Dynamically optimal treatment allocation using Reinforcement Learning

Karun Adusumilli (UPenn), Friedrich Geiecke (LSE) & Claudio Schilter (U. Zurich)

January 1, 2020

Dynamic Treatment Allocation

- ► The treatment assignment problem:
 - How do we assign individuals to treatment using observational data?
- Decision problem of maximizing population welfare
 - Large literature on this in the 'static' setting
 - Exploits similarity with classification
- This paper:
 - Individuals arrive sequentially (e.g when unemployed)
 - Planner has to assign individuals to treatment (e.g job training):
 - Various planner constraints: Finite budget/capacity, borrowing, queues...
 - ► Turns out similar to optimal control/Reinforcement Learning

Dynamics vs Statics: Two examples

Borrowing constraints

- Assume rate of arrival of individuals and flow of funds is constant
- ▶ 'Static' rule (e.g Kitagawa-Tetnov '18): only depends on covariates
- ► However: Under a static rule budget follows a random walk!
- Eventually shatters any borrowing constraints
- lackbox Optimal rule: Change with budget \equiv optimal control of budget path

► Finite budget

- Planner starts with pot of money that is not replenished
- Training depletes budget and future benefits are discounted
- Existing methods not applicable even if we just want a 'static rule'
- ▶ They need specification % of population to be treated
- But this is endogenous to policy!

Other examples

- Finite budget and time
 - Planner is given pot of money to be used up within a year
- Finite capacity
 - E.g fixed number of caseworkers for home visits etc
 - If capacity is full, people turned away (or waitlisted)
 - ▶ People finish treatment at **known** rates which frees up capacity

Queues

- Why? Time for treatment is longer than arrival rates
- Waiting is costly and not treating someone shortens wait times
- Current length of queue is a state variable
- Related: Multiple queues
 - Some cases are more time-sensitive
 - Can use two queues: shorter queue for riskier patients

Preliminary remarks

- ▶ We focus on 'offline' learning
 - Use historical/RCT data to estimate policy
 - ▶ In infinite horizon, our algrorithm can be used fully online
 - However we not have any claim on optimality
 - Note: bandit algorithms are not applicable!
- Key assumption: Individuals do not respond strategically to policy
 - Arrival rates are exogenous and unaffected by policy
 - ▶ However results apply if we have model of policy response

What we do: Overview

- Estimation of optimal policy rule in pre-specified class
 - ► Ethical/computational/legal reasons (Kitagawa-Tetenov, 2018)
- ► Basic elements of our theory
 - For each policy, write down a PDE for expected value fn (a la HJB)
 - Using data, write down sample version of PDE for each policy
 - Maximize over sample PDE solutions to estimate optimal policy
 - ▶ Bound difference in solutions using PDE techniques
 ⇒ Regret bounds

Overview (contd.)

Computation

- Approximate PDE with (semi-discrete) dynamic program
- ► Solve using Reinforcement Learning (RL): Actor-Critic algorithm
- Solves for maximum within pre-specified policy classes
- Computationally fast due to parallelization

▶ Some results

 $ightharpoonup \sqrt{v/n}$ rates for regret where v is complexity of policy class

Setup

- ▶ State variable: $s \equiv (x, z, t)$
 - x individual covariates
 - z budget/institutional constraint
 - t time
- ▶ Arrivals: Poisson point process with parameter $\lambda(t)N$
 - Set $\lambda(t_0) = 1$ as normalization
 - lacktriangleright N is scale parameter that will be taken to ∞
- Distribution of covariates: F
 - Assumed fixed for this talk
 - ▶ In paper: allowed to change with t

Setup (contd.)

- ▶ Actions: a = 1 (Train) or a = 0 (Do not train)
- ▶ Choosing a results in utility Y(a)/N for social planner
 - Utility scaled to a 'per-person' number
- Rewards: expected utility given covariate x

$$r(x, a) = E[Y(a)|x]$$

▶ Look at additive welfare criteria so normalize r(x,0) = 0

Setup (contd.)

Law of motion for z:

$$z' - z = G_a(s)/N, \ a \in \{0, 1\}$$

- ▶ Interpreting $G_a(s)$: Flow rate of budget wrt mass m of individuals
- ▶ Here, m is defined by giving each individual 1/N weight
- If planner chooses a for mass δm of individuals, z changes by $\delta z \approx G_a(s)\delta m$
- Example: Denote
 - $\sigma(z,t)$: Rate of inflow of funds wrt time
 - ightharpoonup c(x, z, t): Cost of treatment per person
 - b: Interest rate for borrowing/saving

$$G_a(s) = \lambda(t)^{-1} \{ \sigma(z, t) + bz \} - c(x, z, t) \mathbb{I}(a = 1)$$

Policy class

- ▶ Policy function: $\pi(.|s): s \longrightarrow [0,1]$
 - ► Taken to be probabilistic
- ▶ We consider policy class $\{\pi_{\theta} : \theta \in \Theta\}$
 - Can include various constraints on policies
 - ightharpoonup For theoretical results: heta can be anything
- In practice we use soft-max class

$$\pi_{\theta}^{(\sigma)}(1|\mathbf{x},\mathbf{z}) = \frac{\exp(\theta^\intercal f(\mathbf{x},\mathbf{z})/\sigma)}{1 + \exp(\theta^\intercal f(\mathbf{x},\mathbf{z})/\sigma)}$$

- $ightharpoonup \sigma$ is 'temperature': can be fixed or subsumed into θ
- lacktriangle E.g. $\sigma \to 0$ gives linear-eligibility scores (Kitagawa & Tetenov, '18)

Value functions

- ▶ Integrated value function: $h_{\theta}(z, t)$
 - Expected welfare for social planner at z, t before observing x
- Define

$$\bar{r}_{\theta}(z,t) := E_{x \sim F}[r(x,1)\pi_{\theta}(1|x,z,t)],$$

and

$$\bar{G}_{\theta}(z,t) := E_{x \sim F} [G_1(s)\pi_{\theta}(1|s) + G_0(s)\pi_{\theta}(0|s)|z,t]$$

- $ightharpoonup \overline{r_{\theta}}(z,t)$: expected flow (wrt mass of people) utility at state (z,t)
- $\overline{G}_{\theta}(z,t)$: expected flow change to z at state (z,t)

PDE for the integrated value function

$$\underbrace{\beta h_{\theta}(z,t)}_{\text{return}} - \underbrace{\lambda(t) \overline{r}_{\theta}(z,t)}_{\text{dividend: flow utility wrt t}} - \underbrace{\lambda(t) \overline{G}_{\theta}(z,t) \partial_z h_{\theta}(z,t) - \partial_t h_{\theta}(z,t)}_{\text{total time derivative of } h_{\theta}} = 0$$

- ▶ Obtained in the limit $N \to \infty$
 - ▶ In fact N = 1 also gives same PDE in infinite horzon setup
- PDE encapsulates 'no arbitrage'
 - ▶ Think of β as natural rate of interest and $h_{\theta}(z,t)$ as valuation
- We need to specify boundary condition
- In general differentiable solution does not exist!
 - ► Work with viscosity solutions (Crandall & Lions 83)

Boundary conditions

- ▶ Dirichlet:
 - Finite time horizon, finite budget or both

$$h_{\theta}(z,t) = 0 \text{ on } \Gamma; \quad \Gamma \equiv \{(z,t) : z = 0 \text{ or } t = T\}$$

- Periodic:
 - ▶ Infinite horizon setting with t periodic with period T_p

$$h_{\theta}(z,t) = h_{\theta}(z,t+T_p) \ \forall (z,t) \in \mathbb{R} \times [t_0,\infty)$$

- ► Generalized Neumann (Finite\Infinite horizon versions):
 - Basic idea: behavior at boundary is different from interior
 - Useful to model borrowing constraints

$$\begin{split} \beta h_{\theta}(\mathbf{z},t) - \sigma(\mathbf{z},t) \partial_{\mathbf{z}} h_{\theta}(\mathbf{z},t) - \partial_{t} h_{\theta}(\mathbf{z},t) &= 0, \quad \text{on } \{\underline{\mathbf{z}}\} \times [t_{0},T) \\ h_{\theta}(\mathbf{z},T) &= 0, \quad \text{on } (\underline{\mathbf{z}},\infty) \times \{T\} \quad \text{OR} \\ h_{\theta}(\mathbf{z},t) &= h_{\theta}(\mathbf{z},t+T_{p}), \ \forall \ (\mathbf{z},t) \in \mathcal{U} \end{split}$$

Social planner objective

$$\beta h_{\theta}(z,t) - \lambda(t) \bar{r}_{\theta}(z,t) - \lambda(t) \bar{G}_{\theta}(z,t) \partial_{z} h_{\theta}(z,t) - \partial_{t} h_{\theta}(z,t) = 0$$

- Class of PDEs: one for each policy
- We will think of $\lambda(\cdot)$ as a 'forecast' and condition on it
- ▶ Policy objective given $\lambda(\cdot)$:

$$\theta^* = arg \max_{\theta \in \Theta} W(\theta); \quad W(\theta) := h_{\theta}(z_0, t_0)$$

- $ightharpoonup z_0, t_0$: Initial budget and time
- ▶ More generally: planner has distribution over forecasts $\lambda(t)$
 - ► Then: $W(\theta) = \int h_{\theta}(z_0, t_0; \lambda) dP(\lambda)$

The sample counterparts

- \triangleright Denote F_n empirical distribution of RCT data
 - ▶ Assume $F_n \to F$
- **E**stimate r(x, a) using RCT data with a doubly robust estimate
- Define

$$\hat{r}_{\theta}(z,t) = E_{x \sim F_n} \left[\hat{r}(x,1) \pi_{\theta}(1|x,z,t) \right],$$

and

$$\hat{G}_{\theta}(z,t) := E_{x \sim F_n} [G_1(x,z,t)\pi_{\theta}(1|x,z,t) + G_0(x,z,t)\pi_{\theta}(0|x,z,t)]$$

Computation: Estimating the value function

▶ We can use sample counteparts and obtain sample PDE:

$$\beta \hat{h}_{\theta}(z,t) - \lambda(t) \hat{G}_{\theta}(z,t) \partial_{z} \hat{h}_{\theta}(z,t) - \partial_{t} \hat{h}_{\theta}(z,t) - \lambda(t) \hat{r}_{\theta}(z,t) = 0$$

- But solving this directly is too difficult
- Solution: approximate with a dynamic program instead

$$\tilde{h}_{\theta}(z,t) = \frac{\hat{r}_{\theta}(z,t)}{b_{n}} + E_{n,\theta} \left[e^{-\beta(t'-t)} \tilde{h}_{\theta}(z',t') | z, t \right]$$

- ► Here: $z' = z b_n^{-1} G_a(s)$, $b_n(t'-t) \sim \exp(\lambda(t))$
- ▶ $1/b_n$: discrete change to mass of individuals (basically same as 1/N)
- ▶ Determines numerical error: same idea as step size in PDE solvers

Reinforcement Learning

- ▶ We create simulations of dynamic environment, called Episodes
 - Using estimated rewards \hat{r} and sampling individuals from F_n
- ▶ Just the environment for Reinforcement Learning
 - ▶ Take action from current policy, observe \hat{r} , move to next state
 - Based on reward, update policy
- ► We use Actor-Critic algorithm
 - Stochastic Gradient Descent (SGD) updates along $\nabla_{\theta} \tilde{h}_{\theta}(z_0, t_0)$
 - Gradient requires an estimate of $h_{\theta}(z,t)$ for current θ
 - ▶ Parametrize $\hat{h}_{\theta}(z,t) = \nu^{\mathsf{T}} \phi(z,t)$ and use another SGD to update ν
 - Key idea: update θ , ν simultaneously!
 - ▶ Two timescale trick uses faster learning rate for ν More details

Statistical and numerical properties

Probabilistic bounds on regret

Suppose that \hat{r} is a doubly robust estimate. Then under some regularity conditions

$$W(\theta^*) - W(\hat{\theta}) \le C\sqrt{\frac{v}{n}} + K\sqrt{\frac{1}{b_n}}$$

uniformly over $(\lambda(\cdot), F)$

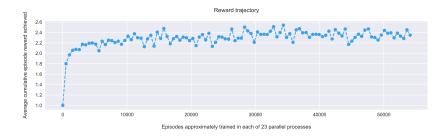
Remarks:

- ▶ v is VC dimension of $\mathcal{G}_a = \{\pi_{\theta}(a|\cdot, z, t) G_a(\cdot, z, t) : (z, t) \in \bar{\mathcal{U}}, \theta \in \Theta\}$
- ▶ Second term is numerical error from approximation
- Proof uses results from the theory of viscosity solutions
- \blacktriangleright For infinite horizon need β to be sufficiently large

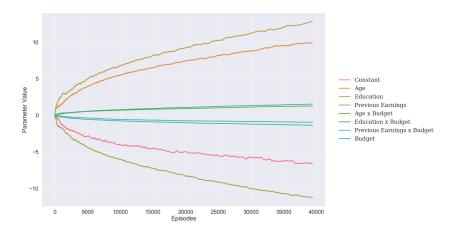
Application: JTPA study

- ▶ RCT data on training for unemployed adults
 - $n \approx 9000$, done over 2 years
 - ▶ Outcomes: 30 month earnings cost of treatment (\$774)
- ▶ Finite budget and time: Can only treat 1600 people within a year
 - Discount factor $\beta = -\log 0.9$ or 0.9 over course of year Another example. Finite budget
- Estimation of arrival rates:
 - Cluster data into 4 groups (k-means)
 - lacktriangle Estimate $\lambda(t)$ using Poisson regression for each cluster
- ▶ Policy class (x : 1, age, education, prev. earnings)

$$\pi(a=1|s) \sim \mathsf{Logit}(\mathbf{x},\mathbf{x}\cdot z)$$

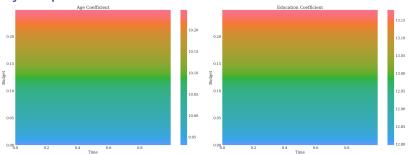


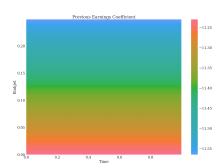
▶ Normalized relative to random policy (also roughly same as treating everyone)



Relative parameter values

Policy maps





Conclusion

- ► Actor-Critic algorithm for learning constrained optimal policy
- Some other extensions that we include in paper
 - Heterogenous non-compliance using IVs
 - Continung to learn after coming online
- ▶ Ongoing work
 - Online learning
 - Dynamic treatment regimes

The Actor-Critic algorithm

Policy Gradient Theorem

$$\nabla_{\theta} \tilde{\textit{h}}_{\theta}(\textit{z}_{0},\textit{t}_{0}) = \textit{E}_{\textit{n},\theta} \left[e^{-\beta(\textit{t}-\textit{t}_{0})} \left\{ \hat{\textit{r}}_{\textit{n}}(\textit{x},\textit{a}) + \beta \hat{\textit{h}}_{\theta}(\textit{z}',\textit{t}') - \hat{\textit{h}}_{\theta}(\textit{z},\textit{t}) \right\} \nabla_{\theta} \ln \pi(\textit{a}|\textit{s};\theta) \right]$$

The Actor-Critic algorithm

Policy Gradient Theorem

$$\nabla_{\theta} \tilde{\textit{h}}_{\theta}(\textit{z}_{0},\textit{t}_{0}) = \textit{E}_{\textit{n},\theta} \left[e^{-\beta(\textit{t}-\textit{t}_{0})} \left\{ \hat{\textit{r}}_{\textit{n}}(\textit{x},\textit{a}) + \beta \hat{\textit{h}}_{\theta}(\textit{z}',\textit{t}') - \hat{\textit{h}}_{\theta}(\textit{z},\textit{t}) \right\} \nabla_{\theta} \ln \pi(\textit{a}|\textit{s};\theta) \right]$$

Functional Approximation:

$$\nabla_{\theta} \tilde{h}_{\theta}(z_0, t_0) \approx E_{n, \theta} \left[e^{-\beta(t - t_0)} \left\{ \hat{r}_n(x, a) + \beta \nu^{\mathsf{T}} \phi_{z', t'} - \nu^{\mathsf{T}} \phi_{z, t} \right\} \nabla_{\theta} \ln \pi(a | s; \theta) \right]$$

The Actor-Critic algorithm

Policy Gradient Theorem

$$\nabla_{\theta} \tilde{\textit{h}}_{\theta}(\textit{z}_{0},\textit{t}_{0}) = \textit{E}_{\textit{n},\theta} \left[e^{-\beta(\textit{t}-\textit{t}_{0})} \left\{ \hat{\textit{r}}_{\textit{n}}(\textit{x},\textit{a}) + \beta \hat{\textit{h}}_{\theta}(\textit{z}',\textit{t}') - \hat{\textit{h}}_{\theta}(\textit{z},\textit{t}) \right\} \nabla_{\theta} \ln \pi(\textit{a}|\textit{s};\theta) \right]$$

Functional Approximation:

$$\nabla_{\theta} \tilde{h}_{\theta}(z_0, t_0) \approx E_{n, \theta} \left[e^{-\beta(t - t_0)} \left\{ \hat{r}_n(x, a) + \beta \nu^{\mathsf{T}} \phi_{z', t'} - \nu^{\mathsf{T}} \phi_{z, t} \right\} \nabla_{\theta} \ln \pi(a | s; \theta) \right]$$

Temporal-Difference (TD) Learning

$$\nu_{\theta}^* = \arg\min_{\nu} \textit{E}_{\textit{n},\theta} \left[\left\| \tilde{\textit{h}}_{\theta}(\textit{z},\textit{t}) - \nu^{\mathsf{T}} \phi_{\textit{z},\textit{t}} \right\|^2 \right] := \hat{\textit{Q}}(\nu | \theta)$$

Stochastic Gradient Updates

$$\nabla_{\theta} \tilde{h}_{\theta}(z_{0}, t_{0}) \approx E_{n,\theta} \left[e^{-\beta(t-t_{0})} \left\{ \hat{r}_{n}(x, a) + \beta \nu^{\mathsf{T}} \phi_{z',t'} - \nu^{\mathsf{T}} \phi_{z,t} \right\} \nabla_{\theta} \ln \pi(a|s; \theta) \right]$$
$$\nabla_{\nu} \hat{Q}(\nu|\theta) \approx E_{n,\theta} \left[\left(\hat{r}_{n}(x, a) + \beta \nu^{\mathsf{T}} \phi_{z',t'} - \nu^{\mathsf{T}} \phi_{z,t} \right) \phi_{z,t} \right]$$

Convert both to SGD updates (AC algorithm)

$$\theta \longleftarrow \theta + \alpha_{\theta} e^{-\beta(t-t_{0})} \left(\hat{r}_{n}(x, \mathbf{a}) + \beta \nu^{\mathsf{T}} \phi_{z', t'} - \nu^{\mathsf{T}} \phi_{z, t} \right) \nabla_{\theta} \ln \pi(\mathbf{a}|\mathbf{s}; \theta)$$

$$\nu \longleftarrow \nu + \alpha_{\nu} \left(\hat{r}_{n}(x, \mathbf{a}) + \beta \nu^{\mathsf{T}} \phi_{z', t'} - \nu^{\mathsf{T}} \phi_{z, t} \right) \phi_{z, t}$$

- Updates are 'online'
 - ▶ Take $a \sim \pi_{\theta}$ and continually update while interacting with env.
- Updates to θ, ν done simultaneously at two timescales: $\alpha_{\nu} \gg \alpha_{\theta}$
 - ▶ No need to wait for ν_{θ} to converge Return

Convergence of Actor-Critic

Convergence of Actor-Critic algorithm

Suppose the learning rates satisfy $\sum_k \alpha^{(k)} \to \infty, \ \sum_k \alpha^{2(k)} < \infty$, and $\alpha_{\theta}^{(k)}/\alpha_{\nu}^{(k)} \to 0$. Then under some regularity conditions

$$\theta^{(k)} \to \theta_c, \quad \nu^{(k)} \to \nu_c,$$

where convergence is local. Furthermore given $\epsilon>0$ there exists \emph{M} s.t

$$\left\|\hat{\theta} - \theta_c \right\| \le \epsilon \quad \text{whenever dim}(\nu) \ge M.$$

Remarks:

- ▶ *k* is order of updates
- \blacktriangleright There is no statistical tradeoff for choosing $\dim(\nu),$ ideally $\nu=\infty$

Application 2: Finite budget

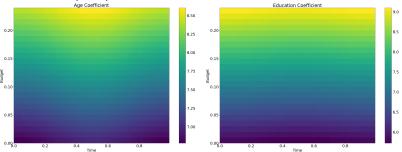
- ▶ Finite budget: Can only treat 1600 people
 - ▶ Discount factor $\beta = -\log 0.9$ or 0.9 over course of year
 - Note: there is no time constraint anymore
- ▶ Policy class (x : 1, age, education, prev. earnings)

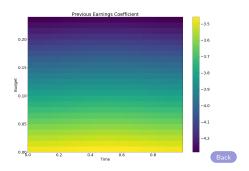
$$\pi(a=1|s) \sim \mathsf{Logit}(\mathbf{x},\mathbf{x}\cdot\cos(2\pi t),\mathbf{x}\cdot z)$$

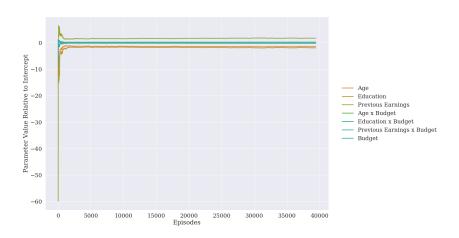
Doubly Robust (preliminary)

▶ # people considered: 145K \approx 23 years

Policy maps (DR)







Back