
Synthetic Differences in Differences

Susan Athey (Stanford University)

(with Dmitry Arkhangelsky, Nick Doudchenko, Skip Hirshberg)

(Guido Imbens, and Stefan Wager)



References:

Arkhangelsky, Dmitry, Susan Athey, David A. Hirshberg, Guido

W. Imbens, and Stefan Wager. Synthetic difference in dif-

ferences, 2019.

Athey, Susan, Mohsen Bayati, Mohsen, Nick Doudchenko,

Guido Imbens, and Khashayar Khosravi, (2018). Matrix com-

pletion methods for causal panel data models.

1



• California’s anti-smoking legislation (Proposition 99) took

effect in 1989.

•What is the causal effect of the legislation on smoking

rates in California in 1989?

• We observe smoking rates in California in 1989 given the

legislation. We need to impute the counterfactual smok-

ing rates in California in 1989 had the legislation not been

enacted.

• We have data in the absence of smoking legislation in Cal-

ifornia prior to 1989, and for other states both before and in

1989. (and other variables, but not of essence)
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Set Up: we observe (in addition to covariates):

Y =


Y11 Y12 Y13 . . . Y1T
Y21 Y22 Y23 . . . Y2T
Y31 Y32 Y33 . . . Y3T

... ... ... . . . ...
YN1 YN2 YN3 . . . YNT

 (realized outcome).

W =



0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . 1 1
0 0 0 . . . 1 1


(binary treatment).

• rows of Y and W correspond to units (e.g., states), columns

correspond to time periods (years).
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In terms of potential outcome matrices Y(0) and Y(1):

Y(0) =



X X . . . X X
X X . . . X X
X X . . . X X
... ... . . . ...
X X . . . ? ?
X X . . . ? ?


Y(1) =



? ? . . . ? ?
? ? . . . ? ?
? ? . . . ? ?
... ... . . . ...
? ? . . . X X
? ? . . . X X


.

Yit = (1−Wit)Yit(0) +WitYit.

In order to estimate the average treatment effect for the
treated, (or other average, e.g., overall average effect)

τ =

∑
i,tWit

(
Yit(1)− Yit(0)

)
∑
itWit

,

we impute the missing potential outcomes in Y(0).
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Part of the talk I will focus on case with a single treated

unit/time-period

W =



0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . 0 0
0 0 0 . . . 0 1


Challenge:

Trying to predict YNT (0) based on observed values Yit(0)

for (i, t) 6= (N,T ).
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In empirical studies there is a wide range of values for

• N0, the number of control units

• N1, the number of treated units

• T0, the number of pre-treatment periods

• T1, the number of post-treatment periods

This is important for guiding choice of analyses.
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1. Mariel Boatlift (Card,1990), N1 = 1, N0 = 44, T0 = 7, T1 =

6

2. Minimum wage (Card-Krueger 1994), N1 = 321, N0 =

78, T0 = 1, T1 = 1

3. California smoking (Abadie, Diamond, Hainmueller, 2010)

N1 = 1, N0 = 29, T0 = 17, T1 = 13

4. German unification (Abadie, Diamond, Hainmueller, 2014)

N1 = 1, N0 = 16, T0 = 30, T1 = 14

5. Lalonde (1986) N1 = 185, N0 = 15992, T0 = 2, T1 = 1

7



Three related literatures on causal inference for this setting:

1. causal literature with unconfoundedness / horizontal re-

gression

2. synthetic control literature / vertical regression

3. difference-in-differences and factor models

Here: doubly robust methods that combine weighting and

outcome modeling
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Unconfoundedness Methods / Horizontal Regression

Typical setting: N0 and N1 large, T0 modest, T1 = 1.

W =



0 0 0 0 0
0 0 0 0 0
... ... ... ... ...
0 0 0 0 0
0 0 0 0 1
... ... ... ... ...
0 0 0 0 1


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Linear Model

τ̂UNC =
1

N1

∑
i:WiT=1

(
YiT (1)− ŶiT (0)

)

where

ŶiT (0) = α̂+
T−1∑
t=1

λ̂tYit

and α̂ and λ̂ are estimated by least squares:

min
α,λ

N0−1∑
i=1

YiT − α− T−1∑
t=1

λtYit

2
′′horizontal′′ regression

Note: regression with N0 observations, and T0 regres-

sors. May need regularization if T0 is big.
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Abadie-Diamond-Hainmueller Synthetic Control Method

Typical setting: T0 and T1 modest, N0 small, N1 = 1.

W =



0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . . 0
... ... . . . ... ... . . . ...
0 0 . . . 0 0 . . . 0
0 0 . . . 0 1 . . . 1


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For simplicity focus on case with T1 = 1, T0 = T − 1.

τ̂DI = YNT − ŶNT (0), ŶNT (0) = α+
N−1∑
i=1

ωiYiT

where

min
α,ω

T−1∑
t=1

YNt − α− N−1∑
i=1

ωiYit

2
′′vertical′′ regression

Note: regression with T0 observations, and N0 regres-

sors.
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Comparison Unconfoundedness vs Synthetic Controls in

Case with N1 = T1 = 1

• Unconfoundedness req. N0 > T0 =⇒ horizontal regression

• Synthetic Control requires N0 < T0 =⇒ vertical regression

But, with regularization on regression coefficients we can

use either unconfoundedness or synthetic control methods,

irrespective of relative magnitude of N0 and T0.
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Difference-In-Differences / Factor Models

Model Yit(0):

Yit(0) = αi + γt + εit

leading to

min
α,γ

N∑
i=1

T∑
t=1

(1−Wit) (Yit − γt − αi)2

τ̂ =
1

N1T1

N∑
i=N0+1

T∑
t=T0+1

Yit −
1

N1T0

N∑
i=N0+1

T0∑
t=1

Yit

−

 1

N0T1

N0∑
i=1

T∑
t=T0+1

Yit −
1

N0T0

N0∑
i=1

T0∑
t=1

Yit


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More general, factor models:

Yit(0) =
R∑
r=1

γtrαir + εit

(Athey, Bayati, Doudchenko, Imbens, Khosravi, 2018)

arg min
α,γ,L

N∑
i=1

T∑
t=1

(1−Wit) (Yit − αi − γt − Lit)2 + λ‖L‖

with nuclear normal regularization on L to lead to low rank

solution.
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• Challenge: How to choose between these methods (verti-

cal/horizontal regression, factor models), or how to tie them

together?

• Relative merits of these methods

Comparison of

1. unconfoundedness (horizontal) regression with elastic net

regularization (EN-H)

2. synthetic control (vertical) regression with elastic net reg-

ularization and no restrictions (EN-V)

3. matrix completion with nuclear normal (MC-NNM)
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Illustration: Stock Market Data

We use daily returns for 2453 stocks over 10 years (3082
days). We create sub-samples by looking at the first T daily
returns of N randomly sampled stocks for pairs of (N,T ) such
that N × T = 4900, ranging from fat to thin:
(N,T ) = (10,490), . . . , (70,70), . . . , (490,10).

Given the sample, we pretend that half the stocks are treated
at the mid point over time, so that 25% of the entries in the
matrix are missing.

YN×T =



X X X X . . . X
X X X X . . . X
X X X X . . . X
X X X ? . . . ?
X X X ? . . . ?
... ... ... ... . . . ...
X X X ? . . . ?


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Results

• MC-NNM does better than EN-H and EN-V, adapts to

shape of matrix

• ADH restrictions (non-negativity of weights, and summing

to one, and no intercept) sometimes improve things relative

to Elastic-Net estimator, more so for the vertical regressions

than for the horizontal regressions.
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Combining Synthetic Control Methods and Matrix Com-

pletion: Observation I

Synthetic Control is weighted linear regression without

unit fixed effects:

τ̂ADH = arg min
τ,γ

N∑
i=1

T∑
t=1

(Yit − γt − τWit)
2 × ωADH

i

• regression with time fixed effects and ADH weights (easy

to include covariates).

• under some conditions standard errors can be based on re-

gression interpretation taking weights as given (even though

the weights depend on outcome data).
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Combining Synthetic Control Methods and Matrix Com-

pletion: Observation II

DID is unweighted regression with unit and time fixed

effects:

τ̂DID = arg min
τ,γ,α

N∑
i=1

T∑
t=1

(Yit − γt − αi − τWit)
2

• regression with time fixed effects and unit fixed effects, no

weights.
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Synthetic Difference In Differences

τ̂SDID = arg min
τ,γ,α

N∑
i=1

T∑
t=1

(Yit − γt − αi − τWit)
2 × ωADH

i × λADH
t

Regression with unit and time fixed effects, and with unit
and time weights.
Time weights satisfy:

λ = arg min
λ

N−1∑
i=1

YiT − T−1∑
t=1

λtYit

2

+ regularization term,

subject to

λt ≥ 0,
T−1∑
t=1

λt = 1.

(or down-weight observations from distant past.)
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Generalization: Synthetic Factor Models (SFM)

τ̂SFM =

arg min
L,α,γ,τ

N∑
i=1

T∑
t=1

(Yit − αi − γt − Lit − τWit)
2 ωADH

i λADH
t

+λ‖L‖,
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Double Robustness

• If a factor model holds, but the weights are good (e.g.,

ADH weights), SDID is consistent.

• If the DID model holds, but we use arbitrary weights, SDID

is consistent.
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Synthetic DID 
does better 

than SC 
across states



Replicating Bertrand, Duflo, Mullainathan

• CPS data. 
• Log wages by state and year
• 51 states, 21 years
• Pseudo experiments:
• Randomly select 25 “treated” 
states

• Randomly select initial treatment 
period

• SDID has Lowest RMSE

RMSE

DID .0173

GLS (rho=.5) .0149

SC .0161

SDID .0142



R Packages available from Abadie-Diamond-Hainmueller,

Athey-Bayati-Doudchenko-Imbens-Khosravi,

Arkhangelsky-Athey-Hirshberg-Imbens-Wager.
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