The Effects of Banking Competition on Growth and Financial Stability: Evidence from the National Banking Era

Mark Carlson, ¹ Sergio Correia, ² and Stephan Luck ³

Views do not necessarily represent views of the Federal Reserve System

¹Federal Reserve Board

²Federal Reserve Board

³Federal Reserve Bank of New York

Research question

What is the causal effect of competition in banking on

- 1. Credit provision?
- 2. Financial stability?
- 3. Real economic outcomes?

- Theoretical predictions are ambiguous
- Equally plausible theories predict different outcomes
 - Credit supply

 Standard IO argument: competition increases credit
 - « Relationships matter: competition decreases credit
 - (Petersen and Rajan, 1995)

- Theoretical predictions are ambiguous
- Equally plausible theories predict different outcomes
- Credit supply
 - Standard IO argument: competition increases credit (Klein, 1971)
 - Relationships matter: competition decreases credit (Petersen and Rajan, 1995)
 - Monopolist decreases risk to protect charter value
 (Keeley, 1990)
 - Monopolist increases rates and lending becomes more risky (Boyd and DeNicolo, 2005)

- Theoretical predictions are ambiguous
- Equally plausible theories predict different outcomes
- Credit supply
 - Standard IO argument: competition increases credit (Klein, 1971)
 - Relationships matter: competition decreases credit (Petersen and Rajan, 1995)
- Risk taking
 - Monopolist decreases risk to protect charter value (Keeley, 1990)
 - Monopolist increases rates and lending becomes more risky (Boyd and DeNicolo, 2005)

- Theoretical predictions are ambiguous
- Equally plausible theories predict different outcomes
- Credit supply
 - Standard IO argument: competition increases credit (Klein, 1971)
 - Relationships matter: competition decreases credit (Petersen and Rajan, 1995)
- Risk taking
 - Monopolist decreases risk to protect charter value (Keeley, 1990)
 - Monopolist increases rates and lending becomes more risky (Boyd and DeNicolo, 2005)
- Synthesis
 - Depends on stage of development of economy (Cetorelli and Peretto, 2012; Martinez-Miera and Repullo, 2010)

What do we know? (Empirical evidence)

• **Identification challenge:** competition and concentration are not exogenous

What do we know? (Empirical evidence)

- Identification challenge: competition and concentration are not exogenous
- Most evidence based on lifting of branching restrictions
 - (Jayaratne and Strahan, 1996, 1998, Black and Strahan, 2002; Cetorelli and Strahan, 2006; Dick and Lehnert, 2010; Jiang et al., 2016)

What do we know? (Empirical evidence)

- Identification challenge: competition and concentration are not exogenous
- Most evidence based on lifting of branching restrictions
 (Jayaratne and Strahan, 1996, 1998, Black and Strahan, 2002; Cetorelli and Strahan, 2006; Dick and Lehnert, 2010; Jiang et al., 2016)
- Confounding factors:
 - Ability to diversify geographically (Goetz et al., 2016)
 - Political economy of bank mergers

(Agarwal et al., 2012; Calomiris and Haber, 2014)

- 1. Little government interference
 - No deposit insurance
 - No bailouts
 - No lender of last resort

1. Little government interference

- No deposit insurance
- No bailouts
- No lender of last resort

1. Little government interference

- No deposit insurance
- No bailouts
- No lender of last resort

2. Prevalence of unit banking

3. Capital regulation gives rise to exogenous variation in entry barrier

- 1. Little government interference
 - No deposit insurance
 - No bailouts
 - No lender of last resort
- 2. Prevalence of unit banking
- 3. Capital regulation gives rise to exogenous variation in entry barrier

Table of contents

1 Identification and data

- 2 Barriers to entry and entry
- 3 How do incumbents react?

4 Real effects

• Minimum amount of capital (equity) required to open a bank

- Minimum amount of capital (equity) required to open a bank
- Based on population of place of a bank's location at time of founding

"Capital stock paid in" \geq $\begin{cases} $50,000 & \text{if population } \leq 6,000 \\ $100,000 & \text{if population } \in (6,000,50,000] \\ $200,000 & \text{if population } > 50,000 \end{cases}$

- Minimum amount of capital (equity) required to open a bank
- Based on population of place of a bank's location at time of founding

$$\mbox{"Capital stock paid in"} \geq \begin{cases} \$50,000 & \mbox{if population } \le 6,000 \\ \$100,000 & \mbox{if population } \in (6,000,50,000] \\ \$200,000 & \mbox{if population } > 50,000 \end{cases}$$

Exploit discontinuity at the 6,000 threshold

- Minimum amount of capital (equity) required to open a bank
- Based on population of place of a bank's location at time of founding

$$\mbox{"Capital stock paid in"} \geq \begin{cases} \$50,000 & \mbox{if population } \le 6,000 \\ \$100,000 & \mbox{if population } \in (6,000,50,000] \\ \$200,000 & \mbox{if population } > 50,000 \end{cases}$$

→ Exploit discontinuity at the 6,000 threshold

Capital requirements represent a barrier to entry Sylla (1969), James (1978), Fulford (2015)

Leverage can be chosen freely (subject to market constraints)

- Minimum amount of capital (equity) required to open a bank
- Based on population of place of a bank's location at time of founding

"Capital stock paid in"
$$\geq \begin{cases} \$50,000 & \text{if population } \le 6,000 \\ \$100,000 & \text{if population } \in (6,000,50,000] \\ \$200,000 & \text{if population } > 50,000 \end{cases}$$

- → Exploit discontinuity at the 6,000 threshold
 - Capital requirements represent a barrier to entry Sylla (1969), James (1978), Fulford (2015)
- Leverage can be chosen freely (subject to market constraints)

Identification

Two key details for the identification strategy:

- 1. Legal population according to last census
 - ⇒ Publication of census induces change in the capital required for entrants
- Change does not apply to incumbent banks ("grandfather clause")
 Change incumbent behavior across markets can only stem from change in entry barriers

Identification

Two key details for the identification strategy:

- 1. Legal population according to last census
 - ⇒ Publication of census induces change in the capital required for entrants
- 2. Change does not apply to incumbent banks
 - ⇒ Change incumbent behavior across markets can only stem from change in entry barriers

Data

OCC's annual "Call Reports"

- Data for all national banks from 1867 to 1904
- 112,209 "Call Reports" for 7,315 banks
- Developed new Optical Character Recognition (OCR) techniques to extract information from the reports

Other data sources:

Decennial census

Population from Schmidt (2017)

Manufacturing outcomes from Haines (2004)

Railroad connections from Atack (2013)

Information on existence on non-federal chartered banks from Jaremski and Fishback (2018)

Data

OCC's annual "Call Reports"

- Data for all national banks from 1867 to 1904
- 112, 209 "Call Reports" for 7, 315 banks
- Developed new Optical Character Recognition (OCR) techniques to extract information from the reports

Other data sources:

- Decennial census
 - Population from Schmidt (2017)
 - Manufacturing outcomes from Haines (2004)
- Railroad connections from Atack (2013)
- Information on existence on non-federal chartered banks from Jaremski and Fishback (2018)

- Focus on towns that had less than 6,000 inhabitants as of the preceding census
 - More than 95% of considered markets have one or two national banks
 - Margin of getting a second or third firm
 - Bresnahan and Reiss (1991)

- Focus on towns that had less than 6,000 inhabitants as of the preceding census
 - More than 95% of considered markets have one or two national banks
 - → Margin of getting a second or third firm Bresnahan and Reiss (1991)

- Focus on towns that had less than 6,000 inhabitants as of the preceding census
 - More than 95% of considered markets have one or two national banks
 - → Margin of getting a second or third firm Bresnahan and Reiss (1991)
- Focus on behavior of incumbent banks
 - → Not directly affected by the change in required capital.

- 2,864 city-census year observations
- 1,700 unique cities with 285 cities treated
- 2,400 incumbent national banks, more than 400 in treated towns
 - approx. 50% of all national banks in each census year

Concern 1: Differences in towns

Treated markets are larger and grew faster in the past

Concern 1: Differences in towns

Treated markets are larger and grew faster in the past

- Around the cutoff, towns are indistinguishable
 - Similar past population growth
 - Similar degree of industrialization
 - Similar history of banking industry

Empirical strategy:

Identifying assumption: assignment of high and low entry barriers is

Use tools developed tools developed for the analysis of regression

(Imbens and Lemieux, 2008; Lee and Lemieux, 2010; Cattaneo et al., 2019)

Concern 1: Differences in towns

Treated markets are larger and grew faster in the past

- Around the cutoff, towns are indistinguishable
 - Similar past population growth
 - Similar degree of industrialization
 - Similar history of banking industry
- Empirical strategy:
 - Identifying assumption: assignment of high and low entry barriers is quasi-random around cutoff
 - Use tools developed tools developed for the analysis of regression discontinuity (RD) designs

(Imbens and Lemieux, 2008; Lee and Lemieux, 2010; Cattaneo et al., 2019)

Concern 2: State banks

Results could be driven by substitution by state banking

- Higher capital requirements for national banks make state banking more attractive
- 1. Test for state bank entry
- 2. Exploit variation in state bank entry requirements (White, 1983)
 - Identify set of state in which state bank entry is at discretion of local bank regulator
 - Arguably, this makes entry as state bank prohibitively costly (Schwartz, 1947)

Table of contents

1 Identification and data

- 2 Barriers to entry and entry
- 3 How do incumbents react?

4 Real effects

Capital paid-in of newly founded banks

- All newly founded banks between 1871 and 1899 fulfill the capital regulation.
- Around 2/3 of the times the constraint is binding

Does an increase in required capital predict entry?

- Binned scatterplot with an average binsize of 15
- After 10 years, about 0.3 fewer banks in towns that cross the threshold

Do barriers to entry predict entry?

Estimate local linear regressions

$$y_{ct} = \alpha + \beta_1 \cdot \mathbb{1}_{ct}^{\mathsf{pop} > 6,000} + \beta_2 \cdot (\mathsf{pop}_{ct} - 6,000) + \beta_3 \cdot \mathbb{1}_{ct}^{\mathsf{pop} > 6,000} \cdot (\mathsf{pop}_{ct} - 6,000) + \varepsilon_{ct},$$

• where y_{ct} is the number of entries in the decade following a publication

$$\mathbb{1}_{ct}^{\text{pop}>6,000} = \begin{cases} 1 & \text{if pop}_{ct} > 6,000 \\ 0 & \text{if pop}_{ct} \le 6,000 \end{cases}.$$

- Census from year $t \in \{1870, 1880, 1890\}$
- Non-parametric estimation
 - (Hahn et al., 2001; Calonico et al. 2014)
- MSE-optimal bandwidth selection
 - (Imbens and Kalyanaraman, 2011; Calonico et al. 2017)

Dependent Variable	EntriesNB			EntriesSB
	(1)	(2)	(3)	(4)
Conventional	-0.26***	-0.26***	-0.29***	0.13
	[0.08]	[0.09]	[0.11]	[0.20]
Bias-corrected	-0.28***	-0.28***	-0.30***	0.10
	[0.08]	[0.09]	[0.11]	[0.20]
Robust	-0.28***	-0.28***	-0.30**	0.10
	[0.10]	[0.10]	[0.12]	[0.23]
BW Type	MSE Two	MSE Common	MSE Two	MSE Two
Kernel Type	Epanechnikov	Epanechnikov I	Epanechniko	v Epanechnikov
Order Loc. Poly. (p)	1	1	2	1
Order Bias (q)	2	2	3	2
Mean dep. var.	0.21	0.21	0.21	0.19
Num. counties	1,040	1,040	1,040	486
Num. cities	1,696	1,696	1,696	849
Observations	2,864	2,864	2,864	1,862
Obs. left of cutoff	2,579	2,579	2,579	1,727
Obs. right of cutoff	285	285	285	135
Left main bandwidth (h)	2,468	1,821	2,606	2,306
Right main bandwidth (h)	1,433	1,821	3,083	1,453
Effective obs. (left)	616	392	675	433
Effective obs. (right)	155	174	226	86

Dependent Variable	EntriesNB			EntriesSB
	(1)	(2)	(3)	(4)
Conventional	-0.26***	-0.26***	-0.29***	0.13
	[0.08]	[0.09]	[0.11]	[0.20]
Bias-corrected	-0.28***	-0.28***	-0.30***	0.10
	[0.08]	[0.09]	[0.11]	[0.20]
Robust	-0.28***	-0.28***	-0.30**	0.10
	[0.10]	[0.10]	[0.12]	[0.23]
BW Type	MSE Two	MSE Common	MSE Two	MSE Two
Kernel Type	Epanechnikov	Epanechnikov I	Epanechnikov	Epanechnikov
Order Loc. Poly. (p)	1	1	2	1
Order Bias (q)	2	2	3	2
Mean dep. var.	0.21	0.21	0.21	0.19
Num. counties	1,040	1,040	1,040	486
Num. cities	1,696	1,696	1,696	849
Observations	2,864	2,864	2,864	1,862
Obs. left of cutoff	2,579	2,579	2,579	1,727
Obs. right of cutoff	285	285	285	135
Left main bandwidth (h)	2,468	1,821	2,606	2,306
Right main bandwidth (h)	1,433	1,821	3,083	1,453
Effective obs. (left)	616	392	675	433
Effective obs. (right)	155	174	226	86

Dependent Variable	EntriesNB			EntriesSB
	(1)	(2)	(3)	(4)
Conventional	-0.26***	-0.26***	-0.29***	0.13
	[0.08]	[0.09]	[0.11]	[0.20]
Bias-corrected	-0.28***	-0.28***	-0.30***	0.10
	[0.08]	[0.09]	[0.11]	[0.20]
Robust	-0.28***	-0.28***	-0.30**	0.10
	[0.10]	[0.10]	[0.12]	[0.23]
BW Type	MSE Two	MSE Common	MSE Two	MSE Two
Kernel Type	Epanechniko	v Epanechnikov l	Epanechnikov	Epanechnikov
Order Loc. Poly. (p)	1	1	2	1
Order Bias (q)	2	2	3	2
Mean dep. var.	0.21	0.21	0.21	0.19
Num. counties	1,040	1,040	1,040	486
Num. cities	1,696	1,696	1,696	849
Observations	2,864	2,864	2,864	1,862
Obs. left of cutoff	2,579	2,579	2,579	1,727
Obs. right of cutoff	285	285	285	135
Left main bandwidth (h)	2,468	1,821	2,606	2,306
Right main bandwidth (h)	1,433	1,821	3,083	1,453
Effective obs. (left)	616	392	675	433
Effective obs. (right)	155	174	226	86

Table of contents

1 Identification and data

- 2 Barriers to entry and entry
- 3 How do incumbents react?

4 Real effects

How do incumbents react?

We start out estimating:

$$y_{bt} = \alpha + \beta_1 \cdot \mathbb{1}_{ct}^{\text{pop} > 6,000} + \beta_2 \cdot (\text{pop}_{ct} - 6,000) + \beta_3 \cdot \mathbb{1}_{ct}^{\text{pop} > 6,000} \cdot (\text{pop}_{ct} - 6,000) + \varepsilon_{bt}$$

 y_{bt} is a banks growth in loans in the ten years following a census publication

Dependent Variable	Δ Loans			
Sample	All cities		No new entrants	
	(1)	(2)	(3)	(4)
Conventional	-10.10	-13.35**	-15.89**	-13.00**
	[6.27]	[6.76]	[7.18]	[6.58]
Bias-corrected	-12.70**	-15.31**	-17.81**	-14.17**
	[6.27]	[6.76]	[7.18]	[6.58]
Robust	-12.70*	-15.31*	-17.81**	-14.17*
	[7.11]	[7.83]	[8.35]	[7.46]
BW Type	MSE Two	MSE Common	MSE Two	MSE Common
Kernel Type	Epanechnikov	Epanechnikov	Epanechnikov	Epanechnikov
Order Loc. Poly. (p)	1	1	1	1
Order Bias (q)	2	2	2	2
Mean dep. var.	27.02	27.02	23.82	23.82
Num. counties	1,043	1,043	797	797
Num. cities	1,703	1,703	1,305	1,305
Num. banks	2,391	2,391	1,741	1,741
Observations	3,104	3,104	2,494	2,494
Obs. left of cutoff	2,670	2,670	2,206	2,206
Obs. right of cutoff	434	434	288	288
Left main bandwidth (h)	1,912	1,741	1,877	2,193
Right main bandwidth (h)	2,209	1,741	1,525	2,193
Effective obs. (left)	537	471	415	520
Effective obs. (right)	285	256	189	213

Dependent Variable	Δ Loans			
Sample	All cities		No new entrants	
	(1)	(2)	(3)	(4)
Conventional	-10.10	-13.35**	-15.89**	-13.00**
	[6.27]	[6.76]	[7.18]	[6.58]
Bias-corrected	-12.70**	-15.31**	-17.81**	-14.17**
	[6.27]	[6.76]	[7.18]	[6.58]
Robust	-12.70*	-15.31*	-17.81**	-14.17*
	[7.11]	[7.83]	[8.35]	[7.46]
BW Type	MSE Two	MSE Common	MSE Two	MSE Common
Kernel Type	Epanechnikov	Epanechnikov	Epanechnikov	Epanechnikov
Order Loc. Poly. (p)	1	1	1	1
Order Bias (q)	2	2	2	2
Mean dep. var.	27.02	27.02	23.82	23.82
Num. counties	1,043	1,043	797	797
Num. cities	1,703	1,703	1,305	1,305
Num. banks	2,391	2,391	1,741	1,741
Observations	3,104	3,104	2,494	2,494
Obs. left of cutoff	2,670	2,670	2,206	2,206
Obs. right of cutoff	434	434	288	288
Left main bandwidth (h)	1,912	1,741	1,877	2,193
Right main bandwidth (h)	2,209	1,741	1,525	2,193
Effective obs. (left)	537	471	415	520
Effective obs. (right)	285	256	189	213

Varying population bandwidth: Δ Loans

Figure: Sensitivity of main of the coefficient for $\mathbb{1}^{pop>6,000}_{ct}$ for varying restrictions on the population bandwidth. Average marginal effects reported and 99% confidence bands.

Dynamics of Δ Loans

$$y_{bt} = \tau_t + \beta_t \times \tau_t \times 11_{ct}^{\text{pop} > 6,000} + \delta X_{bt} + \varepsilon_{bt}$$

- Lending contracts immediately after census publication
- Evidence in line with entry deterrence (Goolsbee and Syverson, 2008)

Dynamics of Δ Loans

$$y_{bt} = \tau_t + \beta_t \times \tau_t \times \mathbf{1}_{ct}^{\text{pop}>6,000} + \delta X_{bt} + \varepsilon_{bt}$$

- Lending contracts immediately after census publication
- Evidence in line with entry deterrence (Goolsbee and Syverson, 2008)

Risk Taking I

Formally, we estimate

$$y_{bt} = \alpha + \beta_1 \cdot \mathbb{1}_{ct}^{\text{pop}>6,000} + \beta_2 \cdot (\text{pop}_{ct} - 6,000) + \beta_3 \cdot \mathbb{1}_{ct}^{\text{pop}>6,000} \cdot (\text{pop}_{ct} - 6,000) + \varepsilon_{bt}$$

where y_{bt} can be

- Leverage
- Collateral seized (Other real estate owned, OREO)
- Default

Dependent Variable	Equity Assets	Equity Loans	OREO	Default
	(1)	(2)	(3)	(4)
Conventional	4.20*	11.86**	-0.07*	-0.05***
	[2.16]	[5.52]	[0.04]	[0.02]
Bias-corrected	4.95**	14.01**	-0.07*	-0.05***
	[2.16]	[5.52]	[0.04]	[0.02]
Robust	4.95**	14.01**	-0.07	-0.05***
	[2.51]	[6.33]	[0.05]	[0.02]
BW Type	MSE Two	MSE Two	MSE Two	MSE Two
Kernel Type	Epanechnikov	Epanechnikov	Epanechnikov	Epanechnikov
Order Loc. Poly. (p)	1	1	1	1
Order Bias (q)	2	2	2	2
Mean dep. var.	36.02	60.87	0.07	0.03
Num. counties	1,043	1,043	1,043	1,043
Num. cities	1,709	1,709	1,709	1,709
Num. banks	2,401	2,401	2,401	2,401
Observations	3,188	3,188	2,568	3,723
Obs. left of cutoff	2,745	2,745	2,206	3,197
Obs. right of cutoff	443	443	362	526
Left main bandwidth (h)	1,595	1,660	1,728	2,468
Right main bandwidth (h)	2,694	2,563	1,975	998
Effective obs. (left)	442	465	368	895
Effective obs. (right)	315	306	224	197

Table of contents

1 Identification and data

- 2 Barriers to entry and entry
- 3 How do incumbents react?

4 Real effects

Dependent Variable	Farm Value	Farm Output	Number of Farms
	(1)	(2)	(3)
Conventional	-78.59*	-13.45**	-0.01**
	[41.90]	[6.08]	[0.01]
Bias-corrected	-96.44**	-15.55**	-0.02***
	[41.90]	[6.08]	[0.01]
Robust	-96.44**	-15.55**	-0.02**
	[46.66]	[6.86]	[0.01]
BW Type	MSE Two	MSE Two	MSE Two
Kernel Type	Epanechnikov	Epanechnikov	Epanechnikov
Order Loc. Poly. (p)	1	1	1
Order Bias (q)	2	2	2
Mean dep. var.	399.81	62.86	0.09
Num. counties	1,043	1,043	1,043
Num. cities	1,716	1,716	1,716
Observations	2,857	2,859	2,859
Obs. left of cutoff	2,567	2,569	2,569
Obs. right of cutoff	290	290	290
Left main bandwidth (h)	1,518	1,436	1,460
Right main bandwidth (h)	2,922	2,640	2,411
Effective obs. (left)	304	277	283
Effective obs. (right)	226	216	210

Does an increase in required capital predict real growth?

• Quantile-spaced, data-driven bin selection (Calonico et al. 2017)

Summary

- Identifying causal effects of banking competition is extremely challenging
 - National Banking Era is a "close to ideal" laboratory

Findings:

- Competition causes credit growth and economic growth
- Competition causes additional risk taking

• Implications:

- Trade-off between credit growth and financial stability
- Increased charter values could depress credit but increase stability
- Especially relevant in lightly regulated parts of financial sector