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Research Question

• How can policymakers regulate a financial system when they
are fundamentally uncertain about its precise structure?

What I do

• Develop a framework to understand the behavior of such
policymakers. Within my framework:

• institutions are linked via an opaque network of exposures.

• cascades of distress may occur as a result of contagion.

• policymaker—who imposes preemptive restrictions on cer-
tain institutions to maximize expected output—is uncertain
about the precise structure of the network.



What do we learn?

• Uncertainty about the precise structure of the network re-
duces the scope for welfare improving regulations.

• While improving network transparency potentially reduces
this uncertainty, it does not necessarily lead to welfare im-
proving interventions.

• Preventing large cascades of distress may be suboptimal.

• Optimal policy is jointly determined by

• (expected) susceptibility of the network to contagion
• cost of improving network transparency
• cost of regulating institutions
• investors’ preferences.
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Case 1: p is known
Optimal policy: xp(c)

c0 (1 /3) (1 /3) + (4 /9) p (1 /3) + (8 /9) p+ (2 /3) p2

xp=3 xp=2 xp=1 xp=0



Case 1: p is known
Improving network transparency
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Case 1: p is known
What happens if the network architecture changes?
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Case 1: p is known
Optimal Policy: xp(c)

c

0 (1 /3) (1 /3) + (2 /3) p (1 /3) + (4 /3) p+ 2 p2(1-p)

xp=3 xp=2 xp=1 xp=0

c

0 (1 /3) (1 /3) + (4 /9) p (1 /3) + (8 /9) p+ (2 /3) p2

xp=3 xp=2 xp=1 xp=0
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Case 2: p is unknown

• p ∈
{

1
5 ,

4
5

}
.

• P
(
p = 1

5

)
= φ.

• Smooth ambiguity certainty equivalent

SCE(xA) ≡ Ep̄ [TO|xA]−
(
θ

2

)
V [Ep (TO|xA)]

• p̄ = φ1
5 + (1− φ)4

5 .

• θ : attitude toward model uncertainty.



Case 2: p is unknown
Optimal policy: xA(φ, θ)

0.2 0.4 0.6 0.8 1.0
ϕ

5

10

15

20

θ

x = 2

x = 1

x = 0



Case 2: p is unknown
Improving network transparency
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Challenges

• What happens if the size of the economy increases?

• How can we deal with arbitrary network architectures?

Potential Solution

• Random networks



General Framework

• n banks, each endowed with one dollar

• network has an arbitrary architecture

• distribution of contagious exposures across banks is charac-
terized by {pk}n−1

k=0 , where pk denotes the probability that a
randomly chosen bank has k contagious exposures

• Timeline

Planner
decides whether

to improve
net. transparency

Planner
restricts
banks

Banks
react to

regulation
(change portfolio allocation)

Shocks
spread through

the network

Payoffs
are realized

Period 0 Period 1 Period 2



Banks’ problem
• Bank i chooses the fraction of liquid assets in its portfolio,
ωi, to maximize profits.

max
ωi∈{ωL,ωH}

E [πi] = E [ωi ×RL + (1− ωi)×RI − βωi × εi]

s.t. ωH × ei ≤ ωi (regulatory constraint)

with ωL < ωH and E[RL] < E[RI ].

• If i faces a liquidity shock, then εi = 1 (otherwise, εi = 0)

• Portfolio liquidity matters:

βωi =

{
0, if ωi = ωH

ωL ×RL + (1− ωL)×RI , otherwise.

• If i is regulated, then ei = 1 (otherwise, ei = 0)

• Banks underestimate the likelihood of being affected by
cascades of liquidity shocks at t = 2 → ωi = ωL if ei = 0.



Welfare effects of regulation
Suppose {pk}k is known and the planner restricts a fraction x of
banks.

E
[

1

n
TO
∣∣x] = ν − ν(1− x)

〈φx〉
n︸ ︷︷ ︸−x∆ωE[∆R],︸ ︷︷ ︸

costs of contagion regulation losses

where ν ≡ E[RI ]− ωLE[∆R] and 〈φx〉 ≡
(∑n(1−x)

m=1 mφxm

)
.

Increasing x

↑ x∆ωE[∆R],
↓ (1− x), but
↑↓ 〈φx〉

Increasing transparency

alters 〈φx〉



Optimal x∗

ν

(
〈φx∗〉
n
− (1− x∗) ∂

∂x

(
〈φx〉
n

) ∣∣∣∣
x=x∗

)
︸ ︷︷ ︸ = ∆ωE[∆R].︸ ︷︷ ︸

marginal benefit marginal cost

Value of network transparency

SVI = (xr − xt)∆ωE[∆R] + ν

(
(1− xr)

〈φxr〉
n
− (1− xt)

〈φxt〉
n

)



The network architecture matters

• Different families of distributions {pk}k imply differences in
connectivity structures.

Poisson Power-law



Case 1: {pk}k is known
Optimal fraction of restricted banks
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Case 1: {pk}k is known
Optimal fraction of restricted banks
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Case 1: {pk}k is known
Value of network transparency
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Case 2: {pk}k is unknown
Optimal fraction of restricted banks
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Case 2: {pk}k is unknown
Optimal fraction of restricted banks
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Case 2: {pk}k is unknown
Value of network transparency
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Concluding Remarks

• Uncertainty about the precise structure of the network re-
duces the scope for welfare improving regulations.

• While improving network transparency potentially reduces
this uncertainty, it does not necessarily lead to welfare im-
proving interventions.

• The (social) value of improving network transparency is linked
to aggregate characteristics of the network structure.

• Preventing large cascades of distress may be suboptimal.



Caveats

• Model does not capture

• economic incentives underlying the formation of exposures,

• reasons some institutions may be more prone to propagating
distress

• Emphasis on the relevance of network uncertainty should not
be understood as downplaying the important role that

• leverage

• size

• short-term funding

play in the design of optimal policies

• As the network structure interacts with the above variables,
policy interventions should be mindful of such interactions



APPENDIX



Case 1: p is known
Optimal policy: xc(p)

xp

p

c = (5 /9)
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Motivating Example
Optimal Policy: xc(p)

xp

p

c = (5 /9)
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Incorporating Ambiguity

• Given I, planner chooses RI to solve

max
RI

Eᾱ
(
TOα

∣∣RI)− (θ
2

)
× Vf

(
Eα
(
TOα

∣∣RI))− κ× 1κ

where A is the set of plausible values for α and f denotes
investors’ subjective beliefs over A, with ᾱ ≡

∫
α∈A αdf

• The planner chooses I ∈ {I0, I1} and RI to solve

max
I ∈ {I0,I1}

{
maxRI0

(
Eᾱ
(
TOα

∣∣RI0)− θ
2Vf

(
Eα
(
TOα

∣∣RI0))) ,
maxRI1

(
Eᾱ
(
TOα

∣∣RI1)− θ
2Vf

(
Eα
(
TOα

∣∣RI1))− κ)
}

• Social value of network transparency is now captured by

[
Eᾱ
(
TOα

∣∣x∗I1)− Eᾱ
(
TOα

∣∣x∗I0)]− (θ2
)
×∆Vµ,



The Rise of Large Cascading Failures

• Large cascading failures arise if

lim
n→∞

〈k2〉
〈k〉

≤ 2.

• Preventing large cascading failures

• When the planner cannot differentiate among banks before
implementing policies,

x∗ = 1− 〈k〉
〈k2〉 − 〈k〉

.

• When the planner can rank banks based on their future num-
ber of susceptible links,

K(x∗)∑
k=0

k(k − 1)pk = 〈k〉 and x∗ = 1−
K(x∗)∑
k=0

pk.
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