### Firms and Economic Performance: A View From Trade

### Concentration in Intarnational Markets

Alessandra Bonfiglioli<sup>1</sup> Rosario Crinò<sup>2</sup> Gino Gancia<sup>3</sup>

ASSA 2020 Annual Meeting



<sup>&</sup>lt;sup>1</sup>Queen Mary University of London and CEPR

<sup>&</sup>lt;sup>2</sup>Università Cattolica del Sacro Cuore, CEPR and CESifo

<sup>&</sup>lt;sup>3</sup>Queen Mary University of London, CREi and CEPR

#### Firms in Global Markets

- we live in a "superstar" economy dominated by giant firms
  - ▶ 10% of the world's public companies generate 80% of all profits (*The Economist*, 2016)
  - sales' shares of top firm has increased (e.g., Autor et al., 2017)
  - large firms dominate global markets (e.g., Melitz, 2003, Freund & Pierola, 2015)
- two key questions:
  - what is the role of firms in explaining countries performance in global markets?
  - 2 are global markets becoming more or less competitive?
- little systematic evidence due to lack of comparable data
- we use firm-level data on US imports
  - compare firms from all countries selling to a single destination

### What We Do

- quantify the importance of firms for explaining US imports
  - map countries market shares into firm-level characteristics
    - \* number of firms
    - \* average attributes
    - ★ firm heterogeneity: top firms
    - ★ granularity: deviations from a continuous distribution
  - exact decomposition of the margins of trade
    - more general than Redding & Weinstein (2018), Fernandes et al. (2017), Hummels & Klenow (2005), Freund & Pierola (2015), Gaubert & Itskhoki (2018)
- study concentration in US imports
  - top firms dominate national industries
  - but compete more in markets that are increasingly global

## Assumptions: CES Demand

- consider a sector i in a given market (US)
  - preferences over varieties in industry i

$$C_{i} = \left\{ \sum_{\omega \in \Omega_{i}} \left[ \gamma(\omega) c\left(\omega \right) \right]^{rac{\sigma_{i}-1}{\sigma_{i}}} 
ight\}^{rac{\sigma_{i}}{\sigma_{i}-1}}, \quad \sigma_{i} > 1$$

- ★  $\Omega_i$  = available varieties  $\omega$  in i, consumption  $c(\omega)$
- $\star$   $\gamma(\omega) =$  demand shifter (quality)
- ullet demand for variety  $\omega$

$$p(\omega) c(\omega) = \tilde{\gamma} (\omega)^{\sigma_i - 1} P_i^{\sigma_i} C_i$$

- $p(\omega)$  = price of variety  $\omega$
- $\tilde{\gamma}(\omega) \equiv \gamma(\omega)/p(\omega) = \text{quality-to-price ratio} = \text{"appeal"}$
- $P_i$  = price index in industry i

### Decomposing Market Shares

- take the market share of origin o in industry i,  $S_{oi}$ , decompose:
  - extensive vs intensive margin

$$S_{oi} = \frac{N_{oi} \cdot \bar{r}_{oi}}{N_i \cdot \bar{r}_i}$$

- ★ N = # of varieties,  $\bar{r} = \text{average revenue per variety}$
- 2 decompose the intensive margin

$$\bar{r}_{oi} = \overbrace{\mathbb{E}(\tilde{\gamma}_{oi})^{\sigma_i - 1}}^{\text{average appeal}} + \overbrace{\frac{1}{N_{oi}} \sum_{\omega \in \Omega_{oi}} \left[ \tilde{\gamma}\left(\omega\right)^{\sigma_i - 1} - \mathbb{E}(\tilde{\gamma}_{oi})^{\sigma_i - 1} \right]}^{\text{appeal heterogeneity}}$$

- ullet when  $\sigma>2$  total sales are convex in  $ilde{\gamma} 
  ightarrow$  superstar economy
  - sales increase in heterogeneity through reallocations from less to more attractive products

#### Data

- transaction-level US import data from Piers (IHS Markit)
  - universe of waterborne import transactions of the US in 2002 and 2012
- info on:
  - exporting firm
  - country of origin
  - exported product (6-digit HS)
  - value and quantity of the transaction
- final sample:
  - ▶ 1,350,574 firm-product-year observations
  - 366 manufacturing industries
  - ▶ 104 exporting countries
  - ▶ 83% of average export to the US per origin-sector-year

#### Structural Estimation

- ullet to implement the decomposition we need  $\sigma_i$  and  $ilde{\gamma}\left(\omega
  ight)$
- we use 4 estimates of elasticities of substitution:
  - ▶ Reverse-Weighting estimator (Redding & Weinstein, 2016)  $\rightarrow \sigma_i^{RW}$
  - identify  $\sigma_i$  from dispersion of sales  $\rightarrow \sigma_i^{reg.base.}$ ;  $\sigma_i^{reg.contr.}$
  - estimates from Broda & Weinstein (2006)  $\rightarrow \sigma_i^{BW}$
- mean & median  $\sigma_i$  well above 2
- ullet then, calibrate  $ilde{\gamma}\left(\omega
  ight)$  to match observed sales
  - from sales:

$$\ln r\left(\omega\right) = \overbrace{\sigma_{i} \ln P_{i} + \ln C_{i}}^{\text{fixed effect, } \alpha_{i}} + \overbrace{\left(\sigma_{i} - 1\right) \ln \tilde{\gamma}\left(\omega\right)}^{\text{Residual}}$$

### Decomposing US Imports: Results

- market shares: extensive vs intensive margin
  - ▶ separately regress ( $\ln N_{oi} \ln N_i$ ) and ( $\ln \bar{r}_{oi} \ln \bar{r}_i$ ) on  $\ln S_{oi}$
- intensive margin: average vs heterogeneity

$$\qquad \qquad \text{regress } \mathbb{E}(\tilde{\gamma}_{oi})^{\sigma_i-1} \text{ and } \sum_{\omega \in \Omega_{oi}} \left[ \frac{\tilde{\gamma}(\omega)^{\sigma_i-1} - \mathbb{E}(\tilde{\gamma}_{oi})^{\sigma_i-1}}{N_{oi}} \right] \text{ on } \bar{r}_{oi}$$

Table 4 - Decomposition of Countries' Market Shares

|                                                             | reg. base. | reg. contr. | R₩       | BW       |
|-------------------------------------------------------------|------------|-------------|----------|----------|
|                                                             | (1)        | (2)         | (3)      | (4)      |
| a) First step - Decomposition of market shares              |            |             |          |          |
| N. of varieties                                             | 0.502***   | 0.502***    | 0.499*** | 0.505*** |
|                                                             | [0.003]    | [0.003]     | [0.003]  | [0.003]  |
| Average revenue per variety                                 | 0.498***   | 0.498***    | 0.501*** | 0.495*** |
|                                                             | [0.003]    | [0.003]     | [0.003]  | [0.003]  |
| b) Second step - Decomposition of average revenue per varie | ety        |             |          |          |
| Average quality-to-price ratio                              | 0.487***   | 0.480***    | 0.481*** | 0.492*** |
|                                                             | [0.075]    | [0.106]     | [0.114]  | [0.118]  |
| Heterogeneity in quality-to-price ratios                    | 0.513***   | 0.520***    | 0.519*** | 0.508*** |
|                                                             | [0.075]    | [0.106]     | [0.114]  | [0.118]  |
| Obs.                                                        | 24754      | 24754       | 17660    | 23622    |

## Heterogeneity, Superstars and Granularity

- is heterogeneity driven by superstar firms?
  - ▶ on average, top firm in each country accounts for 25% of exports to the US
- but are superstar firms "exceptional"?
  - define "granularity" as exceptional deviations from a continuous distribution
  - identify it from the data and quantify its role
- ullet assume quality-to-price ratio  $ilde{\gamma}$  is log-normal
  - then, market share of country o relative to country x

$$\ln \frac{S_{oi}}{S_{xi}} = \left[\mathbb{E}\left(\ln r_{oi}\right) - \mathbb{E}\left(\ln r_{xi}\right)\right] + \frac{\mathbb{V}\left(\ln r_{oi}\right) - \mathbb{V}\left(\ln r_{xi}\right)}{2} + \ln \frac{N_{oi}}{N_{xi}} + g_{oxi}$$

- ★ where  $g_{oxi}$  "granular" residual: 0 if LLN applies
- we quantify  $g_{oxi}$  and ask if it captures superstars

# The Contribution of Granularity and Superstars

Table 6 - Decomposition of Countries' Market Shares under Log Normality

|                           | Difference in av. log | Difference in var. of | Difference in log n. | Residual |  |
|---------------------------|-----------------------|-----------------------|----------------------|----------|--|
|                           | sales                 | log sales             | of varieties         |          |  |
|                           | (1)                   | (2)                   | (3)                  | (4)      |  |
|                           | a) <u>Baseline</u>    |                       |                      |          |  |
| Log relative market share | 0.236***              | 0.228***              | 0.487***             | 0.048*** |  |
|                           | [0.000]               | [0.001]               | [0.000]              | [0.000]  |  |
| Obs.                      | 1078915               | 1078915               | 1078915              | 1078915  |  |

ullet the "granular" residual explains < 5%

Table 7 - Decomposition of Countries' Market Shares under Log Normality: The Role of Superstar Firms

|                           | Difference in av. log                                                              | Difference in var. of | Difference in log n. of | Residual  |
|---------------------------|------------------------------------------------------------------------------------|-----------------------|-------------------------|-----------|
|                           | sales                                                                              | log sales             | varieties               |           |
|                           | (1)                                                                                | (2)                   | (3)                     | (4)       |
|                           | a) Excluding superstar firms (sales above triplet average by at least 2 std. dev.) |                       |                         |           |
| Log relative market share | 0.272***                                                                           | 0.215***              | 0.527***                | -0.014*** |
|                           | [0.000]                                                                            | [0.001]               | [0.000]                 | [0.001]   |
| Obs.                      | 1078909                                                                            | 1078909               | 1078909                 | 1078909   |

• it falls to zero if superstars are removed

#### Additional Results

- firm heterogeneity
  - correlates positively with market size
    - ★ higher dispersion in countries richer, larger and closer to the US
- firm heterogeneity is important for welfare:
  - ▶ bottom vs top 25% heterogeneity origin  $\rightarrow$  real consumption up by 20-32%
- of irm heterogeneity driven mostly by "quality"
  - variation in prices explains little of variation in appeal
    - ★ similar to Hottman, Redding & Weinstein (2016)

### Concentration: Foreign vs National Firms

- is the US market becoming more or less competitive?
  - rise of superstars among national firms
  - vs more intense global competition
- changes in concentration, 2002-2012, by industry and origins
  - ightharpoonup a) concentration among foreign firms from one country:  $\sim$
  - ▶ b) concentration among foreign firms from all countries: ↓
  - ▶ c) concentration among domestic firms: ↑

Table 1 - Descriptive Statistics on Concentration Measures

| Table 1 - Descriptive Statistics on Concentration Measures |        |           |         |                      |  |
|------------------------------------------------------------|--------|-----------|---------|----------------------|--|
|                                                            | Mean   | Std. Dev. | Change  | % of Cases with Rise |  |
|                                                            | (2012) | (2012)    | (02-12) | of Concentration     |  |
| a) PIERS: Statistics by country-industry pair              |        |           |         |                      |  |
| Share of sales by top-4 firms                              | 0.79   | 0.21      | -0.01   | 0.47                 |  |
| Herfindahl index                                           | 0.46   | 0.29      | 0.01    | 0.50                 |  |
| b) PIERS: Statistics by industry                           |        |           |         |                      |  |
| Share of sales by top-4 firms                              | 0.37   | 0.23      | -0.08   | 0.34                 |  |
| Herfindahl index                                           | 0.09   | 0.13      | -0.03   | 0.32                 |  |
| c) COMPUSTAT: Statistics by industry                       |        |           |         |                      |  |
| Share of sales by top-4 firms                              | 0.88   | 0.15      | 0.05    | 0.70                 |  |
| Herfindahl index                                           | 0.55   | 0.30      | 0.13    | 0.73                 |  |

Notes. Industries are defined at the 4-digit level of the Standard Industrial Classification (SIC).

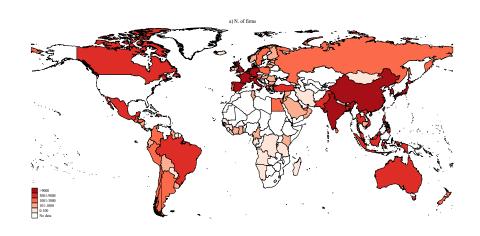
### Decomposing Top4 Shares

• decompose changes in market share of top4 firms

$$\Delta \ln s_{top} = -\Delta \ln n^f + \Delta \ln n^p_{top} - \Delta \ln n^p + \Delta \ln \frac{\bar{r}_{top}}{\bar{r}}$$

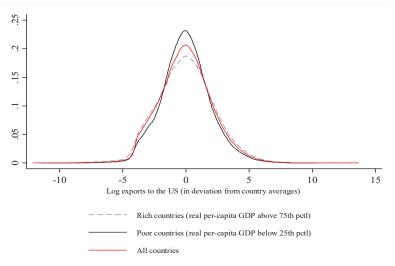
- $n^f = number of firms, n^p = number of products per firm$
- $ightharpoonup \bar{r} = \text{average sales per product}$

Table 2 - Decomposition of the Share of Sales by the Top-4 Firms


| sition of the share of | , , , , , , , , , , , , , , , , , , , ,        |                                                                                                                   |                                                                                                                                                                                                               |
|------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2)                    | (3)                                            | (4)                                                                                                               | (5)                                                                                                                                                                                                           |
| $-\Delta \ln n^f(i,o)$ | $\Delta \ln n_{top}^p(i,o)$                    | $-\Delta \ln n^p(i,o)$                                                                                            | $\Delta \ln \frac{\bar{r}_{top}(i,o)}{\bar{r}(i,o)}$                                                                                                                                                          |
|                        | a) Deco                                        | mposition by Country                                                                                              | y-Industry Pair                                                                                                                                                                                               |
| -0.27                  | -0.15                                          | 0.07                                                                                                              | 0.31                                                                                                                                                                                                          |
|                        | b                                              | ) Decomposition by                                                                                                | Industry                                                                                                                                                                                                      |
| -0.75                  | -0.43                                          | 0.10                                                                                                              | 0.78                                                                                                                                                                                                          |
|                        | c) Decomp                                      | osition by Industry (o                                                                                            | nly top-100 Firms)                                                                                                                                                                                            |
| 0.00                   | -0.53                                          | 0.22                                                                                                              | 0.09                                                                                                                                                                                                          |
|                        | (2) $-\Delta \ln n^{f}(i, \sigma)$ -0.27 -0.75 | $-\Delta \ln n^{f}(i,o) \qquad \Delta \ln n^{p}_{top}(i,o)$ $-0.27 \qquad -0.15$ $-0.75 \qquad -0.43$ $c) Decomp$ | (2) (3) (4) $-\Delta \ln n^f(i,o)$ $\Delta \ln n^p_{top}(i,o)$ $-\Delta \ln n^p(i,o)$ a) Decomposition by Country  -0.27 -0.15 0.07  b) Decomposition by 1  -0.75 -0.43 0.10  c) Decomposition by Industry (o |

- results consistent with trade-driven reallocations:
  - number of firms has increased
  - firms are dropping products, top firms more
  - yet, relative sales per product by top firms has increased

#### Conclusion


- use US import data to study firms in global markets
- main results:
  - decomposition of countries' market shares
    - ★ extensive/intensive margin: 50%-50%
    - **★** average/heterogeneity: 50%-50%
    - ★ granularity: 5%
  - variation in firm-level heterogeneity is important for explaining sales
    - important implications for quantitative trade models
    - ★ heterogeneity is positively correlated with market size
- top firms compete more in global markets:
  - data consistent with the view that international competition goes hand-in-hand with national concentration
    - Melitz (2003); Bernard, Redding & Schott (2011); Melitz, Mayer & Ottaviano (2014)

# Data: Country Coverage



### Distribution of Sales and GDP

Figure 3 - Distributions of Log Exports to the United States by Group of Exporting Countries

