiency improved 

significantly around the change from quoting in eighths of a dollar to sixteenths, with the second event 
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having a smaller effect. We exploit this natural experiment and examine how the noise share of variance is 

affected by the reduction in tick size from eighths of a dollar to sixteenths. We find that following the tick 

size reduction there is a substantial decrease in the noise in stock returns. Stocks experiencing a larger 

change in their relative tick size exhibit a larger decrease in noise.  

Second, we examine exogenous shocks to analyst coverage. We find that a decline in analyst 

coverage harms the quality of the corporate information environment and reduces the proportion of public 

firm-specific information in prices. We use brokerage mergers and closures as plausibly exogenous shocks 

to analyst coverage because the termination of coverage is not driven by the characteristics or behavior of 

the firm (see Hong and Kacperczyk, 2010; Kelly and Ljungqvist, 2012; Brogaard et al., 2018). Additionally, 

exogenous decreases in analyst coverage are also associated with an increase in the relative level of noise 

in prices. 

Third, we compare our variance components to two other measures of information in prices: the Hou 

and Moskowitz (2005) delay metric and the variance ratio (French and Roll, 1986; Chordia, Roll, and 

Subrahmanyam, 2011). The first measure focuses specifically on market-wide information, while the 

second measure focuses on information generally. We find a strong inverse relation between the delay 

metric and the share of variance that is attributable to market-wide information in our variance 

decomposition, whereas we find the variance ratio is positively related to all of the information components 

of variance and negatively related to the amount of noise in prices. The results of the decomposition 

reassuringly fit with what the existing, less flexible measures would predict. 

The final set of analysis we conduct reconciles our decomposition methodology with the large return 

decomposition literature on the relative importance of cash flow versus discount rate news (e.g., Campbell 

and Ammer, 1993; Vuolteenaho, 2002; Chen et al., 2013). After accounting for noise in the return 

generating process, we find a considerably smaller role for discount rate news and a much larger role for 

cash flow news. Without accounting for noise we find the ratio of cash flow news to discount rate news for 

individual stocks is around five, similar to Vuolteenaho (2002). After accounting for noise the ratio 
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increases to around 25 because at the individual stock level the discount rate news accounts for only a small 

(3%) fraction of the stock return variance.  

The difference in the importance of discount rate news compared to previous studies stems largely 

from the fact that noise induces return predictability. For example, returns have negative first-order serial 

correlation at many frequencies due to pricing errors and price pressure (e.g., Jegadeesh, 1990; Roll, 1984). 

Without accounting for noise, the noise-induced variation in predicted returns is attributed to variation in 

the discount rate thereby overstating the role of discount rate news. We show the ratio of cash flow news 

to discount rate news is higher in firm-specific information than in market-wide information. Therefore, 

although cash flow news is generally responsible for a larger share of stock return variation than discount 

rate news, cash flow news tends to be more idiosyncratic and discount rate news more systematic. This 

result helps reconcile existing studies in which cash flow news is found to be more important in stock-level 

analyses (e.g., Vuolteenaho, 2002), while discount rate news plays a larger role in portfolio-level analyses 

in which much of the idiosyncratic variation is removed (e.g., Campbell, 1991).  

Being able to accurately measure the amount and type of information in asset prices is vital to 

understanding the impacts of recent trends and innovations in finance. This paper makes a methodological 

contribution to the literature by developing a richer and more general variance decomposition that allows 

the separation of variance into multiple information and noise components.  

 

1. Related literature 

This paper relates to three main bodies of literature. The first is stock return variance decompositions. 

For example, Campbell and Shiller (1988a, 1988b) and Campbell (1991) decompose the variance of 

unexpected stock returns into two components: cash flow news and discount rate news. Chen, Da, and Zhao 

(2013) also decompose stock return variance into these components but with a method that directly 

incorporates cash flow forecasts. A different partition is used in Campbell et al. (2001), who decompose 

stock return variations into three components: a market-wide return, an industry-specific residual, and a 

firm-specific residual. A simple but widely used method for stock return decomposition is offered by Roll 
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(1988), who simply distinguishes market-wide variations and firm-specific variations. Our paper differs 

from these existing methods by using random walk variance decompositions, drawn from the market 

microstructure literature, to separate information from noise, and partition information into a more granular 

set of components. This separation of noise and information provides a measure related to market efficiency 

and decomposes the contributions of different information sources. 

Second, our study is related to a growing body of literature on the significant impact of noise on asset 

prices and returns. For instance, Blume and Stambaugh (1983) show that zero-mean noise in prices leads 

to a positive bias in mean returns. Asparouhova et al. (2010) find that noisy prices lead to biases in intercept 

and slope coefficients obtained in any OLS regression using return as the dependent variable. In addition, 

Asparouhova et al. (2013) find that correcting for the effects of noise in prices has significant effects on 

return premium estimates from monthly return data. Motivated by this strand of literature, we incorporate 

noise into our model as an important factor that might have impacts on stock price movements. In turn, by 

providing a convenient method to estimate noise in prices, our approach provides a tool that enables future 

research to more systematically examine the drivers and effects of noise. 

Third, our paper contributes to the extensive literature measuring market efficiency. For instance Bai, 

Philippon, and Savov (2016) use quarterly cross-sectional regressions of the extent to which market prices 

predict earnings as a measure of market-wide efficiency. In contrast, our method provides a more granular 

measure at the individual stock level, rather than at the market level, and does not require earnings 

information that may be subject to reporting bias.  

There are several traditional efficiency measures that are largely based on the concept of weak-form 

market efficiency, including autocorrelations, variance ratios, reversal strategies, delay measures, post-

earnings drift, profitability of momentum strategies, and intraday return predictability based on past order 

flow or past returns. Rosch, Subrahmanyam, and van Dijk (2017) examine the dynamics of market 

efficiency in the United States using the first principal component of four existing intra-day efficiency 

measures, while Griffin, Kelly, and Nardari (2010) analyze several of these traditional measures across 

international markets. Interestingly, Griffin et al. (2010) find that momentum trading strategies are more 
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profitable in developed markets, prices deviate more from a random walk in developed markets, and prices 

in emerging markets incorporate past market returns more quickly than prices in developed markets. Thus, 

the existing measures produce results that are inconsistent with the conventional wisdom that emerging 

markets are less efficient than developed markets. Griffin et al. (2010) argue that their results highlight 

crucial limitations of traditional weak-form efficiency measures and point to the importance of measuring 

informational aspects of efficiency.  

Our approach follows this call by focusing on decomposing the information in prices rather than 

contributing to the set of weak-form efficiency measures. Besides being based on the broader asset pricing 

methodology, our measure also differs from existing approaches, including Bai, Philippon, and Savov 

(2016), in that it not only measures efficiency in terms of information versus noise, but also decomposes 

the specific sources of information that is reflected in prices. The decomposition of information provides a 

more complete picture of the nature of market efficiency and how it evolves through time and in the cross-

section. 

 

2. Empirical model for variance decomposition 

This section lays out the empirical model that we use to separate noise and various sources of 

information. It begins with a theoretical motivation for the components of variance that we then empirical 

separate in the data. 

 

2.1. Model motivation 

To understand the different sources of variation in stock prices, we derive a modified version of the 

Jin and Myers (2006) model. In their original model, the intrinsic value of the firm is the present value of 

future operating cash flows. Cash flows are affected by market-wide and firm-specific shocks. Market 

participants have perfect information about these shocks, other than the private firm-specific shocks, which 

are not disclosed to the market. In this setup, Jin and Myers (2006) show that the 𝑅𝑅2 in a regression of a 

firm’s returns on those of the market is decreasing in the transparency of the firm because when more of 
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the private firm-specific shocks are disclosed to the market, the stock-specific information in returns 

increases, thereby reducing the 𝑅𝑅2. 

We extend this setup by adding noise to stock returns. We inject noise into the model as one of the 

shocks to cash flow information. This has several interpretations. First, it could be viewed as taking the 

perfect information that is provided to the market in the original model and making it imperfect such that 

estimation error of market participants induces noise in their perceptions of fundamental information. It 

could also be interpreted as the addition of noise traders to the model in the spirit of Black’s (1986) notion 

that “noise trading is trading on noise as if it were information.” Finally, the ultimate result of injecting 

noise is that returns vary around the efficient returns, which in real markets can occur due to frictions such 

as a discrete pricing grid, non-synchronous trading, or imperfect liquidity. A second departure from Jin and 

Myers (2006) is to split firm-specific information into a part that is revealed through trading on private 

information, and a part revealed through public information such as company announcements and news. 

What these extensions to the Jin and Myers (2006) model show is that stock return variance can be 

decomposed into four distinct sources of variation, which can be measured by four variance shares: 

 

 
𝜂𝜂𝑗𝑗 =

𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑗𝑗,𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀1,𝑡𝑡 + 𝜀𝜀2,𝑡𝑡 + 𝜀𝜀3,𝑡𝑡 + 𝜀𝜀4,𝑡𝑡)

, (1) 

   

with 𝑗𝑗 = {1, 2, 3, 4}. The first of these variance shares, 𝜂𝜂1, is the contribution of market-wide information 

to an individual stock’s variance. The second (𝜂𝜂2) is the contribution of firm-specific information that is 

revealed through trading (private firm-specific information), while the third (𝜂𝜂3) is the contribution of 

public firm-specific information. The last component (𝜂𝜂4) is the effect of noise on stock return variance. 

Our empirical model seeks to estimate these four variance shares. The extended version of this model and 

the proofs are in Appendix A. 

 

2.2. Baseline variance decomposition model 
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To empirically estimate the variance shares from Equation (1), we propose a variance decomposition 

model that separates noise and various sources of information. Our approach to separating noise from 

information builds on Hasbrouck (1993), who shows how temporary-permanent decompositions can be 

used on stock returns to separate temporary pricing errors from innovations in the fundamental value.3 

Permanent innovations in stock prices are those that affect the long-run expected value of the security, 

whereas temporary innovations affect prices in the short-run, but have no effect on the long-run expected 

value of the security. Permanent innovations in prices therefore reflect innovations in the fundamental value 

driven by new information being impounded into prices, whereas temporary innovations are pricing errors 

(deviations from fundamentals) generically referred to as “noise.” Noise is caused by many factors 

including the bid-ask spread, discrete price grids, illiquidity, temporary price pressures created by 

uninformed buying or selling, and non-synchronous trading.  

Our variance decomposition departs from Hasbrouck (1993) in two important ways. First, we adapt 

the approach so that it can be applied at lower frequencies such as daily returns (Hasbrouck (1993) models 

intraday trade-to-trade returns). We undertake an array of validation tests to verify that the variance 

decomposition produces reasonable estimates. Second, we push the variance decomposition further to 

separate the information into market-wide information, firm-specific information revealed through trading 

on private information, and firm-specific information revealed through public information. This gives rise 

to four components of variance that map to the theoretical model. These components are illustrated in Figure 

2. 

 

Insert Figure 2 About Here 

  

Consider 𝑝𝑝𝑡𝑡, the logarithm of the observed price at time 𝑡𝑡, as the sum of two components: 

 

                                                           
3 Similar temporary-permanent decompositions are also used in empirical macroeconomics. 
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 𝑝𝑝𝑡𝑡 = 𝑚𝑚𝑡𝑡 + 𝑠𝑠𝑡𝑡 , (2) 

   

where 𝑚𝑚𝑡𝑡  is the efficient price and 𝑠𝑠𝑡𝑡 is the pricing error. The pricing errors can have a temporary (short-

run) affect on the price, but they do not affect price in the long run (no permanent effect). 𝑚𝑚𝑡𝑡 follows a 

random walk with drift 𝜇𝜇, and innovations 𝑤𝑤𝑡𝑡:  

 

 𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑡𝑡−1 + 𝜇𝜇 + 𝑤𝑤𝑡𝑡 . (3) 

   

The innovations reflect new information about the stock’s fundamentals and are thus unpredictable, 

E𝑡𝑡−1[𝑤𝑤𝑡𝑡] = 0. The drift is the discount rate on the stock over the next period (day).4 The stock return is 

therefore: 

 𝑟𝑟𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1 = 𝜇𝜇 + 𝑤𝑤𝑡𝑡 + ∆𝑠𝑠𝑡𝑡 . (4) 

   

Suppose that there are three sources of information impounded into stock prices: market-wide 

information, private firm-specific information incorporated through trading, and public firm-specific 

information such as firm-specific news disseminated in company announcements and by the media. The 

random-walk innovations, 𝑤𝑤𝑡𝑡, in Equation (3) can then be decomposed into three parts:  

 

𝑤𝑤𝑡𝑡 = 𝛽𝛽𝜀𝜀𝑟𝑟𝑚𝑚 ,𝑡𝑡 + 𝛿𝛿𝜀𝜀𝑥𝑥,𝑡𝑡 + 𝑢𝑢𝑡𝑡 ,  

and thus 

(5) 

𝑟𝑟𝑡𝑡 = 𝜇𝜇 + 𝛽𝛽𝜀𝜀𝑟𝑟𝑚𝑚,𝑡𝑡 + 𝛿𝛿𝜀𝜀𝑥𝑥,𝑡𝑡 + 𝑢𝑢𝑡𝑡 + ∆𝑠𝑠𝑡𝑡 , (6) 

  

where 𝜀𝜀𝑟𝑟𝑚𝑚,𝑡𝑡 is the unexpected innovation in the market return, 𝛽𝛽𝜀𝜀𝑟𝑟𝑚𝑚,𝑡𝑡 reflects the market-wide information 

incorporated into stock prices, 𝜀𝜀𝑥𝑥,𝑡𝑡 is an unexpected innovation in signed dollar volume, 𝛿𝛿𝜀𝜀𝑥𝑥,𝑡𝑡 is the firm-

                                                           
4 Later, when separating cash flow and discount rate news, we allow the discount rate to be time-varying. 
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specific information revealed through trading on private information, and 𝑢𝑢𝑡𝑡   is the remaining part of firm-

specific information that is not captured by trading on private information. The separation of firm-specific 

information into private information associated with trading and public information not associated with 

trading follows Hasbrouck (1991a, 1991b). The pricing error, ∆𝑠𝑠𝑡𝑡, can be correlated with the innovations 

in the efficient price, 𝑤𝑤𝑡𝑡. 

Equation (6) can be modeled as a vector auto-regression (VAR) to account for serial correlations in 

returns and other explanatory variables. We use a structural VAR with five lags to allow a full week of 

lagged effects:5 

 

 𝑟𝑟𝑚𝑚,𝑡𝑡 = 𝑎𝑎0 + ∑ 𝑎𝑎1,𝑙𝑙𝑟𝑟𝑚𝑚,𝑡𝑡−𝑙𝑙 + ∑ 𝑎𝑎2,𝑙𝑙𝑥𝑥𝑡𝑡−𝑙𝑙5
𝑙𝑙=1 + ∑ 𝑎𝑎3,𝑙𝑙𝑟𝑟𝑡𝑡−𝑙𝑙5

𝑙𝑙=1
5
𝑙𝑙=1 + 𝜀𝜀𝑟𝑟𝑚𝑚,𝑡𝑡      

𝑥𝑥𝑡𝑡 = 𝑏𝑏0 +∑ 𝑏𝑏1,𝑙𝑙𝑟𝑟𝑚𝑚,𝑡𝑡−𝑙𝑙 + ∑ 𝑏𝑏2,𝑙𝑙𝑥𝑥𝑡𝑡−𝑙𝑙5
𝑙𝑙=1 + ∑ 𝑏𝑏3,𝑙𝑙𝑟𝑟𝑡𝑡−𝑙𝑙5

𝑙𝑙=1
5
𝑙𝑙=0 + 𝜀𝜀𝑥𝑥,𝑡𝑡     

𝑟𝑟𝑡𝑡 = 𝑐𝑐0 +∑ 𝑐𝑐1,𝑙𝑙𝑟𝑟𝑚𝑚,𝑡𝑡−𝑙𝑙 + ∑ 𝑐𝑐2,𝑙𝑙𝑥𝑥𝑡𝑡−𝑙𝑙5
𝑙𝑙=0 +∑ 𝑐𝑐3,𝑙𝑙𝑟𝑟𝑡𝑡−𝑙𝑙5

𝑙𝑙=1
5
𝑙𝑙=0 + 𝜀𝜀𝑟𝑟,𝑡𝑡,     

 

(7) 

where 𝑟𝑟𝑚𝑚,𝑡𝑡 is the market return, 𝑥𝑥𝑡𝑡 is the signed dollar volume of trading in the given stock with positive 

values capturing net buying and negative values capturing net selling, and 𝑟𝑟𝑡𝑡 is the stock return.6 The lags 

of stock returns account for short-term momentum as well as reversals that can be driven by temporary 

price impacts from trading (e.g., Hendershott and Menkveld, 2014). The lags of signed dollar volume 

                                                           
5 There are two approaches to resolving the contemporaneous relations between the variables in the VAR. One is to 
use a structural VAR that explicitly defines the assumptions about contemporaneous causality using economic 
arguments. The second is to use a reduced form VAR and apply Cholesky factorization to the variance-covariance 
matrix of reduced form innovations, which itself implies a recursive causal chain from the first to the last variable in 
the system. We take the former approach. The structural VAR approach has at least two advantages: (i) while both 
approaches must make assumptions about excluded contemporaneous relations to facilitate identification, the 
structural model allows the assumptions to be guided by economic reasoning rather than arbitrary allocation, and (ii) 
the structural approach produces a unique variance decomposition whereas the reduced form approach produces a 
decomposition that is sensitive to the ordering of variables in the model. 
6 Our measure of the market returns is the daily value-weighted market return excluding American Depository 
Receipts. We use market returns rather than a broader collection of factors such as market/size/value because we seek 
to identify the contribution of market-wide information to stock return variance. The variance decomposition could 
easily be extended to quantify the role of a variety of factor information in prices. We construct a proxy for the daily 
signed dollar volume of each stock as a product of price, volume, and sign of the return, similar to Pastor and 
Stambaugh (2003). 
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account for persistence in order flow (e.g., Hasbrouck 1988). Finally, the lags of market returns account for 

first-order serial correlation in market returns due to non-synchronous trading (e.g., Scholes and Williams, 

1977) as well as delayed stock price reactions to market-wide information (e.g., Hou and Moskowitz, 2005).   

The structural VAR above embeds contemporaneous relations between the variables. First, market-

wide information can be reflected in stocks contemporaneously, but because each stock is a small part of 

the market index, individual stock returns and trades have a negligible contemporaneous impact on the 

market return. Second, trading activity in a stock can be contemporaneously caused by market returns and 

can contemporaneously cause changes in the stock price, but not vice versa. To the extent that returns can 

trigger trading activity contemporaneously (within the same day) or exogenous events such as company 

announcements can trigger both (trading and returns), the model will tend to overstate the extent to which 

trading activity drives returns. Therefore, in splitting firm-specific information into public and private 

components, our structural assumptions will tend to estimate the upper bound on private information and 

lower bound on public information. As a result of explicitly modelling the contemporaneous relations 

between variables, the structural VAR errors �𝜀𝜀𝑟𝑟𝑚𝑚,𝑡𝑡, 𝜀𝜀𝑥𝑥,𝑡𝑡, 𝜀𝜀𝑟𝑟,𝑡𝑡� are contemporaneously uncorrelated.  

We separately estimate the VAR for every stock-year using daily data. Keeping the estimation 

windows to one-year periods mitigates concerns about non-stationarity and allows the relations between 

variables to change through time, from one year to the next. Annual estimation also allows us to examine 

how the variance components change through time.  

Next we transform the VAR in Equation (7) to an infinite order structural vector moving average 

(VMA) model: 

 

 𝑟𝑟𝑚𝑚,𝑡𝑡 = 𝐴𝐴0 + ∑ 𝐴𝐴1,𝑙𝑙𝜀𝜀𝑟𝑟𝑚𝑚,𝑡𝑡−𝑙𝑙 + ∑ 𝐴𝐴2,𝑙𝑙𝜀𝜀𝑥𝑥,𝑡𝑡−𝑙𝑙
∞
𝑙𝑙=1 + ∑ 𝐴𝐴3,𝑙𝑙

∞
𝑙𝑙=1 𝜀𝜀𝑟𝑟,𝑡𝑡−𝑙𝑙

∞
𝑙𝑙=0       

𝑥𝑥𝑡𝑡 = 𝐵𝐵0 + ∑ 𝐵𝐵1,𝑙𝑙𝜀𝜀𝑟𝑟𝑚𝑚,𝑡𝑡−𝑙𝑙 + ∑ 𝐵𝐵2,𝑙𝑙𝜀𝜀𝑥𝑥,𝑡𝑡−𝑙𝑙
∞
𝑙𝑙=0 + ∑ 𝐵𝐵3,𝑙𝑙

∞
𝑙𝑙=1 𝜀𝜀𝑟𝑟,𝑡𝑡−𝑙𝑙

∞
𝑙𝑙=0      

𝑟𝑟𝑡𝑡 = 𝐶𝐶0 + ∑ 𝐶𝐶1,𝑙𝑙𝜀𝜀𝑟𝑟𝑚𝑚,𝑡𝑡−𝑙𝑙 + ∑ 𝐶𝐶2,𝑙𝑙𝜀𝜀𝑥𝑥,𝑡𝑡−𝑙𝑙
∞
𝑙𝑙=0 + ∑ 𝐶𝐶3,𝑙𝑙

∞
𝑙𝑙=0 𝜀𝜀𝑟𝑟,𝑡𝑡−𝑙𝑙

∞
𝑙𝑙=0 .   

 

(8) 



15 
 

The VMA form of the model is useful to glean the intuition for the temporary-permanent 

decomposition that separates noise from the innovations in the efficient price. The permanent effect on a 

stock’s returns from a shock to the arrival of market-wide information, 𝑟𝑟𝑚𝑚,𝑡𝑡 (unanticipated market returns), 

is given by 𝜃𝜃𝑟𝑟𝑚𝑚 = ∑ 𝐶𝐶1,𝑙𝑙
∞
𝑙𝑙=0 . This is also the cumulative impulse response tracing time forward to the point 

where the response to the shock stabilizes. Similarly, the permanent effect on a stock’s returns from trading 

activity is 𝜃𝜃𝑥𝑥 = ∑ 𝐶𝐶2,𝑙𝑙
∞
𝑙𝑙=0 , and the permanent effect from a shock to the stock’s returns that is neither due 

to market-wide information nor trading is 𝜃𝜃𝑟𝑟 = ∑ 𝐶𝐶3,𝑙𝑙
∞
𝑙𝑙=0 . We estimate 𝜃𝜃𝑟𝑟𝑚𝑚, 𝜃𝜃𝑥𝑥, and 𝜃𝜃𝑟𝑟  from the impulse 

response functions of the structural model. 

The information-driven innovation in the efficient price is given by 𝑤𝑤𝑡𝑡 = 𝜃𝜃𝑟𝑟𝑚𝑚𝜀𝜀𝑟𝑟𝑚𝑚,𝑡𝑡 + 𝜃𝜃𝑥𝑥𝜀𝜀𝑥𝑥,𝑡𝑡 + 𝜃𝜃𝑟𝑟𝜀𝜀𝑟𝑟,𝑡𝑡. 

The efficient price drift is given by 𝜇𝜇 = 𝐶𝐶0. The innovation in the pricing error is given by ∆𝑠𝑠𝑡𝑡 = 𝑟𝑟𝑡𝑡 − 𝜇𝜇 −

𝑤𝑤𝑡𝑡 = 𝑟𝑟𝑡𝑡 − 𝐶𝐶0 − 𝜃𝜃𝑟𝑟𝑚𝑚𝜀𝜀𝑟𝑟𝑚𝑚,𝑡𝑡 − 𝜃𝜃𝑥𝑥𝜀𝜀𝑥𝑥,𝑡𝑡 − 𝜃𝜃𝑟𝑟𝜀𝜀𝑟𝑟,𝑡𝑡. It follows that the variance of information-driven innovations 

in the efficient price is 𝜎𝜎𝑤𝑤2 = 𝜃𝜃𝑟𝑟𝑚𝑚
2 𝜎𝜎𝜀𝜀𝑟𝑟𝑚𝑚

2 + 𝜃𝜃𝑥𝑥2𝜎𝜎𝜀𝜀𝑥𝑥
2 + 𝜃𝜃𝑟𝑟2𝜎𝜎𝜀𝜀𝑟𝑟

2 . Recall, the structural model errors are 

contemporaneously uncorrelated by construction and therefore the covariance terms are all zero. The 

contribution to the efficient price variation from each of the information components is 𝜃𝜃𝑟𝑟𝑚𝑚
2 𝜎𝜎𝜀𝜀𝑟𝑟𝑚𝑚

2  (market-

wide information), 𝜃𝜃𝑥𝑥2𝜎𝜎𝜀𝜀𝑥𝑥
2  (private firm-specific information), and 𝜃𝜃𝑟𝑟2𝜎𝜎𝜀𝜀𝑟𝑟

2  (public firm-specific information). 

The variance of noise, 𝜎𝜎𝑠𝑠2, is computed from the time-series of ∆𝑠𝑠𝑡𝑡.  

To examine the contribution of each component in the total stock return variance, we construct two 

groups of new measures, the first being contributions to variance: 

 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑜𝑜 = 𝜃𝜃𝑟𝑟𝑚𝑚
2 𝜎𝜎𝜀𝜀𝑟𝑟𝑚𝑚

2  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝜃𝜃𝑥𝑥2𝜎𝜎𝜀𝜀𝑥𝑥
2  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝜃𝜃𝑟𝑟2𝜎𝜎𝜀𝜀𝑟𝑟
2  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜎𝜎𝑠𝑠2, 

 

(9) 
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and the second being shares of variance: 

 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜃𝜃𝑟𝑟𝑚𝑚
2 𝜎𝜎𝜀𝜀𝑟𝑟𝑚𝑚

2 /(𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜃𝜃𝑥𝑥2𝜎𝜎𝜀𝜀𝑥𝑥
2 /(𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜃𝜃𝑟𝑟2𝜎𝜎𝜀𝜀𝑟𝑟
2 /(𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜎𝜎𝑠𝑠2/(𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2). 

(10) 

 

Accordingly, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 are the variance contributions of 

market-wide information, trading on private firm-specific information, firm-specific information other than 

that revealed through trading, and noise, respectively. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑟𝑟𝑟𝑟, and 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 are corresponding shares of variance from those various sources of stock price 

movements.7 These three shares sum to the contribution of the efficient price innovations (recall the 

covariances between these components are all zero by construction). Meanwhile, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎 reflects the 

relative importance of pricing errors due to illiquidity, price pressures, or other microstructure frictions.  

As each stock may have different dynamics we perform the variance decomposition on each stock 

separately. In addition, because we examine a long time-series in which dynamics and the drivers of return 

variance might change through time, we conduct the analysis separately year by year. Therefore, we 

estimate the variance decomposition detailed above separately for each stock-year. 

 

3. Variance components through time and in the cross-section 

This section applies the variance decomposition model to the data. First, we describe the data (Section 

3.1) and report the coefficients of the reduced form VAR (Section 3.2), which is one of the first steps in 

                                                           
7 Rather than using the total variance of returns in the denominator of the variance shares, we instead take the sum of 
the efficient price innovations variance and the noise variance, which excludes the covariance between the efficient 
price component and ∆𝑠𝑠. In Appendix C we show that ignoring this covariance term has a negligible effect on the 
overall estimates of variance shares. 
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performing the variance decomposition. Next, we report the estimated variance components in the full 

sample and compare the noise in daily returns to that of intraday returns (Section 3.3). We then characterize 

how the variance components change through time (Section 3.4) and how they vary in the cross-section of 

stocks (Section 3.5).  

 

3.1. Data 

Our sample consists of all common stocks listed on the NYSE, AMEX, and NASDAQ. We use daily 

data on returns, prices, market capitalizations, volumes, and sectors for the period from 1960 to 2015 from 

the Center for Research in Security Prices (CRSP). Appendix B contains a summary of variable definitions. 

 

3.2. VAR coefficients 

Before proceeding to the variance decomposition, Table 1 reports reduced-form VAR coefficient 

estimates averaged across the individual VAR models.8 Below each average, in parentheses, the Table 

reports the percentage of negative statistically significant (at 5%) coefficients (first number in the 

parentheses) and the percentage of positive statistically significant (at 5%) coefficients (second number in 

the parentheses). The coefficients in the market return equation (Panel A) show a tendency for positive 

first-order serial correlation in market returns, consistent with the effects of non-synchronous trading 

(Scholes and Williams, 1977) and slow diffusion of market-wide information. In contrast, lags of other 

variables (trading in individual securities and individual stock returns) do not explain current market 

returns.  

The coefficients in the signed dollar volume equation (Panel B) show a tendency for buying to follow 

positive market returns. They also show positive serial correlation in daily signed dollar volume, consistent 

with persistence in order flow (e.g., Hasbrouck (1988) and many subsequent studies).  

                                                           
8 The variance decomposition is based on the structural VAR in Equation (7), but for practical reasons we follow the 
common practice of first estimating the reduced-form VAR and then using the coefficients and reduced form error 
covariances to compute the structural VAR impulse response functions and structural VMA. These structural VAR 
impulse response functions and structural VMA are then used for the variance decomposition.  
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The coefficients in the individual stock return equation (Panel C) show that stock returns tend to be 

positively related to lagged market returns consistent with the known slow diffusion of market-wide 

information (e.g., Hou and Moskowitz, 2005). They also show a tendency in some stock-years for trading 

(innovations in signed dollar volume) to impact returns not only contemporaneously but also with a lag, 

suggesting that at times the information in trading takes more than one day to be fully reflected in prices. 

They also indicate the presence of negative serial correlation in stock returns at daily frequencies out to 

approximately four days, consistent with reversals of pricing errors due to price pressure (e.g., Hendershott 

and Menkveld, 2014). The VAR coefficient estimates support the use of five lags in the VAR because by 

the fifth lag very few coefficients are statistically different from zero (besides the 5% that would be expected 

by chance at the 95% confidence level). 

In addition to the average coefficients, which reveal the lead-lag relations between variables, Table 

1 also reports the average correlations of the reduced-form VAR residuals for pairs of variables. These 

correlations reveal the contemporaneous relations between innovations in the variables. Innovations in 

signed dollar volume are contemporaneously correlated with returns of individual stocks and with market 

returns. These correlations are consistent with buying pressure pushing prices up as well as positive returns 

inducing buying (and vice versa for negative returns). There is also a positive contemporaneous correlation 

between individual stock returns and market returns consistent with individual stocks contributing to the 

market return but also market returns reflecting market-wide information, which is impounded in individual 

stock prices.   

 

Insert Table 1 About Here 

 

3.3. Full sample estimates of variance components 

Table 2 Panel A reports the estimated variance shares from the baseline model above for the full 

sample (all US stocks from 1960 to 2015). Recall the variance decomposition is performed separately for 

every stock-year. From the stock-year estimates we calculate variance-weighted averages of each 
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component.9 The results show that market-wide information is the smallest component and accounts for 

around 8% of stock return variance, while firm-specific information accounts for 61% (summing 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎). Most of the firm-specific information is impounded in prices 

through public information (37% of variance), while firm-specific private information that is impounded 

through trading accounts for around 24% of variance. Finally, noise accounts for a fairly substantial 31% 

of overall daily stock return variance.  

 

Insert Table 2 About Here 

 

Before exploring the time-series and cross-sectional patterns in these variance shares, we consider 

how these estimates, in particular the noise in returns, compare to other estimates. The first comparison is 

with intraday returns (e.g., trade-to-trade), which is where similar temporary-permanent decompositions 

were first used to separate noise from information. Extrapolating from Hasbrouck (1991b, 1993), the 

implied noise share in intraday trade-to-trade returns is around 82% in US stocks in 1989.10 For direct 

comparison, in the year 1989, our model estimates that the noise share in daily returns is around 35%. 

Therefore, the estimates of the level of noise in daily returns are considerably smaller than estimates of the 

noise in intraday trade-to-trade returns. One of the reasons for why there is less noise in daily returns than 

in trade-to-trade returns is that some sources of noise, such as the bid-ask spread, do not scale up when the 

                                                           
9 We use variance-weighted averages in our baseline results for comparability with Morck et al. (2000, 2013). The 
motivation is that we are trying to understand the drivers of return variance and so want to emphasize stocks that 
experience greater variance. Alternatively, using equal-weighting across stocks produces similar results (trends and 
levels of the components). Using value-weighting across stocks produces lower estimates of the level of noise (16% 
lower in the pooled sample) and higher estimates of the information components of variance, consistent with the notion 
that smaller stocks have noisier prices. More direct evidence on the cross-sectional differences in the variance 
components is in Section 3.4. 
10 Hasbrouck (1991, 1993) does not report a noise share comparable to ours but we are able to calculate one from his 
results as follows. The estimated variance of pricing errors in Hasbrouck (1993) is 10.89×10-6, whereas the variance 
of random walk innovations in Hasbrouck (1991b) using the same sample is 4.7×10-6.  If we conservatively assume 
zero serial correlation in pricing errors (such an assumption will underestimate the noise variance in the following 
calculation), then the variance of changes in pricing errors is 2×10.89×10-6 (it is the variance of changes in pricing 
errors that adds noise to returns, not just variance of pricing errors). Now if we compute an implied noise share we get 
82.17%. 
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return horizon is increased, yet fundamental volatility (the variance attributable to information) does scale 

up with the return horizon (this intuition is exploited in the Corwin and Schultz (2012) effective spread 

estimator). For example, a one-minute return between two successive trades can contain a whole bid-ask 

spread (if one trade occurs at the bid and the other at the offer) and one minute of fundamental volatility, 

while a one-day return can also contain a whole bid-ask spread (if one close occurs at the bid and the other 

at the offer) but a much larger 24 hours of fundamental volatility. Note, however, that bid-ask bounce is 

only one of several sources of noise in prices. 

Another point of comparison is with the noise induced in daily returns by “price pressure,” that is, 

temporary deviations from efficient prices due to risk-averse liquidity providers being unwilling to provide 

unlimited liquidity. Recently, Hendershott and Menkveld (2014), using data on New York Stock Exchange 

(NYSE) intermediaries, estimate that at daily frequencies the distortions in midquote prices caused by price 

pressure (i.e., separate from the effect of bid-ask-bounce) are economically large (0.49% on average) and 

have a half-life of 0.92 days. The ratio of price pressure (in the midquote) to the variance of the efficient 

midquote price is 0.33 or 33% in their sample of 697 NYSE stocks during 1994-2005. This ratio of one 

source of noise to the estimated efficient price volatility is similar in magnitude to the estimated noise share 

of variance in our model.  

Similarly, but at monthly frequencies and using a different approach, Hendershott et al. (2011) 

estimate that one-quarter of monthly return variance in NYSE stocks is due to transitory price changes that 

are themselves partially explained by cumulative order imbalances and market-makers’ inventories (price 

pressure). Again, this is just one source of noise and in monthly returns, but it is also close in magnitude to 

our estimate. 

Finally, our finding that a considerable proportion of the variance in daily returns is noise is consistent 

with studies such as Jegadeesh (1990) and Lehmann (1990) who document significant predictability 

(reversals) in stock returns at one month and one week horizons, respectively. Avramov, Chordia, and 

Goyal (2006) and Nagel (2012) show that the reversals reflect deviations from efficient prices. They find 

that non-informational demand generates price pressure that is reversed once liquidity suppliers react to 
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potential profit opportunities and the uninformed demand for liquidity abates. While it is difficult to express 

the reversals documented by these studies as a percentage of variance to directly compare them to our 

estimates of noise, Jegadeesh (1990), Lehmann (1990), Avramov et al. (2006), and Nagel (2012) show that 

the price distortions involved in reversals are economically meaningful, consistent with the economically 

meaningful noise share estimated by our model. Similarly, Asparouhova et al. (2013) show that noise at 

daily frequencies causes an economically meaningful bias in returns, equal to 50% or more of the corrected 

estimate. 

 

3.4. Variance components through time 

Figure 3 shows how the stock return variance components change through time from 1960 to 2015. 

There are several noteworthy long-term trends. First, the amount of noise in prices has declined from around 

40% of variance in the 1960s to around 20% of variance recently, although not monotonically. Noise rose 

through the 1990s, spiking in 1997, and has gradually declined since then. Table 2 Panel B confirms that 

stock returns after 1997 tend to have less noise and thus higher information content. The differences 

between the two sub-periods are statistically significant as well as economically meaningful. For example, 

the average noise share decreases from 35.47% before 1997 to only 25.69% after 1997. 

The high levels of noise in prices in the 1990s are at least partly driven by collusive behavior of 

dealers during that period, which involved effectively widening the tick size by avoiding odd-eighth quotes 

and thereby increasing bid-ask bounce (Christie and Schultz, 1994). The post-1997 decline in noise to less 

than half of its peak levels is partly due to reductions in tick sizes starting in June 1997 as well as general 

improvements in liquidity and increases in turnover during the last two decades (e.g., Chordia, Roll, and 

Subrahmanyam, 2011). We provide more detailed analyses of these effects in Section 4.1.  

 

Insert Figure 3 About Here 
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Second, while noise has declined through time, firm-specific information has become an increasingly 

important component of stock return variance. Together, the two firm-specific information components 

have increased from around 50% of variance in the early 1960s to above 70% of stock return variance in 

recent years. Table 2 Panel B confirms that this increase in firm-specific information is also statistically 

significant. The general trend is consistent with increasing informational efficiency through time. 

Interestingly, while public and private firm-specific information contribute approximately equally to stock 

return variance in the early 1960s, these components diverge through time with publically available firm-

specific information emerging as the dominant component accounting for around 40% of stock return 

variance in recent years. The shift to public firm-specific information is consistent with the objectives of a 

variety of regulations such as the Sarbanes Oxley Act (2002) and Regulation Fair Disclosure (2000) to 

increase both the quality and quantity of public disclosure by companies. 

As a short aside, our estimates of the proportion of firm-specific information that is impounded in 

prices through trading (private information) compared to public information are similar to Hasbrouck’s 

estimates of the role of trading in impounding new information. Using intraday data, Hasbrouck (1991b) 

estimates that in 1989 34.3% of the information in prices gets impounded via individual trades. Despite 

differences in model, sample, and frequency, using daily data we estimate the fraction in 1989 to be around 

39.1%.11 

Third, while market-wide information tends to spike during crises, at other times it is generally not 

a substantial driver of individual stock returns. Throughout the sample period, market-wide information 

accounts for around 5-15% of stock return variance. 

The broad trends illustrated in Figure 3 shed some light on recent issues concerning the information 

content of prices. For example, the concern that the growth in indexing and passive investing in recent 

years, and corresponding decline in active funds management, might harm the amount of firm-specific 

information in prices is not supported by the general trends in Figure 3. Similarly, suggestions that the 

                                                           
11 A further difference is that our estimate of 39.1% corresponds to the fraction of firm-specific information in prices 
that is impounded through trading, while the 34.3% corresponds to the fraction of all information impounded in prices. 
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increase in market model 𝑅𝑅2 and stock correlations since the late 1990s reflects a deterioration in 

informational efficiency is also not supported by the data, which show declining noise levels and increasing 

dominance of informational components. We explore whether or not composition changes in the market 

contribute to some of the time-series trends in the next subsection after analyzing the cross-sectional 

variation.  

 

3.5. Variance components in the cross-section of stocks 

Table 2 Panels C and D report means of each of the variance components in size quartiles and 

industry groups with these groupings formed each year. The returns of large stocks tend to reflect more 

market-wide information and more private firm-specific information. The differences are particularly large 

for market-wide information, which accounts for 21.51% of variance in big stocks, but only 4.53% in small 

stocks. Large stocks also tend to have less noisy prices. Noise declines monotonically with size and the 

differences across stocks are large. For example, in small stocks, noise accounts for 36.09% of stock return 

variance, which is about twice that of big stocks at 16.45% of variance. The relatively low level of noise in 

large stocks is likely driven by a high level of liquidity, making their prices less susceptible to temporary 

deviations and price pressures. Panel D shows that there is considerably less variation across industry 

groups in what drives stock price movements than across size groups. 

To test the cross-sectional determinants of the variance components in a multivariate setting, we 

estimate the following panel regressions of stock-year observations:  

 

 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡 =  𝛼𝛼 + 𝛾𝛾1𝐷𝐷𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛾𝛾2𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑡𝑡 +  𝛾𝛾3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑡𝑡 +  𝛾𝛾3𝐷𝐷𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛾𝛾4𝐷𝐷𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +

 𝛾𝛾5𝐷𝐷𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ +  𝛾𝛾6𝐷𝐷𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜀𝜀𝑖𝑖,𝑡𝑡  , 

 

(11) 

where 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡 is one of the variance component shares (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖,𝑡𝑡 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖,𝑡𝑡,

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖,𝑡𝑡 , 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖,𝑡𝑡), 𝐷𝐷𝑡𝑡𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂 is an indicator variable that takes the value of one after 1997 
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and zero before, 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑡𝑡 is the log stock price, and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑡𝑡 is the stock’s log market capitalization. The 

indicator variables 𝐷𝐷𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐷𝐷𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝐷𝐷𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ, and 𝐷𝐷𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 indicate the firm’s industry group 

(the Other Industry group is the omitted category).  

 

Insert Table 3 About Here 

 

The regression results in Table 3 generally confirm the observations from the univariate analysis. 

Stock returns in the 1997-2015 part of the sample tend to contain significantly less noise and more public 

firm-specific information, even after controlling for other factors. Therefore, the time-series changes in 

noise and in firm-specific information are not driven simply by firms becoming larger through time. The 

returns of large stocks and high priced stocks are significantly more affected by market-wide information. 

Large stocks also tend to have less noisy prices and reflect relatively more firm-specific private information, 

controlling for other factors. Among the five industry groups, stocks in the Healthcare and Hi Tech sectors 

tend to have the highest levels of private firm-specific information and lowest levels of noise.  

Given that the composition of stock return variance differs in the cross-section, in particular by size 

and to a lesser extent by industry, we examine to what extent the time-series patterns in variance 

components are due to market composition changes. The mix of industries in the market has changed 

through time and listed stocks have tended to become larger through time. Therefore, in Figures 4 and 5 we 

repeat the exercise of plotting the time-series of variance components, but this time by size group and by 

industry group. We form the size groups with respect to thresholds ($100 million and $1 billion in 2010 

dollars) that are inflation adjusted through time, rather than size quartiles so as to keep the size groups 

relatively comparable through time even as the market composition changes. Time-series trends in the 

variance components within size or industry groups are less susceptible to compositional changes than the 

pooled time-series. 
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Figure 4 shows that all size groups have a similar trend with respect to market-wide information, 

including the peaks during crises. Large stocks consistently reflect more market-wide information through 

time than smaller stocks. All size groups show remarkably similar trends in private firm-specific 

information, except for a period of temporary divergence in the 1990s. The increase in public firm-specific 

information through time is driven mainly by smaller stocks consistent with improvements in their 

disclosure. Finally, noise is consistently higher for smaller stocks and smaller stocks are largely responsible 

for the decline in noise through time, in particular since the mid-1990s.  

 

Insert Figure 4 About Here 

  

Figure 5 shows that the variance components in different industry groups display remarkably similar 

time-series trends. Not only are the long-run trends in the types of information and noise similar across the 

industry groups, but so too are many of the year-to-year fluctuations. This result indicates that the time-

series trends are not driven by changing industry composition in the market. Furthermore, it indicates that 

much of the variation in the information and noise shares is systematic and not just an artifact of estimation 

error or random fluctuations. Recall that the variance decomposition is performed separately 

(independently) for each stock in each year. The commonality in the variance component trends across 

groups of stocks (in this case industry groups) points to systematic drivers of the type of information and 

degree of noise in prices.  

  

Insert Figure 5 About Here 

 

4. Further validation tests 

The preceding section provides some informal validation of the empirical variance decomposition 

model by showing that the variance components have reasonable time-series and cross-sectional properties, 

that they exhibit systematic variation, and that some of the estimated levels are consistent with estimates in 
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other studies that use different approaches (usually capturing only one of the components). This section 

presents further validation tests that examine how the variance components respond to exogenous shocks 

to tick sizes (Section 4.1) and exogenous shocks to analyst coverage (Section 4.2). We also relate the 

variance components to other measures of noise and information (Section 4.3). 

 

4.1. Exogenous shocks to tick sizes 

Chordia, Roll, and Subrahmanyam (2008) show that decreases in tick sizes increase informational 

efficiency, implying a decrease in noise when tick sizes are smaller. During the sample period, the tick size 

was reduced from eighths of a dollar to sixteenths of a dollar on June 24, 1997, and then from sixteenths to 

pennies on January 29, 2001. This setting provides a natural experiment in which to test how the variance 

components, in particular noise, respond to the exogenous decreases in tick size and accompanying increase 

in informational efficiency. 

If the estimated noise share of variance is indeed able to capture noise in prices we expect to see three 

patterns related to tick sizes and changes in tick sizes. First, stocks with larger relative tick sizes (tick size 

divided by price) should have noisier prices and thus a larger noise share. Given the tick size in dollars is 

the same for all stocks in the cross-section (at the time of the tick size changes) but price levels vary in the 

cross-section, we expect lower priced stocks to have higher levels of noise because they have larger relative 

tick sizes. Second, we expect that when the tick sizes are reduced, noise declines. Third, we expect that the 

effects of tick size reductions are heterogeneous in the cross-section with lower priced stocks having a 

larger decline in noise because for such stocks the change in the relative tick size is larger. For example, 

the tick size reduction from eighths of a dollar to sixteenths is 1.25% of the price of a $5 stock, but only 

0.125% of the price of a $50 stock.12   

To exploit this natural experiment, we take a subsample of one year on both sides of the tick size 

reduction from eighths of a dollar to sixteenths of a dollar (i.e., we take the years 1996 and 1998), and 

                                                           
12 Similarly, the tick-to-price, a measure of the pricing grid coarseness, decreases by a larger amount for lower priced 
stocks.  
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estimate difference-in-differences models that exploit the cross-sectional heterogeneity in the treatment.13 

The highest priced quartile of stocks had the smallest change in relative tick size and therefore serves as a 

control group against which to measure the impact of the tick size reduction in other price quartiles:  

 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝛾𝛾1𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑄𝑄1𝑖𝑖  + 𝛾𝛾2𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑄𝑄2𝑖𝑖

+  𝛾𝛾3𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑄𝑄3𝑖𝑖 +  𝜌𝜌1𝑄𝑄1𝑖𝑖 +  𝜌𝜌2𝑄𝑄2𝑖𝑖 +  𝜌𝜌3𝑄𝑄3𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 , 

(12) 

 

where 𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  takes the value of one after the tick size reduction (1998) and zero otherwise. 𝑄𝑄1𝑖𝑖, 

𝑄𝑄2𝑖𝑖, and 𝑄𝑄3𝑖𝑖 are indicator variables that indicate the price quartile to which the firm belongs. The highest 

price quartile, 𝑄𝑄4𝑖𝑖, is the omitted category. We also re-estimate the model in Equation (12) using the log 

price (𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑡𝑡) instead of the price quartile indicators as a robustness test: 

 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛾𝛾1𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑡𝑡  + 𝛾𝛾2𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖 . (13) 

 

Insert Table 4 About Here 

 

In Table 4, Models 1 and 2 show a monotonic relation between a stock’s price level and its level of 

noise. As expected, lower priced stocks have higher levels of noise consistent with the fact that they have 

larger relative tick sizes (tick size divided by price). The difference in the cross-section of stocks is 

economically meaningful: the highest priced quartile has a noise share of around 19%, while the next three 

price quartiles have noise shares that are 6%, 8%, and 14% higher, with these differences being statistically 

significant. Models 3 and 4 show that noise tends to decline when the tick size is reduced consistent with 

our expectations. Furthermore, the decline in noise is larger for lower priced stocks consistent with the fact 

                                                           
13 Chordia, Roll, and Subrahmanyam (2008) show that informational efficiency improved significantly around the 
change from eighths of a dollar to sixteenths and to a lesser extent from sixteenths to pennies. 
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that for such stocks the change in the relative tick size is larger. Therefore, the analysis of how noise relates 

to tick sizes or price discreteness and how it changes around exogenous changes in tick sizes support the 

notion that the noise share is a useful measure of the amount of noise in prices and returns.  

We also examine a second natural experiment relating to the tick size. Christie and Schultz (1994) 

find evidence of collusive behavior by NASDAQ dealers during a period from 1991 until the collusive 

behavior was exposed a few years later. They show that NASDAQ dealers colluded to maintain artificially 

wide spreads by avoiding odd-eighth quotes. This behavior increased the effective tick size and due to bid-

ask bounce is expected to increase the noise in prices. Importantly, a natural control group is non-NASDAQ 

stocks. 

To examine this natural experiment, we take a subsample of four years before and during the 

collusive behavior and estimate a difference-in-differences model that uses non-NASDAQ stocks as a 

control group: 

 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝐷𝐷𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +  𝛾𝛾𝐷𝐷𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖  +  𝛿𝛿𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 , (14) 

 

where 𝐷𝐷𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is an indicator variable that takes the value of one in the collusion period (1991-1994) 

and zero otherwise and the indicator variable 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 is an indicator variable that takes the value one for 

NASDAQ-listed stocks and zero otherwise. 

Model 5 in Table 4 shows that during the period of collusion by NASDAQ dealers the returns of 

NASDAQ-listed stocks are significantly noisier, consistent with discreteness in price grids contributing to 

pricing errors and noise in returns. The magnitude of the effect is economically meaningful.  The increase 

in noise for NASDAQ-listed stocks is estimated to be 8.32% of variance, which is large considering that 

the pooled sample mean noise share is around 30.78% of variance. The results therefore support the notion 

that collusion by NASDAQ dealers effectively widened the tick size and that the noise share from our 

variance decomposition model captures this increase in noise for the affected stocks. 
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4.2. Exogenous shocks to analyst coverage 

Exogenous shocks to analyst coverage provide another natural experiment that changes the 

information environment for individual stocks. Given that analysts produce information about individual 

companies and disseminate this information to a variety of market participants, a reduction in analyst 

coverage is likely to reduce the amount of public firm-specific information in prices. As information in 

prices declines, the relative level of noise is likely to increase. Analyst coverage is expected to have little 

effect on market-wide information. The effects of analyst coverage on private firm-specific information is 

ambiguous: analyst-generated information that is made available to only some market participants might 

be impounded in prices through the course of those participants trading on the information (an increase in 

private information), but it might also crowd-out private information acquisition (a decrease in private 

information). 

To test the impact of analyst coverage on the information and noise in prices, we use brokerage 

mergers/closures as a source of exogenous variations in analyst coverage. Broker mergers and closures are 

plausibly exogenous shocks because the termination of coverage is not driven by the characteristics or 

behavior of the firm (see Hong and Kacperczyk 2010; Kelly and Ljungqvist 2012; Brogaard et al., 2018). 

We obtain a list of broker mergers and closures that combines the lists from Hong and Kacperczyk (2010), 

spanning 1984 to 2005, and Kelly and Ljungqvist (2012), spanning 2000 to 2008. Combining these lists, 

merging with CRSP and IBES (Institutional Brokers’ Estimate System) data, and imposing the requirement 

that both the acquirer and target brokers must provide overlapping coverage for at least one firm before the 

broker merger (as per Kelly and Ljungqvist, 2012) we have 41 mergers/closures of brokers that occur during 

the period 1989-2009. Using the mergers/closures data, we calculate the number of exogenous analyst 

disappearances per stock-year. These mergers and closures result in exogenous coverage shocks to 4,546 

firm-year observations. 

Using the exogenous analyst coverage shocks, we estimate the following difference-in-differences 

model:  
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 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡 =  𝛾𝛾𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡, (15) 

 

where 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡 is one of the variance component shares (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖,𝑡𝑡 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖,𝑡𝑡,

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖,𝑡𝑡 ,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖,𝑡𝑡) for stock 𝑖𝑖 in year 𝑡𝑡, 𝛾𝛾𝑖𝑖 and 𝛿𝛿𝑡𝑡 are stock and time fixed effects, 

respectively, and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑡𝑡 is the number of analyst disappearances due to mergers and closures 

of brokerage houses during the past two years.14 We estimate the model above using the period from 1987 

to 2011 given that the brokerage mergers and closures occur between 1989 and 2009 and we need to observe 

a two-year trend before and after the analyst disappearances.   

The results in Table 5 show that exogenous decreases in analyst coverage are associated with a 

decline in public firm-specific information and an increase in the noise share of variance. These results are 

consistent with the notion that analysts produce firm-specific information that is made publically available 

and becomes reflected in prices. It also suggests the public firm-specific information component of variance 

from our variance decomposition model is able to detect this change in the information environment. The 

coefficient estimates indicate that the exogenous disappearance of each analyst is associated with a decline 

in public firm-specific information equal to around 1.59% of variance (for comparison, the pooled sample 

mean of  public firm-specific information is around 37.11% of variance).  

Shocks to analyst coverage have no significant effect on the amount of market-wide information in 

prices as expected. Neither do they have a significant impact on the amount of private firm-specific 

information in prices.  

 

Insert Table 5 About Here 

                                                           
14 In contrast to standard difference-in-differences models, here the “treatment” can have different magnitudes 
depending on how many analysts cease their coverage of a given stock. If the number of analyst disappearances is 
different in year 𝑡𝑡 − 1 and year 𝑡𝑡 − 2, we take the maximum of these two values. 
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4.3. Relation between variance components and other measures of information and noise 

In the next two validation tests, we examine the relation between the variance components and two 

other measures of information in prices: the Hou and Moskowitz (2005) delay metric and variance ratios 

as per French and Roll (1986) and Chordia, Roll, and Subrahmanyam (2011). 

The Hou and Moskowitz (2005) delay metric is a measure of how efficiently market-wide 

information is reflected in individual stock prices. It is constructed in each stock-year by estimating a 

regression of daily stock returns (𝑟𝑟𝑖𝑖,𝑡𝑡) on daily market returns (𝑟𝑟𝑚𝑚.𝑡𝑡) and ten lags of daily market returns: 

 

 𝑟𝑟𝑖𝑖,𝑡𝑡 =  𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑟𝑟𝑚𝑚.𝑡𝑡 + ∑ 𝛿𝛿𝑖𝑖,𝑘𝑘𝑟𝑟𝑚𝑚,𝑡𝑡−𝑘𝑘
10
𝑘𝑘 + 𝜀𝜀𝑖𝑖,𝑡𝑡. (16) 

 

Regression (16) is estimated once with all of the lags of market returns (unconstrained) to capture the 

unconstrained regression 𝑅𝑅2 (𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢2 ) and once without the lags of market returns (constraining all 

𝛿𝛿𝑖𝑖,𝑘𝑘 to zero) to capture the constrained regression 𝑅𝑅2 (𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 ).  The delay metric is constructed from 

the two 𝑅𝑅2 as follows to measure the incremental explanatory power of the lagged market returns: 

 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 =  1 − 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2

𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
2 . (17) 

 

If market-wide information is perfectly and instantly reflected in the stock’s prices, the two 𝑅𝑅2s are equal 

and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 = 0, but if stock prices are sluggish in reflecting market-wide information, then 

𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢2 > 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 > 0. We therefore expect that higher values of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 should 

be associated with less market-wide information in prices (lower 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎) and less efficient, noisier 

prices (higher 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎). 

We estimate the relation between each of the variance components (𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡) and the delay metric 

using the following panel regressions, including stock and year fixed effects (𝛾𝛾𝑖𝑖 and 𝛿𝛿𝑡𝑡): 
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 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡 =  𝛾𝛾𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝛽𝛽1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡. (18) 

 

Table 6 Panel A reports the result. There is a very strong inverse relation between the delay metric 

and the share of variance that is attributable to market-wide information by our variance decomposition. 

An increase in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 from zero (full efficiency) to 0.5 (half way to the maximum value of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡) is 

associated with a reduction of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 by 9.17% of variance (a large effect, considering the pooled 

sample mean of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 is 8.24%. The results therefore indicate that 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 reflects the 

efficiency with which market-wide information is reflected in prices.  

.  

Insert Table 6 About Here 

 

Next we examine the variance ratios measure (French and Roll, 1986; Chordia et al., 2011), defined 

as the variance of returns during trading hours (variance of open-to-close returns, 1 𝑛𝑛� ∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖,𝑑𝑑
2𝑛𝑛

1 ) 

divided by the variance of overnight returns (variance of close-to-open returns, 1 𝑛𝑛� ∑ 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑡𝑡,𝑖𝑖,𝑑𝑑
2𝑛𝑛

1 ). We 

measure the variance ratio for each stock 𝑖𝑖 in each year 𝑡𝑡 using daily, 𝑑𝑑, observations, excluding weekends: 

 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,𝑡𝑡 =  
1 𝑛𝑛� ∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖,𝑑𝑑

2𝑛𝑛
1

1 𝑛𝑛� ∑ 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑡𝑡,𝑖𝑖,𝑑𝑑
2𝑛𝑛

1
. (19) 

 

French and Roll (1986) and Chordia et al. (2011) show that the variance ratio is related to the amount 

of information reflected in prices, in particular through trading, and they use this ratio as a measure of 

informational efficiency. Under this interpretation, we expect the variance ratio to be positively related to 

most or all of the information components of variance and negatively related to the amount of noise in 

prices. 
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We estimate the relation between each of the variance components and the variance ratio metric using 

similar panel regressions as in Equation (18) including stock and year fixed effects. The results in Table 6 

Panel B show that this is the case. The variance ratio is positively related to all of the information 

components of variance and negatively related to the amount of noise in prices. This result supports the 

interpretation of the variance ratio as an efficiency measure as well as the ability of the variance 

decomposition to separate out information from noise.   

 

5. Extensions incorporating cash flow and discount rate news 

This section extends the variance decomposition by separating each of the information components 

of variance into cash flow and discount rate parts. One reason for doing so is that by accounting for noise, 

decompositions of cash flow / discount rate news can be performed at higher frequencies (traditionally, 

monthly returns are used to minimize concerns about noise), which allows examination of the time-series 

trends in those information components. 

First we review the standard approach for separating cash flow and discount rate news, developed by 

Campbell and Shiller (1988a, 1988b) and Campbell (1991) and subsequently used in many papers (Section 

5.1). We then extend the standard approach by accounting for noise, noting how noise impacts the estimated 

cash flow and discount rate news (Section 5.2). Finally, we use cash flow / discount rate decompositions to 

produce an extended version of our variance decomposition (Section 5.3). 

 

5.1. The standard approach to separating cash flow and discount rate news 

Campbell and Shiller (1988a, 1988b) and Campbell (1991) show, without having to make behavioral 

or preference assumptions, that an unexpected stock return, 𝜀𝜀𝑟𝑟𝑡𝑡+1, is equal to two parts: 

 

                             𝜀𝜀𝑟𝑟𝑡𝑡+1 = (E𝑡𝑡+1 − E𝑡𝑡)∑ 𝜌𝜌𝑗𝑗∆𝑑𝑑𝑡𝑡+1+𝑗𝑗∞
𝑗𝑗=0 − (E𝑡𝑡+1 − E𝑡𝑡)∑ 𝜌𝜌𝑗𝑗𝑟𝑟𝑡𝑡+1+𝑗𝑗∞

𝑗𝑗=1     

            = 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡+1 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡+1 ,           (20) 
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where 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡+1 = (E𝑡𝑡+1 − E𝑡𝑡)∑ 𝜌𝜌𝑗𝑗∆𝑑𝑑𝑡𝑡+1+𝑗𝑗∞
𝑗𝑗=0  is cash flow news and 𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡+1 = −(E𝑡𝑡+1 −

E𝑡𝑡)∑ 𝜌𝜌𝑗𝑗𝑟𝑟𝑡𝑡+1+𝑗𝑗∞
𝑗𝑗=1  is discount rate news, 𝑑𝑑𝑡𝑡 is the log dividend at time 𝑡𝑡, 𝑟𝑟𝑡𝑡 is the log holding period return 

at time 𝑡𝑡, and 𝜌𝜌 ≈ 0.96 is a constant.  

The terms in Equation (20) can be estimated from a VAR in which one of the variables is the log 

stock return.15 The typical approach is to use the VAR to estimate discount rate news because that does not 

require information on dividends, and then obtain the cash flow news as the difference between the 

unexpected stock return and the discount rate news, 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡+1 = 𝜀𝜀𝑟𝑟𝑡𝑡+1 − 𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡+1. The importance 

of cash flow news and discount rate news can be quantified by the variance or standard deviation of the two 

time-series: 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 and 𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡.  

 

5.2. Accounting for noise when separating cash flow and discount rate news 

A limitation of the standard approach (summarized above) for separating cash flow and discount rate 

news is that it does not account for the noise in stock returns. Without accounting for noise, the cash flow / 

discount rate decomposition can only be reliably performed using low-frequency data such as monthly 

returns so that the ratio of noise to information remains within acceptable error tolerances. Therefore, the 

standard approach is limited in its ability to examine time-series variation in the cash flow / discount rate 

components. For example, with monthly returns and a minimum of 20 time-series observations in the VAR, 

one can obtain a single value of cash flow and discount rate variance every ten years. Accounting for noise, 

however, allows us to apply the decomposition to daily data and thereby estimate cash flow and discount 

rate news variances every year. This higher resolution reveals time-series trends in cash flow and discount 

rate news and also enables us to further partition the information components in our baseline model. 

                                                           
15 For example, once the VAR is estimated, one can obtain the time 𝑡𝑡 expectations of returns at 𝑡𝑡 + 2, 𝑡𝑡 + 3 and so on 
(multi-step forecasts from the VAR) from which one can compute ∑ 𝜌𝜌𝑗𝑗E𝑡𝑡[𝑟𝑟𝑡𝑡+1+𝑗𝑗]∞

𝑗𝑗=1 . Repeating this process at time 
𝑡𝑡 + 1 one obtains ∑ 𝜌𝜌𝑗𝑗E𝑡𝑡+1[𝑟𝑟𝑡𝑡+1+𝑗𝑗]∞

𝑗𝑗=1 . The difference gives the discount rate news at time 𝑡𝑡 + 1, i.e.,   𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡+1 =
−(E𝑡𝑡+1 − E𝑡𝑡)∑ 𝜌𝜌𝑗𝑗𝑟𝑟𝑡𝑡+1+𝑗𝑗∞

𝑗𝑗=1 = ∑ 𝜌𝜌𝑗𝑗E𝑡𝑡�𝑟𝑟𝑡𝑡+1+𝑗𝑗�∞
𝑗𝑗=1 − ∑ 𝜌𝜌𝑗𝑗E𝑡𝑡+1[𝑟𝑟𝑡𝑡+1+𝑗𝑗]∞

𝑗𝑗=1 .  
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To understand how noise manifests in a standard cash flow / discount rate decomposition and 

therefore how to approach the task of isolating noise in the decomposition, consider Figure 6 Panel A. A 

stock return is composed of a discount rate that captures the required or expected rate of return, noise, and 

information. Noise has an expected and an unexpected component. The expected component arises from 

reversals of pricing errors. For example, a positive pricing error is expected to reverse resulting in an 

expected negative return component.16 The unexpected component of noise reflects random changes to the 

pricing errors. Thus, the expected return is made up of the discount rate and the return from the expected 

change in the pricing error.  

 

Insert Figure 6 About Here 

 

The unexpected return is driven by information arrivals and shocks to pricing errors (unexpected 

noise). Therefore, in the standard cash flow / discount rate decomposition, noise contaminates the estimated 

discount rate news because the expected return reflects the discount rate and noise. Noise also contaminates 

the estimated cash flow news component because: (i) cash flow news is usually calculated as the difference 

between the unexpected stock return and the discount rate news, which is contaminated by noise; and (ii) 

                                                           
16 There are several reasons why pricing errors can be inferred from past returns and their reversals are somewhat 
predictable. At the most basic level, bid-ask bounce (trade prices oscillating between the bid and the ask or offer 
quotes) creates negative serial correlation in returns and therefore a predictable “noise” component of returns (e.g., 
Roll, 1984). For example, if a stock’s closing price is at the bid quote, its next close could be at the bid or the ask/offer 
and therefore, merely on the basis of bid-ask bounce, in expectation the next closing price will be higher, i.e., there is 
an expected positive noise return. Return predictability due to pricing errors goes well beyond the bid-ask bounce 
effect. Negative serial correlation is also found in midquote returns of individual stocks (suggesting quoted prices also 
suffer from temporary mean-reverting pricing errors) and at longer horizons such as weekly and monthly returns (e.g., 
Jegadeesh, 1990; Lehmann, 1990; Hendershott and Menkveld, 2014). The economically meaningful reversals in 
returns at daily through to monthly horizons (which has been validated in many studies) is linked to imperfect liquidity 
and the inability for the market to absorb order imbalances without temporarily deviating from efficient prices (e.g., 
Avramov et al., 2006; Hendershott et al., 2011; Nagel, 2012). The existence of predictable reversals in returns due to 
temporary price distortions from efficient prices is also supported by market microstructure theory. For example, 
classic inventory control models of liquidity supply show that when risk averse liquidity providers receive many buy 
orders, they “shade” their subsequent quoted prices upward (above the efficient price) to attract sellers and thereby 
revert their inventory towards zero, and vice versa when they receive many sell orders (e.g., Stoll, 1978, Ho and Stoll, 
1981, and many subsequent models). Similarly, return reversals due to distortions from efficient prices arise in models 
of adverse selection (e.g., Kyle, 1985; Glosten and Milgrom, 1985) if liquidity providers are risk averse or less than 
perfectly competitive (e.g., Subrahmanyam, 1991; Nagel, 2012). 
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part of the unexpected return, which goes into the cash flow news calculation, is noise. To resolve these 

issues, our modified cash flow / discount rate decomposition first removes noise from both the expected 

and unexpected returns, resulting in a method that is suitable for higher frequency data.  

First we modify our baseline model to allow for a time-varying discount rate. The efficient price 

from Equation (3) becomes: 

 

 𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑡𝑡−1 + 𝜇𝜇𝑡𝑡 + 𝑤𝑤𝑡𝑡 , (21) 

 

and the stock return from Equation (4) becomes: 

 

 𝑟𝑟𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1 = 𝜇𝜇𝑡𝑡 + 𝑤𝑤𝑡𝑡 + ∆𝑠𝑠𝑡𝑡 , (22) 

 

where the time-varying drift, 𝜇𝜇𝑡𝑡, is the discount rate on the stock over the time 𝑡𝑡 period, 𝑤𝑤𝑡𝑡 is an innovation 

that reflects new information about the stock’s fundamentals, and ∆𝑠𝑠𝑡𝑡 is the change in pricing error. Noise 

has an expected component (E𝑡𝑡−1[∆𝑠𝑠𝑡𝑡]) and an unexpected component (𝜀𝜀𝑠𝑠𝑡𝑡), ∆𝑠𝑠𝑡𝑡 = E𝑡𝑡−1[∆𝑠𝑠𝑡𝑡] + 𝜀𝜀𝑠𝑠𝑡𝑡. The 

expected component comes from the fact that pricing errors are temporary and therefore tend to reverse, as 

discussed above. Consequently, the expected return (E𝑡𝑡−1[𝑟𝑟𝑡𝑡]) is made up of the discount rate and the 

expected change in the pricing error, E𝑡𝑡−1[𝑟𝑟𝑡𝑡] = 𝜇𝜇𝑡𝑡 + E𝑡𝑡−1[∆𝑠𝑠𝑡𝑡]. Similarly, the unexpected return (𝜀𝜀𝑟𝑟𝑡𝑡 =

𝑟𝑟𝑡𝑡 − E𝑡𝑡−1[𝑟𝑟𝑡𝑡]) is made up of new information about the stock’s fundamentals and unexpected changes in 

the pricing error (noise), 𝜀𝜀𝑟𝑟𝑡𝑡 = 𝑤𝑤𝑡𝑡 + 𝜀𝜀𝑠𝑠𝑡𝑡 . 

The information-driven innovation in the efficient price is the same as in our baseline model and is 

estimated from the VAR/VMA: 𝑤𝑤𝑡𝑡 = 𝜃𝜃𝑟𝑟𝑚𝑚𝜀𝜀𝑟𝑟𝑚𝑚,,𝑡𝑡 + 𝜃𝜃𝑥𝑥𝜀𝜀𝑥𝑥,𝑡𝑡 + 𝜃𝜃𝑟𝑟𝜀𝜀𝑟𝑟,𝑡𝑡. We estimate the expected return on the 

stock over the next period, E𝑡𝑡−1[𝑟𝑟𝑡𝑡], as the one-period-ahead forecast of the return from the VAR, in the 

spirit of Campbell (1991). We isolate the expected noise part of the expected return by considering what 

part of the expected return is predicted by past unexpected changes in the pricing error, E𝑡𝑡−1[∆𝑠𝑠𝑡𝑡] =
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𝐶𝐶𝐶𝐶𝐶𝐶�E𝑡𝑡−1[𝑟𝑟𝑡𝑡],𝜀𝜀𝑠𝑠𝑡𝑡−1�
𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀𝑠𝑠𝑡𝑡−1�

𝜀𝜀𝑠𝑠𝑡𝑡−1.17 The other part of the expected return is the discount rate, 𝜇𝜇𝑡𝑡 = E𝑡𝑡−1[𝑟𝑟𝑡𝑡]−

E𝑡𝑡−1[∆𝑠𝑠𝑡𝑡]. We obtain the unexpected innovations in the pricing error from 𝜀𝜀𝑠𝑠𝑡𝑡 = 𝑟𝑟𝑡𝑡 − E𝑡𝑡−1[𝑟𝑟𝑡𝑡]−𝑤𝑤𝑡𝑡 = 𝑟𝑟𝑡𝑡 −

E𝑡𝑡−1[∆𝑠𝑠𝑡𝑡]− 𝜇𝜇𝑡𝑡 − 𝑤𝑤𝑡𝑡 and consequently the total change in the pricing error (sum of expected and 

unexpected parts) is ∆𝑠𝑠𝑡𝑡 = E𝑡𝑡−1[∆𝑠𝑠𝑡𝑡] + 𝜀𝜀𝑠𝑠𝑡𝑡 = 𝑟𝑟𝑡𝑡 − 𝜇𝜇𝑡𝑡 − 𝑤𝑤𝑡𝑡.  

A simple schematic of what is going on in the process above is shown in Figure 6. We break noise 

into expected and unexpected parts. Subtracting expected noise from the expected return gives the “clean” 

discount rate. The clean discount rate is similar to the discount rate in Campbell (1991) but purged of noise. 

Subtracting unexpected noise from the unexpected return gives the “clean” information. The clean 

information is similar to the cash flow and discount rate information in Campbell (1991) but purged of 

noise.   

Next we apply a cash flow / discount rate decomposition similar to Campbell (1991), but using the 

clean discount rate and the clean information. Using the de-noised expected return (E𝑡𝑡[𝜇𝜇𝑡𝑡+1]) in place of 

the standard expected return (E𝑡𝑡[𝑟𝑟𝑡𝑡+1]), we estimate discount rate news using the Campbell (1991) 

approach: 

 

𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡+1 = −(E𝑡𝑡+1 − E𝑡𝑡)∑ 𝜌𝜌𝑗𝑗𝜇𝜇𝑡𝑡+1+𝑗𝑗∞
𝑗𝑗=1         

= ∑ 𝜌𝜌𝑗𝑗E𝑡𝑡�𝜇𝜇𝑡𝑡+1+𝑗𝑗�∞
𝑗𝑗=1 − ∑ 𝜌𝜌𝑗𝑗E𝑡𝑡+1�𝜇𝜇𝑡𝑡+1+𝑗𝑗�∞

𝑗𝑗=1 .     (23) 

 

Also following Campbell (1991), but using the de-noised unexpected return instead of the standard 

unexpected return, we estimate the cash flow news at time 𝑡𝑡 + 1 as the informational part of the return that 

is not associated with discount rate news: 

                                                           
17 This approach is equivalent to estimating the predictive regression, E𝑡𝑡−1[𝑟𝑟𝑡𝑡] = 𝑎𝑎 + 𝑏𝑏𝜀𝜀𝑠𝑠𝑡𝑡−1 + 𝑒𝑒𝑡𝑡−1, where the 

estimate of the coefficient 𝑏𝑏 is given by 𝑏𝑏� =
𝐶𝐶𝐶𝐶𝐶𝐶�E𝑡𝑡−1[𝑟𝑟𝑡𝑡],𝜀𝜀𝑠𝑠𝑡𝑡−1�

𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀𝑠𝑠𝑡𝑡−1�
 and the part of E𝑡𝑡−1[𝑟𝑟𝑡𝑡] that is explained by 𝜀𝜀𝑠𝑠𝑡𝑡−1 is 

 𝑏𝑏�𝜀𝜀𝑠𝑠𝑡𝑡−1. This approach picks up the first-order negative serial correlation in returns that occurs at daily frequencies due 
to bid-ask bounce and price pressures. 
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𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡+1 = 𝑤𝑤𝑡𝑡+1 − 𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡+1 .       (24) 

 

From the time-series of the cash flow and discount rate news, we compute the variances 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡) 

and 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡). We also compute the variance of noise, 𝑉𝑉𝑉𝑉𝑉𝑉(∆𝑠𝑠𝑡𝑡).18 We then plot the cash flow 

news, the discount rate news, and the noise as shares of variance. 

Figure 7 plots the time-series of the cash flow news, discount rate news, and noise, expressed as 

shares of stock return variance.19  

 

Insert Figure 7 About Here 

 

Panel A reports results from the standard model that does not account for noise as represented in 

Equation (20), while Panel B is the model that accounts for noise and is described in Equations (23) and 

(24). In the model that does not account for noise, cash flow news is estimated to account for around 75% 

of stock return variance, while discount rate information makes up around 10%. The remaining variation is 

attributable to time-series variation in the discount rate itself (15%), which is different from discount rate 

                                                           
18 The variance of noise differs slightly from our baseline model because we allow for a time-varying discount rate. 
19 In expressing the variance components as “shares” of variance, to make the results comparable to other models in 
the paper, we must also consider the covariance between cash flow and discount rate news. Given the total information 
in this model is the same as in the baseline model, to ensure the sum of the information component variances in this 
model equal the variance of information in the baseline model, we allocate a fraction 𝛼𝛼 of 
2𝐶𝐶𝐶𝐶𝐶𝐶�𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 , 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡� to the cash flow news variance and a fraction (1 − 𝛼𝛼) to the discount rate news 

variance, where 𝑎𝑎 =
𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡)

𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡�+𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡)
. Doing so does not change the ratio of cash flow news to 

discount rate news and, for consistency, we apply this covariance attribution to both the models that account for noise 
and those that do not. 
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news.20 These results are consistent with Vuolteenaho (2002) who also performs a variance decomposition 

on individual stocks without accounting for noise and finds similar estimates.21  

Other studies have performed similar decompositions on portfolios of stocks rather than individual 

stocks (e.g., Campbell, 1991; Campbell and Ammer, 1993). In portfolios, discount rate news plays a larger 

role, suggesting that cash flow news is more idiosyncratic than discount rate news. The dominance of cash 

flow information in our stock-level variance decomposition and the fact that cash flow information tends 

to be relatively idiosyncratic is also consistent with our baseline decomposition, which shows that 

idiosyncratic information is a far more important driver of individual stock returns than market-wide 

information.  

Figure 7, Panel B adjusts the standard cash flow / discount rate decomposition for noise and reveals 

some interesting differences. A striking result is that almost all of the stock price variations associated with 

information is driven by cash flow news, with very little variation attributed to discount rate news. In fact, 

cash flow news is responsible for 68% of stock return variance in the full sample, whereas discount rate 

news accounts for less than 3%. It is natural to expect that accounting for noise would decrease both of 

these information components as some of the variation labelled as information in the standard models is 

noise. The interesting observation is that they do not decrease by a similar amount. The decrease in 

estimated discount rate news is far greater, resulting in a substantial increase in the estimated ratio of cash 

flow news to discount rate news when accounting for noise.  

The results suggest that much of what is usually labelled as discount rate news is actually noise. 

Why? The primary reason is that noise creates considerable return predictability, so expected returns are 

                                                           
20 The time-varying discount rate, E𝑡𝑡[𝑟𝑟𝑡𝑡+1] in the model that does not account for noise and 𝜇𝜇𝑡𝑡 in the model that does 
account for noise, gives rise to variation in returns directly by determining the average rates of return in different 
periods, whereas the discount rate news captures price changes that occur when expectations of the discount rate 
change and the stock is re-priced accordingly. Given our focus on information and noise, we do not report the time-
varying discount rate variance share in the plots. 
21 To better compare with Vuolteenaho (2002), we also calculate the ratio of cash flow news variance to discount rate 
news variance over the period from 1960 to 1996. Despite differences in data frequency and VAR model used, the 
ratio of cash flow news variance to discount rate news variance is about five times in our model, which is very similar 
to the ratio reported in Vuolteenaho (2002) for the same period of time. 
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not good measures of discount rates. Noise creates return predictability because pricing errors are 

stationary, mean reverting processes. Prices are drawn towards fundamental values in the long run, so a 

positive noise-driven return shock in one period leads to a negative expected return component over the 

next period and vice versa. The empirical consequence of pricing error reversals is the widely documented 

negative serial correlation in returns, which is observed at a wide range of frequencies from the classic 

monthly reversals anomaly (e.g., Jegadeesh, 1990) to weekly, daily, and intraday horizons (e.g., Roll, 1984). 

Without accounting for noise, variation in the discount rate is overestimated when the expected/forecast 

return is taken as an estimate of the discount rate, leading to a substantial overestimation of the discount 

rate news component. 

Estimates of cash flow news are also affected by explicitly accounting for noise, but to a lesser extent 

due to two opposing effects. These effects are best illustrated by recognizing that cash flow news is the 

difference between estimated information and estimated discount rate news: 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑤𝑤𝑡𝑡 −

𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡. First, removing noise shrinks the estimated information shocks (𝑤𝑤𝑡𝑡), which tends to decrease 

cash flow news. But, second, as explained above, the estimated discount rate news (𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡) is 

considerably smaller after accounting for noise and this effect tends to increase the estimated cash flow 

news. The opposing effects explain why the estimated magnitude of cash flow news is less affected by 

accounting for noise than is the estimated magnitude of discount rate news. 

An advantage of isolating noise is the ability to apply the decomposition over relatively short 

windows using high-frequency data. Unlike previous studies, this allows us to examine the time-series 

variation in the cash flow and discount rate news. Figure 7 shows that since the late 1990s, there has been 

a notable increase in the proportion of stock returns that are attributable to cash flow news, mirroring the 

decrease in noise during the same period. This trend matches our earlier decomposition that shows firm-

specific information has become an increasingly important component of stock returns during the past two 

decades, consistent with the widely held view that financial markets are now more informationally efficient 

than in previous decades. 



41 
 

 

5.3. Extended variance decomposition 

Armed with a method to separate cash flow and discount rate news at the daily frequency purged of 

noise, we further extend our baseline variance decomposition by splitting each information component into 

a cash flow part and a discount rate part. This extended decomposition of information is illustrated in Figure 

5 Panel B. Note that the noise and time-varying discount rate components are not shown. 

The six information components in the extended decomposition are obtained from the following 

regressions of cash flow and discount rate news on each of the information components from our variance 

decomposition: 

 

 𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 = 𝛽𝛽1𝑟𝑟𝐴𝐴,𝑡𝑡 + 𝛽𝛽2𝑟𝑟𝐵𝐵,𝑡𝑡 + 𝛽𝛽3𝑟𝑟𝐶𝐶,𝑡𝑡  

 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛾𝛾1𝑟𝑟𝐴𝐴,𝑡𝑡 + 𝛾𝛾2𝑟𝑟𝐵𝐵,𝑡𝑡 + 𝛾𝛾3𝑟𝑟𝐶𝐶,𝑡𝑡, (25) 

 

where the information components are market-wide information (𝑟𝑟𝐴𝐴,𝑡𝑡 = 𝜃𝜃𝑟𝑟𝑚𝑚𝜀𝜀𝑟𝑟𝑚𝑚,𝑡𝑡), firm-specific private 

information (𝑟𝑟𝐵𝐵,𝑡𝑡 = 𝜃𝜃𝑥𝑥𝜀𝜀𝑥𝑥,𝑡𝑡), and firm-specific public information (𝑟𝑟𝐶𝐶,𝑡𝑡 = 𝜃𝜃𝑟𝑟𝜀𝜀𝑟𝑟,𝑡𝑡).22 From the fitted values 

we obtain six sources of variance: market-wide discount rate and cash flow news, 𝛽𝛽1�𝑟𝑟𝐴𝐴,𝑡𝑡 and 𝛾𝛾1� 𝑟𝑟𝐴𝐴,𝑡𝑡, firm-

specific discount rate and cash flow news incorporated through trading on private information, 𝛽𝛽2�𝑟𝑟𝐵𝐵,𝑡𝑡 and 

𝛾𝛾2�𝑟𝑟𝐵𝐵,𝑡𝑡, and firm-specific discount rate and cash flow news incorporated through public information, 𝛽𝛽3�𝑟𝑟𝐶𝐶,𝑡𝑡 

and 𝛾𝛾3�𝑟𝑟𝐶𝐶,𝑡𝑡, respectively. In expressing the variance components as variance shares, we add back the 

covariance between cash flow and discount rate news as before, preserving the total variance attributable 

to information. 

 

Insert Table 7 About Here 

 

                                                           
22 In the regression, 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 = 1, thereby preserving the total amount of each information type. 
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Table 7 reports means of the seven variance components from our extended decomposition, namely 

six information components and a noise component, expressed as percentages of variance.23 The pooled 

sample results are presented in Panel A. Panel B shows the results separately for the two subperiods, before 

and after 1997. Results for size, price, and industry subgroups are presented in Panel C, D, and E, 

respectively. Consistent with our earlier observation corroborating Chen et al. (2013) that cash flow news 

is a much larger driver of individual stock returns than discount rate news, we also find that the cash flow 

parts of the market-wide and firm-specific information components are much larger than the corresponding 

discount rate parts. Overall, firm-specific cash flow information comprises the largest contribution to 

individual stock return variance, accounting for 27% of variance (the sum of the 𝐶𝐶𝐶𝐶 columns for 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 in Table 7 Panel A). 

What is perhaps more interesting is that the ratio of cash flow to discount rate news differs across the 

three information components. The differences are consistent with the notion that cash flow news tends to 

be more idiosyncratic than discount rate news. For example, the ratio of cash flow news to discount rate 

news in the firm-specific information component is around 29 times, whereas in market-wide information 

it is around 18 times. We observe this relation in all price and size quartiles as well as industry groups. This 

finding helps reconcile differing results in the literature: when variance decompositions are performed on 

portfolios of stocks (e.g., Campbell, 1991; Campbell and Ammer, 1993), in which most of the firm-specific 

variation is cancelled out through diversification, leaving predominantly market-wide information, discount 

rate news tends to be more important than when variance decompositions are performed on individual 

stocks (e.g., Vuolteenaho, 2002; Chen et al., 2013). We extend these findings by showing that once we 

isolate the noise component of returns, the importance of cash flow news relative to discount rate news 

becomes even more apparent.  

 

                                                           
23 For conciseness, we do not report the share of variance attributable to time-variation in the discount rate (𝜇𝜇𝑡𝑡), which 
is why the seven reported components sum to slightly less than 100%.  
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6. Conclusion 

This study decomposes stock return variance in order to better understand the roles of different types 

of information and noise in driving stock price movements. We find that a substantial proportion of return 

variance, 31%, is noise. Firm-specific information accounts for the majority (61%) of stock return variance, 

with market-wide information accounting for the remaining 8% of variance in the full sample. We further 

partition firm-specific information and find that in the full sample, public firm-specific information plays a 

larger role than private firm-specific information that is impounded into prices through trading.  

We also find that after accounting for the noise in returns, cash flow information is more important 

than the previous literature suggests. Cash flow information plays a considerably larger role than discount 

rate information in driving individual stock returns. Discount rate information plays a relatively larger role 

in market-wide information than it does in information about individual firms.  

There is substantial time-series variation in the components of variance, with some key trends 

standing out. First, noise increases from the 1970s to the mid-1990s, in particular around a period of 

collusion by dealers to effectively widen bid-ask spreads, and has substantially declined since then. The 

decline in noise is attributable in part to narrower tick sizes, which reduces bid-ask bounce, and a general 

improvement in liquidity and increase in turnover. We show that the recent decrease in noise due to 

improved liquidity is largely responsible for the increasing 𝑅𝑅2 of a market model over the past two decades. 

An important implication is that a lower 𝑅𝑅2  is not necessarily associated with more informationally efficient 

prices, in contrast to the interpretation of 𝑅𝑅2  in prior studies. 

Second, the role of firm-specific information has increased through time, driven largely by increases 

in the amount of public firm-specific information that is reflected in prices. This trend is consistent with 

increasing informational efficiency through time. The increasing importance of public firm-specific 

information in stock prices is also consistent with a variety of regulatory reforms such as the Regulation 

Fair Disclosure (2000) and the Sarbanes Oxley Act (2002) aimed at improving both the quality and quantity 

of corporate disclosure.  
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Third, market-wide information has over time become a less important driver of stock returns. While 

market-wide information tends to spike during crises it has generally declined from around 15% of variance 

to around 5-10% in recent years. 

Overall, the broad trends in the components of stock return variance shed light on recent issues 

concerning the information content of prices. For example, the concern that the growth in indexing and 

passive investing in recent years and corresponding decline in active fund management might harm the 

amount of firm-specific information in prices is not intuitively supported by the observed time trends. 

Similarly, suggestions that the increase in the market model 𝑅𝑅2 and stock correlations in recent years 

reflects a deterioration in informational efficiency is also not supported by the data, which show declining 

noise levels and increasing informational components.  

While our results provide some new insights about these general issues, we leave a more detailed 

examination of each of these issues to future research. This paper’s contribution is largely methodological. 

The framework for variance decomposition developed in this paper can be applied to analyzing each of 

these issues and others, due to (i) its ability to isolate noise from information, which is crucial for correctly 

characterizing the information in prices, and (ii) the ability to obtain higher frequency estimates of variance 

components, which is important in analyzing effects that vary through time and recent phenomena that 

require high resolution estimates of the information/noise components of variance. 
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Appendix A: Motivating theoretical model 

 

A.1. Model 

The model starts with the firm’s cash flow generating process:  

 

 𝐶𝐶𝑡𝑡 = 𝐾𝐾0𝑋𝑋𝑡𝑡, (A.1) 

 

where 𝐶𝐶𝑡𝑡 is the future cash flow at time 𝑡𝑡, 𝐾𝐾0 is the initial investment, and 𝑋𝑋𝑡𝑡 captures the random shocks 

to the cash flow process. Departing from the Jin and Myers (2006) model, in which the focus is solely on 

information innovations, we suppose that 𝑋𝑋𝑡𝑡, as it is perceived or estimated by investors (𝑋𝑋𝑡𝑡�), is driven by 

four components, namely three information-driven components and noise: 

 

 𝑋𝑋𝑡𝑡� = 𝜃𝜃1,𝑡𝑡 + 𝜃𝜃2,𝑡𝑡 + 𝜃𝜃3,𝑡𝑡 + 𝜃𝜃4,𝑡𝑡. (A.2) 

 

The term 𝜃𝜃1,𝑡𝑡 reflects market-wide cash flow information, while 𝜃𝜃2,𝑡𝑡 and 𝜃𝜃3,𝑡𝑡 reflect firm-specific cash flow 

information, and 𝜃𝜃4,𝑡𝑡 reflects noise. The distinction between 𝜃𝜃2,𝑡𝑡 and 𝜃𝜃3,𝑡𝑡 is that 𝜃𝜃2,𝑡𝑡 is firm-specific 

information revealed through trading on private information, while 𝜃𝜃3,𝑡𝑡 is firm-specific information 

revealed through public information such as company announcements and news. Firm-specific information 

(𝜃𝜃2,𝑡𝑡 and 𝜃𝜃3,𝑡𝑡) is orthogonal to market-wide information (𝜃𝜃1,𝑡𝑡) and noise is assumed to be uncorrelated with 

information. 

The noise (𝜃𝜃4,𝑡𝑡) is a reduced form way to account for many sources of noise in prices. It accounts for 

the fact that prices set by investors following their beliefs about 𝑋𝑋𝑡𝑡� can deviate from intrinsic values that 

are based solely on true information. The deviations can arise from rational causes such as imperfect signals, 

or various friction, or irrational reasons and biases. The addition of 𝜃𝜃4,𝑡𝑡 to the model is in the spirit of 

Black’s (1986) notion that “noise trading is trading on noise as if it were information”, i.e., investors believe 

𝜃𝜃4,𝑡𝑡 to be information about cash flows, causing prices to depart from their efficient intrinsic values. The 

ultimate effect of injecting noise into Equation (A.2) is to make prices noisy, which can be interpreted as 

representing the effects of frictions such as a discrete pricing grid, non-synchronous trading and so on.  

Similar to Jin and Myers (2006), we assume that all of the information and noise components follow 

stationary AR(1) processes driven by a set of random shocks (𝜀𝜀1,𝑡𝑡, 𝜀𝜀2,𝑡𝑡, 𝜀𝜀3,𝑡𝑡, and 𝜀𝜀4,𝑡𝑡).24 That is, 𝜃𝜃𝑖𝑖,𝑡𝑡+1 =

𝜃𝜃𝑖𝑖,0 + 𝜑𝜑𝜑𝜑𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡+1, where 0 < 𝜑𝜑 < 1. We define 𝑟𝑟 as the discount rate and 𝐾𝐾𝑡𝑡 as the investors’ valuation 

                                                           
24 This and other assumptions made in this appendix are for the convenience of solving the motivating theoretical 
model (they mainly follow from Jin and Myers (2006)). We do not rely on these assumptions in the empirical model. 
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of the firm, which is the present value of future cash flows (assuming each period’s cash flow is paid out), 

conditional on the information that the investors have at date 𝑡𝑡 about 𝑋𝑋𝑡𝑡�: 

 

 𝐾𝐾𝑡𝑡 = 𝑃𝑃𝑃𝑃{𝐸𝐸(𝐶𝐶𝑡𝑡+1|𝐼𝐼𝑡𝑡),𝐸𝐸(𝐶𝐶𝑡𝑡+2|𝐼𝐼𝑡𝑡), … ; 𝑟𝑟}. (A.3) 

 

For investors 𝐼𝐼𝑡𝑡 = {𝜃𝜃1,𝑡𝑡 + 𝜃𝜃2,𝑡𝑡 + 𝜃𝜃3,𝑡𝑡 + 𝜃𝜃4,𝑡𝑡} and therefore the value of 𝐾𝐾𝑡𝑡 is: 

 

                𝐾𝐾𝑡𝑡 = 𝐾𝐾0𝑋𝑋0
𝑟𝑟(1−𝜑𝜑) −

𝐾𝐾0𝑋𝑋0𝜑𝜑
(1+𝑟𝑟−𝜑𝜑)(1−𝜑𝜑) + 𝜑𝜑

1+𝑟𝑟−𝜑𝜑
𝐾𝐾0(𝜃𝜃1,𝑡𝑡 + 𝜃𝜃2,𝑡𝑡 + 𝜃𝜃3,𝑡𝑡 + 𝜃𝜃4,𝑡𝑡). (A.4) 

 

Let 𝑟̃𝑟𝑡𝑡+1 be the total realized return on the firm’s shares in the period 𝑡𝑡 + 1. The return 𝑟̃𝑟𝑡𝑡+1 is 

calculated as the change in the investors’ valuation of the firm from one period to the next plus that period’s 

cash flow, which is paid out, and is therefore a function of the shocks to the investors’ information about 

the cash flow process: 

 

 𝑟̃𝑟𝑡𝑡+1 = 𝑟𝑟 + 𝑏𝑏𝑡𝑡�𝜀𝜀1,𝑡𝑡+1 + 𝜀𝜀2,𝑡𝑡+1 + 𝜀𝜀3,𝑡𝑡+1 + 𝜀𝜀4,𝑡𝑡+1�, (A.5) 

 

where 

 

 

 

 
𝑏𝑏𝑡𝑡 =

(1 + 𝑟𝑟)
𝑋𝑋0(1 + 𝑟𝑟)

𝑟𝑟 + 𝜑𝜑(𝜃𝜃1,𝑡𝑡 + 𝜃𝜃2,𝑡𝑡 + 𝜃𝜃3,𝑡𝑡 + 𝜃𝜃4,𝑡𝑡)
. (A.6) 

 

The derivation of Equations (A.5) and (A.6) is provided below in Appendix A.2 (Proof 1). Equation (A.6) 

implies that the random component of realized stock returns, 𝑏𝑏𝑡𝑡�𝜀𝜀1,𝑡𝑡+1 + 𝜀𝜀2,𝑡𝑡+1 + 𝜀𝜀3,𝑡𝑡+1 + 𝜀𝜀4,𝑡𝑡+1�, is driven 

by shocks to the various types of information (market-wide information, firm-specific information revealed 

through trading on private information, and public firm-specific information) as well as innovations in 

noise.  

The model suggests stock return variance can be decomposed into four distinct sources of variation. 

Performing a variance decomposition on the realized returns in this theoretical framework serves as a guide 

for the empirical decomposition. Because of the independence between the components of realized returns, 

the variance of realized returns is equal to the sum of the contributions from each of the components. This 

allows us to define a set of variance shares as: 
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𝜂𝜂𝑗𝑗 =

𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑗𝑗,𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀1,𝑡𝑡 + 𝜀𝜀2,𝑡𝑡 + 𝜀𝜀3,𝑡𝑡 + 𝜀𝜀4,𝑡𝑡)

, (A.7) 

 

with subscript 𝑗𝑗 = {1, 2, 3, 4} denoting each return component. The first of these variance shares, 𝜂𝜂1, is the 

contribution of market-wide information to an individual stock’s variance. The second (𝜂𝜂2) is the 

contribution of firm-specific information that is revealed through trading (private firm-specific 

information), while the third (𝜂𝜂3) is the contribution of public firm-specific information. The last component 

(𝜂𝜂4) is the effect of noise on stock return variance.  

 

A.2. Proofs 

 

Proof 1. 

The total realized return on the firm’s shares for outsiders is calculated as the change in the investors’ 

valuation of the firm from one period to the next including the cash flow that is paid out: 

 

 𝑟̃𝑟𝑡𝑡+1 =
𝐾𝐾𝑡𝑡+1 + 𝐶𝐶𝑡𝑡+1

𝐾𝐾𝑡𝑡
− 1. (A.8) 

 

Substituting Equation (A.4) for 𝐾𝐾𝑡𝑡 into (A.8) and rearranging gives: 

 

 
𝑟̃𝑟𝑡𝑡+1 =

� 1 + 𝑟𝑟
1 + 𝑟𝑟 − 𝜑𝜑�𝐶𝐶𝑡𝑡+1 −

𝜑𝜑
1 + 𝑟𝑟 − 𝜑𝜑𝐶𝐶𝑡𝑡

(1 + 𝑟𝑟)
𝑟𝑟

𝐾𝐾0𝑋𝑋0
(1 + 𝑟𝑟 − 𝜑𝜑) + 𝜑𝜑

1 + 𝑟𝑟 − 𝜑𝜑𝐶𝐶𝑡𝑡
. (A.9) 

 

For investors 𝐼𝐼𝑡𝑡 = {𝜃𝜃1,𝑡𝑡 + 𝜃𝜃2,𝑡𝑡 + 𝜃𝜃3,𝑡𝑡 + 𝜃𝜃4,𝑡𝑡} and therefore, 

 

 
𝑟̃𝑟𝑡𝑡+1  =

� 1 + 𝑟𝑟
1 + 𝑟𝑟 − 𝜑𝜑�𝐾𝐾0 ∑ 𝜃𝜃𝑗𝑗,𝑡𝑡+1

4
𝑗𝑗=1 − 𝜑𝜑

1 + 𝑟𝑟 − 𝜑𝜑𝐾𝐾0 ∑ 𝜃𝜃𝑗𝑗,𝑡𝑡
4
𝑗𝑗=1

(1 + 𝑟𝑟)
𝑟𝑟

𝐾𝐾0𝑋𝑋0
(1 + 𝑟𝑟 − 𝜑𝜑) + 𝜑𝜑

1 + 𝑟𝑟 − 𝜑𝜑𝐾𝐾0 ∑ 𝜃𝜃𝑗𝑗,𝑡𝑡
4
𝑗𝑗=1

. (A.10) 

 

Multiplying the denominator and the numerator by (1+𝑟𝑟−𝜑𝜑
𝐾𝐾0

) and rearranging, we get: 
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𝑟̃𝑟𝑡𝑡+1 = 𝑟𝑟 +

(1 + 𝑟𝑟)�∑ 𝜃𝜃𝑗𝑗,𝑡𝑡+1
4
𝑗𝑗=1 − 𝜑𝜑∑ 𝜃𝜃𝑗𝑗,𝑡𝑡

4
𝑗𝑗=1 − 𝑋𝑋0�

(1 + 𝑟𝑟)𝑋𝑋0
𝑟𝑟 + 𝜑𝜑∑ 𝜃𝜃𝑗𝑗,𝑡𝑡

4
𝑗𝑗=1

. (A.11) 

 

Given the assumptions that all of the information and noise components follow stationary AR(1) process 

(we do not make this assumption in the empirical model), Equation (A.11) becomes: 

 

 𝑟̃𝑟𝑡𝑡+1 = 𝑟𝑟 + 𝑏𝑏𝑡𝑡�𝜀𝜀1,𝑡𝑡+1 + 𝜀𝜀2,𝑡𝑡+1 + 𝜀𝜀3,𝑡𝑡+1 + 𝜀𝜀4,𝑡𝑡+1�, (A.12) 

 

where 

 

 

 

 

 

𝑏𝑏𝑡𝑡 =
(1 + 𝑟𝑟)

(1 + 𝑟𝑟)𝑋𝑋0
𝑟𝑟 + 𝜑𝜑(𝜃𝜃1,𝑡𝑡 + 𝜃𝜃2,𝑡𝑡 + 𝜃𝜃3,𝑡𝑡 + 𝜃𝜃4,𝑡𝑡)

. 

(A.13) 

 

Proof 2. 

The realized return on stock 𝑖𝑖 in Equation (A.12) can be rewritten as: 

 

 𝑟̃𝑟𝑖𝑖,𝑡𝑡+1 = 𝑟𝑟 + 𝑏𝑏𝑡𝑡𝜀𝜀1,𝑡𝑡+1 + 𝑏𝑏𝑡𝑡𝜀𝜀𝑓𝑓,𝑡𝑡+1, (A.14) 

 

where 

 

 

 

𝑏𝑏𝑡𝑡 =
(1 + 𝑟𝑟)

(1 + 𝑟𝑟)𝑋𝑋0
𝑟𝑟 + 𝜑𝜑(𝜃𝜃1,𝑡𝑡 + 𝜃𝜃2,𝑡𝑡 + 𝜃𝜃3,𝑡𝑡 + 𝜃𝜃4,𝑡𝑡)

, 
 

 

and 𝜀𝜀𝑓𝑓,𝑡𝑡+1 is the shock related to firm-specific information and noise, 

 

 𝜀𝜀𝑓𝑓,𝑡𝑡+1 = 𝜀𝜀2,𝑡𝑡+1 + 𝜀𝜀3,𝑡𝑡+1 + 𝜀𝜀4,𝑡𝑡+1. (A.15) 

 

The market return is the same as the return of a stock with no idiosyncratic risk: 

 

 𝑟̃𝑟𝑚𝑚,𝑡𝑡+1 = 𝑟𝑟 + 𝑑𝑑𝑡𝑡𝜀𝜀1,𝑡𝑡+1, (A.16) 

 

where 
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𝑑𝑑𝑡𝑡 =

(1 + 𝑟𝑟)
(1 + 𝑟𝑟)𝑋𝑋0

𝑟𝑟 + 𝜑𝜑𝜑𝜑1,𝑡𝑡

. 
(A.17) 

 

From Equation (A.16), we have: 

 

 𝜀𝜀1,𝑡𝑡+1 =
𝑟𝑟𝑚𝑚,𝑡𝑡+1 − 𝑟𝑟

𝑑𝑑𝑡𝑡
. (A.18) 

 

Substitute the expression in Equation (A.18) for 𝜀𝜀1,𝑡𝑡+1 into (A.14): 

 

 
𝑟̃𝑟𝑖𝑖,𝑡𝑡+1 = 𝑟𝑟 +

𝑏𝑏𝑡𝑡
𝑑𝑑𝑡𝑡
𝑟𝑟𝑚𝑚,𝑡𝑡+1 −

𝑏𝑏𝑡𝑡
𝑑𝑑𝑡𝑡
𝑟𝑟 + 𝑏𝑏𝑡𝑡𝜀𝜀𝑓𝑓,𝑡𝑡+1. (A.19) 

 

Conditional on 𝜃𝜃1,𝑡𝑡, 𝜃𝜃2,𝑡𝑡, 𝜃𝜃3,𝑡𝑡 and 𝜃𝜃4,𝑡𝑡, the stock return variance is therefore a function of shocks to the 

investors’ information about the cash flow process: 

 

 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑟̃𝑟𝑖𝑖,𝑡𝑡+1) = �

𝑏𝑏𝑡𝑡
𝑑𝑑𝑡𝑡
�
2

𝑉𝑉𝑉𝑉𝑉𝑉�𝑟𝑟𝑚𝑚,𝑡𝑡+1�+ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑏𝑏𝑡𝑡𝜀𝜀𝑓𝑓,𝑡𝑡+1) (A.20) 

 

Substituting (A.16) into Equation (A.20), and rearranging, we get: 

 

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑟̃𝑟𝑖𝑖,𝑡𝑡+1) = 𝑏𝑏𝑡𝑡2�𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀1,𝑡𝑡+1� + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀2,𝑡𝑡+1) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀3,𝑡𝑡+1) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀4,𝑡𝑡+1)� (A.21) 

 

From Equation (A.19), the proportion of variance explained by the market, 𝑅𝑅2, can be written as: 

 

 

𝑅𝑅2 =
�𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡

�
2
𝑉𝑉𝑉𝑉𝑉𝑉(𝑟𝑟𝑚𝑚,𝑡𝑡+1)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑟̃𝑟𝑓𝑓,𝑡𝑡+1)
 

 
      =

𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀1,𝑡𝑡+1)
𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀1,𝑡𝑡+1� + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀2,𝑡𝑡+1) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀3,𝑡𝑡+1) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀4,𝑡𝑡+1)

 (A.22) 

      =
1

1 + 1
𝜂𝜂1

(𝜂𝜂2 + 𝜂𝜂3 + 𝜂𝜂4)
.  
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Appendix B: Variable definitions 

The table below provides descriptions and notation for the variables that are components of stock 

return variance. Each variable is estimated separately for each stock in each year using daily observations. 

When aggregating across stocks, we take variance-weighted averages (as per Morck et al., 2000, 2013). 

Variable Notation Description 
Stock return co-movement 𝑅𝑅2 𝑅𝑅2 is estimated by regressing individual daily 

stock returns on daily market return.  
Noise share 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
 

The share of stock return variance that is 
attributable to noise.  

Market-wide information 
share 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
 

The share of stock return variance that is 
attributable to market-wide information.  

Private firm-specific 
information share 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
 

The share of stock return variance that is 
attributable to trading on private firm-specific 
information.  

Public firm-specific 
information share 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
 

The share of stock return variance that is 
attributable to public firm-specific information.  

Firm-specific information 
share 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑎𝑎𝑎𝑎𝑎𝑎 The share of stock return variance that is 
attributable to firm-specific information (sum of 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎). 

Discount rate information 
share 

𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎 The share of stock return variance that is 
attributable to discount rate information. 

Cash flow information 
share 

𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 The share of stock return variance that is 
attributable to cash flow information. 

Market-wide discount rate 
information share 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐷𝐷𝐷𝐷) 
 

The share of stock return variance that is 
attributable to market-wide discount rate 
information.  

Market-wide cash flow 
information share 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶) 
 

The share of stock return variance that is 
attributable to market-wide cash flow 
information.  

Private firm-specific 
discount rate information 
share 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐷𝐷𝐷𝐷) 
 

The share of stock return variance that is 
attributable to trading on private firm-specific 
discount rate information.  

Private firm-specific cash 
flow information share 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶) 
 

The share of stock return variance that is 
attributable to trading on private firm-specific 
cash flow information.  

Public firm-specific 
discount rate information 
share 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐷𝐷𝐷𝐷) 
 

The share of stock return variance that is 
attributable to public firm-specific discount rate 
information.  

Public firm-specific cash 
flow information share 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶) 
 

The share of stock return variance that is 
attributable to public firm-specific cash flow 
information.  
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Appendix C: Effect of including the covariance between noise and information 

In computing the variance shares in Equation (10), we ignore the covariance between information 

(innovations in the efficient price) and noise (changes in the pricing error). Here we show that accounting 

for this covariance has little effect on our estimates of the variance shares.  

One way to account for the covariance term is to distribute it between the information components 

of variance and the noise component of variance in the same proportions as the variances of these 

components and then recompute the variance shares from the covariance-adjusted components using the 

total return variance as the normalizing variable. In this approach, we allocate a fraction 𝛼𝛼 of 2𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑡𝑡 ,∆𝑠𝑠𝑡𝑡) 

to the information variance and a fraction (1 − 𝛼𝛼) to the noise variance, where 𝛼𝛼 = 𝜎𝜎𝑤𝑤2

𝜎𝜎𝑤𝑤2+𝜎𝜎𝑠𝑠2
. Consequently 

the information and noise shares of variance become: 

 

 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = �𝜎𝜎𝑤𝑤2 +

𝜎𝜎𝑤𝑤2

𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2
2𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑡𝑡 ,∆𝑠𝑠𝑡𝑡)� /𝜎𝜎𝑟𝑟2 

                       = 𝜎𝜎𝑤𝑤2 �1 +
2𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑡𝑡,∆𝑠𝑠𝑡𝑡)
𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2

� /𝜎𝜎𝑟𝑟2 = 𝜎𝜎𝑤𝑤2 �
𝜎𝜎𝑤𝑤2 + 2𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑡𝑡 ,∆𝑠𝑠𝑡𝑡) + 𝜎𝜎𝑠𝑠2

𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2
� /𝜎𝜎𝑟𝑟2 

                       = 𝜎𝜎𝑤𝑤2 �
𝜎𝜎𝑟𝑟2

𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2
� /𝜎𝜎𝑟𝑟2 = 𝜎𝜎𝑤𝑤2/(𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = �𝜎𝜎𝑠𝑠2 +
𝜎𝜎𝑠𝑠2

𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2
2𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑡𝑡,∆𝑠𝑠𝑡𝑡)� /𝜎𝜎𝑟𝑟2 

                       = 𝜎𝜎𝑠𝑠2 �1 +
2𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑡𝑡,∆𝑠𝑠𝑡𝑡)
𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2

� /𝜎𝜎𝑟𝑟2 = 𝜎𝜎𝑠𝑠2 �
𝜎𝜎𝑟𝑟2

𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2
� /𝜎𝜎𝑟𝑟2 

                       = 𝜎𝜎𝑠𝑠2/(𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2) 

(C.1) 

 

Equation (C.1) shows that after the distribution of the covariance term into information and noise 

components, we have exactly the same variance shares as in the baseline (Equation (10)).  

An alternative way of distributing the covariance term is to add it entirely to either the information 

component of variance or to the noise component of variance thereby producing upper and lower bounds 

on the variance shares. Applying this approach we find that the upper and lower bounds are extremely 

narrow (e.g., the noise share has a lower bound of 25.73% and an upper bound of 27.86%, whereas the 

information share has a lower bound of 72.14% and an upper bound of 74.27%). Therefore, ignoring the 

covariance term in the baseline variance shares has little effect on the results. 
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                   R-squared (%) 

 
Figure 1. 𝑹𝑹𝟐𝟐 through time.  
This figure shows the time-series trend in 𝑅𝑅2 from 1960 to 2015. 𝑅𝑅2 is calculated separately for each stock and 
each year by regressing individual daily stock returns on daily market returns, and then averaging across stocks. 
The sample consists of stocks listed on NYSE, AMEX, and NASDAQ. 
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Figure 2. Stock return components in the baseline model.  
In the baseline model stock returns are decomposed into temporary innovations (noise), three types of information 
(permanent innovations), and a constant (discount rate). The first four of these are the variance components in the 
baseline model, while the fifth (the discount rate) does not contribute to variance in the baseline model. 
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Figure 3. Stock return variance components for US stocks through time.  
This figure shows the time-series trends in the percentage of stock price variance that is attributable to noise 
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎), market-wide information (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎), trading on private firm-specific information 
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎), and public firm-specific information (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎). The variance shares are 
calculated separately for each stock in each year based on a VAR model. We report the average variance share 
across stocks for each year. Light gray lines provide 99% confidence intervals. The sample consists of stocks listed 
on NYSE, AMEX, and NASDAQ from 1960 to 2015. 
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      Panel A: Market information share 

 

      Panel B: Private information share 

 
     Panel C: Public information share 

 

      Panel D: Noise share 

 

 

Figure 4. Variance components in size groups through time.  
This figure shows the time-series trends in the percentage of stock return variance that is attributable to market-wide information (Panel A), private firm-specific 
information (Panel B), public firm-specific information (Panel C), and noise (Panel D) in three market capitalization groups: stocks with market capitalization less 
than $100 million, market capitalization between $100 million and $1 billion, and market capitalization greater than $1 billion. These breakpoint are in 2010 dollars 
and are adjusted for inflation forward and backward in time using the GDP price deflator. Each year stocks are assigned to one of the three groups based on their 
market capitalization at the start of the year. The variance component shares are calculated separately for each stock in each year and then averaged for each size 
group in each year. The sample consists of stocks listed on NYSE, AMEX, and NASDAQ from 1960 to 2015. 
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      Panel A: Market information share 

 

      Panel B: Private information share 

 
     Panel C: Public information share 

 

      Panel D: Noise share 

 

 
Figure 5. Variance components in major industry groups through time.  
This figure shows the time-series trends in the percentage of stock return variance that is attributable to market-wide information (Panel A), private firm-specific 
information (Panel B), public firm-specific information (Panel C), and noise (Panel D) in five major industry groups. The Consumer group comprises the industries 
Consumer Durables, NonDurables, Wholesale, Retail, and some Services (Laundries, Repair Shops); the Healthcare group comprises the industries Healthcare, 
Medical Equipment, and Drugs; the HiTech group comprises the industries Business Equipment, Telephone and Television Transmission; the Manufact group 
comprises the industries Manufacturing, Energy, and Utilities; and the Other group comprises all other industries. The variance component shares are calculated 
separately for each stock in each year and then averaged for each industry group in each year. The sample consists of stocks listed on NYSE, AMEX, and NASDAQ 
from 1960 to 2015. 
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Panel A: Adjusting a standard cash flow / discount rate decomposition to account for noise 

 

 

 

 

 

 

 

 

Panel B: Extended variance decomposition 

 

Figure 6. Extension of variance decomposition to cash flow and discount rate information.  
Panel A shows how noise is dealt with in a standard cash flow / discount rate news decomposition (e.g., Campbell, 
1991) and in our modified cash flow / discount rate news decomposition. In the standard decomposition, the expected 
changes in pricing errors contaminate the discount rate (expected return) and the unexpected changes in pricing errors 
contaminate the cash flow news. In our modified decomposition, noise is removed from both the discount rate and 
cash flow news. Panel B shows how our baseline variance decomposition is extended by splitting each of the baseline 
model’s information components into a cash flow and discount rate part. 
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Panel A: Cash flow / discount rate decomposition not accounting for noise 

 
Panel B: Cash flow / discount rate decomposition accounting for noise 

 
Figure 7. Cash flow news, discount rate news, and noise through time.  
This figure shows the time-series trends in the percentage of stock return variance that is attributable to time-
variation in the cash flow news (𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎), discount rate news (𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎), and noise (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎) from 1960 to 
2015. Panel A shows the components estimated from a standard cash flow / discount rate news decomposition that 
does not account for noise. Panel B shows the components estimated from our modified cash flow / discount rate 
news decomposition that does account for noise. The variance components are calculated separately for each stock 
each year and then averaged across stocks each year. Light gray lines provide 99% confidence intervals. The sample 
consists of stocks listed on NYSE, AMEX, and NASDAQ. 
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Table 1. VAR coefficient estimates. 
This table reports the mean coefficient estimates and the mean correlation between residuals for the baseline VAR model used to perform the variance 
decomposition. The VAR model is estimated separately for each stock in each year using daily observations. For the purpose of this table, each of the model 
coefficients is then averaged across stocks and years and reported in the table. Below each coefficient average, in parentheses, we report the percentage of 
negative statistically significant (at 5%) coefficients (first number in the parentheses) and the percentage of positive statistically significant (at 5%) 
coefficients (second number in the parentheses). The correlations column is computed similarly, but rather than reporting coefficients it reports the 
correlations of the residuals for pairs of variables in the VAR. The variables used in the VAR are: daily market returns in basis points (𝑟𝑟𝑚𝑚,𝑡𝑡), daily signed 
dollar volume in $ thousands (𝑥𝑥𝑡𝑡), and daily stock returns in basis points (𝑟𝑟𝑡𝑡). The columns 𝑙𝑙 = 1 to 𝑙𝑙 = 5 correspond to lags of the independent variables. 
The sample consists of stocks listed on NYSE, AMEX, and NASDAQ from 1960 to 2015. 
 

Dependent 
variable 

Independent 
variable 𝑙𝑙 = 1 𝑙𝑙 = 2 𝑙𝑙 = 3 𝑙𝑙 = 4 𝑙𝑙 = 5 Correlation 

Panel A: Market return equation 
𝑟𝑟𝑚𝑚,𝑡𝑡 

 
𝑟𝑟𝑚𝑚,𝑡𝑡−𝑙𝑙  

 
0.104 

(2.06%, 37.93%) 
-0.032 

(8.13%, 0.34%) 
0.018 

(1.69%, 3.48%) 
-0.005 

(5.05%, 1.81%) 
-0.010 

(2.14%, 3.09%)   
𝑥𝑥𝑡𝑡−𝑙𝑙 

 
0.069 

(2.36%, 2.83%) 
0.024 

(2.51%, 2.54%) 
0.033 

(2.41%, 2.48%) 
0.081 

(2.42%, 2.63%) 
-0.034 

(2.40%, 2.44%) 
0.134 

(0.57%, 42.81%)  
𝑟𝑟𝑡𝑡−𝑙𝑙 

 
-0.002 

(3.76%, 3.07%) 
-0.0001 

(3.26%, 3.19%) 
0.0006 

(3.04%, 3.14%) 
0.0003 

(2.90%, 3.15%) 
-0.001 

(3.22%, 2.83%) 
0.229 

(0.39%, 61.85%) 
Panel B: Signed dollar volume equation 
𝑥𝑥𝑡𝑡 

 
𝑟𝑟𝑚𝑚,𝑡𝑡−𝑙𝑙  

 
-0.650 

(2.27%, 10.18%) 
0.013 

(2.42%, 2.91%) 
0.612 

(1.75%, 3.50%) 
-0.529 

(2.05%, 2.85%) 
-0.785 

(1.97%, 2.93%) 
0.134 

(0.57%, 42.81%)  
𝑥𝑥𝑡𝑡−𝑙𝑙 

 
0.025 

(8.69%, 14.74%) 
-0.016 

(9.21%, 5.75%) 
0.003 

(5.45%, 6.14%) 
-0.008 

(5.76%, 4.52%) 
0.004 

(4.26%, 5.15%)   
𝑟𝑟𝑡𝑡−𝑙𝑙 

 
1.736 

(9.55%, 8.45%) 
0.631 

(4.66%, 4.83%) 
0.196 

(3.60%, 3.82%) 
-0.002 

(3.01%, 3.50%) 
0.404 

(2.79%, 3.19%) 
0.615 

(0.05%, 99.42%) 
Panel C: Stock return equation 
𝑟𝑟𝑡𝑡 

 
𝑟𝑟𝑚𝑚,𝑡𝑡−𝑙𝑙  

 
0.247 

(2.10%, 21.77%) 
0.045 

(2.93%, 4.78%) 
0.089 

(1.71%, 6.02%) 
0.052 

(2.46%, 4.37%) 
0.050 

(2.36%, 4.56%) 
0.229 

(0.39%, 61.85%)  
𝑥𝑥𝑡𝑡−𝑙𝑙 

 
0.972 

(2.56%, 11.37%) 
-0.077 

(3.06%, 3.97%) 
-0.059 

(2.68%, 3.10%) 
-0.150 

(2.80%, 2.66%) 
-0.037 

(2.65%, 2.51%) 
0.615 

(0.05%, 99.42%)  
𝑟𝑟𝑡𝑡−𝑙𝑙 

 
-0.112 

(31.77%, 5.47%) 
-0.060 

(16.40%, 2.61%) 
-0.030 

(8.88%, 2.68%) 
-0.022 

(6.27%, 2.58%) 
-0.007 

(4.27%, 3.07%)  
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Table 2. Stock return variance components in the baseline model. 
This table reports the mean variance shares (expressed as percentages of variance) for the period from 1960 to 2015. 
Stock return variance is decomposed into market-wide information (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎), private firm-specific information 
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎), public firm-specific information (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎), and noise (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎). Panel A reports 
full sample averages. Panel B splits the sample into two sub-periods from 1960 to 1996, and from 1997 to 2015. Panel 
C groups stocks into quartiles by size (market capitalization) with quartiles formed separately each year. Panel D groups 
stocks into major industry groups: the Consumer group comprises the industries Consumer Durables, NonDurables, 
Wholesale, Retail, and some Services (Laundries, Repair Shops); the Healthcare group comprises the industries 
Healthcare, Medical Equipment, and Drugs; the HiTech group comprises the industries Business Equipment, Telephone 
and Television Transmission; the Manufact group comprises the industries Manufacturing, Energy, and Utilities; and 
the Other group comprises all other industries. The variance component shares are calculated separately for each stock 
in each year and then averaged across stocks within the corresponding quartile or group. We also report the differences 
in means for the post-1997 period minus the pre-1997 period (Panel B) and quartile 1 minus quartile 4 (Panel C) and 
report their corresponding t-statistics in parentheses. ***, **, and * indicate statistically significant differences at the 
1%, 5%, and 10% levels using standard errors clustered by stock and by year. The sample consists of stocks listed on 
NYSE, AMEX, and NASDAQ. 
 
  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (%) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (%) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (%) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (%) 
Panel A: Full sample     
  8.24 23.88 37.11 30.78 
Panel B: Sub-periods    
1960-1996 7.00 21.89 35.63 35.47 
1997-2015 9.58 26.03 38.71 25.69 
     
Difference (Post-Pre 1997) 2.57*  

(1.73) 
4.14***  
(2.66) 

3.07***  
(3.37) 

-9.78***  
(-5.42) 

Panel C: Quartiles by size (market capitalization)     
Q1=low 4.53 21.60 37.79 36.09 
Q2 8.64 24.71 37.46 29.19 
Q3 13.93 27.47 36.96 21.65 
Q4=high 21.51 30.17 31.87 16.45 

     
Difference (Q1-Q4) 
 

-16.98*** 
(-15.57) 

-8.58***  
(-5.16) 

5.92***  
(6.16) 

19.64***  
(12.81) 

Panel D: Industry groups       
Consumer 7.69 23.24 36.49 32.59 
Healthcare 7.32 28.57 37.39 26.72 
HiTech 9.43 26.09 37.37 27.11 
Manufact 9.15 24.29 35.02 31.55 
Other 7.33 20.26 38.35 34.07 
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Table 3. Determinants of stock return variance components. 
This table reports the results from panel regressions of stock-year observations in which the dependent 
variables are shares of stock return variance attributable to market-wide information (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎), 
private firm-specific information (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎), public firm-specific information 
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎), and noise (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎). The explanatory variables are: 𝐷𝐷𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is an indicator 
variable that takes the value of one after 1997 and zero before. 𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖,𝑡𝑡 is the log price and 𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑖𝑖,𝑡𝑡 is the 
log market capitalization. 𝐷𝐷𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝐷𝐷𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝐷𝐷𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ , and 𝐷𝐷𝑖𝑖

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 are indicator variables that 
indicate the firm’s industry group (the Other Industry grouping is the omitted category). T-statistics are 
in parentheses using standard errors clustered by stock and by year. ***, **, and * indicate statistical 
significance at the 1%, 5%, and 10% levels. The sample consists of stocks listed on NYSE, AMEX, and 
NASDAQ from 1960 to 2015.  
 
Variable 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
Intercept -1.50** 

(-2.50) 
14.48***  
(10.13) 

39.42***  
(32.91) 

47.59*** 
(24.35) 

𝐷𝐷𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  -0.28  
(-0.21) 

1.38  
(0.97) 

3.67***  
(4.51) 

-4.77***  
(-2.83) 

𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖,𝑡𝑡 2.00***  
(2.90) 

-0.64  
(-1.20) 

-1.09***  
(-2.64) 

-0.27  
(-0.39) 

𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑖𝑖,𝑡𝑡 1.86***  
(4.59) 

1.93*** 
(5.66) 

-0.33 
(-1.27) 

-3.46***  
(-9.77) 

𝐷𝐷𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  0.53*  
(1.92) 

3.19***  
(7.08) 

-1.81***  
(-2.92) 

-1.91***  
(-2.71) 

𝐷𝐷𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  -0.48  
(-0.91) 

7.38***  
(8.74) 

-1.45**  
(-2.36) 

-5.44*** 
 (-6.62) 

𝐷𝐷𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ  1.27*  
(1.85) 

4.82***  
(6.38) 

-1.30**  
(-2.04) 

-4.79***  
(-7.92) 

𝐷𝐷𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1.62***  

(4.17) 
4.08***  
(7.51) 

-2.92***  
(-4.17) 

-2.78***  
(-3.55) 

     
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅2 24.1% 5.9% 1.6% 14.7% 
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Table 4. Effect of the tick size on noise. 
This table reports the results from panel regressions of stock-year observations in which the dependent variable is the 
share of stock return variance attributable to noise (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎). Models 1-4 examine how the noise share is affected 
by tick size reductions from eighths of a dollar to sixteens of a dollar on June 24, 1997 using two years of data around 
the change (1996, 1998). 𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is an indicator variable that takes the value of one after 1997 and zero before. 
𝑄𝑄1𝑖𝑖, 𝑄𝑄2𝑖𝑖, and 𝑄𝑄3𝑖𝑖 are indicator variables that indicate the price quartile to which the firm belongs (the highest price 
quartile, 𝑄𝑄4𝑖𝑖, is the omitted category). 𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖,𝑡𝑡 is the log price. Model 5 examines how the collusion by NASDAQ 
dealers to avoid odd-eighth quotes impacts the noise in prices, using four years before and four years during the 
collusion (1987 to 1994). 𝐷𝐷𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 takes the value of one in the collusion period (1991-1994) and zero otherwise. 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖  is an indicator variable that takes the value one for NASDAQ-listed stocks and zero otherwise. T-statistics 
are in parentheses using standard errors clustered by stock. ***, **, and * indicate statistical significance at the 1%, 
5%, and 10% levels. The sample includes all stocks listed on NYSE, AMEX, and NASDAQ. 
 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 
Intercept 19.36*** 

(70.82) 
38.05*** 
(103.54) 

19.67*** 
(52.57) 

42.81*** 
(76.74) 

20.89*** 
(117.47) 

𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃     -0.62 

(-1.54) 
-8.49** 
(-14.26)  

𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑄𝑄1𝑖𝑖    -3.43*** 

(-5.23) 
  

𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑄𝑄2𝑖𝑖    -4.99*** 

(-7.32) 
  

𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑄𝑄3𝑖𝑖    -3.94*** 

(-5.44) 
  

𝑄𝑄1𝑖𝑖  14.30*** 
(34.65)  16.02*** 

(27.26)   

𝑄𝑄2𝑖𝑖  7.56*** 
(17.67)  10.04*** 

(16.25) 
  

𝑄𝑄3𝑖𝑖  5.51*** 
(13.03)  7.48*** 

(11.92) 
  

𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖 ,𝑡𝑡      1.72*** 

(8.38)  

𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖,𝑡𝑡   -4.86*** 
(-36.52) 

 -5.91*** 
(-30.14)  

𝐷𝐷𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶      -2.45*** 
(-12.81) 

𝐷𝐷𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖       8.32*** 
(24.89) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖       10.02*** 
(32.36) 

      
𝑅𝑅2  7.5% 7.5% 8.8% 9.0% 11.7% 
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Table 5. Effect of analyst coverage on variance components. 
This table reports the results from difference-in-difference regressions of stock-year observations in which we examine 
the causal effect of an exogenous drop in analyst coverage (due to brokerage mergers and closures) on variance 
components. The dependent variables are shares of stock return variance attributable to market-wide information 
(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎), private firm-specific information (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎), public firm-specific information 
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎), and noise (𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎). The independent variable of interest is 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑡𝑡 which is the 
number of broker disappearances due to mergers and closures of brokerage houses during the past two years (max of the 
𝑡𝑡 − 1 and 𝑡𝑡 − 2 values). The regressions contain stock and year fixed effects. T-statistics are in parentheses using standard 
errors clustered by stock and year. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels. The 
sample includes stocks listed on NYSE, AMEX, and NASDAQ from 1987 to 2011 (the period containing the analyst 
coverage shock events). 
 

Variable 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
Intercept 8.02*** 

(122.82) 
-3.96*** 
(-66.20) 

-4.77***  
(-110.76) 

0.71***  
(23.13) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ,𝑡𝑡    0.43 
(0.60) 

0.57 
(0.87) 

-1.59*** 
(-3.37) 

0.59* 
(1.80) 

     
𝑅𝑅2  21.9% 6.9% 2.3% 4.9% 
Fixed Effects Stock, Year Stock, Year Stock, Year Stock, Year 
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Table 6. Relation between variance components and other measures of information in prices.  
This table reports the results from panel regressions of stock-year observations in which the dependent variables are shares 
of stock return variance attributable to market-wide information (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎), private firm-specific information 
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎), public firm-specific information (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎), and noise (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎). Panel A reports 
the relation between the variance components and a measure of the delay with which a stock’s prices respond to market-
wide information (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡). Panel B reports the relation between the variance components and a measure of the amount 
of information impounded in prices during the trading session (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,𝑡𝑡 is the volatility of open to close returns 
divided by the volatility of overnight (close to open) returns). The sample includes stocks listed on NYSE, AMEX, and 
NASDAQ from 1960 to 2015 (Panel A) and 1992 to 2015 (Panel B). All regressions contain stock and year fixed effects. 
T-statistics are in parentheses using standard errors clustered by stock and year. ***, **, and * indicate statistical 
significance at the 1%, 5%, and 10% levels.  
 

Panel A: Delay metric 
Variable 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
Intercept -2.31*** 

(-18.11) 
2.19*** 
(10.12) 

1.60*** 
(7.55) 

-1.48*** 
(-9.84) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡  -18.34*** 
(-175.60) 

-1.05*** 
(-6.45) 

4.57*** 
(26.08) 

14.83*** 
(87.67) 

     
𝑅𝑅2  34.1% 7.3% 4.1% 11.2% 
Fixed Effects Stock, Year Stock, Year Stock, Year Stock, Year 

Panel B: Variance ratio 
Variable 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
Intercept -0.62*** 

(-16.60) 
1.97*** 
(49.96) 

1.33*** 
(50.29) 

-2.68*** 
(-40.76) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 ,𝑡𝑡  0.44*** 
(4.77) 

0.18* 
(1.83) 

0.27*** 
(4.01) 

-0.89*** 
(-5.74) 

     
𝑅𝑅2  17.5% 6.2% 1.9% 6.4% 
Fixed Effects Stock, Year Stock, Year Stock, Year Stock, Year 

 

  



  

68 
 

Table 7. Stock return variance components in the extended decomposition model. 
This table reports mean variance shares (expressed as percentages of variance). Using an extended decomposition model, stock return 
variance is decomposed into market-wide information (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎), private firm-specific information (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎), 
public firm-specific information (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎), and noise (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑒𝑒). The three information components are further 
decomposed into discount rate (𝐷𝐷𝐷𝐷) and cash flow (𝐶𝐶𝐶𝐶) related components. Panel A reports full sample averages. Panel B splits the 
sample into two sub-periods from 1960 to 1996, and from 1997 to 2015. Panels C and D group stocks into quartiles by price and size 
(market capitalization), respectively, with quartiles formed separately each year. Panel E groups stocks into major industry groups: 
the Consumer group comprises the industries Consumer Durables, NonDurables, Wholesale, Retail, and some Services (Laundries, 
Repair Shops); the Healthcare group comprises the industries Healthcare, Medical Equipment, and Drugs; the Manufact group 
comprises the industries Manufacturing, Energy, and Utilities; the HiTech group comprises the industries Business Equipment, 
Telephone and Television Transmission; and the Other group comprises all other industries. The variance components are calculated 
separately for each stock in each year and then averaged across stocks within the corresponding quartile or group. We also report the 
differences in means for the post-1997 period minus the pre-1997 period (Panel B) and quartile 1 minus quartile 4 (Panels C and D) 
and report their corresponding t-statistics in parentheses. ***, **, and * indicate statistically significant differences at the 1%, 5%, 
and 10% levels using standard errors clustered by stock and by year. The sample consists of stocks listed on NYSE, AMEX, and 
NASDAQ from 1960 to 2015. 
 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (%)  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (%)  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (%)  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (%) 
 𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶  𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶  𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶   
Panel A: Full sample 
  0.43 7.61  0.66 22.60  1.35 34.79  22.07 
Panel B: Sub-periods 
1960-1996 0.34 6.45  0.58 20.71  1.24 33.36  26.61 
1997-2015 0.52 8.85  0.75 24.63  1.48 36.34  17.16 
           
Difference  
(Post-Pre 1997) 

0.18**  
(2.45) 

2.40*  
(1.70) 

 0.17***  
(2.78) 

3.92***  
(2.66) 

 0.24***  
(3.49) 

2.99*** 
 (3.32) 

 -9.45*** 
 (-6.06) 

Panel C: Quartiles by Price 
Q1=low 0.30 4.56  0.64 21.50  1.36 35.36  24.66 
Q2 0.47 9.00  0.67 22.61  1.41 35.30  21.27 
Q3 0.69 13.75  0.73 25.23  1.29 33.71  16.25 
Q4=high 0.90 19.12  0.80 27.45  1.19 30.43  12.14 

           
Difference  
(Q1-Q4) 

-0.60***  
(-4.92) 

-14.56***  
(-15.96) 

 -0.17*** 
 (-3.35) 

-5.95*** 
 (-4.71) 

 0.17**  
(2.47) 

4.94***  
(6.22) 

 12.52*** 
 (10.90) 

Panel D: Quartiles by size (market capitalization) 
Q1=low 0.28 4.05  0.59 20.29  1.31 35.28  26.29 
Q2 0.44 8.04  0.69 23.49  1.42 35.22  21.25 
Q3 0.67 13.02  0.78 26.22  1.42 34.90  14.58 
Q4=high 0.92 20.30  0.87 28.89  1.30 30.13  9.85 
           
Difference 
(Q1-Q4) 

-0.64***  
(-5.10) 

-16.25*** 
 (-15.13) 

 -0.27***  
(-4.69) 

-8.61*** 
 (-5.49) 

 0.01 
(0.14) 

5.15*** 
(5.42) 

 16.44***  
(11.85) 

Panel E: Industry groups  
Consumer 0.40 7.08  0.66 21.98  1.31 34.14  23.77 
Healthcare 0.41 6.69  0.74 27.20  1.46 35.11  18.30 
HiTech 0.47 8.74  0.71 24.68  1.37 35.14  18.75 
Manufact 0.45 8.49  0.70 23.00  1.32 32.86  23.04 
Other 0.40 6.73  0.59 19.12  1.34 35.87  24.90 

 


