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Pitfalls of Central Clearing in the Presence of Systematic Risk

Abstract

Through the lens of market participants’ objective to minimize counterparty risk, we investigate

central clearing in derivatives markets, and its interaction with systematic risk, portfolio direction-

ality, and loss sharing. Previous studies suggest that central clearing always reduces counterparty

risk for a sufficiently large number of clearing members. We show that this is not the case – mostly

because of loss sharing. Central clearing can increase counterparty risk, particularly during extreme

market events, for traders with directional portfolios, and because CCPs mutualize default losses.

Our results are consistent with the reluctance to clear derivative trades in the absence of a clearing

obligation.
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Counterparty risk is the risk that counterparties do not fulfill their future obligations (e.g., when

they default). It is one of the most important risks in derivatives markets and has been identified

as a major contributor to the amplification of the 2007-08 financial crisis (e.g., Duffie, Li, and

Lubke (2010), Acharya, Shachar, and Subrahmanyam (2011), Arora, Gandhi, and Longstaff (2012)).

Lehman Brothers’ default in particular demonstrated that the failure of an entity with large over-

the-counter (OTC) derivative positions can result in substantial risk spillover to its counterparties,

creating contagion and systemic risk. To mitigate such systemic risks from derivatives, regulators

worldwide promoted the use of Central Clearing Counterparties (CCPs) to centrally clear OTC

derivatives transactions (G20 (2009)).1

A primary task of CCPs is to insure counterparty risk (Koeppl and Monnet (2010)), which is

especially needed during extreme negative macroeconomics conditions. In this paper, we examine

how central clearing affects the level and distribution of counterparty risk from a market partici-

pant’s perspective. We focus in particular on the presence of a systematic risk factor that affects

derivatives prices (reflecting, e.g., macroeconomic conditions) and analyze the impact of central

clearing on counterparty risk during extreme market events.2 The main result of our analysis is

that traders with directional positions face substantially larger counterparty risk with than without

central clearing. However, traders with a flat portfolio substantially benefit from central clearing.

The main reason is that directional traders are the one with larger initial margins and therefore

face a larger fraction of loss sharing.

Central clearing primarily relies on two components: multilateral netting (i.e., offsetting of

gains and losses across clearing members; see, e.g., Duffie and Zhu (2011) and Cont and Kokholm

(2014)) and loss sharing (i.e., mutualization of default losses among clearing members; see, e.g.,

Huang (2018) and Capponi, Wang, and Zhang (2019)). Despite the increasing importance of central

clearing in derivatives markets, research on the impact of these mechanisms on counterparty risk

is still scarce. We contribute to the literature by isolating and decomposing the impact of (1)

1OTC derivatives markets are very large, with a worldwide outstanding notional amount of $542 trillion in 2017
(Bank for International Settlements (BIS)). Before the 2007-08 financial crisis, the derivatives market architecture
was dominated by bilateral trades (Financial Stability Board (FSB) (2017)). The G20 initiative in 2009 was followed
by the Dodd-Frank Wall Street Reform and Consumer Protection Act (DFA) in 2010 and the European Market
Infrastructure Regulation (EMIR) in 2012, with a key element being the mandatory central clearing of standardized
OTC derivatives through CCPs.

2According to Acharya and Yorulmazer (2008), Nier, Yang, Yorulmazer, and Alentorn (2007), and De Bandt and
Hartmann (2000), systematic risk in the sense of exposure to common factors is a key element of systemic risk in
financial markets.
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systematic risk in derivative prices, (2) portfolio directionality, (3) extreme market events, and (4)

loss sharing on the benefits and pitfalls of central clearing from a market participant’s point of

view. We show that those elements can fundamentally reverse previous results (e.g., Duffie and

Zhu (2011), Cont and Kokholm (2014), and Lewandowska (2015)).

First, we consider systematic risk in derivative prices in the sense of a single risk factor that

affects the entire derivatives market (reflecting, e.g., macroeconomic conditions). It is well-known

that systematic (undiversifiable) risk is not insurable (e.g., Doherty and Dionne (1993)) and, in

particular, impairs the ability of CCPs to insure counterparty risk, as hypothesized by Bernanke

(1990). Nonetheless, CCPs are tasked to stabilize the financial system particularly in stress times,

when macroeconomic conditions deteriorate and systematic shocks hit the financial system. There-

fore, systematic risk is a key variable that needs to be considered when one examines the impact of

central clearing on the level and distribution of counterparty risk across market participants.3 In

line with Bernanke (1990)’s intuition, our model formally demonstrates that systematic risk impairs

the ability of CCPs to reduce counterparty risk – however, this result holds only for traders with

directional portfolios, such as end-users. Instead, systematic risk increases the benefit of central

clearing for dealers with flat portfolios, since central clearing enables them to harness substantial

netting benefits.

Second, we show that, due to the presence of systematic risk, directionality in derivative port-

folios becomes highly relevant for the trade-off between central clearing and non-central clearing.

In particular, central clearing becomes substantially more favorable for dealers with flat derivative

portfolios than for directional traders, e.g., end-users with directional portfolios. For example,

market participants with only pay-fixed (or only pay-float) IRS positions (i.e., directional traders)

benefit less from centrally clearing IRS than those with both pay-fixed and pay-float positions (i.e.,

dealers with flat positions). Directional portfolios are typically used by end-users (such as insurers,

(non-dealer) banks, and hedge funds) to hedge business risks (Abad, Aldasorol, Aymanns, D’Errico,

Rousová, Hoffmann, Langfield, Neychev, and Roukny (2016), Siriwardane (2018)). Our finding is

3Derivative prices are indeed highly correlated with systematic factors. For example, we empirically find that US
index CDS returns exhibit a correlation of 43% with S&P 500 returns and that 19% of their variation is explained
by the S&P 500. This finding is in line with other studies: Pan and Singleton (2008) find that over 96% of the
variation in sovereign CDS spreads for one reference country (differing, for example, by maturity) is explained by a
single factor. Longstaff, Pan, Pedersen, and Singleton (2011) find that 64% of variation in sovereign CDS spreads for
different reference countries is explained by a single global factor.
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consistent with the reluctance of these end-users to become clearing members in practice (see Bank

for International Settlements (BIS) (2018)).

Third, we analyze macroeconomic stress times. For this purpose, we examine counterparty risk

conditional on extreme realizations of the systematic risk factor. Our results show that (1) such

extreme events amplify the bifurcation between market participants with flat and those with direc-

tional portfolios, while (2) multilateral netting opportunities become less relevant and, in most of

the cases, are dominated by bilateral netting. More specifically, multilateral netting does not re-

duce but increases directional traders’ counterparty risk regardless of the number of counterparties,

compared to bilateral netting. For dealers with flat portfolios, the opposite result emerges: multi-

lateral netting reduces their counterparty risk particularly during extreme events for any number

of counterparties, since flat derivative portfolios mitigate exposure to the systematic risk factor.

Therefore, during extreme market events multilateral netting opportunities (coming from the num-

ber of counterparties) are irrelevant in determining whether or not multilateral netting reduces

counterparty risk: for dealers with flat portfolios, only two counterparties are sufficient for mul-

tilateral netting to dominate bilateral netting; however, for end-users with directional portfolios,

bilateral netting stays dominant for any number of counterparties. The reason is that the number

of counterparties (reflecting multilateral netting opportunities) are dominated by large expected

portfolio gains and losses.

Finally, we examine loss sharing, which is at the heart of a CCP’s insurance function but has

not been examined by previous studies (such as Duffie and Zhu (2011) and Cont and Kokholm

(2014)). Specifically, if the CCP’s loss upon a clearing member’s default exceeds the defaulter’s

pre-funded resources, surviving clearing members share the remaining loss.4 For example, the

default of a single trader at the Swedish clearinghouse Nasdaq Clearing AB caused EUR 107

million to be shared among surviving clearing members in September 2018 (Faruqui, Huang, and

Takáts (2018)). Our main results are that loss sharing (1) substantially decreases the likelihood

that central clearing reduces a market participant’s counterparty risk, and (2) loss sharing amplifies

the bifurcation between market participants with flat and those with directional portfolios.

More specifically, conditional on the majority (more than 80%) of realizations of the systematic

4Loss sharing is also required by post-crisis regulation as, e.g., in the European Market Infrastructure Regulation
(EMIR).
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risk factor in our calibrated model, central clearing with loss sharing does not reduce counterparty

risk for any market participant, even those with flat positions, compared to bilateral netting.5

Instead, a market participant may only benefit from loss sharing if it can off-load an extremely large

(bilateral) risk to the CCP and, thereby, offset the additional exposure from sharing other market

participants’ risks. In less extreme situations, no market participant benefits from central clearing.

The reason is that loss sharing smooths counterparty risk across states. In many states, this

smoothing increases counterparty risk (similar to an insurance premium) and thereby diminishes

multilateral netting benefits.

Overall, we find that, because of loss sharing, for any realization of the systematic risk factor

there is a market participant that does not benefit from central clearing, compared to bilateral

netting. Instead, as Figure 1 illustrates, in both positive and negative extreme market events,

central clearing reduces counterparty risk for dealers and only one type of directional trader (e.g.,

which is long), while it increases counterparty risk for the other type of directional trader (e.g.,

which is short). This result even holds when all derivative trades are cleared through one single

CCP. Thus, transforming derivatives markets into only centrally cleared trades at one CCP would

still be unlikely to reduce counterparty risk compared to bilateral netting. This result contrasts

previous studies. For example, not taking loss sharing into account, Duffie and Zhu (2011) suggest

to increase the joint clearing of different types of derivatives in order to increase netting efficiency.

For any such increase in clearing concentration, our results show that it remains unlikely for market

participants to benefit from central clearing in all the cases.

[Place Figure 1 about here]

Overall, our analysis highlights important pitfalls of central clearing that emerge due to the

presence of systematic risk, portfolio directionality, and loss sharing, and these were not addressed

by previous literature. We identify a large number of realistic situations in which central clearing

does not reduce but increase counterparty risk in comparison to bilateral netting, particularly in

stress times, for market participants with directional portfolios, and regardless of netting opportu-

5Conditional on each realization of the systematic risk factor, we compute counterparty risk as the sum of a market
participant’s expected bilateral default loss and mutualized CCP contribution (a) when all derivatives are bilaterally
netted and (b) when one (or all) derivatives classes are centrally cleared and non-pre-funded losses are shared among
clearing members.
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nities (i.e., number of clearing members). This result is consistent with the observation that market

participants are generally reluctant to centrally clear derivative contracts in practice, unless forced

(Financial Stability Board (FSB) (2017, 2018)).6 Our results thus provide an explanation for low

clearing rates based on the impact of clearing on market participants’ counterparty risk.

Following previous studies, we take a single market participant’s perspective. Although this

perspective is only partial (i.e., from market participants’ point of view conditional on existing

trades), it provides important insights that support policymakers in specifying financial market

infrastructure regulation to enhance financial stability.7 While focusing on counterparty risk, we

are aware that there are other important aspects that influence a market participant’s decision

whether to clear derivatives, such as margin costs, market liquidity, operational risk, or the cost

of being a clearing member. Nonetheless, minimizing counterparty risk is a primary objective for

market participants’ risk management and for the decision whether to clear derivatives (Bellia et al.

(2019), Financial Stability Board (FSB) (2018)). For example, Vuillemey (2019) documents that

a spike in counterparty risk during the global coffee crisis in 1880-81 motivated a group of well-

established coffee traders to create the CCP Caisse de Liquidation des Affaires en Marchandises

specifically to mitigate counterparty risk.

The remainder of this paper is structured as follows. Section 1 describes the related literature

and our contribution. Section 2 presents a stylized model that highlights the trade-off between

bilateral and multilateral netting. In Section 3, we study the impact of central clearing on coun-

terparty risk exposure. We add loss sharing to our analysis in Section 4. Section 5 revisits some

empirical predictions and main policy implications, and Section 6 concludes. Propositions and

proofs are provided in the Appendix.

6Central clearing is currently mandatory for standardized interest rate swaps (IRS) contracts and index credit
default swaps (CDS) in the US and EU. Instead, clearing is still optional for single-name CDS, foreign exchange
forwards, and commodity and equity derivatives, which largely remain uncleared (Abad et al. (2016), Office of the
Comptroller of the Currency (2016), Financial Stability Board (FSB) (2017)). The Financial Stability Board (FSB)
(2017) reports that only 28% of outstanding CDS notionals were cleared in December 2016 (compared to 5% in
June 2009). The fraction of notionals cleared is even smaller than 20% for foreign exchange, commodity, and equity
derivatives in 2016. In contrast, 61% of all IRS notionals outstanding were cleared in December 2016 (compared to
24% in December 2008), and 80% of new index CDS transactions in the US are cleared as of April 2017. In 2016,
48% of Italian, German and French Sovereign CDS transactions were cleared (Bellia, Panzica, Pelizzon, and Peltonen
(2019)), while 81% of new IRS transactions in 2017 were cleared (Dalla Fontana, Holz auf der Heide, Pelizzon, and
Scheicher (2019)).

7The ultimate effect of central clearing on financial stability also depends on its contribution to the transparency
of derivative markets (Acharya and Bisin (2014)), potential reduction in loss concentration (Lewandowska (2015)),
and tightening of financial market infrastructures’ risk-management practices.
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1 Literature Review

We contribute to a growing literature on central clearing and its role for financial stability. We are

complementary to previous studies and, from a market participant’s perspective, provide theoretical

evidence for pitfalls of central clearing in four dimensions that other studies have not acknowledged

until now. These are systematic risk, extreme market events, portfolio directionality, and loss

sharing.

Previous studies have examined loss sharing and its interaction with CCP collateral and fee

policies (Capponi, Cheng, and Sethuraman (2017), Capponi and Cheng (2018), Huang (2018)) as

well as its impact on clearing members’ propensity to engage in risk-shifting (Biais, Heider, and

Hoerova (2016), Capponi et al. (2019)). In a simulation study, Lewandowska (2015) shows that

loss sharing may reduce loss concentration and counterparty risk exposure compared to bilateral

netting in the absence of systematic risk, extreme events, or heterogeneous portfolio directionality.

We add to these studies by comparing counterparty risk under central clearing with loss shar-

ing to that with bilateral netting, focusing on (1) directionality of clearing members’ portfolios, (2)

systematic risk in derivatives prices, and (3) extreme events. We show that loss sharing has an ex-

tremely heterogeneous impact on clearing members and benefits mostly dealers with flat portfolios.

Moreover, it substantially reduces the likelihood that central clearing reduces a market participant’s

counterparty risk compared to bilateral netting – regardless of portfolio directionality.

Duffie and Zhu (2011) and Lewandowska (2015) study the impact of multilateral versus bilateral

netting on counterparty risk exposure when derivative prices are independently distributed. Their

main result is that a sufficiently large number of clearing members guarantees that central clearing

reduces counterparty risk. Duffie and Zhu (2011) also show that multilateral netting becomes

relatively more beneficial compared to bilateral netting with larger correlation across derivative

classes.8 Cont and Kokholm (2014) follow this rationale and study the effect of correlation across

derivative classes on the benefit of multilateral netting. They conclude that multilateral netting is

likely to reduce counterparty risk exposure compared to bilateral netting, in practice.

We contribute to a deeper understanding of netting by shedding light on the role of system-

8In their appendix “A. Cross-class exposure correlation”, Duffie and Zhu (2011) note that “Increasing the corre-
lation between positions increases the relative netting benefits of a CCP, because between-entity netting is not as
beneficial if cross-class exposures are positively correlated” (Duffie and Zhu (2011, p. 91-92)).
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atic risk, extreme market events, portfolio directionality, and loss sharing, which have not been

considered. We show that accounting for the joint effect of these components, results anticipated

from previous studies reverse. Importantly, we show that the presence of systematic risk and loss

sharing results in situations in which market participants face larger counterparty risk exposure in

centrally cleared than in bilateral markets for any number of clearing members, which is not the

case in previous studies that ignore systematic risk and loss sharing.

Extreme events are also studied by Huang, Menkveld, and Yu (2019) and Menkveld (2017),

who take a CCP’s perspective and identify extreme price movements as well as crowding in a small

number of risk factors as important risks to CCP stability. Complementing their analyses, we

take a market participant’s perspective and compare central to bilateral netting with respect to

counterparty risk, and show that extreme events and correlation with one risk factor reduce the

benefit of central clearing.

Ghamami and Glasserman (2017) study the capital and collateral costs of central clearing

and find that there is no cost incentive for single market participants to centrally clear derivatives,

which is driven primarily by margin costs in their model. Their result is contrasted by the Financial

Stability Board (FSB) (2018)’s assessment that central clearing reforms create an overall incentive

to clear. We add to these studies by examining the sensitivity of counterparty risk toward loss

sharing, systematic risk, portfolio directionality, and margins. Even without considering these

capital and collateral costs, we find that multilateral netting does not always dominate bilateral

netting.

Empirical evidence on the impact of central clearing on derivative markets has been growing

only recently, fueled by the increasing availability of granular data. Examples, among others, are

Loon and Zhong (2014), Duffie, Scheicher, and Vuillemey (2015), Du, Gadgil, Gordy, and Vega

(2016), and Bellia et al. (2019) for single-name CDS, Menkveld, Pagnotta, and Zoican (2015) for

equity, Mancini, Ranaldo, and Wrampelmeyer (2016) for interbank repo, and Cenedese, Ranaldo,

and Vasios (2018) and Dalla Fontana et al. (2019) for IRS markets. In particular, Bellia et al.

(2019) provide empirical evidence that dealers typically clear contracts with risky counterparties

that result in small CCP margins being paid, i.e., contracts with large netting benefits. Hence,

counterparty risk and netting considerations are highly relevant for decisions to centrally clear.

This result is consistent with the historical evidence documented by Vuillemey (2019), who shows
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that a spike in counterparty risk during the global coffee crisis in 1880-81 motivated a group of well-

established coffee traders to create the CCP Caisse de Liquidation des Affaires en Marchandises

specifically to mitigate counterparty risk.

2 A model of central clearing with systematic risk

To identify the impact of netting and loss sharing on counterparty risk, we compare a central

clearing architecture with a bilateral market from a market participant’s perspective for a given

set of derivative trades. Derivative trades are classified in K derivative classes. This classification

might result from grouping derivatives according to the type of underlying, such as interest rate,

credit, commodities, or equities. One could also more granularly distinguish between derivatives

that are sufficiently standardized for central clearing and those that are not. This interpretation

will be relevant because we will later assume that a CCP clears all derivative trades within a specific

derivative class.

Counterparty risk results from replacement costs during the time between opening and settle-

ment (i.e., close-out) of a derivative contract (Bank for International Settlements (BIS) (1998)).

These costs result from changes in contract values during the settlement period, which is the time

between the latest exchange of collateral (i.e., variation margin) and the liquidation (i.e., settle-

ment) of a contract portfolio. Clearly, the length of the settlement period depends on the liquidity

of contracts as well as the frequency of margin exchange. It typically ranges from 2 to 5 days for

centrally cleared products, as these tend to be very liquid and margins are exchanged daily (Arns-

dorf (2012)), but might be larger for non-centrally cleared and less liquid positions. Without loss

of generality, we consider a one-period model. At time t = 0, contracts are exchanged (or, equiva-

lently, all contracts are marked to market by the exchange of variation margin) and, subsequently,

counterparties might default. At time t = 1, contracts are settled.

[Place Figure 2 about here]

As illustrated in Figure 2, we assume that, during the settlement period, the price change

of contracts that market participant i traded with market participant j in derivative class k is

given by Xk
ij = vkijr

k
ij , where vkij reflects the contract volume (i.e., the quantity traded) as well
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as the direction of trade (i.e., long vs short position). Market participants are called entities or

counterparties hereafter.

rkij is the return (at market value, scaled by contract size vkij) of all contracts traded between

entities i and j in derivative class k during the settlement period. We initially assume that all

contract returns are normally distributed with zero mean, E[rkij ] = 0.9 Symmetry substantially

reduces the dimension of our model and improves its tractability.10 We consider a single-factor

model for contract returns, such that

rkij = βkijM + σkijε
k
ij , (1)

where εkij ∼ N (0, 1) is idiosyncratic risk. It is εkij = εkji (due to symmetry of trades), εkij and εmhl are

independent for different derivative classes k 6= m and different entity pairs (h, l) /∈ {(i, j), (j, i)},

and εkij is independent from M for all i, j, k.11 The systematic risk factor M ∼ N (0, σ2
M ) serves as a

latent variable that reflects the state of the derivatives market (or, more generally, macroeconomic

conditions), and βkij is the systematic risk exposure of the portfolio of all contracts traded between

i and j in derivative class k.12

It will be useful to reparametrize rkij in terms of the total contract volatility, σkX,ij =
√

var(rkij),

and correlation with M , ρkX,M,ij = cor
(
rkij ,M

)
, such that βkij = ρkX,M,ij

σkX,ij
σM

and

σkij = σkX,ij

√
1− (ρkX,M,ij)

2. The correlation between two contracts in classes k and m, traded

between i and j, and h and l, then equals cor
(
Xk
ij , X

m
hl

)
= sgn

(
vkij v

m
hl

)
ρkX,M,ijρ

m
X,M,hl, where

sgn(x) = |x|/x is the signum function. This correlation is positive if i and h have either both long

or both short positions, and is negative otherwise. In the following, we will often focus on one

market participant i’s contract portfolio
{
Xk
ij : j ∈ {1, ..., γ}\{i}, k ∈ {1, ...,K}

}
.

9Due to the small time horizon of the settlement period, the risk-free rate and risk premium in derivative prices
are negligible. Thus, we assume that they are equal to zero, i.e., E[rkij ] = 0. Expected returns will, however, be
non-zero when we condition on a specific realization of the systematic risk factor.

10The assumption of normally distributed bilateral exposures might not be justified for individual contracts, since
these often exhibit heavily skewed and fat-tailed market values. However, due to diversification arising from aggregat-
ing across underlying names as well as long and short positions across derivatives traded in the same derivative class
with the same counterparty, it is reasonable that exposures are substantially less skewed or fat-tailed, particularly
for large dealers. The assumption of normality allows us to work with closed-form analytical solutions for the most
part of the paper.

11Due to symmetry, the gain of i is the loss of j, such that rkij = rkji, and vkij = −vkji.
12In the absence of systematic risk, βkij ≡ 0, then our model coincides with Duffie and Zhu (2011)’s baseline

model. In their appendix, Duffie and Zhu (2011) also consider correlation across (but not within) asset classes, which
corresponds to βkij ≡ 0 and cor(εkij , ε

m
hl) 6= 0 for k 6= m, but cor(εkij , ε

m
hl) = 0 for k = m, (i, j) 6= (h, l).
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Throughout the paper, we assume a positive correlation between returns rkij and the systematic

risk factor M , βkij > 0. This comes without loss of generality, since the final profit and loss, Xk
ij ,

ultimately depends on the long and short position of entities, reflected by the sign of vkij . For

example, if vkij > 0, then entity i is long in the systematic risk factor, cor(Xk
ij ,M) > 0. Since

symmetry implies that vkji = −vkij , market participant j is then short in the systematic risk factor,

cor(Xk
ji,M) < 0, if vkij > 0. The absolute size |vkij | determines the contract volume and thus reflects

the notional. Since we will be mainly interested in heterogeneity in portfolio directionality (i.e.,

the sign of vkij), but not heterogeneity in absolute position size, throughout the paper we assume

that |vkij | = 1 for all i 6= j.

First, we begin with the model of a bilaterally netted (i.e., non-centrally cleared) market. We

assume that all entity pairs have bilateral (close-out) netting agreements with each other. Netting

agreements aggregate outstanding positions into one single claim (Bergman, Bliss, Johnson, and

Kaufman (2004)) and are common market practice (e.g., Mengle (2010)). Bilateral netting offsets

gains and losses of different derivative trades across different derivative classes (e.g., IRS and CDS)

with a single counterparty. For example, suppose that entity i trades two contracts with entity j

and the value of these contracts is X1
ij = −100 and X2

ij = 100. Without bilateral netting, entity

j owes 100 to i on contract 2, and thus i loses 100 if j defaults. Moreover, i is still obligated to

pay 100 to j for contract 1 if j defaults. With a bilateral netting agreement, the value of the two

contracts is canceled out prior to default. In this example, neither counterparty i or j would suffer

a net loss if one of them defaults. Thus, in general, the total counterparty loss of i given a default

of j equals the positive value of the sum of contract value changes in the K derivative classes,

max
(∑K

k=1X
k
ij , 0

)
. Trading with γ − 1 counterparties in a bilateral market with K derivative

classes, the total loss of i given default of all its counterparties equals

EBN,Ki =

γ∑
j=1,j 6=i

max

(
K∑
k=1

Xk
ij , 0

)
. (2)

Second, we introduce central clearing. If derivative class K is centrally cleared by a CCP,

all entities i = 1, ..., γ become clearing members at the CCP while the CCP becomes the single

counterparty to all positions in this derivative class.13 Thus, there is netting across counterparties,

13Note that we do not consider client clearing in our analysis. Nonetheless, the contractual relationship between a
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which is called multilateral netting. For example, in Figure 3, A can reduce its total counterparty

risk exposure from $100 to $40 with multilateral netting, as the exposure of $100 to B is offset with

a loss of $60 to C.

[Place Figure 3 about here]

If a clearing member’s default results in a loss for the CCP, this loss is offset by contributions

from the surviving clearing members.14 To calculate a market participant’s counterparty risk

toward a CCP, Duffie and Zhu (2011) propose to focus on the case that all other clearing members

default, i.e., they are implicitly assuming no loss sharing. Then, if market participant i is the only

surviving clearing member, the trades between all other pairs of clearing members exactly offset

each other and the exposure of i toward the CCP equals

EMN
i = max

 γ∑
j=1,j 6=i

XK
ij , 0

 . (3)

As Equation (3) illustrates, in the situation that all counterparties except for the considered one (i)

default, there is mechanically no loss sharing. In this case without loss sharing, EMN
i depends only

on market participant i’s centrally cleared portfolio. By following this perspective, the counterparty

risk toward a CCP only depends on multilateral netting of derivatives. In Section 3, we follow this

approach.

However, the situation that all other clearing members default is clearly an extreme case. A

market participant’s contribution to loss sharing may substantially differ from EMN
i if not all but

only some clearing members default.15 In Section 4 we therefore study a more general measure

for counterparty risk, that also accounts for the possibility that any subset of a CCP’s clearing

members defaults. In this case, market participant i’s counterparty risk toward the CCP is affected

by the expected contribution to loss sharing.

client and dealer is often similar to a bilaterally netted contract in our model. In this case, our model is straightforward
to apply.

14 The most recent example for a clearing member default that triggered loss sharing is that of the Swedish CCP
Nasdaq in September 2018, as discussed by Faruqui et al. (2018). For a detailed discussion of the use of a CCP’s
funds to cover losses, we refer to Armakolla and Laurent (2017) and Elliott (2013).

15This is because the contribution to loss sharing is not linear in clearing members defaults (see Equation (30)).
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3 Bilateral versus multilateral netting in the absence of loss shar-

ing

In this section, we take a similar perspective as Duffie and Zhu (2011) by looking at the situation

that, for a given market participants, all its counterparties default. We will stepwise increase the

complexity of our model in order to decompose the impact of central clearing on counterparty

risk into different components, namely systematic risk, portfolio directionality, and extreme events.

For this purpose, we distinguish between counterparty risk exposure before considering collateral,

called collateralized counterparty risk exposure, and counterparty risk exposure exceeding collateral,

called uncollateralized counterparty risk exposure. We start by studying an entity’s collateralized

counterparty risk exposure, which corresponds to the metric in Duffie and Zhu (2011) and Cont

and Kokholm (2014). For simplicity, we sometimes just refer to it as counterparty risk exposure.

Duffie and Zhu (2011) argue that counterparty risk exposure is a reasonable measure for the risk of

loss from counterparty defaults and thus for a first-order consideration for systemic risk analysis.16

Comparing counterparty risk exposure between a multilaterally and bilaterally netted position

allows us to assess how central clearing changes the netting benefits, which have important effect

on counterparty risk.

For simplicity and tractability, we consider a market that is as homogeneous as possible, while we

relax several assumptions about homogeneity later. Homogeneity ensures that our baseline results

are not driven by heterogeneity of market participants and contracts. For this purpose, we follow

Duffie and Zhu (2011) and assume that all contracts exhibit the same distributional properties. We

skip entity-specific indices where possible: β ≡ βkij and σ ≡ σkij for all i 6= j and k = 1, ...,K, which

implies that ρX,M ≡ ρkX,M,ij = β σM√
β2σ2

M+σ2
, and therefore a monotonic relationship between ρX,M

and β. We thus focus on a specific group of contracts, namely those with the same volatility and

exposure to systematic risk, to identify the basic mechanisms that govern the interaction between

central clearing and counterparty risk exposure.

The fragmentation into bilaterally and multilaterally netted portfolios is illustrated in Figure

4. Multilateral netting of derivative class K has two opposing effects: on one hand, it shrinks the

16The inverse of the collateralized counterparty risk exposure is called netting efficiency by Duffie and Zhu (2011).
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bilateral netting portfolio with each counterparty by taking out derivative class K. This reduces

the netting opportunities in bilateral portfolios. On the other hand, it creates a new portfolio

across all counterparties, the multilateral netting portfolio. Clearly, if there is a large number of

counterparties γ compared to the number of derivative classes K, the number of netting oppor-

tunities in the multilateral netting portfolio may be sufficiently large to offset the reduction in

bilateral netting opportunities. The relation between multilateral and bilateral netting opportu-

nities is thus very transparently reflected by the ratio of γ to K. We will fix K in the following

and vary γ, i.e., the number of counterparties, to examine the interaction between the trade-off

of bilateral and multilateral netting with systematic risk, extreme market events, margins, and

portfolio directionality.

[Place Figure 4 about here]

3.1 Systematic risk and counterparty risk exposure

In this section, we begin the analysis by considering directional derivative portfolios where all

positions equal unity, vkij ≡ 1, as in Duffie and Zhu (2011).17 We relax this assumption in Section

3.2.

We assess the benefit of multilateral netting by comparing the counterparty risk exposure of

a given entity i with multilateral netting to that with bilateral netting. With the assumptions

above, i’s total counterparty risk exposure with bilateral netting of K derivative classes with γ − 1

counterparties is given by

E[EBN,Ki ] = (γ − 1)ϕ(0)
√
σ2
MK

2β2 +Kσ2, (4)

where ϕ(·) is the probability density function of the standard normal distribution.

Proof: See Proposition 1 in the Appendix.

If derivative class K is multilaterally netted, remaining K − 1 classes are bilaterally netted and i’s

17Note that due to the symmetry of X, results (that are unconditional of M) also hold for vkij ≡ −1.
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total counterparty risk exposure is given by

E[EBN+MN
i ] = ϕ(0)(γ − 1)

√
σ2
M (K − 1)2β2 + (K − 1)σ2︸ ︷︷ ︸

=E[EBN,K−1
i ] (bilaterally netted)

+ϕ(0)
√
σ2
M (γ − 1)2β2 + (γ − 1)σ2︸ ︷︷ ︸

=E[EMN
i ] (multilaterally netted)

. (5)

Proof: See Proposition 2 in the Appendix.

The first term of E[EBN+MN
i ] captures entity i’s counterparty risk exposure resulting from bilateral

netting agreements with γ−1 counterparties in K−1 derivative classes, which is E[EBN,K−1
i ]. The

second term is the counterparty risk exposure in the multilaterally netted derivative class K, which

is E[EMN
i ].

In the following, we examine the impact of systematic risk on a market participant’s counter-

party risk exposure with multilateral netting relative to that with bilateral netting. Proposition

2 in the Appendix shows that there exists a positive lower bound for the multilaterally netted

class-K exposure if, and only if, entities are exposed to systematic risk. Thus, a large number of

counterparties cannot provide an arbitrarily low level of multilateral exposure in the presence of

systematic risk. This is a main distinction to previous models without systematic risk (such as the

one by Duffie and Zhu (2011)) and will drive many of our results.

Figure 5 (a) illustrates the relative change in counterparty risk exposure by moving from bilateral

to multilateral netting of derivative class K, which is given by

∆E = E[EBN+MN
i − EBN,Ki ]/E[EBN,Ki ]. (6)

If ∆E < 0, then multilateral netting results in smaller counterparty risk exposure than bilateral

netting. In Figure 5 (a), we vary the number of counterparty γ, which is the key variable of

interest in previous studies and reflects the number of multilateral netting opportunities.18 ∆E is

positive for a small number of counterparties γ and negative for large γ. Thus, multilateral netting

18We hold the number of derivative classes fixed to K = 10, which does not qualitatively affect our results.
Alternatively, we could fix γ and vary the degree of concentration in derivative portfolios. However, this would
require more assumptions on the structure of the portfolio. Instead, we will first vary the number of counterparties
as proxy for multilateral netting opportunities here, and portfolio directionality in Section 3.2.
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reduces counterparty risk only for a large number of counterparties.19 The intuition is as outlined

above, namely that a larger number of counterparties increases the number of multilateral netting

opportunities (γ) relative to bilateral netting opportunities (K). As a result, the average volatility

per counterparty and thus counterparty risk exposure decrease as the number of counterparties

increases.

[Place Figure 5 about here]

In Proposition 2 in the Appendix we show that there always exists a minimum number of coun-

terparties such that multilateral netting reduces counterparty risk exposure compared to bilateral

netting, γmin = min{γ ∈ N : ∆E < 0} < ∞. Figure 5 (b) illustrates the impact of correlation

ρX,M between derivatives prices and the systematic risk factor M on γmin, with the calibration

described below. Without systematic risk (ρX,M = 0), multilateral netting is only beneficial when

at least 39 counterparties are present. As Figure 5 (b) shows, systematic risk radically changes the

minimum number of counterparties: γmin is steeply increasing with the correlation ρX,M and for

the calibrated correlation ρX,M = 0.43 it is equal to 121.20

The intuition for this result is that the benefit of an additional counterparty in the multilateral

netting portfolio is decreasing with systematic risk, since

d

dγ

E[EMN
i ]

γ − 1
=

ϕ(0)σX (1−ρ2X,M)

2(γ−1)2
√
ρ2X,M (1−(γ−1)−1)+(γ−1)−1

(7)

converges to zero when |ρX,M | approaches unity. For bilaterally netted portfolios,
E[EBNi ]
γ−1 is instead

unaffected by γ. It thus requires a larger number of counterparties γ, such that netting opportunities

in the multilateral portfolio are sufficient to offset the reduction in overall netting opportunities

due to fragmented netting. As a result, the larger the systematic risk exposure, the larger is the

minimum number of counterparties γmin.21 At the most extreme, with perfect correlation across

19Indeed, it is straightforward to show that at least γ = K + 2 entities are needed such that multilateral netting of
derivative class K may reduce counterparty risk exposure.

20This result differs from previous studies: Duffie and Zhu (2011) and Cont and Kokholm (2014) only study correla-
tion across (but not within) derivative classes, which reduces the minimum number of counterparties, while systematic
risk (which is correlation across and within derivative classes) increases the minimum number of counterparties.

21Nonetheless, note that a larger systematic risk exposure also reduces the inefficiency of multilateral netting - that
is, it reduces ∆E if ∆E > 0 for a small number of counterparties, as Figure 5 (a) shows. The reason is that systematic
risk exposure does not only impact multilateral but also bilateral netting portfolios. The larger the correlation, the
smaller the impact of different bilateral and multilateral netting opportunities.
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contracts (|ρX,M | = 1), there are no netting opportunities with bilateral or multilateral netting, and

thus no difference between bilateral and multilateral netting in terms of counterparty risk exposure

for any number of counterparties.

Result 1. There exists a minimum number of counterparties, γmin, such that multilateral netting

reduces a directional trader’s collateralized counterparty risk exposure compared to bilateral netting

if γ ≥ γmin. γmin is increasing with the correlation between derivatives prices and the systematic

risk factor.

We calibrate the model in order to realistically reflect the characteristics of derivative markets.

Although we vary the number of counterparties in most analyses, we use γ = 16 as a baseline

calibration, which corresponds to the 16 largest dealers in European markets, that trade more

than 50% (in terms of outstanding notional) of centrally and non-centrally cleared interest rate

derivatives and 80% of single-name CDS in the European market (Abad et al. (2016)), and is close

to the actual number of clearing members at US and European CCPs.22

We empirically calibrate contract returns based on 5-day returns of index CDS, which are

already subject to a clearing obligation in the US and EU. The systematic risk factor M is proxied

by the S&P 500. Then the empirically calibrated correlation between derivatives contract returns

and systematic risk is ρX,M = 0.43. The detailed calibration procedure is documented in the Online

Appendix.

For this baseline calibration, multilateral netting of one derivative class only reduces exposures

in a market with at least 121 counterparties. This is unrealistically large compared to the high

concentration among a small number of dealers, for example, in the IRS and CDS market (Abad

et al. (2016), Peltonen, Scheicher, and Vuillemey (2014), Getmansky, Girardi, and Lewis (2016)),

and the current number of clearing members at CCPs. It also largely exceeds the minimum number

of counterparties in the absence of systematic risk (as in Duffie and Zhu (2011)), which is 39 with

our calibration.

22According to their CPMI-IOSCO public quantitative disclosures for 2018 Q2, ICE Clear US has 35 general
clearing members. LCH has 55 general clearing members for interest rates, 11 for OTC foreign exchange, 7 for fixed
income, and 22 for equities-derivatives clearing.
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3.2 Portfolio directionality

The previous section examines an entity with a directional portfolio: all trades exhibit the same

positive correlation (vβ > 0) with the systematic risk factor. However, market participants might

engage in trades that offset each others’ systematic risk exposure and, thus, reduce portfolio direc-

tionality. For example, taking a long position on an IRS with 5 years tenor and a short position on

an IRS with 10 years tenor hedges systematic risk exposure if the 5 year and 10 year interest rates

are correlated with the systematic risk factor (reflecting, e.g., macroeconomic conditions). Equa-

tion (8) illustrates differences in portfolio directionality across entities in a market with five traders,

where a cell (i, j) is the derivative position of the entity i (depicted in a row) with counterparty j

(depicted in a column).

(vkij)i,j∈{1,...,γ} =



1 1 1 1 (purely directional)

−1 1 1 1

−1 −1 1 1 (flat)

−1 −1 −1 1

−1 −1 −1 −1 (purely directional)


for all k = 1, ..,K. (8)

For simplicity, most of our analysis will focus on the most extreme entities that are illustrated in

Equation (8):

(a) Market participants i = 1 and i = γ are (purely) directional since all their derivatives positions

have the same correlation with the systematic risk factor, respectively.

(b) Market participant i = b(1 +γ)/2c is a dealer has a flat portfolio and is, thus, hedged against

systematic risk within each derivative class k (as
∑γ

j=1,j 6=i v
k
ij ≈ 0).

In the following, we examine the interaction between portfolio directionality and the impact of

central clearing on counterparty risk. We first, very generally, consider an entity with arbitrary

net volume vKi∗ =
∑γ

j=1,j 6=i v
K
ij in the centrally cleared derivative class. vKi∗ reflects i’s net class-

K systematic risk exposure and is the sum across columns for a given row in Equation (8). For

simplicity, we assume that vkij ∈ {−1,+1} for all i, j, k and hold fixed the net bilateral volume

with each counterparty, v∗i ≡ v∗ij =
∑K

k=1 v
K
ij . Then, from Propositions 1 and 2 in the Appendix,
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counterparty risk exposure with bilateral netting is

E[EBN,Ki ] = ϕ(0)(γ − 1)
√
σ2
Mβ

2(v∗i )
2 + σ2K (9)

and, if class-K is centrally cleared, the class-K counterparty risk exposure is

E[EMN
i ] = ϕ(0)

√
σ2
Mβ

2(vKi∗ )
2 + σ2(γ − 1). (10)

The impact of multilateral netting on counterparty risk exposure (relative to bilateral netting) is

now

∆E =
(γ − 1)

√
σ2
Mβ

2(v∗i − vKi1 )2 + σ2(K − 1) +
√
σ2
Mβ

2(vKi∗ )
2 + σ2(γ − 1)

(γ − 1)
√
σ2
Mβ

2(v∗i )
2 + σ2K

− 1, (11)

assuming for simplicity that vKi1 ≡ vKij for all j. If there were no systematic risk (i.e., if β = 0),

then ∆E =
√

K−1
K +

√
1

(γ−1)K −1 for all entities. In this case, as in Duffie and Zhu (2011), a larger

number of counterparties γ reduces ∆E and thus increases the multilateral netting benefit. Since

derivative contracts are independent in this case, it is irrelevant whether an entity is long or short

with any contract.

Result 2. The directionality of an entity’s portfolio affects collateralized counterparty risk exposure

only in the presence of systematic risk.

Portfolio directionality is relevant in the presence of systematic risk (i.e., with β 6= 0). Equation

(11) implies that it is relatively less beneficial to multilaterally net class-K if the net class-K portfolio

value is more directional (i.e., with larger (vKi∗ )
2): for |β| > 0 it is

∂∆E

∂(vKi∗ )
2

=
(σ2
Mβ

2(vKi∗ )
2 + σ2(γ − 1))−1/2σ2

Mβ
2

2(γ − 1)
√
σ2
Mβ

2(v∗i )
2 + σ2K

> 0. (12)

This is the case, for example, for entities that take only IRS pay-fixed positions. In contrast,

multilateral netting is more favorable for entities with a flat multilateral (class-K) portfolio (e.g.,

consisting of a similar amount of pay-fixed and pay-float IRS positions).

Equation (12) shows that, due to systematic risk in derivatives prices, multilateral netting has
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a heterogeneous impact on different entities, driven by the directionality of their portfolios.23 It

is relatively less favorable to move from bilateral to multilateral netting for entities that have a

more directional portfolio in the cleared derivative class (with the CCP). Since end-users typically

have directional portfolios within the same derivative class (to hedge other balance sheet risks),

our result suggests that end-users have either a small or no benefit from multilateral netting.

Instead, dealers that hedge derivative trades across counterparties can derive a large benefit from

multilateral netting.

Result 3. The less directional an entity’s portfolio of multilaterally netted derivatives, the smaller

is this entity’s collateralized counterparty risk exposure with multilateral netting compared to bilateral

netting.

While the previous results are for general portfolio directionality, in the remaining paper we will

focus on the most distinct types of entities, illustrated in Equation (8): (1) entities with a perfectly

directional portfolio (as in Section 3.1), which we call directional traders, and (2) entities with the

same positive and negative positions within one derivative class (i.e.,
∑γ

j=1,j 6=i v
k
ij = 0), which we

call dealers.

Figure 6 illustrates the impact of multilateral netting compared to bilateral netting on a dealer’s

counterparty risk exposure. Multilateral netting becomes more beneficial the larger the correlation

between derivatives prices and systematic risk factor. The reason is that systematic risk only

affects the dealer’s bilateral portfolios (which are directional) but not the multilateral portfolio

(which is perfectly hedged). Thus, dealers’ benefit from multilateral netting relative to that from

bilateral netting increases with larger correlation between derivatives prices and systematic risk

factor. Moreover, by comparison of Figure 6 for a dealer to Figure 5 for a directional trader, we

find that multilateral netting is clearly more favorable for a dealer than for a directional trader

in the presence of systematic risk (ρX,M > 0). The reason is that the dealer is perfectly hedged

against systematic risk in the multilaterally netted portfolio while the directional trader is not.

[Place Figure 6 about here]

23Portfolio directionality is typically driven by business type of derivative market participants. For example, in the
IRS market, dealers (intermediating trade) exhibit close-to-zero net exposure, while insurers and pension funds hedge
a negative duration mismatch on their balance sheet by taking pay-float positions, and (non-dealer) banks hedge a
positive duration mismatch on their balance sheet by taking pay-fixed positions (Abad et al. (2016)).
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3.3 Multilateral netting during extreme events

The primary purpose of central clearing is to enhance financial stability during crisis times (e.g.,

G20 (2009), Financial Stability Board (FSB) (2017)). In these times, where counterparty defaults

are more likely than in normal times, CCPs should ideally absorb losses arising from counterparty

defaults and thereby decrease the spillover of risk in the overall financial system. Thus, it is of

prevalent importance to examine the impact of central clearing on counterparty risk exposure during

exactly these times.

We study counterparty risk exposure during extreme events by conditioning on extreme real-

izations of the systematic risk factor M . This rationale and approach is similar to the (marginal)

expected shortfall of Acharya, Pedersen, Philippon, and Richardson (2017): while they examine

the capital shortfall of financial institutions during crises, we study counterparty risk exposure. We

start by considering a directional trader (as in Section 3.1) and then assess the impact of portfolio

directionality on counterparty risk (analogously to Section 3.2).

Consider a directional trader whose derivative positions are positively correlated with the sys-

tematic risk factor (vkij ≡ 1). For this trader, the total counterparty risk exposure with bilateral

netting conditional on a realization M̄ of the systematic risk factor M is given by

E[EBN,Ki |M = M̄ ] = (γ − 1)
√
K

(
M̄
√
KβΦ

(
M̄
√
K
β

σ

)
+ σϕ

(
−M̄
√
K
β

σ

))
(13)

and with multilaterally netting derivative class K it is given by

E[EBN+MN
i |M = M̄ ] = E[EBN,K−1

i |M = M̄ ]

+M̄(γ − 1)βΦ

(
M̄
√
γ − 1

β

σ

)
+ σ

√
γ − 1ϕ

(
−M̄

√
γ − 1

β

σ

)
, (14)

where Φ(·) is the cumulative distribution function of the standard normal distribution.

Proof: See Proposition 3 in the Appendix.

The overall effect of multilateral netting crucially depends on the severity of realizations M̄ .

We are particularly interested in extremely adverse events, and denote the severity of an event

{M = M̄} by q = P(M ≤ M̄), such that M̄ = σMΦ−1(q), where Φ−1(·) is the inverse cumulative

distribution function of the standard normal distribution. For given q, M̄ is then the largest among
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the q×100% worst possible realizations of the systematic risk factor M . The smaller q, the smaller

(large and negative) M̄ , and thus the more adverse is the state of the world.

Figure 7 (a) depicts the change in counterparty risk exposure due to moving from bilateral to

multilateral netting of class K. We show that, in more adverse realizations of the systematic risk

factor (smaller q), multilateral netting is less favorable compared to bilateral netting. If an event

is too extreme, then multilateral netting increases counterparty risk exposure relative to bilateral

netting regardless of the number of counterparties. For our baseline calibration, this already holds

for q ≤ 0.34 (i.e., in the 34% most adverse realizations of M), as illustrated in Figure 7 (b). Our

result thus implies that counterparty risk exposure during stress times is unambiguously smaller

without multilateral netting regardless of the number of counterparties. Note that this result holds

in very extreme states (such as the q = 10% worst possible states) but also in relatively moderate

states (such as q = 34%).

[Place Figure 7 about here]

The reason for our result is the dominance of extremely large expected gains and losses during

extreme events. By rearranging Equation (13), the counterparty risk exposure with bilateral netting

can be represented as

E[EBN,Ki |M = M̄ ] = (γ − 1)E
[
max

(
M̄Kβ +

√
Kσε̃, 0

)]
, (15)

where ε̃ ∼ N (0, 1). Clearly, if M̄ ≈ 0, then E[EBN,Ki | M = M̄ ] is increasing with the number

of derivative classes K since it is proportional to
√
K. Thus, when one derivative class-K is taken

out from bilateral portfolios, the bilaterally netted counterparty risk exposure decreases due to

a smaller volatility in the remaining portfolio. This leaves room for the total counterparty risk

exposure to be smaller after additionally multilaterally netting derivative class K, i.e., it is feasible

that

E[EBN,K−1
i |M = 0] + E[EMN

i |M = 0] < E[EBN,Ki |M = 0]. (16)

In contrast, if contracts have sufficiently large negative expected returns during extreme events (if M̄

is large and negative), then the bilateral exposure in Equation (15) is not increasing but decreasing

with K. The reason is that the effect of the number of derivative classes K on the expected value
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M̄Kβ (making it very large and negative) dominates the effect on total volatility
√
Kσ. In this

case of large and negative realizations M̄ , excluding class-K from bilateral portfolios increases the

expected portfolio gain and, thereby, the counterparty risk exposure in these portfolios. Then,

E[EBN,K−1
i |M = M̄ ] > E[EBN,Ki |M = M̄ ] (17)

and, thus, counterparty risk exposure is smaller without multilateral netting of class K, i.e.,

E[EBN,K−1
i |M = M̄ ] + E[EMN

i |M = M̄ ] > E[EBN,Ki |M = M̄ ]. (18)

Interestingly, the impact of multilateral netting is symmetric in the right-tail of the distribution

of M , i.e., for large q, as Figure 7 (b) shows. During these extremely large and positive realizations

of M , the directional trader makes large expected gains on all contracts and, thus, has large

counterparty risk. Then, for small γ, the small number of netting opportunities in the multilateral

portfolio makes multilateral netting less beneficial, analogously to our baseline analysis in Section

3.1. For large γ, the expected value of contracts in the multilateral portfolio is extremely large,

such that multilateral netting opportunities are negligible. However, removing class-K contracts

from bilateral portfolios substantially reduces bilateral netting opportunities (since there are only

K contract classes in bilateral portfolios compared to γ >> K counterparties in the multilateral

portfolio). This increases the per-contract bilateral counterparty risk exposure. As a result, if M̄ is

sufficiently large, multilateral netting is also not beneficial compared to bilateral netting regardless

of the number of counterparties.

The analogous rationale holds for directional traders whose positions are negatively correlated

with the systematic risk factor (i.e., with vkij < 0). However, the relation with q is now reversed,

since the positions of these traders make expected losses upon extremely positive realizations of

the systematic risk factor (with large q). As the trade-off is exactly symmetric to the one that

governs the impact of extreme events for a directional trader with vkij = 1, a directional trader with

vkij = −1 does not benefit from multilateral netting during extremely large or small realizations of

the systematic risk factor with any number of counterparties.

Result 4. During sufficiently severe extreme events, multilateral netting of one derivative class
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does not reduce a directional trader’s collateralized counterparty risk exposure compared to bilateral

netting for any number of counterparties.

Extreme events make it particularly unfavorable to exclude a derivative class from bilateral net-

ting due to the dominance of large absolute contract values. By hedging across different contracts,

entities may however reduce the unfavorable effect of extreme events. Figure 8 revisits the impact of

extreme events M̄ = σMΦ−1(q) for a dealer. In contrast to a directional trader, the dealer benefits

from multilateral netting particularly during extreme events, i.e., both small and large q. During

such events, multilateral netting allows a dealer to offset the extremely large expected gain from

one trade with the exactly opposite loss from another trade. For these trades, multilateral netting

thus eliminates the part of counterparty risk exposure that is driven by the systematic risk factor.

Hence, multilateral netting is beneficial both in extremely positive and negative realizations of the

systematic risk factor. For example, for the 10% most positive and most negative realizations of M ,

multilateral netting reduces a dealer’s counterparty risk exposure in Figure 8 (a) for any number

of counterparties. The minimum number of counterparties γmin is decreasing with the severity of

realizations of M , i.e., decreasing with |q − 1/2|, as Figure 8 (b) illustrates. Thus, the insight

is similar to Section 3.2: the stronger systematic risk, the more dealers benefit from multilateral

netting.

[Place Figure 8 about here]

Result 5. During sufficiently severe extreme events, multilateral netting of one derivative class

reduces a dealer’s collateralized counterparty risk exposure compared to bilateral netting for any

number of counterparties.

3.4 Margin requirements and counterparty risk exposure

In this section, we examine the impact of margin requirements on the benefit of multilateral net-

ting. Collateralizing exposures (also called margining) is a primary measure to reduce counterparty

risk in derivative transactions (International Swaps and Derivatives Association (2014)). Typically,

one distinguishes between initial and variation margin: initial margin is collateral available to the

(central clearing) counterparty and posted at the beginning of a trade to cover potential future
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counterparty risk exposure. Variation margins are frequently (typically daily) exchanged to com-

pensate for changes in market values. For simplicity, we assume in our model that initial margins

were exchanged before the settlement period and contracts are marked to market (i.e., variation

margin is exchanged) at the beginning of the settlement period. Then the remaining collateral

available to compensate for losses from counterparty defaults is given by the initial margin.24

We only examine a directional trader in this section. It will be clear from our results below, that

for dealers there exists a number of counterparties for any bilateral and clearing margin level such

that multilateral netting leads to smaller counterparty risk exposure than bilateral netting, i.e., the

insights from Section 3.1 qualitatively apply. This will not be the case for directional traders.

In line with recent regulations, we assume that the initial margin that j posts to i based on a

bilateral netting agreement (referred to as bilateral margin) is given by the Value at Risk at the

αBN confidence level of the portfolio value of their trades,

CBN,Kij = V aRαBN

(
K∑
k=1

Xk
ij

)
= Φ−1(αBN )

√
σ2
MK

2β2 +Kσ2. (19)

We refer to αBN as the bilateral margin (confidence) level.

The uncollateralized counterparty risk exposure is the exposure in excess of collateral, and given

by

E
[
ẼBN,Ki

]
= E

 γ∑
j=1,j 6=i

max

(
K∑
k=1

Xk
ij − C

BN,K
j , 0

) (20)

= (γ − 1)
√
σ2
MK

2β2 +Kσ2ξ(αBN ), (21)

where ξ(α) = (1−α)Φ−1(1−α) +ϕ
(
Φ−1(α)

)
adjusts the counterparty risk exposure for margin.25

Proof: See Proposition 4 in the Appendix.

If derivative class K is multilaterally netted, then j posts collateral (referred to as clearing

24Note that CCPs also have pre-funded resources that can be employed in case of a loss. However, these are small
compared to the collateral posted by clearing members. For example, for CDS clearing, pre-funded resources are
0.5% of initial margins at CME Clearing US, 2.8% at LCH Clearnet SA, and 8% ICE Clear Credit; for IRS clearing,
pre-funded resources are 3.2% of initial margin at LCH Ltd. as of March 2016 (Armakolla and Laurent (2017)).
Thus, we do not expect that accounting for pre-funded resources would substantially alter our results. Indeed, the
default of just one single trader was enough to trigger a loss of $107 million in excess of margin and default fund
contributions of the Swedish clearinghouse Nasdaq Clearing AB in September 2018 (Stafford and Sheppard (2018)).

25If α = 0.5, then Φ−1(α) = Φ−1(1− α) = CBN,K = 0, and uncollateralized counterparty risk exposure is equal to
collateralized counterparty risk exposure.
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margin) as given by the Value at Risk at the αMN confidence level,

CMN
j = Φ−1(αMN )

√
σ2
M (γ − 1)2β2 + (γ − 1)σ2. (22)

To compute the uncollateralized counterparty risk exposure of entity i in the multilaterally

netted derivative class K, we assume that the collateral provided by clearing member j is available

to i proportionally to the size of j’s trades with i. Thus,
|vKij |∑γ

h=1,h6=j |v
K
hj |
CMN
j is assigned to entity

i.26 With |vKij | ≡ 1, the uncollateralized exposure of entity i is then given by

E
[
ẼBN+MN
i

]
=
√
σ2
M (γ − 1)2β2 + (γ − 1)σ2ξ(αMN ) + E[ẼBN,K−1

i ]. (23)

Proof: See Proposition 4 in the Appendix.

Comparing the collateralized and uncollateralized counterparty risk exposure E[EBN+MN
i ] and

E[ẼBN+MN
i ] in Equations (14) and (23), respectively, it becomes apparent that the only difference

is the adjustment factor ξ. Hence, margins have an impact on the benefit of multilateral netting

only if clearing and bilateral margins differ. The larger (smaller) the confidence level of the clearing

margin αMN relative to that of the bilateral margin αBN , the larger (smaller) is the reduction of

exposures due to multilateral netting of derivative class K (for a proof, see Proposition 5 in the

Appendix).

Result 6. The larger the margin for centrally cleared derivatives relative to that for bilaterally

netted derivatives, the lower is uncollateralized counterparty risk exposure with multilateral netting

relative to that with bilateral netting.

While it is intuitive that margins reduce counterparty risk, the question we examine below is how

sensitive benefits from multilateral netting are toward differences in bilateral and clearing margins.

Interestingly, our results suggest that netting benefits are extremely sensitive toward margins: for

small deviations between bilateral and clearing margin, the number of netting opportunities is

irrelevant for the trade-off between multilateral netting. The reason for this high sensitivity is

systematic risk, as it limits netting benefits.27

26By accounting for loss sharing in Section 4, we will study a more subtle allocation of collateral among a CCP’s
clearing members.

27In the Online Appendix, we provide a more detailed analysis of the impact of margins on counterparty risk
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Result 7. There exists a threshold for the difference between bilateral and clearing margin levels

such that multilateral netting is beneficial for a directional trader’s counterparty risk exposure com-

pared to bilateral netting regardless of the number of counterparties, and vice versa. The larger the

correlation between derivatives prices and systematic risk factor, the smaller is this threshold.

4 Loss sharing

In the previous section, we examine the counterparty risk exposure of one entity in the absence of

loss sharing, i.e., for a situation in which all other counterparties default. However, this is clearly an

extreme case. The most general case is that a CCP that suffers losses due to any clearing member’s

default enters a recovery process by exploiting the resources of surviving clearing members, i.e,

shares losses (Elliott (2013), Duffie (2015)).28 However, the exposure toward a CCP is not linear

in clearing member defaults, as we show below. As a result, while the previous section provides a

clear analysis of trade-offs between bilateral and multilateral netting, it does not take into account

that a CCP shares losses among surviving clearing members. Below, we provide a more detailed

assessment of the impact of loss sharing on counterparty risk.

More specifically, we study the uncollateralized counterparty risk with loss sharing incurred by

each clearing member. Counterparty risk E∗i
BN+MN,LS is thereby defined as the sum of expected

default losses in bilaterally netted trades (exceeding margins) in K−1 asset classes and the expected

contributions to loss sharing of class-K at the CCP, e.g. for entity i it is

E[E∗i
BN+MN,LS ] =

∑
j=1,j 6=i

P(defaultj)
(
E[bilateral exposureK−1

ij ] + E[contribution to CCPKij ]
)
. (24)

We compare this measure of counterparty risk under central clearing to the counterparty risk

in a fully bilaterally netted market, which is measured as entities’ probability of default times

counterparty risk exposure,

E[E∗i
BN,K ] =

∑
j=1,j 6=i

P(defaultj)E[bilateral exposureKij ]. (25)

exposure.
28The aim of this recovery process is to return to exactly balanced positions (a so-called matched book). The

contribution of clearing members to a CCP’s loss sharing arrangement is also the relevant exposure to calculate
capital requirements of banks (Bank for International Settlements (BIS) (2014a)).
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4.1 Model

We specify a complete network structure among entities’ positions, which in particular requires that

vkij = −vkji.29 To refrain from further assumptions about the heterogeneity of entities, we impose

the same network structure for each derivative class vkij ≡ vij for all k = 1, ...,K. This structure

includes one entity that is long in the systematic risk factor with each trade (i.e., vkij > 0), one that is

short with each trade, and entities in between – as illustrated in Equation 8. All bilateral portfolios

(i.e., derivative trades with the same counterparty) are directional but multilateral portfolios (i.e.,

derivative trades in the same derivative class with different counterparties) differ in directionality.

While this assumption is clearly a simplification, it allows us to shed light on the trade-off between

directionality in bilateral and multilateral portfolios.

In the following, we study whether central clearing as a combination of loss sharing and multi-

lateral netting reduces counterparty risk compared to bilateral netting. To investigate loss sharing,

we need to consider market participants’ default probability. For this purpose, we also allow for the

possibility of default clustering. Our model for defaults is inspired by Merton (1974)’s credit risk

model and described in the Online Appendix in detail. We model each entity j’s value of assets Aj .

If Aj is below an exogenous debt threshold, j defaults. In the default model, the random value of

entity j’s value of assets at the settlement period begin is given by

Aj = exp

(
µAj −

σ2
Aj

2
+ σAjWj

)
, (26)

where (W1, ...,Wγ) are jointly standard normally distributed and correlated according to the cor-

relation matrix (ρAj ,Ah)j,h∈{1,...,γ}.
30 µAj and σAj are the drift and volatility of the asset value

process, respectively.

We assume that ρAj ,Ah > 0 for j 6= h, which implies that market participants default in clusters.

29We choose a network structure of positions that seems to be realistic - for example, in the CDS market (Getmansky
et al. (2016)). While it may be unknown whether a specific entity will be long or short in the future, the market
structure is likely to be stable over time. Moreover, business models and strategies of many entities naturally lead to
the direction of trader sides. For example, insurers take pay-float positions to hedge the negative duration mismatch
on their balance sheet. Another example are asset managers (e.g., hedge funds), that have been replacing dealers as
largest net sellers of CDS protection since the 2008 financial crisis (Siriwardane (2018)).

30In an earlier working paper version, we also allowed for correlation between asset values and systematic risk
factor, which introduces a wedge between entities with a negative vs. positive correlation between their derivatives
portfolio and the systematic risk factor. Here, we only focus on correlation among derivatives prices but not between
derivatives prices and defaults. This allows us to isolate the additional impact of loss sharing compared to Section 3.
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Correlation in defaults can result from interconnectedness between (financial) institutions, e.g.,

interbanking liabilities, such that the financial distress of one entity spills over to other entities.

A prime example has been Lehman Brothers’ default during the 2007-08 financial crisis, which

triggered substantial losses at other financial institutions. For simplicity, in the following we assume

that all market participants’ assets have the same distributional parameters, and thus drop the

parameter indices.

We define by Dj a binary random variable that equals one if market participant j defaults (i.e.,

if Aj breaches an exogenous debt threshold). Analogously to Lewandowska (2015), if all derivative

classes are bilaterally netted, then counterparty risk is given by

E
[
E∗i

BN,K
]

= E

 γ∑
j=1,j 6=i

Dj max

(
K∑
k=1

Xk
ij − C

BN,K
ij , 0

) , (27)

where the bilateral collateral CBN,Kij is given as in Section 3.4. Note that a loss is realized only in

case a counterparty’s default coincides with an adverse price movement in exceedance of collateral.

We assume independence between defaults and derivatives prices, which substantially improves the

tractability of our model. We then can combine the results from Sections 3.2 and 3.4 to rewrite

Equation (27) as

E
[
E∗i

BN,K
]

= πξ(αBN )

γ∑
j=1,j 6=i

√√√√σ2
Mβ

2

(
K∑
k=1

vkij

)2

+Kσ2, (28)

where π ∈ (0, 1) is the unconditional probability of each entity’s default and ξ(α) = (1−α)Φ−1(1−

α) + ϕ
(
Φ−1(α)

)
. Thus, counterparty risk is equivalent to counterparty risk exposure (the variable

of interest in Section 3) times the probability of counterparty default.

Now, we consider the central clearing of derivative class K. In line with loss-allocation rules in

practice (e.g., Arnsdorf (2012), Elliott (2013), and Duffie (2015)), we assume that default losses at

the CCP that exceed a defaulter’s margin are shared among surviving clearing members. A clearing

member suffers losses with the CCP only in case at least one other clearing member j defaults and

the multilaterally netted contract value of j exceeds the collateral provided by j.31 In contrast

31In practice, default losses are absorbed not only by the defaulter’s collateral (and default fund contribution) but
also by a share of the CCP’s capital, its skin-in-the-game (SITG). However, SITG is very small in practice, typically
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to the counterparty risk exposure measure of Duffie and Zhu (2011), we explicitly consider the

cases that one or more clearing members default – but do not assume that necessarily all clearing

members other than i default. The aggregate loss of the CCP is given by

L̄CCP =

γ∑
j=1

Dj max

 γ∑
g=1,
g 6=j

XK
gj − CMN

j , 0

 . (29)

As suggested by Duffie (2015) and applied in practice, default losses are shared among surviving

clearing members proportionally to the risk of their cleared trades as reflected by the initial margin

CMN
i . Then, the counterparty risk of clearing member i toward the CCP is given by32

E[E∗i
MN,LS ] = E

 (1−Di)C
MN
i∑γ

g=1(1−Dg)CMN
g

L̄CCP |
γ∑
g=1

(1−Dg) > 0

 . (30)

The primary difference between E[E∗i
MN,LS ] and E[ẼMN

i ], where the latter is the counterparty risk

exposure toward default of all counterparties (as defined in Equation (3) for the case without margin

and in Equation (23) including margin), is that E[E∗i
MN,LS ] depends on both the defaulting entity

j’s portfolio (which determines the CCP’s loss) as well as entity i’s margin relative to other surviving

entities’ margins (which determines the loss allocation). Class-K counterparty risk E[E∗i
MN,LS ] can

be rewritten for entity i as

E[E∗i
MN,LS ] = E

(1−Di)fiξ(αMN )

( ∑γ
j=1 fj

fi +
∑γ

j=1,j 6=i(1−Dj)fj
− 1

)
|

γ∑
j=1

(1−Dj) > 0

 (31)

with fi =
√
σ2
Mβ

2(
∑γ

g=1,g 6=i v
K
gi )

2 + σ2(γ − 1). Simulations in the Online Appendix show that

E

(1−Di)fi

( ∑γ
j=1 fj

fi +
∑γ

j=1,j 6=i(1−Dj)fj
− 1

)
|

γ∑
j=1

(1−Dj) > 0

 ≈ (1− π)fiπ

1− π + fi∑γ
j=1,j 6=i fj

less than 5% of initial margins (Huang (2018)). Therefore, we exclude SITG from our considerations. We do not
expect that including it would change our insights qualitatively.

32We condition on at least one entity surviving since it is extremely unlikely that all entities default at the same
time, and in practice it seems likely that a government would bail out a CCP in the case that all clearing members
default. Note also that the CCP does not default in our model since we assume that surviving clearing members are
always able to fully absorb losses.
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if π and ρ are small and γ large.33 In this case, it is fi∑γ
j=1,j 6=i fj

≈ 0 and class-K counterparty risk

with loss sharing is approximately equal to

E[E∗i
MN,LS ] ≈ π ξ(αMN )

√√√√√σ2
Mβ

2

 γ∑
g=1,g 6=i

vKgi

2

+ σ2(γ − 1)

︸ ︷︷ ︸
=E[ẼMN

i ]

. (32)

The right-hand side in Equation (32) is the probability of counterparty default times the uncollat-

eralized class-K counterparty risk exposure toward default of all counterparties, E[ẼMN
i ]. Thus,

if π and ρ are small and γ large, class-K counterparty risk exposure (times probability of default)

is actually a reasonable indicator for class-K counterparty risk with loss sharing. The intuition is

that, in this case, the loss allocation offsets the impact of other clearing members’ portfolios on

E[E∗i
MN,LS ] and only market participant i’s portfolio remains relevant for its expected contribution

to the CCP.

Otherwise, these two risk measures, E[E∗i
MS,LS ] and π × E[ẼMN

i ], may significantly differ –

depending in particular on the distribution of fi across clearing members. In the latter case, non-

linearity arising from loss sharing may substantially affect counterparty risk and the relationship

between bilateral netting and central clearing.34

Result 8. Uncollateralized counterparty risk exposure toward the default of all counterparties mul-

tiplied by the probability of counterparty default is a reasonable measure for a clearing member’s

expected contribution to CCP loss sharing, E[E∗MN,LS ] ≈ πE[ẼMN ], if (1) default probability π

and correlation of defaults ρ are small, and (2) the number of clearing members γ is large.

As before, if derivative class K is centrally cleared, the remaining K − 1 derivative classes are

bilaterally netted with counterparty risk as in Equation (27). The total counterparty risk of entity

33We examine this approximation by drawing random weights {fj : j = 1, ..., γ} from a truncated Gaus-
sian distribution on [0,∞). For γ = 50, π = 0.1, ρ ∈ [0, 0.7], the median relative deviation between

E
[
(1−Di)fi

( ∑γ
j=1 fj

fi+
∑γ
j=1,j 6=i(1−Dj)fj

− 1

)
|
∑γ
j=1(1−Dj) > 0

]
and (1−π)fiπ

1−π+ fi∑γ
j=1,j 6=i fj

is roughly 4%.

34Throughout the remaining paper, we compute counterparty risk with loss sharing as defined in Equation (31)
instead of using its approximation (32).
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i is then given by

E[E∗i
BN+MN ] = E

[
E∗i

MN + E∗i
BN,K−1

]
.

Throughout the remaining analysis, we assume that the clearing and bilateral margins are both

based on a 99% confidence level, since differing margins have similar effects as in Section 3.4. We

compute the following results by using the same baseline calibration for derivative prices as de-

scribed in Section 3.1. Moreover, if not specified differently, entities default with unconditional

probability π = 0.1 and assets in the default model have correlation ρA,A = 0.1.35 Market partici-

pants only differ in portfolio directionality, and thus we suppress entity indices where possible. The

detailed calibration is reported in the Online Appendix. While we derive closed-form analytic ex-

pressions for bilateral counterparty risk, counterparty risk with loss sharing in Equation (31) is not

analytic. Therefore, we evaluate (31) by using Monte-Carlo simulations with 100,000 realizations

of default vectors (Dj)j=1,...,γ .

4.2 Baseline results

We start with the benchmark case that derivatives prices have no systematic risk exposure, i.e.,

β = ρX,M = 0. In this case, the impact of loss sharing is the same for all entities, independently

of portfolio directionality. For example, in Figures 9 (a) and (b) the effect of central clearing with

loss sharing coincides for directional traders and dealers if ρX,M = 0. Central clearing reduces

counterparty risk compared to bilateral netting in the presence of a sufficiently large number of

counterparties. Similarly to the minimum number of counterparties for multilateral netting to be

beneficial in Section 3.1, the minimum of counterparties for loss sharing to be beneficial is roughly

γmin = 40.

Result 9. In the absence of systematic risk, the impact of central clearing on counterparty risk

is independent from portfolio directionality. If the number of counterparties is sufficiently large,

central clearing with loss sharing reduces counterparty risk compared to bilateral netting.

[Place Figure 9 about here]

35The results are robust toward other levels of default clustering.
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In the following, we consider a positive correlation between derivatives prices and the systematic

risk factor. In this case, portfolio directionality becomes relevant for counterparty risk. According

to Result 8, counterparty risk exposure toward default of all counterparties (times probability of

default) is a reasonable measure for counterparty risk with loss sharing if defaults are infrequent,

uncorrelated, and there are many counterparties. In this situation, the insights from Section 3.2

suggest that, compared to bilateral netting, dealers benefit relatively more from central clearing

than directional traders. Figure 9 is in line with this intuition: if derivative prices are correlated

(ρX,M > 0), dealers derive a substantially larger benefit from central clearing with loss sharing

vis-á-vis bilateral netting than directional traders. Instead, for a realistic number of counterparties

central clearing does not reduce directional traders’ counterparty risk.

Moreover, we find that the impact of central clearing with loss sharing on counterparty risk

(E∗i
MN,LS in Figure 9) is similar to the impact of multilateral netting (Ei

MN in Figures 5 and 6)

compared to bilateral netting.36 The primary, subtle difference is that loss sharing is slightly more

beneficial than multilateral netting (without loss sharing) for directional traders than for dealers

in the presence of a small number of counterparties and large systematic risk exposure.37

Result 10. Compared to bilateral netting, the impact of central clearing with loss sharing on the

average level of counterparty risk is similar to that of multilateral netting.

4.3 Loss sharing during extreme events

In the following, we examine how the impact of central clearing differs across realizations of M .

Applying the insights from Proposition 3 in the Appendix shows that counterparty risk in K

bilaterally netted derivative classes conditional on realization M̄ of the systematic risk factor is

given by

E[E∗i
BN,K |M = M̄ ] = π

γ∑
j=1,j 6=i

[(
M̄β

K∑
k=1

vkij − CBNj

)
Φ

(
M̄β

∑K
k=1 v

k
ij − CBNj√

Kσ

)

+
√
Kσϕ

(
−
M̄β

∑K
k=1 v

k
ij − CBNj√

Kσ

)]
. (33)

36Note that correlation of defaults has no impact on counterparty risk exposure, since the latter is linear in defaults.
37The reason is that loss sharing enables directional traders to benefit from the flat portfolios of dealers: if a dealer

defaults, the CCP’s loss is small due to its flat portfolio with the dealer and, thus, directional trader face relatively
small losses.
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If derivative class K is centrally cleared, the CCP’s expected loss conditional on {M = M̄} and

defaults D = (D1, ..., Dγ) is

E[L̄CCP |M = M̄,D] =

γ∑
j=1

Dj

[M̄β

γ∑
g=1,g 6=j

vKgj − CMN
j

Φ

(
M̄β

∑γ
g=1,g 6=j v

K
gj − CMN

j√
γ − 1σ

)

+
√
γ − 1σϕ

(
−
M̄β

∑γ
g=1,g 6=j v

K
gj − CMN

j√
γ − 1σ

)]
. (34)

Then, i’s counterparty risk with loss sharing in the centrally cleared derivative class K is

E[E∗i
MN,LS |M = M̄ ] = E

 (1−Di)C
MN
i∑γ

g=1(1−Dg)CMN
g

E[L̄CCP |M = M̄,D] |M = M̄,

γ∑
g=1

(1−Dg) > 0

 ,
which we evaluate by using Monte-Carlo simulations.

To provide an intuition for the impact of different realizations of the systematic risk factor

on counterparty risk, Figure 10 compares the distribution of counterparty risk with loss sharing

and with bilateral netting for different event severity q ∈ (0, 1) (with M̄ = σMΦ−1(q)) across

directional traders and dealers.38 For example, the first column of figures describes a directional

trader with vkij ≡ 1 (e.g., entity i = 1 in Equation (8)). The positions of this trader have large

expected gains upon large and positive realizations of the systematic risk factor (large q). Thus,

bilateral counterparty risk in these states is large (see row E∗BN,K in Figure 10). By participating

in central clearing with loss sharing, the directional trader becomes exposed to default losses in

bad states (small q) as well, e.g., when it must offset the CCP’s loss due to another clearing

member’s default. Counterparty risk with loss sharing (see first column and row E∗MN,LS) is thus

large for both extremely positive and negative realizations of the systematic risk factor, i.e., very

large and small q. As a result, compared to bilateral netting, central clearing with loss sharing

increases this directional trader’s counterparty risk for small q and may reduce it only for very

large q (see first column and row E∗BN+MN,LS − E∗BN,K). Directional traders’ with vkij = −1

have the opposite correlation between systematic risk factor and derivatives positions and, thus,

their benefit from central clearing with loss sharing is flipped and occurs only for very small q (see

third column in Figure 10). In contrast, as half of a dealer’s positions make gains in good and bad

38We fix the number of counterparties in Figure 10 to γ = 16, but the result is qualitatively the same for different
values.

35



states, respectively, dealers benefit from central clearing with loss sharing in any extreme state, i.e.,

extremely small and large q, compared to bilateral netting.

[Place Figure 10 about here]

Figure 11 depicts the relative impact of central clearing with loss sharing compared to bilateral

netting conditional on a realization M̄ = σMΦ−1(q) of the systematic risk factor M . The results

are in line with the intuition above. Entities only benefit in those states in which they have an

extremely large bilateral counterparty risk, i.e., for extremely large q for directional traders with

v = 1, small q for directional traders with v = −1, and large |12 − q| for dealers. Upon less

extreme realizations of M , the additional exposure from bearing other clearing members’ shared

losses increases counterparty risk compared to bilateral netting.

[Place Figure 11 about here]

Hence, our first insight is that, for any market participant, a benefit from loss sharing (compared

to bilateral netting) occurs only in some very extreme realizations of the systematic risk factor.

These are states in which the counterparty risk without loss sharing (but with bilateral netting) is

particularly large and, thus, market participants can load-off the large bilateral counterparty risk

to the CCP. For our baseline calibration in Figure 11, both types of directional traders and dealers

do not reduce but increase counterparty risk by sharing losses in more than 80% of the systematic

risk factor’s realizations.39 For example, the directional trader in Figure 11 (a) does not benefit

from central clearing with loss sharing in the q < 0.9×100% least extreme realizations of M for any

number of counterparties. The dealer in Figure 11 (c) benefits from central clearing only in either

extremely large or small realizations of M , since these are also the states in which he is exposed to

large bilateral counterparty risk.40

Result 11. Central clearing with loss sharing does not reduce counterparty risk during moderate

market events compared to bilateral netting.

The second insight is that, during sufficiently extreme events, central clearing with loss sharing

is beneficial compared to bilateral netting for all dealers but only one type of directional trader.

39We do not find any γ ≤ 500 for which this result does not hold.
40As we show in the Online Appendix, our results qualitatively also hold when a CCP clears more than one

derivative class - even when it clears the whole derivatives market.
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This benefit comes at the expense of the other type of directional trader, that is exposed to larger

counterparty risk. Thus, only some market participants can benefit from loss sharing at the same

time – at the expense of other market participants. In less extreme states, loss sharing exposes

entities to default losses that they would not bear with bilateral netting and thus no market

participant benefits from it.

Result 12. Conditional on extreme realizations of the systematic risk factor M , loss sharing trans-

fers counterparty risk from dealers and one type of directional traders to other directional traders.

There exists no realization of M such that, conditional on this realization, central clearing with loss

sharing reduces counterparty risk for ALL market participants compared to bilateral netting.

In Section 3 we followed Duffie and Zhu (2011) and measure i’s counterparty risk exposure

conditional on all other counterparties defaulting. This measure only reflects the trade-off between

bilateral and multilateral netting but does not take loss sharing into account. Our third insight is

that the impact of loss sharing on counterparty risk (compared to bilateral netting) is different from

the impact of multilateral netting on counterparty risk (compared to bilateral netting). We show

this result by comparing loss sharing (as discussed above) to multilateral netting (as in Section

3.3) across different realizations of M . For example, consider a directional trader, for which Figure

11 (a) illustrates the impact of loss sharing and Figure 7 (a) illustrates the impact of multilateral

netting without taking loss sharing into account, both compared to bilateral netting. This market

participant does not benefit from multilateral netting compared to bilateral netting in any extreme

realization of the systematic risk factor (see Figure 7), while it only benefits in extreme realizations

when loss sharing is taken into account (see Figure 11). More generally, we find that loss sharing

pushes benefits from central clearing (compared to bilateral netting) into tails of the systematic

risk factor’s distribution compared to the benefits of multilateral netting (compared to bilateral

netting). For example, a directional trader does not benefit from loss sharing in q < 0.9 × 100%

realizations of M (Figure 11 (a)), but benefits from multilateral netting for q > 0.4× 100% (Figure

7 (a)). Thus, with probability 50% (0.9-0.4=0.5), this trader can reduce counterparty risk with

multilateral netting but not by centrally clearing with loss sharing. The result is symmetric for a

directional trader with v = −1. Similarly, a dealer may reduce counterparty risk with multilateral

netting but not with loss sharing for q ∈ (0.1, 0.9), i.e., with probability 80% (comparing Figures
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11 (c) and 8).

Hence, while loss sharing has a small impact on the average level of counterparty risk (see Result

10), loss sharing pushes gains and losses from central clearing into the tails of the distribution of

M : it reduces the likelihood that a market participants benefits from central clearing.41

Result 13. Loss sharing makes it less likely (across states of the systematic risk factor) that central

clearing reduces a given market participant’s counterparty risk compared to central clearing without

loss sharing.

The reason for our result is the insurance function of CCPs, and loss sharing in particular.

The primary purpose of insurance is to smooth wealth across states. Figure 12 illustrates that

loss sharing indeed smooths a directional trader’s counterparty risk across realizations of the sys-

tematic risk factor : in the first row of Figure 12, the class-K counterparty risk with loss sharing

is more evenly distributed across realizations of M than the class-K counterparty risk with only

multilateral netting. Hence, loss sharing is similar to insurance of directional trader’s multilaterally

netted counterparty risk against systematic risk. Since the distribution of counterparty risk with

multilateral netting (ẼMN ) is highly skewed, loss sharing increases counterparty risk for moderate

realizations of M compared to multilateral netting (see second row of Figure 12). This increase

may be interpreted as an insurance premium: directional traders pay for a reduction of counter-

party risk in extreme states via an increase in counterparty risk in moderate states.42 As Result 13

shows, paying this insurance premium then completely removes the multilateral netting benefits of

central clearing in a large number of realizations and thereby renders central clearing unfavorable

compared to bilateral netting.

[Place Figure 12 about here]

Finally, in the Online Appendix we show that our results also hold if a CCP does not only clear

one derivative class but even all derivative classes. Thus, “more central clearing” does not provide

a remedy for the pitfalls our analysis highlights.

41Note, however, that for each realization of M loss sharing reduces the total (sum of) counterparty risk of all
market participants. Thus, while the aggregate impact of loss sharing is beneficial, from each market participant’s
perspective it is beneficial only with a small probability.

42Loss sharing also increases counterparty risk for dealers, compared to multilateral netting. The reason is that loss
sharing exposes dealers to the risk of directional traders, while the flat portfolio of dealers ensures a large multilateral
netting benefit.
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5 Empirical predictions and policy implications

Our results are helpful in understanding several characteristics of derivative markets. First, in

practice, market participants are on average reluctant to centrally clear derivatives in the absence

of a clearing mandate. E.g., only 28% of CDS trades and less than 1% of foreign exchange derivatives

were cleared, as of December 2016 (Wooldridge (2017)). From the perspective of providing netting

opportunities and reducing counterparty risk, we show that central clearing is indeed not necessarily

beneficial compared to bilateral netting in all cases. In contrast, central clearing may expose market

participants to additional (instead of less) counterparty risk. Loss sharing amplifies this result by

allocating the benefits of central clearing to only a few states of the world.

Second, CCP clearing members are dominantly dealers and large banks, while only a few in-

vestment funds and non-financial firms participate in central clearing and loss sharing (Bank for

International Settlements (BIS) (2018)).43 Indeed, large end-users such as Blackrock claim that

loss sharing at CCPs ”unfairly penalizes end-investors, who in general hold directional positions,

vs. CMs [clearing members] or dealers, who generally manage to a flat market position” (Novick,

De Jesus, Fisher, Kiely, Osman, and Hsu (2018)). Consistent with this statement, our results show

that entities with directional positions (such as end-users) have a smaller or no benefit from central

clearing - while this may not hold for dealers with flat positions. This heterogeneous impact of

central clearing thus provides a possible explanation for the tendency of end-users not to become

clearing members in practice.

Finally, previous studies have highlighted the benefit of concentrating multilateral netting at -

preferably - one large CCP that clears the whole derivatives market (e.g., Duffie and Zhu (2011)).

However, in this setting the dynamics of loss sharing are still the same as we describe in Section

4. Indeed, our results in the Online Appendix show that loss sharing still diminishes multilateral

netting benefits and makes it less likely that central clearing reduces a market participant’s coun-

terparty risk. Thus, more central clearing does not resolve the pitfalls highlighted in our analysis.

Despite the pitfalls we find, central clearing may still improve overall financial stability in other

dimensions than counterparty risk, e.g., by increasing transparency (Acharya and Bisin (2014)) and

43To avoid participation in loss sharing, entities may use client clearing by clearing through another clearing
member.
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facilitating fast auctioning of defaulting members’ portfolios. Indeed, the cleared share of Lehman’s

derivative trades was hedged and closed out within three weeks of Lehman’s failure, suggesting that

central clearing may stabilize derivatives markets.44

6 Conclusion

The recent financial crises exposed vulnerabilities in the derivatives market architecture, which was

dominated by bilaterally netted trades. The introduction of mandatory central clearing clearly

increased the transparency of derivative markets, but would it decrease a market participant’s

counterparty risk exposure in crises?

We present a theoretical analysis of the impact of central clearing on counterparty risk in the

presence of systematic risk. Our main result is that the effect of central clearing is highly sensitive

toward (1) different levels of systematic risk exposure, (2) extreme market events, (3) directionality

in market participants’ derivatives portfolios, and (4) loss sharing. In many realistic situations,

central clearing actually results in larger counterparty risk than bilateral netting.

In particular, our results show that traders with flat portfolios substantially benefit from central

clearing compared to bilateral netting - but only during extreme market events and at the expense

of traders with directional portfolios. This result emerges in particular due to sharing of a CCP’s

default losses among surviving clearing members. The prediction that dealers with flat portfolios

may derive a much larger benefit from central clearing than market participants with directional

portfolios is also consistent with the reluctance of end-users to become clearing members in practice.

Our analysis mainly concentrates on counterparty risk. We are not considering other advan-

tages and disadvantages of central clearing, such as capital requirement benefits, margin costs,

transparency, and market liquidity. If market participants only considered margin costs in their

decision to clear, then there would obviously be an incentive to clear resulting from smaller margins

for cleared relative to uncleared derivatives. If, however, the decision to clear is driven by a market

participant’s objective to minimize counterparty risk (which is highlighted as an important deter-

minant for the decision to clear derivatives by Bellia et al. (2019) and the Financial Stability Board

(FSB) (2018), as well as for the creation of the first CCP in Europe by Vuillemey (2019)), then

44See Sir Jon Cunliffe’s speech from 5 June 2018, Central clearing and resolution - learning some of the lessons of
Lehmans, available at www.bankofengland.co.uk.
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our results show that there is no incentive to clear for some market participants in various realistic

situations. This is consistent with the current situation in practice, wherein market participants

are reluctant to centrally clear derivatives in several markets (like single-name CDS) unless they

are forced.
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Proofs

For the following proofs, we will make extensive use of the following property of the Normal distri-

bution: for Y ∼ N (µ, σ2) the truncated expectation is given by E[Y | Y > 0] = µ+ σϕ(−µ/σ)
Φ(µ/σ) , and

thus E[max(Y, 0)] = E[Y | Y > 0]Φ(µ/σ) = µΦ(µ/σ) + σϕ(−µ/σ).

Proposition 1 (Collateralized bilateral counterparty risk exposure). The collateralized counter-

party risk exposure with bilateral netting is given by

E[EBN,Ki ] = ϕ(0)

γ∑
j=1,j 6=i

σ̄BN,Kij , (35)

where
(
σ̄BN,Kij

)2
= σ2

M

(∑K
k=1 v

k
ijβ

k
ij

)2
+
∑K

k=1

(
vkij

)2 (
σkij

)2
. If vkij ≡ 1 or vkij ≡ −1, βkij ≡ β, and

σkij ≡ σ for all j = 1, ..., γ, k = 1, ..,K, then E[EBN,Ki ] = ϕ(0)(γ − 1)
√
σ2
Mβ

2K2 +Kσ2.

Proof of Proposition 1:

Proof. The counterparty risk exposure equals

E
[
EBN,Ki

]
=

γ∑
j=1,j 6=i

E

[
max

(
K∑
k=1

Xk
ij , 0

)]
(36)

Define

µ̄BN,Kij = E

[
K∑
k=1

Xk
ij

]
=

K∑
k=1

E
[
Xk
ij

]
= 0,

(
σ̄BN,Kij

)2
= var

(
K∑
k=1

Xk
ij

)
= var

(
K∑
k=1

vkij(β
k
ijM + σkijε

k
ij)

)

= σ2
M

(
K∑
k=1

vkijβ
k
ij

)2

+

K∑
k=1

(
vkij

)2 (
σkij

)2
.

The counterparty risk exposure of i to j is then given by ϕ(0)σ̄BN,Kij , and the total counterparty

risk exposure is given by

E[EBN,Ki ] = ϕ(0)

γ∑
j=1,j 6=i

σ̄BN,Kij . (37)
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Simplification in the case of homogeneous entities and trades is straightforward.

Proposition 2 (Collateralized multilateral counterparty risk exposure). The collateralized coun-

terparty risk exposure with multilateral netting of derivative class K is given by

E[EBN+MN
i ] = E[EBN,K−1

i ] + ϕ(0)

√√√√√σ2
M

 γ∑
j=1,j 6=i

vKij β
K
ij

2

+

γ∑
j=1,j 6=i

(vKij )2(σKij )2. (38)

1. If vkij ≡ −1 or vkij ≡ 1, σkij ≡ σ, and βkij ≡ β for all j = 1, ..., γ, k = 1, ..,K, then

E[EBN+MN
i ] = E[EBN,K−1

i ] + ϕ(0)
√
σ2
Mβ

2(γ − 1)2 + (γ − 1)σ2.

2. If ρX,M > 0, either vkij ≡ 1 or vkij ≡ −1, βkij = β, and σkij = σ, then E[EMN
i ] > (γ −

1)|ρX,M |σXϕ(0) for all γ > 1.

3. If ρX,M ∈ (−1, 1), vkij ≡ vij ∈ {−1, 1}, βkij ≡ β, and σkij ≡ σ, there exists γmin <∞ such that

E[EBN+MN
i ] < E[EBN,Ki ] for all γ ≥ γmin.

Proof. In a multilaterally netted derivative class K, the collateralized counterparty risk exposure

is E[EMN
i ] = E

[
max

(∑γ
j=1,j 6=iX

K
ij , 0

)]
. Define

µ̄MN
i = E

 γ∑
j=1,j 6=i

XK
ij

 = 0,

(σ̄MN
i )2 = var

 γ∑
j=1,j 6=i

XK
ij

 = var

 γ∑
j=1,j 6=i

vKij (βKijM + σKij ε
K
ij )


= σ2

M

 γ∑
j=1,j 6=i

vKij β
K
ij

2

+

γ∑
j=1,j 6=i

(vKij )2(σKij )2.

Then, it is E
[
max

(∑γ
j=1,j 6=iX

K
ij , 0

)]
= ϕ(0)σ̄MN

i and thus

E[EBN+MN
i ] = E[EBN,K−1

i ] + ϕ(0)

√√√√√σ2
M

 γ∑
j=1,j 6=i

vKij β
K
ij

2

+

γ∑
j=1,j 6=i

(vKij )2(σKij )2. (39)

1. Simplification in the case of homogeneous entities and trades is straightforward.
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2. Assume that either vkij ≡ 1 or vkij ≡ −1, βkij ≡ β and σkij ≡ σ. Then,

E[EMN
i ]/(γ − 1) = ϕ(0)

√√√√
σ2
M

(∑γ
j=1,j 6=i v

K
ij β

K
ij

)2

(γ − 1)2
+

∑γ
j=1,j 6=i(v

K
ij )2

(γ − 1)2
(σKij )2 (40)

= ϕ(0)
√
σ2
Mβ

2 + (γ − 1)−1σ2, (41)

where the RHS is strictly monotonically decreasing in γ for all γ > 1 and

lim
γ→∞

E[EMN
i ]/(γ − 1) = ϕ(0)σM |β|,

it holds that E[EMN
i ]/(γ − 1) > ϕ(0)σM |β| = |ρX,M |σXϕ(0) for all γ > 0.

3. Let ρX,M ∈ (−1, 1). Then, it is β = ρX,M
σ

σM
√

1−ρ2X,M
with |β| <∞.

First, assume that either vkij ≡ 1 or vkij ≡ −1, βkij = β and σkij = σ. Then, E[EMN
i ] =

ϕ(0)
√
σ2
Mβ

2(γ − 1)2 + (γ − 1)σ2 ↘ ϕ(0)
√
σ2
Mβ

2(γ−1) for γ →∞ and thus there exists γmin

such that E[EMN
i + EBN,K−1

i ] < E[EBN,Ki ] if

ϕ(0)
√
σ2
Mβ

2(γ − 1) + E[EBN,K−1
i ] < E[EBN,Ki ] (42)

⇔
√
σ2
Mβ

2 +
√
σ2
M (K − 1)2β2 + (K − 1)σ2 <

√
σ2
MK

2β2 +Kσ2 (43)

⇒
√
σ2
Mβ

2(σ2
M (K − 1)2β2 + (K − 1)σ2) < σ2

Mβ
2(2K − 2) + σ2 (44)

⇒ (K − 1)σ2σ2
Mβ

2 < 3σ4
Mβ

4(K − 1)2 + σ4 + 4σ2σ2
Mβ

2(K − 1) (45)

⇔ 0 < 3σ4
Mβ

4(K − 1)2 + σ4 + 3σ2σ2
Mβ

2(K − 1), (46)

which holds for any K ≥ 1. Since (E[EMN
i + EBN,K−1

i ] − E[EBN,Ki ])/(γ − 1) is decreasing

with γ, E[EMN
i + EBN,K−1

i ] < E[EBN,Ki ] for all γ ≥ γmin.

Second, assume that vkij ≡ vij ∈ {−1, 1} for all i, j, k. Thus, it still holds that E[EBN,Ki ] =

ϕ(0)(γ − 1)
√
σ2
Mβ

2K2 +Kσ2. Since

E[EMN
i ] ≤ ϕ(0)

√
σ2
Mβ

2(γ − 1)2 + (γ − 1)σ2, (47)

E[EMN
i + EBN,K−1

i ] < E[EBN,Ki ] for all γ ≥ γmin with γmin as defined above.
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Proposition 3 (Collateralized exposure during extreme events). If vkij ≡ 1, σkij ≡ σ, and βkij ≡ β

for all j = 1, ..., γ, k = 1, ..,K, then the collateralized counterparty risk exposure conditional on a

realization of systematic risk M̄ with bilateral netting is given by

E[EBNij |M = M̄ ] = M̄

K∑
k=1

vkijβ
k
ijΦ

M̄ ∑K
k=1 v

k
ijβ

k
ij√∑K

k=1(vkij)
2(σkij)

2

 (48)

+

√√√√ K∑
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(vkij)
2(σkij)

2ϕ

−M̄ ∑K
k=1 v

k
ijβ

k
ij√∑K

k=1(vkij)
2(σkij)

2

 (49)

and with multilateral netting in class K, it is

E[EMN
i |M = M̄ ] = M̄

γ∑
j=1,j 6=i

vKij β
K
ij Φ

 M̄
∑γ

j=1,j 6=i v
K
ij β

K
ij√∑γ

j=1,j 6=i(v
K
ij )2(σKij )2

 (50)

+

√√√√ γ∑
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K
ij β

K
ij√∑γ
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K
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 (51)

in this class.

Proof. For the collateralized counterparty risk exposure with bilateral netting conditional on state

M , define

µ̄BNij|M = E

[
K∑
k=1

Xk
ij |M = M̄

]
= M̄

K∑
k=1

vkijβ
k
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(
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)2
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)
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(
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vkijσ
k
ijε

k
ij

)
=

K∑
k=1

(
vkij

)2 (
σkij

)2
.

Then, with bilateral netting, the collateralized exposure to j conditional on {M = M̄} is given by

E[EBNij |M = M̄ ] = µ̄BNij|MΦ(µ̄BNij|M/σ̄
BN
ij|M ) + σ̄BNij|Mϕ(−µ̄BNij|M/σ̄

BN
ij|M ) (52)

= M̄
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 ,
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and the total counterparty risk exposure is E[EBN,Ki |M = M̄ ] =
∑γ

j=1,j 6=i E[EBNij |M = M̄ ].

If class K is multilaterally netted, the counterparty risk exposure in this class conditional on

{M = M̄} is given by E[EMN
i |M = M̄ ] = E

[
max

(∑γ
j=1,j 6=iX

K
ij , 0

)
|M = M̄

]
. Define

µ̄MN
i|M = E

 γ∑
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XK
ij |M = M̄
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j=1,j 6=i
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K
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(σ̄MN
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vKij σ
K
ij ε

K
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γ∑
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(vKij )2(σKij )2.

Thus, it is

E[EMN
i |M = M̄ ] = µ̄MN

i|M Φ(µ̄MN
i|M /σ̄MN

i|M ) + σ̄MN
i|M ϕ(−µ̄MN

i|M /σ̄MN
i|M )
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 .

Simplification in the case of homogeneous entities and trades is straightforward.

Proposition 4 (Uncollateralized counterparty risk exposure). Assume that |vkij | ≡ 1, βkij ≡ β, and

σkij ≡ σ for all j = 1, ..., γ, k = 1, ..,K. Then, the uncollateralized counterparty risk exposure with

bilateral netting equals

E
[
ẼBN,Ki

]
= (γ − 1)

√
σ2
MK

2β2 +Kσ2ξ(αBN ), (54)

and with class-K multilateral netting it is

E
[
ẼBN+MN
i

]
= E

[
ẼBN,K−1
i

]
+
√
σ2
M (γ − 1)2β2 + (γ − 1)σ2ξ(αMN ), (55)

where ξ(α) = (1− α)Φ−1(1− α) + ϕ
(
Φ−1(α)

)
.
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Proof. First, we consider the bilateral case. Define

(σ̄BNij )2 = var
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K∑
k=1

Xk
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)
= σ2
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2,
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Then, it is

E
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]
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. (56)

If entities and trades are homogeneous, then the exposure equals

E
[
ẼBN,Ki

]
= (γ − 1)

√
σ2
MK

2β2 +Kσ2
(
(1− αBN )Φ−1(1− αBN ) + ϕ

(
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. (57)

Second, we consider the multilateral case, with derivative class K being multilaterally netted.

It is E[ẼMN
i ] = E

[
max

(∑γ
j=1,k 6=iX

K
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|vKij |∑γ
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K
hj |
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the exposure in derivative class

K. Define
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Assuming that |vKij | ≡ 1, βKij ≡ β, and σKij ≡ σ, it is σ̄MN
j ≡ σ̄MN

1 for all i, j and

E
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]
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√
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M (γ − 1)2β2 + (γ − 1)σ2
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.

As before, E[ẼBN+MN
i ] = E

[
ẼBN,K−1
i

]
+ E

[
ẼMN
i

]
.

Proposition 5. Assume that vkij ≡ 1, βkij ≡ β, and σkij ≡ σ for all j = 1, ..., γ, k = 1, ..,K.

1) If αBN = αMN , the relative benefit of multilateral netting is independent from the margin

level.

2) The smaller the clearing margin level compared to the bilateral margin level, the larger the

uncollateralized counterparty risk exposure with multilateral netting of one derivative class

relative to exposure with full bilateral netting, and vice versa.

Proof.

1) Assume that αBN = αMN . Then,

E
[
ẼBN+MN
i

]
E
[
ẼBN,Ki

] =

√
σ2
M (γ − 1)2β2 + (γ − 1)σ2 ξ(αMN )

ξ(αBN ) + (γ − 1)
√
σ2
MK

2β2 +Kσ2

(γ − 1)
√
σ2
MK

2β2 +Kσ2
(59)

is independent from the margin level αBN .

2) ξ(α) is decreasing with the margin requirement α. Thus, the smaller αMN
αBN

is, the larger ξ(αMN )
ξ(αBN )

and the ratio of counterparty risk in Equation (59) are, and thus the smaller the benefit of

multilateral netting is.
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(a) Directional portfolio.
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Figure 1. Change in counterparty risk due to central clearing (with loss sharing) compared to
bilateral netting conditional on different realizations of the systematic risk factor.
The figure depicts the relative change in counterparty risk with central clearing and loss sharing of one derivative class compared

to bilateral netting of all derivative classes, conditional on different levels of the systematic risk factor M = M̄ = σMΦ−1(q),

where Φ−1(·) is the inverse cdf of the standard normal distribution. If the change in counterparty risk is negative, central

clearing reduces counterparty risk. The calibration is described in Section 4. A long (short) position is a position whose profit

and loss is positively (negatively) correlated with the systematic risk factor.

Figure 2. Timeline of the model.
Losses due to counterparty default occur between time t = 0, the most recent date where contracts have been marked to market
and counterparties might default, and time t = 1, at which time the portfolio is settled.
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(a) Bilateral netting. (b) Multilateral netting.

Figure 3. Illustration of bilateral and multilateral netting.
(a) Bilateral netting and (b) multilateral netting across counterparties. Arrows illustrate the flow of profits and losses (e.g., B
owes $100 to A).

(a) Full bilateral netting. (b) Multilateral netting of derivative class K.

Figure 4. Bilateral and multilateral netting portfolios.
K is the number of derivative classes and γ the number of counterparties trading with each other. The illustration is from the
perspective of entity i, which trades with γ − 1 counterparties.
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(a) Change in exposure due to multilateral netting.
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lateral netting of derivative class K reduces exposures.

Figure 5. Impact of systematic risk for directional traders.
(a) Change in collateralized counterparty risk exposure due to multilateral netting of derivative class K compared to bilateral

netting, ∆E = E[EBN+MN
i − EBN,Ki ]/E[EBN,Ki ] for different levels of systematic risk exposure, i.e., correlation between

derivative prices and systematic risk factor ρX,M . If ∆E < 0, multilateral netting reduces counterparty risk exposure compared
to bilateral netting. (b) Minimum number of counterparties γmin, such that multilateral netting of derivative class K reduces
collateralized counterparty risk exposure compared to bilateral netting with respect to systematic risk exposure ρX,M . We
assume K = 10 derivative classes, total contract volatility σX = 0.01, and volatility of the systematic risk factor σM = 0.03.
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Figure 6. Impact of systematic risk for dealers.
Change in collateralized counterparty risk exposure due to multilateral netting of derivative class K compared to bilateral

netting, ∆E = E[EBN+MN
i − EBN,Ki ]/E[EBN,Ki ] for different levels of systematic risk exposure, i.e., correlation between

derivative prices and systematic risk factor ρX,M . If ∆E < 0, multilateral netting reduces counterparty risk exposure compared
to bilateral netting. We assume K = 10 derivative classes, total contract volatility σX = 0.01, and volatility of the systematic
risk factor σM = 0.03.
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Figure 7. Impact of extreme events for a directional trader (vkij = 1).
(a) Change in collateralized counterparty risk exposures due to multilateral netting of derivative class K compared to bilateral

netting, ∆E = E[EBN+MN
i − EBN,Ki | M = M̄ ]/E[EBN,Ki | M = M̄ ] conditional on extreme event M̄ = σMΦ−1(q). The

smaller the severity parameter q, the more adverse the event. If ∆E < 0, multilateral netting reduces counterparty risk exposure
compared to bilateral netting. (b) Minimum number of counterparties γmin, such that multilateral netting of derivative class K
reduces collateralized counterparty risk exposure compared to bilateral netting with respect to the severity of extreme events.
We assume K = 10 derivative classes, correlation between contract returns and systematic risk ρX,M = 0.43, total contract
volatility σX = 0.01, and volatility of the systematic risk factor σM = 0.03.
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Figure 8. Impact of extreme events for a dealer.
(a) Change in collateralized counterparty risk exposures due to multilateral netting of derivative class K compared to bilateral

netting, ∆E = E[EBN+MN
i − EBN,Ki | M = M̄ ]/E[EBN,Ki | M = M̄ ] conditional on extreme event M̄ = σMΦ−1(q). The

smaller the severity parameter q, the more adverse the event. If ∆E < 0, multilateral netting reduces counterparty risk exposure
compared to bilateral netting. (b) Minimum number of counterparties γmin, such that multilateral netting of derivative class K
reduces collateralized counterparty risk exposure compared to bilateral netting with respect to the severity of extreme events.
We assume K = 10 derivative classes, correlation between contract returns and systematic risk ρX,M = 0.43, total contract
volatility σX = 0.01, and volatility of the systematic risk factor σM = 0.03.
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(a) Directional trader.
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Figure 9. Impact of systematic risk on counterparty risk with loss sharing.
Change in counterparty risk due to central clearing with loss sharing of derivative class K compared to bilateral netting,

∆E = E[E∗i
BN+MN,LS − E∗i

BN,K ]/E[E∗i
BN,K ], for different levels of systematic risk exposure ρX,M of derivatives prices. If

∆E < 0, then central clearing reduces counterparty risk compared to bilateral netting. We assume the correlation between

entities’ log asset values, i.e., default clustering, to be ρA,A = 0.1, with K = 10 derivative classes, total contract volatility

σX = 0.01, volatility of the systematic risk factor σM = 0.03, entity default probability π = 0.1, log-asset value volatility

σA = 1, and clearing and bilateral margin level αMN = αBN = 0.99.
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Figure 10. Counterparty risk with central clearing and loss sharing vs. bilateral netting for
different realizations of the systematic risk factor.
Counterparty risk with loss sharing conditional on different levels of the systematic risk factor M = M̄ = σMΦ−1(q). E∗BN,K

is the counterparty risk if all derivative classes are bilaterally netted, E∗MN,LS is the counterparty risk from central clearing

with loss sharing of class K, and E∗BN+MN,LS is the counterparty risk from central clearing with loss sharing of class K

and bilateral netting of remaining derivative classes. We assume the correlation between entities’ log asset values, i.e., default

clustering, to be ρA,A = 0.1, with γ = 16 counterparties, K = 10 derivative classes, total contract volatility σX = 0.01, volatility

of the systematic risk factor σM = 0.03, entity default probability π = 0.1, log-asset value volatility σA = 1, and clearing and

bilateral margin level αMN = αBN = 0.99. The figure does qualitatively not change with a larger number of counterparties γ.
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(a) Directional trader (v = 1).
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(b) Directional trader (v = −1).
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(c) dealer.

Figure 11. Central clearing with loss sharing vs. bilateral netting during extreme market events.
Change in counterparty risk with central clearing and loss sharing of derivative class K compared to bilateral netting, ∆E =

E[E∗i
BN+MN,LS−E∗i

BN,K |M = M̄ ]/E[E∗i
BN,K |M = M̄ ], for different levels of systematic risk exposure ρX,M of derivatives

prices and conditional on different levels of the systematic risk factor M = M̄ = σMΦ−1(q). If ∆E < 0, central clearing reduces

counterparty risk compared to bilateral netting. We assume the correlation between entities’ log asset values, i.e., default

clustering, to be ρA,A = 0.1, with K = 10 derivative classes, total contract volatility σX = 0.01, volatility of the systematic

risk factor σM = 0.03, entity default probability π = 0.1, log-asset value volatility σA = 1, and clearing and bilateral margin

level αMN = αBN = 0.99. Note that in Figure (c) the lines for q = 0.01 and q = 0.99, q = 0.05 and q = 0.95, q = 0.1 and

q = 0.9 coincide, respectively.
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Figure 12. Counterparty risk with central clearing and loss sharing vs. central clearing without
loss sharing for different realizations of the systematic risk factor.
Counterparty risk with central clearing and loss sharing, and central clearing without loss sharing conditional on different levels

of the systematic risk factor M = M̄ = σMΦ−1(q). E∗MN is the counterparty risk in one derivative class if it is centrally cleared

without loss sharing, E∗MN,LS is the counterparty risk in one derivative class if it is centrally cleared wit loss sharing. We

assume the correlation between entities’ log asset values, i.e., default clustering, to be ρA,A = 0.1, with γ = 16 counterparties,

K = 10 derivative classes, total contract volatility σX = 0.01, volatility of the systematic risk factor σM = 0.03, entity default

probability π = 0.1, log-asset value volatility σA = 1, and clearing and bilateral margin level αMN = αBN = 0.99. The figure

does qualitatively not change with a larger number of counterparties γ.
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Online Appendix

Counterparty risk exposure and margin requirements

Figure 13 (a) depicts the change in uncollateralized exposures due to multilateral netting. Clearly,

if the clearing margin confidence level αMN is small relative to the bilateral margin confidence

level αBN , multilateral netting increases uncollateralized counterparty risk exposure compared to

bilateral netting.45

0 20 40 60 80 100

-5%

0%

5%

10%

15%

20%

(a) Change in exposure due to multilateral netting.
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Figure 13. Impact of margins for directional traders.
(a) Change in uncollateralized counterparty risk exposure due to multilateral netting of class K compared to bilateral netting,

∆Ẽ = E[ẼBN+MN
i − ẼBN,Ki ]/E[ẼBN,Ki ], for different levels of the clearing margin confidence level αMN . If ∆Ẽ < 0,

multilateral netting reduces uncollateralized counterparty risk exposure compared to bilateral netting. (b) Minimum number of
counterparties γmin, such that multilateral netting of derivative class K reduces uncollateralized exposure with respect to the
clearing margin level. The bilateral margin confidence level is αBN = 0.99. We assume K = 10 derivative classes, correlation
between contract returns and systematic risk ρX,M = 0.43, total contract volatility σX = 0.01, and volatility of the systematic
risk factor σM = 0.03.

If the clearing margin is small, then multilateral netting does not reduce counterparty risk

exposure for any number of counterparties (e.g., with αMN = 0.98 in Figure 13). This is the case

in Figure 13 (b), as we do not find any number of counterparties γ that reduces uncollateralized

exposures for αMN ≤ 0.9897 compared to the bilateral margin confidence level αBN = 0.99. Hence,

uncollateralized exposures are extremely sensitive toward small discrepancies between margins for

centrally and bilaterally netted derivatives.

The reason for this high sensitivity is systematic risk. Due to systematic risk, the average coun-

terparty risk per counterparty under multilateral netting is bounded from below by (see Proposition

45Note that this result trivially also holds for a dealer.
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2 in the Appendix)46

E[ẼMN
i ]/(γ − 1) > |ρX,M |σXξ(αMN ). (60)

Larger correlation between derivatives prices and systematic risk factor (ρX,M ) and lower margins

(αMN ) increase this lower bound for multilateral exposure.47 Eventually, if |ρX,M | is sufficiently

large (or αMN is sufficiently low compared to αBN ), the lower bound for the exposure in multilat-

erally netted class-K exceeds the exposure from including class-K into bilateral netting pools.

Based on this observation, in the following we examine the sensitivity of netting benefits to-

ward differences in margins more closely. For this purpose, we derive a condition for the clearing

confidence level αMN , such that, for a given αBN , multilateral netting leads to a reduction in

uncollateralized counterparty risk exposure compared to bilateral netting. From the lower bound

of E[ẼMN
i ]/(γ − 1), we derive the following threshold for the clearing margin: multilateral net-

ting does not reduce uncollateralized exposures for any finite number of counterparties γ < ∞ if

αMN ≤ HMN with

HMN = ξ−1

(
ξ(αBN )

|ρX,M |

(√
K
√

1 + ρ2
X,M (K − 1)−

√
K − 1

√
1 + ρ2

X,M (K − 2)
))

. (61)

It is straightforward to show thatHMN is increasing with systematic risk exposure |ρX,M |, dHMN
d|ρX,M | >

0, which mainly results from ξ, and thus ξ−1, being decreasing functions (see Proposition 5 in the

Appendix). Hence, the more extreme (positive or negative) the systematic risk exposure ρX,M is,

the larger must be the clearing margin for multilateral netting to reduce counterparty risk exposure.

Moreover, HMN is bounded from above by αBN , HMN ≤ αBN , since

lim
ρ2X,M→1

HMN = ξ−1(ξ(αBN )) = αBN , (62)

and bounded from below by zero, 0 ≤ HMN , since

lim
ρX,M→0

HMN = ξ−1 (∞) = 0. (63)

46This result only holds for entities with a directional multilateral portfolio. If the multilaterally netted portfolio
is not exposed to systematic risk (e.g., for a dealer), E[ẼMN

i ]/(γ − 1)→ 0 for γ →∞.
47This results resembles the finding of Menkveld (2017), who stresses that current CCP margin practices are

inefficient in that they do not account for correlation across clearing members.
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Thus, in the case of no systematic risk (ρX,M = 0), for any confidence levels αBN and αMN , there

exists a number of counterparties γ, such that multilateral netting is beneficial. However, the larger

the systematic risk exposure, the smaller is the acceptable difference between the margin for cleared

and non-centrally cleared derivatives. For example, in our baseline calibration, multilateral netting

is not beneficial compared to bilateral netting for any number of counterparties if the bilateral

margin is αBN = 0.99 and the clearing margin is below αMN ≤ 0.98, as Figure 13 (a) shows.

This is in line with the upper bound we derived above, which is HMN = 0.9897 for our baseline

calibration.

Result 14. For every bilateral margin confidence level αBN ∈ (0, 1), there exists a threshold

HMN ≤ αBN , such that a directional trader’s uncollateralized counterparty risk exposure is larger

with multilateral netting than with bilateral netting for any number of counterparties if the clearing

margin is CMN ≤ V aRHMN
(
∑γ

i=1,i 6=j X
k
ij). The threshold HMN is increasing with the absolute

value of correlation between derivatives prices and systematic risk factor, |ρX,M |, such that a larger

clearing margin is necessary for more extreme systematic risk exposure.

Vice versa,a sufficiently large clearing margin results in an unambiguously smaller counterparty

risk exposure with multilateral netting: if αMN ≥ UMN , then the counterparty risk exposure is

smaller with multilateral than bilateral netting for any number of counterparties γ ≥ 2, where48

UMN = ξ−1
(
ξ(αBN )

(√
K
√

(K − 1)ρ2
X,M + 1−

√
K − 1

√
(K − 2)ρ2

X,M + 1
))

. (64)

This is the case, for example, with αBN = 0.99 and αMN = 0.995 in Figure 13 (a), since UMN =

0.995 for our baseline calibration. From Equation (64), it is clear that UMN is decreasing with |ρX,M |

and converging to αBN for |ρX,M | → 1. Hence, the larger the absolute value of correlation between

derivatives prices and systematic risk factor, the smaller the necessary clearing margin V aRUMN
,

such that multilateral netting is beneficial for any number of counterparties. The necessary clearing

margin is always larger than the bilateral margin, V aRUMN
> V aRαBN for |ρX,M | < 1.

Result 15. For every bilateral margin confidence level αBN ∈ (0, 1), there exists a threshold

UMN ≥ αBN , such that a directional trader’s uncollateralized counterparty risk exposure is lower

48This results from ξ(α) being strictly positive for any α ∈ (0, 1) and ξ−1 with full support on (0,∞).
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with multilateral netting than with bilateral netting for any number of counterparties if the clearing

margin is CMN ≥ V aRUMN
(
∑γ

i=1,i 6=j X
k
ij). The threshold UMN is decreasing with the absolute

value of systematic risk exposure |ρX,M |, such that a smaller clearing margin is sufficient for more

extreme systematic risk exposure.

Eventually, our results divide possible margin confidence levels into three disjoint intervals:

1. αMN ∈ (0,HMN ] with HMN ≤ αBN : Multilateral netting is not beneficial for any number of

counterparties γ.

2. αMN ∈ (HMN , αBN ] ∪ (αBN ,UMN ): Multilateral netting is beneficial if the number of coun-

terparties γ is sufficiently large.

3. αMN ∈ [UMN , 1) with UMN > αBN : Multilateral netting is beneficial for any number of

counterparties γ ≥ 2.

Regulation for non-centrally cleared derivatives requires initial margins to account for a 99%

confidence interval over at least a 10-day horizon of market price changes (Bank for International

Settlements (BIS) (2015)). CCPs are required to establish a single-tailed confidence interval level of

at least 99% of future exposure, while the margin period is typically 5 days (Bank for International

Settlements (BIS) (2012, 2014b), Duffie et al. (2015), Ghamami and Glasserman (2017)). These

requirements result in a smaller margin for centrally than bilaterally netted trades, which is intended

by policymakers to incentivize market participants to make use of central clearing (Duffie et al.

(2010)).49 The difference of 10 and 5 days in calculation horizon for the margin relates to a

volatility ratio of
√

2, such that
√

2CMN = CBN,K . Fixing αBN = 0.99, the equivalent clearing

margin confidence level is αMN = Φ(Φ−1(αBN )/
√

2) = 0.88, i.e., αMN = 0.88 reflects the 99%

Value-at-Risk for a five-day margin period and αBN = 0.99 that for a 10-day margin period.

In our baseline calibration with αBN = 0.99, multilateral netting with αMN = 0.88 never

leads to a reduction in uncollateralized counterparty risk exposure, but increases exposures for any

number of counterparties γ. Indeed, αMN = 0.88 < HMN , since HMN = 0.9897. Thus, for our

49In practice, CCPs have some flexibility in setting margins. However, according to industry information, margins
for cleared transactions are clearly smaller than those for non-centrally cleared transactions. Discrepancies and
heterogeneity in margin requirements might also result from CCP funding cost and clearing member fundamentals.
Huang (2018) links margin requirements to the capitalization of for-profit CCPs, and shows that better-capitalized
CCPs require larger margins. Capponi and Cheng (2018) examine the trade-off between larger margins and decreased
market volume that results from larger margins raising margin cost for clearing members and, thereby, reducing
trading volume but also simultaneously protecting the CCP against default losses.
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calibration and current margin requirements, counterparty risk exposure is unambiguously smaller

with bilateral than multilateral netting. Instead, a confidence level αMN of more than 98.97%

is needed for multilateral netting to be able to achieve a reduction in counterparty risk exposure

with a sufficient number of clearing members.50 If the clearing margin confidence level was at least

UMN = 99.5%, then multilateral netting would be beneficial for any number of clearing members.

Model for correlated defaults

In order to allow for correlation of entity defaults, we employ a credit model based on the Merton

model (Merton (1974)). In particular, we assume that each counterparty i defaults at the start

of the settlement period if the random value of its assets is below a given bankruptcy threshold,

Ai < Bi.

The value of assets at the start of the settlement period is given by

Ai = exp

(
µAi −

σ2
Ai

2
+ σAiWi

)
, (65)

where (W1, ...,Wγ) are jointly standard normally distributed and correlated with pairwise correla-

tion ρAi,Aj . The log value of assets is normally distributed with

logAi ∼ N
(
µAi −

σ2
Ai
2 , σ2

Ai

)
. The pairwise correlation of two entities’ log assets is given by

ρ̃Ai,Aj = cor (logAi, logAj) =
σAiσAjρAi,Aj
σAiσAj

. (66)

The individual (unconditional) default probability of entity i is given by

πi = P (Ai < Bi) = Φ

 logBi − µAi +
σ2
Ai
2

σAi

 . (67)

Without loss of generality, we assume that µAi ≡ 0. Then, the default intensity is given by

d̄i = logBi
σAi

+
σAi

2 . We define by D = (D1, ..., Dγ) a vector of binary random variables Di = δAi<Bi

50For this result, we assume that the actual liquidation period is the same for non-centrally cleared and cleared
transactions. However, the infrastructure of CCPs enables them to auction assets faster than individual market
participants. If the liquidation period of cleared trades is smaller than of non-centrally cleared ones, then a smaller
clearing margin HMN is acceptable.
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that signal the default of entity i ∈ {1, ..., γ}. The joint distribution of two entities’ default state is

determined by

P (Di = 1, Dj = 1) = P
(
Z̄i < d̄i, Z̄j < d̄j

)
= Φ2,Σ(d̄i, d̄j), (68)

where (Zi, Zj) are multi-normally distributed with zero mean, unit variance, and correlation matrix

Σ, with Σij = ρ, i 6= j, and Σii = 1, and

P (Di = 1, Dj = 0) = P
(
Zi < d̄i, Zj ≥ d̄j

)
= P

(
Zi < d̄i,−Zj < −d̄j

)
(69)

= P
(
Zi < d̄i, Z̃j < −d̄j

)
= Φ2,Σ̃(d̄i,−d̄j) (70)

where (Zi, Z̃j) is multi-normally distributed, (Zi, Z̃j) ∼ N2(0, Σ̃) with correlation matrix Σ̃ij = −ρ̃,

i 6= j and Σ̃ii = 1, i, j ∈ {1, 2}. Iteration yields the general distribution of default states as

P(D = d) = Φγ,Σ̃

(
d̃
)
, (71)

where d̃i =


d̄i, di = 1

−d̄i, di = 0

, Σ̃ii = 1, and Σ̃ij =


ρ̃, di = dj

−ρ̃, di 6= dj

, i 6= j. Thus, Σ̃ has a unit diagonal

and 4 blocks of ρ̃ and −ρ̃:

Σ̃ =



1 ρ̃ ... ρ̃ −ρ̃ ... ... −ρ̃

ρ̃ 1 ρ̃ ρ̃ −ρ̃ ... ... −ρ̃
. . . −ρ̃ ... ... −ρ̃

ρ̃ ... ρ̃ 1 −ρ̃ ... ... −ρ̃

−ρ̃ ... ... −ρ̃ 1 ρ̃ ... ρ̃

−ρ̃ ... ... −ρ̃ ρ̃ 1 ... ρ̃

−ρ̃ ... ... −ρ̃ . . .

−ρ̃ ... ... −ρ̃ ρ̃ ... ρ̃ 1



(72)

Assuming homogeneous counterparties (i.e., d̄ ≡ d̄i), the number of defaulting counterparties,
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ND =
∑γ

i=1Di, is distributed as

P (ND = k) =

(
γ

k

)
Φγ,Σ̃(d̄, ..., d̄︸ ︷︷ ︸

k

,−d̄, ...,−d̄︸ ︷︷ ︸
γ−k

), (73)

where d̄ > 0 is the individual default intensity, and Σ̃ is defined as before.

As a benchmark case, consider independent defaults (i.e., ρ̃ = 0). Then, the distribution of

joint defaults is given by

Φγ,Σ̃(d̄, ..., d̄︸ ︷︷ ︸
k

,−d̄, ...,−d̄︸ ︷︷ ︸
γ−k

) = Φ(d̄)kΦ(−d̄)γ−k = Φ(d̄)k(1− Φ(d̄))γ−k. (74)

Thus, if defaults are independent, the number of defaults is binomially distributed,

ND ∼ Binom(γ,Φ(d̄)). As Figure 14 shows, increasing the correlation ρ̃ yields larger tails of the

distribution of ND. Then, it is more likely that counterparties default together (i.e., a large or

small number of counterparties defaults).
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Figure 14. Probability distribution of the number of defaults, ND, for γ = 10 entities and
individual probability of default π = 0.5 if defaults are uncorrelated (triangles) or correlated with
ρ̃ = 0.25 (filled dots).

Figure 14 depicts the distribution of ND for exemplary parameters. Clearly, increasing the total

correlation ρ̃ yields larger tails of the distribution. Then it is more likely that entities default in

clusters (i.e., that either many or few counterparties default together).

Figure 15 depicts the relative error when approximating loss allocation rules by using counter-
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party risk exposure, i.e.,

E[
∑γ
j=1 fj∑γ

j=1(1−Dj)fj
|
∑γ

j=1(1−Dj) > 0]

(1−π)πf1
f1∑γ
i=2

fi
+1−π

− 1. (75)

The figures show that counterparty risk exposure is a good approximation if the default probability

and the correlation between defaults is small, and the number of counterparties large (see also

Section 4).

Calibration

We calibrate the volatility of contract values based on index CDS, since these are already subject

to clearing obligations in the US and EU. For this purpose, we retrieve data about the performance

of the North American family of index CDS, the CDX family, from January 2006 to 2010, from

Markit. We choose this period because it covers the 2007-08 financial crisis. Table 1 reports the

names of index CDS included in our sample. Starting with the assumption of a five-day settlement

period, the descriptive statistics in Table 2 show that the average standard deviation of index CDS

prices’ five-day log returns roughly equals σX = 0.01, which we use as an estimate for total contract

volatility. During the same time period, the standard deviation of S&P 500 five-day log returns is

roughly σM = 0.03, which we use as an estimate for volatility of the systematic risk factor.51

To calibrate the correlation between contract returns and systematic risk, we employ a one-

factor model, regressing CDS index returns on five-day S&P 500 log returns between 2006 to 2010,

CDXname,tenor,series,version,t = α+ βSPt + εname,tenor,series,version,t, (76)

where CDXname,tenor,series,version,t is the five-day CDS index log returns for different family names,

tenors, series, and versions at day t, and SPt is the five-day S&P 500 log return at day t. The esti-

mated OLS coefficients are in Table 3. The implied correlation between CDS and S&P 500 returns

roughly equals ρX,M = 0.43, which we use as a baseline calibration. It is larger for indices that

51We approximate the discrete returns rkij in our model by using empirically calibrated log returns r̃kij (i.e., log(1 +
rkij) ≈ r̃kij). The calibration, in particular the standard deviation and correlation of S&P 500 and index CDS returns,
is robust to using either empirical discrete returns or log returns.
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Figure 15. Approximation of loss allocation.

Figures depict the relative deviation between η = E[

∑γ
j=1 fj∑γ

j=1(1−Dj)fj
|
∑γ
j=1(1 − Dj) > 0] and η̂ =

(1−π)πf1
f1∑γ
i=2

fi
+1−π

. For each

observation, we draw M = 3000 values for γ weights fn = |f̂n|, where f̂n ∼ N (0, σ2
F ) and independent, n = 1, ..., γ, and for

each weight realization s we draw 4000 values for D from the default model specified above to estimate η = η(s) and η̂ = η̂(s).
The figures depict the median and 10% and 90% percentiles of {η(s)/η̂(s) − 1, s ∈ {1, ...,M}}. The baseline calibration uses
π = 0.1, ρA,A = 0, γ = 50, and σF = 1.
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CDX name Description

CDX NA.HY North American High Yield CDSs
CDX NA.HY.B Rating sub-index of CDX NA.HY
CDX NA.HY.BB Rating sub-index of CDX NA.HY
CDX NA.HY.HB Sub-index of CDX NA.HY (high beta)
CDX NA.IG North American investment-grade CDSs
CDX NA.IG.CONS Sub-index of CDX NA.IG (consumer cyclical)
CDX NA.IG.ENRG Sub-index of CDX NA.IG (energy)
CDX NA.IG.FIN Sub-index of CDX NA.IG (financials)
CDX NA.IG.TMT Sub-index of CDX NA.IG (telecom, media and technology)
CDX NA.IG.INDU Sub-index of CDX NA.IG (industrial)
CDX NA.IG.HVOL Sub-index of CDX NA.IG (high volatility)
CDX NA.XO Sub-index of CDX NA.IG (crossover between grade and junk)
CDX.EM Emerging market CDSs
CDX EM.DIV Emerging market CDSs (diversified)

Table 1. Names and descriptions of index CDS included in our data sample. Source: Markit
(2015).

Statistic N Min Pctl(25) Median Pctl(75) Max Mean St. Dev.

S&P 500 1,021 −0.203 −0.013 0.002 0.015 0.175 −0.001 0.031
CDX (all) 590,706 −0.288 −0.002 0.0003 0.004 0.291 0.001 0.012
CDX (CDX.NA.HY) 131,945 −0.096 −0.004 0.002 0.010 0.095 0.003 0.015
CDX (CDX.NA.HY.B) 27,921 −0.090 −0.003 0.0005 0.005 0.146 0.002 0.013
CDX (CDX.NA.HY.BB) 19,474 −0.064 −0.003 0.0004 0.003 0.056 0.0005 0.009
CDX (CDX.NA.HY.HB) 38,254 −0.163 −0.005 0.002 0.011 0.215 0.005 0.024
CDX (CDX.NA.IG) 83,264 −0.288 −0.001 0.0001 0.002 0.291 0.0002 0.006
CDX (CDX.NA.IG.CONS) 29,007 −0.046 −0.001 0.000 0.001 0.027 −0.0001 0.005
CDX (CDX.NA.IG.ENRG) 29,007 −0.039 −0.001 −0.00001 0.001 0.032 −0.00003 0.004
CDX (CDX.NA.IG.FIN) 47,653 −0.095 −0.003 0.0003 0.005 0.045 0.0003 0.011
CDX (CDX.NA.IG.TMT) 31,953 −0.056 −0.002 0.00001 0.002 0.078 0.0001 0.006
CDX (CDX.NA.IG.INDU) 35,790 −0.049 −0.002 0.0001 0.002 0.037 0.00002 0.005
CDX (CDX.NA.IG.HVOL) 56,996 −0.073 −0.002 0.0001 0.002 0.048 0.0001 0.008
CDX (CDX.NA.XO) 30,508 −0.081 −0.005 0.001 0.006 0.067 0.001 0.012
CDX (CDX.EM) 14,372 −0.180 −0.003 −0.00001 0.004 0.192 −0.0002 0.018
CDX (CDX.EM.DIV) 14,562 −0.144 −0.002 0.0002 0.003 0.149 0.0002 0.014

Table 2. Descriptive statistics of five-day log returns of index CDS and the S&P 500.
The statistics are based on date-tenor-series-version observations for different index CDS families (see Table 1 for descriptions),
all family-date-tenor-series-version observations for CDS (all), and date observations for the S&P 500 from January 2006 to
December 2009. Source: Markit.

are on-the-run (0.63) and slightly smaller for indices that are off-the-run (0.4).52 The methodology

is equivalent to estimating the correlation between an equally weighted basket of index CDS and

the S&P 500. We do not allow for different factor loadings β for different indices, since we are

interested in only one parameter for the correlation ρX,M . The level of correlation is similar when

estimating the single-factor model for individual index CDS for the baseline period from 2006 to

2010 as well as for the period from 2010 to 2018, confirming the robustness of our estimate.53

52index CDS are frequently updated. The most recently updated index is called on-the-run and typically exhibits
the highest liquidity. Older versions of the indices are called off-the-run and are often still traded but exhibit lower
liquidity.

53Correlation estimates are available on request. The correlation can be substantially smaller for single reference
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Dependent variable: five-day CDX return

Full On-the-run Off-the-run

(1) (2) (3)

S&P 500 0.148 0.235 0.148
t = 370.284∗∗∗ t = 23.845∗∗∗ t = 369.824∗∗∗

Observations 590,706 856 589,850
R2 0.188 0.400 0.188
Adjusted R2 0.188 0.399 0.188
Residual Std. Error 0.011 (df = 590704) 0.007 (df = 854) 0.011 (df = 589848)

Implied correlation ρX,M 0.43 0.63 0.43

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3. Calibration of the correlation of contract values with systematic risk.
OLS regression of five-day index CDS log returns on S&P 500 five-day returns between January 2006 and December 2009:
CDXname,t,tenor,series,version = α + βSPt + εname,t,tenor,series,version for all index CDS at days t. The methodology is
equivalent to estimating a single-factor model for an equally weighted basket of all index CDS. ρX,M is the implied correlation
coefficient between index CDS and S&P 500 returns. Source: Markit and own calculations.

Based on these empirical results, Table 4 and 5 describe the final calibration of our model.

Variable Value Description

γ 16 Number of counterparties
K 10 Number of derivative classes
σX 0.01 Total contract volatility
ρX,M 0.43 Correlation between contract value and systematic risk M
σM 0.03 volatility of the systematic risk factor
β 0.1433 Implied beta-factor contracts
σ 0.009 Implied idiosyncratic contract volatility
v 1 Initial market value

cor
(
rkij , r

m
hl

)
0.185 Implied pair-wise correlation of contracts

Table 4. Baseline calibration. We assume the same calibration for each entity and derivative class.

entities, as these do not diversify across entities’ idiosyncratic default risk. For example, the correlation of the S&P
500 with Wells Fargo’s five-year tenor spreads is -0.06; with Goldman Sachs’s, it is -0.12; with Deutsche Bank’s, it
is -0.1; with General Electric’s, it is -0.18; with AIG’s, it is -0.16, and with Metlife’s, it is -0.42. The correlation is
almost identical when using three-year tenors. Note that the negative sign of the correlation coefficient reflects the
protection buyer’s perspective in spreads, while we account for the difference between buyer and seller with the sign
of the contract size v. Thus, we use the absolute value of the correlation.
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Variable Value Description

pd 0.1 Individual probability of default
ρA,A 0.25 Correlation of log assets conditional on M
σA 1 Log-asset value volatility
αBN 0.99 Bilateral margin level
αMN 0.99 Multilateral (clearing) margin level

Table 5. Baseline calibration of the default model. We assume the same calibration for each entity
and derivative class.
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Cross-netting and a single CCP for the whole market

To address the failure of multilateral netting of one derivative class to reduce counterparty risk

exposure in sufficiently extreme events, one might increase the overall degree of netting. A natural

extension is to net across not only one but several derivative classes. We refer to such netting

across all γ − 1 counterparties and κ > 1 derivative classes as cross-netting. It occurs when one

CCP offers clearing of several derivative classes within the same portfolio.54

The counterparty risk exposure in κ cross-netted derivative classes with γ − 1 counterparties

conditional on systematic risk is given by

M̄(γ − 1)κβΦ

(
M̄
√

(γ − 1)κβ

σ

)
+
√

(γ − 1)κσϕ

(
−
M̄
√

(γ − 1)κβ

σ

)
. (77)

Figure 16 illustrates the benefit of cross-netting for counterparty risk exposure during extreme

events with severity q (defined as before). Figure 16 (a) considers an intermediate case that half

of all derivative classes are cleared, i.e., the CCP nets across all counterparties and κ = 5 = K/2

derivative classes. The figure shows that even with cross-netting of κ = 5 derivative classes, the

counterparty risk exposure is larger in sufficiently extreme states (such as q = 0.25 or q = 0.1) than

with bilateral netting.

Figure 16 (b) depicts the minimum number of counterparties for cross-netting to be beneficial

compared to bilateral netting. We find that cross-netting essentially needs to net across all K

derivative classes and γ − 1 counterparties (i.e., κ = K), in order to be beneficial in all realizations

of systematic risk, a case we refer to as Mega CCP. In other words, only a Mega CCP that clears

with all counterparties in all derivative classes can unambiguously reduce counterparty risk exposure

for all realizations of systematic risk compared to bilateral netting.55 The reason is that central

clearing with a Mega CCP does not fragment the derivatives market into bilateral and multilateral

(cross-) netting but all derivatives are cross-netted.

Result 16. Only a Mega CCP, netting across all derivative classes and counterparties, reduces

54For example, Eurex offers netting across several derivative classes such as money-market and interest rate deriva-
tives, including margining for a clearing member’s entire portfolio. Cross-netting is promoted by interoperability
arrangements that create linkages between different CCPs (Garvin (2012)).

55Similarly, Result 1, about multilateral netting of one derivative class, qualitatively carries over to the case of
cross-netting with κ < K.
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Figure 16. Impact of cross-netting during extreme events.
(a) Effect of netting across counterparties and κ = 5 derivative classes on collateralized counterparty risk exposure during an

extreme event M̄ = σMΦ−1(q), ∆E = E[EBN+CN
i −EBN,Ki |M = M̄ ]/E[EBN,Ki |M = M̄ ]. The smaller q, the more adverse

the event. If ∆E < 0, cross-netting reduces counterparty risk exposure compared to bilateral netting. (b) Minimum number
of counterparties γmin, such that cross-netting of κ derivative classes reduces counterparty risk exposure. In case κ = K = 10,
we refer to the CCP as Mega CCP. We assume K = 10 derivative classes, correlation between contract returns and systematic
risk ρX,M = 0.43, total contract volatility σX = 0.01, and volatility of the systematic risk factor σM = 0.03.

counterparty risk exposure for all realizations of the systematic risk factor compared to bilateral

netting.

Can a Mega CCP compensate for the adverse effect of a small clearing margin? The uncollat-

eralized exposure in cross-netted κ derivative classes is given by

E[ẼCN,κ] =
√
σ2
Mκ

2(γ − 1)2β2 + κ(γ − 1)σ2ξ(αCN ), (78)

where ξ(α) is defined as above and αCN is the margin level for cross-netting.

A Mega CCP underlies the same dynamics as the multilateral netting of one derivative class

with respect to margins: the smaller (larger) the clearing margin, the larger (smaller) is the uncol-

lateralized exposure. If the clearing margin is sufficiently small, then cross-netting is not beneficial

for any number of counterparties, and vice versa.

Analogously to multilateral netting, we derive the smallest acceptable margin confidence level

HCN , such that cross-netting is not beneficial for any number of counterparties if αCN ≤ HCN :

HCN = ξ−1

ξ(αBN )

|ρX,M |

√
1 + ρ2

X,M (K − 1)
√
K

 . (79)
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Similarly to HMN , HCN is increasing with |ρX,M |. A Mega CCP is, however, associated with

a larger degree of netting. This reduces the smallest acceptable clearing margin compared to the

multilateral netting of one derivative class: it is straightforward to show that HCN < HMN for

any ρX,M ∈ (0, 1). This effect, however, is very small. For example, with αBN = 0.99, the smallest

acceptable confidence level is reduced only by 0.15 percentage points: from HMN = 98.97% with

multilateral netting of class K to HCN = 98.82% with cross-netting of all classes k = 1, ...,K.

Figure 17 illustrates the result. This effect seems still negligible in light of the large difference of 11

percentage points, in practice, between αBN = 99% and αMN = 88%. We conclude that the degree

of netting is only of minor importance if the margin for cleared derivatives is not sufficiently large.
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Figure 17. Impact of cross-netting on uncollateralized counterparty risk exposure.
(a) Change in uncollateralized counterparty risk exposure due to netting across κ = 10 derivative classes and across counterpar-

ties on uncollateralized counterparty risk exposure, ∆Ẽ = E[ẼBN+CN
i − ẼBN,Ki ]/E[ẼBN,Ki ], for bilateral margin confidence

level αBN = 0.99, and γ = 16 entities. If ∆Ẽ < 0, cross-netting reduces uncollateralized exposure compared to bilateral netting.
(b) Minimum number of counterparties γmin, such that cross-netting reduces uncollateralized exposure compared to bilateral
netting. The bilateral margin is αBN = 0.99. We assume K = 10 derivative classes, total contract volatility σX = 0.01,
volatility of the systematic risk factor σM = 0.03, correlation between contract returns and systematic risk ρX,M = 0.43, entity
default probability π = 0.05, correlation between entities’ log asset values ρA,A = 0.05, and total log asset volatility σ̄A = 1.

Result 17. For every bilateral margin confidence level αBN ∈ (0, 1), there exists a threshold

HCN ≤ αBN , such that the counterparty risk exposure is larger with a Mega CCP than with bilateral

netting for any number of counterparties if the clearing margin CCN ≤ V aRHCN (
∑γ

i=1,i 6=j X
k
ij).

The threshold HCN is increasing with the absolute value of systematic risk exposure |ρX,M |, such

that a larger clearing margin is necessary for more extreme systematic risk exposure.

Finally, Figure 18 illustrates the impact of loss sharing at a Mega CCP, i.e., loss sharing across

all derivative classes and counterparties, conditional on different realizations of the systematic risk
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factor. The figure shows that the impact of loss sharing on counterparty risk with loss sharing

qualitatively remains the same with a Mega CCP as with loss sharing of only one derivative class.

The main difference is the magnitude, which is now substantially larger (in absolute terms): as

more derivative trades are shared among entities, the absolute change in counterparty risk with

loss sharing is larger. As with loss sharing of only one derivative class, loss sharing of all derivative

trades reduces directional traders’ counterparty risk only in one (extremely positive or negative)

tail of realizations, while dealers benefit in both tails.
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Figure 18. Counterparty risk with loss sharing and a Mega CCP for different realizations of the
systematic risk factor.
Counterparty risk with loss sharing conditional on different levels of the systematic risk factor M = M̄ = σMΦ−1(q). We

assume the correlation between entities’ log asset values, i.e., default clustering, to be ρA,A = 0.1, with γ = 16 counterparties,

K = 10 derivative classes, total contract volatility σX = 0.01, volatility of the systematic risk factor σM = 0.03, entity default

probability π = 0.1, log-asset value volatility σA = 1, and clearing and bilateral margin level αMN = αBN = 0.99.
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