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Introduction

Detecting economic units whose behavior influences a large
number of other units, has become an important policy issue.

Banks/companies that are deemed to be ‘too big to fail’are
debated in the press and in public policy forums, although
empirical evidence on their existence is often lacking.

When interconnections are observed (denoted by the
adjacency matrix W), such as input-output data in production
networks a la Acemoglu et al. 2012, outdegrees of the
network (defined by d′= (d1, d2, ...., dN ) =W′1N ) can be
used to detect pervasive/influential units. See Pesaran and
Yang (2020, JoE forthcoming).
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The present paper considers the problem of detecting
pervasive units when W is not known, but instead there exists
a suffi cient number of time series observation (T ) on
unit-specific characteristics (such as production or prices in
multi-sectoral models, or output growths and equity returns in
a multi-country global models).

A new thresholding multiple testing method is proposed to
detect pervasive units (if any) in large panel datasets.

The detection method is theoretically justified using results
from large factor models as well as recent developments on
multiple testing.

The proposed method (a) allows for the presence of common
(external) factors, (b) is capable of identifying networks
without a pervasive (or influential unit), and (c) is valid for
panels with different combinations of N and T (including
both cases where N > T and T > N).
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Pervasive units and their detection

We characterize a unit in a network as pervasive if it
influences almost all other units, analogous to the unit at the
hub of a star network.

In the absence of external factors, the pervasive unit(s) are
the common factors, and thus are perfectly explained by the
Principle Components (PCs) used as estimates of the
factors. This property extends to the networks with external
common factors.
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In the general case where the network is also subject to
external factors, the number of PCs used must be suffi ciently
large to allow for the external factors as well.

Once a suffi cient number of PCs are used, we should obtain
perfect fit for the regression of pervasive units on the PCs for
N and T suffi ciently large (but not for the non-pervasive
units). An extension to dynamic factor models can also be
considered but will not be pursued in this paper.

This motivates using a thresholding procedure for estimated
error variances of the regressions of individual units on the
PCs.

Once a unit passes the threshold test, we then check to see if
the selected unit is in fact pervasive using results from the
multiple testing literature. See, for example, Bailey, Pesaran
and Smith (2019, JoE) on estimation of large covariance
matrices.
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Related literature

In the context of linear asset pricing models, Bai and Ng
(2006) determine whether a (small) set of observed series
coincides with estimated common factors. The observed series
could then be regarded as pervasive, although Bai and Ng do
not consider such a possibility.

Parker and Sul (2016) develop an approach in the same factor
model context as Bai and Ng and consider identification of
pervasive units in a large dataset as a special case.

Brownlees and Mesters (2019, BM) provide a more general
solution - they identify pervasive units from the column sums
of the sample concentration matrix (inverse of the sample
covariance matrix) of the observations. BM procedure is
subject to two limitations: (a) It assumes the presence of at
least one pervasive unit. (b) it requires T >> N.
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Panel data models with pervasive units and external factors

Suppose xt = (x1t , x2t , . . . , xNt )
′ is observed over

t = 1, 2, ...,T , where xit is the variable of interest (returns,
growth rates, rate of inflation) on unit i observed at time t.

Without loss of generality consider the partition of
xt = (x′at , x′bt )

′, where xat = (xa,1t , . . . , xa,mt )
′ is the m× 1

vector of pervasive units and xbt = (xb,m+1,t , . . . , xb,Nt )
′ is

the n× 1 vector of non-pervasive units with n = N −m. A
unit is strongly pervasive if it affects all other units (there
are degrees of dominance to be formalized below).

In addition all units can also be affected by k unobserved
external factors, gt .

The number (m) and the identities of the pervasive units are
unknown. In total we could have p = m+ k common factors.
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More formally, we consider the DGP (similar to that used by
BM):

xit = λ′igt + uit , i = 1, 2, ....,m, (1)

xit = λ′igt +
m

∑
j=1
bijxjt + uit , i = m+ 1,m+ 2, ...,N. (2)

The non-pervasive units are affected by the external factors,
gt , and the innovations, uat = (u1t , u2t , ..., umt )′ of the
pervasive units that act as internal factors:

xit = d′igt +
m

∑
j=1
bijujt + uit , i = m+ 1,m+ 2, ...,N,

where di = λi +∑m
j=1 bijλj for i = m+ 1,m+ 2, ...,N.
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The impact of pervasive units, xat , on non-pervasive units ,
xbt , is governed by the n×m loading matrix B = (bij ).
For xjt , j = 1, . . . ,m to be strongly pervasive, we must have

|bij | > c > 0, for i = m+ 1,m+ 2, ...., nαj ,

and
bij = 0, for i = nαj + 1, ...., n,

or equivalently

N

∑
i=m+1

|bij | = 	 (nαj ) , for j = 1, 2, ...,m, (3)

with αj = 1, and n = N −m.
Following Chudik et al. (2011) we could extend our analysis
to αj ∈ [1/2, 1) for units that are weakly pervasive.
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The model in matrix notation can be written as

xat = Λagt + uat , (4)

xbt = (Λb +BΛa) gt +Buat + ubt , (5)

or more compactly as(
xat
xbt

)
=

(
Aa
Ab

)
ft +

(
0
ubt

)
,

= Aft + vt , (6)

where ft is p × 1 (p = m+ k), defined by ft = (g′t ,u′at , )
′,

Aa = (Λa, Im) and Ab = (Λb +BΛa, B).
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Summary of model assumptions

Factor loadings A = (a1, a2, . . . , aN )
′ are treated as fixed

parameters. A rank condition on Aa ensures that m is
identified.

Factors ft and errors vis are assumed to be mutually
independent and covariance stationary. However, conditional
heteroskedasticity is allowed.

To make use of results from the multiple testing literature we
also assume that the distributions of ft and vis have
exponentially decaying tails. This is standard in
high-dimensional statistics.

Independence of vis across t is imposed for simplicity.
However, weak cross-section correlation is allowed for.
Jump to assumption details
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Identification of pervasive units via thresholding

The restricted factor model(
xat
xbt

)
=

(
Aa
Ab

)
ft +

(
0
ubt

)
suggests a simple detection procedure based on the fit of
individual cross-sections, xit , in terms of the factors ft .
The explanatory power of ft should be perfect for pervasive
units, but not for non-pervasive units.

Since ft is unobserved, we use a principal components-based

estimator F̂ =
(̂
f1, f̂2, . . . , f̂T

)′
of dimension T × p (see e.g.

Bai and Ng, 2002; Bai, 2003). Recall that p = m+ k.
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Given F̂, one can compute

σ̂2iT =
xiMF̂xi
T

, for i = 1, . . . ,N

where xi = (xi1, xi2, . . . , xiT ) and MF̂ = IT − F̂
(
F̂′F̂
)−1

F̂′.

We then determine a threshold C 2NT > 0 such that if, and
only if, N σ̂2iT < C

2
NT , then unit i is selected potentially as

pervasive.
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Estimation of the unobserved factors

ft can be consistently estimated up to a rotation matrix, and
it is well known that

T−1
∥∥∥F0−F̂SNT ∥∥∥2

F
= Op

[
max

(
N−1,T−1

)]
(7)

where F0 is the T × p matrix of true factors, and SNT is a
p × p rotation matrix.

This indicates the rate at which σ̂2iT converges to zero, and
hence the scaling to be applied to obtain a stochastically
bounded expression.

Since it is only the product F0A0 in factor models that is
identified, rather than F0 and A0 individually, without loss of
generality we set SNT = Ip .
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Deriving a threshold for error variances

To arrive at a specific threshold, note that, if unit i is
pervasive, then

σ̂2i = T
−1a′iF

′
0MF̂F0ai = T

−1a′i
(
F0−F̂

)′
MF̂

(
F0−F̂

)
ai

≤ T−1
∥∥∥F0−F̂∥∥∥2

F
‖ai‖2F

∥∥MF̂

∥∥
F .

Recalling that T−1
∥∥∥F0−F̂∥∥∥2

F
= Op

[
max

(
N−1,T−1

)]
, we

consider the following scaled version of σ̂2i :

N σ̂2i =
a′iA

′
0V
′MF̂VA0ai
NT

+Op
[
max

(
N−1/2,

√
NT−1

)]
.

Jump to details on this result

G. Kapetanios, M.H. Pesaran, S. Reese Detection of Units with Pervasive Effects



Since (NT )−1 a′iA
′
0V
′MF̂VA0ai ≤ (NT )

−1 a′iA
′
0V
′VA0ai , if

unit i is pervasive we must have

N σ̂2i ≤ (NT )
−1 a′iA

′
0V
′VA0ai + op (1) ,

and it can be shown that (as N,T → ∞ such that√
N/T → 0)

Pr
(
N σ̂2i > C

2
NT

)
≤ Pr

(
a′iA

′
0V
′VA0ai
NT

> C 2NT

)
+ o (1) ,

where C 2NT is some positive function of N,T , to be
characterized below.

Multiple testing issues arise since we need to consider N
threshold tests.
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Using the assumption of exponentially decaying tails in the
distribution of vit we can use Lemma A11 of Chudik,
Kapetanios and Pesaran (2018, Econometrica). It holds that

Pr
(
a′iA

′
0V
′VA0ai
NT

>
n
N
C 2NT

)
≤ T exp

[
− (1− π)2 C 2NT

2η2in

( n
N

)]
+ o (1)

where 0 < π < 1 and

η2in = n
−1a′iA

′
0E
(
utu′t

)
A0ai = n−1a′iA

′
0˚ uA0ai

when there are no pervasive units (m = 0).

The expression for η2in is unobserved and its estimation will be
discussed below.
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Given an upper bound on Pr
(
N σ̂2i > C

2
NT

)
in terms of T , η2in

and C 2NT , it is possible to establish suffi cient properties for the
positive function C 2NT such that

Pr
(
a′iA

′
0V
′VA0ai
NT > n

N C
2
NT

)
→ 0.

This condition is met if

C 2NT >
2 log (T ) η2in
(1− π)2

or C 2NT = 2C log (T ) η2in

for some C > 1.

Accordingly, i is selected as a (potential) pervasive unit if

σ̂2iT ≤
2η2in log (T )

N
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The threshold σ̂2iT ≤
2η2in log(T )

N is small enough to ensure that
the sample error variances of non-pervasive units exceed its
threshold value with probability approaching 1 as N,T ,→ ∞.

For a non-pervasive unit, the expression for N σ̂iT is
augmented by the two extra terms

Bi7 =
Nv′iMF̂vi

T
, Bi8 =

Na′i
(
F0 − F̂

)
MF̂vi

T

which are of order Bi7 = Op (N) and Bi8 = op (N). Thus,
N σ̂2iT → ∞, as N and T → ∞, if i is non-pervasive,
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Implementation of the thresholding procedure requires a
consistent estimator of η2in = N

−1a′iA
′ΣuAai .

Weak cross-section correlation in ut implies sparsity of the
n× n cross-section covariance matrix Σu . Hence, a suitable
thresholding estimator Σ̃u = (σ̃ij ) can be used for consistent
estimation.

We use the multiple testing estimator of Bailey et al. (2019,
JoE), given by

σ̃ij = σ̂ij I
(
|ρ̂ij | >

cπ (N)√
T

)
, cπ (N) = Φ−1

(
1− π

2Nδ

)
σ̂ij = T−1

T

∑
t=1
ûit ûjt , ρ̂ij =

σ̂ij√
σ̂ii σ̂jj

Factor loadings ai and A = (a1, a2, . . . , aN )
′ are estimated by

simple least squares regression of xi on F̂.
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Defining the main thresholding method

Algorithm 1 (σ2 thresholding)

Let X = (x1, x2, . . . , xN ) be the T ×N matrix of observations on
all the N units in the panel. Suppose that p ≤ pmax, where pmax is
selected a priori to be suffi ciently large. Compute F̂ = N

−1/2
XQ̂,

where Q̂ is the N × pmax matrix whose columns are the
orthonormalized eigenvectors of X′X, such that N−1Q̂′Q̂ = Ipmax .

Compute âi =
(
F̂′F̂
)−1

F̂′xi and σ̂2i = T
−1x′iMF̂xi .

Consider the pmax smallest values σ̂2(1), σ̂
2
(2), . . . , σ̂2(pmax ). Then,

select unit (i) to be pervasive if

σ̂2(i ) ≤
2η̂2(i )N log (T )

N
,

where η̂2iN = N
−1â′i Â

′Σ̃uÂâi , Â = (̂a1, â2, . . . , âN )
′ , and Σ̃u is the

multiple testing threshold estimator of E (utu′t ).
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Consistency of the main thresholding method

Theorem 1
Suppose that observations on xit , for i = 1, 2, . . . ,N, and
t = 1, 2, . . . ,T are generated according to the general linear factor
model set out above, with m pervasive units.
Let ID be the set of indices of the pervasive units, and IND its
complement, with ID allowed to be an empty set.
Let ÎD and ÎND be their estimates based on Algorithm 1.
Let Assumptions 1-4 hold and

√
N
T → 0.

Then as N and T → ∞, jointly, we have

lim
N ,T→∞

Pr
({
ÎD = ID

}
∩
{
ÎND = IND

})
= 1
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A sequential thresholding method

σ2 thresholding performs well, but can be improved upon.

A simple adjustment is a sequential procedure to detect
pervasive units one at a time. This procedure includes
pervasive units detected at earlier steps as observed factors in
the subsequent analysis.

Formally, we replace the static factor model with an
augmented factor model

xit = f∗t a
∗
i + x

∗′
atb
∗
ai + vit , t = 1, 2, . . . ,T ; i = 1, 2, . . . ,N1.

(8)

where x∗at is a r × 1 vector of identified pervasive units. f∗t is a
pmax − r vector of unobserved common factors.
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starting with r = 0 identified pervasive units, N1 = N − r and
some pmax > m+ 1 the sequential procedure consists of the
following two steps:

Algorithm 2 (S−σ2 thresholding)

1. Conduct σ2 thresholding using model (8) with m∗ = pmax − r
estimated factors. Let m̃ be the estimated number of
pervasive units estimated using Algorithm 1.
If m̃ = 0, stop and conclude that there are r pervasive units.

2. If m̃ > 0, obtain i∗ = argmini σ̂2i . Append xi ∗ to X
∗
a and drop

xi ∗ from X. Update r to r + 1 and N1 to N1 − 1.
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Consistency of sequential thresholding

Corollary 2

Suppose that observations on xit , for i = 1, 2, . . . ,N, and
t = 1, 2, . . . ,T are generated according to the general linear factor
model given above with m pervasive units.
Let ID be the set of indices of the pervasive units, and IND its
complement, with ID allowed to be an empty set.
Let ÎD and ÎND be their estimates based on S−σ2 thresholding.
Let Assumptions 1-4 hold and

√
N
T → 0.

Then as N and T → ∞, jointly, we have

lim
N ,T→∞

Pr
({
ÎD = ID

}
∩
{
ÎND = IND

})
= 1
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Sequential thresholding with a multiple testing hurdle

The risk of falsely detecting a pervasive unit can be further
reduced with an additional multiple testing (MT) hurdle,
applied to a newly identified pervasive unit detected by the
above sequential procedure.

The MT hurdle constitutes a diagnostic check on whether the
identified pervasive unit is a suffi ciently strong factor: It
evaluates whether its corresponding slope coeffi cient is
non-zero for most non-pervasive units.
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Algorithm 3 (MT hurdle)

1. Given an identified pervasive unit i∗, r previously identified
pervasive units x∗at and pmax − r − 1 unobserved factors f∗t ,
estimate

xjt = xi ∗tγ∗j + f
∗′
t a
∗
j + x

∗′
atb
∗
aj + vjt , t = 1, 2, . . . ,T

for each j = 1, . . . , i∗ − 1, i∗ + 1, . . . ,N.
2. Carry out N1 − 1 individual t-type tests to check the
significance of the slope parameters γ̂∗j for all j 6= i using the
MT critical value Φ−1

[
1− 0.01

2(N1−2)

]
. These tests have the

form t∗j = γ̂∗j

√
∑T
t=1 x

2
i ∗t

(
T−1 ∑T

t=1 v̂
2
jt

)−1
.

3. Let M denoted the number of rejections among these tests. If
log (M) / log (N) > 1/2, conclude that unit i∗ has passed the
MT hurdle. If not, conclude that the hurdle has failed, and
the unit in question is declared as non-dominant.
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Starting with r = 0 identified pervasive units, N1 = N − r
and some pmax > m+ 1, the sequential procedure with MT
hurdle consists of the following three steps:

Algorithm 4 (SMT−σ2 thresholding)

1. Conduct σ2 thresholding using model (8) with m∗ = pmax − r
estimated factors. Let m̃ be the estimated number of
pervasive units estimated using Algorithm 1.
If m̃ = 0, stop and conclude that there are r pervasive units.

2. If m̃ > 0, obtain i∗ = argmini σ̂2i .
Apply the MT hurdle to this cross-section unit. If the hurdle
is failed, stop and conclude that there are r pervasive units.

3. If the hurdle is passed, append xi ∗ to X∗a and drop xi ∗ from X.
Update r to r + 1 and N1 to N1 − 1.
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A roadmap for the remainder of this talk

1. Monte Carlo study results concerning the finite-sample
properties of SMT − σ2 thresholding and the procedures
proposed by BM (2018), and PS (2016).

2. Three empirical applications

2.1 Sectorial industrial production in the U.S.
2.2 Economic growth and equity markets worldwide
2.3 Housing prices in the U.S.
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A Monte Carlo Study

We now investigate how well the unknown number of
pervasive units (m0), as well as their identities are estimated
in finite samples.

Amongst the thresholding procedures discussed today, results
for SMT−σ2 thresholding (Algorithm 4) will be presented.

We compare its performance relative to that of PS and BM.

Two performance criteria are being considered:

1. The frequency of correctly identifying only the true pervasive
units

2. The average number of non-pervasive units falsely detected
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We consider four different cases, distinguished by the presence
or absence of pervasive units and external factors:

Pervasive units
Factors none 1 or 2
none Design set I Design set III
1 or 2 Design set II Design set IV

In all cases errors are generated with spatial effects, which
allow for weak error cross-sectional dependence.

Designs II and IV allow for common exposure to external
shocks.

Designs I and II do not contain a pervasive unit (ie m0 = 0).

Additional MCs are carried with weakly pervasive units.
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Formal model setup for simulations

Formally, we simulate the model

xta = µa +Λagt + uat , (9)

xtb = µb +Bxta +Λbgt + ubt , (10)

The elements of µ = (µa; µb) are IIDU(0, 1).

gt = R1/2
g (g∗,t − 2τk ) is k0 × 1, the elements of g∗,t being

IIDχ2 (2) and Rg = (1− ρg ) Ik + ρgτkτ′k . Additionally,
ρg ∼ U (0.2, 0.8). The m0 × 1 vector ht is generated
analogously.

The elements of the m0 × k0 matrix Λa and the n× k0 matrix
Λb are IIDU (0, 1).
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The (N −m0)×m0 matrix B = (bij ) has elements

bij

{
∼ IIDU (0, 1) if i ≤

⌊
(N −m0)α⌋

= 0 otherwise

where setting α = 1 results in pervasive units, and α = 0.8 entails
weakly pervasive units.

Model errors are generated as heterogeneous AR(1) processes
with weakly cross-sectionally correlated innovations. Namely,

uit = ρiuit−1 +
(
1− ρ2i

)1/2
ε it

where ρi ∼ IIDU (0.2, 0.5).
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Here, εt = (ε1t , ε2t , . . . , εnt )
′ = Σ1/2R1/2

u ζt with
Σ = diag (σ11, σ22, . . . , σnn) and

Ru =


1 ρu ρ2u · · · ρn−1u
ρu 1 ρu · · · ρn−2u
ρ2u ρu 1 · · · ρn−3u
...

...
...

. . .
...

ρn−1u ρn−2u ρn−3u · · · 1

 .

We set ρu = 0.5, σii = σ∗,ii/4+ 0.5 and σ∗,ii ∼ IIDχ2 (2).
Lastly, the n× 1 vector of innovations ζt has elements
ζit = (ζ∗,it − 2) /2, where ζ∗,it ∼ IIDχ2 (2).

Experiments are carried out for all combinations of
N ∈ {50, 100, 200, 500}, T ∈ {60, 110, 210, 250}.

All combinations of m0 ≤ 2 and k0 ≤ 2 are considered.
Results are obtained for α ∈ {0.8, 1}.
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Design sets I&II: no pervasive units
Table 1: Empirical frequency of correctly identifying the absence of a
pervasive unit (m0 = 0)

SMT−σ2 PS
k0 = 0 k0 = 0

N\T 60 110 210 250 N\T 60 110 210 250
50 100 100 100 100 50 99.4 99.2 99.6 99.8
100 100 100 100 100 100 100 100 100 100
200 100 100 100 100 200 100 100 100 100
500 100 100 100 100 500 100 100 100 100

k0 = 1 k0 = 1
N\T 60 110 210 250 N\T 60 110 210 250
50 88.4 86.4 82.7 80.3 50 53.2 92.0 97.3 97.7
100 94.1 92.3 90.7 88.9 100 75.5 98.5 100 100
200 99.8 99.2 99.4 99.2 200 90.6 100 100 100
500 100 100 100 100 500 92.9 100 100 100

k0 = 2 k0 = 2
N\T 60 110 210 250 N\T 60 110 210 250
50 61.6 55.9 47.7 44.3 50 81.0 80.1 69.5 69.5
100 84.0 74.5 64.2 60.9 100 86.6 85.7 63.1 57.4
200 98.6 97.7 94.2 94.1 200 82.5 66.1 46.3 39.7
500 100 100 100 99.9 500 99.4 46.8 22.6 17.6

Notes: SMT−σ2 thresholding is implemented with pmax = m0 + k0 + 1. PS refers to the method of Parker
and Sul (2016). BM is left out since all corresponding values are 0.
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Table 2: Average number of non-pervasive units falsely selected as
pervasive (m0 = 0)

k0 = 0 k0 = 1 k0 = 2
SMT−σ2 SMT−σ2 SMT−σ2

N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0 0 0 0 50 0.1 0.2 0.2 0.2 50 0.4 0.5 0.6 0.7
100 0 0 0 0 100 0.1 0.1 0.1 0.1 100 0.2 0.3 0.4 0.4
200 0 0 0 0 200 0 0 0 0 200 0 0 0.1 0.1
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

PS PS PS
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0 0 0 0 50 0.9 0.2 0.2 0.1 50 0.7 1.2 1.8 1.8
100 0 0 0 0 100 0.3 0 0 0 100 1.0 1.4 3.7 4.2
200 0 0 0 0 200 0.1 0 0 0 200 3.2 6.7 10.7 12.0
500 0 0 0 0 500 0.1 0 0 0 500 0 26.2 38.4 41.0

BM BM BM
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 4.1 3.7 4.7 4.9 50 3.9 4.0 4.5 4.9 50 3.9 3.8 4.5 4.7
100 n/a 3.6 3.6 4.1 100 n/a 3.5 3.7 4.2 100 n/a 3.7 3.6 4.0
200 n/a n/a 3.2 3.1 200 n/a n/a 3.2 3.0 200 n/a n/a 3.1 3.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: See the notes to Table 1. BM refers to the modified detection method used in Section 6 of Brownlees and Mesters
(2018).
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Discussing MC results without pervasive units

SMT−σ2 thresholding performs well, even in the presence of
external common factors, so long as N is suffi ciently large.

Its average number of false discoveries is at most 0.7.

BM always incorrectly selects at least one pervasive unit since
it assumes m0 > 0. The average number of false discoveries
of BM procedure is 3 to 4.

PS outperforms SMT−σ2 thresholding somewhat if N is small
and if there are external factors. But PS seems to break down
for k0 = 2 as N is increased.
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Design sets III&IV: Correct specification rates
Table 3: Empirical frequency of correctly identifying only the true
strongly pervasive units (m0 = 1, and α = 1)

SMT-σ2 PS BM
k0 = 0 k0 = 0 k0 = 0

N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 97.7 99.9 100 100 50 61.0 92.6 95.1 95.5 50 56.4 98.9 100 100
100 100 100 100 100 100 80.8 99.4 100 100 100 n/a 78.9 100 100
200 100 100 100 100 200 91.2 99.9 100 100 200 n/a n/a 92.1 100
500 100 100 100 100 500 94.0 100 100 100 500 n/a n/a n/a n/a

k0 = 1 k0 = 1 k0 = 1
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 58.9 80.6 82.9 82.3 50 0.5 0 0 0 50 50.3 97.6 100 100
100 68.1 88.4 93.3 93.0 100 0.1 0 0 0 100 n/a 72.9 100 100
200 79.1 97.8 99.6 99.5 200 0 0 0 0 200 n/a n/a 88.6 100
500 82.1 99.9 100 100 500 0 0 0 0 500 n/a n/a n/a n/a

k0 = 2 k0 = 2 k0 = 2
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 52.5 61.7 61.1 55.5 50 0 0 0 0 50 44.3 97.0 99.9 100
100 65.3 75.9 74.7 74.2 100 0 0 0 0 100 n/a 69.2 100 100
200 72.7 95.6 97.1 96.0 200 0 0 0 0 200 n/a n/a 87.4 100
500 77.1 99.4 100 100 500 0 0 0 0 500 n/a n/a n/a n/a

Notes: See the notes to Table 2.

G. Kapetanios, M.H. Pesaran, S. Reese Detection of Units with Pervasive Effects



Table 4: Empirical frequency of correctly identifying only the true
strongly pervasive units (m0 = 2, and α = 1)

SMT-σ2 PS BM
k0 = 0 k0 = 0 k0 = 0

N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 55.8 85.0 96.0 97.7 50 0.2 0.1 0.2 0.1 50 27.3 92.2 99.5 99.7
100 58.9 87.3 98.2 98.6 100 0 0 0 0 100 n/a 48.2 100 100
200 59.0 88.8 98.4 98.9 200 0.1 0 0 0 200 n/a n/a 67.7 100
500 60.9 94.8 100 100 500 0 0 0 0 500 n/a n/a n/a n/a

k0 = 1 k0 = 1 k0 = 1
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 36.2 67.3 79.1 79.5 50 0 0 0 0.1 50 21.0 86.6 98.1 98.5
100 41.7 78.5 91.5 92.4 100 0 0 0 0 100 n/a 39.9 99.9 100
200 43.5 87.6 98.3 99.3 200 0 0 0 0 200 n/a n/a 57.2 99.9
500 46.0 96.2 100 100 500 0 0 0 0 500 n/a n/a n/a n/a

k0 = 2 k0 = 2 k0 = 2
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 38.9 61.3 63.0 60.5 50 0 0 0 0 50 19.2 80.8 96.6 97.7
100 48.4 73.3 79.6 79.6 100 0 0 0 0 100 n/a 36.4 100 99.9
200 47.5 86.9 96.8 97.1 200 0 0 0 0 200 n/a n/a 52.3 99.7
500 41.0 94.6 99.9 100 500 0 0 0 0 500 n/a n/a n/a n/a

Notes: See the notes to Table 2.
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Design sets III&IV: Average number of false detections
Table 5: Average number of non-pervasive units falsely selected as
pervasive units (m0 = 1, and α = 1)

SMT-σ2 PS BM
k0 = 0 k0 = 0 k0 = 0

N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0 0 0 0 50 0.7 0.2 0.2 0.2 50 1.3 0 0 0
100 0 0 0 0 100 0.2 0 0 0 100 n/a 0.5 0 0
200 0 0 0 0 200 0.1 0 0 0 200 n/a n/a 0.2 0
500 0 0 0 0 500 0.1 0 0 0 500 n/a n/a n/a n/a

k0 = 1 k0 = 1 k0 = 1
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0.2 0.1 0.2 0.2 50 1.1 1.8 2.5 2.7 50 1.6 0 0 0
100 0.1 0.1 0.1 0.1 100 2.1 3.1 5.4 5.9 100 n/a 0.8 0 0
200 0 0 0 0 200 6.0 10.4 14.1 15.8 200 n/a n/a 0.3 0
500 0 0 0 0 500 0 37.2 46.8 47.5 500 n/a n/a n/a n/a

k0 = 2 k0 = 2 k0 = 2
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0.4 0.3 0.4 0.5 50 1.8 3.0 3.7 3.8 50 1.8 0 0 0
100 0.1 0.2 0.3 0.3 100 2.9 4.3 7.0 7.5 100 n/a 0.9 0 0
200 0 0 0 0 200 7.8 13.4 16.5 17.0 200 n/a n/a 0.3 0
500 0 0 0 0 500 0 41.2 46.7 46.9 500 n/a n/a n/a n/a

Notes: See the notes to Table 2.
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Table 6: Average number of non-pervasive units falsely selected as
pervasive units (m0 = 2, and α = 1)

SMT-σ2 PS BM
k0 = 0 k0 = 0 k0 = 0

N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0 0 0 0 50 0.7 1.2 1.5 1.5 50 0.8 0 0 0
100 0 0 0 0 100 1.0 1.6 3.1 3.3 100 n/a 0.2 0 0
200 0 0 0 0 200 3.5 6.7 9.5 10.7 200 n/a n/a 0.1 0
500 0 0 0 0 500 0 25.3 35.7 38.0 500 n/a n/a n/a n/a

k0 = 1 k0 = 1 k0 = 1
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0.2 0.1 0.1 0.1 50 2.2 3.2 3.8 3.7 50 1.0 0 0 0
100 0 0 0 0 100 3.9 5.3 7.1 7.2 100 n/a 0.4 0 0
200 0 0 0 0 200 9.8 14.6 16.0 16.0 200 n/a n/a 0.1 0
500 0 0 0 0 500 0 43.0 44.6 44.6 500 n/a n/a n/a n/a

k0 = 2 k0 = 2 k0 = 2
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0.3 0.3 0.3 0.4 50 2.7 3.6 3.7 3.8 50 1.0 0 0 0
100 0.1 0.1 0.2 0.2 100 5.1 6.9 8.1 8.0 100 n/a 0.4 0 0
200 0 0 0 0 200 10.4 16.0 16.5 16.2 200 n/a n/a 0.1 0
500 0 0 0 0 500 0 43.6 44.1 44.1 500 n/a n/a n/a n/a

Notes: See the notes to Table 2.
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Discussing MC results with pervasive units

Performance of SMT−σ2 thresholding improves steadily as
both N and T increase.

The existence of common factors leads to a deterioration of
small sample performance. However, the average number of
falsely selected units as pervasive is close to zero.

By construction, BM can only be applied if T > N. If this
condition is satisfied, BM procedure performs well.

PS works well only if m0 = 1 and k0 = 0. It breaks down
completely if there are external factors or more than one
pervasive units.

These observations are unchanged if pervasive units are weakly
pervasive (α = 0.8) rather than strongly pervasive (α = 1).

jump to corresponding MC results

SMT−σ2 thresholding has best overall performance.
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Empirical application 1: U.S. industrial production

We apply SMT−σ2 thresholding to growth rates in monthly
industrial production in N = 138 U.S. industrial sectors.

The full sample length 1972m1-2007m12 as well as the
subsamples 1972m1-1983m12 and 1984m1-2007m12 are
investigated.

To cover a wide range of possible factors, we consider
pmax = {2, 3, 4, 5, 6}.

The competitor methods of Parker and Sul (2016) as well as
Brownlees and Mesters (2018) are applied as a benchmark.
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Table 7: Pervasive units in sector-wise industrial production in the U.S.

Full sample (1972m1 - 2007m12)
Approach: SMT−σ2 PS BM
pmax 2, 3, 4, 5, 6 1†

Number of perva-
sive units:

0 0 1

Identities: Fluid Milk

Sub-sample A (1972m1 - 1983m12)
Approach: SMT−σ2 PS BM
pmax 2, 3, 4, 5, 6 1†

Number of perva-
sive units:

0 1 2

Identities: Plastics Products Commercial and Service Indus-

try Machinery; Bakeries and

Tortilla

† : This value minimizes the ICp2 criterion of Bai and Ng (2002) for selecting the number of common factors.
Maximum number of factors is set to 10.

Notes: Data taken from Foerster et al. (2011)
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Sub-sample B (1984m1 - 2007m12)
Approach: SMT−σ2 PS BM
pmax 2, 3, 4, 5, 6 2†

Number of perva-
sive units:

0 19 12

Identities: * **

† : This value minimizes the ICp2 criterion of Bai and Ng (2002) for selecting the number of
common factors. Maximum number of factors is set to 10.

*: Cheese; Breweries; Carpet and Rug Mills; Sawmills and Wood Preservation; Reconstituted
Wood Products; Artificial and Synthetic Fibers and Filaments; Plastics Products; Tires;
Rubber Products Ex Tires; Lime and Gypsum Products; Foundries; Fabricated Metals: Forging
and Stamping; Boiler, Tank, and Shipping Containers; Machine Shops; Turned Products;
and Screws, Nuts, and Bolts; Coating, Engraving, Heat Treating, and Allied Activities; Metal
Valves Except Ball and Roller Bearings; Metalworking Machinery; Other Electrical Equipment;
Travel Trailers and Campers.

**: Fluid Milk; Commercial and Service Industry Mach; Plastics Products;Other
Miscellaneous Manufacturing; Metal Valves Except Ball and Roller Bearings; Bak-
eries and Tortilla; Medical Equipment and Supplies; Newspaper Publishers; Naviga-
tional/Measuring/Electromedical/Control Instruments; Architectural and Structural Metal
Products; Metalworking Machinery; Printing and Related Support Activities.

Notes: Data taken from Foerster et al. (2011)
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Using SMT-σ2 thresholding, we do not detect any strongly
pervasive sector, in the case of all three sample periods
considered.

Results from the applications of BM and PS procedures are
mixed, and vary across sample periods. PS finds 0 units over
the full sample, 1 unit over sub-sample A and 19 units as
dominant over sub-sample B. BM selects 1 unit as pervasive
over the full sample, 2 units over the sub-sample A and 12
units over the sub-sample B.

BM provide their own analysis of this data using standardized
data and find a few pervasive sectors related to automobiles
and trucks. Our results are computed without standardization.
Recall that the MC results suggest that BM procedure
performs much better when data is not standardized.
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Empirical application 2: Pervasive economies and equity
markets

Our second application uses quarterly observations on real
GDP and real equity prices in 33 and 26 large economies,
respectively.

Data is transformed into rates of changes.

Data is taken from the latest vintage of the GVAR database,
covering the period 1979Q2-2016Q4.

G. Kapetanios, M.H. Pesaran, S. Reese Detection of Units with Pervasive Effects



Table 8: Pervasive unit detection methods applied to cross country rates
of change of real GDP (33 countries) and real equity prices (26 markets)
over the period 1979Q2-2016Q4 (151 time periods)

Rate of change of real GDP
Approach: SMT−σ2 PS BM
pmax 2 {3, 4, 5} 6 1†

Number of perva-
sive units:

0 1 0 0 2

Identities: France France
Spain

Rate of change of real equity prices
Approach: SMT−σ2 PS BM
pmax 2, 3, 4, 5, 6 2†

Number of perva-
sive units:

0 6 6

Identities: France USA
Germany Netherlands
Malaysia UK
Netherlands Canada
Singapore Switzerland
Thailand Germany

† This value minimizes the ICp2 criterion of Bai and Ng (2002) for selecting the number of common
factors. Maximum number of factors is set to 10.
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Empirical application 3: U.S. house prices changes

In a third application, we investigate the existence of U.S.
states whose house prices exert a persistent impact on house
prices in all other states.

We consider Freddie Mac House Price Indexes for 48 U.S.
states, leaving out Alaska, Hawaii and the District of
Columbia.

Data is observed quarterly over the period 1975Q1-2014Q4,
deflated by consumer prices indexes and transformed into
rates of change.
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Table 9: Estimated U.S. states with pervasive housing market

Approach: SMT−σ2 PS BM
pmax 2 3 4, 5, 6 5†

Number of perva-
sive units:

1 2 0 2 4

Identities: New York Kentucky New Hampshire North Carolina
New York Nevada Maryland

Virginia
Connecticut

† : This value minimizes the ICp2 criterion of Bai and Ng (2002) for selecting the number of common factors. Maximum number
of factors is set to 10.

Notes: Data taken from Freddie Mac House Price Indexes and Yang (2018).
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Conclusion

We suggest a rigorously developed approach for the detection
of pervasive units in large panel datasets.

Our method relies on the observation that pervasive units are
common factors for all other units.

This suggests a thresholding procedure to identify as pervasive
units the set of cross-sections that is almost perfectly
explained by estimated common factors from the data.
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Conclusion

Using a factor model framework enables us to detect pervasive
units without further information on linkages between units.

Drawing on results from the multiple testing literature, we
allow the number of potential pervasive units to be very large.

Our method performs very well in a wide array of scenarios,
including both external factors as well as the absence of
pervasive units.
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Detailed statement of model assumptions.

Assumption 1

1. ft is a covariance-stationary stochastic process with
E (ft f ′t ) = Ip .

2. There exist suffi ciently large positive constants C0 and C1 and
sf > 0 such that

sup
t
Pr (|fjt | > a) ≤ C0 exp (−C1asf ) for each j = 1, 2, . . . , p.

3. T−1 ∑T
t=1 ft f ′t

p→ Ip and
T−1 ∑T

t=1

[
‖ft‖j − E

(
‖ft‖j

)]
p→ 0, j = 3, 4.
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Assumption 2

1. Aa and Ab are parameter matrices, the former satisfying
Rank (Aa) = m ≥ 0.

2. inf i ‖ai‖ > c , and supi ‖ai‖ < C , and for any N = n+m (m
being a finite integer)

λmax

(
n−1

N

∑
i=m+1

aia′i

)
< C < ∞,

λmin

(
n−1

N

∑
i=m+1

aia′i

)
> c > 0.
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Assumption 3

1. The n× 1 vector ut is defined by

ut = Hεt

where

εt = (εm+1,t , εm+2,t , . . . , εN ,t )
′ ∼ IID (0, In) ,

and supi T
−1 ∑T

t=1 ∑T
t ′=1 |Cov (ε it , ε it ′)| < C < ∞.

2. There exist suffi ciently large positive constants C0 and C1 and
sε > 0 such that

sup
i ,t
Pr (|ε it | > a) ≤ C0 exp (−C1asε) .
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Assumption 3 (cont.)

3. H = (hij ) is an n× n matrix with fixed coeffi cient, with
bounded row and column sum norms, formally
‖H1‖ = supj ∑n

i=1 |hij | < C , and
‖H∞‖ = supi ∑n

j=1 |hij | < C . Furthermore,
λmin

(
HH′

)
> c > 0.

Assumption 4 ft and ε is are independent for all i , s, t.

back to assumption summary
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Deriving the leading term in residual variances

Assume that unit i is pervasive. We want to show that

N σ̂2i ≤
a′iA

′
0V
′VA0ai
NT

+Op
[
max

(
N−1/2,

√
NT−1

)]
.

1. Note that MF̂F̂ = 0 , implying

σ̂2i =
a′iF
′
0MF̂F0ai
T

=
a′i
(
F′0 − F̂

)
MF̂

(
F0 − F̂

)
ai

T

2. The estimator of F0 is F̂ =N−1XÂ, where Â =
√
NQ̂ and Q̂

is the orthonormal eigenvectors associated to the p largest
eigenvalues of X′X. The latter allows us to assume (w.l.o.g.)
that N−1A′0A0 = Ip .
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3. Since X = F0A′0 +V, we have

XA0
N

= F0 +
VA0
N
,

and after solving for F0,

F0 − F̂ =
X
(
A0 − Â

)
N

− VA0
N
.

4. Substituting out X above plus some algebra allow us to write

MF̂

(
F0 − F̂

)
=
MF̂

(
F0 − F̂

)
A′0
(
A0 − Â

)
N

+
MF̂V

(
A0 − Â

)
N

− MF̂VA0
N

.
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5. Hence, estimated error variances can be decomposed into

N σ̂2i = Bi1 + Bi2 + . . .+ Bi6,

where

Bi1 =
a′iA

′
0V
′MF̂VA0ai
NT

,

Bi2 = 2
a′iA

′
0V
′MF̂V

(
A0 − Â

)
ai

NT
,

Bi3 = 2
a′iA

′
0V
′MF̂

(
F0 − F̂

)
A′0
(
A0 − Â

)
ai

NT
,
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and

Bi4 =
a′i
(
A0 − Â

)′
V′MF̂V

(
A0 − Â

)
ai

NT
,

Bi5 = 2
a′i
(
A0 − Â

)′
V′MF̂

(
F0 − F̂

)
A′0
(
A0 − Â

)
ai

NT
,

Bi6 =
a′i
(
A0 − Â

)′
A0
(
F0 − F̂

)′
MF̂

(
F0 − F̂

)
A′0
(
A0 − Â

)
ai

NT
.

The five terms Bi2,Bi3, . . . ,Bi6 require upper bounds on the
difference between true model parameters and their estimators, i.e.(
F0 − F̂

)
and

(
A0 − Â

)
.

G. Kapetanios, M.H. Pesaran, S. Reese Detection of Units with Pervasive Effects



6. Let δNT = min
(√

N,
√
T
)
Analogous to

T−1
∥∥∥F0−F̂∥∥∥2

F
= Op

(
δ−2NT

)
, it holds that

∥∥∥F0−F̂∥∥∥
F
= Op

(√
T

δNT

)
;
∥∥∥A0−Â∥∥∥

F
= Op

(√
N

δNT

)
∥∥∥V (A0−Â)∥∥∥

F
= Op

(√
NT

δNT

)
; ‖VA0‖F = Op

(√
NT
)

∥∥∥A′0 (A0−Â)∥∥∥
F
= Op

(
N

δNT

)
which is shown using the theoretical framework of Bai and Ng
(2002) and Bai (2003).
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7. We can hence arrive at

Bi2 + Bi3 + . . .+ Bi6 = Op

(
1

δNT

)
+Op

(√
N

δ2NT

)
.

It immediately follows that

N σ̂2i =
a′iA

′
0V
′MF̂VA0ai
NT

+Op
[
max

(
N−1/2,

√
NT−1

)]
.

Lastly, given that the first term above is non-negative and
that MF̂ = IT −PF̂, we can conclude

N σ̂2i ≤
a′iA

′
0V
′VA0ai
NT

+Op
[
max

(
N−1/2,

√
NT−1

)]
.

�
Back to main slides
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MC results with weakly pervasive units
Table 10: Empirical frequency of correctly identifying only the true
weakly pervasive units (m0 = 1, and α = 0.8)

SMT-σ2 PS BM
k0 = 0 k0 = 0 k0 = 0

N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 51.2 80.6 95.4 97.5 50 0 1.3 12.4 16.5 50 21.9 72.0 93.3 95.2
100 87.2 98.9 100 100 100 0 0.1 11.0 21.7 100 n/a 37.5 99.3 100
200 97.5 100 100 100 200 0 0.1 5.2 19.4 200 n/a n/a 52.5 99.6
500 97.7 100 100 100 500 0 0 9.7 35.9 500 n/a n/a n/a n/a

k0 = 1 k0 = 1 k0 = 1
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 37.4 65.2 79.1 78.9 50 0.05 0 0 0 50 19.0 69.7 92.9 93.9
100 65.1 90.5 93.7 93.5 100 0 0 0 0 100 n/a 34.0 99.0 99.9
200 84.6 99.4 99.6 99.5 200 0 0 0 0 200 n/a n/a 51.8 99.2
500 82.7 99.9 100 100 500 0 0 0 0 500 n/a n/a n/a n/a

k0 = 2 k0 = 2 k0 = 2
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 37.7 53.3 58.2 54.5 50 0 0 0 0 50 19.4 68.8 90.9 94.1
100 64.2 79.7 75.3 74.4 100 0 0 0 0 100 n/a 33.5 99.4 99.8
200 82.7 98.2 97.1 96.0 200 0 0 0 0 200 n/a n/a 51.7 99.1
500 80.9 100 100 100 500 0 0 0 0 500 n/a n/a n/a n/a

Notes: See the notes to Table 2.
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Table 11: Empirical frequency of correctly identifying only the true
weakly pervasive units (m0 = 2, and α = 0.8)

SMT-σ2 PS BM
k0 = 0 k0 = 0 k0 = 0

N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 6.6 31.6 63.7 67.3 50 0.1 0.9 1.4 1.5 50 6.2 48.7 78.7 82.1
100 13.7 57.4 89.2 92.6 100 0 0.1 2.4 3.4 100 n/a 13.0 94.5 98.1
200 7.7 48.2 88.1 92.0 200 0 0.1 1.7 2.7 200 n/a n/a 23.7 94.3
500 0.9 23.0 71.0 79.3 500 0 0 1.6 2.9 500 n/a n/a n/a n/a

k0 = 1 k0 = 1 k0 = 1
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 8.9 32.0 60.6 63.7 50 0 0 0 0 50 5.7 47.8 74.4 80.2
100 16.5 61.3 88.8 91.5 100 0 0 0 0 100 n/a 12.1 94.5 96.4
200 11.4 61.8 94.7 97.1 200 0 0 0 0 200 n/a n/a 20.3 92.5
500 1.8 32.3 84.6 91.7 500 0 0 0 0 500 n/a n/a n/a n/a

k0 = 2 k0 = 2 k0 = 2
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 13.3 33.5 50.1 50.4 50 0 0 0 0 50 5.1 44.8 72.6 77.2
100 26.6 65.3 79.3 80.2 100 0 0 0 0 100 n/a 11.8 92.5 96.0
200 17.6 75.7 96.1 96.6 200 0 0 0 0 200 n/a n/a 19.5 91.4
500 2.4 36.5 89.2 93.8 500 0 0 0 0 500 n/a n/a n/a n/a

Notes: See the notes to Table 2.
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Table 12: Average number of non-pervasive units falsely selected as
pervasive units (m0 = 1, and α = 0.8)

SMT-σ2 PS BM
k0 = 0 k0 = 0 k0 = 0

N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0 0 0 0 50 3.7 3.4 2.2 2.0 50 2.8 0.7 0.2 0.1
100 0 0 0 0 100 8.2 7.6 2.6 1.8 100 n/a 2.0 0 0
200 0 0 0 0 200 16.8 10.6 3.5 1.9 200 n/a n/a 1.3 0
500 0 0 0 0 500 41.6 22.3 2.8 1.2 500 n/a n/a n/a n/a

k0 = 1 k0 = 1 k0 = 1
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0.2 0.2 0.2 0.2 50 2.5 3.4 4.2 4.3 50 2.9 0.8 0.2 0.1
100 0.1 0.1 0.1 0.1 100 3.6 4.9 6.8 7.1 100 n/a 2.3 0 0
200 0 0 0 0 200 6.4 10.9 14.2 15.0 200 n/a n/a 1.4 0
500 0 0 0 0 500 0.1 29.0 39.4 40.3 500 n/a n/a n/a n/a

k0 = 2 k0 = 2 k0 = 2
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0.5 0.4 0.5 0.5 50 2.7 4.0 4.6 4.6 50 3.0 0.8 0.2 0.1
100 0.2 0.2 0.3 0.3 100 3.8 5.3 7.6 8.0 100 n/a 2.2 0 0
200 0 0 0 0 200 7.8 12.8 15.3 15.7 200 n/a n/a 1.3 0
500 0 0 0 0 500 0 35.6 40.5 40.6 500 n/a n/a n/a n/a

Notes: See the notes to Table 2.
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Table 13: Average number of non-pervasive units falsely selected as
pervasive units (m0 = 2, and α = 0.8)

SMT-σ2 PS BM
k0 = 0 k0 = 0 k0 = 0

N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0.1 0.1 0 0 50 3.7 2.8 2.8 2.9 50 2.1 0.3 0 0
100 0 0 0 0 100 7.0 4.5 1.4 1.1 100 n/a 1.3 0 0
200 0 0 0 0 200 12.6 5.7 2.1 1.3 200 n/a n/a 0.6 0
500 0 0 0 0 500 32.9 11.0 2.1 1.2 500 n/a n/a n/a n/a

k0 = 1 k0 = 1 k0 = 1
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0.2 0.2 0.2 0.2 50 4.0 4.6 4.8 4.7 50 2.2 0.4 0.1 0
100 0.2 0.1 0.1 0.1 100 6.2 7.0 7.3 7.2 100 n/a 1.4 0 0
200 0 0 0 0 200 12.1 14.4 14.9 14.9 200 n/a n/a 0.8 0
500 0 0 0 0 500 0.1 36.8 37.6 37.5 500 n/a n/a n/a n/a

k0 = 2 k0 = 2 k0 = 2
N\T 60 110 210 250 N\T 60 110 210 250 N\T 60 110 210 250
50 0.5 0.4 0.4 0.5 50 3.9 4.2 4.2 4.2 50 2.1 0.3 0.1 0
100 0.3 0.2 0.2 0.2 100 6.1 7.0 8.0 8.2 100 n/a 1.4 0 0
200 0.1 0 0 0 200 11.4 14.8 15.2 15.3 200 n/a n/a 0.8 0
500 0 0 0 0 500 0 37.0 38.0 38.1 500 n/a n/a n/a n/a

Notes: See the notes to Table 2.

back to main MC results
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